

HEC-5C, A Simulation Model for System Formulation and Evaluation

March 1974

Approved for Public Release. Distribution Unlimited.

TP-41

	REPORT DO	CUMENTATIO	ON PAGE			Form Approved OMB No. 0704-0188
existing data sources, g burden estimate or any Services and Communi subject to any penalty for	athering and maintaini other aspect of this co cations Directorate (07 or failing to comply with	ing the data needed, and Ilection of information, ir	d completing and revie including suggestions f is should be aware tha ion if it does not displa	ewing for rea at notw	the collection of ducing this burch withstanding an	ing the time for reviewing instructions, searching of information. Send comments regarding this den, to the Department of Defense, Executive y other provision of law, no person shall be DMB control number.
1. REPORT DATE (DD-	-ММ-ҮҮҮҮ)	2. REPORT TYPE			3. DATES C	OVERED (From - To)
March 1974 4. TITLE AND SUBTIT	1 E	Technical Paper		50	CONTRACT N	
		System Formulation	n and	Jd.	CONTRACT N	UMBER
Evaluation		, , , , , , , , , , , , , , , , , , ,		5b.	GRANT NUME	BER
				5c.	PROGRAM EL	LEMENT NUMBER
6. AUTHOR(S)				5d.	PROJECT NU	MBER
Bill S. Eichert						
				5e.	TASK NUMBE	R
				5F.	WORK UNIT N	NUMBER
7. PERFORMING ORC US Army Corps o Institute for Water Hydrologic Engine 609 Second Street Davis, CA 95616	f Engineers Resources eering Center (HI				8. perform TP-41	MING ORGANIZATION REPORT NUMBER
9. SPONSORING/MON	NITORING AGENCY N	IAME(S) AND ADDRES	S(ES)		10. SPONSO	DR/ MONITOR'S ACRONYM(S)
					11. SPONSO	DR/ MONITOR'S REPORT NUMBER(S)
 SUPPLEMENTAR' Presented at the H California. ABSTRACT Overview of generation 	lic release; distrib Y NOTES ydrologic Engine ralized computer	ering Center, Sem model (HEC-5) for	inar on Analytica	atio	n of multipu	anning, 26-28 March 1974, Davis, irpose reservoir system and
evaluating econon	nic consequences	for flood control a	nd hydropower p	ourpo	oses.	
15. SUBJECT TERMS simulation, flood of multipurpose reser	control, system an	•	nodeling, hydrop	owe	r, reservoir	regulation, flood damage reduction,
16. SECURITY CLASS			17. LIMITATION		18. NUMBER	19a. NAME OF RESPONSIBLE PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE	OF ABSTRACT		OF PAGES	
U	U	U	UU		34	19b. TELEPHONE NUMBER
	<u> </u>		<u> </u>			Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39-18

HEC-5C, A Simulation Model for System Formulation and Evaluation

March 1974

US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center 609 Second Street Davis, CA 95616

(530) 756-1104 (530) 756-8250 FAX www.hec.usace.army.mil Papers in this series have resulted from technical activities of the Hydrologic Engineering Center. Versions of some of these have been published in technical journals or in conference proceedings. The purpose of this series is to make the information available for use in the Center's training program and for distribution with the Corps of Engineers.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

HEC-5C, A SIMULATION MODEL FOR SYSTEM FORMULATION AND EVALUATION

by Bill S. Eichert²

1. Need for Hydrologic and Economic Simulation Model

Because of the great expenditure of funds required to construct structures to reduce flooding in a river basin, it is important to make sure that each project built is justified and is more desirable than any other alternative. In a complex river basin where numerous system components exist or are required to reduce flooding, the evaluation of each alternative requires a large number of calculations. Until recently all such evaluations had to be done by rather crude techniques or by laborious manual procedures, although a few simple computer models could be used on parts of the study. For example, a study made 10 years ago, required that 10 flood control reservoirs be considered in firming up the design of a few new reservoirs in a flood control system. The hydrology required in operating the system (after the historical flows throughout the basin were known) for several historical floods required three men working full time for about 4 months at a cost of about \$25,000. In spite of the large time and cost, many simplifying assumptions had to be made, no economic evaluation was made and no alternative solutions were investigated because of the manpower, funds, and time limitations. The same job can be done today with greater detail and accuracy with a simulation model such as HEC-5C with less cost and manpower and, in addition, each alternative can be studied with a few hours of work and a \$20 computer run which will show the average annual damages at all damage centers and the net system flood benefits. The initial work in assembling the reservoir data in the required computer format for the system requires about one man-week of work. The determination of the historical flows for all major floods of record throughout the system is the major task and has to be done by either manual or computer techniques, but could be done with about 3-man months of effort for this basin. The verification of the model on historical floods can be done in a couple of man months. Once the above tasks are completed, detailed simulations can be made easily and with little expense for numerous combinations of reservoirs, and other alternatives including nonstructural alternatives.

¹Presented at The Hydrologic Engineering Center, Seminar on Analytical Methods in Planning, 26-28 March 1974 at Davis, California.

²Bill S. Eichert, Director, The Hydrologic Engineering Center, 609 Second Street, Suite I, Davis, California 95616.

2. Purpose of Water Resources System Simulation Model - HEC-5C

This program was developed to assist in planning studies required for the evaluation of proposed changes to a system and to assist in sizing the system components for flood control and conservation requirements for each component recommended for the system. The program can be used in studies made immediately after a flood to calculate the preproject conditions and to show the effects of existing and/or proposed reservoirs on flows and damages in the system. The program should also be useful in selecting the proper reservoir releases throughout the system during flood emergencies in order to minimize flooding as much as possible and yet empty the system as quickly as possible while maintaining the proper balance of flood control storage among the reservoirs.

The above purposes are accomplished by simulating the sequential operation of various system components of any configuration for short interval historical or synthetic floods or for long duration nonflood periods, or for combinations of the two. Specifically the program may be used to determine:

a. Flood control and conservation storage requirements of each reservoir in the system.

b. The influence of a system of reservoirs, or other structures on the spatial and temporal distribution of runoff in a basin.

c. The evaluation of operational criteria for both flood control and conservation for a system of reservoirs.

d. The average annual flood damages, system costs, and excess flood benefits over costs.

e. The determination of the system of existing and proposed reservoirs or other structural or nonstructural alternatives that results in the maximum net benefit for flood control for the system by making simulation runs for selected alternative systems.

3. Computer Requirements

The program, written in FORTRAN IV, was developed on a UNIVAC 1108 computer with 64,000 words of storage. The UNIVAC version can simulate the operation of 15 reservoirs, 25 control points, 5 diversions, and 9 power plants, using up to 50 time periods in each flood or nonflood event. Dimension limits have been increased for a CDC 7600 computer which allows the simulation of 35 reservoirs, 75 control points, 11 diversions, and 9 power plants for up to 100 time periods for each runoff event.

4. General Capabilities of Program

a. Configuration of system - any system configuration may be used as long as dimension limits are not exceeded for number of reservoirs, number of control points, number of diversions, etc.

(1) Reservoirs which have flood control storage may be operated to minimize flooding at any number of downstream control points.

(2) Reservoirs with conservation storage will be operated for their own requirements (power or low flow) and can be operated for any number of downstream control points.

(3) Reservoirs may be easily deleted from the system.

(4) Reservoirs in system are kept in balance (in the same degree of trouble) as much as possible.

b. Outflows can be specified for any number of reservoirs for any or all time periods and program will adjust other reservoir releases as .necessary; otherwise program will determine all reservoir releases.

c. Effects of forecast errors can be evaluated by specifying the number of forecast periods and a corresponding contingency allowance (i.e., error in forecasting).

d. Local flows can be calculated from observed discharges and reservoir releases; system operation can be performed or omitted after flows are determined.

e. The multiflood option may be used to operate the system for a continuous period of record (for example, 5 events each containing 4 years of monthly data may be used for a total of 20 years). Also a mixture of computational intervals may be used such as running a monthly operation for a few years (assuming no routing if desired) and then operating for daily or hourly flows during a major flood (with detailed flood routing) and then back to a weekly or monthly routing interval, etc. An unlimited number of events can be simulated in this manner.

f. Evaporation and a monthly variation in reservoir operating levels can be considered in the routings if desired.

g. Voluminous output can be suppressed by requesting only a summary output. Detailed output for a few selected control points can also be obtained.

h. Stream routing may be accomplished by the following methods:

(1) Modified Puls, Working R/D, Muskingum, Straddle Stagger, and Tatum.

(2) Each routing method may be used several times for each reach.

(3) Actual releases that are routed by nonlinear (storage-outflow is not a straight line) methods (Modified Puls or Working R/D) use a linear approximation for determining reservoir releases.

(4) Natural and cumulative local flows are calculated.

i. Reservoir routing is based on:

(1) Accounting methods (release is determined based on desired operation, storage is equal to inflow less outflow plus previous storage).

(2) Surcharge routing - when desired release is greater than physical outlet capacity, the arithmetical method, which is a trial and error method, is used which will provide the same results as the Modified Puls method.

(3) Emergency releases - when desired release for current period plus channel capacity releases for future periods (up to limit of foresight specified) would cause reservoir to exceed maximum flood storage in current or future periods, a release is made for the current period (up to channel capacity or the outlet capacity) so that the reservoir does not exceed top of flood pool in future period.

j. Multifloods

(1) Read and operate an unlimited number of floods for a reservoir system.

(2) The series of floods can each start at different reservoir storages or from same storages or can be continued using the storages from the previous flood.

(3) Operate up to 9 ratios of any or all floods read.

(4) Long floods may be routed by dividing the flood into flow events which are each less than the dimension limit of the time array. This may be done by manually setting in several sets of flow data (with each less than the dimension limit) or by allowing the computer to generate separate floods (when the data read exceeded the dimension limit). A minimum of a 10 period overlap between floods is used to preserve continuity.

(5) Period of record analysis may be made by analyzing a series of floods consisting of monthly or weekly data during nonflood periods and daily or multihourly data during flood periods.

k. Diversions

(1) Diversions can be made from any reservoir or control point. Only one diversion from each control point or reservoir is allowed.

(2) Diversions can be made to any downstream control point or reservoir or out of the system.

(3) viversions may be routed using any linear method allowed and multiplied by a constant representing the percent of return flow.

(4) Types of diversions

(a) Diversions can be a function of inflows.

(b) Diversions can be functions of reservoir storages.

(c) Diversions can be constant.

(d) Diversions can be constant for certain periods such as 50 cfs for January, 40 cfs for February, etc.

(e) Diversions can be made for all excess water above the top of conservation pool up to the diversion pipe capacity.

5. Reservoir Operational Criteria

a. Reservoirs are operated to satisfy constraints at individual reservoirs, to maintain specified flows at downstream control points, and to keep the system in balance. Constraints at individual reservoirs are as follows:

(1) When the level of a reservoir is between the top of conservation pool and the top of flood pool, releases are made to attempt to draw the reservoir to the top of conservation pool without exceeding the designated channel capacity at the reservoir or at downstream control points for which the reservoir is being operated.

(2) Releases are made equal to or greater than the minimum <u>desired</u> flows when the reservoir storage is greater than the top of buffer storage, and or equal to the <u>required</u> flow if between level one and the top of buffer pool. No releases are made when the reservoir is below

level one (top of inactive pool). Releases calculated for hydropower requirements will override minimum flows if they are greater than the controlling desired or required flows.

(3) Releases are made equal to or less than the designated channel capacity at the reservoir until the top of flood pool is exceeded, then all excess flood water is dumped if sufficient outlet capacity is available. If insufficient capacity exists, a surcharge routing is made. Input options permit channel capacity releases (or greater) to be made prior to the time that the reservoir level reaches the top of the flood pool if forecasted inflows are excessive.

(4) The reservoir release is never greater (or less) than the previous period release plus (or minus) a percentage of the channel capacity at the dam site unless the reservoir is in surcharge operation.

b. Operational criteria for specified downstream control points are as follows:

(1) Releases are not made (as long as flood storage remains) which would contribute to flooding at one or more specified downstream locations during a predetermined number of future periods except to satisfy minimum flow and rate-of-change of release criteria. The number of future periods considered is the lesser of the number of reservoir release routing coefficients or the number of local flow forecast periods.

(2) Releases are made, where possible, to exactly maintain downstream flows at channel capcity (for flood operation) or for minimum desired or required flows (for conservation operation). In making a release determination, local (intervening area) flows can be multiplied by a contingency allowance (greater than 1 for flood control and less than 1 for conservation) to account for uncertainty in forecasting these flows.

c. Operational criteria for keeping a reservoir system in balance are as follows:

(1) Where two or more reservoirs are in parallel operation above a common control point, the reservoir that is at the highest index level, assuming no releases for the current time period, will be operated first to try to increase the flows in the downstream channel to the target flow. Then the remaining reservoirs will be operated in a priority established by index levels to attempt to fill any remaining space in the downstream channel without causing flooding during any of a specified number of future periods. (2) If one of two parallel reservoirs has one or more reservoirs upstream whose storage should be considered in determining the priority of releases from the two parallel reservoirs, then an equivalent index level is determined for the tandem reservoirs based on the combined storage in the tandem reservoirs.

(3) If two reservoirs are in tandem (one above the other), the upstream reservoir can be operated for control points between the two reservoirs. In addition, when the downstream reservoir is being operated for control points, an attempt is made to bring the upper reservoir to the same index level as the lower reservoir based on index levels at the end of the previous time period.

6. Average Annual Flood Damage Evaluation

Average annual damages (AAD) or damages for specific floods can be computed for up to 9 different categories for any or all control points (nonreservoirs) using one or more ratios for each of several historical or synthetic floods. They will be computed for the following three conditions:

a. Natural or unregulated conditions.

b. Regulated conditions due to the reservoir system assumed.

c. Full regulation at those reservoir sites (uncontrolled local flows).

Damages calculated for base conditions (normally natural flows) using selected floods and ratios are adjusted to average annual damages, computed by integrating the base conditions damage frequency curve or by using a predetermined average annual damage. The corresponding adjustment is printed out to help verify the appropriateness of the floods and ratios selected in integrating the damage curve for base conditions. Damages for modified conditions are based on the cumulative product of the damages associated with the modified peak flow for each flood (for a certain damage center) times the probability interval assigned to each flood from the base condition integration. See figure 1 for an example of the AAD integration. The damage for the uncontrolled local flows are also calculated in a similar manner to the modified conditions.

The damage reduction due to the proposed system is based on the difference between the AAD for the base conditions and the modified conditions. If an existing reservoir system exists the damage reduction can be based on the difference between the base conditions and the modified conditions where the base conditions were determined from another simulation run (existing reservoirs only).

A separate set of damage data can be used if the modified condition damages do not follow the base condition discharge-damage curves as would be the case for a levee, channel improvement or nonstructural alternative such as flood proofing, relocation, purchase, flood plain zoning, etc.

7. Multiflood Selection and Operation

The selection of the floods used in operating the system, is of paramount importance in the determination of the average annual damages. The floods selected must generate the peak flows at the damage centers (particularly the key ones) which represent the full range of the flowfrequency-damage relationship for base conditions as well as for modified conditions.

Even using all historical floods of record may introduce some bias in the average annual damage if most historical floods centered over a certain part of the basin by chance and not over other areas. For instance one dam site may have several severe historical floods while another dam site immediately adjacent to that area may, due to chance, not have had any severe floods.

While it is possible in the program, HEC-5C, to use only a single flood and several ratios of that flood in computing average annual damages, this procedure could introduce considerable bias in the results. It would be far better to use several historical floods with storm centerings throughout the basin and to use several ratios of those floods to obtain flows at the damage centers representing the full range of the flow-frequency-damage relationship for base conditions and for regulated conditions. A good idea of the adequacy of the selected floods and ratios for reproducing base conditions can be obtained by looking at the correction factor printed out at each damage center for each damage category. This correction factor is the ratio of average annual damage computed by integrating the input frequency-damage curve (or from input on DA card) to the average annual damage computed by assigning probability intervals to the system flows computed by HEC-5C. When the correction factor is close to 1.0, it represents the base conditions very well, but may not represent the modified condition if only one or two regulated floods cause damage. It is desirable to have one flood that does not cause damages so that the smallest flood with damage doesn't receive too large a probability interval. It is also necessary to have several modified historical floods produce damages spread out over the modified frequency curve since the integration of the damage-frequency curve is based on rectangular blocks for each flood using the probabilities from the base condition curve.

Studies are currently being made at The Hydrologic Engineering Center to help establish criteria for the selection of the floods and ratios to use.

8. Evaluation of Alternative Reservoir Systems

If this computer program is to be used to evaluate proposed reservoirs. then the data cards should be assembled so that all proposed reservoirs are included, even if some of them would serve as alternatives of others. Control points should be selected and coded for all damage centers, control points for reservoir operation, and information points. Once the entire system is coded, a single card can be used to delete reservoirs from the system for each alternative system selected. This card can be used to delete any reservoir in the system except for downstream tandem reservoirs (these reservoirs can be deleted by removing the reservoir cards). Flood damages for a single flood (or average annual flood damages) can be evaluated at any number of control points. Reservoir costs can also be evaluated by showing how the costs vary with reservoir storage based on the top of flood control storage. If costs and average annual flood damages are calculated, the net system flood benefits will be printed out for each alternative system operated. By careful selection of alternative systems, the system that produces the maximum net flood benefits can be determined by a reasonable number of separate computer runs.

9. Evaluation of Nonreservoir Alternatives

Structural and nonstructural alternatives to certain reservoirs can also be evaluated in the system simulation with or without reservoirs in the system. The existence of a levee or channel improvement can be reflected in the reservoir system operation by changing the channel capacity if appropriate. At the present time only one set of routing criteria can be read for each reach and thus the natural and modified routings use the same criteria. This limitation requires that when the routing criteria is different between natural and modified conditions, the natural flows must be calculated by a separate computer run and entered on cards for modified conditions. Costs of nonreservoir alternatives can be shown as functions of the channel discharges. For a given design discharge an interpolation is made to determine the capital cost applicable to the control point. The average annual flood damages can be evaluated in the same manner as for reservoir alternatives. However, the zero damage point can be automatically changed to the design discharge for modified conditions if a control point cost card is read. Two sets of damage cards can be read as an alternative to the above procedure, in representing natural and regulated conditions, so that the entire damage curve can be changed for regulated conditions.

Nonstructural alternatives (flood proofing, flood plain zoning, etc.) can be handled in the same manner as structural alternatives (usually by using two sets of damage cards), however the nonstructural alternative will require defining the upper limit of the flood proofing, zoning, etc. as a channel capacity or design discharge.

10. Use of HEC-5C in Flood Control System Selection

As can be seen in table 1, quite a few reservoir systems have been simulated using HEC-5. Most of these systems have used the flood control version which was released in May 1973. The version which also includes conservation operation (HEC-5C) has not been officially released yet, but it has been used for flood control simulation and average annual damages have been calculated for the Susquehanna, Red River of the North, and the Grand (Neosho) River basins. Monthly conservation operation has been used on the Pajaro River, the Red River of the North, the Hudson River Basin and several hypothetical systems. Of the studies conducted to date by HEC using this model, five of them have been for preliminary planning studies and have been used for the sole purpose of determining the regulated flows throughout the basin for various historical and synthetic floods. Each one of these basins also had a HEC-1 rainfall runoff data model developed in order to calculate the runoff from synthetic floods and to use rainfall to get a better distribution of runoff for historical floods. The study of the 15 reservoir system for the Trinity River was made in connection with Design Memorandum studies for the Tennessee Colony reservoir in order to determine the flood control storage in that downstream project (14 reservoirs above it) and to evaluate various alternative plans of channel improvements below the project. The work on the existing five reservoir Merrimack basin is expected to use HEC-5 in a real-time operation mode using forecasting routines and automatic data collection by July of 1975.

The Susquehanna River Basin has 12 reservoirs existing or under construction, and another 22 potential reservoir sites are being investigated along with other structural and nonstructural alternatives in a preliminary planning study being conducted by the Baltimore District office of the Corps, the HEC and a private consulting firm Anderson-Nichols of Boston, Massachusetts. The decision for selection of the desired system will make important use of the average annual damage reduction and net benefits of the alternative systems which will be printed out for each alternative evaluated by HEC-5C.

11. Model Data Requirements and Output

The input data requirements for HEC-5C can be minimal for very preliminary planning studies or it can be very detailed for modeling existing systems. The minimum data requirements are as follows:

a. General Information (4 cards)

(1) Title cards for Job (3 cards)

(2) Six miscellaneous items including the number of periods of flow data, time interval of flows, etc.

b. Reservoir Data (4 cards per reservoir)

(1) Reservoir capacities for top of conservation and top of flood control elevations.

(2) Downstream control points for which reservoir is operated

(3) Reservoir storage/outflow tables

c. Control Point (including reservoirs) Data (3 cards per control point)

- (1) Identification number and title
- (2) Channel capacity
- (3) Channel routing criteria
- d. Flow Data

Inflow or local flow data for each control point for one or more historical or synthetic floods.

Additional input information useful for planning studies:

a. Average Annual Damage Data (a minimum of 4 cards per damage center)

Peak discharge-damage-frequencies tables

b. Cost Data (1 card per control point)

(1) Reservoir capital costs vs storage or

- (2) Control point capital costs vs channel discharge and
- (3) Capital recovery factor
- (4) Annual operation and maintenance costs

The output available from the program includes

a. Listing of input data

b. Results of system operation arranged by downstream sequence of control points.

c. Results of system operation arranged by sequence of time periods

d. Summary of flooding for system

e. Summary of reservoir releases and control point flows by period

f. Summary of conservation operation if monthly routing was made

g. Summary of maximum flows, storages, etc., for each flood event

h. Summary of maximum and minimum data for all floods

i. Summary of average annual damages

j. Summary of system costs (annual and capital) and net benefits. Examples of some of the summaries are shown as figures 2-12.

12. Strategy for Selection of Alternative Systems

For systems with only a few possible components the strategy for determining the best alternatives can be quite simple since each possible alternative can be evaluated. For systems with a large number of possible alternatives, the strategy can be difficult to predetermine and the best available procedure to follow may be to simply select alternatives to be evaluated one at a time following a careful review of information obtained from previous runs.

Certain economic criteria must be observed for the final system selected. The incremental cost of the new components of the proposed system must be less than the damage reduction accomplished by the new components. In addition, each project must be justified on the basis of the last increment added. That is to say, the cost of each project must be less than the difference between the average annual damages of the proposed system with and without that project.

A certain minimum performance criteria is also necessary. This philosophy says that if a certain level of protection can not be provided by the system then it would be better not to build any structures than to give the public a sense of false security.

With the above ideas in mind it seems necessary to first determine a minimum system that will provide an acceptable level of protection. Next see if various alternatives can be used to get a larger value of the maximum net benefits. When the maximum net benefits appears to be obtained (and it is positive) then each project should be deleted in turn to see if that project prevented more damages than it cost to build. The process of maximizing the net benefits by selecting alternatives and evaluating using HEC-5C, at present, can only be based on good engineering judgment. After a few studies are completed using this new tool, perhaps more definite guidance will be available.

13. Future Use of Model for Multipurpose Systems

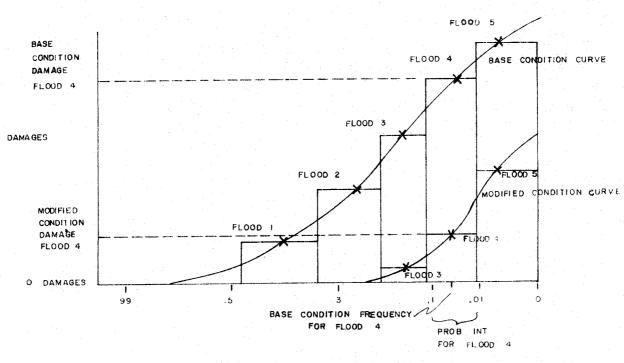
The current version of the program does have capabilities for multipurpose operation of reservoir systems, but does not have multipurpose economic evaluation routines. While the program can operate for low flows at one or more downstream points, for flood control operation and for individual hydropower requirements, the conservation capabilities have not been tested on a sufficient number of systems to provide the necessary confidence. When a few more systems have been successfully operated for conservation and flood control together, that confidence will be obtained.

The major additions necessary for the future are in the area of hydropower systems, multipurpose benefit evaluation and extensive testing.

14. Conclusions

It appears that the HEC-5C simulation model should be a useful tool for planners to evaluate the effects of water resource projects and nonstructural alternatives in most river basins because it can accurately, quickly, and inexpensively simulate the hydrologic and economic responses of the system. While much of the detailed analysis of hydrology, reservoir regulations, and economics can be accomplished by the model, considerable engineering ingenuity will be required to insure that the proper data is used in the model, that the model is giving valid results, and that the proper sequence of alternatives are evaluated in order to determine the best plan for the reduction of damages in a basin.

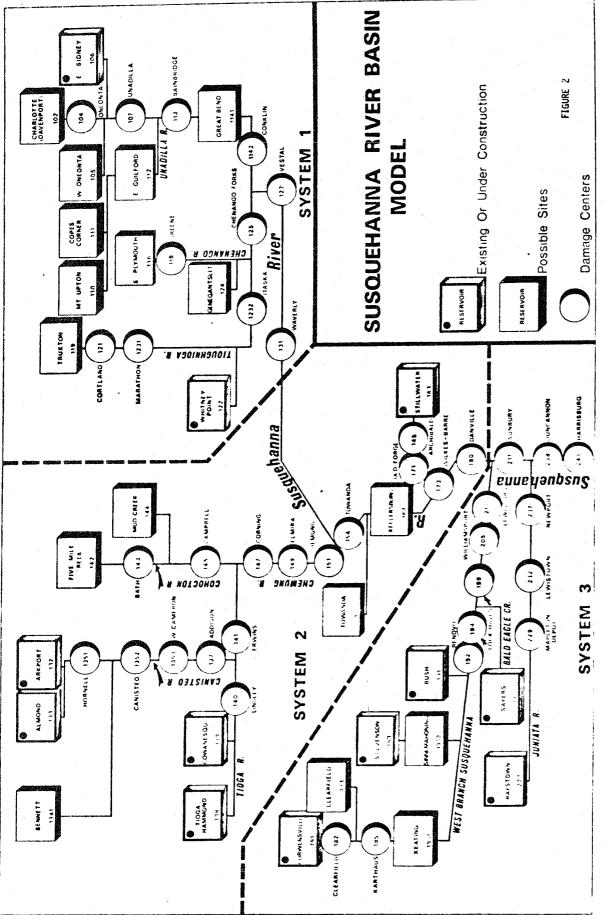
It also seems probable that the model will be useful for simulating multipurpose reservoir operation. In this connection considerable work will be required to develop economic and social parameters to allow multipurpose evaluation of the system alternatives similar to flood control.


Considerable experience and research will be required to develop procedures, techniques and/or optimization subroutines which will enable the program to be used in the most efficient manner in the selection of the best multipurpose alternatives for the basin.

SYSTEMS SIMULATED BY HEC-5 TABLE 1

	River Basin	Location	liumber Reservoirs	Number Control Points (including res)	Time Increment (hrs)	Approximate Drainage Area square miles
• •	Trinity	Texas	15	28	24	18,000
2.	ilerrimack	ilew England	2		m	4,400
ŕ	Susquehanna	Pennsylvania	34	75	4	24,000
4.	Schulkill	Pennsylvania	12	26	m	1,900
ۍ ۲	Potomac	Virginia Maryland Pennsylvania	56	66	2	12,000
	Red River of Worth	Minnesota	13	56	24 720	40,000
.7	Feather	California	e	4	2	5,900
3	Pajaro	California	m	G	720	400
о. О	Grand (Neosho)	0klahoma	24	86	2	5,900
10.	James	Virginia	22	35	ę	6,800
	Red River 1st Phase	Texas Arkansas	14	28	Q	12,000
12.	hudson	New York Pennsylvania	m	Q	720	500

DAMAGE - FREQUENCY CURVES



EXCEEDENCE FREQUENCY

FIGURE 1. EXAMPLE OF AAD INTEGRATION FOR MULTIPLE FLOODS

(Important values for flood 4 are indicated)

Note: This figure is not for same example as figures 2-12.

16788 16289 16152 17719 17719 17505 5 20090 77316 133676 166074 195267 11618 5 20090 77316 145711 15151 22106 7 70446 54478 5013 54478 5013 2106 7 70446 5416 5513 54478 5013 2106 7 70446 50807 261478 5013 24498 2283 7 20000 70460 201460 7030 20135 22843 7 20000 70730 20135 27433 20134 7 20000 70730 20135 20135 23433 7 20000 70730 20135 23433 20120 7 24001 70730 20135 23433 20120 7 24001 70730 20135 23433 20120 7 24014 170714 201440 133507 20134 7 20015 20134 170744					•										
25000 20000 <td< th=""><th>- - C</th><th>838</th><th>828</th><th></th><th>194</th><th>1771</th><th>1750</th><th>1766</th><th>550</th><th>510</th><th></th><th></th><th></th><th></th><th></th></td<>	- - C	838	828		194	1771	1750	1766	550	510					
15 2000 2011 2	5	2087	3358	1007	6607 4110	9526	2106	4501	6687 7505	8667					
55 70416 04436 54113 54478 50345 54478 54341 2177 10070 100	8.	9640	8603	6457	4874	3267	1.63.8	3690	107070	7 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					
True Contr Contr <thc< td=""><td>N O</td><td>048</td><td>133</td><td>10</td><td>5447</td><td>5036</td><td>46.67</td><td>4333</td><td>021</td><td>74.8</td><td></td><td></td><td></td><td></td><td></td></thc<>	N O	048	133	10	5447	5036	46.67	4333	021	74.8					
319 20000 20040 2		2 7 1	100	L L	0	575	283	127	983	848					
0795 5795 7995											¥6≢	168	HAXH Maxe	4110	
1117 24055 17055 17075 17071 25135 17665 17655 <		0.60	2080	2065	046	2023	2002	017	190	768				000	
0178 347515	5 F 7 7 7 7	5100	0000	3703	7073	0013	2667	5137	7462	9747					
0178 37430 71371 71974 71313 11952 10765 7175 40410 40754 0178 37430 34613 67011 37614 51643 60034 67055 20764 71313 0178 37603 67011 37614 15713 17945 20024 20174 7164 136410 40754 1293 55005 7016 77614 57603 60701 17763 20045 50754 50034 50012 101754 1293 557015 55246 57034 50035 20035 20035 20035 101974 1293 57016 57844 57934 50035 40031 101754 40774 1293 57935 57935 50035 40035 41053 11944 1294 57946 57946 57946 57945 50035 40764 1294 113940 113940 113940 113940 113941 119443 10414 1294 57946 57946 57946 57946 57944 57944 2794 57946 57946 113940 113940 113942 110414 2794 67	5 P		1110	5225	0551	0764	9.750	7642	4751	1454					
0176 37430 37471 37640 20174 21900 27774 21901 27774 21901 27774 21901 27774 20010 20014 2001 <td< td=""><td></td><td>8000 80 400</td><td>1422</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>1101</td><td>5113</td><td>3433</td><td>1995</td><td>0766</td><td>9115</td><td></td><td></td><td></td><td></td><td></td></td<>		8000 80 400	1422	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1101	5113	3433	1995	0766	9115					
093 20906 7000	210	740	100	- 4	7 0 7 0 7 0	5.07	19 F	585	635	314					
0758 20906 20901 20050 20174 21900 20174 21900 20174 21900 20174 21900 20174 21900 20174 21900 20174 21900 20174 21900 20174 21900 20174 21900 20146 20014 20146 20014 20146 20144 20014 21000 20144 2100 20146 20144 20014 20144 20014 20144 20014 20144 20014 2		1 r -		n U	7 U - C	529	129	452	28.6	131					
P33 20006 20007 20040 20014 21000 2701 21000 2701 21000 2701 20014 21000 259346 24765 269346 29346 20014 25945 2100 57201 53274 59014 19703 109411 19703 109411 25945 2100 57301 53274 59014 19703 109411 19703 109411 2100 57301 53274 59013 5100 52944 48103 44651 419341 2100 57301 53274 59013 51004 50044 51004 50044 2100 57301 5310 5210 52244 48103 4653 44651 41944 21130 11304 113940 11396 11396 11396 11396 11396 2101 70034 5100 50044 5100 50044 5100 50044 5100 2101 70041 50044 5100 50044 51004 51346 12576 2113 7017 100412 11396 11396 11396 11396 114141 2113 7019 11394 11396 11396											vGæ	841	MAXE	0764	
7031 20016 20016 20017 20046 20014 21010 27714 20040 27041 27044 2100 27044 2101 27044 2101 27044 2101 27044 2101 27044 2101 27044 21014 26044 200346 27044 2100 100541 11054 100541 11054 100541 100641 100641 100641													SN I W	20	
7733 77313 77403 23746 22765 26075	000	060	0.8.0	2065	046	023	002	017	190	747					
3754 37511 35780 57804 35007 50016 75914 75944 75914 75944 75914 75944 75914 75944 75914 75944 75914 75944 75914 75944 75914 75544 7554 77154 75150 75150 75150 75150 75150 75154 113764 113960 113754 113764 113960 113754 113764 113960 113754 113764 113960 113755 112100 105726 44073 706154 706164 706154 70	129	6590	9478	3611	6910	9769	2349	4746	1209			نہ جنے ب			
3790 21573 17129 15970 14091 11997 10945 10124 3710 55644 5915 52160 72154 66526 10125 44031 1697 41637 41937 41934 113740 113441	723	2321	3574	428o	4285	3493	2007	0034	7814	2000					
4401 6120 73279 70015 75150 72154 64001 61697 44053 41934 2704 57944 57944 57944 5190 50294 46003 46033 46033 46033 46033 46033 46033 46033 46033 46033 46033 46033 41934 11344 11244 11457 11424 11244 11444 11144	339	1251	9312	7512	5870	4954	3088	1947	2.960	1220					
9448 57544 55734 5584 5593 52160 50294 46303 4653 4663 7703 4663 7703 4703 7703 4704 7703 4704 7703 4704 7703 4704 7703 4704 4704 4704 4704 4704 4704 4704 4704 4704 4704 4704	420	828	327	100	5,55	215	6929	6662	6019	6169					
3777 113304 113340 113540 113540 113540 113540 113540 113540 113540 113540 113764 112100 1067726 106776 106776 106776 106776 106776 106776 106776 106776 106776 106776 106776 106776 10714 12701 12401 12701 12401 12701 12401 12701 12401 12727 12401 12727 12401 12726 12741 12726 12726 12741 12726 12741 12727 12741 12727 12471 12727 12471 12727 12471 12727 12471 12727 12471 12727 12471 12727 12471 12727 12471 12777 12471 12777	949	750	568	393	216	620	830	620	405	193					
3762 113794 113764 112146 112145 112145 112145 112145 112144 112145 112146 112146 112146 112146 112146 112146 112146 112146 112146 112146 112146 112146 112146 112146 112146 112146 112146 112146 1121666 112166 112166												\$226	XX	4289	
2707 FF097 3471 -2018 -55101 -65693 -113455 -11411 -11591 112457 -5147 2424 24346 -14111 -12145 -21421 24217 2441 21146 2708099 2056 24474 2474 2708099 2056 24217 24474 2474 2708099 20573 23452 <	ę	1309	310	1276	0421	5 2 3	001	(IN	2002	
231 -197211 -201741 -20660 -20895 -24701 -9941 3120 144101 -12145 -24701 502 76442 78316 60067 61842 64707 64777 89947 32746 27050 502 76442 78316 60067 61842 64707 65677 64797 89947 92066 74100 72145 518 7518 7515 5518 2517 2454 2474 2714 2479 270809 510 7041 7351 64797 8797 89947 79266 778 7052 779 774 2474 2717 2474 2474 2474 2474 2474 2474 2474 2474 2474 2474 2479 778 778 7951 14464 7174 2479 2778 7052	270	60.44	227		10155	14	10/07	11202		106.52					
9306 -78573 -594123 -41129 -24701 -9941 5120 14527 247.4 2731 52745 52745 9700 65720 50721 54665 61842 61704 67371 69009 72303 9510 5514 51840 63706 65507 61742 64704 72303 2516 2518 2518 2518 2512 2515 2512 2506 2517 2464 7441 2427 2426 2427 2474 2477 2479 2500 2440 7332 2157 1611 1590 1764 2474 2477 2479 26007 7332 2157 1611 1590 1764 2474 2479 2479 2479 26007 7237 26427 25472 2426 2442 2479	323	4921	6174	20589	0895	000	84072	11040							
9700 67720 50721 54945 58650 61842 63704 67371 69909 72303 4502 76316 60047 83706 65697 67371 69909 72303 2516 2418 2518 2517 2518 2517 72066 2500 2441 2427 2436 2434 2712 2404 2500 2441 7441 7212 2518 2517 2427 2414 2500 2441 723 2434 2744 2744 2747 2403 2600 7332 2157 7421 25472 2424 2417 2725 2701 55407 2512 25472 2494 1572 4217 2573 4602 25007 25624 23299 2347 2427 2427 4607 75307 25472 24926 2422 24926 2427 2497 4607 75407 25472 24926 2424 24926 2427 24926 2474 2474	930	7857	5412	4112	2470	66.	3120	1000	244				•		
4502 76442 78316 80.067 81840 83706 8597 87797 9947 92065 FLUOD PERTODS= 270809 2516 2518 2517 2512 2509 2506 FLUOD PERTODS= 270809 2500 2440 2312 2454 2474 2474 2474 2479 270809 2650 2441 2427 2426 2436 2454 2479 2605 2701 2332 2157 1750 1764 13631 14644 2474 2479 2701 2332 2157 1750 12499 13631 14644 2474 2479 2774 17845 17849 12499 13631 14647 2479 1577 2600 0 0 1766 2436 2447 2479 1573 2440 2317 25972 24426 2472 2492 2479 2453 2454 2440 2317 25972 2454 2474 2479 2665 10573	979	572	72	9 A	865	8	470	5 F 7 F		1 C N C					
2518 2518 2518 2517 2515 2512 2509 2506 FLUDD PERTODS= 270809 2500 2464 7441 2427 2436 2434 2474 2474 2474 2500 2464 7441 750 1611 1590 1766 2474 2474 2474 2440 2332 2157 1947 1750 1611 1590 1766 2474 2411 5607 7093 6558 9953 11270 12499 13631 14644 15722 2400 23507 25405 25791 25971 25795 25492 24217 2427 25007 25405 2371 25795 25497 2426 2474 2472 4602 25007 25405 2371 25795 25492 24223 2427 26007 2941 20 11560 1611 1590 1766 2237 3052 4211 5607 7033 6528 9941 0 0 0 0 20 0 0 0 0 0 0 0 0 0 2440 2456 2456 </td <td>450</td> <td>679</td> <td>31</td> <td>90</td> <td>184</td> <td>37</td> <td>569</td> <td>179</td> <td>- 0 - 0 - 0</td> <td>206</td> <td></td> <td></td> <td></td> <td></td> <td></td>	450	679	31	90	184	37	569	179	- 0 - 0 - 0	206					
2518 2518 2518 2517 2515 2512 2500 2401 2516 2518 2517 270809 2500 2441 2427 2426 2435 2435 2474 2474 2401 2600 2461 2411 1590 1750 1611 1590 1764 2474 2474 2421 2461 2411 2427 2426 2436 2474 2474 2421 2403 1750 1611 1590 1764 270809 270807 25007 25624 2373 14648 15722 4701 17845 17860 12499 13631 14648 4702 25007 25472 24926 23810 2427 2400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2440 2435 2436 2445 2474 2474 2411 5507 2426 2436 2474 2474 2411				ł							LUOD	ERIODS		23	
2510 2517 2515 2515 2515 2500 2500 2500 2440 2337 2441 2427 2426 2436 2454 2479 2440 2337 2157 1941 1750 11.1 1590 1766 1751 2449 1572 2750 2367 2427 2426 2434 2371 2427 2427 4711 5507 2547 2426 2434 2371 2421 2427 4602 25007 25405 25472 2454 2377 2426 2437 4602 25771 26795 25472 2426 2437 2427 2427 4607 7332 2454 2472 2472 2472 2479 2479 2440 2332 2454 2474 2479 2479 2479 2440 2332 2454 2479 2479 2479 2479 241 5607 7093 1766 2479 2479 2479 2607 7093 6	J	ي: نو									OTAL	L =	708	10	
2440 2332 2157 1947 7150 1411 1590 1764 2474 2474 2474 2474 6776 1561 1611 1590 1766 1711 2722 3052 6776 17845 18894 19961 2701 2414 2722 6776 17845 18894 19961 21795 22624 23299 24217 4602 25007 25971 25971 25972 24926 2427 24926 2427 400 0 0 0 0 0 0 0 0 0 0 2440 2332 2454 2474 2474 2479 2452 2479 2440 2332 2456 2426 2426 2427 2426 2452 2411 5607 7093 6556 9941 1590 1766 2237 3052 201 7093 6556 9941 1590 1766 2237 3052 201 7093 6556 9953 99		- 1 - 7	ب اس	- -		2	÷.	51	С У	50					
4211 5607 7093 8558 9953 11270 12409 13631 14666 2552 3052 6776 17845 18804 19973 11270 12499 13631 14666 15722 6776 17845 18804 19973 11270 12499 13631 14666 15722 6776 17845 18804 19971 21955 25472 24209 23810 24217 0 0 0 0 0 0 0 0 1573 2440 2332 2157 1947 2427 24926 2437 2474 2479 2440 2332 2157 1947 1750 1611 1590 1766 2237 3052 2411 5607 1766 2474 2474 2479 2479 2479 2611 560 1611 1590 1766 2237 3052 000 0 0 200 0 0 0 0 0 0 0 0 0	27	2 14	Dи	33 70	1 U 7 P	ν. τ.	5 1	ດ ເ	17	11					
6776 17845 18804 19941 2175 22624 23209 23610 24217 4602 25007 25071 21755 22624 23209 23610 24217 4602 25007 25071 21755 22624 23209 23610 24217 0 0 0 0 0 0 0 0 0 2440 2332 2454 2474 2426 2436 2474 2479 2440 2332 2454 2474 2474 2474 2479 2440 2332 2441 1750 1611 1590 1766 237 2237 1947 1750 1611 1590 1766 2237 3052 4211 5607 7093 9941 0 0 0 0 0 0	្តិ	200	n o	ម	n y				n i Na i	5 1 5 1 7 1					
4602 25007 25795 25472 24926 2423 23451 0 0 0 0 0 0 0 0 0 2440 2332 2157 1947 1750 1611 1590 1766 2479 2440 2332 2157 1947 1750 1611 1590 1766 2237 3052 4211 5607 7093 6558 9941 0 <td>677</td> <td>7.84</td> <td>880</td> <td>600</td> <td>0.87</td> <td>1 2 4</td> <td>- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1</td> <td>5 0 5 0 7 1 7 1</td> <td>(</td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	677	7.84	880	600	0.87	1 2 4	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	5 0 5 0 7 1 7 1	(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	460	500	540	572	587	579	547	1 0 1 1 0 1	- n - n - n	1 U U U					
0 0 0 0 0 0 0 0 440 2332 2118 2427 2426 2435 2474 2479 440 2332 2157 1947 1750 1611 1590 1766 2237 3052 211 5607 7093 6558 9941 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•						•	1	1 (1 1	ר ו ר	0	057			
440 7332 2455 2426 2436 2436 2454 2474 2479 211 5507 7093 6558 9953 9941 1590 1766 2237 3052 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4	-	0		1				0	C		- 			
211 560 1750 1611 1590 1766 2237 3052 211 5607 7093 6558 9953 9941 0 0 0 0 0 0					N 1	42	5	45	47	5					
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 - 1 -	n (r. (3 > L	5	9	5	7.6	23	05					
COLFRONTAL OUTPUT EXAMPLE SEQUENTIAL OUTPUT	⊶ ∪	5	50	ŝ	5	37 0-				0					
EXAMPLE SEQUENTIAL OUTPUT	0	> O	> 0) O	> c	> c	> <	.		•					
FLOOD PERIODS A ROL FROM RES R305 SEQUENTIAL OUTPUT	•	•	•		>	>	þ		0	•					
SEQUENTIAL OUTPUT							н, ,				1000 0	8100S	9	ina u	
SEQUENTIAL											- - -	2 . 4	٦.	٦.	
						EXAMP									
							: : : : : :								

17

FIGURE 3

COMPUTATION INTERVAL IN HOURSE

SINGLE FLOOD SUMMARY COPY.

÷ ***** FLUOD NUMBER

4

TAN

SUSQUEHANNA'RIVER BASIN - MUD CREEK AND TRUXTON RESERVOIRS Average Annual Damage Heduction Evaluation - Existing < Study Reservoirs Using Multiples DF Danville SPF - Damage Data in 1963 Dollars

REG

XXX

100

EXAMPLE FLOOD SUMMARY

FIGURE

EXCEEDED TOP F.C.

CAP.	12500	6000	1000	5200	2000	2000	2000	2000	2000	1900	2000	50000	2000	5000	2000	3000	1000	100	
CHAN CAP.																			
REL	12500	6006	787	4607	6448	4243	2000	11536	8545	3866	38807	106203	0002	3953	6363	10545	22409	0 3 7	
MAX																			
PER. LAST PER. MAX INFLOW	49807	39822	2368	2843	8499	4243	5169	11556	8595	9639	38867	106263	6433	18553	6323	10525	22409	3784	
MAX								an La chuirte	_		. *	-							
PER.	0	C	33		o	, C	•	0		C	J	J	Ŭ	Ŭ	U L		U		
LAS1		, ,	•			-		•	·				•			~	G	0	
T PER		Ŭ	-	Ŭ			Ĭ				-		Ĩ					Ŧ	
191		•			~	~	~							•	•			-	1
MAX LEVEL	1,654	1.716	2,163	1.901	1,000	1.000	1,738	1.000	1,000	1,588	1.000	1.030	1,480	1,539	1.000	1.000	1.000	1.421	i
G MAX	2	e e		M	0	G	đ	0	0		0	0		N		U	0	5	m
MAX STG	83472	68329	1769	13353			49804			20401			39958	48932				5245	331263
STOR	5000	1000	10	150	C	•	38000	0	0	1700	O	0	27000	2000	0		0	343	STORAGE
	EX	EX	×	×	50	SD	ŝ	US	US	EX	SD	C3	C S	EX	US .	SN	US	EX.	
	RES	RES			RES	RES								- 1	8) 11 11 11 11 11 11 11 11 11 11 11 11 11	REG	. 1	i	HAX SYBTEN
on	GNOWM		RES	S	α ¥		8	E RES	TA RES	Y RES	ORD R	ND RE	RES	PT RES	ИТН В		RES	ER RES	x ,
RESERVOIRS	TIDGA-HAMMOND	COWANESQUE	ARKPORT	ALMOND RES	BENNETTS CK	FIVEMILE CK	MUD CK RES	CHARLOTTE	W. CNEONTA	SIDNEY	112 E. GUILFORD RES	GREAT BEND RES	TRUXTON RES	WHITNEY PT	8. PLYMOUTH	GENEGANTSLET	TOWANDA RES	STILLWATER	
ā	138	139 (132	133	1341 _	142	144	102	1 201	106 E.	112	141	119	122	116	124	155	163	
	, Loc	, Loc	, Loc	ĴOT "	1 Jon T	DO.	roc.	DO T	jo,	Ĵ. Toč	LOC	r o <u>č</u> 1	- DOT	٢٥٢	ĴOT	r oc	501	jo T	

EXAMPLE RESERVOIR SUMMARY FLOOD 6 (80% SPF) FIGURE 5

.

1

0.9
00
FLOODS
۲
5
MULTY
FOR
VAL UES
VAL
X¥H

ţ

	I NDEX						•																									
WEIGHTED		2																				•										•
-	AV 25.9 +		1787		r C	r. r	n (Ð.		-	М	2342 +	ີ ເ	2	x + > <	C F	0 (5	S	-0	2360 +		ŝ	3224 +		1		r 6		0	18	
	С С	15667 *	1 1 1 1	030	2010	1110		5-1-0	r i	790	243	497	224				6 L 7 L 2 2	1 1 1 7	202	925	202	341	994	213333 *	A 1-4	05836	1010	- 0 - 0		ງ ເ ງ ເ	2638	
	95.9	7.012	2				°.≪ ∎	<u> </u>	,	2	°,	•	ြ				•	-	-	ç	2	۰.	°.	7.017					•	•	•	
	AT Q	102814	58	5	8961	7938	C M	7 a 1 c		5	441	š	500	59	20	9846		r c	C 7	<u>.</u>	90	3	075	248226 *	705	088	80	2247			5	
	ы а	7,01	01	0	5	0	0	ċ	**		ď,	5	5	5	0	10	ē		2	50	5	• 01	5	7.017	5.		0	5	Ĉ	4 C 9 C 9		
	MAX REG 0 *	÷	809	0	¢.	ο	ហ	α	50		~ 1	•	Ф.	3	0	4	*	2) (v٩	0	T	671	n (50 20 20	072	~	æ	97			
	<u>لما</u>	7,049	7,012	7,012	7,013	7,012	7.013	7.013	7.014			7 10 7 1	1.016	1.015	7,017	7.014	7.016	7.011				10.14	510.7	، می		7.018	21012	7,013		7.024	Ň.	
									and the second sec									control of the same		1			התאם						RE		1.1.1	
			11 11 11 11 11 11 11 11 11 11 11 11 11	ANISTED		х н	OZIACH	BATH	CAMPRELL	CURNING	FI MTOA				NAUILL	AINTA	CONKLIN	CORTLAND	-	TASK	Ś						AKCHUALD	LD FOR	WILKES-BAR	DANVILLE		
					n r	n :	171	143	145	147	071	, u			101	-	1.142	121	m	1212	• •					J L	1 1 1		173	160	,	
	<u>.</u>) (L) (L) (L		3 C	100			roc	roc r	1 00				ה ב היוב י			100	LOC	1 DC) () (LOC LOC	•	

EXAMPLE FLOOD SUMMARY FLOODS 1-7 RATIOS OF SPF (.2, .3, .4, .5, .6, .8, 1.0) FIGURE 6

20

COPYs

កម

	Ω¢.	REGERVUIRS	FLD	FLD.PER	MIN STG MIN	N LEVEL *	FLD.PER	MAX STG MAX	MAX LEVEL *	FLD, PER	MAX REL	CHAN CAP
LOC.	138	TIDGA-HAMMOND RES E	EX 7	.001	2000	1.000 *	7.026	110556	1 . 8 R 0 . 4	7.034	12500	12500
L OC	139	CUWANESQUE RES	EX 7	.001	1000	1.000 *	7.023	91061	1.958 *	7.028	6000	0009
LCC LCC	132	AHKPURT RES	EX 7	.001	10	1.000 *	7.013	2387	2.220 *	7.014	766	1000
LOC L	133	ALMOND RES	EX 7	.001	150	1.000 #	7,019	14800	2.000 *	6.029	4607	5200
LOC	1341	BENNETTS CK RES	US7	.001	0	1.000 +	. 7.001	C	1.000 *	7.012	10624	2000
Ĵ LOC	142	FIVENILE CK RES	US	.001	0	1.000 *	7.001	C	1.000 *	7.013	5304	2000
LUC	777	MUD CK RES	1 2	100.	38000	1.000 *	7.027	53197	1.950 *	7.030	2000	2000
1 OC	102	CHARLOTTE RES	US7	1001	•	1,000 *	7.001	0	1 . 000 *	7.013	14446	2000
roc	105	W, ONEONTA RES	US 80	100.	• • • •	1.000 *	1001	C	1.000 *	7.014	10744	2000
LOC.	106	E, SIDNEY RES	EX 7	1004	1700	1.000 *	7.034	25354	1.744 *	6, 053	3886	1900
, TOC	112	E, GUILFORD RES	7 20	100.	0	1.000 *	7.001	C	1 • 000 ×	7.013	48584	2000
FOC	1141	GREAT BEND RES	US 1	1001	0	1.000 *	1.001	0	1.000 *	7,016	132864	5000
LOC.	119	TRUXTON RES	13 7	100.	27000	1.000 +	. 7.033	43544	1.613 *	3.030	2294	2000
ĴO',	122	WHITNEY PT REG	EX.	100.	5000	1.000 *	. 7.035	61557	1.694 *	7.060	4217	5000
100	116	S. PLYMOUTH RES	us '7	100.1	G	1.000 *	1.001	C	1.000 *	7.012	7905	2000
roc	124	GENEGANTSLET RES	US 7	1001		1.000 *		c	1.000 *	7.013	13157	3000
jo j	155	TOWANDA RES	1	1001	0	1.000 *	7.001	0	1.000 *	7,012	26012	1000
DO LOC	163	STILLWATER RES	EX	1001	343	1.000 *	120.7	6608	1.537 #	7.060	001	400

i

ł

EXAMPLE RESERVOIR SUMMARY FLOCUS 1-7 FIGURE 7

EXPECTED ANNUAL FLOOD DAMAGE SUMMARY Control Pcint Number 180

1079-1

1

UATA																																					
4 H 4 0																																					
																									0	>											
													1						,						DAMACE												
	1		:		;		1				ŀ								;		ł			1						İ		i			\$		
	I		:		i		1		I		I		í		Ť.		1		!		,	щ		!		R						1					
2	*				l				i				ļ						1			TYPE		:	ION												
•	1				1				1 1 1		i :				÷							5 BY			NDT1			;		1							
DHGE	5				!						i				1				1			DANAGES			CO.	ΥΡΕ	•			1		***					
ā					1				1		¥ .		† †.				:		1			AC 1		;	BAG	TY F				Ì		•					
	С	000.			.000		000	000	000	000	000	000	000	.000	000	000	000	000	000	TYPE	00.	NUA					87	°.	79		3		33			r	
DMGE	96	141.	I A 5 .	52.	2 H O .	353.	120.	780.	139.00	550	781.	514.	215	1392.	929.	466.	767.	071.	604.	S BY	- 8 -	GE A	m	ť		TYP	11	127	125	130	16	116	21		107		
		_	0		6				. 0					-(2014)	-	16	0 187	5	0 226			VERA(•		_				¢			- - 0		
กร	.000	-	00	00	00	00	00	00	000	0	0	00.	00	0.0.	00.	00.	000	00	00	PA		4				4 N S	7.87		24.79		•	٠	n.		24 - 10 2 - 1 - 20	r ••	
i	96	141	5	238	280	353	420	780	1139	1829	2781	ň	12	1392	3929	6466	18767	1071	26.04	NNUAL		BYSTEM				Z		-10 	10				•	4		3	
-	~	~	~	~	-	~	\sim	-	-	~ .		~	\sim	00	~	0	0	00	00	× ⊔		i i				-	275		57	U 7	10	900	0 1	0	2	2	
5	1080	12000	1320	14500	15800	1720	1860	2010	2160	2340	2500	27000	0002	31400	3400	3600	3870	4120	007	ERAG		XISTING				a	•	•		-	Ū		•	041	DANAGE DANAGE		
		-	-					••					İ	•-•	•••	•••			7	AVE		ž				ň	110	867	1823	1778	134	645	509556	ć			
KEO	000	006	680	460	330	230	160	100	010	270	027	015	012	008	005	004	200	003	005			!		10		Ľ.	101	5	201	254	305	401	505		S × S	•	
ы. 	•		•	•		•	•	•	•	•	•	•	•	•	÷	•	•		•	i				İ	1	• NO		N		7	ŝ	9	~		EXST		
				1					1							1											ļ		. 1				1		1		

EXAMPLE AVERAGE ANNUAL DAMAGE EXISTING SYSTEM FIGURE 8

MUDIFIED CONDITIONS FLOOD DAMAGES

UNCONTROLLED LOCAL FLOW FLOOD DAMAGES 306.70 51.27 T1PE 1. 7.02 325,13 38.46 79,55 **89** 33,84. TYPE 1 2.63 1 883.69 883.69 88.64 79.55 79.5 325.13 306.70 31.79 SUN ÷ PROH INT PHOB INT 010 .010 DAMAGE REDUCTION CORRECTION FACTOR .006 DAMAGE REDUCTION .275 070 .0.06 100 . 275 .040 .001 551 107 , 167 5 85276 255828 341104 426380 131400 215526 257576 3428990 4283990 0-9-0-0-6 170552 213190 FLO# FLOW . Í , • 02 NO. or ni m ŝ 0 P 3 ŝ 3 i 2 i

EXAMPLE AVERAGE ANNUAL DANAGES EXISTING SYSTEM PLUS TWO PROPOSED RESERVOIRS FIGURE 9

ł

1

SUMMARY UF SYSTEM'S EXPECTED ANNUAL FLCCD DAMAGES 1. N. W. S.

			就就是我说成了就是这次就是我们是 人名卡尔 化丁丁丁		UAMANE REDUCTION	在共大政政会会议的
CONTROL POINT	* BASE (FXIST) * CUNDITION * CUNDITION	MOUIFIED CONDITIONS	UNCONTROL LOCAL COND	HUDIFIED		RESIDUAL
145	* 236.17	189,59	169,23	46.58	66,94	20.36
147	75,02	64 ° 64	66.33	5,36	8,69	3.34
149	49°00	84,844	83,12	14.65	15,97	1,32
151	58.02	56,25	51,60	1.77	6 . 42	4.55
121	20.89	7.04	¢ 9	13,85		3.2
232	* 61.83	62,15	50,58	- 32	11,25	11,56
125	* 87.14	84 52	74.23	2462	12.91	10.29
127	* 305.64	304.70	263,46		42,18	41.24
31	* 91.96	93,96	84,94	-2,00	7.02	9,02
54	234.00	223,32	203,999	10.77		19,34
173	* 3421,06	3300,77	3231,41	120,29	189,65	69 , 35
180	338,49	325,13	306.70	13,36	31,79	18.43
TUTAL	* 5029.40	4801.54	4592,40	227.86	437,00	209.14

EXAMPLE FIGUE 10

ì

1 .]

•

ļ

1.

j

Ţ

.

and a second a second

i

-

İ

ł

1111 t

1

ļ

•

24

.....

i

SUMMARY OF SYSTEM COSTS

BRR.69 **我这些天然不是不是不是是我的,我也是我的我的,我们也不是不是不是不是我的,我们就是这些是不是不是不不不不不不不不不不不不不** 00.00 00.00 00,00 0.00 0000 0.00 0.00 00.00 0.00 0.0.0 0.00.0 1267.07 00.00 TDTAL Annual Cost * -00"0-+ 00.0-00"0-00*0-66^{*}69 00.00-00.0-00.0--0°0°0-16.94 00.0-00.00-0**0°0-**00.00-ANNUAL O, M, BR COST * 00.00 00.00 00.00 00*0 0.00 0.00 00.00 0000 0.00 0,00 0.00 00.0 17400.00 11900,00 CAPITAL COST * RESERVUIR * RESERVOIR PRCJECT TYPE ł ----į 4 * CONTRUL 125 127 144 119 149 180 1232 154 173 147 151 131 145 121 t 1 i ļ

ţ

EXAMPLE CAPITAL COSTS FIGURE 11

i. j

i

1

ļ 1

			2155,76		88.700) - - -	-1927 ₆ 90												
E SUMMARY DSTS)	29300, 00	139.92		04.6500	1047 1047		BENEFITS												
9Y9TEM ECUNUMIC COST AND PERFORMANCE SUMMARY (Exclusive of existing system CO3TS)	TOTAL SYSTEM CAPITAL COST + + + + + +	TOTAL SYSTEM ANNUAL OPERATING Maintenance, and repair cost # * *	TOTAL SYSTEM ANNUAL COST * * * * * *	ANNUAL DAMAGES - EXISTING	AVERAGE ANNUAL DAMAGES – PROPOSED SYSTEM Averace Annual Damage Deduction		AVERAGE ANNUAL SYSTEM NET DAMAGE, REDUCTION BENEFITS		a state of the sta							EXAMPLE NET BENEFITS	FIGURE 12		
	l												1						
	a			and the second second second second second second second second second second second second second second second							and a far wanted by a second sec		 1 - 1 - 1 - 1 - 1						
										•									

Technical Paper Series

- TP-1 Use of Interrelated Records to Simulate Streamflow TP-2 Optimization Techniques for Hydrologic Engineering TP-3 Methods of Determination of Safe Yield and Compensation Water from Storage Reservoirs TP-4 Functional Evaluation of a Water Resources System TP-5 Streamflow Synthesis for Ungaged Rivers TP-6 Simulation of Daily Streamflow TP-7 Pilot Study for Storage Requirements for Low Flow Augmentation TP-8 Worth of Streamflow Data for Project Design - A Pilot Study TP-9 Economic Evaluation of Reservoir System Accomplishments Hydrologic Simulation in Water-Yield Analysis **TP-10 TP-11** Survey of Programs for Water Surface Profiles **TP-12** Hypothetical Flood Computation for a Stream System **TP-13** Maximum Utilization of Scarce Data in Hydrologic Design **TP-14** Techniques for Evaluating Long-Tem Reservoir Yields **TP-15** Hydrostatistics - Principles of Application **TP-16** A Hydrologic Water Resource System Modeling Techniques Hydrologic Engineering Techniques for Regional **TP-17** Water Resources Planning **TP-18** Estimating Monthly Streamflows Within a Region **TP-19** Suspended Sediment Discharge in Streams **TP-20** Computer Determination of Flow Through Bridges TP-21 An Approach to Reservoir Temperature Analysis **TP-22** A Finite Difference Methods of Analyzing Liquid Flow in Variably Saturated Porous Media **TP-23** Uses of Simulation in River Basin Planning **TP-24** Hydroelectric Power Analysis in Reservoir Systems **TP-25** Status of Water Resource System Analysis **TP-26** System Relationships for Panama Canal Water Supply **TP-27** System Analysis of the Panama Canal Water Supply **TP-28** Digital Simulation of an Existing Water Resources System **TP-29** Computer Application in Continuing Education **TP-30** Drought Severity and Water Supply Dependability TP-31 Development of System Operation Rules for an Existing System by Simulation **TP-32** Alternative Approaches to Water Resources System Simulation **TP-33** System Simulation of Integrated Use of Hydroelectric and Thermal Power Generation **TP-34** Optimizing flood Control Allocation for a Multipurpose Reservoir **TP-35** Computer Models for Rainfall-Runoff and River Hydraulic Analysis **TP-36** Evaluation of Drought Effects at Lake Atitlan **TP-37** Downstream Effects of the Levee Overtopping at Wilkes-Barre, PA, During Tropical Storm Agnes **TP-38** Water Quality Evaluation of Aquatic Systems
- TP-39 A Method for Analyzing Effects of Dam Failures in Design Studies
- TP-40 Storm Drainage and Urban Region Flood Control Planning
- TP-41 HEC-5C, A Simulation Model for System Formulation and Evaluation
- TP-42 Optimal Sizing of Urban Flood Control Systems
- TP-43 Hydrologic and Economic Simulation of Flood Control Aspects of Water Resources Systems
- TP-44 Sizing Flood Control Reservoir Systems by System Analysis
- TP-45 Techniques for Real-Time Operation of Flood Control Reservoirs in the Merrimack River Basin
- TP-46 Spatial Data Analysis of Nonstructural Measures
- TP-47 Comprehensive Flood Plain Studies Using Spatial Data Management Techniques
- TP-48 Direct Runoff Hydrograph Parameters Versus Urbanization
- TP-49 Experience of HEC in Disseminating Information on Hydrological Models
- TP-50 Effects of Dam Removal: An Approach to Sedimentation
- TP-51 Design of Flood Control Improvements by Systems Analysis: A Case Study
- TP-52 Potential Use of Digital Computer Ground Water Models
- TP-53 Development of Generalized Free Surface Flow Models Using Finite Element Techniques
- TP-54 Adjustment of Peak Discharge Rates for Urbanization
- TP-55 The Development and Servicing of Spatial Data Management Techniques in the Corps of Engineers
- TP-56 Experiences of the Hydrologic Engineering Center in Maintaining Widely Used Hydrologic and Water Resource Computer Models
- TP-57 Flood Damage Assessments Using Spatial Data Management Techniques
- TP-58 A Model for Evaluating Runoff-Quality in Metropolitan Master Planning
- TP-59 Testing of Several Runoff Models on an Urban Watershed
- TP-60 Operational Simulation of a Reservoir System with Pumped Storage
- TP-61 Technical Factors in Small Hydropower Planning
- TP-62 Flood Hydrograph and Peak Flow Frequency Analysis
- TP-63 HEC Contribution to Reservoir System Operation
- TP-64 Determining Peak-Discharge Frequencies in an Urbanizing Watershed: A Case Study
- TP-65 Feasibility Analysis in Small Hydropower Planning
- TP-66 Reservoir Storage Determination by Computer Simulation of Flood Control and Conservation Systems
- TP-67 Hydrologic Land Use Classification Using LANDSAT
- TP-68 Interactive Nonstructural Flood-Control Planning
- TP-69 Critical Water Surface by Minimum Specific Energy Using the Parabolic Method

TP-70	Corps of Engineers Experience with Automatic Calibration of a Precipitation-Runoff Model
TP-71	Determination of Land Use from Satellite Imagery
	for Input to Hydrologic Models
TP-72	Application of the Finite Element Method to Vertically Stratified Hydrodynamic Flow and Water Quality
TP-73	Flood Mitigation Planning Using HEC-SAM
TP-74	Hydrographs by Single Linear Reservoir Model
TP-75	HEC Activities in Reservoir Analysis
TP-76	Institutional Support of Water Resource Models
TP-77	Investigation of Soil Conservation Service Urban Hydrology Techniques
TP-78	Potential for Increasing the Output of Existing Hydroelectric Plants
TP-79	Potential Energy and Capacity Gains from Flood
11-7)	Control Storage Reallocation at Existing U.S.
	Hydropower Reservoirs
TP-80	Use of Non-Sequential Techniques in the Analysis
11 00	of Power Potential at Storage Projects
TP-81	Data Management Systems of Water Resources
11-01	Planning
TP-82	The New HEC-1 Flood Hydrograph Package
TP-83	River and Reservoir Systems Water Quality
11 00	Modeling Capability
TP-84	Generalized Real-Time Flood Control System
	Model
TP-85	Operation Policy Analysis: Sam Rayburn
	Reservoir
TP-86	Training the Practitioner: The Hydrologic
	Engineering Center Program
TP-87	Documentation Needs for Water Resources Models
TP-88	Reservoir System Regulation for Water Quality Control
TP-89	A Software System to Aid in Making Real-Time
TD 00	Water Control Decisions
TP-90	Calibration, Verification and Application of a Two- Dimensional Flow Model
TP-91	HEC Software Development and Support
TP-91 TP-92	Hydrologic Engineering Center Planning Models
TP-92 TP-93	Flood Routing Through a Flat, Complex Flood
11-75	Plain Using a One-Dimensional Unsteady Flow
TP-94	Computer Program Dredged-Material Disposal Management Model
TP-95	Infiltration and Soil Moisture Redistribution in
11-75	HEC-1
TP-96	The Hydrologic Engineering Center Experience in
11 90	Nonstructural Planning
TP-97	Prediction of the Effects of a Flood Control Project
TP-98	on a Meandering Stream Evolution in Computer Programs Causes Evolution
11-90	in Training Needs: The Hydrologic Engineering
	Center Experience
TP-99	Reservoir System Analysis for Water Quality
TP-100	Probable Maximum Flood Estimation - Eastern
11 100	United States
TP-101	Use of Computer Program HEC-5 for Water Supply
	Analysis
TP-102	Role of Calibration in the Application of HEC-6
TP-103	Engineering and Economic Considerations in Formulating
TP-104	Modeling Water Resources Systems for Water
	Quality
	-

- TP-105 Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat
- TP-106 Flood-Runoff Forecasting with HEC-1F
- TP-107 Dredged-Material Disposal System Capacity Expansion
- TP-108 Role of Small Computers in Two-Dimensional Flow Modeling
- TP-109 One-Dimensional Model for Mud Flows
- TP-110 Subdivision Froude Number
- TP-111 HEC-5Q: System Water Quality Modeling
- TP-112 New Developments in HEC Programs for Flood Control
- TP-113 Modeling and Managing Water Resource Systems for Water Quality
- TP-114 Accuracy of Computer Water Surface Profiles -Executive Summary
- TP-115 Application of Spatial-Data Management Techniques in Corps Planning
- TP-116 The HEC's Activities in Watershed Modeling
- TP-117 HEC-1 and HEC-2 Applications on the Microcomputer
- TP-118 Real-Time Snow Simulation Model for the Monongahela River Basin
- TP-119 Multi-Purpose, Multi-Reservoir Simulation on a PC
- TP-120 Technology Transfer of Corps' Hydrologic Models
- TP-121 Development, Calibration and Application of Runoff Forecasting Models for the Allegheny River Basin
- TP-122 The Estimation of Rainfall for Flood Forecasting Using Radar and Rain Gage Data
- TP-123 Developing and Managing a Comprehensive Reservoir Analysis Model
- TP-124 Review of U.S. Army corps of Engineering Involvement With Alluvial Fan Flooding Problems
- TP-125 An Integrated Software Package for Flood Damage Analysis
- TP-126 The Value and Depreciation of Existing Facilities: The Case of Reservoirs
- TP-127 Floodplain-Management Plan Enumeration
- TP-128 Two-Dimensional Floodplain Modeling
- TP-129 Status and New Capabilities of Computer Program HEC-6: "Scour and Deposition in Rivers and Reservoirs"
- TP-130 Estimating Sediment Delivery and Yield on Alluvial Fans
- TP-131 Hydrologic Aspects of Flood Warning -Preparedness Programs
- TP-132 Twenty-five Years of Developing, Distributing, and Supporting Hydrologic Engineering Computer Programs
- TP-133 Predicting Deposition Patterns in Small Basins
- TP-134 Annual Extreme Lake Elevations by Total Probability Theorem
- TP-135 A Muskingum-Cunge Channel Flow Routing Method for Drainage Networks
- TP-136 Prescriptive Reservoir System Analysis Model -Missouri River System Application
- TP-137 A Generalized Simulation Model for Reservoir System Analysis
- TP-138 The HEC NexGen Software Development Project
- TP-139 Issues for Applications Developers
- TP-140 HEC-2 Water Surface Profiles Program
- TP-141 HEC Models for Urban Hydrologic Analysis

- TP-142 Systems Analysis Applications at the Hydrologic Engineering Center
- TP-143 Runoff Prediction Uncertainty for Ungauged Agricultural Watersheds
- TP-144 Review of GIS Applications in Hydrologic Modeling
- TP-145 Application of Rainfall-Runoff Simulation for Flood Forecasting
- TP-146 Application of the HEC Prescriptive Reservoir Model in the Columbia River Systems
- TP-147 HEC River Analysis System (HEC-RAS)
- TP-148 HEC-6: Reservoir Sediment Control Applications
- TP-149 The Hydrologic Modeling System (HEC-HMS): Design and Development Issues
- TP-150 The HEC Hydrologic Modeling System
- TP-151 Bridge Hydraulic Analysis with HEC-RAS
- TP-152 Use of Land Surface Erosion Techniques with Stream Channel Sediment Models

- TP-153 Risk-Based Analysis for Corps Flood Project Studies - A Status Report
- TP-154 Modeling Water-Resource Systems for Water Quality Management
- TP-155 Runoff simulation Using Radar Rainfall Data
- TP-156 Status of HEC Next Generation Software Development
- TP-157 Unsteady Flow Model for Forecasting Missouri and Mississippi Rivers
- TP-158 Corps Water Management System (CWMS)
- TP-159 Some History and Hydrology of the Panama Canal
- TP-160 Application of Risk-Based Analysis to Planning Reservoir and Levee Flood Damage Reduction Systems
- TP-161 Corps Water Management System Capabilities and Implementation Status