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POTENTIAL E N E R G Y  AND CAPACITY GAINS FROM 
FLOOD CONTROL. STORAGE REALLOCATION 

A T  EXISTING U.S. HYDROPOWER RESERVOIRS1 

Bi l l  S. Eichert2 and Vernon R .  Bonner3 

Purpose and S c q e  of Invest igat ion - ---- .------ 

This paper descr ibes  the  procedures and r e s u l t s  of an i nves t i -  
gation t o  evaluate  potent ia l  increases  i n  nationwide hydropower 
production t h a t  could be achieved by r ea l l oca t i on  of flood control  
s torage a t  ex i s t ing  hydropower rese rvo i r s .  One aspect  of t he  
inves t iga t ion  considered only the  increase i n  energy t h a t  could be 
achieved by s torage rea l loca t ion ;  a second aspect  considered 
potent ia l  gains in both energy and capaci ty  t h a t  could be achieved 
by adding t o  the ex i s t ing  i n s t a l l e d  capaci ty  as  well a s  s torage 
rea l loca t ion .  The invest igat ion was performed by the  Hydrologic 
Engineering Center (HEc) of the  U.S. Army Corps of Engineers, and i s  
a component of a technical  overview study (6 )  which i s  p a r t  of t he  
National Hydropower Study (NHS) t h a t  i s  under t h e  general super- 
v is ion of t he  Corps' I n s t i t u t e  f o r  Water Resources. 

With l imi ted time and funds ava i l ab l e  f o r  t h e  inves t iga t ion ,  
a de ta i l ed  evaluation of a11 U.S. hydropower r e se rvo i r s  w i t h  f lood 
control s to rage  was not poss ible .  The study procedure was based 
on performing de ta i l ed  sequential  rout inys  w i t h  a represen ta t ive  
sanpl e of p ro jec t s .  The sample resuf t s  were generalized and 
applied to t he  remaining pro jec t s  t o  es t imate  t h e  po ten t ia l  energy 
gains.  

No de t a i l ed  evaluation was made of t h e  economic l o s s  due t o  the  
reduction i n  f lood control  s torage and t h e  economic gains due t o  
the  increased hydropower energy and capaci ty .  However, preliminary 
es t imates  on some of t h e  p ro jec t s  were made during t he  process of 
t he  rea l loca t ion  study during o ther  p a r t s  of t h e  technical  

l Paper presented a t  the  Waterpower '81 In te rna t iona l  Conference on 
Hydropower, June 22-24, 1981, Washington, D . C .  

2Director ,  The Hydrologic Engineering Center,  U.S. Army Corps of 
Engineers, 609 Second S t r e e t ,  Davis, CA 95616, M.S. Oklahoma 
Universi ty .  

3 C h i  e f ,  Traf ning 8 Methods Branch, The Hydrologic Engineering 
Center, U.S. Army Corps of Engineers, 609 Second S t r e e t ,  Davis, 
CA 95616, B.S. Cal i fornia  S t a t e  Universi ty a t  Fresno. 



overview study of the  National Hydropower Study, but they a r e  not  
covered i n  t h i s  paper. 

Data Available 

The pro jec t  da,ta used f o r  locat ing and  ana?yz?'ng candidate s i t e s  
were obtained from t h e  U.S. Army Corps of Ehgineers Form 2 data base 
which was developed f o r  the  National Hydropower Inventory Study ( 5 ) .  
The data  base was developed during a 3,-year period by t h e  Corps of 
Engineers D.istr ' ict  o f f i c e s  and includes data f o r  over 6,000 s i t e s .  
I t  i s  probably the  most comprehensive data  base f o r  hydropower 
p ro jec t s  i n  the  United S ta tes .  From 67 t o  689 items of .ir~formation 
a r e  provided f o r  each s i t e ;  however, some of  the  data  required f o r  
evaluating hydropower potent.ia1 i s  s t i  1'1 f a r i  l y  1 imited. Data f o r  
the  rese rvo i r s  included s to rages ,  r e se rvo i r  a r ea s ,  and e leva t ions  
f o r  the  following: t o p  of f lood control  pool, top of power pool, 
and bottom of power pool. Power data  included ex i s t i ng  p lan t  
capaci ty ,  a t a i lwa t e r  r a t i ng  curve and mon,thly p lan t  f ac to r s .  
GJhere monthly p lan t  f a c t o r s  were not ava i l ab l e  i n  the  NHS da t a  
base, an assumed annual p lan t  f a c t o r  of' .086 was d i s t r i bu t ed  i n  
proportion t o  the  monthly flow volumes. The flow da ta ,  f o r  
sequential  rout ing , were average monthly flows computed from Un,i ted  
S t a t e s  Geological Survey dai7y flow f i l e s .  The flows were adjusted 
t o  t he  p ro jec t  s i t e  based on drainage area  r a t i o s .  I f  average 
month'ly evaporation was not provided f o r  t he  s i t e ,  reglonal  
evaporation data were used. 

Pro jec t  Input Data --- - 
The sequent ia l  rout ings  were performed w i t h  t he  HEC-5 computer 

program "Simulation of Flood Control and Conservation Systems. " ( 3 , l )  
The HEC-5 input data  f i l e s  f o r  each pro jec t  were prepared automati- 
c a l l y  by software developed by HEC as  p a r t  of the  National Hydro- 
power Study ( 5 ) .  S i t e s  i n  t h e  NHS data base can be se lec ted  
ind iv idua l ly  based on locat ion or  t he  c h a r a c t e r i s t i c s  of t h e  s i t e .  
For the  se lec ted  s i t e s ,  t he  required data  from the  data  base was 
automatically r e t r i eved ,  checked, and converted t o  t he  proper input  
format. The i n p u t  data  f i l e s  were then wr i t t en  on tape f o r  
subsequent ana lys i s .  

Energy and Capaci t y  Determi nation -- ------- 

The procedures f o r  determining firm energy were based on a 
s e r i e s  of i t e r a t i v e  rout ings .  Each monthly sequent ia l  rout ing used 
t h e  h i s t o r i c a l  flows during the  c r i t i c a l  drawdown period,  and 
attempted t o  meet t he  est imated monthly f i rm energy schedule ( s a f e  
y i e l d  concept). Each routing was made with a new f i rm energy 
es t imate  un t i l  t h e  maximum reservo i r  drawdown during t h e  c r i t i c a l  
period approached t he  prees tabl ished bottom of power pool within 
an allowable e r r o r  of 5 percent of the  ava i l ab l e  power s torage.  



Each estimated monthly firm energy schedule was obtained by 
multiply,ing the monthly plant fac tors  times the exist,ing ins ta l led  
capacity times a  constant. This constant ,is the fac tor  tha t  i s  
being optimized to  determine the f,irm energy schedule tha t  meets 
the required drawdown. The length of the c r i t i c a l  drawdown period 
was ini t , i a l ly  estimated by a  s.imple empirical re lat ionship (developed 
from data from over 150 s i t e s )  t ha t  estimates the c r i t i c a l  drawdown 
duration as  equal to  70 times the r a t i o  of the power storage to  mean 
annual flow. Thus, a  1  .O power storage t o  mean annual flow r a t i o  
would indicate an estimated drawdown duration of 70 months. The 
i n i t i a l  c r i t i c a l  period was then determined by finding ,the h is tor ica l  
period of flow tha t  had the minimum flow volume f o r  the duration 
corresponding to  the estimated cr i t , i ca l  dra\lidowri period. The firm 
energy was determined by the i t e r a t i v e  routing prpcedure described 
above f o r  the assumed c r i t i c a l  drawdown period. The derived f,irm 
energy schedule f o r  the assumed c r i t i c a l  period was tested against  
the en t i r e  period of flow record by making another sequential 
rout,ing. I f  a  more severe c r i t i c a l  period was found, the process 
was repeated f o r  the new c r i t i c a l  period. When the derived f,irm 
energy schedule produced the most severe power drawdown in the period 
of reocrd, the firm energy and the average annual energy ( A A E )  based 
on rout,ing the e n t i r e  period of .flow record were adopted f o r  the s i t e .  
Where the exis t ing ins ta l led  capacity was not allowed t o  increase,  
the optimal constant was multiplied by the input monthly plant f ac to r s  
t o  obtain the new monthly plant fac tors  corresponding to the derived 
firm energy. Where the ,instal 1  ed capac,i t y  was a1 1 owed t o  l ncrease, 
the optimized constant was mu1 tip1 ied by the exis t ing ins t a l  led 
capacity to  obtain the proposed ins ta l led  capacity. The dependable 
capacity was assumed to  be equal to  the proposed ins ta l led  capacity 
since i t  was the minimum capacity t h a t  could be provided during the 
c r i  t i  ca1 drawdown period (wi t h i n  the a1 1 owabl e  drawdown er ror ) .  

Ootimi zat i  on Features 

The above procedures f o r  determining the f,irm energy and inst ,alled 
capacity from a given amount of power storage f o r  a  s ingle  reservoir 
a re  performed automatically by t.he HEC-5 program ( 3 )  as shown on 
Exhibit 1. Options avai lable  , in  HEC-5 allow the user to optimize firm 
energy on1,y (without changing the ins ta l led  capacity) or to optimize 
firm energy and ins t a l l ed  capacity based on a  given amount of power 
storage. These two procedures were both used in the real locat ion 
s tudies  reported in t h i s  paper. Other program options (see Exhibit 
2 )  i  ncl ude optim,izing reservoir  y,ields f o r  water supply requirements 
or diversions,  or  for optimizing reservoir  storage based on fixed 
water supply y ie lds ,  diversions or energy requiremen'ts. 

Project Selection 

To locate  the most l i ke ly  projects  f o r  real locat ion of flood 
control storage, the data f i l e  of the NHS was searched to  ident i fy 
a l l  projects with power piants and flood control storage. A t o t a l  of 
187 projects were found tha t  met the c r i t e r i a  (see Exhibit 3 ) ;  



however, many of the projects had very 1 i t t l e  flood control storage. 
Considering the study objectives,  a second search of the NHS f i l e  was 
made with the added constraint  t ha t  the flood control storage m u s t  be 
a t  l eas t  equivalent to  10 percent of the mean annual flow. Only 49 
of the projects met the added c r i t e r ion .  

S w e n i f a i  Rouiiny S t u d i e s  - 

Because only 49 projects were judged to  have su f f i c i en t  flood 
control storage to  warrant detai led study, an attempt was made t o  
analyze each s i t e .  HEC-5 input data f i l e s  were , in i t , i a l ly  generated 

.- and stored fo r  a to t a l  of 34 projects .  ~ h e  remaining 15 projects  
had data errors  or def iciencies  tha t  prevented the automatic gener- 
ation of an HEC-5 input f i l e .  Subsequently, f ive  of the remaining 
15 s i  tes  were included in the study by making small corrections t o  
the NHS data f i l e .  

Mi t h  input data f i 1  es fo r  39 of ,the 49 large storage s i t e s ,  
detai  1 ed sequential analysis of each project was performed. The 
automatic search procedure, previously discussed, was used to  d e t e r -  
mine the maximum firm energy using the safe  yield concept. The 
maximum firm energy was obtained when the power storage u,t'i 'lizat,ion 
was within 5 percent of the to t a l  power storage available.  With the 
derived firm energy, the complete sequential analysis f o r  the period 
of recorded flow data was performed to  ensure tha t  the derived firm 
energy can be produced and to  provide an estimate of the average 
annual energy (AAE) f o r  the project .  

Energyfor Base Condi t ions  -- - --.-- 

The procedures f o r  deriving firm energy and the resu l t ing  AAE 
were performed f o r  the exist,ing power storage ,for the 39 projects  as  
a basis of comparison fo r  the real locat ion study. The AAE values,  
entered on the NHS data f i l e s  by the Corps Dis t r i c t s  as  representing 
exis t ing conditions, were compared to  the HEX-5 estimates. The to t a l  
f o r  a l l  the projects analyzed was about 1 2  percent below the t o t a l  
from the NHS data f i l e .  Approximately 40 percent of the projects  
checked within 10 percent. A number of' reasons to  explain the 
differences a re  presented l a t e r  i n  the paper. The energy computed 
by the HEC-5 program based on data from the NHS data base, neverthe- 
1 ess ,  was judged to be su f f i c i en t ly  accurate to  use as the base 
condition f o r  estimating the potenti a1 ga,in from real location. 

Energy Increases from Storage Reallocation - ------- - 

The estimates of potential  gain i n  energy from real locat ing 
storage were made by real locat ing f i r s t  10 percent and then 20 
percent of each p ro jec t ' s  flood control storage t o  the power pool. 
With the power pool increased by the flood storage reduction, and 
without allowing an increase in ins ta l led  capacity,  the firm and 
AAE were again computed fo r  each project .  Because the ins ta l led  
capacity was not allowed t o  increase,  the additional storage - 



resulted in higher plant fac tors  and more firm annual energy. The 
gains i n  AAE and firm annual energy f o r  each were then related to  
the existing condition estimate of energy production t o  compute the 
percent gain i n  energy. 

The estimated AAE for  the 39 projects  under exis t ing conditions 
was '14,: 57 GblH. With  an increase 5 i i  poxer storage f rox  real l ocatiiig 
10 percent of' the flood control storage, the AAE ,increased 257 Gl.lH 
to  a to ta l  of 14,424 GWH (a 1 .8 percent increase in AAE:) . By 
reallocating 20 percent of the flood control storage, the AAE 
increased 483 GNH above exis t ing to  a to ta l  of 14,650 GWH (a 3.4 
increase in  energy). A few projects were analyzed with even higher 
percen,tages of flood control storage real located, a1 though i t  i s  
doubtful t ha t  i t  would be economically and soc ia l ly  possible to  
rea l loca te  tha t  much storage. In general,  the r a t e  o f  increase in 
AAE decreased s l i g h t l y  with increased real locat ion of storage; 
however, the response was nearly l inear .  One of these 39 projects  
was l a t e r  dropped from the technical 0verv.i ew study (5)  because i t  
was a pumped storage project.  

Larger (but un rea l i s t i c )  increases i n  AAE could have been obtained 
by operating the projects a t  the top-of-power pool with no firm 
energy requirements. However increased s p i l l s  would o f f s e t  ir~ost of 
the gain due to  increased head. For the 5 reservoir  blhite River 
System in Arkansas, f o r  instance, an additional 3 percent gain i n  
AAE can be obtained by t h i s  method based on monthly routings.  

Another r e s u l t  of the HEC-5 analysis  was the determination of 
the increase i n  firm energy and plant  f ac to r  f o r  the p r 0 j e c . t ~  with 
each al locat ion of power storage. By adding t o  the power s torage,  
t,he projects a r e  able to  meet higher power demands during c r i t i c a l  
low,-flow periods and to  operate more hours per day on the load. 
The increase in firm annual energy was approximately three times 
the increase of the AAE.  The to ta l  increase f o r  the 10 percent and 
20 percent real locat ion i s  shown below: 

Table 1. Changes in AAE f o r  Storage Reallocation 

% Reallocation of' % Increase ,in % Increase Average % Increase Firm 
Flood Control Power Storage Annual Energy Annual Energy 

Cauacitv and Enerav Increases from Storaae Reallocation 

To evaluate the potential  f o r  increased ins t a l  led capacity a t  
exis t ing s i t e s ,  detai led sequential analyses were performed for  each 
of the previously described s i t e s  t~ determine t h e i r  dependable 
capacity a t  varying plant f ac to r s .  Annual plant  fac tors  of 5 percent,  



10 percent and 25 percent were selected as  representing the range of 
operation f o r  most hydropower plants .  I t  was assumed tha t  no new 
plant would be ins ta l led  a t  greater  than dependable capacity and 
tha t  a 5 percent plant fac tor  was a lower l imi t  on plant operation; 
and, therefore,  the maximum probable capac.ity. The HEC, -5  sequential 
analysis was used as before, except for t h i s  analysis ,  the input 
energy demand schedule was adjusted so tha t  the average plant f ac to r  
was equa'l t o  one of ,the three plant fac tors :  5 percen,t, 10 percent 
or 25 percent i n  each 0.f three runs. The program determined the  
dependable capac'i t y ,  firm energy, and AAE using the autcmati c search 
procedure previously described. Computer simul a'tions f o r  a1 1 three  
plant fac tors  were made for  both exis t ing storage a1lo:ation and f o r  
the real locat ion of 10 percent of the flood control szorage. 

When the ins ta l led  capacity was a1 lowed to  incrcase based on the 
exis t ing power s torage,  a 'otal of 56 percent of the projects  showed 
some increase in average annual energy f o r  one of the three assumed 
plant fac tors  as compared to  the base condition. Of those pro jec ts  
with a gain,  the to t a l  gain amounted to  a modest 3.6 percent. When 
the AAE f o r  a11 39 projects was compared to  the base condition, the 
gain only amounts to  2.3 percent. One o,f the primary reasons a11 
of the projects did not show a gain in AAE was tha t  15 percent of 
the projects apparently were ins t a l l ed  a t  l e s s  than a 5 percent 
plant f ac to r .  Another reason f o r  a few of' tt;e projects  not showing 
a gain in AAE i s  t ha t  when the plant fac tor  was decreased i n  order 
to  increase the dependable capacity,  a larger  discharge was required 
to  meet the new capacity,  which resul ted in a higher ta i lwater  
e'levation. In sonie cases, the decrease i;i power head caused by the 
ta i lwater  overcompensated f o r  the reduced s p i l l  quantity due t o  the  
higher ins ta l led  capacity. 

The primary gain in  AAE f o r  exis t ing power storage comes from 
increased u t i l i z a t i o n  of water which cannot be passed through the  
generators (spi 11s).  The simulation uses a l l  water released, up to  
the maximum generation capabi l i ty  of the plant ,  in calculat ing the  
AAE.  With the increased plant capacity,  the magnitude and number 
of spi 11 s decrease. To determine -"he upper 1 iini t of the energy 
generation, the projects were ope>ated with exis t ing plant  f ac to r s  
and power storage, but with un l i r i t ed  capacity to  generate dump 
energy. The resul t ing gain in  average annual energy was 5 percent. 
That i s ,  with unl i m i  ted ins ta l led  capacity a t  a1 1 39 pro jec ts ,  a 
maximum gain of 5 percent i n  average annual energy would r e s u l t .  
As previously s t a t ed ,  i f  the ins ta l led  capacity was established 
based on a minimum 5 percent annual plant f ac to r ,  then only a 2.3 
percent increase in AAE would be real ized in the 39 projects .  

Approximately the same number of projects showed a gain in 
average annual energy wher~ 10 percent of' the flood control s.torage 
Mas reallocated and the ins t a l l ed  capacity was increased. The same 
three annual plant ,factors were used t o  determine the dependable 
capaci ty and f,irni enercy with the increased storage. The gain i n  
average annual energy amounted to  5.5 percent for those pro jec ts  



showing a gain. When compared t o  a l l  projects analyzed, the gain i s  
appro~x.imately 3.4 percent which ,is a 1,i t t l  e over twice the 1.6 per- 
cent gain due to  storage change alone. Again, the previous explana- 
t ions account for  why some projects did not shown ,,an apprec.iab1e 
gain in energy production. 

'Tab'ie 2.  Cnanges in AAE f o r  Storage Reallocation 
and Increased Capacity 

% Reallocation of % Increase i n  % Increase Avg. % Increase Avg. 
Flood Control Power Storage Annual Energy Annual Energy 

Storage (projects  with (a11 39 
g a i n )  'ects)  - - - - - -  - - -  . .  - 7 -  . - - - .  

While a1mos.t half the projects d.id not have a gain in AAE from 
irlcreasi ng the ins ta l  led capacity f o r  reasons explained above,. the  
expected gain from increasing capacity i s  primarily to add depend- 
able  capacity t o  the power system, and not t o  increase average 
annual energy. Since 85 percent of the projects had plant f ac to r s  
greater  than the assumed practical l imi t  of 5 percent, a l l  of these 
projects  could have t h e i r  dependable capacity increased and s t i l l  
operate a t  or  above the 5 percent plant fac tor .  Approximately 40 
percent of the projects  appeared to  be operating i n  the 5 percent 
to  75 percent range of plant fac tors  based on the simulation r e su l t s .  

The change in  ins ta l led  capacity has an inverse relat ionship w i t h  
the plant  fac tor .  For example, the capacity would have t o  double i f  
the plant fac tor  changes from 10 percent t o  5 percent and tihe same 
amount of firm energy was produced. When the plant operates a t  f u l l  
i n s t a l  1 ed capaci ty ,  the reservoir  re1 ease necessary to  generate tha t  
capacity would a lso  double. Therefore, an important constraint  t o  
increasing ins t a l  1 ed capacity f o r  peaking operation i s  the higher 
discharges necessary t o  produce the higher capacity. 

The increase in firm energy (and dependable capacity) was about 
three times the increase in AAE as i t  was f o r  the previous storage 
al locat ion study. The derived dependable capacity of the project; 
increased 188 percent when the exis t ing composite plant fac tor  o" 
a l l  p r ~ j e c t s  of 18 percent was decreased t o  5 perc.ent, without 
changing the storage al locat ion.  By a lso  increasing the power 
storage by 5.5 percent, the dependable capacity increased 196 
percent. 

General i zi n g e s u l  t s  by R a r e s s i  on 
,----- - 

The re su l t s  from regression analysis  using the compute:. program, 
"i+.il t ip1 e i i  near Regress ion!' ( 4 )  indicated a 1 inear model provided 
the best f i t  over the range of data analyzed. In a few instances,  



the reallocation of 10 and 20 percent flood con,trol storage provided 
a very large increase ' in  power storage. Because the regress,ion 
equation was to be used on projects w i t h  flood control s torage l e s s  
than 10 percent of the annual mean flow, these large increases i n  
power storage were not used in the f ina l  regression analysis ,  Using 
a to t a l  of 71 samples (from the 10 percent and 20 percent flood 
controi real iocat, ion),  regression equations were derived f o r  the 
percentage increase i n  AAE. 

Regression analysis with percentage increase i n  firm annual 
energy a s  the dependent var iable  were l e s s  successful than with AAE. 
The standard error  fo r  the firm energy estimate was much l a rge r  than 
tha t  f o r  the AAE because the v a r i a b i l i t y  of firm energy i s  much 
greater .  The large unexplained v a r i a b i l i t y  i n  the prediction o f  
firm energy stems largely from the v a r i a b i l i t y  o f ' t h e  demand, the 
supply of water, and the degree the two a re  in or out of phase. 
There was no convenient way to bring those aspects into the  regres-  
sion analysis  f o r  t h i s  study. Use of the regression equation t o  the 
remaining projects of the 187 s i t e s  gave a to ta l  gain in  AAE f o r  a l l  
s i t e s  of 652 GWH f o r  the 10 percent a l locat ion and 1,225 GWH f o r  the 
20 percent a l locat ion of flood control storage. This appears t o  be 
small; however, the energy increase made possible by the  10 percent 
real location would require the equivalent of about 1.3 mill ion 
barrels  of fuel oi 1 annual ly.  

Limitations of Studv 

W i t h  most of the large storage projects included i n  the de ta i led  
sequential analysis (representing approximately 40 percent of the  
energy ga in) ,  the estimates of energy gain should be f a i r l y  accurate.  
The procedure used depends primarily on the accuracy and adequacy of 
the NHS data f i l e s ,  which cannot readi ly be evaluated. One key item 
missing on most of the  projects was the nondamaging channel capacity 
below the dam. This data l imitat ion caused too much s p i l l  t o  be 
calculated for  those projects t h a t  might be in flood control opera- 
t ion f o r  several months a t  a time due to  the limited channel 
capacity. Thus, the to t a l  energy gains calculated due t o  rea l loca-  
t ion (modest as they were) were perhaps somewhat higher than they 
should be due to  the data/inadequacy fo r  the exis t ing s torages of 
the 5 Reservoir White River System, where the channel capacity data  
would be expected to  be important, the AAE was about 1 percent too 
low due to  the missing channel capacity. 

Principal assump,tions i n  the s,tudy procedure center on the  
application o,f the  safe  yield concept used to  determine firm energy 
based on the specified plant fac tors  i n  the NHS f i l e .  The actual  
sequent.ia1 analysis  was based on monthly flow data and s ing le  
project operation fo r  hydropower exclusively. Average annual energy 
f o r  some projects (especial ly  smaller storage projects)  can be over- 
estimated using month1.y flows because the s p i l l  should be evaluated 
on a t  ' least  a dai ly  basis.  Gther project  purposes genet-al'ly cu r t a i l  
power productiori and therefore the simu'lation r e su l t s  might be 



expected t o  be on the high s ide  f o r  tha t  reason. However, because 
the to ta l  energy cstimate from the simulation was lower than the 
NHS f i l e  t o t a l ,  the s ingle  purpose analysis does not appear t o  over- 
estimate the AAE.  

Several operat tonal procedures, not considered i n  the simulation, 
probably account fo r  the simulation r e su l t s  being generally lower. 
For example, flood control operation could, i n  some cases,  give 
higher energy values than estimated. For projects  t h a t  remain i n  
the flood control pool f o r  long periods, the added head and decreased 
s p i l l  would provide more energy. If  this were the case,  the 
estimated base energy f o r  exis t ing storage al locat ion would he too 
low and the expected gain from real locat ion v~ould be too high. Also, 
any exis t ing seasonally varying storage al locat ion would provide 
more power storage as  the flood season passes. The possible e x i s t -  
ing seasonally added storage would provide a portion of the expected 
gain from real locat ion of storage. 

Some of the projects may a lso  have u n i q ~ e  diversions fo r  power 
supply or  pump-back operation t h a t  would provide rnore energy than 
was estimated. Mu1 t i p  le reseryoir  operation may a1 so provide system 
f lex i  b i  1 i t y  which would a lso  increase the present energy production 
over tha t  estimated by s ingle  s i t e  simulation. A cornparison was 
made on the Nhite River System to evaluate the r e s u l t s  from the 
s ingle  s i t e  simulation. 

The Southwestern Division [SWD) of the Corps of Engineers 
provided an independent analysis  of the potential  gain from the 
real locat ion of storage in projects  in the White River System. 
Using a d i f f e ren t  computer model (7) t ha t  simulates t h e i r  operation 
plan and the en t i r e  system with da i ly  flow data ,  SWD provided AAE 
values f o r  the exis t ing storage al locat ion and fo r  several 
real locat ions of flood control storage. When the to ta l  AAE computed 
by the two programs was compared f o r  the f i v e  storage pro jec ts ,  the 
monthly individual project  operations using the HEC-5 r e s u l t s  were 
about 11 percent below those from the SWD, which i s  c lose t o  the 1 2  
percent difference w i t h  the NUS user-suppl ied estimates f o r  the 39 
projects.  Subsequent discussions with SI4D located sorrle of the 
differences.  The l a rges t  difference i s  probably due t o  data 
differences,  especially flows. The estimated differences in 
operation amounted t o  about 2-3 percent differences in AAE.  

When the SWD projects a re  in flood operation, the water stored 
in the flood pool is generally released a t  r a t e s  which do not exceed 
the power generating capabi l i ty ,  and t h a t  method of operation i s  
reflec,ted in t h e i r  simulation. Wi t h  the HEC,-5 s ingle  project  
analysis ,  monthly flows in excess of power storage a r e  dumped 
during the ntonth they occur which i s  the rnethod of operation 
t r ad i t iona l ly  used fo r  flood control projects before dump energy 
values skyrocketed. The HEC-5 monthly operation wi 1 It show l ess  
energy generation because the program s p i l l s  any water wh.ich would 



be s to red  i n  the  f lood pool and cannot be diver ted through the  
penstock. Furthermore, because the  channel capaci ty  was assumed as  
unlimited,  t he  maximum head t h a t  can be reached i s  the  top-of-power 
pool . For every day t h e  Whi t e  River Sys tem i s  in f 1 ood control  
s to rage ,  t he  p ro jec t s  a r e  operating a t  a higher head and, the re fore ,  
have a greater  energy po t en t i a l .  

As expected, the  SWD sirnulation a l s o  shows l e s s  gain i n  energy 
from r ea l l oca t i ng  flood control  s torage t o  power s torage.  By t h e i r  
cu r r en t  operat ion,  SWD i s  already gaining most of t h e  added energy 
by minimizing any s p i l l  even when they a r e  i n  t h e  f lood control  
pool. By t h e i r  es t imat ion,  r ea l l oca t i ng  30 percent of t he  f lood 
control  s torage t o  power would only  provide an addi t ional  0.5 
percent i n  AAE. The sum of t he  HEC-5 r e s u l t s  f o r  t he  f i v e  p ro j ec t s  
shows a po ten t ia l  4.3 percent gain from r ea l l oca t i ng  20 percent of 
the  f lood control  s torage.  

Flood Damaoe Eva1 uation 

The rea l loca t ion  study did not e x p l i c i t l y  es t imate  t h e  cos t  
(.increase i n  annual damages) associa ted w i t h  r e a l l oca t i ng  s to rage  
from ex i s t i ng  flood control  space t o  power s to rage  space. I t  was 
not poss ib le  t o  perform the  ana lys i s  on a nat ional  s c a l e  because of 
the dependence of ,increased damage on t h e  s p e c i f i c  f lood control  
~ p e r a t . i o n s  of each p ro j ec t  artd t he  r e1a t . i onsh . i~  of the  s i t e  t o  down- 
stream damage f o r  which.data were not ava i lab le .  In add i t ion ,  t h e  
f lood hydrology would have t o  include t he  r e su l t i ng  response i n  
f lood control  system operations f o r  which data  a l s o  were not a v a i l -  
able  on a national  s ca l e .  'The rea l  loca t ion  i s sue  i s  a s e n s i t i v e  
and p o t e n t i a l l y  controvers.ia1 orte so  t h a t  i t  was a l s o  d i f f i c u l t  t o  
make use of case study approaches t o  perform t h e  es t imate .  On the  
pos i t i ve  s i d e ,  however, , i t  i s  apparent t h a t  t he  t h r ee  case s t ud i e s  
t ha t  were performed a r e  reasonably r ep re sen t a t i ve  i n  t h a t  t he r e  i s  
probably a r e l a t i v e l y  small increase  i n  annual damages f o r  the  f i r s t  
increments of l o s s  i n  f lood control  s torage.  Nonetheless, a l l oca t i ng  
s torage space from f lood control  t o  power without compensation 
measures t o  provide e s s e n t i a l l y  t h e  same f lood control  performance 
i s  unl ikely .  The lack of a s p e c i f i c  assessment of t he  increased 
damage due t o  r ea l l oca t i on  does not  mate r ia l ly  a f f e c t  t he  r e s u l t s  
of t h e  inves t iga t ion  because s torage a1 1 ocat ion i n  ex i s t i ng  power 
p ro jec t s  does not  appear t o  he a major con t r ibu t ion  na t iona l ly  t o  
increasing t he  average annual energy. 

Conclusions 
,-.---- 

Reallocation of f lood control s to rage ,  f o r  any purpose, i s  a 
s e n s i t i v e  ,issue. Of course,  f lood p la in  r e s iden t s  wi l l  be concerned 
t h a t  t h e i r  f lood protect ion might be reduced by even minor amounts. 
This f e a r  alone might be su , f f . ic ient  t o  s top  implementation 0.f a  new 
real locat ior t  plan regard less  of i t s  bene f i t s .  This study has shown 
t h a t ,  ,from a national  startdpoint, embarking on a l a rge  program of 



real locat ion fo r  existing hydropower projects would not r e s u l t  i n  a 
major increase in average annual energy. However, this should not 
deter  periodic reviews of exis t ing plant design and storage al loca-  
t ions using updated information based on actual p l a n t  operations. 
I t  i s  possible tha t  project design conditions have changed such 
tha t  a portion of the or ig ina l ly  required flood control storage can 
be reallocated to  power storage with negligible e f f ec t s  on flood 
damage below the dam and on other project  purposes. On the other 
hand, the poss ib i l i ty  also ex i s t s  t ha t  the original flood control 
storage a t  some of the older s i t e s  might be inadequate based on 
current storage s izing standards. 

There i s  a small gain in average annual energy (ME) from 
real locat ing s igni f icant  portions of flood c-ontro! storage t o  power 
storage. The indicated gains in average annual energy from the 
case study operations a re  s igni f icant ly  smaller than those estimated 
from techniques used i n  this paper. The primary reason f o r  the 
smaller gains i s  the method of operating the projects .  Some 
projects a r e  operated to  minimize power s p i l l s  even while i n  the 
flood control pool. By minimizing s p i l l s  and operating fo r  hydro- 
power within the flood control pool, the majority of the potential  
gains in  ME from real locat ing storage can be achieved. However, 
gains in annual firm energy a r e  approximately three times the gains 
in  AAE and they a re  not current ly being obtained by more power- 
oriented rules .  The major contribution of real location i s  i n  
firming up  the output,  i . e . ,  converting energy tha t  would presently 
be characterized as "secondary energy" to  "firm energy." In some 
instances they may be of substant ial  value. 

I t  therefore appears t h a t  each exis t ing power project  should be 
evaluated fo r  potential  power gains and t o  see the e f f ec t s  on flood 
control operation i f  more power-oriented rules  a r e  developed to 
minimize s p i l l s .  6y 1 irr~iting flood control re lease r a t e s  to  the 
discharge corresponding t o  the maximum power generation, i t  seems 
tha t  most of the potential  gain i n  AAE from real locat ing storage 
can be real ized.  The abi l  i t y  to consider power requirements within 
the flood control pool would depend on the amount of flood control 
storage, the a b i l i t y  t o  forecast  fu ture  flood inflows and the a b i l i t y  
to  evacuate the flood control space in a flood emergency. The nature 
of the problem would require a project-by-project analysis .  

In summary, the data and evaluation methods used in t h i s  study 
a re  believed to  provide re1 iabl e ident,if icat ion of the major fac,tors 
i nil  uenci ng potent'ial increases i n  energy output a t  exis t ing s i  tes  
and to  yield suff ic, iently accurate es,timates of ach.ievab1e energy 
increase. Conclusions fo r  any spec i f ic  s i t e  would require more 
detai led s i t e  spec i f ic  data and assessments. 
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EXHIBIT 1 

.. 
Flow 
Ca t a  Number of  Drawdown Assumed Corres- 
S e t  I t e r a t i o n  Periods Storage FinnEnergy ponding Draw 

Number Number of Rout Error  Rat io ( k t )  Capacity Ave Q Ave H Periods Line 

Pro jec t :  KCESAC0061, Mitchell River Reservoir  
USGS Gage 2112350, Period of  Record - 168 months 
Power Storage = 17,500, F'ean Q = 123 c f s  
Head: Top o f  Power = 131, Bottom of Power = 121.8 

*Assua~t ions  r e s u l t i n g  i n  both negat ive and p o s i t i v e  drawdown e r r o r s  a r e  with 5 percent  
of each o ther .  

'For each flow data  s e t ,  a s e r i e s  of monthly sequen t ia l  rou t ings  a r e  performed, with 
d i f f e r e n t  assumed f i rm energy and corresponding capac i ty ,  u n t i l  the drawdown s to rage  
err .or  r a t i o  i s  l e s s  than .05. The f i r s t  flow data  s e t  i s  f o r  the  i n i t i a l  e s t imate  of  
the c r i t i c a l  drawdown period; the  second and four th  a r e  f o r  the f u l l  per iod of flow 
record t o  see i f  the previous c r i t i c a l  period was the  most severe;  the  t h i r d  flow da ta  
s e t  i s  f o r  the  new c r i t i c a l  period determined from flow da ta  s e t  2. 

EXHIBIT 1 



EXHIBIT 2 

HEC-5 OPTIMIZATION CAPABILITIES. 

1.  Number of independent reservoirs  to  be optimized a t  one time 
(1 to  5 ) .  

2 .  Parameters tha t  can current ly be optimized: 

a. At-si t e  conservat,ion storage 

b.  At-site monthly power requirements and ins ta l led  capacity 

c. At-site monthly power requirements without changing ins t a l l ed  
capacity 

d .  At-.si t e  minirnurn desired flow 

e. At-site minimum required flow 

f .  At-site diversion schedule 

3. I n i t i a l  Estimates of Parameter t o  be Optimized 

a .  Monthly power requirements - by user i n p u t  o r  by defaul t  
based on approximate equation using f'lows and head ava i l -  
able during c r i t i c a l  period. 

b. All others - current ly only by user i n p u t .  

4. Flow Data - Monthly 

Input c r i t i c a l  period data only, 

b.  Input period o,f record data 

(1) User can specify s t a r t i n g  and ending period of c r i t i c a l  
period 

( 2 )  User can specify length of c r i t i c a l  drawdown (computer 
will  then se l ec t  period with m,inimum volume f o r  t h a t  
durat,i on) 

(3)  User can allow computer t o  se l ec t  c r i t i c a l  drawdown 
period based on equation tha t  drawdown length = 70 * 
r a t i o  of power storage to  mean annual flow. 

Exhib,it 2 
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5. Optimization Use of Flow Data 

a .  Optimization can be made fo r  a l l  f low data furnished 
(each routing made fo r  an assumed firm energy will  use 
a l l  f low data furnished).  

b. Optimization can be made f o r  i n i t i a l  estimate of c r i t -  
ical  period, then a s ingle  period of record routing wil l  
be made (cal led 1 cycle) .  

c. Same as f i r s t  cycle described in b ,  plus an additional 
optimization will be made on the new c r i t i c a l  period 
found ( i f  one i s  found from the period of record routing) 
and then a new single  period of record routing will be 
made (cal led 2 cycles) .  

d.  Same as "c" except 3 cycles. 

e .  Same as "c" except 4 cycles. 

6. Allowable Error i n  Drawdown 

a.  Negative e r ro r  (drawdown i s  too grea t )  in acre-feet or  
1000's cu meters 

b. Posit ive e r ro r  (not enough drawdown) as percentage o f  
conservation storage. 

c. Negative and Positive Errors a re  same as percent of 
conservation storage. 

Exhi b , i t  2 
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EXHIBIT 3 

WNERSHIP A N D  PLANT TYPES OF POWER PROJECTS WITH 

FLOOD CONTROL STORAGE 

Number 
of Projec ts  

Number 
h n e r  Category of Projec ts  

1. Corps 50 1 1 .  Run of River 2 2 

Plant  Type 

2. Other Federal 14 1 2. Diversion 7 

3 .  Non-Federal, Government 27 / 3. Reservoir 149 

4 .  Investor-bned U t i l i t y  27 1 4. Reservoir with Diversion 8 

5. Cooperatively- 
h n e d  U t i l i t y  

6. Other Comercial o r  
Indust r ia l  Finn 1 

11 

7 .  Private C i t i z e n  or  
Nan-Util i t y  Cooperative 5 I 

5. Other 1 

8. Unknown - 2  I 
Total 

EXHIBIT 3 
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