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POTENTIAL USE OF DIGITAL COXPUTER 

GROUND WATER MODELS~ 

David L. Gundlach 
2 

PREFACE 

The fol lowing d i scuss ion  on t h e  p o t e n t i a l  u s e  of d i g i t a l  computer 

ground water models w a s  prepared f o r  t h e  Albuquerque D i s t r i c t ,  Corps of 

Engineers,  Albuquerque, New Mexico, as p a r t  of a water supply  s tudy  of 

t h e  Albuquerque Grea ter  Urban Area (AGUA). Although t h e  m a t e r i a l  pre- 

sen ted  h e r e i n  was developed f o r  t h e  Albuquerque a r e a ,  t h e  concepts a r e  

a p p l i c a b l e  t o  t h e  understanding of ground water  modeling genera l ly .  The 

d i scuss ion  inc ludes  both quan t i t y  and q u a l i t y  models and reasons why an  

agency may wish t o  undertake a modeling e f f o r t .  Avai lab le  computer 

programs a r e  c i t e d  and t h e  probable  advantages and disadvantages of  

s p e c i f i c  programs a r e  given. Costs f o r  p r i o r  modeling e f f o r t s  of ground 

water  systems i n  o t h e r  l o c a l i t i e s  a r e  a l s o  included as a guide t o  probable 

c o s t s  when cons ider ing  t h e  use  of a d i g i t a l  computer ground water  model. 

From t h e  pre l iminary  r e p o r t ,  Albuquerque Greater Urban Area Water Supply 
Study, prepared by The Hydrologic Engineering Center ,  U.S. Army Corps of 
Engineers,  Davis, C a l i f o r n i a ,  1978. 

Hydraul ic  Engineer, Planning Analysis  Branch, The Hydrologic Engineering 
Center ,  Davis, C a l i f o r n i a ,  95616. 
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SECTION 7  

POTENTIAL USE OF DIGITAL COMPUTER 
GROUND WATER MODELS 

In t roduc t ion  

A model, i n  t h e  gene ra l  sense,  i.s a  r e p r e s e n t a t i o n  which a t tempts  t o  exp la in  

t h e  behavior of some a spec t  of t h e  pro to type  system. It i s  always less 

complex than  t h e  r ea l ,  system i t  rep resen t s ,  and l a r g e l y  because of t h e  com- 

p l ex  i n t e r d i s c i p l i n a r y  i n t e r e s t s  i n  ground water, models d i f f e r  markedly i n  

purpose, information requirements ,  assumptions, u se fu lnes s ,  and i n  t h e  mathe- 

m a t i c a l  schemes incorporated.  

The u s e  of models t o  a i d  i n  t h e  a n a l y s i s  of ground water  systems has  increased  

s i g n i f i c a n t l y  i n  r ecen t  yea r s  (Konikow, 1970; Holcomb Research I n s t i t u t e ,  1977).  

Many i n v e s t i g a t o r s  f i n d  models u s e f u l  inc luding  t h e  appl ied  r e sea rche r  

i n t e r e s t e d  i n  v e r i f y i n g  t h e o r e t i c a l  r e l a t i o n s h i p s ,  t h e  hydro logis t  i n t e r e s t e d  

i n  developing t h e  c a p a b i l i t y  t o  p r e d i c t  e f f e c t s  of s t r e s s e s  (such a s  pumpage) 

on a n  a q u i f e r  system, and planners  i n t e r e s t e d  i n  t h e  economic impact of t h e  

development of ground water  resources .  

I n t e r d i s c i p l i n a r y  modeling e f f o r t s  a r e  concerned w i t h  t h e  q u a n t i t a t i v e  

d e s c r i p t i o n  of t h e  hydrogeologic p r o p e r t i e s  and boundaries of a q u i f e r  systems, 

and wi th  t h e  response of a q u i f e r s  t o  development and management p r a c t i c e s .  

The models a r e  t o o l s  used t o  eva lua t e  ground water  resources  and t o  f o r e c a s t  

t h e  consequences of t h e  u t i l i z a t i o n  of a q u i f e r s .  (Proper planning f o r  t he  

development of ground water  resources r e q u i r e s  t e s t i n g  of a l l  pos s ib l e  schemes 

of development and a p p r a i s a l  of t h e  r e l a t i v e  m e r i t s  of va r ious  a l t e r n a t i v e s ) .  

The modeling e f f o r t s  a r e  a l s o  concerned wi th  t h e  economic consequences of 

ground water development, w i th  t h e  p r a c t i c a l  sus t a ined  y i e l d s  of w e l l s  and 

a q u i f e r s  and w i t h  t h e  i n t e r r e l a t i o n  between su r f ace  water and ground water .  



Objec t ives .  The o b j e c t i v e  of t h i s  s e c t i o n  i s  t o  po in t  ou t  p o t e n t i a l  

uses  of ground water  computer models i n  t h e  management of t h e  water resource  

of t h e  AGUA. This  inc ludes  models f o r  both quan t i t y  and q u a l i t y .  Various 

reasons a r e  c i t e d  a s  t o  when and why a n  agency o r  agencies  should undertake 

a d i g i t a l  computer modeling e f f o r t  and t h e  d i f f e r e n t  computer programs which 

might be a p p l i c a b l e  t o  AGUA a r e  d iscussed  and t h e  probable advantages of each 

a r e  given. Costs  of t h e  d i f f e r e n t  modeling e f f o r t s  a r e  determined on t h e  

b a s i s  of s i m i l a r  s t u d i e s  done i n  o t h e r  a r e a s .  

D i g i t a l  Computer Models 

I n  t h e  e a r l y  1950's r e s e r v o i r  engineers  looked t o  numerical methods adapted 

f o r  d i g i t a l  computers t o  so lve  l a r g e  s c a l e  flow problems. Ear ly  numerical 

r e s e r v o i r  s imula t ions  were seve re ly  l i m i t e d  by t h e  s i z e  and speed of t h e  

d i g i t a l  computers of t h e  period.  By t h e  l a t e  1960's d i g i t a l  computers could 

compete w i t h  t h e  e l e c t r i c  analog f o r  t h e  s o l u t i o n  of t r a n s i e n t  flow problems 

involving a few thousand nodes (computation p o i n t s )  i n  two space  dimensions. 

With today ' s  d i g i t a l  computers and powerful numerical techniques,  three-  

dimensional problems involving up t o  20,000 nodes can be  solved.  

Due l a r g e l y  t o  t h e  widespread a v a i l a b i l i t y  of t h e  d i g i t a l  computer, numerical 

methods have replaced t h e  e l e c t r i c  analog i n  most a p p l i c a t i o n s .  However, 

t h e  e l e c t r i c  analog model remains a very  u s e f u l  t o o l  f o r  problems involving 

mul t i -aqui fe r  hydrologic  systems which must be s imulated wi th  a l a r g e  number 

of nodes. 

With the  development of high-speed computers, i t  has become f e a s i b l e  t o  

develop numerical models t h a t  cons ider  more r e a l i s t i c  r e p r e s e n t a t i o n s  of 

complex hydrologic  systems than was ever  p o s s i b l e  i n  t h e  p a s t .  

Types of problems f o r  which d i g i t a l  models have been o r  a r e  being developed 

inc lude ,  among o t h e r s  (Appel, e t  a l . ,  1976): 



(1) Flow i n  water - tab le  a q u i f e r s  i n  which r e l a t i v e l y  l a r g e  changes i n  

s a t u r a t e d  th ickness  t ake  p l ace  

(2) Flow i n  s a t u r a t e d  o r  p a r t i a l . 1 ~  unsa tura ted  m a t e r i a l s  

(3)  Land subsidence r e s u l t i n g  from ground water  e x t r a c t i o n  

(4)  Flow i n  coupled ground water l s t ream systems 

(5) Coupling of r a in fa l l - runof f  bas in  models wi th  s o i l  moisture 

accounting and aquifer-f low models 

(6) I n t e r a c t i o n  of economic and hydrologic  cons ide ra t ions  

(7) P r e d i c t i n g  t h e  t r a n s p o r t  of contaminants i n  an  a q u i f e r ,  and 

(8) Est imating t h e  e f f e c t s  of proposed development schemes f o r  geo- 

thermal systems. 

Many of t h e s e  types  of problems r e q u i r e  t h a t  more than one equat ion be  solved 

s imultaneously.  For example, gene ra l  t r a n s p o r t  problems r e q u i r e  t h e  coupling 

and simultaneous s o l u t i o n  of t h e  p a r t i a l  d i f f e r e n t i a l  equat ions t h a t  desc r ibe  

two (o r  more) components of a t r a n s i e n t  flow system. Typica l ly ,  t hese  would 

inc lude ,  (1)  an  equat ion  f o r  p re s su re  and (2 )  an  equat ion f o r  t h e  concentra- 

t i o n  of each chemical c o n s t i t u e n t  of i n t e r e s t .  

A t a b u l a t i o n  of t h e  s t a t u s  of U.S. Geological Survey techniques i n  ground 

water  modeling is shown i n  Table 7-1 (Appel, et a l . ,  1976).  If one contemplates 

an  ex tens ive  modeling e f f o r t ,  then t h e  documentation r e f e r r e d  t o  i n  Table 

should be reviewed. The techniques c o n s i s t  of computer programs, a n a l y t i c a l  

methods, and e l e c t r i c  analog s o l u t i o n s  which, wi th  few except ions,  a r e  

a p p l i c a b l e  t o  t r a n s i e n t  condi t ions .  I n  many cases  more than one technique 

has been app l i ed  t o  s i m i l a r  ground water  problems i n  o rde r  t h a t  t h e  compari- 

t i v e  s t r e n g t h s  of d i f f e r e n t  methods can be evaluated and used t o  advantage. 

Such eva lua t ions  provide  a r a t i o n a l  b a s i s  f o r  determining t h e  method l i k e l y  

t o  be  most e f f i c i e n t  f o r  p a r t i c u l a r  types of problems. To s t a t e  t h a t  a 

technique i s  i n  t h e  v e r i f i c a t i o n  phase means t h a t  t e s t s  a r e  being made t o  

s e e  i f  model-derived s o l u t i o n s  reasonably s imu la t e  observed responses.  

Techniques i n  t h e  o p e r a t i o n a l  phase a r e  being used t o  eva lua t e  f i e l d  problems. 
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I n  many cases ,  i n v e s t i g a t o r s  o t h e r  than  those  given i n  Table 7-1 a r e ,  o r  have 

been, involved i n  t h e  l i s t e d  a c t i v i t y .  The i n v e s t i g a t o r s  l i s t e d  can be  

contac ted  through t h e  U.S. Geological  Survey f o r  information regard ing  t h e  

s u b j e c t  matter c i t e d .  

D i g i t a l  Computer Models of t h e  Ground Water Flow System 

D i g i t a l  computer modeling of a n  ex tens ive  flow system t h e  s i z e  of t h e  AGUA 

demands a h ighly  organized approach t o  planning o r  management. It involves  

a r e l a t i v e l y  h igh  i n i t i a l  c o s t  and an  i n t e n s i v e  and coordinated d a t a  co l l ec -  

t i o n  e f f o r t .  However, i t  enables  s tudy  of a much broader range of a l t e r n a -  

t i v e s  r e l a t i n g  not  on ly  t o  f low bu t  t o  q u a l i t y  and economic cons ide ra t ions .  

Two-Dimensional Model of t h e  Flow System. There a r e  s e v e r a l  w e l l  

documented two-dimensional. ground water. computer programs a v a i l a b l e  f o r  

s imu la t ing  flow systems. Probably t h e  one most commonly used is a two- 

dimensional f i n i . t e  d i f f e r e n c e  model developed by Pinder  (Pinder ,  1970; 

T resco t t ,  e t  a l . ,  1976).  

The two-dimensional formulat ion of flow i n  an a q u i f e r  system conceptual . izes  

t h e  phys ics  of t h e  process  a s  being completely descr ibable  by movement i n  

t h e  h o r i z o n t a l  d i r e c t i o n s ,  gene ra l ly  two orthogonal  coord ina te  d i r e c t i o n s  

(f low i n  p a r a l l e l  h o r i z o n t a l  p lanes  being i d e n t i c a l ) .  The movement (ve loc i ty )  

of w a t e r  i n  a given d i r e c t i o n  is  i n  propor t ion  t o  t h e  nega t ive  g rad ien t  of 

t h e  water  t a b l e  o r  piezometr ic  s u r f a c e  and t h e  permeabi l i ty  of t h e  a q u i f e r  

m a t e r i a l .  Cont inui ty  i s  preserved by r e q u i r i n g  volume accounting through 

e i t h e r  changes i n  water  s u r f a c e  e l e v a t i o n s  o r  changes i n  p iezometr ic  head 

and t h e  compression and expansion of t h e  water  and of t h e  porous framework 

of t h e  a q u i f e r .  (The two-dimensional formula t ion  does not  s p e c i f d c a l l y  

cons ider  t h e  v e r t i c a l  flow process  and thus  does no t  s imu la t e  w e l l  t hose  

systems w i t h  s i g n i f i c a n t  v e r t i c a l  components of flow and/or  hydrau l i c  con- 

d u c t i v i t y ) .  Solu t ion  t o  problems formulated i n  two space dimensions proceeds 



by d i s c r e t i z i n g  t h e  a q u i f e r  system i n t o  u n i t s ,  such a s  g r i d s ,  and so lv ing  

a t  succes s ive  t ime s t e p s  t h e  r e l a t i o n s h i p s  f o r  flow movement a t  each 

designated computational po in t .  

I n  o rde r  t o  g e t  a  f e e l i n g  f o r  what va r ious  terms mean i t  seems imperat ive 

a t  t h i s  p o i n t  t h a t  a  genera l  d e s c r i p t i o n  of t h e  va r ious  a s p e c t s  of a  two- 

dimensional flow system be given. Since t h e  ground water bas in  of AGUA is  

f o r  t h e  most p a r t  an  unconfined, (except f o r  l o c a l i z e d  a r e a s  e x h i b i t i n g  

a r t e s i a n  c h a r a c t e r i s t i c s ) ,  heterogeneous, a n i s t r o p i c  a q u i f e r ,  t h e  fol lowing 

continuous form i n  two space dimensions is  app l i cab le :  

where x,y a r e  t h e  or thogonal  d i r e c t i o n s  (L), 
2 -1 Txx i s  t h e  t r ansmis s iv i ty  i n  t h e  x d i r e c t i o n  (L T ), 
2 -1 T is t h e  t r ansmis s iv i ty  i n  t h e  y  d i r e c t i o n  (L T ), 

Y Y 
h i s  t h e  hydraul ic  head (L), 

S i s  t h e  s t o r a g e  c o e f f i c i e n t  (dimensionless) ,  

W is  t h e  n e t  r a t e  of recharge o r  d i scharge  pe r  u n i t  a r e a  (LT-'), 

and t i s  t i m e  (T). 

Equation 7-1 has been developed from t h e  equat ion  of con t inu i ty  and Darcy's 

Law. I n  o rde r  t o  v i s u a l i z e  t h e  phys ica l  s i g n i f i c a n c e  of t h i s  consider  f o r  

t h e  moment a n  i d e a l i z e d  system a s  shown i n  F igure  7-1. The prism r e p r e s e n t s  

a  s m a l l .  e lemental  volume taken through a  compressible,  ho r i zon ta l ,  and con- 

f i n e d  a q u i f e r  of uniform th ickness ,  b.  Assuming t h a t  flow t akes  p l ace  i n  t h e  

x -d i r ec t ion  only then  inf low minus outf low r e p r e s e n t s  t h e  r a t e  of change i n  

s to rage .  This  can be w r i t t e n  a s  

where V i s  t h e  volume of water contained i n  t h e  elemental  prism a t  a  s p e c i f i c  



Water level changing 

Q1 

Y 

Figure 7-1 

UNIDIRECTIONAL NON EQUILIBRIUM FLOW THROUGH AN ELEMENTAL 
PRISM OF A HORIZONTAL CONFINED AQUIFER. 
( Bennett, G. D., Introduction to Ground-Water Hydraulics, U. S.Geological Survey ,i976) 



p o i n t  i n  t i m e .  Since t h e  s t o r a g e  c o e f f i c i e n t ,  S, is  t h e  volume of water  

r e l ea sed  from s t o r a g e  i n  a  prism of u n i t  a r e a  extending through t h e  f u l l  

t h i ckness  of t h e  a q u i f e r  i n  response t o  a u n i t  d e c l i n e  i n  head, Equation 

7-2 can be r e w r i t t e n  as 

Assuming a n  i s o t r o p i c  and homogeneous a q u i f e r  and u t i l i z i n g  Darcy7s Law, 

8, - Q2 can be approximated a s  shown below: 

The term Kb, r e p r e s e n t s  t h e  hydraul ic  conduct iv i ty  of t h e  a q u i f e r  t imes i t s  

th i ckness ,  and i s  c a l l e d  t r ansmias iv i ty  o r  t r a n s m i s s i b i l i t y ,  T. Now accord- 

i ng  t o  t h e  equat ion  of c o n t i n u i t y ,  in f low minus outf low must equal  t h e  r a t e  

of change of water  i n  s t o r a g e  w i t h i n  t h e  prism of a q u i f e r  such t h a t  

Equation 7-6 d e s c r i b e s  ground water  movement under t h e  si.mple cond i t i ons  

which were assumed; t h a t  i s ,  where t h e  a q u i f e r  i s  confined,  h o r i z o n t a l ,  

homogeneous, and i s o t r o p i c ,  and t h e  nioverfient i s  i n  one d i r e c t i o n .  I f  horizon- 

t a l  components of motion normal t o  t h e  x-axis  were p re sen t ,  then  inf low and 

outf low through t h e  o t h e r  two f a c e s  of t h e  prism would have t o  be considered;  

t h a t  is,  t h e  two f a c e s  normal t o  t h e  y-axis .  I n  such a  c a s e  

The r e l a t i o n  given above i s  f o r  two-dimensional ground water  movement under t h e  

assumed cons i t i ons .  
7- 9 



Although it is not important to understand the theory of partial differential 

equations, it is important to understand the flow process in relation to 

Figure 7-1. Later on in this section it will be shown how a two-dimensional 

grid is developed in conjunction with a ground model of the flow system and 

one should realize that each area of the grid system represents a prism of 

the type shown in Figure 7-1. 

A more detailed analysis similar to the preceding method_ology, for an uncon- 

fined, heterogeneous and anistropic aquifer results in the approximation, 

Equation 7-1. (It should be noted, however, that the calculation of the 

rate of change in storage for confined and unconfined systems involve com- 

pletely different processes. Withdrawal from or addition to unconfined 

storage takes place at the water table whereas confined storage effects are 

distributed throughout the vertical thickness of an aquifer. Confined 
- 5 

storage coefficient values usually range from 10 to but unconfined 

values range typically from 0.01 to 0.35). An additional component, W, has 

been included to represent recharge to or discharge from the ground water 

body. Examples of this are: recharge due to precipitation, discharge due 

to pumpage, evapotranspiration, etc. Considering a prism, such as in 

Figure 1, but of such size as to include a well, then the term W would 

represent the rate of withdrawal from the prism due to pumpage. 

As with ordinary differential equations, there will be an infinite number of 

expressions which will satisfy a partial differential equation; the particu- 

lar solution required for a given problem must satisfy, in addition, certain 

conditions peculiar to that problem. These additional conditions, termed 

boundary conditions, establish the starting points from which the changes 

in h are determined. 

Formal mathematical soluti.ons of Equation 7-1 are available only for a small 

minority of field problems, representing simple boundary conditions. In 

most cases, we are forced to seek approximate solutions, using methods other 

than direct formal solution. One such method is the simulation of the above 



d i f f e r e n t i a l  equat ion by a  f i n i t e - d i f f e r e n c e  equat ion ,  which i n  t u r n  can 

be solved a l g e b r a i c a l l y  o r  numerical ly .  Another i s  t h e  f i n i t e  element method 

f o r  so lv ing  p a r t i a l  d i f f e r e n t i a l  equat ions (Appel, et a l . ,  1976; P inder ,  1974).  

Although f i n i t e  d i f f e r e n c e  schemes a r e  p re sen t ly  t h e  more widely used and 

documented, t h e r e  a r e  d i s t i n c t  advantages t o  t h e  f i n i t e  element method as 

mentioned l a t e r  i n  t h i s  s e c t i o n .  

Where va lues  of recharge  o r  d i scharge ,  W, t r a n s m i s s i v i t y ,  T, s t o r a g e  coef- 

f i c i e n t ,  S, a r e  known f o r  t h e  AGUA a q u i f e r  system, then  one can s o l v e  f o r  t h e  

e l eva t ion  of t h e  water  t a b l e .  However, i f  va lues  of T and h a r e  known and 

a  s t eady- s t a t e  condi t ion  e x i s t s  (where s u r f a c e  e l e v a t i o n s  of t h e  water  t a b l e  

remain e s s e n t i a l l y  cons tan t  f o r  some period of t ime) ,  t h e  t ime d e r i v a t i v e  of 

head equals  zero,  and the  va lue  of W can be found by us ing  t h e  remaining 

terms of t h e  equat ion.  Thus under s t eady- s t a t e  cond i t i ons ,  -= ah 0, and a t 

The preceding methodology i s  u t i l i z e d  i n  t h e  computer program t o  compute 

e l eva t ions  of t h e  water  t a b l e  and/or  e s t ima te  va lues  of recharge  and d i scha rge  

throughout t h e  a q u i f e r  system. 

For t h e  f i n i t e  d i f f e r e n c e  method, a  two-dimensional g r i d  network i s  super- 

imposed on a  p lan  view of t h e  ground water  r e s e r v o i r  a s  schemat ica l ly  shown 

i n  F igure  7-2. The i n t e r s e c t i o n  of any two l i n e s  on t h i s  g r i d  i s  considered 

a  node l o c a t i o n  and va lues  of t r a n s m i s s i v i t y ,  s t o r a g e  c o e f f i c i e n t ,  and hydrau- 

1i .c  head a r e  i npu t  i n t o  t h e  model a t  each node i n  t h e  network. Boundary 

condi t ions  and a r e a s  of recharge  and d ischarge  a r e  a l s o  s t i p u l a t e d .  

The two-dimensional computer programs a v a i l a b l e  and u t i l i z i n g  t h e  f i n i t e  

d i f f e r e n c e  scheme, i n  gene ra l ,  w i l l  s imu la t e  ground water flow i n  a  confined 

( a r t e s i a n )  a q u i f e r ,  a n  unconfined (water- table)  a q u i f e r  o r  a  combination of 

t h e  two. The a q u i f e r  may be  heterogeneous and a n i s t r o p i c  and have i r r e g u l a r  



Recharge Boundary 

0 Nodes representing recharge 

0 Nodes representing pumpage 

e 5 060 Contours representing water table elevations 

Figure 7-2.  Two- Dimens~onal Variable Grid Network 



boundaries.  The source term i n  t h e  flow equat ion may inc lude  recharge  from 

r i v e r s  t o  t h e  a q u i f e r ,  d i scharge  from t h e  a q u i f e r  t o  r i v e r s ,  recharge  from 

i r r i g a t i o n  r e t u r n  and wastewater e f f l u e n t ,  d i scharge  due t o  evapotranspira-  

t i o n  o r  pumping, recharge from a confined t o  an  unconfined a q u i f e r  o r  d i s -  

charge from an  unconfined t o  a confined a q u i f e r .  

Considerat ions i n  designing t h e  a q u i f e r  model f o r  t h e  AGUA, are l i s t e d  below: 

(1) Boundary condi t ions  

The phys i ca l  boundaries of t h e  a q u i f e r  system should be included i n  t h e  

model i f  f e a s i b l e  i r r e g a r d l e s s  of t h e  p r o j e c t  a r e a  (AGUA). It appears  

f e a s i b l e  t h a t  t h e  e a s t e r n  and western boundaries,  a s  they a r e  now 

de l inea t ed ,  can be  incorporated i n  t h e  model. The no r the rn  and southern  

boundaries  of t h e  a q u i f e r  a r e  f a r  removed from t h e  p r o j e c t  l i m i t s ,  such 

t h a t  they  a r e  imprac t i ca l  t o  inc lude .  A r t i f i c i a l  boundaries could be  

designated a t  t h e  most nor thern  and southern  l i m i t s  of t h e  s tudy  a r e a  

if c o s t  permi ts  ( c o s t  i s  a func t ion  of t h e  number of nodes).  I f  t h e  a r e a  

of i n t e r e s t  i s  i n  t h e  immediate v i c i n i t y  of t h e  Ci ty  of Albuquerque, t h e  

boundaries of t h e  model could be  loca t ed  j u s t  f a r  enough from t h e  c i t y  

a s  t o  have n e g l i g i b l e  e f f e c t  on t h e  computed water  l e v e l s  i n  t h a t  a r e a  

dur ing  si.mul.ation. I f  t h e  a r e a  of i n t e r e s t  is  t h e  C i ty  of Albuquerque 

and a l l  s i g n i f i c a n t  i r r i g a t e d  a r e a s  w i th in  AGUA t h e  same c r i t e r i a  would 

apply. Where t h e  nor thern  and southern  boundaries a r e  loca ted  depends 

t o  a l a r g e  degree on what t h e  ob jec t ives  of t h e  model s tudy  a r e .  Is one 

i n t e r e s t e d  only i n  t h e  impacts of pumpage on water  t a b l e  l e v e l s  and Rio 

Grande flows, o r  t h e  q u a l i t y  of domestic water  now and a t  some l a t e r  

da t e ,  or. t h e  q u a l i t y  of subsur face  water a long the  Rio Grande w i t h i n  

AGUA? The c o s t  of developing a two-dimensional model i s  dependent, of 

course,  on t h e  o b j e c t i v e s  of t h e  model s tudy .  

I n  gene ra l  boundaries a r e  t r e a t e d  i n  t h e  va r ious  computer programs a s  

e i t h e r  cons t an t  head o r  cons tan t  f l u x  ( inf low o r  out f low) .  I f  t h e  

e a s t e r n  and western boundaries of t h e  AGUA a r e  taken a s  t h e  l i m i t s  of 



t h e  a q u i f e r  (impermeable boundaries) ,  then  t h e  cons tan t  f l u x  is zero .  

For t h e  nor thern  and southern boundaries,  constant-head o r  f i n i t e - f l u x  

va lues  would be spec i f i ed .  

(2) I n i t i a l  condi t ions  

I n  t h e  AGUA &he c a l i b r a t i o n  of t h e  model would probably begin from 

s t eady- s t a t e  condi t ions  o r  a t  t h a t  po in t  i n  t ime where i t  i s  reasonable  

t o  assume t h e  change i n  hydraul ic  head wi th  time is  e s s e n t i a l l y  zero 

( see  Equation 7-8). Since e s t ima te s  of ground water  l e v e l s  (heads) a r e  

a v a i l a b l e  f o r  1936 and s i n c e  manmade s t r e s s e s  (pumpage, e t c . )  were r e l -  

a t i v e l y  n e g l i g i b l e  a t  t h a t  t ime, a  s t eady- s t a t e  cond i t i on  could be  

assumed f o r  1936. S teady-s ta te  condi t ions  would permit  e s t ima te s  of 

recharge  o r  d i scharge  (such a s  evaporat ion,  recharge  from p r e c i p i t a t i o n ,  

recharge  due t o  s t reams,  e t c . )  a t  each node i n  t h e  system. 

(3 )  Fin i t e -d i f  f e r ence  g r i d  

A f i n i t e - d i f f e r e n c e  g r i d ,  such a s  shown i n  F igure  7-2, can be v a r i a b l e  

w i th in  p a r t i c u l a r  r e s t r a i n t s .  

Nodes r ep re sen t ing  pumping and observa t ion  we l l s  should b e  c l o s e  t o  

t h e i r  r e s p e c t i v e  p o s i t i o n s  t o  f a c i l i t a t e  c a l i b r a t i o n .  I f  s e v e r a l  pump- 

ing  w e l l s  a r e  c l o s e  toge ther ,  t h e i r  d i scharge  may be  lumped and ass igned  

t o  one node s i n c e  d ischarge  and head is  d i s t r i b u t e d  over  t h e  a r e a  of 

a  r ec t angu la r  g r i d .  I n  t h e  v i c i n i t y  of t h e  Ci ty  of Albuquerque where 

w e l l s  i n  some cases  a r e  l e s s  than  a  mi l e  a p a r t ,  t h e  g r i d  space could 

be made f i n e r ,  probably down t o  a  mi l e  o r  l e s s  depending on t h e  a r e a  

which w i l l  be  modeled, i n  order  t o  adequately s imula te  t h e  s t r e s s  due 

t o  pumpage on t h e  system. 

There a r e  r e s t r i c t i o n s  t o  t h e  t o t a l  number of nodes which can be econ- 

omical ly and phys i ca l ly  incorporated i n  a  two-dimensional f i n i t e - d i f f e r -  

ence model. Depending on t h e  computer program and t h e  computer f a c i l i t i e s  



used f o r  s imula t ion ,  i t  could range from 10,000 t o  20,000 nodes. I f  

a v a r i a b l e  g r i d  spacing i s  incorporated ( a s  would probably be t h e  c a s e  

f o r  t h e  AGUA), then t h e r e  a r e  r e s t r i c t i o n s  a l s o  t o  t h e  r e l a t i v e  change i n  

g r i d  spac ing  which can be accommodated ( t h e  reader  should check t h e  

documentation of va r ious  computer programs a v a i l a b l e ) .  Nodes should 

a l s o  be placed c l o s e  toge the r  where t h e r e  a r e  s i g n i f i c a n t  changes i n  

t r a n s m i s s i v i t y ;  and t h e  a x i s  of t h e  g r i d  o r i en t ed  p a r a l l e l  t o  t h e  

p r i n c i p a l  d i r e c t i o n  of t h e  t r a n s m i s s i v i t y  t enso r  (vec to r ) .  

A s  mentioned previous ly ,  f in i te -e lement  methods have been used t o  

approximate t h e  p a r t i a l  d i f f e r e n t i a l  equat ions r ep re sen t ing  ground water  

flow (Pinder ,  1974).  This method u t i l i z e s  i r r e g u l a r  elements ( t r i a n g l e s ,  

r e c t a n g l e s  which may be  deformed i n  a s p e c i f i c  way, e t c . )  i n s t e a d  of t h e  

r e c t a n g l e s  common t o  t h e  f i n i t e  d i f f e r e n c e  scheme. The r a t h e r  a r b i t r a r y  

arrangement of nodes is a d i s t i n c t  advantage when modeling i r r e g u l a r  

boundaries and r e l a t i v e l y  l o c a l i z e d  a r e a s  of l a r g e  s t r e s s e s .  

C a l i b r a t i o n  of  a Two-Dimensional Model of t h e  Flow System. The u l t i m a t e  

purpose of a model s imula t ing  t h e  flow system is t o  p r e d i c t  changes i n  water  

l e v e l s  i n  t h e  a q u i f e r  caused by changes i n  s t r e s s e s  (pumpage, d i v e r s i o n s ,  

r e s e r v o i r  ope ra t ions ,  e t c . )  on t h e  system. Before a model can be  used f o r  

p red ic t ion ,  i t  must be c a l i b r a t e d ;  t h a t  i:; water  l e v e l s  s imulated by t h e  

s t r e s s e d  model must match m,?asured water  l e v e l s  a t  any chosen time. I n  t h e  

AGUA t h i s  would mean t h a t  t h e  ground t ra te r  l e v e l s  f o r  1936, 1960 and 1978, 

a s  determined i n  t h i s  s tudy and p r i o r  s t u d i e s  (Bjorklund, e t  a l . ,  1961; Reeder, 

e t  a l . ,  1967; Nat iona l  Resources Committee, 19.38), would be  used i n  t h e  ca l -  

i b r a t  i s n  process .  

I n  gene ra l  t h e  c a l i b r a t i o n  process  begins w i th  t h e  s t eady- s t a t e  condi t ion .  

(Although pumping w e l l s  e x i s t e d  i n  t h e  AGUA i n  1936, t h e i r  impact on t h e  

ground water  l e v e l s  has been considered n e g l i g i b l e ) .  A msp of t r a n s m i s s i b i l i t y  

va lues  and a ground water  l e v e l  contour  map would be  requi red  f o r  t h i s  



p a r t i c u l a r  p o i n t  i n  t ime. S u b s t i t u t i n g  map va lues  of t r ansmis s iv i ty ,  T, 

and hydraul ic  head, h ,  i n t o  equat ion  7-8, t h e  computer program is used t o  

compute recharge  o r  d i scharge  (ne t  f l u x ) ,  W, a t  each nodal  p o i n t  i n  t h e  

system. 

P l o t t i n g  t h e  proper  s i g n  (t, o r  -) of W, y i e l d s  a map t h a t  i n d i c a t e s  a r e a s  

of recharge  o r  d i scharge .  Also t h e  va lues  of W can be compared, and any 

va lue  of W t h a t  i s  cons iderably  d i f f e r e n t  from surrounding va lues  is e a s i l y  

not iced .  Values of W t h a t  are considerably d i f f e r e n t  and obviously unreason- 

a b l e  can be ad jus t ed  by modifying T .  The modified va lue  of T i s  placed i n  

t h e  program and a computer run  t h a t  computes a new va lue  of W is made. This 

process  is continued u n t i l  a s e t  of va lues  f o r  T, h and W is  generated wherein 

t h e  va lues  f o r  T and h do n o t  y i e l d  va lues  of W t h a t  a r e  judged t o  be unreason- 

a b l y  l a r g e  o r  smal l .  Also, ad jus t ed  va lues  of T o r  h a r e  checked f o r  consis-  

tency wi.th ad j acen t  va lues  of T and h.  (Values of h could be ad jus t ed  i n  t h i s  

process  i f  they  were o r i g i n a l l y  est imated i n  an  a r e a  where very  1 . i t t l e  o r  no 

observed d a t a  was a v a i l a b l e ) .  

The next  s t e p  i n  t h e  model a n a l y s i s  gene ra l ly  involves  determining d i f f e r e n c e s  

i n  a l l  recharge  and d ischarge  from t h e  time of assumed s t eady- s t a t e  con- 

d i t i o n s  (1936) t o  1960. These va lues  a r e  used t o  s t r e s s  t h e  model i n  

d i s c r e t e  t ime s t e p s  s o  t h a t  t h e  model w i l l  s o l v e  f o r  h ( f o r  s p e c i f i e d  va lues  

of s t o r a g e  c o e f f i c i e n t ,  S) i n  1960, according t o  equat ion  7-1. The d i f f e r -  

ences iL1 recharge  o r  d i scharge  can only a r i s e  i f  t h e r e  i s  a phys i ca l  change 

t h a t  has occurred i n  t h e  AGUA between 1936 and 1960 which a f f e c t s  t h e  water 

resource .  Examples of t h i s  would inc lude  new pumping w e l l s ,  a d d i t i o n a l  

wastewater e f f l u e n t ,  new i r r i g a t i o n  cana l s  and ope ra t ions ,  changes i n  stream 

flow due t o  r e s e r v o i r  opera t ion ,  e t c .  

A s i m i l a r  a n a l y s i s  would be  requi red  between 1960 and 1978 u n t i l  model para- 

meters  s a t i s f a c t o r i l y  reproduce t h e  water - tab le  l e v e l s  f o r  each of t h e  

designated y e a r s  a t  each node i n  t h e  system. 



Data Required for a Two-Dimensional Model of the Flow System. In the 

AGUA the data that must be known or estimated for a two-dimensional ground 

water model of the flow system (whether finite-difference or finite-element) 

would include the following: 

(1) A water-table level contour map for each of the years 1936, 1960 and 

1978 for the area included in the ground water study. 

(2) A map of transmissivity values for each of the years 1936, 1960, and 

1975. (It could be that changes in saturated thickness due to pro- 

gressive mining of the ground water body are insignificant when compared 

to the total saturated thickness. If this is the case throughout the 

aquifer system, then transmissivity values could be considered the same 

for each year without significant error). 

(3) A map of storage coefficient values. At present this coefficient for 

the AGUA has been estimated as 0.20 but a more detailed analysis of 

this parameter is appropriate to calibrate the model. An average value 

of the storage coefficient can be obtained in the vicinity of a pumped 

well by measuring in one or more observation wells the decline of head 

with time under the influence of a constant pumping rate. Estimates 

can be made when there are no observation wells and only measurements 

of the drawdowns in the abstraction well are available. (Rushton, 1978) 

In a two-dimensional ground water model developed for the Modesto, 

California area the storage coefficient was estimated by using values 

of specific yield associated with the size and distribution of granular 

material (Page, 1977) 

(4) Recharge from precipitation, wastewater and irrigation return. 

(5) Pumpage and its distribution in time and space. 

(6) Hydrologic parameters of any confining aquifer beds. 



(7) Hydrologic parameters of river beds (particularly vertical hydraulic 

conductivity) . 

(8) Stages and flows in rivers and canals. 

(9) Physical boundaries of aquifer system. 

(10) Evapotranspiration rates from soils, agricultural crops, phreatophytes, 

etc. 

The above data are placed at nodes in a particular grid system which is used 

for entering data in the flow equation. Additional data or better estimates 

of existing data would depend upon a sensitivity analysis (assuming that the 

model has been reasonably calibrated). A sensitivity analysis consists of 

determining model response when varying the magnitude of the model parameters 

by an amount proportional to the degree of uncertainty present in their 

determination. The degree of uncertainty can be determined statistically for 

some parameters and estimated for others. 

Sensitivity testing consists of varying a given parameter in the model and 

recording the changes in simulated head as a result of the change in 

parameter. During a test, all other parameters are held at their adopted 

value, If model results are highly sensitive to a particular parameter, 

then a special effort should be made to determine that parameter as accurately 

as possible in order to improve the predicting accuracy of the model. 

Three-Dimensional Model of the Flow System. With a three-dimensional - 
model, the physics of the flow process is thought of as being completely 

describable by movement in three directions, generally three orthogonal coor- 

dinate directions. (In the two-dimensional system discussed previously, the 

flow process was described utilizing the x and y-coordinate directions 

as shown in Figure 7-1. For the three-dimensional simulation a vertical 

Component is added). The equation of continuity now involves the determination 



of inf low and outf low through s i x  f a c e s  of a  prism ins t ead  of f o u r  a s  used 

i n  t h e  two-dimensional a n a l y s i s .  The r a t e  of change of water  i n  s t o r a g e  

i s  c a l c u l a t e d  i n  t h e  same manner a s  prev ious ly  descr ibed .  

For t h e  three-dimensional s imula t ion ,  a  g r i d  network i s  superimposed on t h e  

a r e a  under s tudy ,  and va lues  of hydraul ic  conduct iv i ty ,  hydraul ic  head and 

s p e c i f i c  s t o r a g e  a r e  i npu t  t o  t h e  model a t  each node i n  t h e  network ( s e e  

F igure  7-3). Boundary condi t ions ,  pumpage, recharge,  e t c .  must a l s o  be 

included.  

V e r t i c a l  flow and v a r i a t i o n  i n  permeabi l i ty  wi th  depth,  f o r  example, need no 

s p e c i a l  cons ide ra t ion ,  thus  g iv ing  t h e  model added f l e x i b i l i t y  over a  two- 

dimensional system. 

Seve ra l  f i n i t e - d i f f e r e n c e  schemes f o r  s imula t ion  of three-dimensional ground 

water  flow systems have been documented (Tresco t t ,  1976; T resco t t ,  e t  a l . ,  

1976).  The porous medium t o  be s imulated may be heterogeneous and a n i s t r o p i c  

and have i r r e g u l a r  boundaries.  The uppermost hydrologic  u n i t  ( aqu i f e r  system) 

may have a  f r e e  su r f ace .  S t r e s s  on t h e  system may be  i n  t h e  form of we l l  

d i scha rge  ( o r  recharge) ,  d i scharge  due t o  evaporat ion,  recharge  from p rec ip i -  

t a t i o n ,  e t c .  The model a l s o  permits  t h e  use  of v a r i a b l e  g r i d  spacing.  

Boundary cond i t i ons ,  i n i t i a l  condi t ions  and t h e  des ign  of t h e  f i n i t e -  

d i f f e r e n c e  g r i d  system a r e  q u i t e  s i m i l a r  t o  t h a t  f o r  t he  two-dimensional 

systems descr ibed  previous ly .  A disadvantage of a  three-dimensional s imula t ion  

i s  t h e  s i z e  requirement (core)  of t h e  computer f a c i l i t y  and t h e  computation 

time involved. Both a r e  p ropor t iona l  t o  t h e  number of nodes r ep re sen t ing  t h e  

porous medium. 

There have been succes s fu l  a p p l i c a t i o n s  of t h e  three-dimensional ground water  

model t o  f low systems s i m i l a r  t o  AGUA, (U.S. Geological Survey, 1978) and 

s e v e r a l  s t u d i e s  underway o r  proposed. 



Figure 7-3. Three- Dimensional Grid Network 
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The calibration process and the data required are similar to that for the 

two-dimensional system. The added dimension though requires that storage 

and hydraulic conductivity be determined with respect to depth and that the 

directional aspects of hydraulic conductivity be thoroughly analyzed. 

Digital Computer Modeling of Water Quality 

The quality of water, because of its significance relative to various uses, 

has become of increasing importance. More intense efforts are now required 

to protect water resources from contamination and to predict the effects of 

man's activities on the chemical, physical and bacterial characteristics of 

ground water. 

The capability to predict the movement of various constituents in flowing 

ground water can be of help in (Konikow, 1970) 

(1) Planning and designing projects to minimize ground water contamination. 

(2) Estimating spatial and temporal variations of concentrations of inorganic 

constituents. 

(3) Estimating the time of travel between a source of contamination and 

a discharge point such as a stream, spring or well. 

( 4 )  Designing an effective and efficient monitoring system. 

(5) Evaluating the physical and economic feasibility of alternative 

reclamation plans for removing contaminants from an aquifer and/or 

preventing the contaminants from spreading. 

The purpose of a digital computer quality model is to compute the concen- 

tration of a dissolved constituent in an aquifer at any specified place and 



t i m e .  Since t h e  movement of contaminants depends t o  a  l a r g e  degree on t h e  

v e l o c i t y  of ground water  flow, i t  i s  a  necessary p r e r e q u i s i t e  t h a t  t h e  flow 

system be s imula ted .  This ,  i n  essence,  r e q u i r e s  t h a t  a  two o r  three-dimen- 

s i o n a l  model of t h e  flow system be  c a l i b r a t e d  be fo re  a  r e l i a b l e  q u a l i t y  model 

can be developed. 

A model which inc ludes  q u a l i t y  cons ide ra t ions  must s o l v e  two simultaneous 

p a r t i a l  d i f f e r e n t i a l  equat ions.  One i s  t h e  equat ion  of flow (such a s  

equat ion  7-I) ,  from which ground water  v e l o c i t i e s  a r e  obta ined ,  and t h e  

second is  t h e  so lu t e - t r anspor t  equat ion,  desc r ib ing  t h e  concent ra t ion  of a  

d i s so lved  c o n s t i t u e n t  i n  t h e  ground water  (Konikow, 1970).  It i s  important 

t o  n o t e  t h a t  t h e  f i n i t e - d i f f e r e n c e  and f in i te -e lement  approximations of t h e  

f low equat ions  do no t  d i r e c t l y  y i e l d  ground water  v e l o c i t i e s .  The v e l o c i t i e s  

c a l c u l a t e d  by t h e s e  methods a r e  apparent  v e l o c i t i e s  of t h e  flow regime. Con- 

s i d e r  t h e  d ischarge ,  Q2, through t h e  c ros s - sec t iona l  a r e a ,  2, of F igure  7-1. 

The apparent  v e l o c i t y  is  t h e  d ischarge ,  Q divided by t h e  c ros s - sec t iona l  
2' 

a r e a ,  2.  The average seepage v e l o c i t i e s  ( v e l o c i t i e s  of flow through t h e  pore 

spaces  of t h e  a q u i f e r  m a t e r i a l )  necessary  i n  q u a l i t y  s imula t ions  a r e  deter-,  

mined by t ak ing  i n t o  account  t h e  e f f e c t i v e  p o r o s i t y  ( t h e  f r a c t i o n  of t h e  

g r o s s  c ros s - sec t iona l  a r e a  of t h e  s a t u r a t e d  e a r t h  m a t e r i a l  r ep re sen t ing  t h e  

p o r t i o n  through which flow occurs)  according t o  

- 2 where V,. i s  t h e  seepage v e l o c i t y  i n  t h e  < -d i r ec t ion  (LT ' ) 

X I  . i s  t h e  hydrau l i c  conduct iv i ty  t enso r  (LT-I)  
Z J  

n i s  t h e  e f f e c t i v e  p o r o s i t y  (dimensionless)  

Although i t  i s  not  necessary  t o  f u l l y  understand equat ion 7-9, what i s  

important  i s  t h a t  an  a d d i t i o n a l  phys i ca l  c h a r a c t e r i s t i c  of t h e  a q u i f e r ,  

e f f e c t i v e  po ros i ty ,  must be determined a t  each node i n  t h e  system when in-  

c lud ing  q u a l i t y  of ground water  i n  t h e  s imula t ion .  



The so lu t e - t r anspor t  equat ion,  gene ra l ly  used t o  desc r ibe  t r a n s p o r t  

and d i spe r s ion  of a  given d isso lved  chemical c o n s t i t u e n t  i n  flowing ground 

water ,  involves  t h e  fol lowing ccns ide ra t ions :  

(1) Dispersion c h a r a c t e r i s t i c s  of t h e  porous medium 

(2) E f f e c t s  of convect ive t r a n s p o r t  ( func t ion  of t h e  seepage v e l o c i t y )  

(3)  Concentrat ion of d i sso lved  chemicals a t  a  p a r t i c u l a r  source  of recharge  

o r  d i scharge  (such a s  we l l s ,  r i v e r s ,  cana ls ,  e t c . )  

( 4 )  A l l  chemical r e a c t i o n s  a f f e c t i n g  t h e  chemical c o n s t i t u e n t s  of i n t e r e s t  

I tem 4 above may be e l imina ted  from cons ide ra t ion  i n  t h e  c a s e  of a  con- 

s e r v a t i v e ,  nonreact ing c o n s t i t u e n t .  (Conservative c o n s t i t u e n t s  a r e  t hose  

considered t o  have l i t t l e  o r  no r e a c t i o n  t o  t h e i r  p resent  environment. 

Nonconservative c o n s t i t u e n t s ,  on t h e  o the r  hand, a r e  those  t h a t  r e a c t  t o  some 

degree w i t h  t h e  chemical composition of t h e  rocks w i t h  which they  have been 

i n  con tac t ,  t h e  temperature,  t h e  pressure ,  t h e  du ra t ion  of con tac t ,  t h e  

m a t e r i a l s  a l r eady  i n  s o l u t i o n ,  e t c . )  From t h e  above d i scuss ion ,  i t  is  

apparent  t h a t  a  s i g n i f i c a n t  amount of a d d i t i o n a l  d a t a  i s  r equ i r ed  when q u a l i t y  

cons ide ra t ions  a r e  included i n  t h e  modeling e f f o r t .  

Coupled computer programs a r e  a v a i l a b l e  t o  model both t h e  flow system and 

t r a n s p o r t  of chemical c o n s t i t u e n t s .  They a r e  a p p l i c a b l e  t o  unconfined, he t e r -  

ogenous and a n i s t r i p i c  a q u i f e r s  e i t h e r  i n  two o r  t h r e e  space  dimensions. 

Although t h e r e  have been s e v e r a l  succes s fu l  a p p l i c a t i o n s  involv ing  q u a l i t y ,  

a t  t h e  p re sen t  they a r e  r a t h e r  l imi t ed  i n  scope and s t i l l ,  i n  many r e s p e c t s ,  

i n  a  developmental s t a t e  (Konikow, 1970; Konikow, e t  a l . ,  1974).  

With r e spec t  t o  t h e  AGUA, it would appear t h a t  only a  few p o s s i b i l i t i e s  e x i s t  

i n  regard t o  q u a l i t y  modeling based on t h e  succes s fu l  a p p l i c a t i o n s  f o r  

somewhat s i m i l a r  bas ins .  (This is  not  t o  s ay  t h a t  succes s fu l  s imula t ions  of 

o t h e r  chemical c o n s t i t u e n t s  a r e  no t  poss ib l e  a t  p re sen t  bu t  t h a t  they  have 

not  been succes s fu l ly  appl ied  t o  a  degree t h a t  would warrant  p r a c t i c a l  



cons ide ra t ion ) .  Of those  succes s fu l  a p p l i c a t i o n s  (mostly two-dimensional 

systems),  t h e  assumption was made t h a t  no chemical r e a c t i o n s  occurred 

between t h e  chemical c o n s t i t u e n t  of i n t e r e s t  and t h e  a q u i f e r  o r  s o i l  m a t e r i a l s  

t h a t  would a f f e c t  t h e  concent ra t ion .  The so lu t e - t r anspor t  equat ion  i n  t h i s  

ca se  reduces t o  a  cons ide ra t ion  of d i spe r s ion ,  convec t ive  t r a n s p o r t  and t h e  

concent ra t ion  of d i sso lved  chemicals f o r  va r ious  sources  of recharge  o r  

d i scharge .  Although t h e  above assumption l i m i t s  t h e  q u a l i t y  a n a l y s i s  t o  

r e l a t i v e l y  conserva t ive  (nonreact ing)  chemical c o n s t i t u e n t s ,  reasonable  sim- 

u l a t i o n s  have been made f o r  low-level r a d i o a c t i v e  wastes  and d isso lved  s o l i d  

concent ra t ion  v a r i a t i o n s  (Konikow, 1970; Konikow, e t  a l . ,  1974).  Of t h e  

l a t t e r ,  an a n a l y s i s  of d i sso lved  s o l i d  concent ra t ions  o r  s a l i n i t y  i n c r e a s e s  

of t h e  ground water  resource  due t o  i r r i g a t i o n  p r a c t i c e s  could be  s imulated.  

I n  summary a  coupled ground water  f low q u a l i t y  model a s  a p p l i c a b l e  t o  AGUA 

would c a l c u l a t e  t h e  head d i s t r i b u t i o n  i n  t h e  a q u i f e r  a t  t h e  end of each 

computation per iod  (time s t e p ) .  The hydrau l i c  g r a d i e n t s  determined from 

t h e  new water  t a b l e  e l e v a t i o n s  would then  be used t o  compute seepage velo-  

c i t i e s  through t h e  a q u i f e r .  The changes i n  concen t r a t ion  due t o  d i s p e r s i o n  

and convect ive t r a n s p o r t  of t h e  chemical c o n s t i t u e n t s  during t h e  t ime s t e p  

would be computed next  based on ground water v e l o c i t i e s  and t h e  concen t r a t ion  

g rad ien t s  i n  t h e  a q u i f e r  a t  t h e  beginning of t h e  s imula t ion  per iod .  

S ince  two-dimensional flow and q u a l i t y  models appear reasonable  f o r  AGUA, 

t h e  fol.lowing remarks a r e  a p p l i c a b l e  t o  a  coupled two-dimensional flow- 

q u a l i t y  s imu la t ion  (assuming conserva t ive  chemical c o n s t i t u e n t s ) .  I n  addi- 

t i o n  t o  t h a t  d i scuss ion  made previous ly  f o r  modeling flow systems, and which 

a r e  a p p l i c a b l e  now, q u a l i t y  s imula t ion  involves  cons ide ra t ion  of many o t h e r  

condi . t ions.  Constant concent ra t ion  boundaries and t h e  concen t r a t ion  a t  each 

node i n  t h e  model must be s p e c i f i e d  f o r  those  t ime per iods  u t i l i z e d  i n  t h e  

c a l i b r a t i o n  process .  The f i n i t e - g r i d  system ( i f  used) developed must be 

based on both quan t i t y  and q u a l i t y  cons ide ra t ions .  C a l i b r a t i o n  of t h e  model 

now inc ludes  matching concen t r a t ion  changes over  t ime and space;  and t h e  d a t a  



requirements  f o r  i n c l u s i o n  of q u a l i t y  a r e ,  i n  genera l ,  noted below: 

(1) A map of e f f e c t i v e  po ros i ty  va lues  f o r  t h e  a r e a  included i n  t h e  ground 

water  s tudy  

( 2 )  A map of t h e  d i s p e r s i v i t y  c h a r a c t e r i s t i c s  of t h e  porous medium 

(3) Concentrat ions of t h e  chemical c o n s t i t u e n t s  of i n t e r e s t  i n  t h e  a q u i f e r  

f o r  each time per iod  used i n  t h e  c a l i b r a t i o n  process  

(4)  Concentrat ions of t h e  chemical c o n s t i t u e n t s  of i n t e r e s t  of a l l  app l i ed  

water  ( p r e c i p i t a t i o n ,  i r r i g a t i o n  water ,  s u r f a c e  water ,  wastewater 

e f f l u e n t ,  e t c .  ) 

Seve ra l  p o i n t s  should b e  emphasized a t  t h i s  t ime i n  regard t o  t h e  computer 

programs a v a i l a b l e  f o r  ground water modeling and which might be considered 

f o r  t h e  AGUA. 

The two-dimensional computer programs cons ider  flow i n  t h e  h o r i z o n t a l  p l ane  

only.  V e r t i c a l  flow o r  t h e  v e r t i c a l  component of flow cannot be handled 

d i r e c t l y .  Various modi f ica t ions  have been incorpora ted  i n  t h e  two-dimen- 

s i o n a l  systems t o  handle v e r t i c a l  components, bu t  t h e  added complicat ions 

make i.t d i f f i c u l t  t o  apply i n  t h e  r e a l  sense.  A t  p r e sen t  i t  would appear 

t h a t  a  two-dimensional model could adequately s imula te  t h e  ground water  f low 

system of t h e  AGUA. The one problem which might a r i s e  and which could 

in t roduce  s i g n i f i c a n t  e r r o r s  i n  t h e  c a l i b r a t i o n  process ,  i s  t h e  p o s s i b i l i t y  

t h a t  t h e  major t r a n s m i s s i v i t y  t enso r  (vec tor )  is i n c l i n e d  t o  t h e  p lane  con- 

t a i n i n g  t h e  g r i d  o r  element system. This s i t u a t i o n  could occur i f  s t r a t i f i e d  

l a y e r s  of v a l l e y - f i l l  m a t e r i a l  e x i s t  and i f  they  s l o p e  away from t h e  land 

s u r f a c e  r a t h e r  s i g n i f i c a n t l y .  I n  t h i s  ca se  t h e  va lue  of t r ansmis s iv i ty  i n  

t h e  two-dimensional system w i l l  have t o  be ad jus t ed  t o  compensate f o r  t h e  

v e r t i c a l  component and t h e  ad jus t ed  va lues  w i l l  no longer  r e f l e c t  t h e  r e a l  

system. I f  t h e  adjustment  is extreme then c a l i b r a t i o n  of t h e  model may be 

u n a t t a i n a b l e .  



Although f in i te -e lement  methods o f f e r  d i s t i n c t  advantages over f i n i t e -  

d i f f e r e n c e  methods, they a r e  a t  p resent  no t  w e l l  documented nor have they 

been widely appl ied  t o  ground water  systems s i m i l a r  t o  t h e  AGUA. The U.S. 

Geological  Survey i n  t h e i r  ground water modeling e f f o r t s  f o r  t h e  San 

Bernardino Valley Municipal Water D i s t r i c t ,  w i l l  u t i l i z e  both methods and 

compare t h e  r e s u l t s .  

I n  e i t h e r  t h e  two o r  t h r e e  di.mensiona1 system t h e  drawdown i n  an  ind iv idua l  

well i s  n o t  computed d i r e c t l y .  The models compute a hydrau l i c  head t h a t  

r ep re sen t s  t h e  average head over an  elemental  a r e a .  Various a n a l y t i c a l  

techniques can be used t o  compute t h e  approximate drawdown i n  a we l l  based 

on t h e  average hydraul ic  head (Tresco t t ,  e t  a l . ,  1976).  

I f  t h e  o b j e c t i v e  of a modeling e f f o r t  i n  t h e  AGUA i s  t o  s imu la t e  t h e  ground 

water  flow system; then a t  p re sen t  a f i n i t e - d i f f e r e n c e  two-dimensional model 

would appear t o  be  t h e  s imples t  model t h a t  w i l l  y i e l d  adequate  r e s u l t s .  I f  

q u a l i t y  i s  an ob jec t ive ,  then i t  must be remembered t h a t  t h e  f low system be 

reasonably s imulated before  a r e l i a b l e  q u a l i t y  model can be developed. 

A D i g i t a l  Computer Model f o r  t h e  AGUA 

Discussions i n  t h i s  s e c t i o n  support  t h e  conclusion t h a t  a two o r  t h r e e  

dimensional d i g i t a l  model of t h e  AGUA ground water  flow system could be 

developed succes s fu l ly .  Although the  a r e a  of t h e  ground water  bas in  t o  be  

s imulated would depend upon t h e  s p e c i f i c  o b j e c t i v e s  of a p a r t i c u l a r  s tudy ,  

i t  appears  t h a t  adequate  d a t a  could be assembled ( r ega rd l e s s  of t h e  s i z e  of 

t he  a r e a  w i t h i n  AGUA) t o  adequately c a l i b r a t e  a flow model.. I n  t h e  c a s e  of 

a coupled f low-qual i ty  model, i t ' s  devel.opment i s  l e s s  c e r t a i n  because of 

l i m i t e d  a v a i l a b i l i t y  of documented computer programs, t h e  i n a b i l i t y  a t  p resent  

t o  s imu la t e  r e a c t i v e  chemical c o n s t i t u e n t s ,  and only a smal l  number of p r a c t i -  

c a l  s i t u a t i o n s  t h a t  have been adequately s imulated.  It should be emphasized 

t h a t  be fo re  a r e l i a b l e  so lu t e - t r anspor t  model could be developed, a model of 



t h e  flow-system must be c a l i b r a t e d .  This  l a t t e r  f a c t  sugges ts  t h a t  a f low 

model could be undertaken be fo re  i nco rpora t ing  q u a l i t y  a spec t s .  I n  t h e  

t i m e  t h a t  i t  might t ake  t o  c a l i b r a t e  t h e  flow model, advances i n  t h e  f i e l d  

of q u a l i t y  s imula t ion  may be such a s  t o  warrant  i ts  cons ide ra t ion  a t  a f u t u r e  

d a t e .  With t h i s  i n  mind a computer program should be  s e l e c t e d  t h a t  is  adap- 

t a b l e  t o  q u a l i t y  a s  w e l l  a s  flow cons ide ra t ions .  

Reasons f o r  Modeling. Severa l  reasons  f o r  u t i l i z i n g  a d i g i t a l  computer 

model i n  t h e  AGUA a r e  discussed below and provide  t h e  b a s i s  f o r  judging t h e  

u t i l i t y  of undertaking a modeling e f f o r t .  

(1) Determine q u a n t i t a t i v e l y  and s p a t i a l l y  recharge  due t o  i r r i g a t i o n  cana l s ,  

wastewater t rea tment  f a c i l i t i e s ,  s t reams,  e t c .  

(2) Evaluate  e f f e c t i v e n e s s  of bas in  management p l ans  on t h e  water  r e sou rce  

both q u a n t i t a t i v e l y  and q u a l i . t a t i v e l y  

(3) I n v e s t i g a t e  impacts of wastewater d i scharges  on t h e  system 

(4) Study e f f e c t i v e n e s s  of replenishment programs 

(5) Evaluate  pumping programs 

a.  Economic optimums 

b. Hydraulic impacts 

( 6 )  Determine s e n s i t i v i t y  of assumptions i n  both modeling techniques and 

inpu t  d a t a  

(7) Help design monitor ing and s u r v e i l l a n c e  programs 

(8) Learn more about t h e  behavior of t h e  ground water  bas in  , and 

(9) Encourage a b u s i n e s s l i k e  approach t o  development and management of water  

resource  d a t a .  



I n  ana lyz ing  reasons f o r  cons ider ing  a d i g i t a l  computer model, i t  should 

be noted t h a t  t h e  d i g i t a l  model has  t h e  c a p a b i l i t y  of desc r ib ing  t h e  

t o t a l  system i n  q u a n t i t a t i v e  terms; and i n t e r r e l a t i o n s h i p s  between components 

of t h e  system and s t r e s s e s  on t h e  system can be considered s imultaneously.  

The r e a l  p o t e n t i a l  of a model of t h i s  type  a r i s e s  when a ground water  f low 

system has been reasonably c a l i b r a t e d  and v e r i f i e d .  A t  t h i s  po in t  i n  t ime 

t h e  model can be  u t i l i z e d  f o r  r a p i d  eva lua t ion  of m u l t i p l e  a l t e r n a t i v e s  and 

poss ib ly  coupled w i t h  q u a l i t y ,  economic and r a in fa l l - runof f  models. 

Costs f o r  Developing a D i g i t a l  Computer Model. S ince  t h e  o b j e c t i v e s  of 

any p a r t i c u l a r  modeling e f f o r t  f o r  t h e  AGUA a r e ,  i n  gene ra l ,  no t  known, 

d e f i n i t i v e  c o s t  e s t ima te s  a r e  n o t  poss ib l e .  It is  poss ib l e ,  though, t o  

r e l a t e  c o s t s  of o t h e r  ground water  modeling e f f o r t s  i n  s i m i l a r  bas ins  t o  

those  t h a t  might be contemplated f o r  t h e  AGUA. 

A ground water  modeling e f f o r t  ( t o  p r e d i c t  ground water  l e v e l s )  developed 

by t h e  Kern County Water Agency i n  coopera t ion  wi th  t h e  C a l i f o r n i a  Department 

of Water Resources began i n  A p r i l  of 1967 (Kern County Water Agency, 1974, 

1974 and 1977).  The maximum o b l i g a t i o n  of t h e  water  agency under t h e  i n i t i a l  

f i v e  year  agreement was $250,000. Included w i t h i n  t h e  o b l i g a t i o n  was t h e  

s t i p u l a t i o n  t o  provide personnel  necessary  t o  a c q u i r e  and t a b u l a t e  d a t a  

r e l a t i v e  t o  land and w a t e r  use  dur ing  h i s t o r i c  t imes (approximately 115 man-, 

months) and t o  provide  computer s e r v i c e s .  The model (a  modi f ica t ion  of a 

two-dimensional link-node computer program developed by t h e  C a l i f o r n i a  

Department of Water Resources) s imulated a f low system c o n s i s t i n g  of confined 

and unconfined a q u i f e r s  covering approximately 2000 square  mi les .  Each 

elemental  a r e a  of t h e  polygonal g r i d  system contained approximately 9 square  

m i l e s .  

The C i ty  of Modesto i n  a 50-50 c o s t  sha r ing  e f f o r t  w i th  t h e  U.S. Geological  

Survey con t r ac t ed  t o  develop a two-dimensional ( f i n i t e - d i f f e r e n c e )  ground 

water  model of t h e  unconfined a q u i f e r  i n  and near  t h e  Ci ty  of Modesto, 



C a l i f o r n i a  (Page, 1977).  The model encompasses about 542 square  m i l e s  u t i l -  

i z i n g  a  v a r i a b l e  r ec t angu la r  g r i d  system. The C i ty ' s  es t imated c o s t  t o  d a t e  

i s  approximately $200,000 which inc ludes  personnel  necessary f o r  t h e  d a t a  

c o l l e c t i o n  e f f o r t .  The model i s  expected t o  be a v a i l a b l e  a s  a  management 

t o o l  around 1979-1980 a f t e r  a d d i t i o n a l  d a t a  c o l l e c t i o n  and ref inements  t o  t h e  

e x i s t i n g  model a r e  made. (The e f f o r t  w i l l  t ake  about seven yea r s  w i th  a  t o t a l  

c o s t  t o  t h e  c i t y  of about $250,000). 

The San Francisco D i s t r i c t ,  U.S. Army Corps of Engineers,  con t r ac t ed  w i t h  t h e  

U.S. Geological  Survey t o  develop a  ground water  model f o r  t h e  S a l i n a s  Valley 

a r e a  of C a l i f o r n i a  (U.S. Geological  Survey, 1978). The a r e a  of i n t e r e s t  was 

approximately 600 square  m i l e s  and c o n s i s t s  of confined and unconfined con- 

d i t i o n s  w i t h i n  t h e  a q u i f e r  system. Fini te-element  techniques a r e  used t o  

model t h e  a q u i f e r  i n  both two and t h r e e  space dimensions. The c o n t r a c t  a l s o  

included t h e  development of a  ground water  q u a l i t y  model ( a  coupled flow- 

q u a l i t y  model) t o  s imu la t e  t h e  t r a n s p o r t  of conserva t ive  chemical c o n s t i t u e n t s  

and t e s t s  of f u t u r e  a l t e r n a t i v e s  involv ing  both flow and q u a l i t y .  The time 

involved w a s  es t imated a s  t h r e e  yea r s  w i th  a  t o t a l  c o s t  t o  t h e  San Francisco 

D i s t r i c t  of $300,000. 

Although t h e  a r e a  t h a t  a  ground water  model might encompass i n  t h e  AGUA i s  

not  known i t  would probably be  much l e s s  than  t h e  s tudy  l i m i t s .  I f  one 

extends t h e  i d e a l i z e d  boundaries of t h e  a q u i f e r  a s  def ined  i n  prev ious  s t u d i e s  

(Reeder, 1967) t h e  a r e a  would probably be  about 1400 square  mi l e s .  Then 

depending on t h e  i n t e r e s t s  of a p a r t i c u l a r  modeling e f f o r t  (whether t o  de t e r -  

mine t h e  e f f e c t s  of pumping on Rio Grande flows, q u a l i t y  of water  i n  t h e  

immediate v i c i n i t y  of t h e  Rio Grande, e t c . ) ,  t h e  a r e a  covered would s t i l l  be  

s i g n i f i c a n t l y  l e s s  than  t h a t .  

An a n a l y s i s  of t h e  c o s t s  of s i m i l a r  s t u d i e s  inc luding  those  previous ly  c i t e d ,  

i n d i c a t e s  t h a t  t h e  c o s t  of d a t a  c o l l e c t i o n ,  a n a l y s i s  and i n t e r p r e t a t i o n  i s  

about  40 percent  of t h e  c o s t  a s soc i a t ed  wi th  t h e  development of t h e  ground 



water flow model. (Of course, the data collection effort is dependent on 

the difficulties involved in calibration and on the foll.owing sensitivity 

analyses). A summary of estimated costs and times (which might be over- 

lapping) associated with a ground water mdoeling effort in the AGUA is given 

below: 

Time 
(year) Cost 

(1) Data collection, analysis and 
interpretation 

(2) Development of ground water flow model 

Two-dimensional (Finite-difference 
or finite-element) 2-4 100,000 

$140,000 

The total cost of $140,000 represents the cost of developing a flow model 

adequate for general planning purposes (assuming a comphter program can be 

acquired from some agency or organization). It is expected that continued 

data collecti.on and refinement of the model will be necessary as various sen- 

siti.vity tests are made and new data becomes available. 

If water quality is a consideration, then the total cost of a model is expected 

to increase significantly. A summary of the estimated total cost and time 

associated with a coupled ground water flow and quality model are indicated -- 
below : 

Time 
(year) - Cost 

(I) Data collection, analysis and 
interpretation 

(2) Development of a ground water flow and 
quality model (conservative chemical 
constituents) 

Two-dimensional (Finite-difference 
or finite-element) 



~ l t h o u g h  t h e  c o s t s  should be viewed as pre l iminary  i n  na tu re ,  t h e r e  is  one 

cons ide ra t ion  t h a t  i s  important  t o  note .  The U.S. Geological  Survey can 

e n t e r  i n t o  coopera t ive  (50-50 c o s t  sha r ing )  agreements wi th  l o c a l  agencies  

(such a s  c i t i e s ,  water  d i s t r i c t s ,  e t c . )  t o  model t h e  ground water  b a s i n s  of 

i n t e r e s t .  For an  agency contemplat ing modeling of t h e  AGUA a q u i f e r  system, 

t h e  coopera t ive  e f f o r t  should be  considered no t  on ly  i n  regard  t o  funding 

bu t  a l s o  i n  regard  t o  t h e  t e c h n i c a l  c a p a b i l i t i e s  of t h e  U.S. Geological  

Survey i n  t h e  f i e l d  of ground water  modeling. 

Guide l ines  f o r  t h e  Development of a Ground Water Model. The fol lowing 

a r e  important cons ide ra t ions  f o r  determining when a d i g i t a l  computer model- 

ing  e f f o r t  should be  i n i t i a t e d .  

(1) Evidence of t h e  need f o r  e f f e c t i v e  ground water  management. It is  

advantageous t o  begin  d a t a  c o l l e c t i o n  and model development be fo re  

c r i t i c a l  problems develop s o  t h a t  information provided by a model can 

a s s i s t  i n  prevent ing such problems. A proper ly  c a l i b r a t e d  and v e r i f i e d  

model can be  an  important  t o o l  i n  e f f e c t i v e  ground water  management. 

I n  s i t u a t i o n s  where problems have a l r e a d y  developed a model can be 

e f f e c t i v e  i n  ana lyz ing  t h e  problems, explor ing  a l t e r n a t i v e  s o l u t i o n s ,  

and i n  minimizing t h e  s e v e r i t y  of such problems. 

(2) An i n t e r e s t e d ,  capable,  r e spons ib l e  pub l i c  agency and s t a f f .  A good 

example of t h i s  i s  t h e  San Bernardino Valley Minic ipa l  Water D i s t r i c t  

(San Bernardino, C a l i f o r n i a ) .  Although t h i s  agency was one of s e v e r a l  

agencies  ope ra t ing  w i t h i n  t h e  b a s i n  and without  complete l e g a l  j u r i s -  

d i c t i o n  over t h e  a c t i v i t i e s  of t h e  o t h e r  agencies ,  they  f e l t  i t  was 

s t i l l  i n  t h e i r  b e s t  i n t e r e s t s  and i n  t h e  b e s t s  i n t e r e s t s  of a l l  con- 

cerned t o  develop a ground water  model and t o  dev i se  a d a t a  c o l l e c t i o n  

and management system f o r  t h e  e n t i r e  bas in .  

(3) An adequate  budget and t i m e  schedule.  



An i n v e s t i g a t i o n  of numerous ground water  model s t u d i e s  involving 

unconfined a q u i f e r  systems somewhat comparable i n  s i z e  t o  t h e  AGUA, 

sugges ts  a range of c o s t s  between $1.50,000 t o  $400,000 depending on 

t h e  complexity of t h e  model and t h e  d a t a  a v a i l a b l e .  I n  most of those  

s t u d i e s  a n  i n t e n s i v e  d a t a  c o l l e c t i o n  e f f o r t  spanned two t o  f o u r  yea r s .  

(4) A v a i l a b i l i t y  and use  of t h e  proper technology 

Computer programs a r e  a v a i l a b l e  f o r  modeling ground water  svstems. 

For two and t h r e e  space dimensions ground water  f low systems have been 

modeled wi th  c o n s i s t e n t l y  s a t i s f a c t o r y  r e s u l t s  over t h e  l a s t  decade 

(P inder ,  e t  a l . ,  1968; Kern County Water Agency, 1977; Konikow, e t  a l . ,  

1974).  The a b i l i t y  t o  model q u a l i t y  of ground water ( t h e  capac i ty  t o  

p r e d i c t  t h e  movement and concent ra t ion  of d i sso lved  chemicals) is  s t i l l  

i n  a t r a n s i t i o n a l  s t age .  Although t h e r e  have been numerous s t u d i e s  i n  

which t h e  movement and concent ra t ion  of conserva t ive  chemicals (non- 

r e a c t i n g ) ,  p a r t i c u l a r l y  d isso lved  s o l i d s ,  have been s a t i s f a c t o r i l y  

s imula ted  (Konikow, e t  a l . ,  1974) t h e  c a p a b i l i t y  t o  model t h e  movement 

of organic  o r  nonconservat ive ( r e a ~ t ~ ~ e )  chemicals is  s t i l l  v e r y  much 

i n  t h e  developmental s t a g e  (Konikow, 1970). I n  t h e  c a s e  of combined 

models, such as coupled ground water/economic systems and coupled 

ground water I ra infa l l - runoff  models, they a r e  s t i l l  i n  t h e  developmental and 

v e r i f i c a t i o n  s t a g e s .  

(5) S u f f i c i e n t  d a t a  and information 

Ground water  modeling e f f o r t s  t o  d a t e  involve  a n  a n a l y s i s  ( c o l l e c t i o n  

and i n t e r p r e t a t i o n )  of e x i s t i n g  d a t a ,  t h e  c o l l e c t i o n  of new d a t a ,  and 

d a t a  management programs. The same procedure i s  expected f o r  t h e  AGUA. 

( I t  should be noted t h a t  one of t h e  o b j e c t i v e s  of developing a model is 

t o  p inpo in t  a r e a s  where a d d i t i o n a l  information is requi red  and based on 

a s e n s i t i v i t y  a n a l y s i s ,  t o  determine which d a t a  needs t o  be determined 

more a c c u r a t e l y ) .  
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