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CRITICAL WATER SURFACE BY MINIMUM SPECIFIC 
ENERGY USING THE PARABOLIC METHOD 

by 

B i l l  S, E icher t  (7) 

GENERAL - The c r i t i c a l  s t a te  o f  f low i s  defined as the condi t ion a t  

which a maximum discharge i s  obtained w i t h  a given energy, o r  where a 

minimum energy i s  required t o  produce a given discharge. For a simple 

geometric channel (rectangular, t rapezoidal ,  semi-circular, etc.  ) the 

c r i t i c a l  ve loc i t y  ( V )  may be computed from the area (A)  and top wid th  

v2 (TW) by the formula: -. c = - A . For complex cross sections, where 
29 2TW 

channel and overbank flows both occur, t h i s  equation can g ive answers 

which are g rea t l y  i n  e r r o r  due t o  the a b i l i t y  o f  the hydrau l ic  radius 

t o  increase ma te r i a l l y  w i t h  only a small change i n  area. For a cross 

sect ion t h a t  has hor izonta l  overbanks, the formula w i  11 erroneously 

show t h a t  the c r i t i c a l  discharge f lowing a t  the top o f  the banks i s  

greater than the c r i t i c a l  discharge when f lowing a t  j u s t  above the banks. 

This condi t ion can be proper ly evaluated f o r  a given discharge using a 

cross sect ion o f  any shape by d i v i d i n g  the cross sect ion i n t o  several 

subsections i n  order t o  def ine the nonuniform ve loc i t y  d i s t r i bu t i on ,  and 

by determining the c r i t i c a l  water surface e levat ion t h a t  corresponds t o  

the minimum spec i f i c  energy. For a complex cross section, the energy 

gradient  and the water surface e levat ion are usual ly  assumed constant 

across the e n t i r e  width o f  the cross section, and the energy gradient  i s  

then equal t o  the water surface elevat ion plus  a weighted ve loc i t y  head, 

{I  ) Assistant  Chief, Hydrologic Engineering Center, U .S. Army Corps o f  
Engineers, Sacramento, Cal i f o r n i a  . 1969. 



As a r e s u l t  o f  nonuniform d i s t r i b u t i o n  o f  ve l oc i t i es  over a cross 

2 section, the ve loc i t y  head o f  a cross sect ion ( V  /2g) i s  general ly greater 

than the value computed by d i v i d i ng  the square o f  the mean ve loc i t y  (Q/A) 

o f  the cross sect ion by twice the g rav i t a t i ona l  constant (g). This s ta te-  

ment i s  t r ue  because the square o f  the average ve loc i t y  i s  less than the 

weighted average o f  the squares o f  the po in t  ve loc i t i es .  The t r ue  ve loc i t y  

2 head may be expressed as aV /2g, where alpha i s  the energy-head coe f f i c ien t ,  

o r  C o r i o l i k  coe f f i c i en t .  The method presented i n  t h i s  paper does no t  

assume a C o r i o l i ' s  c o e f f i c i e n t  of u n i t y  as most hand methods do, but  

accounts f o r  the nonuniform ve loc i t y  d i s t r i b u t i o n  between the subsections 

by assuming t h a t  the weighted ve loc i t y  head o f  the cross sect ion ( W W V )  i s  

equal t o  the average ve loc i t y  head f o r  each subsection o f  the cross sect ion 

when the subsection ve loc i t y  head i s  weighted i n  proport ion t o  the discharge 

capacity o f  the subsection. The discharge capacity o f  each subsection (9) 

equals the product o f  i t s  area (A) and i t s  average ve loc i t y  (V), o r  using 

Manning's formula, Q = AV = (1.486A R 2'3~1'2)/n. For an assumed water 

surface e levat ion the area (A), hydrau l ic  radius (R) and Manning's roughness 

coef f ic ient  (n)  are known. I n i t i a l l y ,  an index slope o f  the energy gradient  

(S1) i s  establ ished such t h a t  S 'I2 = .O1 (subscr ip t  1 on 4, ,V1 ,R1 S1 

ind icates index values), and the r e s u l t i n g  index discharge (Q1) i s  computed 

f o r  each subarea and t o ta l ed  f o r  the e n t i r e  cross section. Since the 

actual  discharge which i s  t o  be used i n  the backwater computations, (cQ) 

equals the sum o f  the discharge through the subsection, and since the area, 

hydrau l ic  radius and roughness c o e f f i c i e n t  are equal, the slope (S)  can be 

computed from the fo l low ing  equation: 



J 

Thus : 

s = [ (  .OI Z Q ) ~  ~ ~ 1 1 ~  

The ve loc i t y  head o f  each subsection, based on uniform ve loc i t y  d i s t r i b u t i o n  

w i t h i n  the subsection, i s :  

HV = (Q/A)* / 29 

The weighted ve loc i t y  head f o r  the cross sect ion i s  therefore: 

WHV = (c  (Q x HV x COR) ) /  c Q = c (QHV) /c Q 

where: COR = C o r i o l i ' s  c o e f f i c i e n t  

PARABOLIC METHOD - - The re la t ionsh ips between the water surface e levat ion 

and the energy gradient  i s  approximated by the parabol ic  equation using an 

opt imizat ion rou t ine  t h a t  converges rap id l y  upon the desired c r i t i c a l  

condi t ion.  

The parabol ic  method o f  determining the minimum energy e levat ion (EG) 

requires three water surface elevat ions and the corresponding energy 

elevat ions (EG1, EG2, EG3) which are obtained by adding the water surface 

elevat ions t o  the weighted ve loc i t y  heads, A special case which s imp l i f i e s  

the formula f o r  the parabol ic  estimate o f  the minimum energy occurs when 

the three estimates o f  water surface e levat ion are separated by two equal 

i n t e r v a l s  o f  e levat ion (HTINC) . The procedure o f  assuming three water 

surface elevat ions equal ly  spaced fo l lowed by an estimate using the 

parabol ic  equation i s  re fe r red  t o  as a cyc le  during the r e s t  o f  t h i s  

paper. The basic formula f o r  the water surface e levat ion a t  the mindmum 



energy po in t  (based on a t r ue  parabola) was derived as fo l lows: 

l e t  k = c r i t i c a l  water surface e levat ion 

h = minimum energy e levat ion 

y = any water surface e levat ion 

x = the energy e levat ion corresponding t o  y 

p = constant f o r  the parabola 

From the basic equation o f  the parabola: 

Equations f o r  any three estimates of the water surface elevat ions 

Since there are three equations and 3 unknowns (k,h,p), these equations 

may be solved simultaneously, by standard methods not  shown here t o  y i e l d :  

Since the value o f  k ( the  only unknown) i s  i n  both numerator and 

denominator and the equation apparently i s  i n  i t s  s implest  form, the 

equation w i l l  have t o  be solved by successive approximations. However, 

i f  a uniform increase i s  made between yl ,y2, and y3  such tha t :  



Then, by combining the three equations above, simp1 ifying and solving 

for k,  we find: 

or, in terms used during rest of paper: 

D 1 WSEL = WSELI + .5 * HTINC - * HTINC 

where: 

WSEL = parabolic estimate of water surface elevation 

WSELl = f i r s t  assumption of water surface elevation in each cycle 

WTINC = constant increment of height added t o  f i r s t  and second WSEL 

Dl = difference in energy gradients for the second and f i r s t  
assumptions ( E G 2  - EGl) 

D2 = difference in energy gradients for the third and second 
assumptions (EG3 - E G 2 )  

D 3 = difference between D2 and Dl 

The value of HTINC should be chosen very carefully an i t s  magnitude may 

double or tr iple the number of iterations required t o  determine critical 

depth. For this application, HTINC i s  assumed equal to 5% of the difference 

between the water surface elevation assumed (WSELl) and the minimum elevation 

in the cross section (ELMIN). Since the assumed water surface elevation 

changes for each optimization cycle (set  of three or more guesses), the 

value of HTINC also varies for each cycle, 

The f i r s t  assumed water surface elevation for the f i r s t  cycle i s  made 

without knowledge of the parabolic parameters, and i s  made as close as 

possible to the true answer in order to reduce the number of iterations. 





If D2 and Dl are both equal to zero, cri t ical  depth has been found. 

If they are equal to each other, b u t  not equal to zero, then a negative 

value of Dl indicates an increase i s  needed and a positive value indicates 

a decrease. 

If the estimate based on the parabolic method ( E G C )  produces an 

energy gradient that i s  greater than the f i r s t  estimate of th is  cycle 

(EGf ) , then the estimated change i s  too large and has passed beyond the 

cri t ical  water surface elevation. When th is  condition occurs, the 

estimated water surface elevation i s  changed so that the magnitude of 

change from the f i r s t  estimate of the l a s t  cycle i s  reduced by 70 percent 

(WSEL = . 3  WSEL + .7 WSEL1). If  th is  condition occurs on the next try 

also, then the previous estimated change i s  again reduced by 70 percent. 

This reduction process may be used up to  5 consecutive times which would 
5 provide a minimum change o f  .002 ( . 3  ) times the change indicated by the 

parabolic equation. 

When the estimate from the parabolic method given an energy gradient 

which i s  less than the f i r s t  assumption of the cycle, the estimate i s  

converging toward cr i t ica l  depth. This estimate i s  ei ther  accepted as 

being close enough to the minimum specific energy or  another complete 

cycle i s  made using the previous estimate as the f i r s t  assumption (WSEL1). 

The above process i s  repeated until the answer i s  w i t h i n  acceptable limits. 

The estimated cr i t ica l  water surface elevation i s  accepted in th is  

appl icati  on when: 



(1) The difference between the l a s t  two estimates by the parabolic 

method, or the l a s t  70 percent reduction of that estimate, (WSEL - WSEL1) 

i s  less than the smaller of .5 foot or 2.5 percent of the estimated depth 

from the cri t ical  water surface elevation to the minimum elevation i n  the 

cross section, and 

( 2 )  When the l a s t  energy gradient elevation for the estimate by 

the parabolic method (or the l a s t  reduction of that estimate) was an 

improvement over the energy gradient elevation for the previous cycle 

(EG1) , or was no worse than .01 o f  a foot. 

Numerical examples are shown on E x h i b i t  3 for  3 typical problems. In 

Example 2, the f i r s t  estimate of the cr i t ica l  water surface elevation was 

so close that only one cycle was necessary to  determine the cr i t ica l  

condition. In Example 3, the estimate by the parabolic equation was not 

controlling in the entire process since i t  required a change greater than 

50 percent of the depth each time i t  was computed. A description of the 

cross sections used in the three examples i s  shown i n  E x h i b i t  4, 





EXHIBIT 2 

SPECIFIC ENERGY CURVE 

EKERGY GRADIENT ELEVATION 
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EXMlPLE CROSS SECTION DATA 

EXAMPLE 1 

Elev Station 

1215 0 

1200 0 

1200 LOO 

1215 100 

Elev Station Elev Stat ion 

160 557 (1 P83.57 o 

( 1 ) ~ h e  implied accuracy of one hundredeth of a foot i s  
misleading since t h i s  cross section was obtained 
by the computer by interpolation between two given 
cross sections. 
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