

Techniques for Real-Time Operation of Flood Control Reservoirs in the Merrimack River Basin

November 1975

F	REPORT DO	CUMENTATIC	ON PAGE			Form Approved OMB No. 0704-0188
existing data sources, ga burden estimate or any o	thering and maintaini ther aspect of this co ations Directorate (07 r failing to comply with	ng the data needed, and llection of information, in 04-0188). Respondents n a collection of informati	I completing and revi cluding suggestions should be aware that ion if it does not displ	ewing for red at notw	the collection of lucing this burde ithstanding any	ng the time for reviewing instructions, searching f information. Send comments regarding this en, to the Department of Defense, Executive other provision of law, no person shall be MB control number.
1. REPORT DATE (DD-1 November 1975	ИМ-ҮҮҮҮ)	2. REPORT TYPE Technical Paper			3. DATES CO	OVERED (From - To)
4. TITLE AND SUBTITL			D	5a. (CONTRACT NU	JMBER
Techniques for Rea the Merrimack Riv	-	n of Flood Control	Reservoirs in	5b. (GRANT NUMB	ER
				5c.	PROGRAM ELI	EMENT NUMBER
6. AUTHOR(S) Bill S. Eichert, Joh	n C. Peters, Arth	ur F. Pabst			PROJECT NUN	
	,			5e. ⁻	TASK NUMBER	र
				5F.	WORK UNIT N	UMBER
7. PERFORMING ORG. US Army Corps of Institute for Water Hydrologic Engine 609 Second Street Davis, CA 95616-	Engineers Resources ering Center (HI				8. perform TP-45	ING ORGANIZATION REPORT NUMBER
9. SPONSORING/MON	TORING AGENCY N	AME(S) AND ADDRES	S(ES)		10. SPONSO	R/ MONITOR'S ACRONYM(S)
					11. SPONSO	R/ MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION / AV Approved for public	c release; distrib					
13. SUPPLEMENTARY Presented at the Hy 1975, Davis, Califo	drologic Engine	ering Center, Semi	nar on Real-Tim	ne Wa	ater Control	Management, 17-19 November
in the Merrimack F streamflow forecas Conservation Syste terminals to enable	tiver basin in cer ting models, (b) ms, to develop d analysis of alter	atral New England application of com- ecision-criteria for native forecast and	are described. T puter program H system operatio /or decision crite	Fhe te HEC-:	echniques in 5C, Simulati a real-time n both batch	ng the five flood control reservoirs clude (a) application of alternative ion of Flood Control and basis, and (c) use of computer mode and interactive applications.
applications, comp 16. SECURITY CLASSI	uter models FICATION OF:		17. LIMITATION		18. NUMBER	19a. NAME OF RESPONSIBLE PERSON
a. REPORT U	b. ABSTRACT U	c. THIS PAGE U	OF ABSTRACT		OF PAGES	19b. TELEPHONE NUMBER
			UU		52	
						Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39-18

Techniques for Real-Time Operation of Flood Control Reservoirs in the Merrimack River Basin

November 1975

US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center 609 Second Street Davis, CA 95616

(530) 756-1104 (530) 756-8250 FAX www.hec.usace.army.mil Papers in this series have resulted from technical activities of the Hydrologic Engineering Center. Versions of some of these have been published in technical journals or in conference proceedings. The purpose of this series is to make the information available for use in the Center's training program and for distribution with the Corps of Engineers.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

TECHNIQUES FOR REAL-TIME OPERATION OF FLOOD CONTROL RESERVOIRS IN THE MERRIMACK RIVER BASIN

by

Bill S. Eichert,¹ John C. Peters,² and Arthur F. Pabst³

INTRODUCTION

This paper contains a description of the techniques that are under development at The Hydrologic Engineering Center for providing decision criteria on a real-time basis for operating the five flood control reservoirs in the Merrimack River basin. Techniques under development include:

a. testing of alternative streamflow forecasting models

b. application of computer program HEC-5C, Simulation of Flood Control and Conservation Systems, to develop decision-criteria for system operation on a real-time basis

c. use of computer terminals to enable analysis of alternative forecast and/or decision criteria in both batch mode and interactive applications.

Each of these techniques will be discussed following a brief description of characteristics of the basin, reservoir system and automatic data collection network.

CHARACTERISTICS OF BASIN AND RESERVOIR SYSTEM

The Merrimack River basin is located in east central New England and extends from the White Mountain area of New Hampshire southward into the northeast portion of Massachusetts. The basin is 134 miles long north to south and up to 68 miles wide east to west, the drainage area is about 5,000 square miles, 3,800 of which are in New Hampshire.

The average annual precipitation for the Merrimack River basin varies from about 60 inches in the headwaters to about 40 inches in the southern section, with a basin average of about 45 inches. Precipitation is fairly evenly distributed throughout the year. During winter months the precipitation is mostly in the form of snow, with amounts averaging 70 to 100 inches or more in the north to 45 to 60 inches in the southern areas.

¹Director, The Hydrologic Engineering Center

²Chief, Training & Methods Branch, The Hydrologic Engineering Center ³Hydraulic Engineer, The Hydrologic Engineering Center

⁴Presented at The Hydrologic Engineering Center, Seminar on Real-Time Water Control Management, 17-19 November 1975 at Davis, California.

Floods can occur during any season. The two greatest basin-wide floods occurred in March 1936 and September 1938. The 1936 event resulted from two periods of heavy rainfall about a week apart associated with significant snowmelt. The 1938 flood resulted from intense hurricane rainfall which occurred after a week of almost continual rain.

The reservoir system in the Merrimack basin consists of five reservoirs, all of which are operated almost exclusively for flood control. Drainage areas and flood control storage capacities for the reservoirs are as follows:

Reservoir	Drainage Areasqmi	Flood Control ac. ft.	Storage in.
Franklin Falls	1,000	150,600	2.8
Blackwater	128	46,000	6.7
Hopkinton	382	70,100	6.5
Everett	64	85,500/	0.0
MacDowell	44	12,800	5.4

A schematic diagram of the reservoir system is shown in figure 1. The Hopkinton and Everett reservoirs are joined by a canal to enable diversion from Hopkinton to Everett during flood events. Franklin Falls reservoir has a relatively limited flood control capacity because it was originally anticipated that another reservoir would be developed upstream.

Population centers in the basin are located, for the most part, along the main stem of the Merrimack River. For computer simulation runs described in this paper, the locations of Franklin Junction, Concord, Manchester and Lowell were treated as damage centers (see Figure 1). The first three centers are in New Hampshire; Lowell is in northern Massachusetts. A major proportion of the total damages occurs at Lowell. The travel time from Franklin Falls to Lowell is about 30 hours.

PRESENT REGULATION PROCEDURES

Because all reservoirs except Franklin Falls contain about 6 inches of flood control storage, a large flood or a series of smaller ones can be stored in four of the reservoirs without spilling. Consequently, current operation procedures require that the outlet works of MacDowell, Blackwater, Hopkinton, and Everett reservoirs be shut off early in a flood event. Because of the limited storage capacity at Franklin Falls, flows are passed through this reservoir up to the channel capacity of 18,000 cfs. Inflows to Franklin Falls are estimated from reservoir rate-of-rise curves; future inflows are based on flows at an upstream location called Plymouth. Once flows at Plymouth have peaked, a release rate for Franklin Falls is established based on the estimated flood volume.

2

Paper 12

DATA COLLECTION SYSTEM

The New England Division has established a comprehensive data collection network in the Merrimack River basin as well as in several other New England basins. An automatic radio reporting network supplies information on rainfall and river stage directly to a computer in the Control Center in the Division office in Waltham, Massachusetts. Under computer-programmed control, reporting stations can be interrogated singly or as a group at automatically selected time intervals ranging from six hour to one hour periods based on the amount of river flow or rainfall. At present, river stage is reported from ten locations and precipitation from three locations. Also the New England Division is assessing the use of orbiting satellites for relaying information from data collection platforms. Four of these platforms are currently in use in the Merrimack basin.

FORECASTING TECHNIQUES

Streamflow forecasting may be accomplished using a variety of techniques. A relatively simple technique would involve relating the stage at a downstream location to the stage at some earlier time at an upstream station. A relatively sophisticated technique would involve modeling the precipitationrunoff process continuously involving all aspects of the hydrologic cycle deemed significant. Accompanying this range of forecasting sophistication is a range of required data. A simple gage relationship requires only stage or discharge as a function of time. A precipitation-runoff model may require precipitation, water equivalent of a snow pack, air temperature, dewpoint, wind velocity, insolation, albedo, soil moisture, frost depth as well as streamflow discharge. Forecasting by a simple model is severely limited in its capability to provide information very far into the future. The sophisticated precipitation-runoff model may utilize forecasted meteorological conditions and provide forecasts of runoff as far as is reasonably possible into the future.

The selection of a particular technique will depend on a realistic assessment of the actual data available, the accuracies of the forecast method, and the use that will be made of the forecasted streamflows.

Streamflow Extrapolation Forecasting

A method for making relatively short-term forecasts that utilizes a minimum amount of data would be a useful tool to complement a more complete precipitation runoff model. Initial efforts were directed to development of a simple forecast tool that would require only observed streamflow at various locations in the basin. The technique developed is termed Streamflow Extrapolation Forecasting. In essence it is no more than taking observed flows at stream gaging locations, extending them into the future by gage relationships, recessing the flows from that point on, and routing them down the basin. This technique will be described by use of a simple illustration. Given only the observed flows at stream gage locations A, B, C and D, (Figure 2a) up until the current time, the problem is to estimate the future flows at sites A and B.

The following series of steps would be taken:

(1) Extend the current flows at A, 3-hours into the future based on the immediately preceding flows at A and nearby station C. (Figure 2b)

(2) Recess this hydrograph at A for flows beyond 3 hours into the future. This will provide the forecasted flows at A. (Figure 2b)

(3) Route the forecasted flows at A down to B. (Figure 2c)

(4) Extend the current flows at B, 6-hours into the future based on the immediately preceding flows at B and nearby station D. (Figure 2c)

(5) Subtract the routed flows from A from the extended flows at B yielding incremental local flows between A and B. (Figure 2d)

(6) Recess the incremental local flow beyond 6-hours into the future. This will be the forecasted incremental flows between A and B. (Figure 2d)

(7) Add these incremental flows to the flows routed down from above yielding the forecasted flows at B. (Figure 2e)

(8) Continue downstream as required using the preceding steps.

The gage relationships used in steps 1 and 4, to extend flows at a given station, should be developed from historical data. Multiple regression analysis may readily be used to establish these relationships. A future flow at station A may be correlated to current and past flows at stations A and C. The time span for extending flows (i.e., 3 hours, 6 hours) will depend on the size, shape and other characteristics of the basins.

Such a procedure which assumes little or no future precipitation or snowmelt input, yields the minimum future flows in the river system. If future additional precipitation or snowmelt occur the actual flows will exceed the forecasted flows.

Such a forecast can provide a firm basis for establishing that a reservoir will surely fill. It may not give a long lead time as to when a reservoir will fill; but it is free from the uncertainities of having to assess average basin precipitation with sparse data, calculations of snowmelt, or of establishing losses for frozen or partly frozen ground.

The forecasted discharges are interfaced to the reservoir operation model through a data file. This allows the forecast model to run independently of the operation model. As a separate program the forecast can be made once and then several operation policies may be evaluated using the discharges. It is not necessary to fit both the forecast and operation models in computer core at the same time, or to resort to overlays. Any other forecast technique may be used by simply having the alternative model write the appropriately formatted discharge file.

Evaluation of Forecasts

In order to choose between alternative forecasting techniques it is necessary to establish a measure of forecast accuracy. The measure should reflect the error over a certain finite period into the future, recognizing that the error over such a span will change as one proceeds through the event. In addition it would be desirable to aggregate the error over a series of several floods rather than to accept a given technique only on its reproduction of one event.

When historical data are available the Streamflow Extrapolation Forecasting program will provide information on the relative error (eq. 1) and the standard error (eq. 2) over a future time span selected by the user

$$RELERR_{i} = \frac{\begin{pmatrix} i+\ell \\ \Sigma \\ j=i+1 \end{pmatrix}}{\begin{pmatrix} q_{j} - QOBS_{j} \\ QOBS_{j} \end{pmatrix}} eq. 1$$

$$STOERR_{i} = \sqrt{\frac{j+\ell \\ \Sigma \\ j=i+1 \end{pmatrix}}{\ell} eq. 2$$

where Q is forecast discharge QOBS is observed discharge i is current time index

l is future span length of forecast

5

Such errors can be evaluated at each time period as one steps through the event. The relative errors for the 1936 flood for the Merrimack River at Lowell, MA for two forecast conditions are shown in figure 3. Beneath the actual cumulative local flow hydrograph are shown the errors in a forecast based only on recessed flows at upstream locations, and the errors when station flows are first extended into the future by gage relationships and then recessed. Relatively good agreement was obtained for short term forecasts using this technique.

Another indication of the adequacy of the forecast can be measured in terms of the efficiency of system operation by comparing the results of operation of historical floods with and without forecasts. One measure of this efficiency that may be useful for flood control operation is a comparison of expected (or average) annual flood damages (AAD) using historical flows and forecasted flows. Such a comparison is made in Table 2 where the average annual damage (AAD) for run F-1 is about the same for locations 8, 9, and 10 as the runs using measured streamflow (runs J and 17). The AAD for location 11 is considerably higher for run F-1 than for either run J or 17 indicating additional improvement in forecasting procedures is needed for the location that is substantially further downstream.

RESERVOIR OPERATIONAL MODEL

Basic Objectives of Model

The HEC-5C program was initially developed to assist in planning studies required for the evaluation of proposed changes to a system and to assist in sizing the system components for flood control and conservation requirements. However, the program can also be used in studies made immediately after a flood to calculate the preproject conditions and to show the effects of existing and/or proposed reservoirs on flows and damages in the system. Special features have been added to the program to make it useful for real-time applications. The program logic is designed to minimize flooding as much as possible and yet empty the system as quickly as possible while maintaining the proper balance of flood control storage among the reservoirs.

The above objectives are accomplished by simulating the sequential operation of various system components of any configuration for short interval historical or synthetic floods or for long duration nonflood periods, or for combinations of the two. Specifically the program may be used to determine:

a. Releases from reservoirs during flood emergencies based on local flow forecasts furnished to the program.

b. The evaluation of operational criteria for both flood control and conservation for a system of reservoirs.

c. The influence of a system of reservoirs, or other structures on the spatial and temporal distribution of runoff in a basin.

d. The expected (or average) annual flood damages (AAD), system costs, and excess flood benefits over costs.

e. Flood control and conservation (including hydropower) storage requirements of each reservoir in the system.

f. The determination of the system of existing and proposed reservoirs or other structural or nonstructural alternatives that results in the maximum net benefit for flood control for the system by making simulation runs for selected alternative systems.

7

Basic Data Requirements

The input data requirements for any basin for HEC-5C can be minimal for preliminary planning studies or detailed for modeling existing systems. The minimum data requirements are as follows:

a. General Information (4 cards)

(1) Title cards for job (3 cards)

(2) Six miscellaneous items including the number of periods of flow data, time interval of flows, etc.

b. Reservoir Data (4 cards per reservoir)

(1) Reservoir capacities for top of conservation and top of flood control elevations.

(2) Downstream control points for which reservoir is to be operated.

(3) Reservoir storage/outflow tables.

c. Control Point (including reservoirs) Data (3 cards per control point)

(1) Identification number and title

(2) Operating channel capacity

(3) Channel routing criteria (Muskingum, modified Puls, Working R/D, Tatum, or Straddle-Stagger)

d. Flow Data

Inflow or local flow data (or observed flows and reservoir releases) for each control point for one or more historical (including forecasted flows) or synthetic floods.

Optional data on flood damages may also be used by inputting peak discharge-damage data where flood damages are directly related to maximum stage (or discharge) obtained during a flood event.

General Operational Criteria for Model

a. Reservoirs are operated to satisfy constraints at individual reservoirs, to maintain specified flows at downstream control points, and to keep the system in balance. Constraints at individual reservoirs are as follows:

(1) When the level of a reservoir is between the top of conservation pool and the top of flood pool, releases are made to attempt to draw the reservoir to the top of conservation pool without exceeding the designated channel capacity at the reservoir or at downstream control points for which the reservoir is being operated.

(2) Releases are made equal to or greater than the minimum <u>desired</u> flows when the reservoir storage is greater than the top of buffer storage, and or equal to the <u>required</u> flow if between level one (top of inactive pool) and the top of buffer pool. No releases are made when the reservoir is below level one. Releases calculated for hydropower requirements* will override minimum flows if they are greater than the controlling desired or required flows.

(3) Releases are made equal to or less than the designated channel capacity at the reservoir until the top of flood pool is exceeded, then all excess flood water is dumped if sufficient outlet capacity is available. If insufficient capacity exists, a surcharge routing is made. Input options permit channel capacity releases (or greater) to be made prior to the time that the reservoir level reaches the top of the flood pool if forecasted inflows are excessive.

(4) The reservoir release is never greater (or less) than the previous period release plus (or minus) a percentage of the channel capacity at the dam site unless the reservoir is in surcharge operation.

b. Operational criteria for specified downstream control points are as follows:

(1) Releases are not generally made (as long as flood storage remains) which would contribute to flooding at one or more specified downstream locations during a predetermined number of future periods except to satisfy minimum flow and rate-of-change of release criteria. The number of future periods considered is the lesser of the number of reservoir release routing coefficients or the number of local flow forecast periods specified on input data.

(2) Releases are made, where possible, to exactly maintain downstream flows at channel capacity (for flood operation) or for minimum desired or required flows (for conservation operation). In making a release determination, local (intervening area) flows can be multiplied by a contingency allowance (greater than 1 for flood control and less than 1 for conservation) to account for uncertainty in forecasting these flows.

*No Corps hydropower projects are in the Merrimack River Basin.

c. Operational criteria for keeping a reservoir system in balance are as follows:

(1) Where two or more reservoirs are in parallel operation above a common control point, the reservoir that is at the highest index level, assuming no releases for the current time period, will be operated first to try to increase the flows in the downstream channel to the target flow. Then the remaining reservoirs will be operated in a priority established by index levels to attempt to fill any remaining space in the downstream channel without causing flooding during any of a specified number of future periods.

(2) If one of two parallel reservoirs has one or more reservoirs upstream whose storage should be considered in determining the priority of releases from the two parallel reservoirs, then an equivalent index level is determined for the tandem reservoirs based on the combined storage in the tandem reservoirs.

(3) If two reservoirs are in tandem (one above the other), the upstream reservoir can be operated for control points between the two reservoirs. In addition, when the downstream reservoir is being operated for control points, an attempt is made to bring the upper reservoir to the same index level as the lower reservoir based on index levels at the end of the previous time period.

Use of Contingency Allowance and Foresight

Two key input items are used in determining reservoir releases based on downstream flooding as discussed under "operational criteria for downstream control points." These factors are the number of future time periods (IFCAST) that should be checked for possible future flooding (called forecast periods) and the contingency allowance (CFLOD) which is multiplied times the cumulative uncontrolled downstream flow to account for uncertainty in forecasts. For simulation of historical floods (where flows are known for duration of flood) a contingency factor of 1 and an infinite forecast period could be used in order to operate with maximum foresight. However, these assumptions would not simulate "real world" conditions where large errors in forecasting future streamflows are possible. These two key factors, for the simulation of historical floods, should be selected so that the operational efficiencies in the planning mode will approach the expected efficiencies under flood emergency conditions. During flood emergencies these factors should be used to insure that the forecasting errors do not cause reservoir releases to be made which will cause major unnecessary flood damages. The sensitivity of the system to different values of these two factors can be determined by simulating the operation and resulting flood damages for a series of different sized flood events for

Paper 12

the system. The difference between the average annual damages (AAD) for various combinations of these factors will help to evaluate the sensitivity of these factors. Table 1 illustrates how the reservoir system responds to these factors. The adopted value for the number of forecast periods (IFCAST) was four and the adopted contingency factor (CFLOD) was 1.2. Because a time interval of 3 hours was used, the duration of the adopted forecast period was 12 hours.

5 6 65

TABLE 1

AVERAGE ANNUAL DAMAGE VS FORECAST PERIOD AND CONTINGENCY FACTOR USING HISTORICAL FLOWS

RUN	CFLOD	IFCAST	AAD (in \$1000)
1	1.0	2	1191
2	1.0	4	1083
3	1.0	6	1048
4	1.0	10	1070*
5	1.2	2	1116
6	1.2	4	1046
7	1.2	6	1032
8	1.2	10	1052*
9	1.2	20	1099*
10	1.4	2	1082
11	1.4	4	1047
12	1.4	6	1056*
13	1.4	10	1090*
14	1.6	4	1075

*One would expect these values to be less than the previous values. They are not because for the larger events a long forecast period causes reservoir releases to be diminished relatively early in the event. When the reservoirs eventually go uncontrolled, the resulting flooding is greater than would have occurred if the releases had not been diminished early in the event. The increase in damages in the larger events exceeds the decrease in damages for the smaller events. TABLE 2 - AVERAGE ANNUAL DAMAGES SUMMARY - FORECASTED FLOW

Base Run, 18,000 rel-res l, w/o op ll, pre-rel - Actual Flows Recession Forecast Flows Ease Run, CFLOD = 1.2 Recession Forecast Flows Base Run, CFLOD = 1.4 Extension Forecast Q Base Run, CFLOD = 1.2 Description Base Run "J" -CFLOD = 1.2 σ . ~ Flood Ratios AAD LOC 11 $^{\circ}$ 1.0 1.4 ∞ Location σ 6] AAD Ξ Total AAD \$1000 Flood 17* Run £ F2 ň E

*From Table 4 using measured streamflows instead of forecasted streamflows

Paper 12

Use of Forecasted Flows

If flow forecast models are available, the same type of simulation runs can be made to determine the proper forecast period and contingency factor by using forecasted streamflow for one or more historical floods and one or more ratios of those floods to calculate the average annual damages. In most cases, the best operation should occur where the average annual damages are a minimum. Table 2 illustrates results using forecasted flows. The adopted values for the forecast period (IFCAST) were four 3-hour periods and contingency factors (CFLOD) were assumed as 1.2 and 1.4 respectively. Results indicate forecast flows are generally adequate for locations 8, 9, and 10, but not at location 11.

The adopted values for historical floods (where future flows are known) should not necessarily be the same as the adopted values during flood emergencies since the forecasted flows will not be the same as the observed historical flows. In general, the contingency factor for historical floods should be selected to produce the same AAD as the run using forecasted flows. The number of periods of foresight should be the same regardless of the source of flows.

OPERATIONAL CRITERIA FOR MERRIMACK BASIN

An essential task associated with computer simulation of the Merrimack reservoir system is evaluation of input parameters for computer program HEC-5C to obtain the most desirable operation of the system. Some of the key input parameters are listed in Table 3. Alternative operation criteria were evaluated by determining average annual damages based on spatial and temporal runoff variations associated with the March 1936 and September 1938 flood events. While average annual damage is a useful criteria for selecting operating policies, other factors such as legal and political considerations must also be used in the evaluation. The procedure used in HEC-5C for estimation of average annual damages is as follows:

a. Ratios are determined for application to selected historical flood events that are representative of the full range of frequency of flood occurrence. For example, ratios of 1.4, 1.0, 0.8, 0.7 and 0.5 were applied to inflow and local flow hydrographs for the March 1936 flood to obtain five floods for which system operation was to be simulated. Frequencies associated with peak discharges for the five floods were determined from frequency curves for unregulated flows for locations where damages were to be computed.

b. Reservoir system operation is simulated for each flood, that is, for each set of inflow and local flow hydrographs obtained by applying ratios to hydrographs for a historical event. Frequencies associated with peak "regulated" discharges are assumed to be the same as the "unregulated" frequencies. Figure 4 illustrates natural and regulated frequency curves for Lowell. Points on the regulated frequency curve in figure 4 represent peak discharges resulting from system simulation for a specific set of operation criteria. c. Damage-discharge relations input to the computer program enable determination of dollar damages corresponding to the peak discharges at each damage center for each flood. Figure 5 illustrates the damage-discharge relation that was used for Lowell. This is an approximate relation that will be updated in the future.

d. Damage-frequency relations are established for each damage center for both natural and regulated conditions. Figure 6 illustrates these relations for Lowell. The computer program integrates the area below the damage-frequency curves to obtain average annual damages.

The average annual damage calculation is influenced by the distribution of runoff for the historical "pattern" storms. Some characteristics of runoff production for the 1936 and 1938 floods can be ascertained from the hydrographs in Figures 7 and 8. These plots show discharge per square mile for inflow to Franklin Falls reservoir, unregulated flow on the Contoocook river at Penacook and uncontrolled local flow (runoff from all areas downstream from nearest upstream reservoirs) at Lowell.

The 1936 flood reflects high runoff production over the entire Merrimack basin. The flatness of the peak for local flow at Lowell reflects the relatively slow responsiveness of this portion of the basin. Lowell is a key location because a large proportion of total damages occurs there. Consequently, an objective in operating the reservoir system is to try to avoid "building on" the local peak at Lowell.

Figure 8 indicates that runoff production from the Contoocook was relatively high for the 1938 event. However, this portion of the Merrimack basin is 'controlled' with four of the five reservoirs.

TABLE 3

INPUT PARAMETERS FOR HEC-5C

1. Number of periods of future (forecasted) flows that will be used to determine reservoir releases.

2. Contingency factors

These are ratios to be applied to flows in determining reservoir releases; factors are used to account for limited knowledge of future flows beyond the forecast period.

3. Control points for which reservoirs are to be operated.

4. Rate-of-change-of-release criteria for reservoirs.

5. Channel capacity criteria for control points.

6. Minimum release vs reservoir elevation criteria.

7. Pre-release criteria

a. Whether or not pre-releases will be permitted. A prerelease is a flood-producing reservoir release that is made when the reservoir level is below the top of flood control pool. The release is based on the anticipated flood volume exceeding available capacity.

b. Reservoir elevation that pre-releases will be geared to.

c. Magnitude of pre-release permitted (can be specified as a function of reservoir elevation).

RESULTS OF AVERAGE ANNUAL DAMAGE RUNS

In setting up average annual damage runs for HEC-5C, a variety of approaches could be used in selecting floods and flood ratios. For example, one or more ratios of a number of different historical events could be incorporated in a single average annual damage computer run. Another approach is to determine average annual damages for separate sets of ratios applied to individual historical events. Results of these individual average annual damage runs could be weighted depending on how representative individual storms are of the overall flood-producing characteristics of the basin. Two separate sets of simulation runs were made to compute average annual damages for the Merrimack basin. As indicated previously, one set is based on using five ratios of the 1936 event. A second set uses five ratios of the 1938 event.

1936 1936 1936 1936 1936 1936 1936 1936	Total Add Add Add 1074 1076 1076 1076 1068 1068 1207 1068 1207 1161 1161 1161 1163 1164 1163 1166 1193 1168 1193 1168 1193 1168 1193 1193 1168 1193 1168 1193 1168 1168 1168 1207 1068 1207 1207 1207 1207 1207 1207 1207 1207	Change 	From Base Percent Percent Percent +	11 11 11 11 817 837 837 831 833 812* 994 833 812* 833 994 833 833 858 984 853 984 853 985 853 853 853 854 853 855 853 854 853 855 853 855 853 855 853 855 853 855 915 915 922 </th <th>AAD -ocation 10 16 151 151 150 156 156 140* 140* 140* 140* 140* 140* 140* 140*</th> <th>TAB 9 9 63 63 63 63 63 63 63 63 60 60 60 60 60 60 60 60 60 60 60 60 60</th> <th>LE 4 8 8 8 8 8 23 23 23 23 23 23 23 23 23 23 23 23 23 2</th> <th></th> <th>Adb L ANN Adb L 1.0 199 199 1998 1998 1998 1998 1998 1998</th> <th>DA B B B B B B B B B B B B B B B B B B B</th> <th>AGE SUW Lowell) ios ios 122 120* 120* 120* 120* 121* 120* 120*</th> <th>3 8 5 0 5 0 3 0 3 0 8 6 0 6 0 6 0 7</th> <th>Description Base Run Mo Base Run, w/o RD cards - Res 1 - See Note 2 Base Run, w/o RD cards - Res 1 - High Q Base Run, RD cards - Res 1 - Low Q Base Run, No Pre-release Base Run, Res 1, level 2 = E1 389 Base Run, Res 1, level 2 = E1 389 Base Run, RD cards - Res 1 - High Q Base Run, RD cards - Res 1 - Low Q Base Run, No Pre-release with Recession Base Run, No Pre-release with Recession Base Run, No Pre-release with Recession Base Run, RD cards - Res 1 - Low Q Base Run, RD cards - Res 1 - Low Q Base Run, RD cards - Res 1 - Low Q Base Run, No Pre-release w/o RD cards Base Run, No Pre-release w/o RD cards Base Run, No Pre-release w/o RD cards Base Run, RD cards - Res 1 - Low Q Base Run, RD cards - Res 1 - Low Q Base Run, No Pre-release wot RD cards B</th>	AAD -ocation 10 16 151 151 150 156 156 140* 140* 140* 140* 140* 140* 140* 140*	TAB 9 9 63 63 63 63 63 63 63 63 60 60 60 60 60 60 60 60 60 60 60 60 60	LE 4 8 8 8 8 8 23 23 23 23 23 23 23 23 23 23 23 23 23 2		Adb L ANN Adb L 1.0 199 199 1998 1998 1998 1998 1998 1998	DA B B B B B B B B B B B B B B B B B B B	AGE SUW Lowell) ios ios 122 120* 120* 120* 120* 121* 120* 120*	3 8 5 0 5 0 3 0 3 0 8 6 0 6 0 6 0 7	Description Base Run Mo Base Run, w/o RD cards - Res 1 - See Note 2 Base Run, w/o RD cards - Res 1 - High Q Base Run, RD cards - Res 1 - Low Q Base Run, No Pre-release Base Run, Res 1, level 2 = E1 389 Base Run, Res 1, level 2 = E1 389 Base Run, RD cards - Res 1 - High Q Base Run, RD cards - Res 1 - Low Q Base Run, No Pre-release with Recession Base Run, No Pre-release with Recession Base Run, No Pre-release with Recession Base Run, RD cards - Res 1 - Low Q Base Run, RD cards - Res 1 - Low Q Base Run, RD cards - Res 1 - Low Q Base Run, No Pre-release w/o RD cards Base Run, No Pre-release w/o RD cards Base Run, No Pre-release w/o RD cards Base Run, RD cards - Res 1 - Low Q Base Run, RD cards - Res 1 - Low Q Base Run, No Pre-release wot RD cards B
	Floor Floor 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 <td>Flood 510 1936 1936 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1</td> <td>Flood Tol 1936 1936 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1</td> <td>Flood 510 1936 1936 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1</td> <td>Flood Total AAD Change from Base Flood \$1000 \$1000 \$1000 \$1000 1936 1046 817 1936 1074 + 28 + 2.7 837 1936 1074 + 28 + 2.7 833 1936 1059 + 13 + 1.2 841 1936 1048 + 2 + 2.1 833 1936 1048 + 2 + 2.1 833 1936 1048 + 2 + 2.1 833 1936 1207 +161 +15.7 994 1936 1207 +161 +15.7 994 1936 1048 + 2 + 2.1 837 1936 1048 + 2 + 2.1 837 1936 1048 + 2 + 2.5 853 1936 1048 + 2 + 2.2 853 1936 1048 + 2 + 2.6 853 1938 1164 + 3 + 2.7 915 1938 119</td> <td>Flood Total Change From Base Locati 1936 1046 817 146 1936 1074 + 28 + 2.7 837 151 1936 1074 + 28 + 2.7 837 151 1936 1074 + 28 + 2.7 837 151 1936 1059 + 13 + 1.2 841 139* 1936 1068 + 22 + 2.1 833 149 1936 1068 + 22 + 2.1 833 149 1936 1048 + 2 + 4.1 833 156 1936 1048 + 2 + 3.3 858 140* 1936 1048 + 2 + 4.1 833 156 1936 1048 + 2 + 4.1 833 156 1936 1034 + 258 + 24.7 1088 140* 1938 1164 + 3 + 35</td> <td>Flood Total Change From AAD 1936 1046 817 146 1936 1074 + 28 + 2.7 837 151 1936 1074 + 28 + 2.7 837 151 1936 1074 + 28 + 2.7 837 151 1936 1059 + 13 + 1.2 841 139* 1936 1068 + 22 + 2.1 833 149 1936 1068 + 22 + 2.1 833 149 1936 1068 + 22 + 4.1 833 140* 1936 1048 + 2 + 4.1 833 140* 1936 1048 + 2 + 4.1 833 140* 1936 1048 + 2 + 4.1 833 140* 1936 1048 + 2 + 4.1 833 140* 1936 1034 + 25 + 2.4 137*</td> <td>Flood Total Abb 1936 Change from Base 1004 AD 2000 AD 2</td> <td>Total Alb Total Change from Base AAD Flood \$1000 51000 $From Base$ Location 1936 1046 817 146 61 22 373 1936 1074 + 28 + 2.7 837 151 63 23 338 1936 1074 + 28 + 2.7 837 151 63 23 338 1936 1068 + 2 + 2.8 841 139* 59* 20* 355* 1936 1068 + 2 + 2.8 812* 150 63 23 338 1936 1004 + 2 + 2.1 833 149 63 23 350* 1936 1001 + 35 + 4.1 839 156 67 27 350* 1936 1004 + 2 + 2.2 812* 193* 58* 214 60 22 350* 1936 1048 <</td> <td>TABLE A TABLE A A Flood S1000 S1000 Percent 11 10 9 8 1.4 1.0 1936 1046 B17 146 61 22 373 193 1935 1059 + 1.2 841 139* 55* 201 334 210 1935 1059 + 2.2 841 139* 55* 201 336 210 1936 1048 + 2 + 2.1 833 149 63 23 336 210 1936 1048 + 2 + 2.1 833 149 65 27 201 193 1936 1201 +15.7 994 137* 558 140 65 27 201 191 1936 1304 +25 +24.7 1088 140* 65* 27 357 201 14 1936 1304 +</td> <td>TABLE 4 AND TABLE 4 AVERAGE ANNUAL DA Flood Sholo Stood Stood Stood AND Loc 11 1936 1046 - - 817 146 61 22 373 199 114 1936 1059 +13 +1.2 837 151 63 23 338 211 109 1936 1059 +13 +1.2 837 151 63 23 338 210 110* 1936 1068 +22 +2.1 833 149 63 23 338 210 110* 1935 1008 +22 +2.1 833 149 63 23 199 110 1935 1004 +22 +4.1 833 146 66 22 336 100* 127 1935 1044 +22 +4.1 830 140* 66 22 <</td> <td>TABLE 4 AND AND LGC 11 (Lowe Flood Ratios Flood Stood Stood Stood Stood Ratios AND LGC 11 (Lowe Slood Sl</td> <td>TABLE AND TABLE ANERGE AnnuAL DAVIAGE SUPPARATY Flood Stood Stood Percent 11 10 9 8 1.4 1.0 8 .7 .5 1936 1074 +.26 +.2.7 837 151 6.3 23 338 201 109* 122 9 114 122 9 9 104 122 9 114 122 9 9 104 122 9 109* 120* 9 9 104 122 9 114 122 9 114 122 9 9 104 122 199 104 127 19 109* 120* 9 9 104 122 109 100* 127 19 10 127 109 100* 100* 127 19 10 127 109 100* 10 127 10 127 10 127 10 127 10 127<!--</td--></td>	Flood 510 1936 1936 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1	Flood Tol 1936 1936 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1	Flood 510 1936 1936 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1936 10 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1 1938 1	Flood Total AAD Change from Base Flood \$1000 \$1000 \$1000 \$1000 1936 1046 817 1936 1074 + 28 + 2.7 837 1936 1074 + 28 + 2.7 833 1936 1059 + 13 + 1.2 841 1936 1048 + 2 + 2.1 833 1936 1048 + 2 + 2.1 833 1936 1048 + 2 + 2.1 833 1936 1207 +161 +15.7 994 1936 1207 +161 +15.7 994 1936 1048 + 2 + 2.1 837 1936 1048 + 2 + 2.1 837 1936 1048 + 2 + 2.5 853 1936 1048 + 2 + 2.2 853 1936 1048 + 2 + 2.6 853 1938 1164 + 3 + 2.7 915 1938 119	Flood Total Change From Base Locati 1936 1046 817 146 1936 1074 + 28 + 2.7 837 151 1936 1074 + 28 + 2.7 837 151 1936 1074 + 28 + 2.7 837 151 1936 1059 + 13 + 1.2 841 139* 1936 1068 + 22 + 2.1 833 149 1936 1068 + 22 + 2.1 833 149 1936 1048 + 2 + 4.1 833 156 1936 1048 + 2 + 3.3 858 140* 1936 1048 + 2 + 4.1 833 156 1936 1048 + 2 + 4.1 833 156 1936 1034 + 258 + 24.7 1088 140* 1938 1164 + 3 + 35	Flood Total Change From AAD 1936 1046 817 146 1936 1074 + 28 + 2.7 837 151 1936 1074 + 28 + 2.7 837 151 1936 1074 + 28 + 2.7 837 151 1936 1059 + 13 + 1.2 841 139* 1936 1068 + 22 + 2.1 833 149 1936 1068 + 22 + 2.1 833 149 1936 1068 + 22 + 4.1 833 140* 1936 1048 + 2 + 4.1 833 140* 1936 1048 + 2 + 4.1 833 140* 1936 1048 + 2 + 4.1 833 140* 1936 1048 + 2 + 4.1 833 140* 1936 1034 + 25 + 2.4 137*	Flood Total Abb 1936 Change from Base 1004 AD 2000 AD 2	Total Alb Total Change from Base AAD Flood \$1000 51000 $From Base$ Location 1936 1046 817 146 61 22 373 1936 1074 + 28 + 2.7 837 151 63 23 338 1936 1074 + 28 + 2.7 837 151 63 23 338 1936 1068 + 2 + 2.8 841 139* 59* 20* 355* 1936 1068 + 2 + 2.8 812* 150 63 23 338 1936 1004 + 2 + 2.1 833 149 63 23 350* 1936 1001 + 35 + 4.1 839 156 67 27 350* 1936 1004 + 2 + 2.2 812* 193* 58* 214 60 22 350* 1936 1048 <	TABLE A TABLE A A Flood S1000 S1000 Percent 11 10 9 8 1.4 1.0 1936 1046 B17 146 61 22 373 193 1935 1059 + 1.2 841 139* 55* 201 334 210 1935 1059 + 2.2 841 139* 55* 201 336 210 1936 1048 + 2 + 2.1 833 149 63 23 336 210 1936 1048 + 2 + 2.1 833 149 65 27 201 193 1936 1201 +15.7 994 137* 558 140 65 27 201 191 1936 1304 +25 +24.7 1088 140* 65* 27 357 201 14 1936 1304 +	TABLE 4 AND TABLE 4 AVERAGE ANNUAL DA Flood Sholo Stood Stood Stood AND Loc 11 1936 1046 - - 817 146 61 22 373 199 114 1936 1059 +13 +1.2 837 151 63 23 338 211 109 1936 1059 +13 +1.2 837 151 63 23 338 210 110* 1936 1068 +22 +2.1 833 149 63 23 338 210 110* 1935 1008 +22 +2.1 833 149 63 23 199 110 1935 1004 +22 +4.1 833 146 66 22 336 100* 127 1935 1044 +22 +4.1 830 140* 66 22 <	TABLE 4 AND AND LGC 11 (Lowe Flood Ratios Flood Stood Stood Stood Stood Ratios AND LGC 11 (Lowe Slood Sl	TABLE AND TABLE ANERGE AnnuAL DAVIAGE SUPPARATY Flood Stood Stood Percent 11 10 9 8 1.4 1.0 8 .7 .5 1936 1074 +.26 +.2.7 837 151 6.3 23 338 201 109* 122 9 114 122 9 9 104 122 9 114 122 9 9 104 122 9 109* 120* 9 9 104 122 9 114 122 9 114 122 9 9 104 122 199 104 127 19 109* 120* 9 9 104 122 109 100* 127 19 10 127 109 100* 100* 127 19 10 127 109 100* 10 127 10 127 10 127 10 127 10 127 </td

D

. هند .

7.0 17

Results of the average annual damage runs are summarized in Table 4. The "base" runs, labeled A in Table 4, were made with HEC-5C input parameters specified as follows.

a. A forecast period of 12 hours; that is, discharges up to 12 hours in the future were considered in determining reservoir releases.

b. A contingency factor of 1.2 was applied to local flows for purposes of reservoir release determination.

c. The reservoir system was operated for all control points shown in figure l.

d. Rate-of-change of release criteria were specified so as not to be a constraint on releases from Franklin Falls reservoir.

e. Fixed channel capacities were specified for all control points based on information supplied by the New England Division.

f. A table of values for minimum permissible release as a function of reservoir elevation was specified for Franklin Falls reservoir as shown on Table 4 (note 2).

g. Pre-releases were permitted; at Franklin Falls reservoir, prereleases were made if inflows to the reservoir during the 12-hour forecast period would cause the reservoir level to rise above elevation 394 (5 feet above the spillway crest).

The discharge-damage relation for Lowell (Figure 5) that was input to HEC-5C had a maximum discharge ordinate of 180,000 cfs. Because discharges larger than 180,000 cfs were used in the damage analysis, the dischargedamage relation was extrapolated by the computer program as shown in Figure 5. The effect of using the alternative extrapolation, also shown in Figure 5, on average annual damages was less than 2% for both natural and regulated flows.

18

Operation criteria for average annual damage runs other than the base runs are summarized in Table 5. Some observations pertaining to results of the average annual damage simulation runs are as follows:

a. Average annual damages based on floods patterned after the March 1936 flood are of approximately the same magnitude as average annual damages based on floods patterned after the September 1938 flood.

b. Operational criteria used for the base run (run A) produced the lowest average annual damages for floods patterned after the March 1936 flood; operational criteria that does not utilize the pre-release option (run E) produced the lowest average annual damages for floods patterned after the September 1938 flood and only slightly more damage for the 1936 flood.

c. Of the order of 75% of the total average annual damages occurs at Lowell on the basis of the approximate stage-damage relationship for that location.

d. Damages associated with very large floods account for a major proportion of average annual damages; this is illustrated in figure 9 which shows the relation between percent of average annual damage and recurrence interval at Lowell for the base run for floods patterned after the March 1936 flood, (e.g., 45% of average annual damages occur under regulated conditions from floods having a recurrence interval of 300 years or greater).

e. Significant discharge and damage reduction at the 1000 year flood level is due to the surcharge storage available in the reservoirs due to the limited discharge capacity of the uncontrolled spillways since the flood control storages were exceeded very early in the largest floods.

TABLE 5

OPERATION CRITERIA FOR SIMULATION RUNS

Run	Criteria
В	Same as for base run, except minimum release not specified for Franklin Falls reservoir.
С	Same as for base run, except relatively large minimum releases were specified (as a function of reservoir elevation) for Franklin Falls reservoir (see note 2 of Table 4 for values).
D	Same as for base run, except relatively small minimum releases were specified (as a function of reservoir elevation) for Franklin Falls reservoir.
E	Same as base run, except pre-releases were not made.
F	Same as base run, except reservoir system was not operated for Lowell.
G	Same as base run, except pre-releases were not made and minimum releases f or Franklin Falls reservoir were not specified.
Н	Same as base run, except pre-releases were not made and reservoir system was not operated for Lowell.
I	Same as base run, except reservoir elevation of 389 was used at Franklin Falls reservoir for pre- release determination.
J	Same as base run, except minimum releases of 18,000 cfs from Franklin Falls reservoir were specified, system was not operated for Lowell.
К	Same as base run, except the pre-release option was modified to include volume of recession of hydrograph past the period of forecast.

Paper 12

20

OUTPUT DISPLAYS

Batch Mode vs Interactive Mode

Execution of a computer program in batch mode requires that all input for a computer run be supplied to the computer prior to program execution. An interactive-mode execution is where the user can interact with the computer during the execution of a job. As used in the application described herein, the interactive mode is used to selectively print out data from an output file of the system operation that has been generated in batch mode. This enables the user to review any portion of the output that he desires. The output file can be permanently saved and interrogated at future times from one or more computer terminal sites.

While output displays from high-speed line printers used in the batch mode can provide any amount of output desired, the level of output must be specified prior to making the computer run. Presently, after a run has been made, output not previously requested can only be obtained by making another complete simulation run. An alternative method would be to save the output file and print in batch mode by writing a special program. If the turn-around time is adequate (say less than 30 minutes) and the program execution cost is small, then the batch mode is the best way to get the necessary output assuming that a high-speed printer is available. Where batch mode turn-around times are long, or high-speed printers are not readily available, the slow-speed terminals can be an effective way of obtaining a limited amount of information rapidly. After looking at selected data through the slow-speed terminal the output can then be directed to a high-speed printer if desired.

High-Speed Printer Output

The subroutine PROUT in HEC-5C is used to print output for the highspeed printer (batch mode), slow-speed teletype terminal (interactive mode) and cathode ray tube terminals (interactive mode). All output devices can be used to print any combination of types of output (see samples on Figures 10-11) except for the graphical plots (see Figure 17) available with cathode ray tube terminals. Printer plots (Figure 12) can be requested by the batch mode printers. The types of output that can be requested are as follows:

OUTPUT DESCRIPTION

* Input Card Listing
* Input Flows
* Input Data for System Specification
* Output - Normal Sequential (by control point)
* Output - Reservoirs - by Period
* Output - Reservoir Releases - by Period
* Output - Reservoir Regulation Summary - Single Flood
* Output - Reservoir Regulation Summary - All Floods
* Output - Hydrologic Efficiencies
* Output - Computer Check for Possible Errors
* Batch Economic Summary
* User Designed Output - Results by Period
* User Designed Output - Summary

Interactive Terminal

While the batch mode selects desired output by input cards, the slowspeed terminal asks the user questions, as illustrated in figure 13, concerning what type of function (see Figure 14) should be performed next (output from operation, modify input deck HEC-5C, etc.). If operational output is desired, the type of data (option number of Figure 14) and possibly variable codes and locations, on Figure 15, as well as the output mode (plot, tabulate or save on tape) are required to be specified to the computer. Data can be input to the computer through the terminal by depressing the appropriate terminal keys or (for certain CRT's) by touching an electronic pen to the appropriate instruction (see Figure 15) on a selection list (menu) which lies on a graphic tablet. After the tabulated output (see Figure 16) or plotted results (Figure 17) are obtained, additional data can also be selected and printed as desired. Any combination of data types (reservoir outflow, storage, elevation, downstream flow, etc.) for any location can be tabulated or plotted. Depending on the size of the paper (or screen) up to 10 different items can be tabulated side by side and up to 5 different time dependent variables can be plotted on a single graph. Two different scales can be used for the plots as shown on Figure 17 where the inflow and outflow are plotted on the left scale (discharge) and the reservoir level on the right scale. When all of the desired output has been displayed, the data can be transferred to the line printer at a nearby batch location.

Paper 12

Updating and Reoperation of System

In the batch mode, data cards for the forecast program are read by the card reader and an output file of the forecasted basin-wide flows is obtained. The HEC-5C data cards can be loaded at the same time or at a later time, and the system simulation is performed for the duration of the forecasts and the output is directed to the line printer. Any desired change in the forecast or operation requires a few new data cards and rerunning either the operation model or both the forecast and operation models. Where adequate computer turn-around is available this process can be accomplished in 30 minutes or less.

With a slow-speed terminal the same cycle can be accomplished by using the keyboard or the electronic pen. In addition, high quality graphical displays of the status of the system can be obtained. After the operational data has been displayed, function 5 of figure 14 can be selected and an interactive program called REVISE will allow the revision and/or execution of the data files of either the forecast or operation models. It is then possible to once again display selected output. A diagram of this process is shown as figure 18.

COMPUTER SYSTEMS REQUIRED FOR REAL-TIME OPERATION

In order to reap the benefits of the real-time operation tools described previously, access to digital computer equipment is a necessity. This access may take several different forms depending on characteristics of the data acquisition system, the forecasting and operation models used, and available communications equipment. Real-time water resource operations may make use of only in-house equipment, only remote site equipment, or some combination of each.

The first basic function to be accomplished is that of acquisition of available data. Information required may include observer collected data reported by voice communications and analog or digital signals received by appropriate equipment. Such information may be received over dial-up phone lines, dedicated phone lines, radio repeating links, or satellite repeating links.

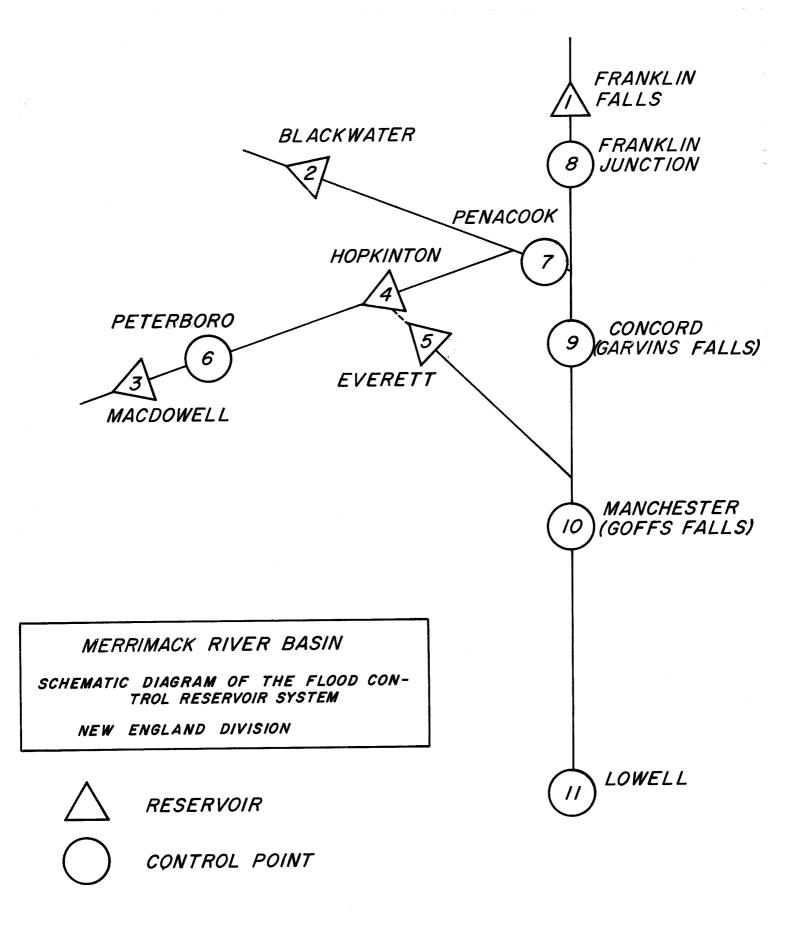
When the volume of data is great it is obviously desireable to have the data recorded directly on a medium that may be read by machines. Even more desireable is to have the whole data acquisition function occur under control of a mini-computer. If this is done the mini-computer may also perform several functions such as, error checking, data reduction, permanent logging, report generation, etc. In most cases a mini-computer dedicated to such functions would be required. Once the data in reduced form (i.e., discharge, precipitation, etc.) is available, the forecast may be performed. Computer equipment for this function will vary depending on the size of the forecast program. Some forecasting models may execute well on the same mini-computer used for data acquisition. Others would require such extensive reprogramming in order to operate on a mini-computer that other alternatives would be desirable. In some cases additional large scale in-house computers may be available. In most cases such facilities will not be directly available to district offices. The use of larger capacity remote site computing becomes very attractive in such a situation. A portion of the reduced data may be sent to the remote site directly by the mini-computer, or read in from paper tape, or magnetic cassette. The forecast may then be performed at the remote site with results returned to the local site and/or saved for future reference at the remote site.

A similar situation exists for executing large system operation programs. Again remote site computing offers a cost effective solution. The forecasted flows may be passed on to the operation model through common access to a data file. Results from the operation routine may then be returned to the local site, or be held for future reference. Display of the results may be performed by the in-house mini-computer, or be handled directly from the remote site.

Problems of using a remote site computing center around two factors; (1) guaranteed access to facilities twenty-four hours per day, three hundred and sixty-five days per year, and (2) reliable communications and power supply even under extremely adverse conditions. It is impossible to guarantee access to any one facility at all times. It is possible however, to have access to several remote facilities and thus provide as high a level of "guaranteed" access as deemed necessary. Communications and power supply which involve ground lines are quite vulnerable to interruption during major storm activity. Backup power supply may be easily supplied by emergency generators.

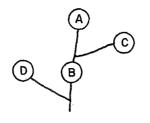
Backup communications based on a ground network may require an individual to physically carry necessary data to an alternate input site outside the area affected by the communications interruption. An attractive backup for communications which is rapidly being developed is to communicate to the remote site by way of a satellite link.

The use of large scale machines for the forecasting and operations aspects of real-time operation are attractive because of the ease of updating or improving the models used. Other modeling techniques may be quickly compared and substituted for those currently in use. When minicomputers are used for executing large programs, changes to the program often entail major restructuring of overlays.

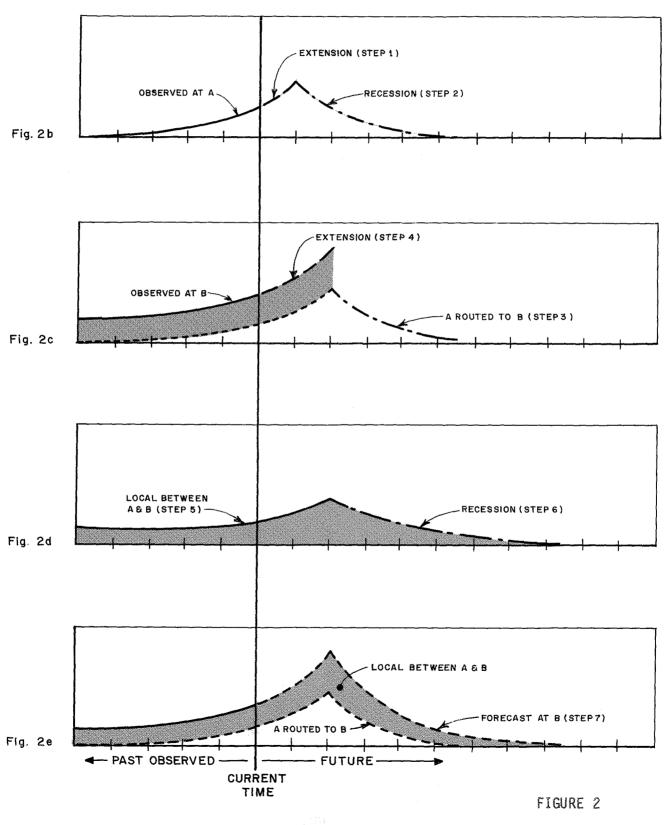

FUTURE WORK

It is planned to implement the forecast-operation-display capabilities described in this paper at the Control Center of the New England Division in the near future. The next step will be to interface these capabilities with the existing automated data collection system.

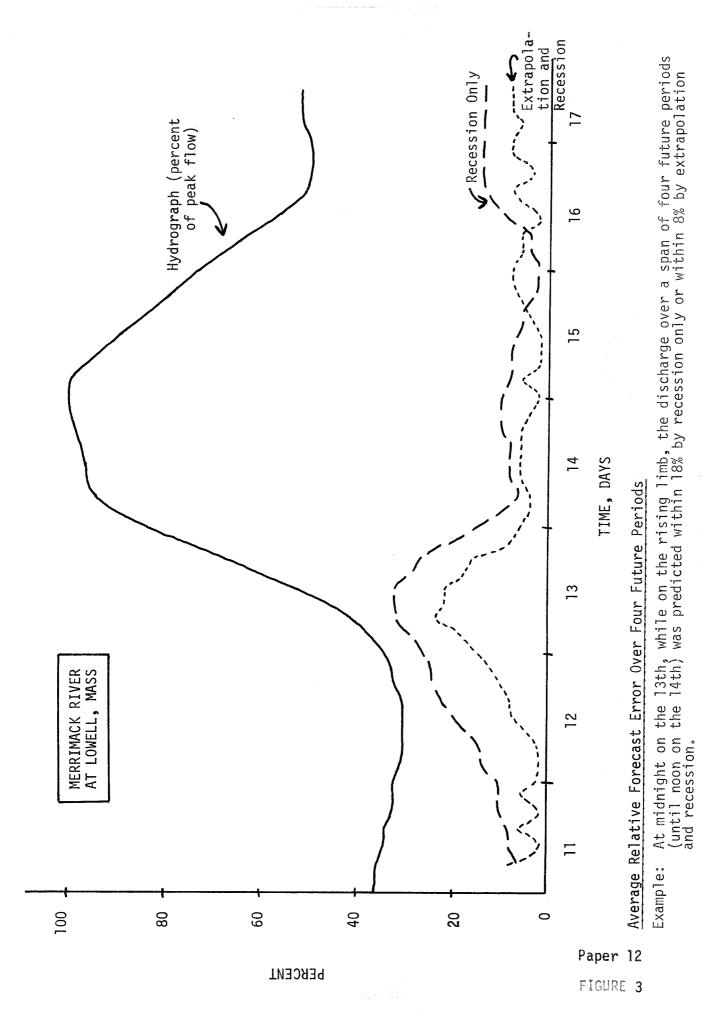
Alternative forecasting techniques other than the streamflow extrapolation procedure described herein will be tested. Application of the computer program Streamflow Synthesis and Reservoir Regulation (SSARR) developed by the North Pacific Division is anticipated.

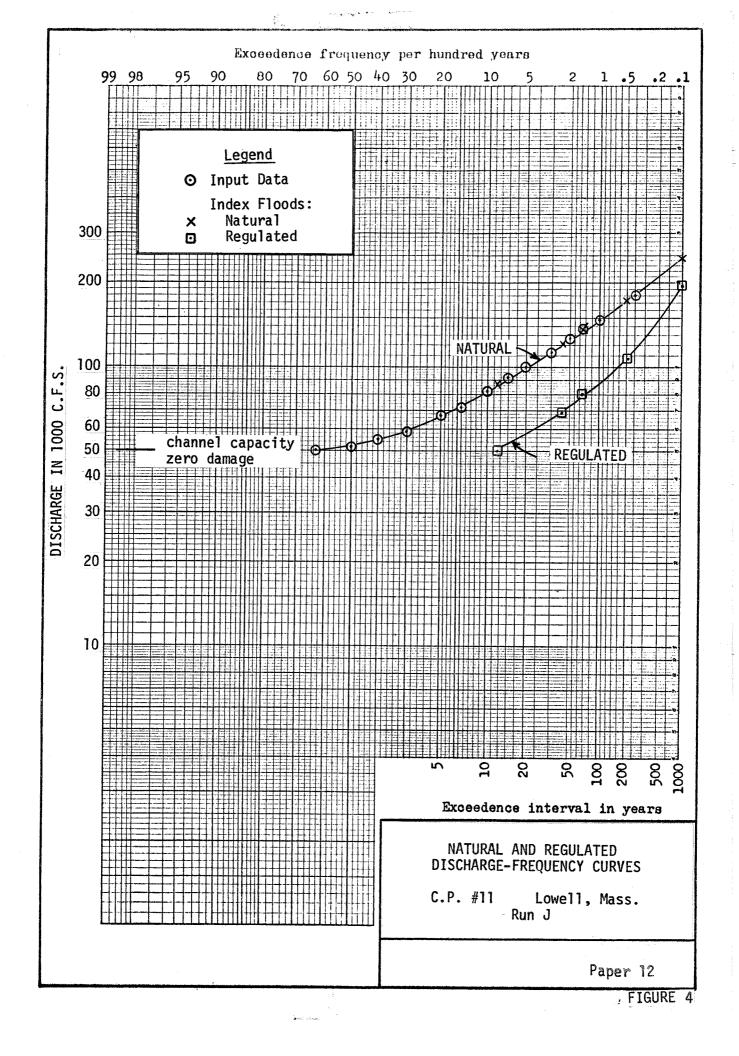

The entire procedure for real-time simulation will be thoroughly tested and "fine-tuned" once it is operational at the Control Center.

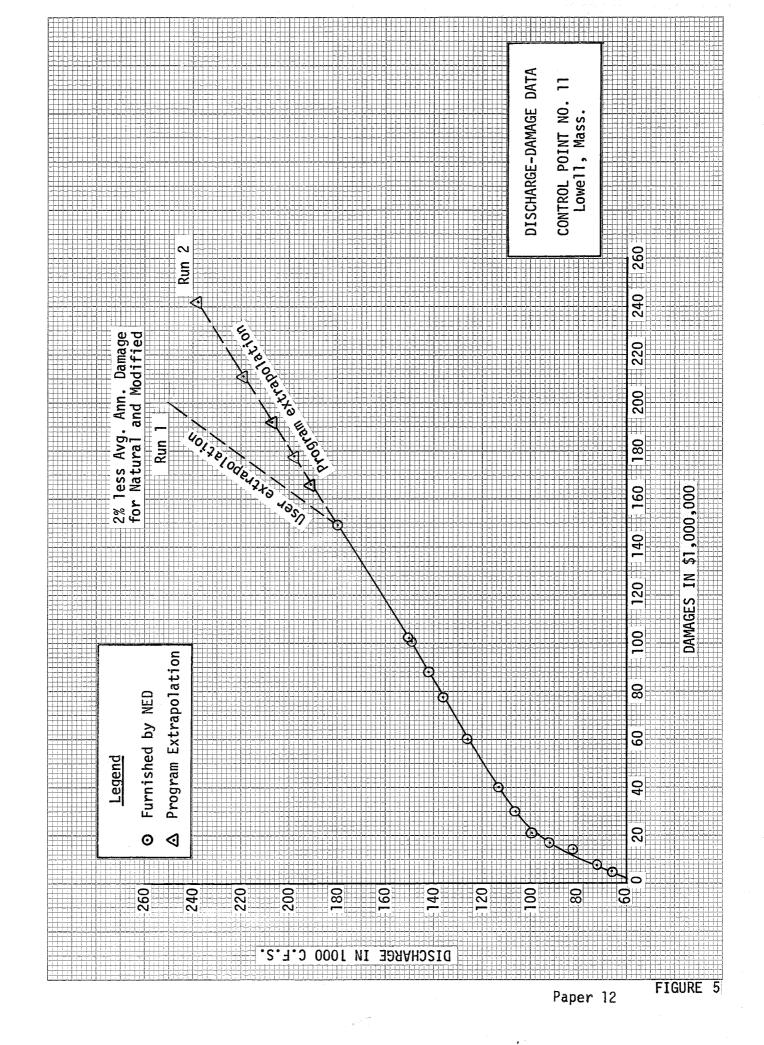
Paper 12



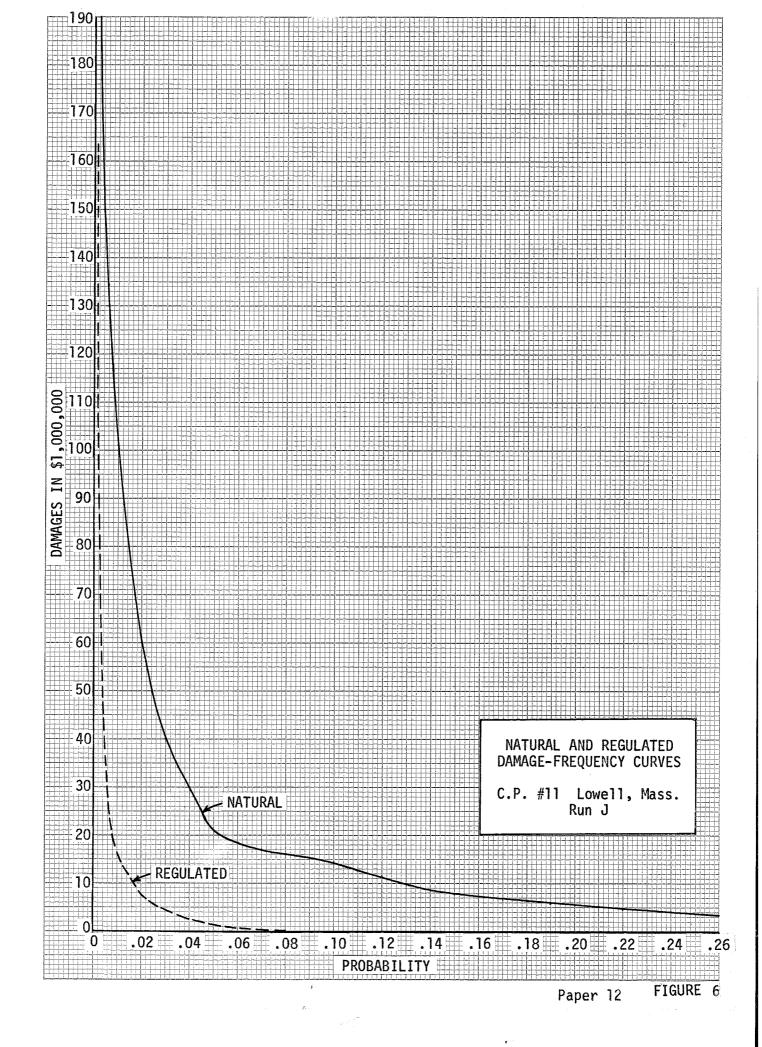
Paper 12 FIGURE 1

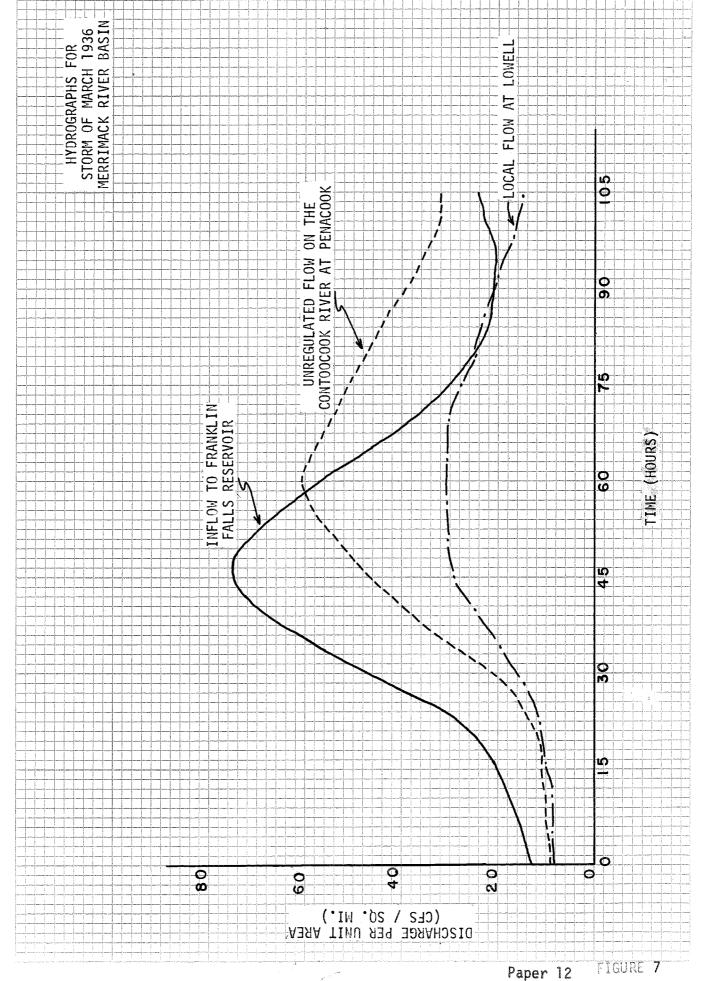






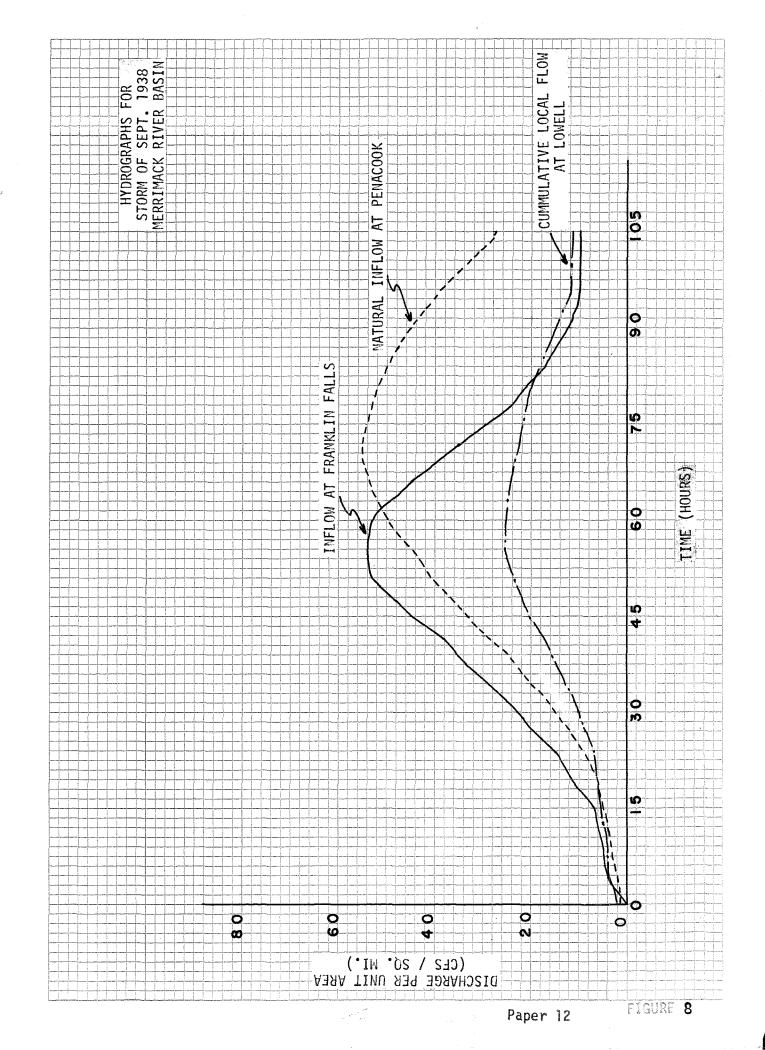
Paper 12

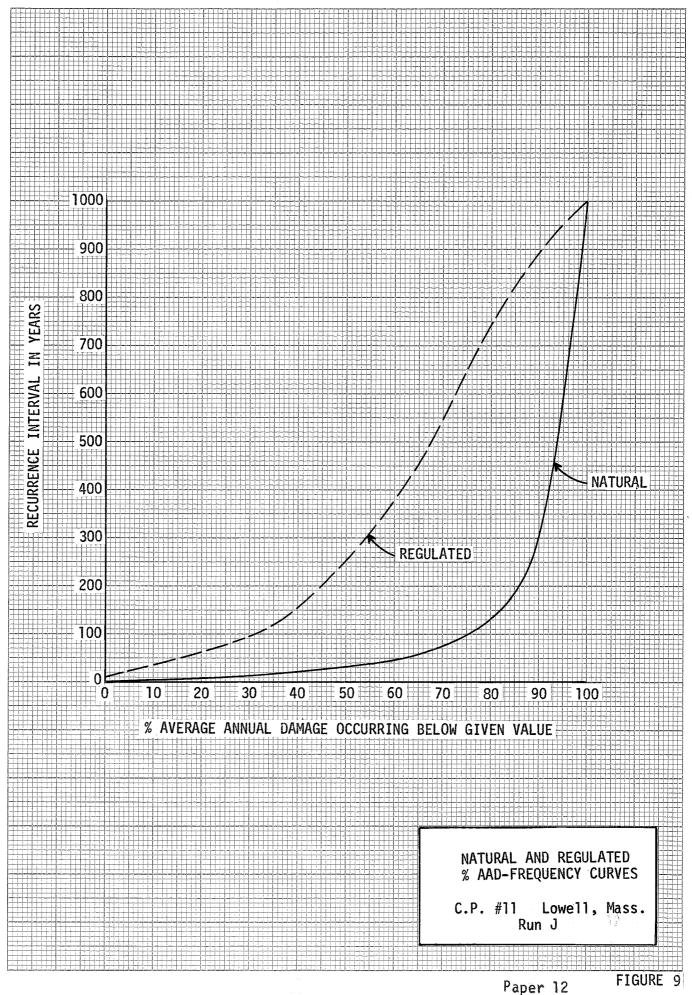



46 1323

K+E 10 X 10 TO ⅓ INCH 7 X 10 INCHES KEUFFEL & ESSER CO. MADE IN U.S.A.

46 1323


HIT IN TO MINCH 7 X 10 INCHES KEUFFEL & ESSER CO. MADE IN U.S.A.


46 0702

N+ 2 10 X 10 TO THE INCH -> X 10 INCHES No. -> X 10 INCHES

FIGURE 7

H4E 10 X 10 THE INCH+7 X 10 INCHES H4E KEUFFEL & ESSER CO. MADE IN U.S.A.

46 1323

H4+ E 10 X 10 TO ½ INCH 7 X 10 INCHES KEUFFEL & ESSER CO. MADE M U.S.A.

	and the second se			FR(M			_			
				FLOODS	71513.	460102. 571844.	578207. 1414560.	MAX INFLOW	3950	17827	10850	75800	23963	
				D FLOODS VOL TOTAL	34.			TOP F.C. LAST PER.	67	67	61	67	61	
				BY RES NO	651. 15787.	56548. 41450.	27515. 20688.	EXCEEDED 1ST PER.	74	8	67	24	31	
UTPUT MMÁKY		ROL OPERATION DOLLARS		MAX UNC 0	5312.			MAX LEVEL	2.102	2.022	2.000	2,262	2,035	
SAMPLE HEC-5C OUTPUT SINGLE FLOOD SUMMARY		FLODD CONTROL DI Inusands of Doll	****	MAX NAT	8881. 48800	\$000.		MAX STG	16074	78987	45999	184953	94028	
SIS	M		FLOOD NUMBER	MAX REG Q	0 20 6 3 0 2 0 6 3	63748. 60440		ST0R1	1453	24000	9220	20000	10000	420041
	FLOOD SUMMARY COPY= TION INTERVAL IN HOURS=	MERRIMACK RIVER BASIN 1936 STORM DAMAGE IN 5 RESERVOIRS	***	NONRESERVOIRS	6 PETERBOROUGH 7 DENACTOR		GOFFS FALLS LOWELL	RESERVOIRS	3 MACDOWELL	4 HOPKINTON	2 BLACKWATER	I FRANKLIN FALL	5 EVERETT	MAX SYSTEM STORAGE
	SINGLE FLOO Computation			= 3 0	67	- 00 0	110	100	M	4	N	-	5	

FIGURE 10 Paper 12

•

SAMPLE HEC-5C OUTPUT USER DESIGNED

;

USEP	<u>२ D</u>	<u>ES1(</u>	INE	<u>nu</u>	TPUT				
.0 <u>C</u> NO=					3	4.	2.	1 .	5.
PER HR	DY	MO	YR	DW	OUTFLOW	OUTFLOW	OUTFLOW	OUTFLOW	OUTFLOW
1 3	1	0	0	1_	650.00	7000.00	2253,20	0.00	0.00
56	1	0	0	1	0.00	7000.00	2237.53	1200.81	0.00
3 9	1	0	0	1	0,00	7000.00	2222.10	1640.56	750.00
4 12	1	0	0	1	0.00	7000.00	2206.89	6140,56	903.79
5 15	1	0	0	1	0.00	7000.00	2191.91	10640.56	902.20
6 18	1	0	0	1	0.00	7000.00	2177.16	15140,56	901.79
7 21	1	0	0	1	0.00	0,00	0.00	17059.57	901.84
8 24	1	0	0	1	0.00	0,00	0.00	12559,57	0.00
93	2	0	0	2	0,00	0.00	0.00	8059,57	0.00
10 6	5	0	0	5	0.00	0,00	0.00	3559.57	0.00
11 9	2	0	0	2	0.00	0.00	0.00	3345.24	0.00
15 15	2	0	0	2	0.00	0,00	0.00	4181.03	0.00
13 15	2	0	0	2	0.00	0.00	0.00	5080.57	0.00
14 18	2	Ó	0	2	0.00	0.00	0.00	6037.64	0.00
15 21	2	0	0	2	0.00	0,00	0.00	6753,43	0.00
16 24	2	0	0	2	0.00	0.00	0.00	7608,50	0,00
17 3	3	0	0	3	0.00	0.00	0.00	8737.69	0.00
18 6	3	0	0	3	0.00	0.00	0.00	4237.69	0.00
19 9	3	0	0	3	173.56	0.00	0.00	15338.09	0.00
20 12	3	0	0	3	652.44	0.00	0.00	18433.30	0.00
21 15	3	Ô	0	3	650.00	0.00	0.00	19598.83	0.00
22 18	3	0	0	3	650.00	0.00	0.00	20878.23	0.00
23 21	3	Ó	0	3	650.00	0.00	0.00	22960.18	0.00
24 24	3	0	0	3	650.00	0.00	0.00	30545,48	0.00
25 3	44	0	0	4	650.00	0,00	0.00	40829.16	0.00
6 65	4	0	0	4	650.00	0.00	0,00	55388.84	0.00
27 9	4	0	0	4	650.00	0.00	0.00	60728.52	0.00
28 12	4	0	0	4	650.00	0,00	0.00	60548.33	0.00
29 15	4	0	0	4	650.00	0.00	0.00	57320.74	0.00
30 18	4	0	0	4	650,00	1720,98	0.00	52793.29	0.00
31 21	4	_0_	_0_	4	650.00	4888 30	0,00	47590.02	582.51
32 24	4	0	0	4	650.00	7784.88	0.00	42397.26	1338.40
33 3	5	0	0_	5	650.00	9422.69	0.00	38125,96	1500.00
34 6	5	0	Q	5	650.00	10732,69	0.00	33811,98	1500.00
35 9	5	0	<u> </u>	5	650.00	9184 52	0.00	30500.00	1500.00
36 12	5	0	0	5	650.00	11031.11	0.00	30500.00	1500.00
37 15	5	0_	0	5	650.00	11960.31	0.00	30650,23	1500.00
38 18	5	0	Ø	5	650,00	14171.50	0.00	22852,04	1516.5
39 21	5	_0_	0	5	650.00	14745.91	0.00	22520,00	1536.38
40 24	5	0	0	5	650.00	15243.95	0.00	22976.00	1547.42
41 3	6	0	0	6	650,00	15523.89	0.00	23400.80	1556.10
42 6	6	0	0	6	650,00	15692.83	0.00	19503,20	1560.89
43 9	6	0	0	6	650,00	15746.59	57.47	24860.00	1561.9
44 12	6	Õ	0	6	650.00	15688.07	781.98	24860.00	1559.1
45 15	6	0	0	6	650.00	15528.73	1307.58	24860.00	1552.79
46 18	6	0	0	6	650,00	15291.80	1307,58	24860,00	1543.86
47 21	6	0	0	6	650,00	14996,47	1307.58	24860.00	1533.04
48 24	6	0	0	6	650.00	14655.65	1307.58	24500.00	1520.74
49 3	7	Ó	Ó	7	650,00	14275 82	1307.58	23700.00	1513.40

FIGURE 11 Paper 12

•

	and the second se	the second se	and the second se	the state of the s	The second se			1
新月月	920 3950	5	3950 -1000		107	SAMPLE PRINT	SAMPLE HEC-5C OUTPUT PRINTER PLOTS	5
3 MACDONELL	=XN		3 CH CAPe	6 50	HOURS18,DAYS15,MONE	14=15, HON=	0, YEARa19	
0 500 1000	00 1500	2000	2500	3000	3500	6000	4500	2000
2	 z	•	•	-	•	3		-
	z	2	•••		•••		••••	
• •	••	•••	₹.	 z	••	•	•	•••
•	•••	•	•••	•••	•2 2	•	•	•
and the second sec		•••	• •		••	z		•••
•	•••	•••	• •	••	z	~		•
•••	•	•••		••	z • z	•	2 • • • •	
		•••	• •	z • • z	•••	• •	-	•
x a a	•••	•••	z • z	•	•••	•••		•••
		z • •	 z		•	; ••••••	, .	
	-	z						• • •
		 22	•••	•••		••••		• • •
		•2 z	• •	•••		; • • •		••••
	•••	z z •		•••	•••			
		•	z 	••	•••	••	•••	
α a		•	••	 z	• •	•••	•••	•••
	•••	• •		z •	•••	•••		
	•••	• •	•••	z ^z				•••

INTERACTIVE HEC-5C OUTPUT "QUESTIONS AND REPLIES"

prout specify interactive mode and file name 1 ned statatat enter a ? when you are uncertain a required response key the terminal attention key (ESC) once to return to a major branch point or key the terminal attention key twice in succession to return to the system

data file available key in 1 to enter data via lablet 1

* * * BRANCH POINT * * *

key in destred function

S

function no. 2 ... user determined output format.... select period or summary type results 1. -1. -11 cr ?

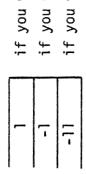
enter combination(s) or 2. then when carriage

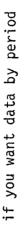
9.82 9.64 9.61

select output mode p. t. s. or ?

620

copy page and retural

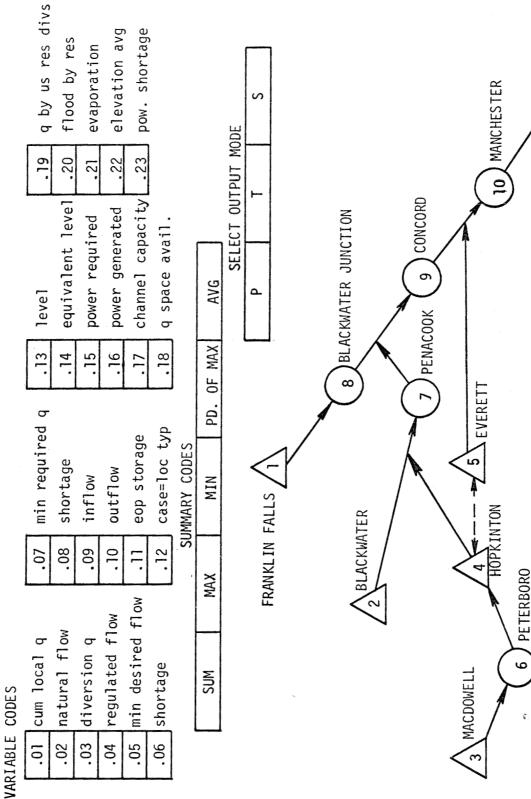

X w


Ť

	CARRIAGF	RETURN					X											
	ESCAPE ESC	· · · · · · · · · · · · · · · · · · ·				BLE CODES	E LINE PRINT			LY ONCE)								
INTERACTIVE HEC-5C MENU FUNCTION SELECTION AND FUNCTION 1 OPTIONS (PRE-FORMATTED OUTPUT TYPES)	KEYBOARD				LI ONS	DISPLAY RESULTS BY USER SPECIFIED CONTROL POINTS AND VARIABLE CODES	TRANSFER THE MOST RECENT TIME-SHARE REQUESTED OUTPUT TO THE LINE PRINTER		PROGRAM	DISPLAY OUTPUT WITH BATCH OPTIONS (INVOKE THIS FUNCTION ONLY ONCE)								oint
	DELETE LINE		*	TION	DISPLAY DATA AND/OR RESULTS USING STANDARD OPTIONS	CONTROL POIN	RE REQUESTED		MODIFY HEC-5 INPUT DATA DECK USING THE REVISE PROGRAM	(INVOKE THIS				NOIL				tial output by control point
INTERAC CTION SELECTI (PRE-FORM	DELETE ENTRY		× * *	DESCRIPTION	ESULTS USING	ER SPECIFIED	ENT TIME-SHA		TA DECK USIN	ATCH OPTIONS				DESCRIPTION	: input data	data	rry of input	itial output
FUN	\$		CH POI		ATA AND/OR R	ESULTS BY US	THE MOST REC	TERMINATE PROCESSING	C-5 INPUT DA	UTPUT WITH B					display input l=basic	display input 2=flow	display input 4=summary of input	display normal sequen
	NO		* BRANCH		DISPLAY D	DISPLAY R	TRANSFER	TERMINATE	MODIFY HE	DISPLAY 0			0. 1		display i	display i	display i	display n
	YES		*	FUNCTION	-	2	ß	4	5	9	199 <u>1</u> - 1991		FUNCTION NO.	NO I LLON	-	2	4	5

FIGURE 14 Paper 12

FUNCTION NO. 2



INTERACTIVE HEC-5C MENU FUNCTION 2 (USER DESIGNED OUTPUT)

if you want summary data for reservoirs

if you want summary data for nonreservoirs

11) LOWELL

MERRIMACK RIVER BASIN

INTERACTIVE HEC-5C OUTPUT SAMPLE - USER DESIGNED TABULATION

A 3 7

LOC NO=		9.	9	9.
PERIOD MO (Y YR HR	NATURAL	REGULATE	CUM LOCA
		_		
10	506			
2 0	5 0 9			
3 0	5 0 12			
4 0	5 0 15			
50	5 0 18		29142.04	
6 0	5 0 21	. 29900.00	28339,55	9942.61
70	6 0 0	. 32300.00	28568,95	11330.91
8 0	6 0 3	. 34800.00	28543.40	12282.41
9 0	6 0 6		28226.55	13160.84
10 0	6 0 9	. 43000.00	28006.42	13850.17
110	6 0 12		26980.24	13369.93
12 0	6 0 15	. 55700.00	25647.24	12354.63
13 0	6 0 18			13533.07
14 0	6 0 21			
15 0	7 0 0			
16 0	7 0 3			
17 0	7 0 6			
18 0	7 0 9			
19 0	7 0 12			
20 0	7 0 15		7	
21 0	7 0 18			
0 55	7 0 21			
23 0		106000.00		
24 0	8 0 3			10118.43
25 0	8 0 6			
26 0	8 0 9			10012.88
27 0	8 0 12	85800.00	76627.35	9926,28
28 0	8 0 15	80100.00	73444.46	9748.16
29 0	8 0 18	71600.00	68048.84	7966.18
3 0 0	8 0 21	. 68500.00		
31 0	9 0 0	65850.00	62292,93	8839.77
32 0	9 0 3	. 62200.00	59402.61	8569,46
33 0	9 0 6	59500.00	57408.08	8695.51
34 0	9 0 9	. 58300.00	56840.88	9739.17
35 0	9 0 12	57050.00	56277.35	10320.90
36 0	9 0 15		57579.72	12394.33
37 0	9 0 18		55795.46	11141.33
38 0	9 0 21		55749.99	11532.48
	0 0 0			14119.64
40 0 1	0 0 3			15692.39
41 0 1	0 0 6	57800.00	59542.84	16275.32
	0 0 9			17679.72
4	SUM =	2854600.00	2031584.50	503516.84
	MAX =	121500,00	78038.71	18854.33
·	MIN =	25000,00	25647,24	7044,40
	MPER=	19.00	26.00	18.00

FIGURE 16 Paper 12

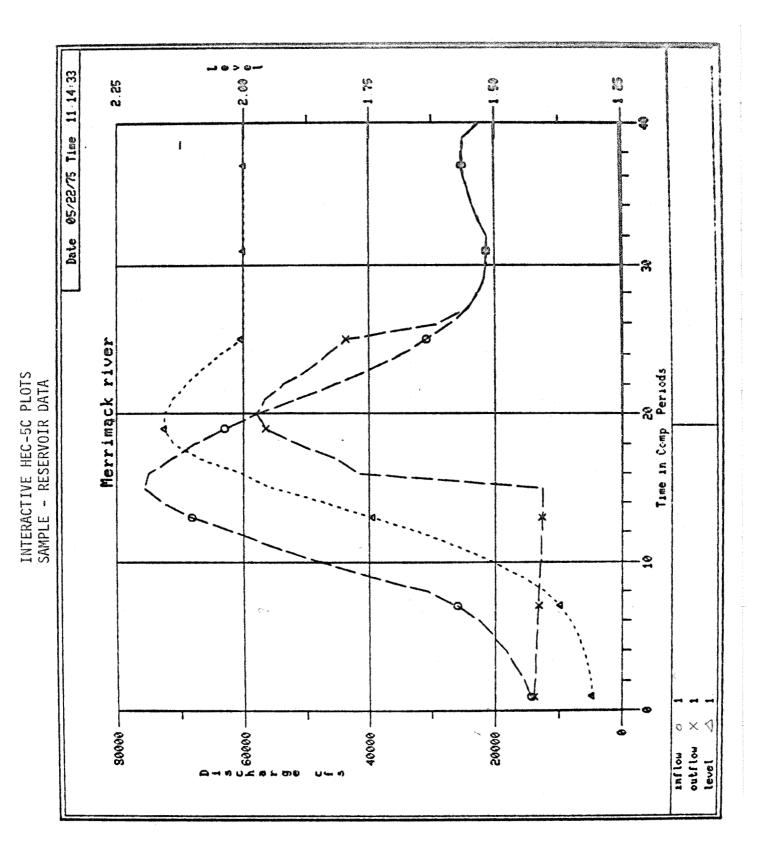
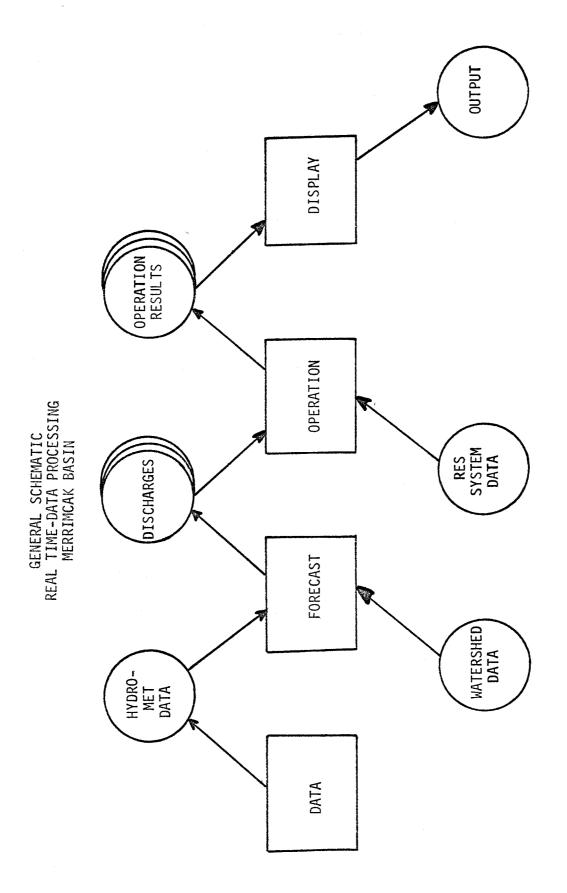



FIGURE 17

Technical Paper Series

- TP-1 Use of Interrelated Records to Simulate Streamflow TP-2 Optimization Techniques for Hydrologic Engineering TP-3 Methods of Determination of Safe Yield and Compensation Water from Storage Reservoirs TP-4 Functional Evaluation of a Water Resources System TP-5 Streamflow Synthesis for Ungaged Rivers TP-6 Simulation of Daily Streamflow TP-7 Pilot Study for Storage Requirements for Low Flow Augmentation TP-8 Worth of Streamflow Data for Project Design - A Pilot Study TP-9 Economic Evaluation of Reservoir System Accomplishments Hydrologic Simulation in Water-Yield Analysis **TP-10 TP-11** Survey of Programs for Water Surface Profiles **TP-12** Hypothetical Flood Computation for a Stream System **TP-13** Maximum Utilization of Scarce Data in Hydrologic Design **TP-14** Techniques for Evaluating Long-Tem Reservoir Yields **TP-15** Hydrostatistics - Principles of Application **TP-16** A Hydrologic Water Resource System Modeling Techniques Hydrologic Engineering Techniques for Regional **TP-17** Water Resources Planning **TP-18** Estimating Monthly Streamflows Within a Region **TP-19** Suspended Sediment Discharge in Streams **TP-20** Computer Determination of Flow Through Bridges TP-21 An Approach to Reservoir Temperature Analysis **TP-22** A Finite Difference Methods of Analyzing Liquid Flow in Variably Saturated Porous Media **TP-23** Uses of Simulation in River Basin Planning **TP-24** Hydroelectric Power Analysis in Reservoir Systems **TP-25** Status of Water Resource System Analysis **TP-26** System Relationships for Panama Canal Water Supply **TP-27** System Analysis of the Panama Canal Water Supply **TP-28** Digital Simulation of an Existing Water Resources System **TP-29** Computer Application in Continuing Education **TP-30** Drought Severity and Water Supply Dependability TP-31 Development of System Operation Rules for an Existing System by Simulation **TP-32** Alternative Approaches to Water Resources System Simulation **TP-33** System Simulation of Integrated Use of Hydroelectric and Thermal Power Generation **TP-34** Optimizing flood Control Allocation for a Multipurpose Reservoir **TP-35** Computer Models for Rainfall-Runoff and River Hydraulic Analysis **TP-36** Evaluation of Drought Effects at Lake Atitlan **TP-37** Downstream Effects of the Levee Overtopping at Wilkes-Barre, PA, During Tropical Storm Agnes **TP-38** Water Quality Evaluation of Aquatic Systems
- TP-39 A Method for Analyzing Effects of Dam Failures in Design Studies
- TP-40 Storm Drainage and Urban Region Flood Control Planning
- TP-41 HEC-5C, A Simulation Model for System Formulation and Evaluation
- TP-42 Optimal Sizing of Urban Flood Control Systems
- TP-43 Hydrologic and Economic Simulation of Flood Control Aspects of Water Resources Systems
- TP-44 Sizing Flood Control Reservoir Systems by System Analysis
- TP-45 Techniques for Real-Time Operation of Flood Control Reservoirs in the Merrimack River Basin
- TP-46 Spatial Data Analysis of Nonstructural Measures
- TP-47 Comprehensive Flood Plain Studies Using Spatial Data Management Techniques
- TP-48 Direct Runoff Hydrograph Parameters Versus Urbanization
- TP-49 Experience of HEC in Disseminating Information on Hydrological Models
- TP-50 Effects of Dam Removal: An Approach to Sedimentation
- TP-51 Design of Flood Control Improvements by Systems Analysis: A Case Study
- TP-52 Potential Use of Digital Computer Ground Water Models
- TP-53 Development of Generalized Free Surface Flow Models Using Finite Element Techniques
- TP-54 Adjustment of Peak Discharge Rates for Urbanization
- TP-55 The Development and Servicing of Spatial Data Management Techniques in the Corps of Engineers
- TP-56 Experiences of the Hydrologic Engineering Center in Maintaining Widely Used Hydrologic and Water Resource Computer Models
- TP-57 Flood Damage Assessments Using Spatial Data Management Techniques
- TP-58 A Model for Evaluating Runoff-Quality in Metropolitan Master Planning
- TP-59 Testing of Several Runoff Models on an Urban Watershed
- TP-60 Operational Simulation of a Reservoir System with Pumped Storage
- TP-61 Technical Factors in Small Hydropower Planning
- TP-62 Flood Hydrograph and Peak Flow Frequency Analysis
- TP-63 HEC Contribution to Reservoir System Operation
- TP-64 Determining Peak-Discharge Frequencies in an Urbanizing Watershed: A Case Study
- TP-65 Feasibility Analysis in Small Hydropower Planning
- TP-66 Reservoir Storage Determination by Computer Simulation of Flood Control and Conservation Systems
- TP-67 Hydrologic Land Use Classification Using LANDSAT
- TP-68 Interactive Nonstructural Flood-Control Planning
- TP-69 Critical Water Surface by Minimum Specific Energy Using the Parabolic Method

TP-70	Corps of Engineers Experience with Automatic Calibration of a Precipitation-Runoff Model
TP-71	Determination of Land Use from Satellite Imagery
	for Input to Hydrologic Models
TP-72	Application of the Finite Element Method to Vertically Stratified Hydrodynamic Flow and Water Quality
TP-73	Flood Mitigation Planning Using HEC-SAM
TP-74	Hydrographs by Single Linear Reservoir Model
TP-75	HEC Activities in Reservoir Analysis
TP-76	Institutional Support of Water Resource Models
TP-77	Investigation of Soil Conservation Service Urban Hydrology Techniques
TP-78	Potential for Increasing the Output of Existing Hydroelectric Plants
TP-79	Potential Energy and Capacity Gains from Flood
11-7)	Control Storage Reallocation at Existing U.S.
	Hydropower Reservoirs
TP-80	Use of Non-Sequential Techniques in the Analysis
11 00	of Power Potential at Storage Projects
TP-81	Data Management Systems of Water Resources
11-01	Planning
TP-82	The New HEC-1 Flood Hydrograph Package
TP-83	River and Reservoir Systems Water Quality
11 00	Modeling Capability
TP-84	Generalized Real-Time Flood Control System
	Model
TP-85	Operation Policy Analysis: Sam Rayburn
	Reservoir
TP-86	Training the Practitioner: The Hydrologic
	Engineering Center Program
TP-87	Documentation Needs for Water Resources Models
TP-88	Reservoir System Regulation for Water Quality Control
TP-89	A Software System to Aid in Making Real-Time
TD 00	Water Control Decisions
TP-90	Calibration, Verification and Application of a Two- Dimensional Flow Model
TP-91	HEC Software Development and Support
TP-91 TP-92	Hydrologic Engineering Center Planning Models
TP-92 TP-93	Flood Routing Through a Flat, Complex Flood
11-75	Plain Using a One-Dimensional Unsteady Flow
TP-94	Computer Program Dredged-Material Disposal Management Model
TP-95	Infiltration and Soil Moisture Redistribution in
11-75	HEC-1
TP-96	The Hydrologic Engineering Center Experience in
11 90	Nonstructural Planning
TP-97	Prediction of the Effects of a Flood Control Project
TP-98	on a Meandering Stream Evolution in Computer Programs Causes Evolution
11-90	in Training Needs: The Hydrologic Engineering
	Center Experience
TP-99	Reservoir System Analysis for Water Quality
TP-100	Probable Maximum Flood Estimation - Eastern
11 100	United States
TP-101	Use of Computer Program HEC-5 for Water Supply
	Analysis
TP-102	Role of Calibration in the Application of HEC-6
TP-103	Engineering and Economic Considerations in Formulating
TP-104	Modeling Water Resources Systems for Water
	Quality
	-

- TP-105 Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat
- TP-106 Flood-Runoff Forecasting with HEC-1F
- TP-107 Dredged-Material Disposal System Capacity Expansion
- TP-108 Role of Small Computers in Two-Dimensional Flow Modeling
- TP-109 One-Dimensional Model for Mud Flows
- TP-110 Subdivision Froude Number
- TP-111 HEC-5Q: System Water Quality Modeling
- TP-112 New Developments in HEC Programs for Flood Control
- TP-113 Modeling and Managing Water Resource Systems for Water Quality
- TP-114 Accuracy of Computer Water Surface Profiles -Executive Summary
- TP-115 Application of Spatial-Data Management Techniques in Corps Planning
- TP-116 The HEC's Activities in Watershed Modeling
- TP-117 HEC-1 and HEC-2 Applications on the Microcomputer
- TP-118 Real-Time Snow Simulation Model for the Monongahela River Basin
- TP-119 Multi-Purpose, Multi-Reservoir Simulation on a PC
- TP-120 Technology Transfer of Corps' Hydrologic Models
- TP-121 Development, Calibration and Application of Runoff Forecasting Models for the Allegheny River Basin
- TP-122 The Estimation of Rainfall for Flood Forecasting Using Radar and Rain Gage Data
- TP-123 Developing and Managing a Comprehensive Reservoir Analysis Model
- TP-124 Review of U.S. Army corps of Engineering Involvement With Alluvial Fan Flooding Problems
- TP-125 An Integrated Software Package for Flood Damage Analysis
- TP-126 The Value and Depreciation of Existing Facilities: The Case of Reservoirs
- TP-127 Floodplain-Management Plan Enumeration
- TP-128 Two-Dimensional Floodplain Modeling
- TP-129 Status and New Capabilities of Computer Program HEC-6: "Scour and Deposition in Rivers and Reservoirs"
- TP-130 Estimating Sediment Delivery and Yield on Alluvial Fans
- TP-131 Hydrologic Aspects of Flood Warning -Preparedness Programs
- TP-132 Twenty-five Years of Developing, Distributing, and Supporting Hydrologic Engineering Computer Programs
- TP-133 Predicting Deposition Patterns in Small Basins
- TP-134 Annual Extreme Lake Elevations by Total Probability Theorem
- TP-135 A Muskingum-Cunge Channel Flow Routing Method for Drainage Networks
- TP-136 Prescriptive Reservoir System Analysis Model -Missouri River System Application
- TP-137 A Generalized Simulation Model for Reservoir System Analysis
- TP-138 The HEC NexGen Software Development Project
- TP-139 Issues for Applications Developers
- TP-140 HEC-2 Water Surface Profiles Program
- TP-141 HEC Models for Urban Hydrologic Analysis

- TP-142 Systems Analysis Applications at the Hydrologic Engineering Center
- TP-143 Runoff Prediction Uncertainty for Ungauged Agricultural Watersheds
- TP-144 Review of GIS Applications in Hydrologic Modeling
- TP-145 Application of Rainfall-Runoff Simulation for Flood Forecasting
- TP-146 Application of the HEC Prescriptive Reservoir Model in the Columbia River Systems
- TP-147 HEC River Analysis System (HEC-RAS)
- TP-148 HEC-6: Reservoir Sediment Control Applications
- TP-149 The Hydrologic Modeling System (HEC-HMS): Design and Development Issues
- TP-150 The HEC Hydrologic Modeling System
- TP-151 Bridge Hydraulic Analysis with HEC-RAS
- TP-152 Use of Land Surface Erosion Techniques with Stream Channel Sediment Models

- TP-153 Risk-Based Analysis for Corps Flood Project Studies - A Status Report
- TP-154 Modeling Water-Resource Systems for Water Quality Management
- TP-155 Runoff simulation Using Radar Rainfall Data
- TP-156 Status of HEC Next Generation Software Development
- TP-157 Unsteady Flow Model for Forecasting Missouri and Mississippi Rivers
- TP-158 Corps Water Management System (CWMS)
- TP-159 Some History and Hydrology of the Panama Canal
- TP-160 Application of Risk-Based Analysis to Planning Reservoir and Levee Flood Damage Reduction Systems
- TP-161 Corps Water Management System Capabilities and Implementation Status