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SYSTEM SIMULATION FOR INTEGRATED USE
OF HYDROELECTRIC AND THERMAL POWER GENERATION

by

Augustine J. Fredrichl and Leo R. Beard2

INTRODUCTION

The devélopment of hydroelectric generating facilities in regions
where power demands are met primarily by thermal generatiﬁg facilities
is usually based on the assumption that the hydroelectric generation
will be used for supplying power primarily during peak demand periods.
As a result of this assumption, the planning of hydroelectric facilities
requires consideration of both the capacity and energy components of
power supply. The demands for electrical energy can vary greatly from
minute~to-minute, day-to-day, and month-to-month. The generation of
electrical energy must be varied accordingly because the storage of
large amounts of electrical energy for instant use is not technologically
feasible. Hydroelectric generation is particularly useful in meeting
the sudden, short-term demands for power because hydroelectric units
can be placed ‘on~line"” with little or no preparation, provided that
the capacity of the hydroelectric installation is large enough to meet
the demands, and provided that water is available in a sufficient quan-

tity to meet the energy requirements associated with these demands.

lAugustine J. Fredrich, Chief, Planning Analysis Branch, The Hydrologic
Engineering Center, Davis, California

zLeo R. Beard, Technical Direc
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The relationship between capacity requirements and the associated
energy requirements is not constant because of variations in the length
of periods of peak capacity demands. However, the energy requirements
for peaking operation of hydroelectric projects often are assumed to
follow very closely the seasonal variation in total energy requirements
in a power supply area. Thus, from a knowledge of the capacity available
from hydroelectric installations and a knowledge of seasonal variation
in total energy requirements for a given power supply area, it is possible
to determine the capacity and energy demands on a hydroelectric system.
In some cases, hydrologic conditions do not permit the generation
of hydroelectric energy in exact conformance with the seasonal variations
in power demands--particularly during periods of adverse streamflow
conditions. Since the rate of water availability does not correspond
exactly to the rate of water need for power generation, water must
often be stored in anticipation of future periods of high need. These
periods may be hours, days or even years away. The exact amount of
storage needed cannot be determined, since future demands and supplies
cannot be forecasted accurately. In order to provide sufficient contin-
gency to assure that an adequate supply of electrical energy will be
available in the future, combinations of past supply and demand events
are examined, and rules are formulated that would give a high degree of
assurance of dependable supplies. In a system of many hydroplants
in various interacting configurations and many thermal plants with vary-

ing efficiencies and at various locations with respect to load centers,



it is an extremely complicated process to develop operation rules that
most effectively match supplies from available power sources with demands.
When changes in operational objectives during the life of a project
necessitate purchases of thermal energy to fulfill marketing commitments
or when, for any reason, it becomes necessary to consider integrated
operation of thermal and hydroelectric resources, the availability and
cost of thermal energy can become an important factor in both short-term
and long-term operation decisions. It often becomes necessary to integrate
some consideration of the thermal energy resources into hydrologic studies
of the operation of hydroelectric projects in order to develop operation
plans that will provide for optimal use of the hydroelectric resource.
The work described in this paper is directed toward the development of
a long-term operation plan for a system of federally-owned reservoir
projects in the Arkansas River, White River and Red River basins under

such a condition.

THE ARKANSAS-WHITE-RED SYSTEM

Twenty-three reservoirs in the states of Arkansas, Oklahoma and
Missouri (figure 1) comprise the Arkansas-White-Red (AWR) system. One
reservoir, constructed and owned by an investor-owned utility, began
operation in 1913. The first federally-owned project began operation
in 1944. The reservoir projects each serve one or more of the following
purposes: flood control, hydroelectric power, navigation, water supply,

recreation, water quality control and fish and wildlife enhancement.



Two of the projects are owned and operated by the Grand River Dam
Authority of the state of Oklahoma, one project is owned and operated
by an investor-owned utility, and the remaining 20 projects are owned
and operated by the federal government. There are hydroelectric instal-
lations at 13 of the federally-owned projects and at each of the three
non-federal projects. Power generating facilities are under construction
at three additional federal projects. Although the three river basins
are hydraulically independent, the federal hydroelectric installations
are electrically interconnected so that they can be operated as a system.
Operation rules for the individual reservoir projects were formulated
during the planning and design stages of project development. These rules
have been modified through the years to reflect changes in operation
objectives and to account for some form of system operation. However,
current operation rules do not account for all of the system interactions
that are believed to be significant. In particular, the current operation
rules do not completely consider the system power operation of the inter-
connected power installations. A study to develop new system operation
rules is currently underway. The primary objective of this study is to
develop system operation rules that will provide for optimal use of the
hydroelectric resources of the system without adversely affecting any of

the other approved purposes for which the system operates.
POWER OPERATION CONSIDERATIONS

The first federal projects in the AWR system were large, multiple-

purpose, storage reservoirs with relatively large amounts of power drawdown
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storage. The large amount of power drawdown storage permitted the
generation of large amounts of hydroelectric energy. Consequently, the
hydroelectric installations operated at relatively high (25 to 40 percent)
plant factors; that is, the ratio of average annual generation to installed
capacity was relatively high. However, as the demands for power in this
region increased in the 1950's, the demand for peaking capacity to meet
short—duration peak loads increased. In order to meet the demands for
peaking capacity, it was desirable to decrease the power drawdown so that
the higher head necessary to produce the installed capacity could be
maintained throughout periods of adverse streamflow conditions. This
increased the minimum peaking capability of the projects, but the result-~
ant loss of power drawdown storage effected a substantial loss in energy
generation--particularly during periods of low streamflow when a signifi-
cant portion of the energy generation is derived from stored water. This
loss in energy was partially offset by a reduction in the energy required
to support the peaking capacity. However, the energy requirement reduction
did not fully offset the loss in energy incurred by reduction of the power
drawdown storage, and it became necessary to consider thermal energy
purchases to augment the supply of hydroelectric energy during periods of
adverse streamflow.

The requirements for purchased thermal energy increased when several
run-of-river power installations with relatively large installed capacities
were developed as part of the Arkansas River Navigation Project. These

projects are capable of producing large amounts of energy during normal



and unusually high streamflow conditions; but because there is little or
no storage available at the project sites, their energy production is
greatly reduced during periods of low streamflow. To some extent,
hydrologic diversity among the three river basins is expected to provide
hydroelectric energy that can be used to support the peaking capacity of
the entire system if periods of low streamflow are not too long or if the
low streamflow conditions do not prevail throughout the system. However,
experience has indicated that marketability of the output from these
projects can be enhanced if thermal purchases can be scheduled during
severe droughts and during some other below-normal streamflow conditioms.
The Southwestern Power Administration has the responsibility for
marketing the power output from the federal projects. This federal agency
must secure contracts for sale of the capacity and energy and must also
enter into contracts for purchase of thermal energy, if purchased energy
is necessary to improve the marketability of the output from the federal
projects. Since this agency does not own thermal generating facilities,
the thermal energy must be purchased through contracts at costs which
are dictated by the quantity of energy required and the availability of
energy at the time that purchases are needed. Contractual arrangements
for the sale of energy from the federal projects have resulted in a
division of the power projects in the interconnected system. As shown on
the schematic diagram in figure 2, the output of two federal projects,
Table Rock and Bull Shoals on the White River, is combined for sale in

one power market. The output of the remaining federally-owned projects



is combined for sale in a different power market. The three non-
federal projects, which contribute no power generation to the federal
system~—but which do affect the water conditions in the system, in
effect form a third system. Each system has a different seasonal
variation of capacity and energy requirements and a different set of
operating constraints. The hydrologic studies necessary to develop a
comprehensive operation plan for these systems are obviously complex—-
even from the standpoint of power alone. When the operation constraints
resulting from the operation for other purposes are added to the study,
it becomes obvious that some type of relatively detailed analysis will

be necessary to achieve satisfactory system operation plans.
THE AWR SYSTEM OPERATION STUDY

The development of a system operation plan for the AWR system is
based on a sequential hydrologic routing (operation simulation study) of
46 years of historical monthly streamflow data. The hydrologic conditions
during this 46-year period vary considerably, and it is believed that the
results of the studies will provide representative appraisals of the
system performance under both high and low streamflow conditions as well
as a representative appraisal of the long-term performance of the system.
A basic description of the digital simulation model used for these routing
studies is contained in a computer program description entitled
"HEC-3, Reservoir Systems Analysis' (4). The hydrologic and physical

data used in the analysis of the system is contained in a report



entitled "AWR System Conservation Studies: Volume 1, Basic Data"” (5).
The general study procedure has been described in several earlier
technical papers (1), (2), (3).

Traditionally, sequential routing studies for analyzing the operation
of reservoir projects or systems have specified system and project power
generation requirements in terms of energy alone, despite the fact that
capacity requirements are at least as important in systems where the
primary purpose of hydroelectric generation is to supply peak load demands.
A pseudo-capacity requirement in the form of minimum at-site energy require-
ments is sometimes used to insure that some generation is possible at all
times—--thus guaranteeing that the capacity of the project would be avail-
able to meet peak capacity demands. Also, most routings of this type
include a provision for calculating the minimum peaking capability of each
project during each period as a function of the minimum head during the
period. This permits an after—the-fact appraisal of the peaking capability
of the project, but it does not permit consideration of peaking capability
requirements in determining the operation for any given period.

In the type of analysis required for studying the operation of the
AWR system, none of the preceding methods of representing the hydroelectric
generation requirements are completely satisfactory. The AWR hydroelectric
system is essentially committed to supplying power to meet peak demands,
and the energy requirements associated with the peak capacity demands
are relatively small. Consequently, variations in energy demands do not

fully reflect the variations in demand on the hydroelectric system.



Because the hydroelectric energy availability from the system as a whole
and from individual projects within the system varies widely in response

to extreme variations in hydrologic conditions, it is not feasible to

use energy alone as a measure of hydroelectric generation. There are,

for example, cases when high streamflow on the Arkansas River produces
enough energy from the run-of-river projects on that stream alone to

more than meet the system energy requirements, although the capacity
associated with this energy is less than one-third of the system

capacity requirement, This condition is illustrated on figure 3. The
load-duration curve which the system is to supply is shown as curve

ACFG. The area within this curve is the energy requirement for the month.
The energy generated at two run—of-river projects with a combined avail-
able capacity of 270 megawatts is shown by the rectangle ABEG. The

energy represented by the portion of the rectangle labeled DEF exceeds

the unsatisfied energy requirement (area BCD) but is not useable in
meeting the load. If one were analyzing energy alone, it would be concluded
that the requirement had been satisfied, since the energy generated exceeds
the energy required.

The foregoing type of anomaly, as well as the necessity for a rela-
tively accurate determination of the quantity and timing of thermal
energy purchases, dictated that the power requirement should be specified
in terms of both capacity and energy for this study. A direct solution
to the development of optimum operation rules is not available. The

technique used consists of postulating (a) a set of guide curves that



determine when and how much hydroelectric power will be generated in
relation to current demands and the availability of thermal power and
(b) a set of storage balance curves that determine the distribution of
water release among the various reservoirs in the water resource system.
These sets of curves are tested with respect to historical hydrologic
conditions and modified as necessary to improve the overall system per-

formance.
INTEGRATION OF HYDROELECTRIC AND THERMAL RESOURCES

In order to obtain an accurate representation of the system power
requirements, it is desirable to specify the requirements in terms of
the system load~duration curve. If the power generation from the hydro-
electric system can be scheduled to conform closely with the load-duration
curve, it is virtually certain that the projects can be operated in real
time to meet the power demands. Furthermore, the magnitude of required
thermal energy purchases will be more accurately defined. 1In the case of
the AWR system, monthly load-duration curves for the power requirements
imposed on the hydroelectric system could be developed from contractual
obligations. The load-duration curves shown in figures 3 and 4 are
typical curves for this system. Because the system supplies power
primarily to meet peak power demands, the base load (the power demand which
exists 100 percent of the time) is very small and the load factor (ratio
of average demand to maximum demand) for the hydroelectric system is much

lower than the load factor for an entire power supply region.

10



In order to avoid the problems created by specifying system power
demands in terms of energy alone, a computation technique was developed
to permit specification of the system power demand in terms of monthly
load~duration curves. Each monthly load-duration curve is divided into
segments along the horizontal, or percent-of-time, axis. Any number of
segments may be used, and the segments may vary in size. Each segment
is specified in terms of energy requirement for the segment (ratio of
segment area to total area under the load curve) and time duration
(percent of time during the month that the energy must be generated).
The objective of the segmentation is to obtain, for each month, a set of
energy requirement segments that, in composite, form a representation
of the load-duration curve. A typical segmetation of a load-duration curve
is shown on figure 4.

The load—-duration information is used in the allocation of system
power demands to determine the contribution that each project must make
to meet the system demand. The allocation of power generation requirements
to the projects in the system is based on the level of storage at the
project (relative to other projects in the system) and on the total
system power requirement for the segment. Each segment is analyzed
separately, beginning with the segment which has the greatest capacity
demand. The energy required at each project to meet the demand in each
segment is calculated, and the total energy required from each project each
month is determined by obtaining for each project the sum of the segmental

energy requirements for that month. A representation of the total
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project energy generation for each project and a possible arrangement

that would satisfy the system load requirement is shown on figure 4.

The necessity for thermal energy purchases in a given period is
dependent upon the state of the system in that period. The decision
parameter controlling thermal energy purchases is system energy in
storage. System guide curves composed of monthly target system energy-
in-storage values are determined on the basis of thermal purchases
required to meet system power demands under the most adverse streamflow
conditions experienced or anticipated. A specified maximum thermal energy
purchase is associated with each guide curve. The guide curves, when
properly defined, serve the same purpose for a hydroelectric power system
that operating rule curves or flood control diagrams serve for a water
supply or water control system. They define system states which, based
on historical hydrologic sequences, indicate the necessity for modifica-
tion of operation objectives and operation policies. The set of guide
curves shown in figure 5 illustrates the nature of the guide curves
contemplated for use in the AWR system.

In the sequential routing study, the system energy in storage is
calculated each month based on the projected withdrawals of energy from
storage due to hydroelectric generation in that month. The calculated
value is then compared with the target guide curve value for that month.
If the actual energy in storage is below a target guide curve value,
thermal energy purchases are scheduled. The thermal energy purchase is

limited to the maximum energy purchase associated with the particular

12



guide curve or to the thermal energy purchase which will reduce the
hydroelectric generation so that system energy in storage just reaches

the target guide curve value. The purchased thermal energy is then treated
as an available resource along with the hydroelectric resources in meeting

the system power requirements for that month.
SUMMARY AND CONCLUSIONS

The‘ability to simulate both capacity and energy demands on a hydro-
electric system and the capability for including simulation of thermal
resources is a significant step toward developing an operation plan that
will provide for optimal utilization of the hydroelectric resource. The
computer program used in the AWR system studies has the capability for
associating economic benefits or costs to the outputs of the system. This
suggests that the variations in costs of purchased thermal energy could be
included as a consideration in both short-term and long-range operation
decisions. However, since the AWR system serves a number of purposes
other than hydroelectric power and since the benefits from some of these
purposes are difficult to measure, it appears that a mathematically optimized
system operation plan will not be obtainable in the near future. What
is possible though is to simulate the operation of the system under a
series of operation plans, each of which would provide different levels
of service to the various purposes. The results of each plan, in terms
of costs of thermal energy purchased and revenue lost through reduction
of hydroelectric generation, could then be evaluated and weighed against

the services provided to other purposes.
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The techniques described herein for the integration of hydroelectric
and thermal resources in meeting power demands in a system with both
storage and run-of-river hydroelectric projects provide a tool for
much more realistic analysis of the operation of such systems. Through
proper use of this tool, it should be possible to develop system operation
plans that will minimize purchases of thermal energy and maximize the

use of the hydroelectric resources.
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