

Role of Small Computers in Two-Dimensional Flow Modeling

October 1985

Approved for Public Release. Distribution Unlimited.

TP-108

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188		
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.							
1. REPORT DATE (DD-	ММ-ҮҮҮҮ)	2. REPORT TYPE			3. DATES CO	OVERED (From - To)	
October 1985	_	Technical Paper					
4. TITLE AND SUBTIT	E puters in Two-Di	mensional Flow N	Iodeling	5a. (CONTRACT N	UMBER	
				5b. (GRANT NUME	BER	
				5c. I	PROGRAM EL	EMENT NUMBER	
6. AUTHOR(S) D. Michael Gee				5d. PROJECT NUMBER			
D. Michael Gee				5e. 1	TASK NUMBE	R	
				5F. WORK UNIT NUMBER			
7. PERFORMING ORG	ANIZATION NAME(S)	AND ADDRESS(ES)			8. PERFORM	MING ORGANIZATION REPORT NUMBER	
US Army Corps of	Engineers				TP-108		
Institute for Water	Resources						
Hydrologic Engine	ering Center (HE	C)					
609 Second Street	1.007						
Davis, CA 95616-	4687						
9. SPONSORING/MON	ITORING AGENCY NA	AME(S) AND ADDRES	S(ES)		10. SPONSC	DR/ MONITOR'S ACRONYM(S)	
				F	11. SPONSC	DR/ MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION / A	AILABILITY STATEN	IENT					
Approved for publ	ic release; distribu	tion is unlimited.					
13. SUPPLEMENTARY	NOTES						
Presented at the Ai Hydrology in the S	nerican Society o mall Computer A	f Civil Engineers I ge, Orlando, Flori	Hydraulics Divis da, 12-17 Augus	sion S st 198	Specialty Co 85.	onference on Hydraulics and	
14. ABSTRACT							
This paper describe surface, steady or u	es the computation insteady two-dime	nal aspects and contents and contents and contents and the second s	mputer usage his ls. The focus is	story on a	of numeric particular n	al simulations of horizontal, free numerical model (RMA-2) that has	
been used and deve	eloped at the Hydr	rologic Engineerir	ng Center (HEC)	and	elsewhere f	for the past decade. RMA-2 solves	
the complete Reynolds's equations for turbulent flow in two dimensions using the finite element method. Terms describing							
bottom friction, surface wind, and Coriolis forces are included.							
RMA-2 may be used as a driver for sediment transport and water quality simulations as well as for computing							
hydrodynamic information only.							
15. SUBJECT TERMS							
numerical models,	computational hy	draulics, microcor	nputers, finite el	lemer	nts		
16. SECURITY CLASS	FICATION OF:	I	17. LIMITATION	1	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT	b. ABSTRACT	c. THIS PAGE			OF PAGES		
U	U	U	UU		16	19b. TELEPHONE NUMBER	
					-	Standard Form 208 (Poyr 9/09)	

Role of Small Computers in Two-Dimensional Flow Modeling

October 1985

US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center 609 Second Street Davis, CA 95616

(530) 756-1104 (530) 756-8250 FAX www.hec.usace.army.mil

TP-108

Papers in this series have resulted from technical activities of the Hydrologic Engineering Center. Versions of some of these have been published in technical journals or in conference proceedings. The purpose of this series is to make the information available for use in the Center's training program and for distribution with the Corps of Engineers.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Role of Small Computers in Two-Dimensional Flow Modeling by D. Michael Gee* M.A.S.C.E.

Introduction

This paper describes the computational aspects and computer usage history of numerical simulations of horizontal, free surface, steady or unsteady two-dimensional flow fields. The focus is on a particular numerical model (RMA-2(6)) that has been in use and development at the Hydrologic Engineering Center (HEC) and elsewhere for the past decade (1, 2, 3, 4, 5, 7, 9). RMA-2 solves the complete Reynold's equations for turbulent flow in two dimensions using the finite element method. Terms describing bottom friction, surface wind, and Coriolis forces are included. Details of the governing equations and solution technique are thoroughly documented elsewhere (6). RMA-2 may be used as a driver for sediment transport and water quality simulations as well as for computing hydrodynamic information only.

Background

Throughout the development and application of two-dimensional flow models a major concern has been the magnitude of computational resources needed to perform the simulations. Indeed, one of the major components of the study of various numerical solution techniques has been that of computational efficiency (8). Historically, the use and study of multidimensional hydrodynamic models has been the realm of institutions having access to large, high-speed computers at discount rates. It is the author's position that the price/performance ratio of contemporary computers is such that two-dimensional flow modeling can now become a routinely used engineering tool (with associated needs for such important support items as training and user assistance). Furthermore, the high utilization of computational resources that continues to be needed in such studies is now an inconvenience rather than an unacceptable economic burden.

*Chief, Computer Support Center, The Hydrologic Engineering Center, 609 Second Street, Davis, CA 95616

Presented at the ASCE Hydraulics Division Specialty Conference on Hydraulics and Hydrology in the Small Computer Age, Orlando, FL, 12-17 August 1985.

Computational Aspects of RMA-2

Solution of the equations of motion for turbulent free surface flows requires substantial data manipulation. A finite element network describing the boundary geometry and bathemetry of the problem must be developed, encoded, stored, and manipulated. Numerical solutions must be viewed graphically, and summarized and interpreted conveniently. It is, however, the internal operations of the numerical solution technique that place the greatest demands on computational resources.

Application of the finite element technique produces a set of simultaneous nonlinear algebraic equations that must be solved iteratively. Typically there are several thousand of these equations in several thousand unknowns. The unknowns are the two velocity components and depth at each computational node. The efficiency of the soution of this set of equations dominates the efficiency of the entire simulation. RMA-2 takes advantage of a solution technique known as a front solver. The frontal solution technique requires rapid storage and retrieval of intermediate solution vectors. The virtual memory architecture of most minicomputers is well adapted to this process allowing intermediate solutions to be stored in large arrays rather than using programmed writes and reads.

History of Computers Used

Initial applications and testing of RMA-2 at the HEC were performed on a CDC 7600. Many applications and most of the development done at Resource Management Assoc. (Lafayette, CA) used a Prime 550. Work at the HEC and several Corps district offices over the past few years has been done using Harris 500 computers. Recently, the HEC has been evaluating the use of a Hewlett-Packard 9000 32-bit super-minicomputer for RMA-2 applications. Tests have indicated that execution times are only about 50% longer on the HP than on the Harris. This is perfectly acceptable for production work, particularly as use of an HP9000 type machine should not be at a cost proportional to run time.

This history indicates two things: (1) RMA-2 (and associated programs) is generalized and highly transportable among various types of computers, and (2) current price/performance indicators for machines such as the HP9000 are such that this type of numerical modeling is now economically available to much smaller institutions and consulting firms than previously.

A Typical Application

Results of a typical steady flow simulation are shown in Fig. 1. This is a reach of the upper Mississippi River that is about 2.2 miles (3.5 km) long and 1200 ft. (370 m) wide. This area was studied with high resolution network consisting of 375 elements and 1189 nodes. The study is described in detail in Ref. 4. Typical execution times for this problem on various computers are given in Table 1.

Figure 1 Example Vector Plot Upper Mississippi River, Discharge = 10,000 cfs (280 cms)

Table 1 Typical Execution Times

<u>Machine</u>	Time
CDC Cyber 865	3.9 min
Harris 500	13.5 min
HP 9000	19.8 min

Importance of Pre- and Post-Processing

Production applications of numerical two-dimensional flow models immediately focus the modeler's attention on data handling and interpretation of results. Indeed, it is more accurate to think of RMA-2 as a modeling system rather than a single computer program. There exists a geometric data preprocessor (RMA-1) to aid in development and error checking of the finite element network; and graphics post-processors for displaying and interpreting simulation results. The linkages and data flow among the various elements of an RMA-2 based modeling system are shown on Fig. 2.

It is a characteristic of the finite element method that the solution is continuous in space; contrasted with finite difference techniques that yield solutions at discrete points. This characteristic facilitates graphic displays (such as contouring) and leads to more accurate constituent transport computations. Types of graphical displays and their uses are numerous. The traditional format is that of the velocity vector plot (Fig. 1). Important as well are contours of velocity magnitude (isotachs) which can be used for habitat quantification (4). Contour plots of bottom elevation, primarily useful for checking network accuracy, and water surface elevation are also used. Pathline plots depict the traces of particles moving with the vertical average velocity. These plots are particularly useful in interpreting unsteady flow patterns such as tidal excursions. For open river situations a logarithmic velocity profile in the vertical can be fitted to the computed mean vertical velocity at each point to obtain quasi-three dimensional information (4).

Conclusions

1. The long history of successful applications and associated development of data error checking in the preprocessing phase of a two-dimensional flow study have produced a situation where minimal computational difficulties are encountered in RMA-2 applications.

2. Adequate computational resources exist in 32-bit minicomputers to perform finite element hydrodynamic simulations.

3. The largest payoff for future research lies in enhanced data preparation techniques and improved simulation post-processing rather than improved computational efficiency.

4. It is anticipated that microcomputers will play a useful role in data preparation and graphic display of simulation results. A particular need is for a truly interactive finite element generator that recognizes bottom topography as well as boundary shape.

Acknowledgements

The author wishes to recognize the assistance of and advice of Dr. Ian King and the late William Norton of RMA. Work reported herein was sponsored by various Corps of Engineers District offices and the Research and Development program of the Office, Chief of Engineers. The opinions and conclusions expressed herein are those of the author and not necessarily those of the U.S. Army Corps of Engineers. Manufacturers names are presented herein for example only and do not constitute a recommendation or endorsement by the author or the U.S. Army Corps of Engineers.

References

- Gee, D.M., "Calibration, Verification and Application of a Two-Dimensional Flow Model," <u>Frontiers in Hydraulic Engineering</u>, Proceedings of the American Society of Civil Engineers Hydraulics Division Specialty Conference held at the Massachusetts Institute of Technology, Cambridge, Massachusetts, August 9-12 1983. (Also published as HEC Technical Paper No. 90.)
- 2. Gee, D.M. and MacArthur, R.C., "Development of Generalized Free Surface Flow Models Using Finite Element Techniques," <u>Finite</u> <u>Elements in Water Resources</u>; Proceedings of the Second International Conference on Finite Elements in Water Resources, Pentech Press, July 1978. (Also published as HEC Technical Paper No. 53.)
- 3. Gee, D.M. and MacArthur, R.C., "Evaluation and Application of the Generalized Finite Element Hydrodynamic Model RMA-2," Proceedings of the First National U.S. Army Corps of Engineers-Sponsored Seminar on Two-Dimensional Flow Modeling held at The Hydrologic Engineering Center, Davis, California, July 7-9, 1981.
- 4. Gee, D.M. and Wilcox, D.B., "Use of A Two-Dimensional Flow Model to Quantify Aquatic Habitat," Proceedings of the American Society of Civil Engineers Water Resources Planning and Management Division Specialty Conference on Computer Applications in Water Resources, Buffalo, N.Y., 10-12 June 1985.
- McAnally, W.H., et. al., "Application of Columbia Hybrid Modeling System," Journal of Hydraulic Engineering, American Society of Civil Engineers, Vol. 110, No. 5, May 1984, pp. 627-642.
- Norton, W.R. and King, I.P., "User's Guide and Operating Instructions for The Computer Program RMA-2," report to The Sacramento District, U.S. Army Corps of Engineers, Resource Management Associates, December 1976.
- Thomas, W.A. and Heath, R.E., "Application of TABS-2 to Greenville Reach Mississippi River," <u>River Meandering</u>. Proceedings of the American Society of Civil Engineers Conference Rivers '83, New Orleans, LA, 24-26 Oct 1983.
- 8. U. S. Army Corps of Engineers, The Hydrologic Engineering Center, "Proceedings of a Seminar on Two-Dimensional Flow Modeling," Davis, CA, March 1982.
- 9. U.S. Army Engineer District, San Francisco, "Numerical Simulation of the Circulation and Water Quality within Fisherman's Wharf Harbor," August 1984, at press.

Table 1. Typical Execution Times (Updated July 91)

Machine	<u>Time</u>
CDC Cyber 865	3.9 min.
33 MHz 486 PC	4.1 min.
Harris 1000	4.6 min.
25 MHz 386 PC	10.6 min.
Harris 500	13.5 min.
16 MHz 386 PC	16.6 min.
HP 9000	19.8 min.

Technical Paper Series

- TP-1 Use of Interrelated Records to Simulate Streamflow TP-2 Optimization Techniques for Hydrologic Engineering TP-3 Methods of Determination of Safe Yield and Compensation Water from Storage Reservoirs TP-4 Functional Evaluation of a Water Resources System TP-5 Streamflow Synthesis for Ungaged Rivers TP-6 Simulation of Daily Streamflow TP-7 Pilot Study for Storage Requirements for Low Flow Augmentation TP-8 Worth of Streamflow Data for Project Design - A Pilot Study TP-9 Economic Evaluation of Reservoir System Accomplishments Hydrologic Simulation in Water-Yield Analysis **TP-10 TP-11** Survey of Programs for Water Surface Profiles **TP-12** Hypothetical Flood Computation for a Stream System **TP-13** Maximum Utilization of Scarce Data in Hydrologic Design **TP-14** Techniques for Evaluating Long-Tem Reservoir Yields **TP-15** Hydrostatistics - Principles of Application **TP-16** A Hydrologic Water Resource System Modeling Techniques Hydrologic Engineering Techniques for Regional **TP-17** Water Resources Planning **TP-18** Estimating Monthly Streamflows Within a Region **TP-19** Suspended Sediment Discharge in Streams **TP-20** Computer Determination of Flow Through Bridges TP-21 An Approach to Reservoir Temperature Analysis **TP-22** A Finite Difference Methods of Analyzing Liquid Flow in Variably Saturated Porous Media **TP-23** Uses of Simulation in River Basin Planning **TP-24** Hydroelectric Power Analysis in Reservoir Systems **TP-25** Status of Water Resource System Analysis **TP-26** System Relationships for Panama Canal Water Supply **TP-27** System Analysis of the Panama Canal Water Supply **TP-28** Digital Simulation of an Existing Water Resources System **TP-29** Computer Application in Continuing Education **TP-30** Drought Severity and Water Supply Dependability TP-31 Development of System Operation Rules for an Existing System by Simulation **TP-32** Alternative Approaches to Water Resources System Simulation **TP-33** System Simulation of Integrated Use of Hydroelectric and Thermal Power Generation **TP-34** Optimizing flood Control Allocation for a Multipurpose Reservoir **TP-35** Computer Models for Rainfall-Runoff and River Hydraulic Analysis **TP-36** Evaluation of Drought Effects at Lake Atitlan **TP-37** Downstream Effects of the Levee Overtopping at Wilkes-Barre, PA, During Tropical Storm Agnes **TP-38** Water Quality Evaluation of Aquatic Systems
- TP-39 A Method for Analyzing Effects of Dam Failures in Design Studies
- TP-40 Storm Drainage and Urban Region Flood Control Planning
- TP-41 HEC-5C, A Simulation Model for System Formulation and Evaluation
- TP-42 Optimal Sizing of Urban Flood Control Systems
- TP-43 Hydrologic and Economic Simulation of Flood Control Aspects of Water Resources Systems
- TP-44 Sizing Flood Control Reservoir Systems by System Analysis
- TP-45 Techniques for Real-Time Operation of Flood Control Reservoirs in the Merrimack River Basin
- TP-46 Spatial Data Analysis of Nonstructural Measures
- TP-47 Comprehensive Flood Plain Studies Using Spatial Data Management Techniques
- TP-48 Direct Runoff Hydrograph Parameters Versus Urbanization
- TP-49 Experience of HEC in Disseminating Information on Hydrological Models
- TP-50 Effects of Dam Removal: An Approach to Sedimentation
- TP-51 Design of Flood Control Improvements by Systems Analysis: A Case Study
- TP-52 Potential Use of Digital Computer Ground Water Models
- TP-53 Development of Generalized Free Surface Flow Models Using Finite Element Techniques
- TP-54 Adjustment of Peak Discharge Rates for Urbanization
- TP-55 The Development and Servicing of Spatial Data Management Techniques in the Corps of Engineers
- TP-56 Experiences of the Hydrologic Engineering Center in Maintaining Widely Used Hydrologic and Water Resource Computer Models
- TP-57 Flood Damage Assessments Using Spatial Data Management Techniques
- TP-58 A Model for Evaluating Runoff-Quality in Metropolitan Master Planning
- TP-59 Testing of Several Runoff Models on an Urban Watershed
- TP-60 Operational Simulation of a Reservoir System with Pumped Storage
- TP-61 Technical Factors in Small Hydropower Planning
- TP-62 Flood Hydrograph and Peak Flow Frequency Analysis
- TP-63 HEC Contribution to Reservoir System Operation
- TP-64 Determining Peak-Discharge Frequencies in an Urbanizing Watershed: A Case Study
- TP-65 Feasibility Analysis in Small Hydropower Planning
- TP-66 Reservoir Storage Determination by Computer Simulation of Flood Control and Conservation Systems
- TP-67 Hydrologic Land Use Classification Using LANDSAT
- TP-68 Interactive Nonstructural Flood-Control Planning
- TP-69 Critical Water Surface by Minimum Specific Energy Using the Parabolic Method

IP-70	Corps of Engineers Experience with Automatic
	Calibration of a Precipitation-Runoff Model
TP-71	Determination of Land Use from Satellite Imagery
	for Input to Hydrologic Models
TP-72	Application of the Finite Element Method to
	Vertically Stratified Hydrodynamic Flow and Water
	Quality
TED 70	
TP-/3	Flood Mitigation Planning Using HEC-SAM
TP-74	Hydrographs by Single Linear Reservoir Model
TP-75	HEC Activities in Reservoir Analysis
TP-76	Institutional Support of Water Resource Models
TP-77	Investigation of Soil Conservation Service Urban
	Hydrology Techniques
TP-78	Potential for Increasing the Output of Existing
11 /0	Hudroalactria Dlants
TD 7 0	
TP-/9	Potential Energy and Capacity Gains from Flood
	Control Storage Reallocation at Existing U.S.
	Hydropower Reservoirs
TP-80	Use of Non-Sequential Techniques in the Analysis
	of Power Potential at Storage Projects
TP-81	Data Management Systems of Water Resources
	Planning
TD 92	The New HEC 1 Flood Hydrograph Deckage
TD 02	The New HEC-1 Flood Hydrograph Fackage
TP-83	River and Reservoir Systems water Quality
	Modeling Capability
TP-84	Generalized Real-Time Flood Control System
	Model
TP-85	Operation Policy Analysis: Sam Rayburn
	Reservoir
TP-86	Training the Practitioner: The Hydrologic
11 00	Engineering Center Program
TD 97	Desumantation Needs for Water Pesources Medals
TD 00	Documentation Needs for water Resources Models
TP-88	Reservoir System Regulation for Water Quality
	Control
TP-89	A Software System to Aid in Making Real-Time
	Water Control Decisions
TP-90	Calibration, Verification and Application of a Two-
	Dimensional Flow Model
TP-91	HEC Software Development and Support
TP-92	Hydrologic Engineering Center Planning Models
TD 03	Flood Pouting Through a Flot Complex Flood
11-95	Plain Using a One Dimensional Usetes de Flam
	Plain Using a One-Dimensional Unsteady Flow
	Computer Program
TP-94	Dredged-Material Disposal Management Model
TP-95	Infiltration and Soil Moisture Redistribution in
	HEC-1
TP-96	The Hydrologic Engineering Center Experience in
	Nonstructural Planning
TP-97	Prediction of the Effects of a Flood Control Project
11)/	on a Meandering Stream
TD 08	Evolution in Computer Programs Causes Evolution
11-90	
	in Training Needs: The Hydrologic Engineering
	Center Experience
TP-99	Reservoir System Analysis for Water Quality
TP-100	Probable Maximum Flood Estimation - Eastern
	United States
TP-101	Use of Computer Program HEC-5 for Water Supply
	Analysis
TP_102	Role of Calibration in the Application of HEC 6
TD 102	Engineering and Economic Considerations in
11-103	Engineering and Economic Considerations in
	Formulating
TP-104	Modeling Water Resources Systems for Water
	Quality

Come of Englishers Experience with Automatic

TD 70

- TP-105 Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat
- TP-106 Flood-Runoff Forecasting with HEC-1F
- TP-107 Dredged-Material Disposal System Capacity Expansion
- TP-108 Role of Small Computers in Two-Dimensional Flow Modeling
- TP-109 One-Dimensional Model for Mud Flows
- TP-110 Subdivision Froude Number
- TP-111 HEC-5Q: System Water Quality Modeling
- TP-112 New Developments in HEC Programs for Flood Control
- TP-113 Modeling and Managing Water Resource Systems for Water Quality
- TP-114 Accuracy of Computer Water Surface Profiles -Executive Summary
- TP-115 Application of Spatial-Data Management Techniques in Corps Planning
- TP-116 The HEC's Activities in Watershed Modeling
- TP-117 HEC-1 and HEC-2 Applications on the Microcomputer
- TP-118 Real-Time Snow Simulation Model for the Monongahela River Basin
- TP-119 Multi-Purpose, Multi-Reservoir Simulation on a PC
- TP-120 Technology Transfer of Corps' Hydrologic Models
- TP-121 Development, Calibration and Application of Runoff Forecasting Models for the Allegheny River Basin
- TP-122 The Estimation of Rainfall for Flood Forecasting Using Radar and Rain Gage Data
- TP-123 Developing and Managing a Comprehensive Reservoir Analysis Model
- TP-124 Review of U.S. Army corps of Engineering Involvement With Alluvial Fan Flooding Problems
- TP-125 An Integrated Software Package for Flood Damage Analysis
- TP-126 The Value and Depreciation of Existing Facilities: The Case of Reservoirs
- TP-127 Floodplain-Management Plan Enumeration
- TP-128 Two-Dimensional Floodplain Modeling
- TP-129 Status and New Capabilities of Computer Program HEC-6: "Scour and Deposition in Rivers and Reservoirs"
- TP-130 Estimating Sediment Delivery and Yield on Alluvial Fans
- TP-131 Hydrologic Aspects of Flood Warning -Preparedness Programs
- TP-132 Twenty-five Years of Developing, Distributing, and Supporting Hydrologic Engineering Computer Programs
- TP-133 Predicting Deposition Patterns in Small Basins
- TP-134 Annual Extreme Lake Elevations by Total Probability Theorem
- TP-135 A Muskingum-Cunge Channel Flow Routing Method for Drainage Networks
- TP-136 Prescriptive Reservoir System Analysis Model -Missouri River System Application
- TP-137 A Generalized Simulation Model for Reservoir System Analysis
- TP-138 The HEC NexGen Software Development Project
- TP-139 Issues for Applications Developers
- TP-140 HEC-2 Water Surface Profiles Program
- TP-141 HEC Models for Urban Hydrologic Analysis

- TP-142 Systems Analysis Applications at the Hydrologic Engineering Center
- TP-143 Runoff Prediction Uncertainty for Ungauged Agricultural Watersheds
- TP-144 Review of GIS Applications in Hydrologic Modeling
- TP-145 Application of Rainfall-Runoff Simulation for Flood Forecasting
- TP-146 Application of the HEC Prescriptive Reservoir Model in the Columbia River Systems
- TP-147 HEC River Analysis System (HEC-RAS)
- TP-148 HEC-6: Reservoir Sediment Control Applications
- TP-149 The Hydrologic Modeling System (HEC-HMS): Design and Development Issues
- TP-150 The HEC Hydrologic Modeling System
- TP-151 Bridge Hydraulic Analysis with HEC-RAS
- TP-152 Use of Land Surface Erosion Techniques with Stream Channel Sediment Models

- TP-153 Risk-Based Analysis for Corps Flood Project Studies - A Status Report
- TP-154 Modeling Water-Resource Systems for Water Quality Management
- TP-155 Runoff simulation Using Radar Rainfall Data
- TP-156 Status of HEC Next Generation Software Development
- TP-157 Unsteady Flow Model for Forecasting Missouri and Mississippi Rivers
- TP-158 Corps Water Management System (CWMS)
- TP-159 Some History and Hydrology of the Panama Canal
- TP-160 Application of Risk-Based Analysis to Planning Reservoir and Levee Flood Damage Reduction Systems
- TP-161 Corps Water Management System Capabilities and Implementation Status