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DEVELOPMENT OF GENERALIZED F R E E  SURFACE FLOW MODELS 
USING FINITE ELEMENT TECHNIQUES 

D. Michael Gee, Robert C. MacArthur 

The Hydrologic Engineering Center, U.S. Army Corps o f  
Engineers, Davis, Cal i fornia  

INTRODUCTION 

The Corps of Engineers' Hydro1 ogic Engineering Center i s  
involved i n  the development, evaluation, and application o f  
mathematical models. Two f i n i t e  element hydrodynamic models, 
one fo r  two-dimensional f r ee  surface flow in the horizontal 
plane and one f o r  the ve r t i ca l  plane are  being evaluated. 
Although the models are  formulated t o  solve dynamic flow 
problems, a11 work t o  date has been with steady s t a t e  solutions.  
Recent research has focused on mass continuity performance of 
the models, proper boundary condition spec i f ica t ion ,  and 
comparison with f i n i t e  difference techniques. The objective 
of t h i s  research is t o  develop general i zed mathematical niodel s 
for  routine use by the engineering communi ty. This paper 
presents recent r e su l t s  of evaluation and application of the 
models . 
THE MODEL FOR TWO-DIMENSIONAL F R E E  SURFACE FLOW IN SHE 
HORIZONTAL PLANE 

The model for  twc-dimensional f r ee  surface flow in the 
horizontal plane solves the govern,ing equations ,in the 
f o l l  owing form: 

Continuity 
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where 
u ,  v = x and y veloci ty  compor~ents respec t ive ly  

t = time 
h = depth 
a,= bed e levat ion 
E = tu rbu len t  exchange goe f f i c i en t s  
g  = grav i ta t iona l  accelera t ion 
w = r a t e  of e a r t h ' s  angular ro ta t ion  
@ = l a t i t u d e  
C = Chezy roughness coe f f i c i en t  
s = empirical wind s t r e s s  c o e f f i c i e n t  
Va= wind speed 
$ = angle between wind d i rec t ion  and x  - ax i s  
p = f l u id  densi ty  

Before so lu t i on ,  the  equations a re  r eca s t  w i t h  flow (ve loc i t y  
times depth) and depth as the  dependent var iables .  A l i n e a r  
shape function i s  used f o r  depth and a  quadra t ic  function fo r  
flow. The Galerkin method of weighted res idua l s  i s  used and 
the r e su l t i ng  non- l inear  system of equations solved w i t h  t h e  
Newton-Rapheson scheme. Detai 1s of t he  so1 ution have been 
published previously by Norton, e t  a1 (1973) and King, e t  a1 
(1975). General discussions of  f i n i t e  element techniques have 
been pub1 ished by Zienkiewi cz (1971 ) , Hubner (1 975), and Strang 
& Fix (1973). 

Evaluation of Continuity E r r o r -  --- -- 
The f i n i t e  element method y i e l d s  a  so lu t ion  which approximates 
the  t r ue  so lu t ion  t o  the  governing p a r t i a l  di f f e r e n t i  a1 
equations. The approximate nature of  t h i s  so lu t i on  becomes 
evident  when mass con t inu i ty  i s  checked a t  various loca t ions  
in the  so lu t ion  domain f o r  a steady s t a t e  simulation.  A1 though 
overal l  con t inu i ty  i s  maintained (inflow equals outflow over 
the  boundary), ca1 cul a ted flows across i n t e rna l  s ec t i ons  
devia te  somewhat from the  inflow/outflow values. A s tudy was 
made t o  evaluate  e r r o r s  i n  con t inu i ty  as a  function of  network 
dens i ty. Poor con t inu i ty  approximation is  important of i t s e l  f  
i f  water q u a l i t y  simulation is  t he  goal. In t he  present  
app l ica t ions ,  however, water sur face  e leva t ions  and v e l o c i t i e s  
a r e  the  var iables  of  i n t e r e s t .  Therefore,  t he  impact of 



continuity e r ro r s  on these  parameters was a1 so  invest igated.  
Flows on the Rio Grande de Loiza flood plain were 

simulated using several  networks. This flood plain was 
se lected because o f  i t s  complex flow f i e l d  and a p r i o r  study 
by the  U.S. Army Corps of  Engineers (1976) had made t he  data  
readi ly  avai 1 able. Model performance had previously been 
evaluated f o r  simple hypothetical  and 1 aboratory flows by 
Norton e t  a1 (1973) and King e t  a1 (1975). The i o i za  flood 
plain i s  about 10 by 10 km (6 by 6 miles)  i n  extent  and i s  
characterized by var iab le  bottom topography, one i n l e t  and 
two ou t l e t s ,  and several  i s l ands .  Three o f  the  networks used 
i n  the  study a re  shown i n  Figs. 1 t o  3 i l l u s t r a t i n g  pro- 
gressive increase i n  network de t a i  1. 

The solut ion was considered acceptable i f  flow a t  a l l  
continuity check l i ne s  devia ted from inflow by l e s s  than f 5%. 
Continuity i s  checked by i n t eg ra t i ng  the  normal component of 
veloci ty  times depth along l i n e s  spec i f ied  by the modeler. 
The continuity check l i n e s  used in  t h i s  study a re  indicated 
by dark l i ne s  on Figs. 1 t o  3. Note t h a t ,  because the  flow 
divides around the  i s l ands ,  in some cases the  sum of flows 
across two check l i n e s  (such as  5 and 6) should be compared 
with inflow. Various parameters of the  problem a re  summarized 
i n  Table 1. No attempt was made t o  c a l i b r a t e  the coe f f i c i en t s  
used. 

The cont inui ty  approximation improved w i t h  increasing 
network d e t a i l ,  as expected. Flow a t  the  worst check l i n e  in 
the  coarses t  network ( 7  + 8) improved from 79.3% t o  98.2% of 
inflow as network de ta i  1 was increased.  Network character-  
i s t i c s ,  computer execution t imes,  and r e s u l t s  of the simu- 
l a t ions  w i t h  these  th ree  networks a r e  summarized in Table 2. 
Average depths and v e l o c i t i e s  along the  cont inui ty  check l i ne s  
are  given in Table 3. The check l i n e  numbers i n  Tables 2 and 
3 r e f e r  t o  the l i n e s  ind ica ted  on Figs. 1-3. 

Table 1 Data f o r  Loiza Flood Pla in  Simulation 

1. Boundary condit ions : 
a. Inflow ( l i n e  1 )  = 8200 cms (290,000 c f s )  
b. 0 u t l e . t ~  ( l i n e s  11 & l 2 ) ,  water surface  e levat ion = 

2.5 m (8 f t )  MSL 
c. All o the r  boundaries; e i t h e r  tangent.ia1 flow o r  

stagnation points  
2. Bed, roughness: Chezy C s p a t i a l l y  var,ied from 5.5 t o  22 

rn1/'/sec (10 t o  40 f t l / ' / sec )  
3. Turbulent exchange coef'fi  c i en t s :  varied w i t h  element s i z e  

from 24 t o  48 m2/sec (360 t o  500 f t 2 / s e c )  
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Figure 1 Continuity Check Network 3.1 
(Dark Lines Ind ica te  Continuity Check Lines) 

Table 2 Cont,inuity Performance o f  the  Networks 

T F L O W  

1 Network 3.1 3.3 3.5 

No. of Nodes 31 0 375 432 

No. of Elements 131 162 1 89 

1 CDC 7600 Execution 'Time (sec)  22 3 1 45 

I Check 
Line Percent o f  Inflow 

1 ( inf low) 100.0 100.0 100.0 
2 + 3  89.2 90.8 96.2 

4 114.9 106.8 104.9 
5 + 6  87.5 92.0 96.4 
7 t - 8  79.3 90.1 98.2 
9 + 10 99.8 99.4 98.7 

11 + 12 100.0 100.0 100.0 
(outflow) 
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Figure 3 Cont inui ty  Check Network 3.5 



Table 3 Flows (as  percent of i n f l o w ) ,  
depth, and veloci t ies  f o r  the networks 

L 



For most of the check l ines ,  the improvement in con- 
t inui  ty obtained with increasing network de ta i l  was associated 
with changes in both velocity and depth. In two cases, 1 ines 
6 & 8, the velocity changes were substant ial .  This region of 
the flow f i e l d  i s  characterized by a rapid change of direct ion.  
The resul ts  reinforce the caveat t h a t  increased network de ta i l  
i s  important in such regions. Furthermore, i t  appears t h a t  
depth i s  somewhat less  sens i t ive  t o  e r rors  Sn continuity than 
i s  velocity. Therefore, i f  one i s  interested in water surface 
elevations only, a l e s s  s t r ingent  continuity performance 
cr i te r ion  could be accepted than i f  ve loc i t ies  are of in t e re s t .  

Application t o  McNary Dam Second Powerhouse -- St& 
An example of a "production" type application of the horizontal 
flow model i s  the second powerhouse s i t e  select ion study f o r  
McNary lock and dam on the Columbia River. Flow f i e lds  down- 
stream o f  the dam were simulated f o r  several possible locations 
of the second powerhouse. O f  i n t e r e s t  were ve loc i t ies ,  both 
magnitudes and d i rec t ions ,  in the v ic in i ty  of the approach 
channel t o  the navigation lock. The study area and several of 
the possible second powerhouse locations are shown on Fig. 4. 
Fini te  element networks f o r  the ex is t ing  condition and f o r  the 
south shore powerhouse with excavated discharge channel are 
shown i n  Figs. 5 and 6. Data are  summarized in Table 4. The 
roughness coef f ic ien t  was cal ibrated to  reproduce an observed 
condi t i  on. 

This study was great ly  f a c i l i t a t e d  by an automatic re- 
ordering al gori t h m  (Coll ins (1 973))  which has been incorporated 
in to  the model. This algorithm makes modification of a network 
(compare Figs. 5 and 6 )  straightforward in tha t  the e n t i r e  
network need not be re-numbered. The exis t ing nuiiibering scheme 
i s  u t i l ized  fo r  input/output and the system of equations 
in te rna l ly  re-ordered t o  reduce storage. 

1 STUDY I R C A  SHOWING POSSISLE 

1 



FIG 5 

FINITE ELEMENT 

FOR RUNS I 

FIG 6 
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Table 4 Data f o r  McNary Second Powerhouse Study 

1. Upstream boundary condition: 
a. Spillway: Q = 7000 crns (250,000 c f s )  f o r  cal ibra t , ion 

runs 
Q = 0 f o r  production runs 

b. Exis t ing powerhouse: Q = 6500 cms (230,000 c f s )  
c. Second po~erhouse:  Q = 7000 cms (250,000 c f s )  

2. Downstream boundary condit ion:  Water sur face  e levat ion = 
82.4 m (270.3 f t )  MSL* 

3. All o ther  boundaries: E i ther  tangent ia l  flow o r  
s tagnat ion points 

4. Roughness: Chezy C = 55 m'/2/sec (100 f t 1 I 2 / s e c )  
5. Turbulent exchange coef f ic ien t s :  Varied with element s i z e  

from 4.8 t o  14.4 m2/sec (50 t o  150 f t 2 / s e c )  

*For production runs i n  which t o t a l  r i v e r  discharge was 13600 
crns (480,000 c f s ) .  T h i s  e levat ion was varied according t o  a 
known s tage-di scharge re1 a t ionship  f o r  o ther  discharges. 

A vector  p lo t t i ng  rout ine  was used t o  display simulated 
flow f i e l d s .  Two such p lo t s  a r e  shown on Figs. 7 and 8. 
P lo t s  of t h i s  type a r e  considered e s sen t i a l  f o r  i n t e rp re t i ng  
and analyzing complex flow f i e l d s .  

Continuity e r r o r s  were generally l e s s  than ?5% w i t h  the  
exception o f  t h e  cons t r i c t ion  near the  downstream boundary 
where e r r o r s  were on the order o f  -15%. I f  f u tu r e  de t a i l ed  
s t ud i e s  a r e  made, and ve loc i t i e s  in t h a t  area become important, 
more network d e t a i l  wi l l  be provided. 

Figure 7 Veloc i t i es  f o r  Spillway Q = 7000 crns (250,000 c f s ) ,  
Ex is t ing  Powerhouse Q = 6500 cms (230,000 c f s ) ,  
S l i p  Boundary Conditions 
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gure 8 Veloc i t i es  f o r  Spillway Q = 0 ,  Exist ing Powerhouse 

Q = 6500 cms (230,000 c f s ) ,  Second Powerhouse Q = 
7000 crns (250,000 c f s ) ,  S l i p  Boundary Conditions 

The model a1 1  ows two val id  types of boundary condit ions 
a t  boundaries where no flow e n t e r s  o r  leaves the  system. One 
i s  the s tagnat ion point  where both components o f  ve loc i ty  a r e  
zero; the  o the r  i s  t he  s l i p  boundary condition where the 
veloci ty  on t he  boundary i s  tangent ia l  t o  the boundary. The s 
s l i p  condition requires  use o f  curved-sided e lemmts  on the  
boundaries. Use o f  curved boundaries with tangent ia l  flow i s  
favored. Use of  s tagna t ion  points  a1 ong the  boundaries r e s u l t s  
i n  a  subs t an t i a l l y  d i f f e r e n t  so lu t ion  as shown i n  Fig. 9. Not 
only i s  the  ve loc i ty  d i s t r i b u t i o n  a1 te red ,  but calcula ted head 
loss  i n  t he  reach i s  about 0.21 m (0.7 f t . )  g rea te r  than w i t h  
the  s l i p  boundary condit ion.  Continuity performance f o r  t he  
two simulations was s i m i l a r ,  though i n  o ther  problems analyzed 
by Resource Managenient Associates (1977), the  s l i p  condition 
was super ior .  Use of d i f f e r e n t  boundary condit ions should be 
investigated i n  an at tempt t o  i d e n t i f y  under what condit ions 
the modeler should choose s1 i p  o r  s tagnat ion point  boundaries. 

I t  i s  encouraging t o  note t h a t  the  McNary study required 
no code changes t o  the  model. 



Figure 9 Veloci t ies  f o r  Spillway Q = 7000 crns (250,000 c f s ) ,  
Exist ing Powerhouse Q = 6500 crns (230,000 c f s ) ,  
Stagnation Point  Boundary Conditions 

TWO-DIMEb?SIOP!AL M0DEL.S IN THE VERTICAL PLANE 

Two-dimensional ( longi tudinal  and ve r t i c a l  ) hydrodynamic models 
have been developed t o  a i d  the  Corps i n  t he  descr ipt ion and 
ana lys i s  of w s e r v o i r  water qua l i ty .  The importance o f  t he  
longi tudinal  as well as t he  ve r t i c a l  exchange i n  long,  
r e l a t i v e l y  narrow and deep impoundments has been s tud ied  by 
Pr i t chard  (1971), Anthony and Drummond (1973) and t he  Tennessee 
Val ley  Authority (1969). Invest igat ions  such as  these  have 
shown t h a t  the  hydrodynamics of a s t r a t i f i e d  r e se rvo i r  in-  
f luences the  water qua1 i ty  and, the re fore ,  the  b io log ica l  
product ivi ty  of deep impoundments. Addi ti onal ob jec t ives  f o r  
the  development of multidimensional models a r e  t o  be ab le  t o  
~ r e d i c t  the  e f f e c t s  t h a t  o u t l e t  type and loca t ion ,  degree of 
; t r a t i f i c a t i o n ,  and rese rvo i r  operation have on t h e  water 
q u a l i t y  i n  downstream r i v e r s  and streams. 

As well as  the  general i n t e r e s t  i n  s imulating flows i n  
the  ve r t i c a l  plane, t h i s  research has provided the  opportunity 
t o  compare the  performance of an imp l i c i t  f i n i t e  d i f fe rence  
method (FDM) model w i t h  t h a t  of a f i n i t e  element method (FEM) 
model. The FDM model was developed by Edinger and Buchak (1977) 
and is named LARM (La t e r a l l y  Avera~ed Reservoir Model). The 
FEM ve r t i c a l  model was developed by Norton e t  a1 (1973) and King 
e t  a1 (1975). Although i n i t i a l  development of  t h e  v e r t i c a l  FEM 
model was accomplished a t  t he  same time as t h a t  o f  the  hor i -  
zontal  mode1 previously discussed,  f u r t h e r  refinement and use 
of  t he  ve r t i c a l  model has lagged considerably, 

The primary object ives  of t he  comparison o f  these  two 
hydrodynamic models were: (1)  t o  compare the  r e l a t i v e  ease  
w i t h  w h i c h  the  required data  and boundary condi t ions  could be 
prepared and coded; ( 2 )  t o  compare the  overal l  performance of 



the two d i f fe rent  approaches with respect t o  s tab i  1  i  ty ,  
convergence, accuracy and p rac t i ca l i ty ;  and f ina l ly ,  (3)  t o  
compare re la t ive  r u n  times and simulation costs tetween the 
two me.thods f o r  s,i m i  1  a r  problems. The fol 1  ovii ng paragraphs . 
present the fundamental equations used by the two models. 

Governing Equations - 
Both models incorporate simi 1 a r  forms of the so-called phenom- 
enoloqical equations f o r  mom~ntum, along with the continuity 
euuation and 'a ,form of the convective-diffusion equation fo r  
thermal or  material t ransport  i n  the ver t ica l .  ~ o t e ,  however, 
t ha t  the FEM mode1 re ta ins  the vert ical  momentum equation, 
which i s  replaced by the hydrostat ic  pressure d is t r ibut ion  in 
the FDM model. Both models u t i l i z e  a  Cartesian coordinate 
system with the longitudinal x dimension posi t ive downstream. 
The vert ical  z dimension i s  referenced posi t ive upward from 
the x-axis in the FEM model , whi l e  i t  i s  posi t ive downward 
from the x-axis i n  LARM. Both models allow f o r  a  variable 
width in the l a t e r a l  y direct ion.  

FEM Hydrodynamic Model - 
Momentum Equation: 

Continuity Equation: 
a k-(bu)  + -(bw) = 0 ax a z 

Convecti ve-Di ffus ion Equation for  Dens i  ty: 
a a P a + b (,* + 2 , ~ )  - D -- (bG) - D Z  az (b$)= 0 

a t  ax a z x ax (7 )  

where 
u ,  w = f l u i d  veloci ty  in the x and z d i rec t ions  respectively 

b = breadth 
p = pressure 

D x ,  D, = eddy diffusion coef f ic ien ts  in the x and z direct ions 
respectively 

Ab = area over which bottom s t r e s s  i s  e f  f e t t i v e  
As = the area over iqhich the wind s t r e s s  i s  e f f ec t ive  

Other var iables  have previ ously been defined. 



FDM Hydrodynamic Model LARM 
Momentum Equation : 

Boundary s t r e s s e s  a r e  found using t he  f o l l  owing expressions: 

a t  the bottom: 

Hydrostatic Pressure d i s t r i b u t i o n :  

Continuity Equation: 

Thermal Convecti ve-Di ,ffusi  on Equation : 

a .  + a(uTb) + a ( w W  a a T a aT  f'b - - (Dxb ) - -- 
a t  ( D b - )  =--- ax a z ax az z a~ 

P C ~  

Equation of s t a t e :  

P = P(T) 
where 

p = f l u i d  dens i ty  
Pa = dens i ty  o f  a i r  
S~ = boundary shea r  s t r e s s  
q = l a t e r a l  inflow per  u n i t  volume 
T = temperature 

Dx¶ Df = heat  t r a n s p o r t  d i spers ion  coe f f i c i en t s  
= heat  inflow per  u n i t  volume 

cp = s p e c i f i c  heat  

Other var iab les  have been previously defined. 

Description o f  t h e  Test  Problem -- - 
Data col lected by the  Tennessee Val l ey  Authority (TVA) (1969) 
were used t o  t e s t  and compare the  two vert . ica1 models i n  a 
rese rvo i r  simulation.  'These data  were fo r  the  Fontana Reservoir 
i n  North Carolina. The models were appl ied t o  the  f i r s t  23 km 
('14.5 miles)  of t he  r e s e r v o i r  upstream from the  dam. To 

2 simp1 i fy geometric requi rements, a u n i  form reservo,i r breadth of  
638 m (2095 f t )  was used. T h i s  breadth was se lec ted  t o  conserve 



rese rvo i r  volume. 'The bottom p r o f i l e  and e1evat.ions were 
determined from sediment inves t iga t ion  cross sect ions .  Con- 
d i t i ons  t ha t  ex i s t ed  i n  the  r e se rvo i r  during the  l a s t  week 
of March, 1966 were used t o  provide t he  boundary condit.ions 
f o r  the  simulation. Water temperature p r o f i l e s ,  water surface  
e levat ions ,  and flows i n t o  and out  of the  t e s t  reach were 
obtained from the  'TVA (1969) data. The rese rvo i r  was s t r a t i -  
f i e d  and was approximately 108 rn (353 ft. ) deep a t  the  dam. 
Surface heat exchange, wind ve loc i ty ,  and t r i b u t a r y  ,inflows 
were a11 assumed t o  be ze ro  f o r  t he  purposes of t h i s  i nves t i -  
gation;  a  steady inflow and outflow of 140 cms (5000 c f s )  was 
used. 

Discussion --- 
The time and e f f o r t  necessary t o  describe the  r e se rvo i r  
geometry f o r  both the  FDM and FEM models were comparable. Po 
achieve calcula ted r e s u l t s  a t  comparable locat ions  i n  space, 
optional  quadr i l a te ra l  elements were used s o  t h a t  t h e  f i n i t e  
element network (Fig. 10) was almost iden t ica l  t o  FDM g r id  
(not  shown). I t  is recognized t h a t  t h i s  network does not  
exp lo i t  the  capab i l i t y  o f  the  FEM model t o  allow increased 
geometric resolut ion where des i red ,  such as  near t he  r e se rvo i r  
outflow point ,  but  t h i s  s imp l i f i c a t i on  was useful f o r  com- 
par i  son of r e s u l t s .  

The convergence of the  FEM so lu t ion  was noted t o  be 
somewhat more s e n s i t i v e  t o  the  magnitude of the  t u rbu l en t  
exchange coe f f i c i en t s  than the  FDM model. The ranges of values 
of the  coe f f i c i en t s  over which convergent so lu t ions  can be 
obtained f o r  the  two models have no t  y e t  been firmly es tab-  
l i shed.  Additional s e n s i t i v i t y  inves t iga t ions  s h a l l  be under- 
taken a t  a  l a t e r  time. Ar ia thura i ,  e t  a1 (1977) examined 
s imi l a r  equations and found t h a t  s t a b i l i t y  and convergence of 
the  solut ion could be r e l a t ed  no t  only t o  s p a t i a l  and temporal 
s t e p  s i z e s  b u t  a l s o  t o  t he  Pec le t  number which i s  the  r a t i o  of  
convective t r anspo r t  t o  d i f fu s ive  t ranspor t .  

The flow f i e l d s  ca lcu la ted  with the FDM and FEM models 
a r e  shown in Figs. 11 and 12 respect ively .  The ve r t i c a l  s c a l e  
of Figs. 10-12 i s  exaggerated by a  f ac to r  of 100. Coef f ic ien t s  
used ( r e f e r  t o  equations 4-7) were: rxx=24, ~ ~ ~ = 4 . 8 x 1 0 ' ~ ,  

EZf =240, Dx=23, DZ=9.3x10-7 m2/sec (260,0.05, 2600, 250, 
f t  / sec) .  Although the  models have numerous de t a i l ed  d i f i e r -  
ences, pa r t i cu l a r l y  i n  the  descr ip t ion  of boundary condi t ions ,  
the  calcula ted flow f i e l d s  a r e  s i m i l a r  and reasonable. For the  
t e s t  appl i ca t ion ,  t he  rese rvo i r  was thermally s t r a t i f i e d ,  w i t h  
the incoming f l u i d  cooler  and more dense than the  f l u i d  i n  the  
surface  layers.  The s t a b l e  densi ty  gradient  i n  the  region of 
the  thermocline tends t o  i n h i b i t  ve r t i c a l  momentum and mater ia l  
t r anspor t ,  y e t  c i r cu l a t i on  appears i n  the upper l ayers .  The 
c i rcu la t ion  i n  the  sur face  l ayers  i s  driven by in te rna l  hor i -  
zontal  shearing between the  cool water flowing toward t h e  
o u t l e t  and the  warmer water above. A s i m i l a r  flow pa t te rn  i s  
a l so  observed i n  t he  bottom region below the  main flow i n  the  



F'i gure 70 Finite Element Network for Reservoir Simulation 

Figure 11 Reservoir Velocities Calculated with the Finite 
D i  fference Model 

Figure 12 Reservoir Velocities Cal cul ated w'i t h  the Finite 
El ement Model 



FDM model (Fig. 71). Generally, the FEM solution predicts 
1  arger ver t ical  velocity components, perhaps due t o  the 
retention of the ver t ical  momentum equation. Comparison of 
the solutions w i t h  avai lable  f i e l d  data will  be undertaken 
once general performance charac ter i s t ics  of the two models 
are fur ther  defined. 

For these steady s t a t e  simulations, the FDM took about 
6 times more CDC 7600 computer tirne than the FEM. The primary 
reason i s  t ha t ,  t o  achieve a  steady s t a t e  solut ion,  the FDM 
model m u s t  be r u n  through pseudo-time with constant boundary 
values unti 1  t rans ien ts  from i n i t i a l  conditions die  out  (about 
75-100 days i n  t h i s  case). The FEM model, however, has the 
capabi l i ty  of solving the system once w i t h  zero time deriva- 
t ives  t o  arr ive a t  a steady s t a t e  solution. Comparative costs 
f o r  dynamic simulations w i  11 depend primarily upon length of 
time s tep and number of elements used t o  define the study 
regi on. 

SUMMARY 

The work t o  date with the horizontal flow model indicates  the 
fol lowing: 

(1) Internal continuity e r ro r s  can be reduced t o  
acceptable levels  by increasing network detai  1,  par t icu lar ly  
in areas of large curvature of  the velocity f i e ld .  

(2)  Errors in continuity tend t o  be re f lec ted  more 
strongly i n  the velocity than the depth. 

(3)  General application of the model to  steady s t a t e  
simulations i s  feas ib le  a t  present. 

The preliminary work w i t h  the ver t ical  flow models 
indicates the following: 

(1) The f i n i t e  element method model i s  l e s s  cos t ly  than 
the f i n i t e  difference model f o r  steady s t a t e  solutions.  

(2) Simulation of flows in which density gradients are  
important requires careful select ion of turbulent  exchange and 
eddy diffusion coef f ic ien ts .  

(3) The f i n i t e  element model predicts la rger  ver t ica l  
ve loc i t ies  than the f i n i t e  difference model, perhaps due t o  
the re tention of the ver t ica l  momentum equation. 

(4)  More experience with,  and development of ,  the 
ver t ical  models wi 11 be required before "production" appl i -  
cations can be e a s i l y  made. 

Indicated areas o f  fu r the r  work are: 
(1) Veri f i  cation of models ' performance when an adequate 

data s e t  becomes available.  
(2) Development of guidance on select ion of turbulent  

exchange coef f ic ien ts ,  re la t ionship  t o  flow properties e tc .  
(3)  Invest igate  models' behavior f o r  dynamic simul ations.  
(4) Evaluate use of stagnation vs. s l i p  boundary con- 

d i t ions  i n  the f i n i t e  element models. 
(5) Extend simulations with the ver t ica l  models t o  

variable breadth problems. 
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