

Suspended Sediment Discharges in Streams

April 1969

Approved for Public Release. Distribution Unlimited.

TP-19

F	REPORT DO		N PAGE		Form Approved OMB No. 0704-0188
existing data sources, ga burden estimate or any o	athering and maintainin other aspect of this coll ations Directorate (070 r failing to comply with	g the data needed, and ection of information, in 4-0188). Respondents a collection of informati	completing and revier cluding suggestions for should be aware that on if it does not displa	wing the collecti or reducing this notwithstanding y a currently va	
1. REPORT DATE (DD-	ИМ-ҮҮҮҮ)	2. REPORT TYPE		3. DATE	S COVERED (From - To)
April 1969 4. TITLE AND SUBTITI		Technical Paper			
Suspended Sedime		Streams		5a. CONTRAC	INUMBER
Suspended Seanne	in Discharges in c	Jucums	-	5b. GRANT N	JMBER
				5c. PROGRAM	I ELEMENT NUMBER
6. AUTHOR(S) Charles E. Abrahar	n			5d. PROJECT	
				5e. TASK NUM	/BER
			-	5F. WORK UN	IT NUMBER
7. PERFORMING ORG US Army Corps of Institute for Water Hydrologic Engine 609 Second Street Davis, CA 95616-	Engineers Resources ering Center (HE		I	8. perf TP-19	ORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MON	ITORING AGENCY NA	AME(S) AND ADDRESS	S(ES)	10. SPO	NSOR/ MONITOR'S ACRONYM(S)
				11. SPO	NSOR/ MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION / AV Approved for public	-				
13. SUPPLEMENTARY Presented at the AC		versary Meeting in	Washington, DC	2, 21-25 Apr	il 1969.
develop flow weigh can be used to estim	nted regression re nate suspended se l sediment loads t	lationships that rel ediment loads stock o computed loads	ate daily suspend hastically for rive using this method	led sedimen ers with little d are promis	fferent river drainage areas were used to t discharges to streamflow. The method e measured data. Results which ing and appear to provide a better fit to
sediment load com	-	nt discharge-strear		-	ghted regression analyses
16. SECURITY CLASSI a. REPORT	FICATION OF: b. ABSTRACT	c. THIS PAGE	17. LIMITATION OF	18. NUMB OF	ER 19a. NAME OF RESPONSIBLE PERSON
U	U U	U U	ABSTRACT UU	PAGE 26	10b TELEPHONE NUMBER
L		I	1	1	Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std. Z39-18

Suspended Sediment Discharges in Streams

April 1969

US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center 609 Second Street Davis, CA 95616

(530) 756-1104 (530) 756-8250 FAX www.hec.usace.army.mil Papers in this series have resulted from technical activities of the Hydrologic Engineering Center. Versions of some of these have been published in technical journals or in conference proceedings. The purpose of this series is to make the information available for use in the Center's training program and for distribution with the Corps of Engineers.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

SUSPENDED SEDIMENT DISCHARGES IN STREAMS⁽¹⁾

Charles E. Abraham⁽²⁾

INTRODUCTION

This paper demonstrates a technique for relating daily suspended sediment discharges to streamflow using a procedure that weights each observation in proportion to the water discharge. The methods employed can be used to generate suspended sediment loads stochastically. Factors such as rate of change in flow, time since peak flow and an index of sedimentproducing conditions in the basin are used to estimate suspended sediment discharge.

Aside from needs to improve the prediction of sediment loads for planning studies, the analysis of short-period loads, such as daily or weekly amounts, can be important to predict the performance of water resource projects adequately. For example, the water-surface elevation of a reservoir when large inflows occur can influence the pattern of sediment deposition in the reservoir.

For presentation at the AGU Golden Anniversary Meeting in Washington, D.C., 21-25 April 1969.

⁽²⁾ Hydraulic Engineer, The Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California.

REGRESSION TECHNIQUE

Logarithmic relations are used in this investigation for correlating observed daily suspended sediment discharges with streamflow. The distribution of observed data does not always follow the same linear relationship for both high and low flows. Therefore, large errors frequently occur in estimating annual or monthly sediment (bulk) loads from a single linear logarithmic relation of sediment and water discharge.

For purposes of estimating bulk sediment loads, the prediction of sediment discharge at high flows is of primary importance. Conversely, errors in estimating sediment discharges from a logarithmic relation at low flows are insignificant compared to similar errors for high flows. If the logarithms of each event have equal weight, the low-flow events unduly influence the resulting relation. Since the estimate of total bulk sediment is the usual objective, a technique is used whereby each observation is weighted in proportion to its flow. This is done by entering each event into the regression analysis a number of times in proportion to the water discharge of that event.

REGRESSION EQUATION

Excessive erosion from extremely high flood flows frequently causes unusually high sediment concentrations for several months or even years after a flood, and these unusually high sediment discharges for relatively short durations can transport more than twenty times the average annual sediment load. Also, suspended sediment concentrations are usually higher

2

à

during periods of increasing flow than during corresponding periods for decreasing flow. Based on these considerations, the following equation was found to be of most value in predicting suspended sediment discharge:

$$Q_s = a Q^b T^c F^d$$

where:

Q

Т

F

- Q = Suspended sediment discharge (tons/day)
 - = Mean daily water discharge (cfs)
 - = Time in days since the preceding peak flow when flow is decreasing. Ratio of the preceding period flow to current flow when flow is increasing.

(1)

(2)

(3)

Index of basin condition due to antecedent floods; 1.0 for normal conditions and greater than 1.0 for excessive sediment loads caused by an antecedent flood that exceeded Q_c (see equations (2) and (3))

a,b,c,d = Regression constant and coefficients

The occurrence of excessive sediment concentrations reflected in the variable F is a function of the magnitude of the water discharge. When the water discharge exceeds a threshold discharge determined from observations, the variable F is computed as follows:

$$F = S_i/Q_c$$

and

 $S_{i} = (Q_{i} + S_{i-1})R$

where:

F	= Index of basin condition (see definition for equation 1)
s	= Current-period flow
s _{i-1}	<pre># Preceding-period flow</pre>
Q _c	= Threshold discharge in cfs above which the basin runoff will produce higher than normal sediment loads for some duration in the future.
Q _i	= Current-period water discharge in cfs
R	= Basin recovery coefficient less than one (usually .90

BASIC DATA

to .99)

Records of continuous daily suspended sediment and water discharges used in these investigations were obtained from the U.S. Geological Survey on punched computer cards. Gaging station locations and lengths of record used are given in table 1.

TABLE 1

GAGING STATIONS

Gaging Station	Drainage Area (sq. mi.)	Suspended Sediment Discharge Record (Water Years, Inclusive)
Eel River at Scotia, Calif.	3,113	1958 - 1965
Cottonwood Cr. at Cottonwoo Calif.	d, 922	1963-1965
Thomes Cr. nr. Paskenta, Ca	lif. 190	1963-1965
Nacimiento River nr. Bryson Calif.	• 140	1961-1965

4

These streams all drain from the Pacific coast mountain ranges, and the Eel River, Cottonwood Creek and Thomes Creek are located in the northern portion of California and the Nacimiento River is located in the southern portion. Runoff-producing rainfall normally occurs on all of these basins only during the October through June period. The Eel River, Cottonwood Creek and Thomes Creek basins receive considerably more rainfall than the Nacimiento River basin. The suspended sediment discharge records include an extremely large flood that occurred on the three northern California basins in December 1964. This flood caused major landslides and widespread flood damage, and the maximum daily suspended sediment loads in these streams following this flood were more than 10 times those normally experienced for similar water discharges before the flood.

CORRELATION STUDIES

Using the relation from equation 1, the regression constant and coefficients were calculated from the given records. Separate analyses were performed for the first half of each record and for the full record. For the records that include three and five years, instead of actually splitting the records the half-record analyses were performed for only the first one and two years, respectively. The standard error of estimates (S_e) and determination coefficients (R^2), relating the logarithms of flows, were computed for each of three different relations:

(1) Q_s versus Q, (2) Q_s versus Q and T, and (3) Q_s versus Q, T and F. S The resulting statistics for these analyses are shown in table 2.

TABLE 2

COMMON LOGARITHM STATISTICS

	<u></u>	Q _s	vs Q ₂	Q V	s Q, T	Q vs s	Q,T,F
Stream Name		Se	R ²	Se	R ²	S _e	R ²
Eel River:	Full Record	.29	.95	.28	.95	.21	•97
	Half Record	.23	•95	.20	.96 .	.19	.97
Cottonwood Cr.:	Full Record	.32	.93	.31	.93	.27	.95
	Half Record	.30	.89	.25	.93	.24	.93
Thomes Cr.:	Full Record	.58	.88	.57	. 89	.39	.95
	Half Record	.28	.93	.23	.95	•23	.96
Nacimiento River:	Full Record	.46	.91	.38	.94	.35	.95
	Half Record	.36	.93	.26	•96	.25	.97

The full records of suspended sediment discharge on the three Northern California streams include the large December 1964 flood which is a dominant factor in these analyses. The five-year record for the Nacimiento River does not include any particularly large floods.

As a test of the relationships derived, the regression coefficients for equation 1 were calculated from data for the first halves of the suspended sediment discharge records. Using these values, equation 1 was then applied to daily water discharges to reconstitute the observed daily suspended sediment discharges for the full record at each gaging station. The computed

6

and observed values in tons for the Eel River are shown in exhibit A. Each year of computed data is shown on separate pages with the months across the top of the page and day of the month in the first column. Immediately following the day number is a C or O, which indicate computed and observed values, respectively. Monthly and annual summaries showing computed and observed values are also given following the daily data.

Although computer output data similar to that in exhibit A were obtained for the three remaining gaging stations, the results are too voluminous to include in this presentation. The annual summaries of computed and observed suspended sediment loads, with the corresponding errors for estimated values, are shown in table 3 for all gaging stations.

TABLE 3

OBSERVED AND COMPUTED ANNUAL SUSPENDED SEDIMENT LOADS

		SUSPENDED LOAD	D IN 1000 TONS	ERROR
STREAM	WATER YEAR	OBSERVED	COMPUTED	(%)
Eel River	1958*	29,420	30,320	+ 3
Det Aivel	1959*	9,940	7,980	-20
	1960*	15,120	19,810	+31
	1961*	8,280	7,760	- 6
	1962	4,760	4,880	+ 2
	1963	21,190	22,890	+ 8
	1964	5,650	4,900	-13
	1965	167,820	110,750	-34
Cottonwood Creek	1963*	488	460	- 6
COLLOHWOOD CLEEK	1964	48	27	-44
	1965	1,450	2,072	+43
Thomes Creek	1963*	906	954	+ 5
Inomes oreer	1964	25	40	+60
	1965	10,814	8,691	-20
Nacimiento River	1961*	9	9	0
Nacimiento River	1962*	, 143	145	+ 1
	1963	22	145	-27
	1963	15	3	-80
	1965	5	2	-60

* Record used to compute regression coefficients

1

In order to compare results obtained herein with results obtainable with commonly-used techniques, annual suspended sediment loads for two streams were computed by the Flow-Duration, Sediment-Rating Curve Method.¹ Flow duration curves were drawn from water discharge data for each year of suspended sediment discharge record, and the sediment rating curves were drawn from daily

Analysis of Flow-Duration, Sediment-Rating Curve Method of Computing Sediment Yield, Sedimentation Section, Hydrology Branch, Bureau of Reclamation, April 1951.

)Ø

suspended sediment discharge data. Data from the half-record periods were used to draw the sediment rating curves. The annual suspended sediment loads were then computed for the full-record periods. These values, shown in table 4 with the observed loads and corresponding errors, indicate considerably larger errors in general than those in table 3.

TABLE 4

STREAM	WATER YEAR	SUSPENDED LOAD OBSERVED	D IN 1000 TONS COMPUTED	ERROR (%)
Eel River	1958	29,420	41,000	+39
	1959	9,940	10,450	+ 5
	1960	15,120	20,300	+34
	1961	8,280	7,430	-10
	1962	4,760	7,400	+55
	1963	21,190	17,300	-18
	1964	5,650	7,120	+26
	1965	167,820	91,500	-45
Thomes Creek	1963	906	864	~ 5
	1964	25	23	- 8
	1965	10,814	3,500	-68

ANNUAL SUSPENDED SEDIMENT LOADS COMPUTED BY THE FLOW-DURATION, SEDIMENT RATING CURVE METHOD FOR THE EEL RIVER AND THOMES CREEK

CONCLUSIONS

Results of this investigation are generally promising. The statistics in table 2 indicate that the addition of variables T and F of equation 1, each significantly helped to explain some of the remaining error variance in the suspended sediment discharge after correlation with flow alone.

Also, the actual estimates of annual suspended sediment loads are generally improved over those computed by the Flow-Duration, Sediment Rating Curve Method.

In order to apply the proposed procedure, a simultaneous record of daily sediment and water discharges is required for a duration that includes a wide range of expected quantities. However, if the regression coefficients follow some regional trend or correlate with basin features, a means for more general application is possible. The testing of this procedure in other regions is required before any general application is made.

ACKNOWLEDGMENTS

This study was made in The Hydrologic Engineering Center, Sacramento District, U.S. Corps of Engineers, and various members of the Center assisted during the conduct of the study and preparation of the paper.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			15107	115716	8.19.8.	017754	074		200	AU د AU د	SEP ,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	67		15000	136000	81700	385000	1200	447	20. 12	mo	0
N N	63	Ì	28800	11 5000	4690U	964280 8580C0	937 1120	540	23	r o	20
2 1/1 1/2 0/2 1/2 0/2 1/2 0/2 1/2 0/2 1/2 0/2 <th0 2<="" th=""> <th0 2<="" th=""> <th0 2<="" th=""></th0></th0></th0>	33		19289	352000	24012 32000	938517 65800C	967	545	22	•	(
25 97 15 9449 25000 22000 22000 1100 74 201 81 100 100 100 100 14 201 81 100 100 100 14 140 1400 140 1400 140	117		9597	380624	15740	361896	2930	565	20	⊳ ∾	9 -
21 33 69 4130 280000 14400 10000 1000 1000 1	26 97		8493 6458	276000	23900	2920C0 206412	1180 2184	327	12		0-
17. 31. 13. 23.4 33.4 53	83 83		4700	286000	1640C	174000	1060	44	12		-0
400 511 5231 5230 5	31		264.)	151000	9830	138000	196	41	9	70	
235 35 112 2214 11212 5245 4428 1018 1291 206 190 111 111 2201 224180 44762 31018 1291 206 1900 171 111 2201 224180 44762 45615 1547 206 1900 179 201 14762 2393 12122 2393 12122 248 1900 179 201 14762 2491 44762 447 447 447 1900 1795 1204 1011 2511 1996 2117 206 1101 2111 <td< td=""><td>28</td><td></td><td>252.)</td><td>282000</td><td>8500</td><td>67200</td><td>1684 878</td><td>223</td><td>14</td><td>~ ~</td><td>~</td></td<>	28		252.)	282000	8500	67200	1684 878	223	14	~ ~	~
Luzy Luzy <thluzy< th=""> Luzy Luzy <thl< td=""><td>65</td><td></td><td>2374</td><td>312729</td><td>5245</td><td>46228</td><td>1426</td><td>208</td><td>11</td><td>0 N</td><td>. .</td></thl<></thluzy<>	65		2374	312729	5245	46228	1426	208	11	0 N	. .
4 5 1 0.4 5.0.3 2.4000 0.66 4.4 4.4 10000 61 54 4.4000 54000 5490 541 550 54 550 54 550 54 550 54000 547 54 54 54000 54 54 54000 547 54 545 </td <td>181</td> <td></td> <td>2207</td> <td>211700 324180</td> <td>1360</td> <td>44400 31018</td> <td>851 1297</td> <td>48 206</td> <td>9 QI</td> <td>0 •</td> <td>01</td>	181		2207	211700 324180	1360	44400 31018	851 1297	48 206	9 QI	0 •	01
110000 67 54 15000 5500 55000 5500 <th< td=""><td>31</td><td></td><td>3630</td><td>248000</td><td>606C 3470</td><td>26700</td><td>667</td><td>3</td><td>6</td><td>*0</td><td>NO</td></th<>	31		3630	248000	606C 3470	26700	667	3	6	*0	NO
11330 1731 79 117020 16012 2339 212.82 2419 522 2562 1102 93 124510 169613 2513 18967 2612 1570 261 1570 261 1570 261 1570 261 1570 261 1570 261 1570 261 1570 261 1570 261 1570 261 1570 261 1570 261 1570 261 1570 261 1570 261 1570 261 1570 261	67		145000	358000	4960	20000	642 642	78	0	×0	NG
2662 1682 63 15500 16800 873 170 11930 3143 77 19500 15700 15700 1570 15	1750		1170.11	166112	2939	21282	2418	552	2	-	-
17350 1771 60 15300 15600 1000 101 7500 110000 24 27050 15700 15700 1570 197 7500 110000 25 54000 3500 112002 197 197 16700 110000 25 5400 3500 112002 197 197 16700 110700 259 5400 3500 10700 413 123 1871 1871 1871 1871 12002 1572 123 133 2460 15000 15902 5501 17700 133 42 2705 5504 15902 15902 5504 133 133 42 1205 1206 15000 15000 15000 1500 133 42 1206 12000 1500 15000 1500 1500 133 42 1206 12000 1500 1500 1500 1500<	10.82		124518	1618691	2513	18967	832 2873	120 371	4 1-	o -	0 -
370.00 1.660.0 6.4 2.00.00 4.10.00 1.10.00 1.00.00 7.10 2.00.00 7.10 7.00 <th7.0< td=""><td>37954</td><td></td><td>153300</td><td>1560000</td><td>3900</td><td>18600</td><td>1080</td><td>111</td><td>4</td><td>0</td><td>0</td></th7.0<>	37954		153300	1560000	3900	18600	1080	111	4	0	0
FF6-06 105 4443 72 84403 341157 1891 1895 1592 1992 14000 113002 256 3655 1063252 5112 1234 153 9400 113002 256 38555 1063252 5112 1244 153 9400 113003 1100 31003 10100 3101 345 30 1405 34501 68801 12500 65245 3651 10010 42 1405 13105 11000 31000 5541 7540 345 30 1405 5591 131050 10100 31010 31010 3101	1680.00		240205	000916	30 70	15700	1010	287	• •	10	~ 0
04002 112002 275 34500 12002 212 12002 123 153 2101 2101 141 27100 5112 11200 413 42 2101 3420 55200 55200 55200 55200 51200 101700 413 370 2101 34200 5601 1700 413 2900 42 991 42 2101 34200 5601 1700 413 193 91 42 42 2101 34200 5601 1700 342 914 914 93 131 2101 1200 1170 3400 1500 1919 914 91 91 311 5601 19100 1919 311 1919 311 191 311 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191	1180000		81430	341157	1991	13855	1592	193	. 9	-	2
242C 1540U 48 29700 878183 5710 9014 413 42 282C 2174 1837 28701 8570 9560 9764 413 42 1405 3650 15502 452045 5641 7540 7540 463 131 1207 1200 131052 15502 45500 5643 7540 345 96 953 95393 9619 877207 2688 7370 1828 95 96 953 9501 97561 6511 105000 166 983 7370 1828 96 953 9601 9766 480 16000 4783 1830 7370 1828 76 130 2379 98107 5503 98107 368 30 33 33 33 33 33 30 33 30 33 30 30 30 30 30 30 30	1.12092		38555	360000 1063252	5122	12860	674 1233	42 153	4 v	0 -	0 ^
LTCC 34207 6887 12500 62010 3960 9210 483 1005 423 1200 1200 13000 15902 3600 3700 383 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30	154000 21734		29700	829000 878183	3560	10760	413	42		.0.	0
1400 656.20 155.20 952.45 36.21 7370 33.5 93 1201 1200 15000 15100 1005	34200		22500	626000	3960	9270	408	42	n m	-0	~0
828 5336 55839 5417 817707 2683 7370 1243 5335 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 540 10500 1610 1610 1613 1813 76 337 500 504 504 504	8663 12200		11700	452245	3621	7837	1005	106	5	1	~
5.30 6.30 17500 6.610 1931938 16.20 6.700 335 330 337 335 330 337 335 330 337	5396		9619	877207	2688	7370	1828	8 S	ń lin		9 14
337 7460 4780 186000 6783 18600 6783 18607 6737 18600 397 30 197 3690 98007 457 012764 3887 4863 397 30 248 2475 314605 3674 205991 128360 4590 1127 204 248 2475 314605 3674 20591 128360 4590 1127 204 218 1270 538000 2700 122000 4710 355 30 112 2367 538005 617925 113387 2409 132 30 112 2360 13967 5690 984206 5690 131067 3670 122 30 1366 13660 16007 74021 12947 2750 16207 74 711 51 1366 13660 136007 84206 16907 2650 547 30 1366	5601		680J	1050000	1620	7000	335	08 08	~ <i>w</i>	0-	0
17 3990 7100 4710 3120 4710 3129 76 248 2475 314605 3674 20591 128360 4390 1127 204 180 3275 543070 2587 205 3950 1127 204 180 32.5 54307 2380 128605 2490 375 390 392 30 112 2367 5980 123067 2380 129050 24710 355 30 112 2367 5380 129057 748214 129347 4519 132 112 2365 116379 34600 13547 2340 555 30 1546 150167 149107 149107 149107 14711 51 1711 555 18750 153642 20941 148 416 16 1200 555 18701 127001 127020 26430 156 51 <td< td=""><td>7463</td><td>;</td><td>6180</td><td>1860000</td><td>1010</td><td>6130</td><td>397</td><td>202</td><td>n m</td><td>+0</td><td>0</td></td<>	7463	;	6180	1860000	1010	6130	397	202	n m	+0	0
248 2475 314605 3674 20591 128366 4390 1127 204 130 3237 543001 2740 258067 4531 30 180 127 538001 2380 129600 27410 355 30 180 125 5380 2380 129600 2711 355 30 112 237 13386 133967 2562 9100 355 30 179 989 73860 135542 146314 129347 2750 1620 74 1546 153640 56800 131607 84701 3760 1620 74 1546 135642 25900 169050 55901 12700 74 51 1516 15160 149050 129050 15761 1829 16 51 1517 555 18750 125000 2751 1484 771 51 1271 555 <t< td=""><td>399.)</td><td></td><td>3620</td><td>491000</td><td>3887</td><td>4863 5080</td><td>1339</td><td>30</td><td>44</td><td></td><td>NC</td></t<>	399.)		3620	491000	3887	4863 5080	1339	30	44		NC
130 127 554000 27400 254000 256067 4680 453 30 112 230 2380 129000 2380 129000 2360 4710 355 30 112 230 113987 5060 4710 355 30 112 230 113987 5060 4710 355 30 112 230 13963 42097 748214 12940 455 30 1366 1120 88601 135145 13501 13507 160 71 51 1366 13554 13501 13505 13501 13505 160 74 1366 13554 5001 12500 259010 12750 259 16 51 1270 555 18750 150650 5930 16700 16700 16 50 1271 555 18750 150670 26512 1711 14 771 51	2475		3674	205991	12836C	4390	1127	204	4	, 	• N
112 230 2380 129000 2380 129000 4710 455 30 710 1245 113087 5082 617025 116339 396.2 2407 95 749 989 71863 42097 748214 129347 275.0 166.2 74 749 989 7386.0 13554.2 326154 2011 1140 60 1511 1507 3738.0 12500 129007 84701 356.0 166.0 74 1200 771 151 144.4 771 51 1711 555 18750 15706.2 29510.1 12700 593.0 16 1711 555 18750 15706.2 29370 149000 50 16 33 920 440 1900 96800 2930 1149 466 33 930 465 28701 12700 295400 1710 16 33 1711 555 18700 12700 2950 166.0 16 16	1729		2140	224000	2580CG 220647	4680 4319	453 1929	30 73.0	ε	0 4	0-
10 1270 11.0307 5062 61925 11.6376 5062 61925 11.6376 5062 5062 5062 5062 5062 5062 5062 5062 5062 5062 5062 5062 5062 5062 74 5061 13564 3361 1620 74 360 1620 74 360 1620 74 360 1620 74 360 1620 74 360 1620 74 360 1620 74 360 1620 74 360 1620 74 360 1620 74 360 1620 74 36 360 1620 74 360	2300	ł	2380	129000	212000	4710	355	30	m	• 0	0
749 989 73863 42097 748214 129347 2750 1620 1346 1127 82400 68600 135542 135610 13557 148214 2750 1620 74 1346 1127 8270 68600 135542 135610 135542 135567 16 1210 1220 157 35600 122000 2590000 107205 2630 004 16 1711 555 28750 160652 656121 97151 1484 771 51 1711 555 18750 1526646 293728 45361 1366 53 1671 555 18750 1526400 695001 216300 16 50 16 926 440 171 186 1700 1820 259 16 930 466 1700 18700 142000 17700 1849 37 175 247 18900 0 <td>1673</td> <td></td> <td>2682</td> <td>67925 98300</td> <td>11 6339 84200</td> <td>3962</td> <td>2407</td> <td>95</td> <td>4</td> <td>m c</td> <td>~ 0</td>	1673		2682	67925 98300	11 6339 84200	3962	2407	95	4	m c	~ 0
1546 112.0 82.400 68.60.0 1310.00 64.00 1310.00 64.00 16.00 1511 90.0 3736.0 13556.0 13557.5 2011 114.0 6.0 2121 965 2850.0 12500.0 259.000 107.05 5.0 10.0 6.0 1211 555 2875.0 160.652 656.121 971.51 148.4 771 51 1711 555 2875.0 160.652 656.121 971.51 148.4 771 51 1711 555 2870.0 259.000 107.00 59.00 10 6.0 10 1711 555 2870.0 150.646 2.097.0 690.00 114.9 4.45 37 926 4.10 171.0 114.9 4.46 37 37 937 160.90 147.000 17700 134.9 16 37 175 237 169.00 14700 134.9 16	989		42097	748214	129347	2750	1620	44	n 4	m	~ ~
1220 757 3500u 12200 2590300 102000 2630 604 16 1211 555 25520 160652 654010 97151 1484 771 51 171 555 18750 14900 94902 649501 97151 1484 771 51 1671 555 18750 153646 209728 64350 1260 533 43 920 440 19100 96803 299703 44550 1367 33 43 930 466 84937 122740 294303 17700 1849 446 37 533 163300 87903 142000 17700 1349 446 33 533 163900 122749 29519 1106 144 34 34 533 157 219 142000 17700 1340 162 33 535 287 10600 1263000 0 56519 1106 345 33 171 187 28600 110	008 009		68600 135542	1310000	84900 155754	3360 2011	829 1140	16 60	1	6	с ^
ITIC 555 28200 16000 69600 10 60 10	757		122000	2290000	10 20 00	2630	604	16		10	-0
1677 555 18750 15046 209728 46.356 12.60 538 43 926 410 19100 96403 21500 18.20 259 16 926 410 12749 95400 31500 18.90 259 16 365 333 15.300 87903 142000 17700 1330 162 33 367 236 730900 163000 17700 1330 162 33 367 236 7845 1389000 0 56519 1106 345 33 367 296 78445 1389000 0 356362 1069 284 29 110 18 235000 0 356362 116 16 16 16 16 210 18 0 356362 1160 284 29 16 16 210 18 0 335000 0 335300 16	555		149000	60000	97121	1920	500	7 S			20
720 410 1910 96400 21500 1820 259 16 303 460 81937 12749 24400 17700 1349 246 37 365 333 163700 87900 142006 17700 1330 165 33 175 227 3807 743038 142006 17700 1330 162 345 33 175 227 380700 1633000 0 356362 110 131 16 367 296 78445 1389000 0 356362 110 131 16 110 185 21 239000 0 356362 116 16 26 211 196 34107 0 335000 0 356362 16 16 16 211 16 34107 0 34107 0 356362 16 16 16 214 2 235000 <td< td=""><td>555</td><td></td><td>150646</td><td>203728</td><td>46356</td><td>1260</td><td>538</td><td>43</td><td>• 6</td><td>, 1</td><td>2</td></td<>	555		150646	203728	46356	1260	538	43	• 6	, 1	2
366 333 163700 87900 142000 17700 1330 162 16 533 387 321092 743038 0 26519 1106 345 33 175 227 320000 1633000 0 26519 1106 345 33 367 296 78445 1389000 0 356362 1106 341 26 110 135 221 10690 1633000 0 356362 1069 284 29 210 136 0 356362 1106 28 26 28 29 211 1 2 295000 0 333000 16 263 16 16 214 1 2 21177 0 3333000 0 252 0 0 28 1 2 24000 0 15600 0 97 0 354 354866 1252178	41.1		122740	294400	31500 26312	1820	259 446	16 37		o -	0-
175 227 30900 1033000 0 56600 1110 131 16 15 16 16 175 175 227 309900 0 56600 1110 131 16 16 16 175 175 224 138 100 100 133 16 126 16 175 10 183 10 16 110 131 16 </td <td>333 387</td> <td></td> <td>87900</td> <td>142000</td> <td>17700</td> <td>1330</td> <td>162</td> <td>16</td> <td></td> <td></td> <td>0,</td>	333 387		87900	142000	17700	1330	162	16			0,
367 296 78445 1389000 0 356342 1069 284 29 110 185 61800 1380000 0 335000 1160 16 271 1 7 29350 341177 0 251622 0 2552 0 16 284 - 23400 344177 0 251622 0 252 0 25122 0 252 0 25460 16 16 16 16 16 16 16 16 17 0 354800 0 97 0 354865 1252178 2704378 4031644 1778371 1701875 3351687 42270 4334	227		1032000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	50,600	1110	131	16	0 1	-0	10
213 10 130 110 16 214 7 29350 341177 0 251620 0 251 28 7 21950 341177 0 251620 0 252 0 14 21 7 2100 31600 0 252 0 14 504 0 351620 0 15620 0 97 0 354865 1252178 2704378 4031644 1778321 1701825 3351687 42200 4324	296		1389000	00	3563 62 20 2000	1069	284	29	Ś	0	
98 л 23900 31600 0 158000 0 97 0 ILY SUMMARY 354866 1252178 2204328 4031(44 1728221 1201825 3251487 42220 42320	5		341177	0	251622	0011	252	<u> </u>	2.4		» o
344856 1252178 2204338 4031(44 17278221 1791825 3351487 44220 4334	18 J		316000	0	158000	0	16	0	0	0	0
	6 1252178	2204338 4	4031044	17278221	1791825	3351687	44220	6334	293	54	20
Y ******* 5010000 1700201 10001000 1110000 5040140 14001 1408	Y ****			00012001	7676717		1 6 96 1	14.38	139	D	

3₅

EXHIBIT A

:164

00.1	NOV 3	DEC	JAN 305	FE8 6416	MAR 8434	APR 9346	MAY 173	1UN	JUL	AUG	SEP
	c m	~ 4	205	4800	3680 7577	7200	85	5	4	- 0	0.
	c m	- 4	161	2910	3530 7087	2760	49 128	5			•0-
1 C	c m	- 4		2050	3310 6478	1880	39	5 =			- 0 -
	c m		225	1566	30CN 4489	1330	46	<u>5</u>	•	> c	10.
0 - C	c m	- ~	219326	2200	2800	942	6.9	200	•	- 0	• 0 •
00	~ რ	-1 m	326200	1600	2850	929	54	- n 0	a)	, c	100
0 1	2	0 "	63500 308282	1290	2120	940	44	- n a	4 = 4 =	o	000
0.0	2 ~	0 *	395300	705	1670	644 1018	39		•	00	000
- U -			975000	732	1050	583	27	.	4	0	0
) 4 F		301000	2350	879	9997	19	- 10 P	-		000
0	4 1	ہ د ا	204000	13300	702	365	17	- m r	4 - -4 -	00	00
	- 4 a	1 -1 0	1970000	8340	653 1006	305	17	- m u	-0-	000	- o c
	4		605003	3680	623	347	11	n m	40	- 0	0
.0.	26	4 J C	108003	480000	556	210	11	* "	-	0	-0
	326	0	00905	980000	390	194	17	n m	-0	0	-0
	1/3	N 0 (178631	686000	303	374	47	<u>~</u> ~	-0	00	
	87	v -• (10600	000009	345	178	17	*	- 0	٥د	NO
	25		6450	427000	281	140	17	~ ~	- 0	00	3
İ	196	1	4340	261000	280	140	34	4 0	~0	00	15
500			2760	168200	246	0+1	11	n n		-0	28
-	1190	20	1860	00011	218	2C9	27 11	ہ ۷	.	-0	34
	323	207	1340	33557 50600	466 220	180 82	25 11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00	-0	31
000	84 132	119 225	831 862	16797 20600	1975 880	160	23	Ψ C	00	- 0	17
	42 66	16	2417	10361	6488	147	23	. ~ .			0
	25	255	19790	7002	42CU 3646	81	11 22	2 2	.	o -	n vo
5 N 0 U	29 17	689 65J	61100	8290 5195	2500 7884	134 419	11 22	~ ~	99	0 -	* ~
I	16	3880	110000	7900	10200	154	¢ ç	~ ~	0,0	0-	~ ~
	1	55300	85800	7490	11560	614		5	0	0	, <mark>-</mark> - ,
100	6	44200	293000	5670	3600	151	9	5		+0	-
10		55 46 6800	54114	0	1810	400 116	16 6	2	0 0	-	
30.0 L	۳ ۵	1185	22874	00	12975	285	15 6	~ ~	ç c	-	- 00 -
	• 0	520	11212	, o	27026	20	, 41 14	1.0	, 0	, -	• 0
רא	Ċ	386	010	0	29700	c	ð	0	0	0	0
	3810	37021	4106392	3 Tr 0684	133425	39189	1691	1/1	22	11	290

7764

-C - COMPUTED 0 - OBSERVED

EXHIBIT A

14

															.													-											Anisher 14
SEP) N	0			, (0.	-0		0	0 -	-0	0	- 0		o -	0-	•0•	-0-	10	- 0		• •	00		000	0	00	10	1	- -	o -	0	0-	•0 •	- 0	00	26 0	
AUG	9 ~	2	m 4		4	· m	~ ~	2	e	V m	~	0	0	~ 0	N	0 0		, ·	• •• •	r	- -	• ~			.00	101	90	70	0		- -	0 -	0 -	0-	•0	-0	-0	72 21	
JUL	8	19	18 18	*	3	16	~ 4	3	13	11	3 10 3		7 m	<u>o</u> w	80 ,	4 P~	5 ~	. s c	0 IU F	4	19	13	12 2	m 0	· in a	o un re	- 31	2	5 6	9	v .4	N 4	~ 4	~~~	2	سرد	8	359	
NUL	2640	1963	1440	0801	580	822	404 408	322	488	403 103	258	179	120	201 89	169	142	57 121	67	37	35	£ 8	2	35 67 97	23	19	65 67	68	34	31	33	3 R	9 28	26	6 40	9	9 9 77	c 0	11577 8391	
MAY Insa	629	1094	965	372	280	694	265 567	222	487	430	100 391	16	56	348 88	318	297	83 280	75	49	53	222	192	49 183	43 167	31	35	39	289	2 909 7 4 7600	57234	156096	131000 61136	4 2400 2 3688	1 6400	5880	0069	4089	360450 333158	
APR 36366	23060	20613	13472	693U 90.24	5010	6684	3680 5078	4020	3823	2945	3570 2318	2980	2450	2530	1457	1149	1320	1170	1000	672	695 530	593	420 574	393 524	301	249	261	250	396 209	353 184	328	143	1370	5720	2480	929	00	126568 83031	s
MAR 837	862	113	2536	362C 92497	165000	336875	309000 674765	522000	434000	61 6356	493000	165000	65900	36500	57496 78000	266877	202000	69300 40474	30600	18500	13000	11299	8508	12900	870C 5369	680C 4266	5740	4930	4040	2308	1943	3190 1950	339C 13268	14160	12900	92500	110000	3213280 2905163	5122581 TON
FE8 18783	42400	338068	44867	54900	39500	23456	17980	25500	611000	10040039	5380000 3641912	2820000	1130600	50 20 00	95134	49254	92700 24741	51000	26700	17700	14000	6225	5660	10900	70.80	5500 2648	4130	40.20	3260	1750	1379	1080	1610 1075	1330	1030	• • •	0	15942178	
JAN 9	12	~ ~	o	4 v	2.	4	n .≄	~ :	8	596	2370	862-) 907	1890	668	2970	1480	2300	1100	585 235	258	122	96	21	5 4 6 5	48 162	95 896	853	2510	1110	2521	19941	12914	15000 25735	57000	28103	60809	51300	153.192 268679	OBSERVED LOA
DEC			-	0 0	0	-	. 1	¢ -	+0		c 1	c v	0	1	€ ⊅		N 6	- 8				4-	- m	- 7 7	- 4	7 7	1		25	147	560	179	174	66 27	36	22	17	1082 2035	
NOV	o	10	•			-	1	o -	+ C		1	0-	c -	• •		• •••	0 -	c ~	c	0.	-0			c ~	0 N	6 ~	~ C		v C	2 6	~ ~ ~	o ~	0	0	0.	• 🖸 :	0	41 3	190997
0CT 2		7	. ~	~ ~		2	••	0-	•0	m -	- 4	04	04	0	mo	. ~	5 C	0 ~	0 N	<u>о</u> ,	0	~ ~	-	0	07	0 M	0 "			mo	ŝ	∽ ~	0 N	0 ~	9	101	0	C 71	SUMMARY Ed Load =
EAY 1C	32	202	200	5 U 1 1 1 1 1	4 1 1	205	ູ່ບູ	60 7C	70	S B C	20	100	011	110	120	130	140	140	150- 16C	160	170	160	190	150 260	21C 21C	210 22C	220 23C	230	240	250	260	27C	270 28C	260 25C	290	300	310 8011HI	00	ANNUAL COP.PUT

EXHIBIT A

3

4

~764

SEP	2	,	0	1	- 6	0	1	0	1		0	, -	0	-	0	Ţ	0,		0 -	0	ب د	0	1	0	1	.	0	Ž	20	0	7	0	• c	2	0.		-	0		• -	0	l	•	1	1	0.	۲ 0		0	0		64 C		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
AUG	4 0	N M	2	•	-+ m	-	ŝ		,	- 1 (J L			2	o.	5	0	••		<u>-</u>		1	4	-	m	2	0	~	2 ^	0	2	0 1	۷C		0.	- c	, –	-		.	0	-	0	n c	, m	1	n c	2	0 (N O		80			
JUL.	-	17			15		ĥ	5	12	ņ <u>-</u>	• •	Ĩ	m	10	4	10	4 (יי	4 P	- +		2	9	2	ŝ		2	4	4	* ~	4	rin (r		1	1	n	• ~		2	- ~	1	5	9	NG	2		00	••0	μ, i	0.0		222 76			
JUN	667 1E	227	35	219	212	49	641	51 51	2.4	04 E7 E	66	319	64	2.59	48	217	34	1 80	17	21	142	24	130	28	113	1001	21	82	01	15	62	14	8 . T	64	13	€. .	40	60 .	4 4	32	-	28		6	23	Ф.	6	18	чо г	0		4616 848	- And		
MAY	1200	4095	0611	2/83	1887	526	1453	552	1412	287.3	80.7	2100	475	101	456	4364	0162	01001	100801	20800	9437	5230	5470	2120	3529	2527	803	1857	1442	328	1189	290	271	871	233	561	641	141	454 1 E I	464	113	413	06	102	340	50	540	269	68	507		101214 57935			
APR	5449 4650	4206	6700	1804	4605	6770	3912	6300	00.00	9042	3970	1720	2720	1346	1780	1129	750		10201	738	783	577	722	164	680 345	612	290	549	515	220	496	253	179	1894	994 100	11200	13414	15500	01671	4898	2500	3364	1490	1040	1921	61L	675	3710	1150	С		91623 95001	TCNS		
MAR	1740	2261	1350	1146	1258	626	1774	1470	1717	10056	14300	6142	7810	24390	37600	36229	10224	100076	31622	24100	14828	13561	12147	15400	223484	192914	148000	228322 197060	133267	97000	55408	4990C	668CC	30303	26200	22700	25836	30700	21212	55489	35700	370.64	23310	23800	25916	13200	8730	6186	6150	4560		1374641			
FEB 347294									ł											418000									19800	28100	11700	18900	06671	5363	21500	21400	1,771	12300	7840	1943	5450	1436	3720	3420	1000	273.5	o o	C	00	0		3026618	L[JA]) =		
NAL	207	3.16	125	108	192	82	C 1	000	22	134	64	14.)	53	14)	<u>, 7</u>	196	405	117	612	5 5 7 7 7 7 7	191	39	142	31	120	103	2.2	16	18	22	72	+ 4	b -	58	5.4	n 6	148	21	36	272	9	252	30	478	1560	739	6241	80165	00111	668363		119530	OBSERVED LC		
0EC 2472430	317000	380141	373000	5540.)	11035	14500	1424	0690	35.30	1351	2.10.0	397	1C 50	661	214	866	202	0.12	482	368	328	154	237	65 773	242	6449	130.00	819248	511-83	44 1100	147062	154045	0.0662	13992	21200	13401	4263	12300	112	1947	354(1431	50.5 5111	1700	869	195	4 7 L	549	365	311		2208224 2395242	TONS.		
VUN I	• *		۲ -	•		c -			÷.	7	۲	1			~ .	N -	- ^	, 1 ~	• •		14 °	0	on at e	24	201	1.62	101	2.5	257	1257	1239	53474	983	146	201	134	46	434	11121	137125	250001	65356	1 006 0 T	14300	1.1	2937	932	Lu47		5 AL	2	23512' 436081	1911		
001	د .	- 1	- ر	- c	-	- •	:	- ^	- 	4	-1	4	-	· t	→ ^	v	4 0	ب ر	~	<u></u>	£) ر.		• ت	4	~	2		ب ر	• •	- - ,	- ر	ار	-	о -	ب ب		. -	ا م ر	1	ג	2 :	2 r	د ا	2	ن ر	4 -	2	- ن	310 0	LY SUMMARY	4 2	ANNUAL SUMMARY COMPUTED LOAD =		
EAY 1C	1 	2C	22	20	4	0 7			<u> </u>	70	70	9C	3	25	D5				120	120	13C	130	140		151	140	160	140	150	160	150	517	200	21C	210	220	230	250	142	250	250	260	240	210	2 E C	260	250	300	300	310	MONTH	<u></u>	ANNUA COMPU		

EXHIBIT A

4

.

North States

81e4

ş.*.

SEP	0										e 0	¢ 6	**									10						•••					0		1 1	- -	0 1		6 26 8 3
JUL AUG		n ~ 1		e -		-		2	- ~		•	- 5 1	2	- ~		-	-	44					-		1	e	1		1	- 0			0-						48 106 29 38
NUL	2.03	8.05	5	ζ.u	4	5.4	25	37	.	4 0	4	9	24	23 23	••	2 m	17	14.	۳ <u>۳</u>	4 4	5	1 • •	<u>, w</u>	1 4	04	·	in co	5 -	9	د د	in r	n 10		14	4 4	, 4 (» O	a	694 142
MAY 5H2	165	96	85	388 68	346	65 308	84	274	244	65 237	84	243 142	403	298	65 270		31	161	24 145	24 131	18	18	11	11	00 21	61	12	12	11	69 11	62	57	10	2	121	- 96	6 9 9 8	9	6717 1407
APR 3649	2740	2710	2430	2315	1961	1210	1260	1550	4656	1910	2000	1730	2414	1995	168	1050	1864	1646	964 1395	906 1103	110	516	- 4	384	534	426	379	181	176	369 148	325	871	369	872	1982	879	- 0	o	53765 30915
MAR 9470	0665	36700	21300	31109	50716	58200 287C77	257000	118000	4.9938	39600	25500	25300	11118	8214	14700	9160	4415 5110	3687	3313	4830	404C	3230	3140	2476	1940	6855	25742	35600 13839	10600	90 17 40 60	6042	5308	278C 4738	2720	4473 2980	4287	1114	299f	823869 756960
FEB 337			1															56 46 70	580568	354000 249182	181000	97600	61000	43700	32100	9442	21200 6661	15200	12700	7280	2711	2094	3550 1789	3500	00	00		0	3180345 2938194
JAN. 323	53 3(:)	45	43	244 41	204	32 167	29	19	62	1 8 8	17 83	3 70 3	C B B	74	16	1 21	19	62	56	47	040	9 12551	52600	392500	36400	5614 7010	2744	2750	1250	636	780	637	32J 517	257	454 185	389	358	144	365061 495393
0EC 39383	5310.)	12-122	1570.0	2470	1358	717	421 506	282	396	326	129	68	181	144	2 <u>5</u>	49	104 44	93 93	6	53 99	131 576	482	35.40	66.783	114345	27372	7854	7130	2170	851	1205	848	238	137	114	378 81	5. 5. 7.	63	377577 424115
6 70N		с v		+ ¢	<i>.</i> ۳	~	έv	J.e	~ ~	~			N C	2	: ^		- 0	-	 -		c	() [• क्रु ल	י ה 	4-	ю	19	322	969	29840	22992 270.19	42.39	3090	680	666 668	24989 4 8900	, C (~	6 8915 11 1459
001	5 -1	с н	ب	ر ہ	-1 (о -	•	-	ب . د	د د	5.5	C N	ŝ	5 4	د ،	: ت م	4	, m 1	0	2 0	2~	ıс -	ن ب	-, ⊃	C	⊷ ر	ہ ر	з -	ر ب	N J	- C	12	9 ×	4 EI	81	•	A SUMMARY	
CAY 1C	10 20	2 C 19	0	10	5	<u>ר</u> ריי	4C 7C	70	С С	30	50 170	100	110	120	130	130	140	150	0.00	170	17C 18C	150	150	210	210	22C 22C	230	230 240	240	250	26C 26C	27C	270 26C	260	250	3CC 3CD	310	31C MONTHLY	00

EXHIBIT A

5

7 -

~8F7

																		State () and () and () and ()											and the second se																-	-
SEP	0	2	- .	0	1	-	•	-1	0.		- - -	1	1	-4 -	-0	-	-	0	1	-	0	- c	, -1	ۍ .	0	5	- - -	0	20	1	0 -1		4		• Z	~		2	5 7	6	0		5 0	0	43 8	5
AUG	1	2-7	-	-	~		1-1	2	- •	v -	- ~	1	1		4 N	1	~ -	<u> </u>	** 4 *		.		•	~~ 4 •	• ••				- 0	-	ה נ	0-	•0	- 0	,, i	0-	0		-	. د	-0		0 0	0	37	
JUL L		30	27		24	~		2	5.5	7	1		16	4 4	J.w	14	n <u>r</u>	C.	12	10	4	7 9	n aoi	~ r	- 10	<u>,</u>	* •0	4	n m	5	n n	~ ^w	1 10	4		N 3	. 21	•	1.44			m •	- ~	1	361	5 3 4
NUL 772	110	235	207	5	179	159	43	144	36	46	114	33	106	32	26	88	21 82	16	23	68 68	=	97 14	55	14	; m	ç °	5 6E	41	4 4 4	31	24	و ر	; o ;	4 P	92	6 <u>7</u> 9	12	50	14	° ,	- -	33	40	0	2735	2
3476	2280	3251	3065	2810	2982	2340 14444	1 5900	1 5040	(187)	2090	10239	4640	7087	3590	0661	4488	1932	1600	2815	2259	1030	1631	1588	581	518	1448	1406	586	537	1231	524 1124	519 981	50.2	390	787	328 662	253	563 188	684	140	147	367	317	146	10 7923	
AFK 191462	157000	73150 82700	4130.7	43710	35513	32496	43 900	862164	745809	480060	539846	284000	253749	187794	136000	140716	368481	252400	424128	611329	361000	418060	288707	1010101	85300	648US 49913	54564	49006	37848	27449	01/61	14715	11400	10306	8457	1783	6410	5921	4461	3200	2610	3797	0052	c	5920451 3835000	SN
2683	1050	2187	1897	702	1405	1152	386	166	342 868	320	735	270	628	117	224	509	446	15u	416	404	142	160	2227	1346	1880	3058	19091	610	514	1222	9111 9111	345	1040	11160	6595	2030 4535	3927	108111 2860C0	1377552	1040000	473000	790532	42654	335000	352934	8754
6559721	4260000	8r 2630 1010000	238531	414000	112601	68718	134000	39999	27613	51600	20350	40600	17844	19135	44600	44766	27645	42270	102000	52465	48100	23900	18386	22300	1961	10827	16192	12600	0156	4272	1166	3680	3030	2920	1779	1463	20.60	1380	1017	1210))	00	ם ם ייי	Ċ	8183981))
579	532	327	391	308	540	275	193	235	161	136	175	138	153	142	103	127	118	69	102	66	33	25	85	27	23	78	11	17	17	64	23	12 56		- 04 - 10 - 10	53	11	~	46	47	11	18	2482	165459	1360000	172371	RVED
3161	6410	298070	1239675	_	214700	36315	81900	15944	95.034 6	158.00	4576	8590	2976	1945	3337	1439	1114	1920	4433	2	195-00	119940	117436	1/4000	47375	17979	10211	13600	0445	3752	2563	7130	4800	3740	1049	823	046	141	676	562 478	438	645	631	764	1809272 2294991	5 TONS.
16	27	0	1	17		1 5 1 4	12	0 u †	66	Ś	36	e c	<u>3</u>	114	12	212	2855	12430	2618 680)	Ir 73	1447	384	357	137	122	223	1221	12	41	114	66	22 87	1 F	13	12	191415	000144	324532 486000	30186	6113U 8603	14470	40.83	1 1	ç	568355 1666417	22 48 797 TED
8		∩ -+	, ru	-1 4	t ~-	i m	- (n -	4 04	-	2	-	11	27242	91000	60119	773932	1150000	1560000	125 5-38	213010	755UL	12836	5044	10500	2446	4 36	341	236	237	199	13922.866	2560	1150	955	699	454	112	182	153	57	128	105	41	1991693 1991693	EC LCAC = 2 COMPUTED
IC	9.0	207	U M		0 C 7 4	50	ມ ເ		202	10	εC			, c , c	14.0	110	120	120	751	14C	150	150	160	170	176	160	150	150	210	210	220	220	230	240	250	260	260	270	280	250	752	202	310			ال جرب

EEL RIVER AT SCOTIA, CALIFORNIA - SEDIMENT DISCHARGE IN TONS

6

EXHIBIT A

Ŵ

			-		;				ļ					!			•		1																							The second se												/0	
		SEP	00	0	00	be	• •	0	10	0	0		-	0	0	0 -	-	,	0		- -	+0	0	•	0	30	0	10	- c	0	0	0 0		G	00	0	0	De	0	0	0 0	`	0	00	0	0	c , c	•	0	0	12	0			
		AUG	10	1	0-	-0	0		-	2	-	-		1	1	- -	•		0	1		•	-	0	-	2 -4	0	-	o a	0	3	0~	-0	1	o -	•0	2	0 ^	10	1	- C	•		0 4		0	00	00	0	ç	25	7			
		JUL I	n m	m	m m	n in	en i	m n	n m	3	m i	τη (f	יי הי ח	. o	2	2	Ņ	2	~	26	~ ~		2		2	44	-	r-1 r-		1			44	1		•		-1 =1	-			• 0	7	-	4	-	o -	• 0	-	o	53	20			
	· · · · · · · · · · · · · · · · · · ·	1UN 34	2	27	1 24	, m	22	- 4 - 4	ţm	52	4 (7 4	67	4	4 9	1	1 0	42	<u>،</u> و	4E A	8	ŝ	21	n i	18	16	4	51	12	11	п	. 0	• •	æ	-0 a	• 4	3 0 v	0.0	8	.	x x	o. o	5	4 6	, u	4 (ب ب	ŝ	0	0	119	149			
ZNOT NI		MAY 236	44	247	45 265	47	329	20 Z 8 A F	13	239	40	22	127	16	112	3 1	=	16	1	8 - 		11	78	11	7	62		19	61.	ف	144	105	6	11	6 y	80	54	0 0 4	2	39	+ 00	2	34	280	2	13	n t t	i N	36	2	3571	804			
DISCHARGE 1		APK 1814	248	2170	1435	20.8	1058	100 149	116	704	89	699 1	522	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	404	421	76	382	65	0 4 0 70	308	68	162	1001	107	251	98	652 69	222	81	191	166	24	143	55 129	32	123	117	31	7.1 107	5	23	80	1/1	20	67	25	14	0	ن ۱	13569		S		
		592	118	1443	1452	956	712	523	140	505	151	147	391	16	155	276	66	1373	6720	14000	13949	19400	6468	1016	1700	2494	1050	1432	1478	144	1158	166	202	928	2305	560	3369	3513	782	2454	1738	445	1362	1187	206	1038	921	155	859	747	78344	11460	5651552 TONS		
SEDIMENT		779()	10730	0403	5031	6260	3577	2698	3160	2211	1752	2110	1324	1340	1100	906	90.2	196	555 772	617	588	429	4 5 8	322	348	495	104	321	359	210	316	284	117	264	228	68	210	200	57	191	177	óľ	151	145	37	146	;0	0 1	с (Ċ,	39918		UAD = UAD		
CALIFORNIA -	IAN	757	15)	140	658	192	7176	404	11	12()	6063	84.2.1	3768	360)	151	1513	642	1269	140 140	367	868	270	2047	1984	653	1357	383	3217	75410	102001	164544	1478293	166030.0	1448352	218491	360003	14500	42.)75	00222	50714 89601	41665	7440)	24292	18336	24100	13741 2020)	14324	2410-3	9540 11-00	TTOCK	3732262		OBSERVED LUA		
CALTE	Df. C	1159	570	1 1 1 1 1 2 1 1	198	327	045	144	241	404	365	217	258	163	510	1960	1110	116	205	220	462	145	e 6	515	61	2.65	15	42	18.3	56	14	1564	1631	2315	1754	1273	5201 7 2 9	7.8.7	315	6 55 2 6 C	543	132	509	1357	357	17871	16 37	330	1046	216	28682	70. 20 4	95 TUNS, 0		
SCOTIA,	NUN	41	~ ~ [<u> </u>	14	*	14141	5065	121.)	10801	17679	36200	10291	1 8494	141017	28460	3180)	4785 472	21.10	1 191	LU 34	714	14407	148210	218600	33437	31000	721	4451	2767	0/161	46354	4623)	L 3464	5561	2537	249892	36223	348031	45074	17624	1370.0	8153	4259	246.0	2534	1675	119	÷.		Lr.5163 1386653		2416.5	ED	ED
	OCT	 •	-	ς	.	ţ	25	0 4 1		1	ŝ	Ø r	1 03	0	2	57 1	151	445	t t	368	27	15	157	263								;	22														9 r 	Y SUMMAFY	2378	SUWMARY		COMPUTED	OBSERVED
EEL RIVER AT	CAY	10			30		5 T	5C	0,7		70	10	BC 	20	05	16.0	100) 	120	120	130	130	140	TEC	150	16C	170	170	160	180	150	2C C	220	51C	220	220	230	240	240	250	260	260	210	280	250	752	3, 6	3(0	310	NONTHLY	JC	AL	LU4 400	י ט	•

EXHIBIT A

0	2		JAN 63365	10315	MAR 3389	APR 1073	MAY 2200	NUL 80	חר זמר	AUG	SEP L
			350000	48700 8174	8600 2185	2030	8630	71 55	11	0 4	e -
00			290300	38100 6236	4120	1250	6320	88	11	• • •	- -
00	0 130		848000 179078	28700	2240	1100	4400	84	12	• • •	- ~ -
			496000	22000	1670	878	3310	\$	12	n in 1	- ~ -
00			2180000	28800	1450	181	2960	38	12	i	- ~
0.0			,4310000 1088557	55700	1110	693	2520	31		v + v	
			2490000	33600	1010	118	1940	52	11	2 6	
80 26	0 23	548	872000 1 1 2 2 0 0 0	20100	870	520	1360	* 8 S	- 6	26.	
		385	407000	13300	876	192	1020	11	00	3	
	0 26601	1900	418000	10200	829	8800	976	6	00	- E	
		85000	674000	7890	740	4616	444 865	27	5	~~~	
0		28142	117826	2497	454	3153	393	25	4		
		7543	10470	2042	424	2237	886 350	18 22	- 3	~ ~	
5 0		5280 3582	305000	5180	919 391	3180	550 310	4 2	-	- 2	
0.0		1640	211000	4300	560	2270	529	17:	~ .	•~••	• •••
		1360	203000	3700	533	113000	+64	14	s -	2	
		842	161000	30.50	526	550000	240	14	31-	-	
		375	110000	3020	348	20873	218	20 14	e 0		2
		986	21412	1028	829	90166	196	18	6	1	
,		5024	19801	905	661	266044	175	11	n m	7	1 2
- 0	69 6 85	93 f0 175142	123300	2310 883	521	724000	359 158	15	6 7	т н	- ~
	с. 64 64	236000	121000	2170	405 524	287000 73961	333 143	14	90	2	
0.0	6 0 60	3570000	108000	1950	340	223000	297	31	1.0 0		• <i>.</i>
	0 25	60000004	79400	1910	321	149000	278	21	1 - 0		-
, O (22	57030000	205000	1740	317	88000	298	50	7 9 7		
0		190000001	564857 1450000	652	812	13452	110	9	2 4	2	
	0 0 0	2244803	188602	575	816	9276	103	<u>,</u> 0	n N	чe	
- J		850000	498000	1430 534	387 813	43800 7063	169 95	13 8	5 N	m N	
00	0 6710 1 3454	7503000	203000	1480 2245	525	30000	136 87	14	5 ~	m n	
0	C 2130	4200000	1380.00	3430	1880	25760	120	16	100	101	• •
	18 212030	26000.00	94700	16200	13800	21600	16	18	**	5	4
	237000	15000-00	69800	.	1580	3686 17000	75 82	5 14	~ 4	20	
	29 25661	135475	14352	00	1225	2932	22	, 6 , 2	2	, <u>سر</u> ،) 1 -
	0 81	101187	12268	3 0	21.12	0	8U 65	<u>4</u> 0	*		- 0
THLY SUMMA	22 J	490000	51040	0	1510	o	18	0	4	Ð	0
C 87 40 0 106 65	C850	101401414 145733207	7875623 18059500	113234 369724	31211 57486	910512 2902951	14470 40432	713 733	150 224	16 75	29 37
COPPUTEC LOAD	107	48348 TONS.	OBSERVED LOAD	= 16	TRIRGG 7 TUN	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					

EXHIBIT A

Technical Paper Series

- TP-1 Use of Interrelated Records to Simulate Streamflow TP-2 Optimization Techniques for Hydrologic Engineering TP-3 Methods of Determination of Safe Yield and Compensation Water from Storage Reservoirs TP-4 Functional Evaluation of a Water Resources System TP-5 Streamflow Synthesis for Ungaged Rivers TP-6 Simulation of Daily Streamflow TP-7 Pilot Study for Storage Requirements for Low Flow Augmentation TP-8 Worth of Streamflow Data for Project Design - A Pilot Study TP-9 Economic Evaluation of Reservoir System Accomplishments Hydrologic Simulation in Water-Yield Analysis **TP-10 TP-11** Survey of Programs for Water Surface Profiles **TP-12** Hypothetical Flood Computation for a Stream System **TP-13** Maximum Utilization of Scarce Data in Hydrologic Design **TP-14** Techniques for Evaluating Long-Tem Reservoir Yields **TP-15** Hydrostatistics - Principles of Application **TP-16** A Hydrologic Water Resource System Modeling Techniques Hydrologic Engineering Techniques for Regional **TP-17** Water Resources Planning **TP-18** Estimating Monthly Streamflows Within a Region **TP-19** Suspended Sediment Discharge in Streams **TP-20** Computer Determination of Flow Through Bridges TP-21 An Approach to Reservoir Temperature Analysis **TP-22** A Finite Difference Methods of Analyzing Liquid Flow in Variably Saturated Porous Media **TP-23** Uses of Simulation in River Basin Planning **TP-24** Hydroelectric Power Analysis in Reservoir Systems **TP-25** Status of Water Resource System Analysis **TP-26** System Relationships for Panama Canal Water Supply **TP-27** System Analysis of the Panama Canal Water Supply **TP-28** Digital Simulation of an Existing Water Resources System **TP-29** Computer Application in Continuing Education **TP-30** Drought Severity and Water Supply Dependability TP-31 Development of System Operation Rules for an Existing System by Simulation **TP-32** Alternative Approaches to Water Resources System Simulation **TP-33** System Simulation of Integrated Use of Hydroelectric and Thermal Power Generation **TP-34** Optimizing flood Control Allocation for a Multipurpose Reservoir **TP-35** Computer Models for Rainfall-Runoff and River Hydraulic Analysis **TP-36** Evaluation of Drought Effects at Lake Atitlan **TP-37** Downstream Effects of the Levee Overtopping at Wilkes-Barre, PA, During Tropical Storm Agnes **TP-38** Water Quality Evaluation of Aquatic Systems
- TP-39 A Method for Analyzing Effects of Dam Failures in Design Studies
- TP-40 Storm Drainage and Urban Region Flood Control Planning
- TP-41 HEC-5C, A Simulation Model for System Formulation and Evaluation
- TP-42 Optimal Sizing of Urban Flood Control Systems
- TP-43 Hydrologic and Economic Simulation of Flood Control Aspects of Water Resources Systems
- TP-44 Sizing Flood Control Reservoir Systems by System Analysis
- TP-45 Techniques for Real-Time Operation of Flood Control Reservoirs in the Merrimack River Basin
- TP-46 Spatial Data Analysis of Nonstructural Measures
- TP-47 Comprehensive Flood Plain Studies Using Spatial Data Management Techniques
- TP-48 Direct Runoff Hydrograph Parameters Versus Urbanization
- TP-49 Experience of HEC in Disseminating Information on Hydrological Models
- TP-50 Effects of Dam Removal: An Approach to Sedimentation
- TP-51 Design of Flood Control Improvements by Systems Analysis: A Case Study
- TP-52 Potential Use of Digital Computer Ground Water Models
- TP-53 Development of Generalized Free Surface Flow Models Using Finite Element Techniques
- TP-54 Adjustment of Peak Discharge Rates for Urbanization
- TP-55 The Development and Servicing of Spatial Data Management Techniques in the Corps of Engineers
- TP-56 Experiences of the Hydrologic Engineering Center in Maintaining Widely Used Hydrologic and Water Resource Computer Models
- TP-57 Flood Damage Assessments Using Spatial Data Management Techniques
- TP-58 A Model for Evaluating Runoff-Quality in Metropolitan Master Planning
- TP-59 Testing of Several Runoff Models on an Urban Watershed
- TP-60 Operational Simulation of a Reservoir System with Pumped Storage
- TP-61 Technical Factors in Small Hydropower Planning
- TP-62 Flood Hydrograph and Peak Flow Frequency Analysis
- TP-63 HEC Contribution to Reservoir System Operation
- TP-64 Determining Peak-Discharge Frequencies in an Urbanizing Watershed: A Case Study
- TP-65 Feasibility Analysis in Small Hydropower Planning
- TP-66 Reservoir Storage Determination by Computer Simulation of Flood Control and Conservation Systems
- TP-67 Hydrologic Land Use Classification Using LANDSAT
- TP-68 Interactive Nonstructural Flood-Control Planning
- TP-69 Critical Water Surface by Minimum Specific Energy Using the Parabolic Method

TP-70	Corps of Engineers Experience with Automatic
	Calibration of a Precipitation-Runoff Model
TP-71	Determination of Land Use from Satellite Imagery
	for Input to Hydrologic Models
TP-72	Application of the Finite Element Method to
	Vertically Stratified Hydrodynamic Flow and Water
	Quality
TP-73	Flood Mitigation Planning Using HEC-SAM
TP-74	Hydrographs by Single Linear Reservoir Model
TP-75	HEC Activities in Reservoir Analysis
TP-76	Institutional Support of Water Resource Models
TP-77	Investigation of Soil Conservation Service Urban
TP-78	Hydrology Techniques Potential for Increasing the Output of Existing
11-78	Hydroelectric Plants
TP-79	Potential Energy and Capacity Gains from Flood
11-77	Control Storage Reallocation at Existing U.S.
	Hydropower Reservoirs
TP-80	Use of Non-Sequential Techniques in the Analysis
11 00	of Power Potential at Storage Projects
TP-81	Data Management Systems of Water Resources
	Planning
TP-82	The New HEC-1 Flood Hydrograph Package
TP-83	River and Reservoir Systems Water Quality
	Modeling Capability
TP-84	Generalized Real-Time Flood Control System
	Model
TP-85	Operation Policy Analysis: Sam Rayburn
	Reservoir
TP-86	Training the Practitioner: The Hydrologic
	Engineering Center Program
TP-87	Documentation Needs for Water Resources Models
TP-88	Reservoir System Regulation for Water Quality
TD 90	Control
TP-89	A Software System to Aid in Making Real-Time Water Control Decisions
TP-90	Calibration, Verification and Application of a Two-
11-90	Dimensional Flow Model
TP-91	HEC Software Development and Support
TP-92	Hydrologic Engineering Center Planning Models
TP-93	Flood Routing Through a Flat, Complex Flood
	Plain Using a One-Dimensional Unsteady Flow
	Computer Program
TP-94	Dredged-Material Disposal Management Model
TP-95	Infiltration and Soil Moisture Redistribution in
	HEC-1
TP-96	The Hydrologic Engineering Center Experience in
	Nonstructural Planning
TP-97	Prediction of the Effects of a Flood Control Project
	on a Meandering Stream
TP-98	Evolution in Computer Programs Causes Evolution
	in Training Needs: The Hydrologic Engineering
TD 00	Center Experience
TP-99	Reservoir System Analysis for Water Quality
TP-100	Probable Maximum Flood Estimation - Eastern United States
TP-101	
1P-101	Use of Computer Program HEC-5 for Water Supply
TP-102	Analysis Role of Calibration in the Application of HEC-6
TP-102 TP-103	Engineering and Economic Considerations in
11-105	Formulating
TP-104	Modeling Water Resources Systems for Water
-0.	Quality

- TP-105 Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat
- TP-106 Flood-Runoff Forecasting with HEC-1F
- TP-107 Dredged-Material Disposal System Capacity Expansion
- TP-108 Role of Small Computers in Two-Dimensional Flow Modeling
- TP-109 One-Dimensional Model for Mud Flows
- TP-110 Subdivision Froude Number
- TP-111 HEC-5Q: System Water Quality Modeling
- TP-112 New Developments in HEC Programs for Flood Control
- TP-113 Modeling and Managing Water Resource Systems for Water Quality
- TP-114 Accuracy of Computer Water Surface Profiles -Executive Summary
- TP-115 Application of Spatial-Data Management Techniques in Corps Planning
- TP-116 The HEC's Activities in Watershed Modeling
- TP-117 HEC-1 and HEC-2 Applications on the Microcomputer
- TP-118 Real-Time Snow Simulation Model for the Monongahela River Basin
- TP-119 Multi-Purpose, Multi-Reservoir Simulation on a PC
- TP-120 Technology Transfer of Corps' Hydrologic Models
- TP-121 Development, Calibration and Application of Runoff Forecasting Models for the Allegheny River Basin
- TP-122 The Estimation of Rainfall for Flood Forecasting Using Radar and Rain Gage Data
- TP-123 Developing and Managing a Comprehensive Reservoir Analysis Model
- TP-124 Review of U.S. Army corps of Engineering Involvement With Alluvial Fan Flooding Problems
- TP-125 An Integrated Software Package for Flood Damage Analysis
- TP-126 The Value and Depreciation of Existing Facilities: The Case of Reservoirs
- TP-127 Floodplain-Management Plan Enumeration
- TP-128 Two-Dimensional Floodplain Modeling
- TP-129 Status and New Capabilities of Computer Program HEC-6: "Scour and Deposition in Rivers and Reservoirs"
- TP-130 Estimating Sediment Delivery and Yield on Alluvial Fans
- TP-131 Hydrologic Aspects of Flood Warning -Preparedness Programs
- TP-132 Twenty-five Years of Developing, Distributing, and Supporting Hydrologic Engineering Computer Programs
- TP-133 Predicting Deposition Patterns in Small Basins
- TP-134 Annual Extreme Lake Elevations by Total Probability Theorem
- TP-135 A Muskingum-Cunge Channel Flow Routing Method for Drainage Networks
- TP-136 Prescriptive Reservoir System Analysis Model -Missouri River System Application
- TP-137 A Generalized Simulation Model for Reservoir System Analysis
- TP-138 The HEC NexGen Software Development Project
- TP-139 Issues for Applications Developers
- TP-140 HEC-2 Water Surface Profiles Program
- TP-141 HEC Models for Urban Hydrologic Analysis

- TP-142 Systems Analysis Applications at the Hydrologic Engineering Center
- TP-143 Runoff Prediction Uncertainty for Ungauged Agricultural Watersheds
- TP-144 Review of GIS Applications in Hydrologic Modeling
- TP-145 Application of Rainfall-Runoff Simulation for Flood Forecasting
- TP-146 Application of the HEC Prescriptive Reservoir Model in the Columbia River Systems
- TP-147 HEC River Analysis System (HEC-RAS)
- TP-148 HEC-6: Reservoir Sediment Control Applications
- TP-149 The Hydrologic Modeling System (HEC-HMS): Design and Development Issues
- TP-150 The HEC Hydrologic Modeling System
- TP-151 Bridge Hydraulic Analysis with HEC-RAS
- TP-152 Use of Land Surface Erosion Techniques with Stream Channel Sediment Models

- TP-153 Risk-Based Analysis for Corps Flood Project Studies - A Status Report
- TP-154 Modeling Water-Resource Systems for Water Quality Management
- TP-155 Runoff simulation Using Radar Rainfall Data
- TP-156 Status of HEC Next Generation Software Development
- TP-157 Unsteady Flow Model for Forecasting Missouri and Mississippi Rivers
- TP-158 Corps Water Management System (CWMS)
- TP-159 Some History and Hydrology of the Panama Canal
- TP-160 Application of Risk-Based Analysis to Planning Reservoir and Levee Flood Damage Reduction Systems
- TP-161 Corps Water Management System Capabilities and Implementation Status