

Delaware River Basin Flood Analysis Model

Reservoir Operations and Streamflow Routing Component

February 2010

Approved for Public Release. Distribution Unlimited.

		OCUMENTA	FION PAGE			Form Approved OMB No. 0704-0188
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.						
	TE (DD-MM-YYYY)	2. REPORT TYPE			3. DATES CO	VERED (From - To)
February 20		Project Report				
	ver Basin Flood	Analysis Model eamflow Routing (Component		GRANT NUMBE	
Reservoir O	perations and St	cannow Routing (component	55.		
						EMENT NUMBER
6. AUTHOR(S)				5d.	PROJECT NUM	IBER
	n, CEIWR-HEC-			5e.	TASK NUMBER	8
	st, CEIWR-HEC					
Maunew Fle	eming, CEIWR-H	EC-HHI		5F.	WORK UNIT NU	JMBER
US Army Co Institute for	orps of Engineers Water Resources Engineering Cent Street		S(ES)		8. performi PR-73	ING ORGANIZATION REPORT NUMBER
9. SPONSORIA	G/MONITORING AG	ENCY NAME(S) AND A	DDRESS(ES)		10. SPONSOF	R/ MONITOR'S ACRONYM(S)
	ver Basin Comm		2211200(20)			
25 State Poli	ice Drive				11. SPONSOR	R/ MONITOR'S REPORT NUMBER(S)
PO Box 736	0					
West Trento	n, NJ 08628-036	0				
	ION / AVAILABILITY					
Approved for	or public release;	distribution is unlir	nited.			
13. SUPPLEMENTARY NOTES						
14. ABSTRACT The Delaware River Basin Commission (DRBC) engaged the Hydrologic Engineering Center (HEC), along with the U.S. Geological Survey (USGS), and the National Weather Service (NWS), in the development of a flood analysis model for the Delaware River Basin. The flood analysis model was developed to evaluate the existing reservoirs for flood mitigation and provide data to evaluate the effects of various reservoir operating alternatives on flooding locations downstream of the reservoirs. HEC in coordination with DRBC, USGS and NWS created the HEC-ResSim model of the Delaware River Basin. The purpose of this report is to describe the reservoir modeling and flow routing, focusing primarily on the aspects or features the modelers will need to be aware of as further alternatives are developed.						
15. SUBJECT	-	~				
	HEC-ResSim, reservoir, operations, streamflow, routing, Delaware River Basin Commission, DRBC, Delaware					
	River, Delaware River Basin, USACE, HEC, CENAP, watershed, projects, computation points, junctions, basins, reaches, reservoir network, data collection, alternatives, simulations, Delaware River Flood Analysis Model, flood,					
		duction, conservat		ons,	Delaware Ri	iver riood Analysis Model, 1100d,
	CLASSIFICATION O	,	17. LIMITATION		18. NUMBER	19a. NAME OF RESPONSIBLE
a. REPORT	b. ABSTRACT	c. THIS PAGE	OF		OF	PERSON
U	U	U	ABSTRACT		PAGES	
_	_	_	UU		219	19b. TELEPHONE NUMBER
	<u> </u>		<u> </u>			Standard Form 298 (Rev. 8

Delaware River Basin Flood Analysis Model

Reservoir Operations and Streamflow Routing Component

February 2010

Prepared for: Delaware River Basin Commission 25 State Police Drive PO Box 7360 West Trenton, NJ 08628-0360

Prepared by: US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center 609 Second Street Davis, CA 95616

(530) 756-1104 (530) 756-8250 FAX www.hec.usace.army.mil

Table of Contents

List of Tables	V
List of Figures	
Abbreviations	
Acknowledgments	
Executive Summary	

Chapters

1	Introduction	
	1.1 Background	1
	1.2 Scope of Model	1
	1.3 Study Area	2
2	Watershed Setup	
	2.1 Watershed Creation and Layout	5
	2.2 Stream Alignment	6
	2.3 Watershed Configurations	7
	2.3.1 Projects	
	2.3.2 Computation Points	9
	2.4 Summary	
3	Data Collections	
	3.1 Time Series Data	17
	3.1.1 USGS Gage Data	17
	3.1.2 CENAP Gage Data	17
	3.1.3 DRBC Data	18
	3.2 Model Data	18
4	Reservoir Network	
	4.1 Junctions	20
	4.2 Reaches	24
	4.3 Reservoirs	29
	4.3.1 Upper Basin Reservoirs	29
	4.3.1.1 Cannonsville	30
	FC Ops - Normal Flood Operations	34
	FC Ops-SpecDiv - Normal Flood Operations,	
	Specified Diversions	35
	4.3.1.2 Pepacton	37
	4.3.1.3 Neversink	
	4.3.2 Lackawaxen River Basin Reservoirs	40
	4.3.2.1 Prompton	
	4.3.2.2 Jadwin	
	4.3.2.3 Lake Wallenpaupack	
	· ·	

Table of Contents

Chapters

122 Mangaun Daain Daaan jaira	
4.3.3 Mongaup Basin Reservoirs	
4.3.3.1 Toronto	46
4.3.3.2 Swinging Bridge	47
4.3.3.3 Rio	49
4.3.4 Lehigh River Basin Reservoir	51
4.3.4.1 F.E. Walter	51
4.3.4.2 Beltzville	
4.3.5 Mainstem Delaware River Basin Reservoirs	53
4.3.5.1 Merrill Creek	53
4.3.5.2 Nockamixon	54

5 Alternatives and Simulations

57
58
58
58
60
61
63
65
66
67
68
71
72
74
74
76
78
79
82
82
84
86
87
89
89
91
93
94
96
97
97
98
00
02

Table of Contents

Chapters

5.2.6 Nockamixon	
5.2.6 Trenton	
6 Summary	
6.1 Model Summary	
6.2 Recommended Application of the Model	
6.3 Recommendations for Model Enhancements	110
7 References	111
Appendices	
Annendix A. Coope of Work Delevere Diver Desig Flood Analysis Medel	

el

Appendix B Model Data	
B.1 Reservoir Pool & Outlet Data	B-1
B.1.1 Upper Basin Reservoirs	B-1
Cannonsville	B-1
Pepacton	B-3
Neversink	
B.1.2 Lackawaxen Basin Reservoirs	B-5
Prompton	B-5
Jadwin	B-9
Lake Wallenpaupack	B-13
B.1.3 Mongaup Basin Reservoirs	B-14
Toronto	B-14
Swinging Bridge	B-15
Rio	B-16
B.1.4 Lehigh Basin Reservoirs	B-17
F.E. Walter	B-17
Beltzville	B-22
B.1.5 Mainstem Reservoirs	B-26
Merrill Creek	B-26
Nockamixon	B-27
B.2 Junction Rating Curves	B-28
B.2.1 Upper Basin Reservoirs	B-28
B.2.2 Lackawaxen Basin Reservoirs	B-38
B.2.3 Lehigh Basin Reservoirs	B-40
B.2.4 Mainstem Reservoirs	
B.3 Reaches and Routing Parameters (alphabetic listing)	B-66

List of Tables

Table Number

	List of Streams	
2.2	List of Projects (Reservoirs and Diversions)	8
	List of Computation Points	
4.1	Upper Basin Junctions	.21
4.2	Lackawaxen River Basin Junctions	.23
4.3	Mongaup River Basin Junctions	.23
	Lehigh River Basin Junctions	
4.5	Mainstem Delware River Basin Junctions	.24
	Upper Basin Reaches	
4.7	Lackawaxen River Basin Reaches	. 27
4.8	Mongaup River Basin Reaches	. 28
	Lehigh River Basin Reaches	
4.10	Mainstem Delaware River Basin Reaches	. 28
4.11	Cannonsville Operations Summary, FC Ops	. 36
4.12	Cannonsville Operations Summary, FC Ops-SpecDiv	. 37
	Pepacton Operations Summary, FC Ops	
4.14	Pepacton Operations Summary. FC Ops-SpecDiv	. 39
4.15	Neversink Operations Summary, FC Ops	. 41
4.16	Neversink Operations Summary, FC Ops-SpecDiv	. 41
4.17	Prompton Operations Summary, FC Ops	. 42
4.18	Jadwin Operations Summary, FC Ops – Dry Dam	. 43
4.19	Lake Wallenpaupack Operations Summary, FC Ops	. 45
	Toronto Operations Summary, FC Ops	
4.21	Swinging Bridge Operations Summary, FC Ops	. 49
	Rio Operations Summary, FC Ops	
4.23	F.E. Walter Operations Summary, FC Ops-BTB and FC Ops-Dev	. 52
4.24	Beltzville Operations Summary, FC Ops-BTB	. 53
4.25	Merrill Creek Operations Summary, FC Ops	. 54
4.26	Nockamixon Operations Summary, FC Ops	. 56

1.1	Map of Delaware River Basin showing major reservoirs (DRBC, 2007)	4
2.1	Watershed Setup - Delaware River Watershed	5
2.2	•	
2.3		
2.4	•	
2.5	Locations of Computation Points above Montague	
2.6	Locations of Computation Points between Montague and Trenton	10
4.1	Pepacton Reservoir Inflow Junction – Local Flow List	20
4.2	Cooks Falls Junction – Inflows & Rating Curve	21
4.3	Callicoon Junction, Rating Curve	22
4.4	Downsville to Harvard Reach, Muskingum Routing	25
4.5	Stilesville to Hale Eddy, Lag & K Routing – Variable K	26
4.6	Hancock to Callicoon, Lag & K Routing – Constant Lag	
4.7	Upper Basin Reservoirs	
4.8	Cannonsville – Physical Element Tree and Composite Outlet Capacity Table	30
4.9	Cannonsville – Pool Definition	31
4.10	Cannonsville – Dam Definition	31
4.11	Cannonsville – Release Works	32
4.12	Cannonsville – Spillway	32
4.13	Cannonsville Spillway Photo	32
4.14	Cannonsville's Diverted Outlet - Can_Tunnel	
4.15	Cannonsville Operations Editor – FC Ops	33
4.16	Cannonsville Operations Editor – FC Ops-SpecDiv	36
4.17	Pepacton Physical Element Tree and Composite Release Capacity	37
4.18	Pepacton Operations	
4.19	Neversink Physical Element Tree and Composite Release Capacity	39
4.20	Neversink Operations	40
4.21	Lackawaxen River Basin Reservoirs	40
4.22	Prompton's Pool and Dam Elements and its "operating" zones	42
4.23	Jadwin Reservoir, a dry dam	
4.24	Jadwin's Pool and Dam Elements and its "operating" zones	43
4.25	Mongaup Basin Schematic	
4.26	Mongaup Basin Reservoirs	
4.27	Toronto's Pool and Dam Elements and its "operating" zones	46
4.28	Swinging Bridge Reservoir	
4.29		48
4.30		
4.31	Lehigh Basin Reservoirs	
4.32	F.E. Walter's Pool and Dam Elements and its "operating zones" and rules	
4.33		
	Mainstem Delaware Reservoirs	

4.35 4.36	Merrill Creek's Pool and Dam Elements and its "operating" zones and rules Nockamixon Dam	
4.37		
5.1	Connensville Reserveir Plat 2004 Event	50
	Cannonsville Reservoir Plot – 2004 Event	
5.2	Cannonsville Reservoir Plot – 2005 Event.	
5.3 5.4	Cannonsville Reservoir Plot – 2006 Event	
	Stilesville Junction Plot – 2004 Event Stilesville Junction Plot – 2005 Event	
5.5 5.6	Stilesville Junction Plot – 2005 Event	
5.6		
5.7	Hale Eddy Junction Plot – total and cumulative local flow – 2004 Event	. 62
5.8	Hale Eddy Junction Plot – total and cumulative local flow – 2005 Event	
5.9	Hale Eddy Junction Plot – total and cumulative local flow – 2006 Event	
5.10	Pepacton Reservoir Plot – 2004 Event	
5.11	Pepacton Reservoir Plot – 2005 Event	
5.12	Pepacton Reservoir Plot – 2006 Event	
5.13	Downsville Operations Plot – 2004 Event	
5.14	Downsville Operations Plot – 2005 Event	
5.15	Downsville Operations Plot – 2006 Event	
5.16	Harvard Total and Cumulative Local Flow – 2004 Event	
5.17	Harvard Total and Cumulative Local Flow – 2005 Event	
5.18	Harvard Total and Cumulative Local Flow – 2006 Event	
5.19	Barryville Total and Cumulative Local Flow – 2004 Event	
5.20	Barryville Total and Cumulative Local Flow – 2005 Event	
5.21	Barryville Total and Cumulative Local Flow – 2006 Event	
5.22	Neversink Reservoir Plot – 2004 Event	
5.23	Neversink Reservoir Plot – 2005 Event	
5.24	Neversink Reservoir Plot – 2006 Event	
5.25	Neversink Diversion Plot – 2004 Event	
5.26	Neversink Diversion Plot – 2005 Event	
5.27	Neversink Diversion Plot – 2006 Event	
5.28	Bridgeville Junction Plot – total and cumulative local flow – 2004 Event	
5.29	Bridgeville Junction Plot – total and cumulative local flow – 2005 Event	
5.30	Bridgeville Junction Plot – total and cumulative local flow – 2006 Event	
5.31	Prompton Reservoir Plot – 2004 Event	
5.32	Prompton Reservoir Plot – 2005 Event	
5.33	Prompton Reservoir Plot – 2006 Event	
5.34	Jadwin Reservoir Plot – 2004 Event	
5.35	Jadwin Reservoir Plot – 2005 Event	
5.36	Jadwin Reservoir Plot – 2006 Event	
5.37	Hawley Flow and Stage – 2004 Event	
5.38	Hawley Flow and Stage – 2005 Event	
5.39	Hawley Flow and Stage – 2006 Event	.79

E 40		00
5.40		
5.41	Lake Wallenpaupack Reservoir Plot – 2005 Event	
5.42	Lake Wallenpaupack Reservoir Plot – 2006 Event	
5.43	Toronto Reservoir Plot – 2004 Event	
5.44	Toronto Reservoir Plot – 2005 Event	
5.45	Toronto Reservoir Plot – 2006 Event	
5.46	Swinging Bridge Reservoir Plot – 2004 Event	
5.47		
5.48	Swinging Bridge Reservoir Plot – 2006 Event	
5.49	Rio Reservoir Plot – 2004 Event	
5.50	Rio Reservoir Plot – 2005 Event	86
5.51	Rio Reservoir Plot – 2006 Event	87
5.52	Port Jervis Operations Plot – 2004 Event	88
5.53	Port Jervis Operations Plot – 2005 Event	88
5.54	Port Jervis Operations Plot – 2006 Event	89
5.55		
5.56		
5.57		
5.58	Lehighton Operations Plot – with cumulative local flow added – 2004 Event	
5.59	Lehighton Operations Plot - with cumulative local flow added - 2005 Event	
5.60	Lehighton Operations Plot – with cumulative local flow added – 2006 Event	
5.61	Beltzville Reservoir Plot – 2004 Event	
5.62	Beltzville Reservoir Plot – 2005 Event	
5.63		
5.64	Walnutport Operations Plot – with cumulative local flow added – 2004 Event	
5.65	Walnutport Operations Plot – with cumulative local flow added – 2005 Event	
5.66	Walnutport Operations Plot – with cumulative local flow added – 2006 Event	
5.67	Bethlehem Operations Plot – Flow and Stage – 2004 Event	
5.68	Bethlehem Operations Plot– Flow and Stage – 2005 Event	
5.69	Bethlehem Operations Plot – Flow and Stage – 2006 Event	
5.70	Montague Flow and Stage – 2004 Event	
5.71	Montague Flow and Stage – 2005 Event	
5.72	Montague Flow and Stage – 2006 Event	
5.73	Belvidere Flow and Stage – 2004 Event	
5.74	Belvidere Flow and Stage – 2005 Event	
5.75	Belvidere Flow and Stage – 2006 Event	
5.76	Merrill Creek Reservoir Plot – 2004 Event	
5.77	Merrill Creek Reservoir Plot – 2005 Event	
5.78	Merrill Creek Reservoir Plot – 2006 Event	
5.79	Reigelsville Flow and Stage – 2004 Event	
5.80	Riegelsville Flow and Stage – 2005 Event	
5.80	Riegelsville Flow and Stage – 2006 Event	
5.82	Nockamixon Reservoir Plot – 2004 Event	104
5.83		
0.00	1100raminon 1/2321101 F 101 - 2003 E VEIII	105

5.84	Nockamixon Reservoir Plot – 2006 Event	105
5.85	Trenton Flow and Stage – 2004 Event	106
	Trenton Flow and Stage – 2005 Event	
5.87	Trenton Flow and Stage - 2006 Event	107

Abbreviations

- acre-ft acre-feet (a unit of measurement for storage in a reservoirs)
- cfs cubic feet per second (a unit of measurement for flow)

elev - elevation

- ft feet (a unit of measurement for elevation, stage, or distance)
- CEIWR-HEC U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center
- CENAP U.S. Army Corps of Engineers, Philadelphia District
- DEL-FAM Delaware River Flood Analysis Model
- DRBC Delaware River Basin Commission
- EAP Emergency Action Plan
- EB Del R East Branch Delaware River
- EPA Environmental Protection Agency
- FEMA Federal Emergency Management Agency
- FERC Federal Energy Regulatory Commission
- GIS Geographical Information System
- HEC Hydrologic Engineering Center
- HEC-HMS Hydrologic Modeling System
- HEC-ResSim Reservoir System Simulation
- MCOG Merrill Creek Owners Group
- NRCS Natural Resrouces Conservation Service
- NWS National Weather Service
- NWS-RFC National Weather Service, River Forecast Center
- NYC New York City
- NYCDEP New York City Department of Environmental Protection
- O&M Operations and Maintenance
- OASIS Operational Analysis and Simulation of Integrated Systems
- PPL or PPL Corporation, originally Pennsylvania Power & Light Co.

PRMS - Precipitation-Runoff Modeling System

SI - International System of Units (metric)

USACE – U.S. Army Corps of Engineers

USGS – U.S. Geological Survey

Acknowledgements

This work has been conducted under the general and technical direction of Christopher N. Dunn, Director, Hydrologic Engineering Center and Thomas A. Evans, Chief, Water Management Systems Division, Hydrologic Engineering Center. The model was developed by Joan D. Klipsch, Marilyn B. Hurst, and Matthew J. Fleming of the Hydrologic Engineering Center. The report was written by Joan D. Klipsch with input from Marilyn B. Hurst and Amy L. Shallcross, Delaware River Basin Commission. The report was prepared for publication by Penni R. Baker of the Hydrologic Engineering Center.

Executive Summary

Following three recent major flood events in the Delaware River Basin, the Delaware River Basin Commission (DRBC) initiated a study to develop flood damage reduction strategies. As part of this study, a flood analysis model of the Delaware River Basin was needed. An interagency team of experienced hydrology and reservoir simulation modelers from the United States Geologic Survey (USGS), the United States Army Corps of Engineers (USACE), and the National Weather Service (NWS) were assembled to develop the Delaware River Basin Flood Analysis Model.

The USACE Hydrologic Engineering Center (HEC) was tasked to develop the HEC-ResSim (Reservoir System Simulation) component of the Delaware River Flood Analysis Model for the simulation of reservoir operations under flood conditions and routing of flood flows through the river system. HEC-ResSim (USACE, 2007) is a modeling software program used to assist in planning studies for evaluating existing and proposed reservoirs, reservoir operations, and to assist in sizing the flood risk management and conservation storage requirements for each project. In this application, an HEC-ResSim model was developed as a tool to assess the influence of major reservoirs on flood flows and flood crests in the Delaware River Basin. HEC coordinated with the DRBC, USGS, and NWS to create the HEC-ResSim component of the Flood Analysis Model of the Delaware River Basin.

Model development began with creation of an HEC-ResSim watershed which is defined through the development of a stream alignment that serves as the framework or skeleton upon which the model schematic is created. Geo-referenced map files (provided by USGS and DRBC) were used to establish the stream alignment and model schematic. Such files included rivers and streams, lakes and reservoirs, watershed boundaries with sub-basin delineations, stream gage locations, and state boundaries.

The next step in model development was the establishment of a reservoir network. The network includes all the reservoirs, reaches and junctions needed for the model and is where all the physical and operational data are entered and stored in the model. Physical reservoir data about the reservoirs were obtained from reservoir operators, reservoir operating plans, DRBC's water code in place at the time of the events (D-77-20 CP Rev 7), and the DRBC's OASIS (Operational Analysis and Simulation of Integrated Systems) model (storage-area-elevation curves, capacities, etc.). The junctions were defined primarily by the locations of headwaters, NWS Flood Forecast Points and confluences of major rivers and tributaries. Where available, primarily at gages co-located with NWS Flood Forecast points, the USGS provide rating curves that are used to convert flow to river stage. Initial river routing parameters were obtained from the NWS. Routing parameters define how the flow travels through a reach.

The final step in model development was the formation of simulations and alternatives. Storm event observed data, start time, end time and duration and any scenarios for that event are stored as a simulation. Alternatives specify the initial conditions, operations rule sets, and time-series data (inflows) that are needed to run the model. Alternatives are run and analyzed within a

simulation. The USGS provided time-series data (both observed and simulated by Precipitation-Runoff Modeling System (PRMS)) for use as inflows to the HEC-ResSim model. USACE, Philadelphia District (CENAP), provided observed time series data for the USACE reservoirs and other locations on the river.

Chapters 2, 3, 4, and 5 describe how the HEC-ResSim model was developed for the Delaware River Basin above Trenton. Trenton is the downstream-most flood damage area significantly impacted by upstream reservoir operations but not subject to tidal influence. These chapters discuss the information that was available and how it was used. Chapter 5 also presents model results at the reservoirs and at key NWS Flood Forecast points and demonstrates the ability of the model to simulate the 2004, 2005, and 2006 observed storm events. Chapter 6 summarizes how the ResSim model was built, description of the alternatives and their usage, and provides recommendations for enhancements to the final model. Chapter 7 contains a list of references that were used in the development of the model and this report.

Chapter 1

Introduction

1.1 Background

In September 2004, April 2005 and June 2006, the Delaware River Basin received excessive amounts of precipitation, resulting in major flooding along the Delaware River and its tributaries. Other than floods related to ice jams, the main stem had not experienced such pervasive flooding since August of 1955, from back-to-back Hurricanes Connie and Diane¹. The <u>Delaware River</u> Basin Commission (DRBC) was tasked by the Governors of its four member states to develop an Interstate Flood Mitigation Task Force to develop flood damage reduction strategies. One recommendation was to develop a Flood Analysis Model to gain a better understanding of the flood mitigation potential of existing reservoirs within the basin. The DRBC was able to implement this recommendation with funding² provided by the four basin states along with in-kind contributions from the United States Geological Survey (USGS), the United States Army Corps of Engineers (USACE) and the National Weather Service (NWS). The USGS, USACE and NWS formed the interagency team of experts that developed the Flood Analysis Model.

1.2 Scope of Model

The Flood Analysis Model was developed as a tool to evaluate the effects of hydrology and reservoir operations on flooding throughout the basin. It will be used to inform, but will not set, policy decisions. Two public domain software packages were used to develop the Flood Analysis Model: the USGS's Precipitation Runoff Modeling System (PRMS) and the USACE's HEC-ResSim (Reservoir System Simulation) program. The intent of using PRMS was to develop a rainfall-runoff model of the basin to generate inflows (runoff and snowmelt) to the HEC-ResSim model in order to evaluate the effects that land use decisions might have on resulting streamflows. The purpose of developing an HEC-ResSim reservoir operations model was to evaluate the potential flood mitigation opportunities from existing reservoirs, in particular, the ability of the reservoirs to reduce flood crests. As part of model development, both models have been used to simulate the three storm events identified above and integrated through a graphical user interface intended for use by experienced PRMS and HEC-ResSim modelers.

¹ Information about <u>recent flooding events</u> and <u>associated damages</u> in the Delaware River Basin can be found on the DRBC website at <u>http://www.state.nj.us/drbc/Flood_Website/floodinf.htm</u>.

² The Governor of Delaware contributed \$50,000; the Governors of New Jersey, New York and Pennsylvania contributed \$150,000 each; the USGS contributed \$155,000 as match and in-kind services; the USACE contributed \$100,000; and the National Weather Service contributed \$30,000 in in-kind services.

In addition to the PRMS inflow file, an alternate inflow file was developed based on observed data from streamflow gages. The additional inflow file was developed because the rainfall-runoff model, while generally capturing the nature of the storm events, did not predict the peak flood flows with the desired accuracy to evaluate the effects of the reservoirs on flood crests. By using the alternate inflow file, the effects of reservoir operations can be isolated from uncertainties associated with the inflows generated by the rainfall-runoff model. In the absence of a rainfall-runoff model, a HEC-ResSim model would typically be developed using observed data from streamflow gages.

The Delaware River Basin was modeled as three separate watersheds: the non-tidal portion of the basin above Trenton, New Jersey; the non-tidal portion of the Schuylkill River basin; and the non-tidal portion of the Christina-Brandywine basin. The reservoirs in one watershed do not affect river elevations or flood flows in the other basins. This report summarizes the development of the HEC-ResSim component of the Flood Analysis Model for the non-tidal portion of the basin above Trenton. The report does not present the results of simulations used to test the potential flood mitigation opportunities using existing reservoirs. The documentation of the PRMS model development of the HEC-ResSim models of the Schuylkill and Christina-Brandywine basin will be documented as an addendum to this report.

1.3 Study Area

The Delaware River is the longest un-dammed river east of the Mississippi River, extending 330 miles from the Catskill Mountains of New York State to the mouth of the Delaware Bay where it flows into the Atlantic Ocean. The natural drainage area of the Delaware River Basin crosses many man-made boundaries in addition to the four state lines: 25 congressional districts, two Federal Emergency Management Agency (FEMA) regions, two Environmental Protection Agency (EPA) regions, five U.S. Geological Survey (USGS) offices, four Natural Resources Conservation Service (NRCS) state offices, two National Weather Service (NWS) local forecast offices, 42 counties, and 838 municipalities. The Delaware River Basin Commission has regulatory authority³ and responsibilities for planning and coordinating management of the Basin's water resources, both water quality and quantity.

The headwaters of the Delaware River form in New York State, Pennsylvania, New Jersey, and Delaware. The river is fed by 216 substantial tributaries, the largest of which are the Schuylkill and Lehigh rivers in Pennsylvania. The watershed drains four-tenths of one percent of the total continental U.S. land area. In all, the basin contains 13,539 square miles, draining parts of Pennsylvania (6,422 square miles, 50.3 percent of the basin's total land area); New Jersey (2,969 square miles, 23.3 percent); New York (2,362 square miles, 18.5 percent); and Delaware (1,004 square miles, 7.9 percent).

Approximately five percent of the nation's population (15 million people) relies on the waters of the Delaware River Basin for drinking and industrial use. The Catskill Mountain Region in the upper basin provides New York City (NYC) with a high quality source of water from three basin

³ The Commission's authority is limited by the enabling <u>Compact of 1961</u> and <u>1954 Supreme Court Decree</u>.

reservoirs, Cannonsville, Pepacton, and Neversink. Nearly half of its municipal water supply comes from these reservoirs. Within the basin, the river supplies drinking water to much of the Philadelphia metropolitan area and major portions of New Jersey, both within and outside of the basin.

From the Delaware River's headwaters in New York to the Delaware Estuary and Bay, the river also serves as an ecological and recreational resource. Over the past half century, as a result of the maintenance of minimum flow targets in Montague and Trenton, New Jersey, cold-water fisheries have been established in the tailwater reaches of the East Branch Delaware, West Branch Delaware, Neversink River and the upper main stem Delaware River. Most of the main stem upstream of Trenton, New Jersey has been designated by Congress as part of the federal Wild and Scenic Rivers system.

Figure 1.1 (page 4) depicts the watershed and major reservoirs of the Delaware River Basin and denotes the three model sub-basins. The reservoirs include five projects of the Corps that were designed to maintain dedicated flood storage capacity. Other major reservoirs not specifically designed for flood damage reduction, include water supply, hydropower, and recreational reservoirs. The USACE' projects include Jadwin, Prompton, Beltzville, Blue Marsh and Francis E. Walter Reservoirs. The New York City water supply and flow augmentation reservoirs include Cannonsville, Pepacton and Neversink. The hydroelectric power generation reservoirs are Toronto, Swinging Bridge, and Rio in the Mongaup System and Lake Wallenpaupack in the Lackawaxen Basin. Other major multipurpose reservoirs include Marsh Creek, Lake Nockamixon, and Merrill Creek. The reservoirs included in the Delaware above Trenton model include Cannonsville, Pepacton, Neversink, Prompton, Jadwin, Lake Wallenpaupack, the Mongaup System (Toronto, Swinging Bridge, Rio), Francis E Walter, Beltzville, Merrill Creek and Nockamixon. Blue Marsh and Marsh Creek are contained in the Schuylkill and Christina-Brandywine watersheds, respectively.

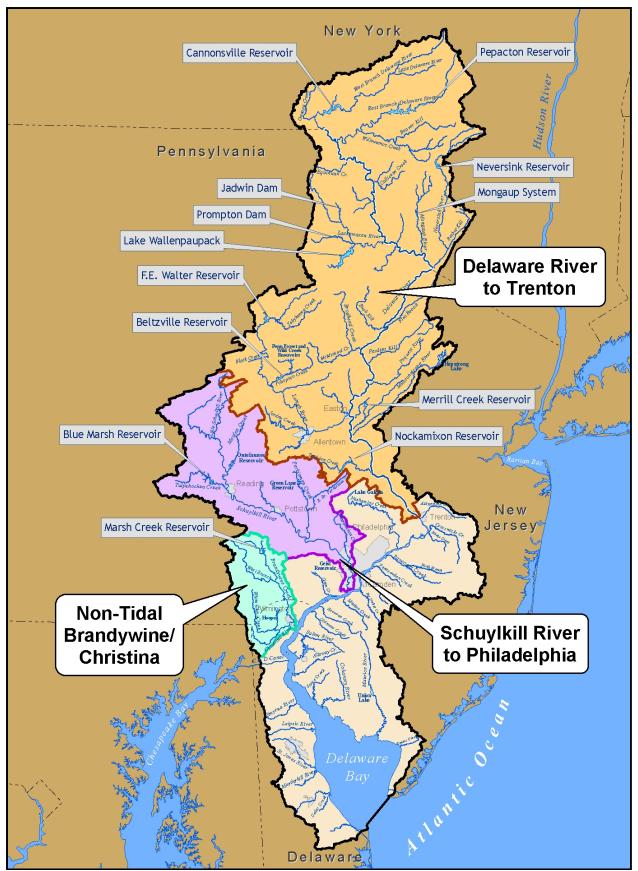


Figure 1.1 Map of Delaware River Basin showing major reservoirs (DRBC, 2007)

Chapter 2 Watershed Setup

The foundation of an HEC-ResSim model, the watershed, is created in the Watershed Setup module. Within this module, the stream alignment is defined and the projects (e.g., reservoirs) and computation points (e.g., locations of interest) are placed on it.

Prior to developing the HEC-ResSim watershed model for the Delaware River Basin, the projects and computation points were identified. The projects included thirteen reservoirs of the 22 reservoirs in the basin. These thirteen reservoirs were identified by the DRBC as their first priority reservoirs to be represented in this flood operations model. The computations points included NWS Flood Forecast locations and streamflow gages managed and maintained by the USGS. USACE, USGS, NWS and DRBC worked together to establish a consistent naming convention to facilitate communication and data transfer between the HEC-ResSim model, the PRMS model and the Delaware River Flood Analysis Model graphical user interface (DEL-FAM). The naming convention covered locations, model elements, model components, and various types of input data. Graphical Information System (GIS) layers were also collected and comprise the background maps used in developing the stream alignment and for locating the reservoirs and computations points.

2.1 Watershed Creation and Layout

The HEC-ResSim watershed for this study is named: Delaware_River. Background maps were added the watershed and include: the watershed boundary (complete and within each state), the state boundaries (New York, Pennsylvania, New Jersey, and Delaware), the rivers and streams, the reservoir locations, the streamflow gage locations, and the NWS Flood Forecast locations. Figure 2.1 shows the HEC-ResSim map display of the watershed where the state and watershed boundaries have been selected.

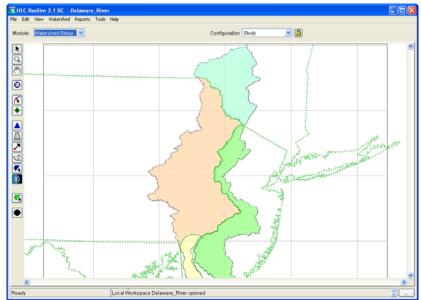


Figure 2.1 Watershed Setup - Delaware River Watershed

Figure 2.2 shows a list of all of the map layers that are included in the watershed and that are available for selection.

2.2 Stream Alignment

The Stream Alignment was developed by importing data from several of the stream shapefiles. Figure 2.3 shows the resulting stream alignment. The orange lines in this map are the streams of the stream alignment. The green dots represent stream nodes which are used to specify stream stationing and the lighter green "halos" represent the stream junctions or confluences.

A complete listing of the rivers and streams that are included in the Stream Alignment is presented in Table 2.1. For a variety of reasons, not all streams in the stream alignment could be imported from the available map layer and had to be hand drawn. The names of those streams that were added by-hand are followed by a * in Table 2.1.

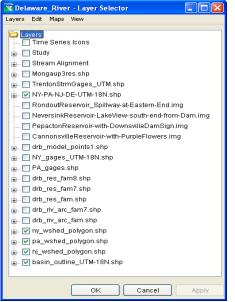


Figure 2.2 Map Layers for Delaware River Watershed

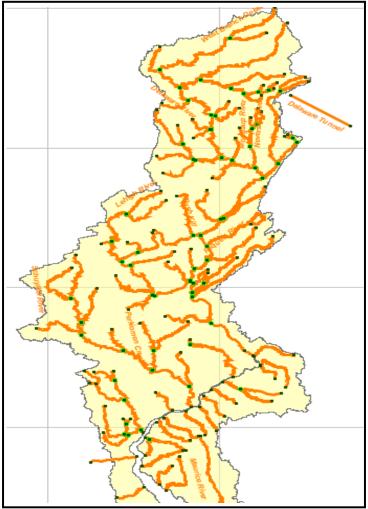


Figure 2.3 Delaware River Watershed Stream Alignment

Alloway Creek Aquashicola Creek Assunpink Creek Basher Kill* Beaver Kill Big Timber Creek	Fir Brook Flat Brook Gumaer Brook Halfway Brook	Paulins Kill Pennsauken Creek Pequest River
Assunpink Creek Basher Kill* Beaver Kill	Gumaer Brook Halfway Brook	
Basher Kill* Beaver Kill	Halfway Brook	Pequest River
Beaver Kill		
		Perkiomen Creek
Big Timber Creek	Jordan Creek	Pohatcong Creek
	Lackawaxen River	Pohopoco Creek
Birch Run	Lehigh River	Primrose Brook
Black Creek	Leipsic River	Raccoon Creek
Black Lake Creek*	Lewes & Rehoboth Canal	Rancocas Creek
Blacks Creek	Little Beaver Kill	Red Clay Creek
Brandywine Creek	Little Delaware River	Salem Canal
Broadkill River	Little Lehigh Creek*	Salem River
Brodhead Creek	Little Schuylkill River	Schuylkill River
Bush Kill*	Lopatcong Creek	Shohola Creek*
Bushkill Creek*	Maiden Creek	South Brook
C & D Canal	Manatawny Creek	St. Jones River
Calkins Creek	Mantua Creek	Stowe Creek
Callicoon Creek	Marsh Creek	Tobyhanna Creek*
Cape May Canal	Martins Creek	Tohickon Creek
Cedar Creek	Maurice River	Tributary to Red Clay Creek*
Christina River	McMichael Creek	Tulpehocken Creek
Cohansey River	Merrill Creek	Wallenpaupack Creek*
Cooper River*	Middle Mongaup River	Wangum Creek
Crosswicks Creek	Mispillion River	West Branch Brandywine Creek
Crum Creek*	Mongaup Creek	West Branch Delaware River
Delaware River	Mongaup River	West Branch Lackawaxen River
Delaware Tunnel*	Murderkill River	West Branch Mongaup River
Dennis Creek	Musconetcong River	West Branch Neversink River
Dyberry Creek	Neshaminy Creek	White Clay Creek
East Branch Brandywine Creek	Neversink River	Wild Creek
East Branch Callicoon Creek	North Branch Calkins Creek*	Willowemoc Creek
East Branch Delaware River	North Branch Callicoon Creek*	Wissahickon Creek
East Branch Mongaup River	North Branch Neshaminy Creek*	
East Branch Neversink River	North Branch Rancocas Creek*	
East Branch Perkiomen Creek	Oldmans Creek	
Equinunk Creek*	Oquaga Creek	

Table 2.1	List of Streams
-----------	-----------------

2.3 Watershed Configurations

A watershed configuration is a collection of projects (i.e., reservoirs and diversions) and computation points. These projects and computation points are created by using the appropriate drawing tools from the HEC-ResSim drawing toolbar to place the project or point in the appropriate location along the stream alignment. Only one configuration, named *Existing* was needed for the *Delaware_River* model.

2.3.1 Projects

In HEC-ResSim, watershed projects include reservoirs and diversions. There are thirteen reservoirs and three diversions currently being modeled in the HEC-ResSim Delaware River

above Trenton model. These projects, listed in Table 2.2 are included in the *Existing* configuration and their locations are shown in Figure 2.4. Separate listings of reservoirs and diversions are available from the Reports menu in the Watershed Setup module.

		Project		Corps
Project Name	Description	Туре	Stream Name	Project
Beltzville	The Beltzville Lake Project is an integral part of the Lehigh River Flood Control Program	Reservoir	Pohopoco Creek	Yes
Cannonsville	Placed in service in 1964. Largest drainage basin of all of the NYC reservoirs (455 sq. mi)	Reservoir	West Branch Delaware River	No
F.E. Walter	The Francis E. Walter Reservoir Project is an integral part of the Lehigh River Flood Control	Reservoir	Lehigh River	Yes
Jadwin	The Jadwin Reservoir project is part of an integrated reservoir flood control system	Reservoir	Dyberry Creek	Yes
Lake Wallenpaupack	A reservoir in Pennsylvania, USA. It was built in 1927 by the Pennsylvania Power & Light Co	Reservoir	Wallenpaupack Creek	No
Merrill Creek	Merrill Creek Reservoir is a 650-acre reservoir surrounded by a 290-acre Environmental	Reservoir	Merrill Creek	No
Neversink	Finished in 1953, began sending water in 1954 and reached capacity in 1955	Reservoir	Neversink River	No
Nockamixon	Creation of the lake was first proposed by the Secretary of the Department of Forests	Reservoir	Tohickon Creek	No
Pepacton	Also known as Downsville Reservoir or the Downsville Dam. Finished in 1954	Reservoir	East Branch Delaware River	No
Prompton	The Prompton Reservoir project is part of an integrated reservoir flood control system	Reservoir	West Branch Lackawaxen River	Yes
Rio	Part of the Mongaup System (which also includes Toronto and Swinging Bridge	Reservoir	Mongaup River	No
Swinging Bridge	Part of the Mongaup System (which also includes Toronto and Rio Reservoirs)	Reservoir	Mongaup River	No
Toronto	Part of the Mongaup System (which also includes Swinging Bridge and Rio Reservoirs)	Reservoir	Black Lake Creek	No
to NYC	The "recipient" of diverted water from Cannonsville, Pepacton, and Neversink	Reservoir	Delaware Tunnel	No
Can_Tunnel	Diverted Outlet from Cannonsville to NYC (via Delaware Tunnel)	Diversion	West Branch Delaware River	No
Nev_Tunnel	Diverted Outlet from Neversink to NYC (via Delaware Tunnel)	Diversion	Neversink River	No
Pep_Tunnel	Diverted Outlet from Pepacton to NYC (via Delaware Tunnel)	Diversion	East Branch Delaware River	No

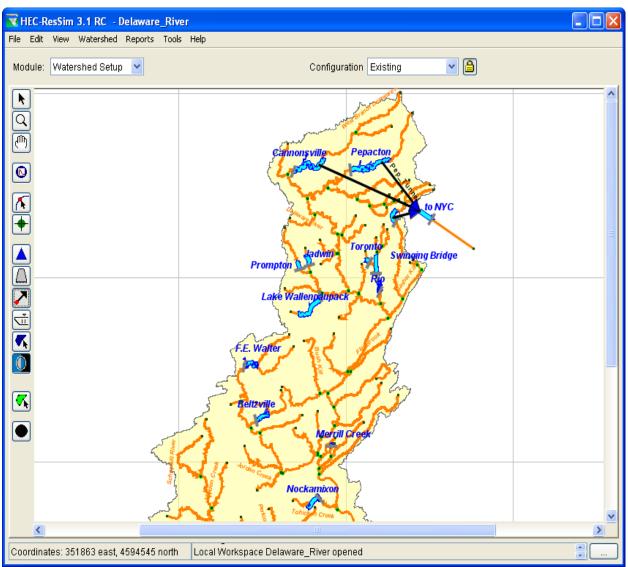


Figure 2.4 Project Locations (Thirteen Reservoirs and Three Diversions)

2.3.2 Computation Points

Computation points (i.e., modeling locations) include reservoir inflow and outflow points, operational locations, confluences, forecast locations (NWS), and USGS gage locations.

Figure 2.5 and Figure 2.6 show the locations of the computation points (black dots) for the *Delaware_River* watershed.

Figure 2.5 shows the region above Montague, and Figure 2.6 shows the region between Montague and Trenton.

Table 2.3 is an *alphabetical listing* of the computation points. In addition to the computation point names and partial descriptions, also included is the project the computation point belong to (if applicable) as well as the stream stations where the computation point resides on the stream alignment.

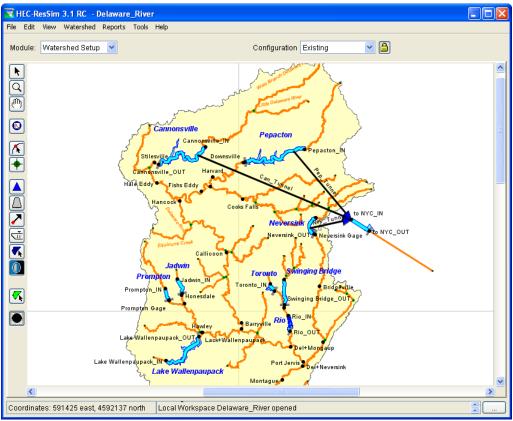


Figure 2.5 Locations of Computation Points above Montague

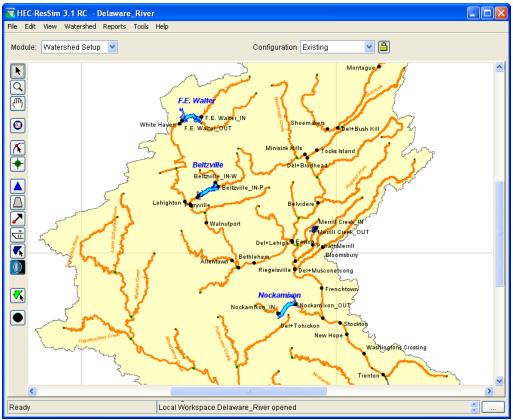


Figure 2.6 Locations of Computation Points between Montague & Trenton

Name	Description	Stream Name	Project Name	Stream Station
Allentown	USGS Gage No. 01452000. Jordan Creek at Allentown, PA	Jordan Creek		5,389.3
Barryville	USGS Gage No. 01428500. Delaware River above Lackawaxen River near Barryville, NY	Delaware River		165,595.5
Beltzville_IN-P	Inflow for Reservoir Beltzville from Pohopoco Creek	Pohopoco Creek	Beltzville	18,469.4
Beltzville_IN-W	Inflow for Reservoir Beltzville from Wild Creek	Wild Creek	Beltzville	3,149.8
Beltzville_OUT	Outflow for Reservoir Beltzville (ref: USGS gage 01449790)	Pohopoco Creek	Beltzville	8,724.4
Belvidere	USGS Gage No. 01446500. Delaware River at Belvidere, NJ	Delaware River		72,573.9
Bethlehem	USGS Gage No. 01453000. Lehigh River at Bethlehem, PA	Lehigh River		18,832.0
Bloomsbury	USGS Gage 01457000 Musconetcong River near Bloomsbury, NJ	Musconetcong River		16,172.8
Bridgeville	USGS Gage No. 01436690. Neversink River at Bridgeville, NY	Neversink River		43,363.4
Callicoon	USGS Gage No. 01427510. Delaware River at Callicoon, NY	Delaware River		192,250.9
Cannonsville_IN	Inflow for Reservoir Cannonsville. For comparison with Observed flow, use Walton gage (01423000).	West Branch Delaware River	Cannonsville	57,306.9
Cannonsville_OUT	Outflow for Reservoir Cannonsville	West Branch Delaware River	Cannonsville	28,602.3
Cooks Falls	USGS Gage No. 01420500. Beaver Kill at Cooks Falls, NY	Beaver Kill		16,530.5
Del+Brodhead	Confluence of Delaware River & Brodhead Creek	Delaware River		89,819.0
Del+Bush Kill	Confluence of Delaware River & Bush Kill	Delaware River		105,744.1
Del+Lackawaxen	Confluence of Delaware River & Lackawaxen River	Delaware River		163,920.3
Del+Lehigh	Confluence of Delaware River & Lehigh River	Delaware River		56,612.3
Del+Mongaup	Confluence of Delaware River & Mongaup River	Delaware River		144,695.5
Del+Musconetcong	Confluence of Delaware River & Musconetcong River	Delaware River		46,597.8
Del+Neversink	Confluence of Delaware River & Neversink River	Delaware River		135,887.5
Del+Pohatcong	Confluence of Delaware River & Pohatcong Creek	Delaware River		49,650.9
Del+Tohickon	Confluence of Delaware River & Tohickon Creek	Delaware River		26,558.5

Table 2.3 List of Computation Points

Name	Description	Stream Name	Project Name	Stream Station
Del_EB+Beaver Kill	Confluence of East Branch Delaware River and Beaver Kill	East Branch Delaware River		25,814.0
Downsville	USGS Gage No. 01417000. East Branch Delaware River at Downsville, NY. Should be comparable to PEPACTON Reservoir OUTFLOW.	East Branch Delaware River		54,264.8
Easton	Delaware River at Phillipsburg- Easton Bridge, NJ	Delaware River		57,043.3
F.E. Walter_IN	Inflow for Reservoir F.E. Walter	Lehigh River	F.E. Walter	137,933.6
F.E. Walter_OUT	Outflow for Reservoir F.E. Walter (ref: USGS gage 01447780)	Lehigh River	F.E. Walter	125,283.9
Fishs Eddy	USGS Gage No. 01421000. East Branch Delaware River at Fishs Eddy, NY	East Branch Delaware River		19,027.7
Frenchtown	USGS Gage No. 01458500. Delaware River at Frenchtown, NJ	Delaware River		34,958.0
Godeffroy	USGS Gage No. 01437500. Neversink River at Godeffroy, NY	Neversink River		14,501.2
Hale Eddy	USGS Gage No. 01426500. West Branch Delaware River at Hale Eddy, NY. Downstream of the confluence of Oquaga Creek and West Branch Delaware River	West Branch Delaware River		15,354.2
Hancock	Confluence of the East and West Branches of the Delaware River	Delaware River		223,397.5
Harvard	USGS Gage No. 01417500. East Branch Delaware River at Harvard, NY	East Branch Delaware River		30,679.1
Hawley	USGS Gage No. 01431500. Lackawaxen River at Hawley, PA	Lackawaxen River		25,818.7
Honesdale	USGS Gage No. 01429500. Dyberry Creek near Honesdale, PA. Should be comparable to JADWIN Reservoir OUTFLOW.	Dyberry Creek		4,071.2
Jadwin_IN	Inflow for Reservoir Jadwin	Dyberry Creek	Jadwin	11,463.8
Jadwin_OUT	Outflow for Reservoir Jadwin. (ref: USGS gage 01429400)	Dyberry Creek	Jadwin	4,774.3
Lack+Wallenpaupack	Confluence of Lackawaxen River & Wallenpaupack River	Lackawaxen River		25,542.8
Lack_WB+Dyberry	Confluence of WB Lackawaxen River & Dyberry Creek	Lackawaxen River		42,734.7
Lake Wallenpaupack_IN	Inflow for Reservoir Lake Wallenpaupack	Wallenpaupack Creek	Lake Wallenpaupack	23,048.2
Lake Wallenpaupack_OUT	Outflow for Reservoir Lake Wallenpaupack (ref: USGS gage 01431700)	Wallenpaupack Creek	Lake Wallenpaupack	2,398.1
Lehigh+Jordan	Confluence of Lehigh River & Jordan Creek	Lehigh River		26,004.3
Lehigh+Pohopoco	Confluence of Lehigh River & Pohopoco Creek	Lehigh River		65,104.3

Name	Description	Stream Name	Project Name	Stream Station
Lehighton	USGS Gage No. 01449000. Lehigh River at Lehighton, PA	Lehigh River		68,346.2
Merrill Creek IN	Inflow for Reservoir Merrill Creek	Merrill Creek	Merrill Creek	8,172.8
 Merrill Creek_OUT	Outflow for Reservoir Merrill Creek	Merrill Creek	Merrill Creek	6,268.5
Minisink Hills	USGS Gage No. 01442500. Brodhead Creek at Minisink Hills, PA	Brodhead Creek		1,641.3
Mongaup+Black Lake Cr	Confluence of Mongaup River & Black Lake Creek	Mongaup River		19,609.9
Montague	USGS Gage No. 01438500. Delaware River at Montague, NJ	Delaware River		127,936.6
Neversink Gage	USGS Gage No. 01436000. Neversink River at Neversink, NY. Should be comparable to NEVERSINK Reservoir OUTFLOW.	Neversink River		69,126.8
Neversink_IN	Inflow for Reservoir Neversink	Neversink River	Neversink	78,004.2
Neversink_OUT	Outflow for Reservoir Neversink	Neversink River	Neversink	69,693.2
New Hope	Delaware River at New Hope Bridge, PA	Delaware River		17,164.7
Nockamixon_IN	Inflow for Reservoir Nockamixon	Tohickon Creek	Nockamixon	28,433.3
Nockamixon_OUT	Outflow for Reservoir Nockamixon	Tohickon Creek	Nockamixon	18,014.2
Parryville	USGS Gage No. 01449800. Pohopoco Creek Below Beltzville Dam near Parryville, PA	Pohopoco Creek		7,791.6
Pepacton_IN	Inflow for Reservoir Pepacton. For comparison with observed flow, use Margaretville gage (01413500).	East Branch Delaware River	Pepacton	84,641.2
Pepacton_OUT	Outflow for Reservoir Pepacton	East Branch Delaware River	Pepacton	55,123.2
Pohat+Merrill	Confluence of Pohatcong Creek & Merrill River	Pohatcong Creek		12,477.1
Pohopoco Mouth	Pohopoco Creek Near Parryville, PA, site of the original Parryville Gage (UGSG #01450000 - discontinued in 1970)	Pohopoco Creek		1,049.8
Port Jervis	USGS Gage No. 01434000. Delaware River at Port Jervis, NY.	Delaware River		137,461.1
Prompton Gage	USGS Gage No. 01429000. West Branch Lackawaxen River at Prompton, PA. Should be comparable to PROMPTON Reservoir OUTFLOW.	West Branch Lackawaxen River		7,387.3
Prompton_IN	Inflow for Reservoir Prompton	West Branch Lackawaxen River	Prompton	12,390.7
Prompton_OUT	Outflow for Reservoir Prompton (ref: USGS gage 01428900)	West Branch Lackawaxen River	Prompton	7,726.7
Riegelsville	USGS Gage No. 01457500. Delaware River at Riegelsville, NJ	Delaware River		46,720.9

Name	Description	Stream Name	Project Name	Stream Station
Rio_IN	Inflow for Reservoir Rio	Mongaup River	Rio	15,357.8
Rio_OUT	Outflow for Reservoir Rio	Mongaup River	Rio	7,504.4
Shoemakers	USGS Gage No. 01439500. Bush Kill at Shoemakers, PA	Bush Kill		5,634.7
Stilesville	USGS Gage No. 01425000. West Branch Delaware River at Stilesville, NY. Should be comparable to CANNONSVILLE Reservoir OUTFLOW.	West Branch Delaware River		26,747.1
Stockton	Delaware River at Stockton Bridge, NJ	Delaware River		21,011.4
Swinging Bridge_IN	Inflow for Reservoir Swinging Bridge	Mongaup River	Swinging Bridge	30,983.7
Swinging Bridge_OUT	Outflow for Reservoir Swinging Bridge	Mongaup River	Swinging Bridge	20,883.7
Tocks Island	USGS Gage No. 01440200. Delaware River at Tocks Island, NJ. a.k.a. Delaware River near Delaware Water Gap, PA	Delaware River		93,252.9
Toronto IN	Inflow for Reservoir Toronto	Black Lake Creek	Toronto	12,411.8
Toronto OUT	Outflow for Reservoir Toronto	Black Lake Creek	Toronto	8,763.3
Trenton	USGS Gage No. 01463500. Delaware River at Trenton, NJ	Delaware River		1,340.3
Walnutport	USGS Gage No. 01451000. Lehigh River at Walnutport, PA	Lehigh River		53,727.3
Washingtons Crossing	Delaware River at Washington's Crossing Bridge, NJ	Delaware River		9,583.6
White Haven	USGS Gage No. 01447800. Lehigh River below F.E. Walter Reservoir near White Haven, PA	Lehigh River		123,237.6
to NYC_IN	Inflow Jct for Reservoir "to NYC" - a "dummy" reservoir to receive NYC diversions	Delaware Tunnel	to NYC	37,480.9
to NYC_OUT	Outflow Jct for Reservoir "to NYC" - a "dummy" reservoir to receive NYC diversions	Delaware Tunnel	to NYC	29,258.5

2.4 Summary

To summarize, the following model development steps that occurred in the **Watershed Setup** module:

- The **Stream Alignment** was created (imported from rivers and streams shapefiles) and edited (to add or extend streams). The Stream Alignment serves as the framework for placing reservoirs, diversions and computations points (i.e., modeling locations).
- The *Existing* Configuration was created to include all reservoir and diversion projects.
- **Reservoirs** were created and added to the configuration.

- **Diversions** were created (from the three NYC Reservoirs) and added to the configuration.
- **Computation Points** were created to represent NWS Flood Forecast locations, USGS gage locations, and other points of interest.

USACE, USGS, NWS and DRBC worked together to establish the **Naming Conventions** for consistency among modeling software programs (PRMS, HEC-ResSim, and the GUI) being used for this study.

Computation points (black dots) in the **Watershed Setup** module become **Junctions** (red circles) in the **Reservoir Network** module. In the Watershed Setup module, the computation points are not connected with one another. The connections or Routing Reaches are defined in the Reservoir Network module.

Similarly, **Diversions** from Reservoirs in the **Watershed Setup** module become **Diverted Outlets** in the **Reservoir Network** module.

Chapter 3

Data Collection

Data for the reservoir and streamflow routing component of the Delaware River Flood Analysis model was gathered from three primary sources: the Delaware River Basin Commission (DRBC), the Philadelphia District (CENAP), and the US Geologic Survey (USGS). Other data sources included: the National Weather Service (NWS), the New York City Department of Environmental Protection (NYCDEP), Pennsylvania Power and Light (PPL), Merrill Creek Owners Group (MCOG), and the current superintendant of the hydropower reservoirs in the Mongaup system.

Two categories of data were collected: time-series data representing stream flows, reservoir release, river stages, and pool elevations; and model data defining the physical capacities and operational limits of the rivers and reservoirs in the basin.

3.1 Time Series Data

3.1.1 USGS Gage Data

The USGS provided most of the time-series data used in the model. The data covered the three flood events studied (September 2004, March-April 2005, and June-July 2006) and includes:

- daily and hourly flow records for all the streamflow gages in the basin
- hourly stage records for a subset of the stream gages
- hourly pool elevation records for the CENAP reservoirs
- daily and hourly inflows computed by the USGS's PRMS model for all headwater and inflow locations throughout the model.
- elevation datum for the streamflow or reservoir pool elevation gages is specific for each gage and was not used in the model

3.1.2 CENAP Gage Data

The CENAP partners with the USGS to maintain many of the gages in the basin needed for operation of the CENAP reservoirs. CENAP maintains a database of these gage records for its own use. The CENAP database also includes records of observed and computed reservoir elevation, storage, inflow, and releases. The data provided by CENAP spans the three flood events studied (September 2004, March-April 2005, and June-July 2006) and includes:

- daily and hourly flow and stage records for most of the streamflow gages in the basin
- hourly pool elevation, storage, and computed inflow records for the CENAP reservoirs
- hourly reservoir releases from the CENAP reservoirs

3.1.3 DRBC Data

As a regulating and monitoring authority in the basin, the DRBC also maintains a database of time-series data covering most of the reservoirs and stream gages in the basin. Data provided by the DRBC originated with the operators of the reservoirs and is identified as such. This data includes:

- daily and hourly elevation and release records for the NYCDEP reservoirs, Cannonsville, Pepacton and Neversink
- hourly elevation and release records for the PPL reservoir, Lake Wallenpaupack
- hourly release records for Rio Reservoir, a part of the Mongaup system of hydropower reservoirs.
- hourly elevation and release records for Merrill Creek Reservoir, owned and operated by MCOG
- monthly elevation and release records for Nockamixon Dam and Reservoir, owned and operated by the Pennsylvania Department of Natural Resources

3.2 Model Data

CENAP provided electronic and hard copies of the Water Control Manuals for the four USACE reservoirs in the Delaware River Basin above Trenton: Prompton, Jadwin, F.E. Walter, and Beltzville. The water control manuals contained most of the physical and operational data used to describe these reservoirs in the model. Other data was also provided by CENAP in Excel® spreadsheets and by email.

The DRBC provided the physical and operational data for all other reservoirs modeled in the basin. This data was provided through a mixture of media including: hard copies of various documents that described the reservoirs, an electronic copy of the DRBC's OASIS (Operational Analysis and Simulation of Integrated Systems) model that they use to study water supply issues in the basin, and email correspondence with reservoir operators to fill in the gaps. OASIS is a software product developed by HydroLogics, Inc. for modeling the operations of water resources systems. OASIS uses a linear programming solver to optimize the reservoir releases to best meet the operating rules that have been represented as either goals or constraints.

NWS provided the routing parameters used in their real-time forecasting model of the Delaware River Basin as well as a complete description of the Variable Lag and K routing method.

Tables listing all the physical and some of the operational data used in the model can be found in Appendix B of this report.

Chapter 4 Reservoir Network

The reservoir network is the basis of a reservoir model developed using HEC-ResSim. The network developed for this project is named: *Delaware above Trenton*. This network includes all the physical and operational data needed for the various alternatives developed for the *Delaware_River* watershed. From this point forward in the report, the network, *Delaware above Trenton*, and its associated alternatives will be referred to as "the model". The alternatives will be described in Chapter 5, Alternatives and Simulations.

The modeling elements that make up a reservoir network include: reservoirs, reaches, junctions, diversions, reservoir systems, and state variables. Each of these elements consists of one or more sub-elements. The following sections will describe each element type beginning with the simplest elements, the junctions, and working up to the most complex, the reservoirs and reservoir systems.

The Delaware River Basin above Trenton consists of the following major subbasins:

- The Upper Basin contains all three of the New York City water supply reservoirs and includes the West and East Branches of the Delaware River and the Neversink River. Cannonsville and Pepacton Reservoirs are located on the West and East Branches, respectively. The Neversink Reservoir is on the Neversink River and it releases flows into the Delaware below two other major subbasins (Lackawaxen and Mongaup). It was included with the Upper Basin so that all three New York City water supply reservoirs and the unique aspects of their operations could be evaluated together.
- The Lackawaxen River Basin which includes Prompton and Jadwin, two USACE flood damage reduction reservoirs, and Lake Wallenpaupack, a PPL Corporation hydropower reservoir.
- The Mongaup River Basin includes three hydropower reservoirs: Swinging Bridge, Toronto and Rio Reservoirs. Although the Mongaup River basin contains five reservoirs, only the three largest were represented in the model in order to enable the DRBC to evaluate their possible flood damage reduction benefits.
- The Lehigh River Basin contains F.E. Walter and Beltzville Reservoirs, both USACE flood damage reduction reservoirs.
- The Mainstem Delaware River Basin receives flow from all the other basins as well as several smaller tributaries, two of which include Merrill Creek and Nockamixon Reservoirs which are located on two of the smaller tributaries, Merrill Creek and Tohickon Creek.

The following sections will describe each element type beginning with the simplest elements, the junctions, and ending with the most complex, the reservoirs and reservoir systems. To facilitate

understanding of the different model elements and how they relate to one another, the discussion of each element type will be grouped by major subbasin of the watershed.

4.1 Junctions

The junction elements serve four functions: 1) they link model elements together, 2) they are the means by which flow (headwater or incremental) enters the network, 3) they combine flow – the outflow of a junction is the sum of the inflows to the junction, and 4) when provided with an optional rating curve, they calculate stage using the computed junction outflow.

Once a reservoir network is assembled, the connection between network elements is taken for granted, however a good model design includes junctions at key locations to identify and manage inflow data effectively across various alternatives. Depending on the objectives of the model, rating curves may be important to the operation of the reservoirs for downstream controls, such as in the Lackawaxen River Basin where the downstream control for the Jadwin and Prompton Reservoirs is based on stage, or may simply be used to produce additional output (e.g., at National Weather Service Flood Forecast points).

As inflow locations, junctions can fall into two categories: *boundary* junctions and *interior* junctions. Boundary junctions have no reaches or reservoirs above them in the network and typically identify a single upstream gage or inflow representing the total headwater inflow. Interior junctions combine inflow routed from upstream with incremental local flow before passing the total flow on to the downstream element.

To support the various inflow alternatives that were requested for this model, the Local Inflow list at each junction includes all relevant gages for tributaries that enter the upstream reach or the immediately downstream reservoir, as well as an entry for any ungaged incremental local flow that was computed for the reach or reservoir. In the *FC-GageQ* alternative, the gaged local inflows are assigned to the time-series holding the observed gage data and the computed locals are either attached to zero flow time-series or to a derived ungaged local flow time-series. In the *FC-PRMS* alternative, the computed local is attached to the PRMS computed inflow and local inflows identified as gaged flows are attached to a zero flow time-series. An example is presented in the explanation for Figure 4.1.

Name Pepacton_IN Value 176	of 81 🕨 🕨				
Description Inflow for Reservoir Pepacton. For comparison with Observed flow,					
Info Local Flow Rating Curve Observed Data					
Name Factor					
Pepacton_IN (EB Del R) Computed	1.000				
Pepacton_LOC (lake incremental)	1.000				
Mill Brook nr Dunraven 3 Tributary	1.000				
	1.000				
PlatteKill@Dunraven	1.000				
EB Del@Margaretsville	1.000				

Figure 4.1 Pepacton Reservoir Inflow Junction – Local Flow List

A list of the junctions in the Upper Basin and a summary of their significance in the model are provided in Table 4.1.

		Boundary or Interior	Incremental Inflow	Gage Location	Rating Curve
Junction Name	Stream Name	Junction	(Yes/No)	(Yes/No)	(Yes/No)
Cannonsville_IN	West Branch Delaware	В	Yes*	Yes	No
Cannonsville_OUT	West Branch Delaware	Ι	No	No	No
Stilesville	West Branch Delaware	Ι	No	Yes	No
Hale Eddy	West Branch Delaware	Ι	Yes*	Yes	Yes†
Pepacton_IN	East Branch Delaware	В	Yes*	Yes	No
Pepacton_OUT	East Branch Delaware	Ι	No	No	No
Downsville	East Branch Delaware	Ι	No	Yes	No
Harvard	East Branch Delaware	Ι	Yes	Yes	Yes†
Cooks Falls	Beaver Kill	В	No	Yes	Yes
Del_EB+Beaver Kill	East Branch Delaware	Ι	Yes	No	No
Fishs Eddy	East Branch Delaware	Ι	Yes	Yes	Yes†
Hancock	Confluence EB&WB Del.	Ι	Yes	No	No
Callicoon	Delaware River	Ι	Yes	Yes	Yes
Neversink_IN	Neversink River	В	Yes*	Yes	No
Neversink_OUT	Neversink River	Ι	No	No	No
Neversink Gage	Neversink River	Ι	No	Yes	No
Bridgeville	Neversink River	Ι	Yes	Yes	Yes
Godeffroy	Neversink River	Ι	Yes	Yes	No
toNYC_IN		В	No	No	No
incremental local flow an					
	unctions marked with this symbol has extrapolating a straight line through				

[†] The rating curve for the junctions marked with this symbol has had an extra point added to the rating curve provided by the USGS. The extra point was added by extrapolating a straight line through the last two values and determining stage for a flow larger than the largest computed unregulated flow.

Figure 4.1 shows the **Local Flow** list for Pepacton_IN, one of the three boundary junctions located at the inflow to the reservoirs in the Upper Basin. Since this junction represents the total

inflow to Pepacton Reservoir, in addition to the headwater gage, several gages listed are for other tributaries to the pool. Also listed are Pepacton IN (EB Del R) and Pepacton LOC (lake incremental). In the FC-GageQ alternative, observed data is assigned to the gaged tributaries in the list, the derived inflows that represent the ungaged areas are assigned to Pepacton_IN, and a zero time-series is assigned to *Pepacton_LOC* (lake incremental). In the FC-PRMS alternative, all inflows above the reservoir are assigned to Pepacton_IN, flow simulated to represent contributions from areas around the reservoir are assigned to Pepacton_LOC (lake incremental), and zero flow time-series are assigned to gage entries.

The Cooks Falls Junction, illustrated in Figure 4.2, is also a boundary junction, but it represents a

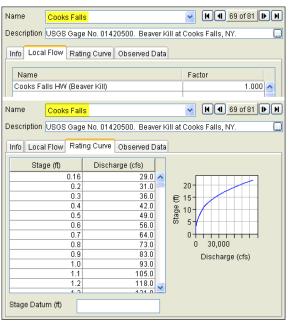


Figure 4.2 Cooks Falls Junction – Inflows & Rating Curve

gage on Beaver Kill, an unregulated tributary to the East Branch Delaware River. As one of the significant gages in the basin, a rating curve was provided -a portion of which is also illustrated in Figure 4.2.

Like Cooks Falls, several other junctions in the Upper Basin represent gage locations, so, where available, each includes a rating curve. Unlike Cooks Falls, these are interior junctions so the "Local Flows" identified at these junctions are incremental local inflows that are added to the flow routed from the upstream reach(es).

Images of the data entry screens for most of the interior junctions were not included in this report. However, Figure 4.3 shows the local flow list for Callicoon Junction to illustrate the

inflow factor feature. The Callicoon Junction identifies two incremental local flows. Both entries represent the incremental local flow entering the network at this junction. In the FC-PRMS alternative, the computed local inflow was assigned to the Callicoon Local (PRMS) and a zero time-series was assigned to Callicoon Local (0.95 Callicoon); whereas for the FC-GageQ alternative, the derived local inflow was assigned to Callicoon Local (0.95 Callicoon) and a zero time-series was assigned to Callicoon Local (PRMS). The use of the inflow factor of 0.95 indicates that 95% of the inflow time-series mapped to the Callicoon Local was used by the model. That inflow was derived as follows:

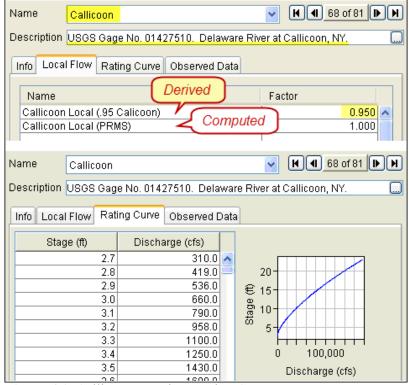


Figure 4.3 Callicoon Junction, Rating Curve

The gaged flows at Hale Eddy and Fishs Eddy were routed to the confluence of the West and East Branches of the Delaware River, combined, and then routed to Callicoon. The total routed flow was then subtracted from the Callicoon gaged flow to produce the incremental local at Callicoon.

In the calibration of the routing, it was determined that a small fraction of the derived local computed at Callicoon should be brought into the model at the confluence and then routed to Callicoon. The factor of 0.95 represents the portion of the derived Callicoon local that is brought in at Callicoon. A similar entry exists at the upstream confluence but a factor of 0.05 is used there.

The junctions in the other basins of the model are summarized in the following tables.

		Boundary or Interior	Incremental Inflow	Gage Location	Rating Curve
Junction Name	Stream Name	Junction	(Yes/No)	(Yes/No)	(Yes/No)
Prompton_IN	West Branch Lackawaxen	В	Yes*	No	No
Prompton_OUT	West Branch Lackawaxen	Ι	No	No	No
Prompton Gage	West Branch Lackawaxen	Ι	No	Yes	No
Jadwin_IN	Dyberry Creek	В	Yes*	No	No
Jadwin_OUT	Dyberry Creek	Ι	No	No	No
Honesdale	Dyberry Creek	Ι	No	Yes	No
Lack_WB+Dyberry	Confluence Lack+Dyberry	Ι	Yes	No	No
Hawley	Lackawaxen	Ι	Yes	Yes	Yes
Wallenpaupack_IN	Wallenpaupack Creek	В	Yes	No	No
Wallenpaupack_OUT	Wallenpaupack Creek	Ι	No	No	No
Lack+Wallenpaupack	Confluence Lack.+Wall.	Ι	Yes	No	No
* The local inflow list to some ju incremental local flow and/or t	unctions includes an entry for one or m total headwater flow.	nore gaged flows in	addition to an entry	for computed or	derived

Table 4.2 Lackawaxen River Basin Junctions
--

 Table 4.3 Mongaup River Basin Junctions

		Boundary or Interior	Incremental Inflow	Gage Location	Rating Curve
Junction Name	Stream Name	Junction	(Yes/No)	(Yes/No)	(Yes/No)
Swinging Bridge_IN	Mongaup River	В	Yes*	No	No
Swinging Bridge_OUT	Mongaup River	Ι	No	No	No
Toronto_IN	Black Lake Creek	В	Yes	No	No
Toronto_OUT	Black Lake Creek	Ι	No	No	No
Mongap+Black Lake Cr	Confluence Mong+BLC	Ι	Yes	No	No
Rio_IN	Mongaup River	Ι	Yes	No	No
Rio_OUT	Mongaup River	Ι	No	No	No
* The local inflow list to some junctions includes an entry for one or more gaged flows in addition to an entry for computed or derived incremental local flow and/or total headwater flow.					

Table 4.4 Lehigh River Basin Junctions	5
--	---

		Boundary or Interior	Incremental Inflow	Gage Location	Rating Curve	
Junction Name	Stream Name	Junction	(Yes/No)	(Yes/No)	(Yes/No)	
F.E. Walter_IN	Lehigh River	В	Yes*	No	No	
F.E. Walter_OUT	Lehigh River	Ι	Yes*	No	No	
White Haven	Lehigh River	Ι	No	Yes	Yes†	
Lehighton	Lehigh River	Ι	Yes*	Yes	Yes†	
Beltzville_IN-P	Pohopoco Creek	В	Yes*	No	No	
Beltzville_IN-W	Wild Creek	В	Yes	No	No	
Beltzville_OUT	Pohopoco Creek	Ι	No	No	No	
Parryville	Pohopoco Creek	Ι	No	Yes	Yes†	
Pohopoco Mouth	Pohopoco Creek	Ι	Yes	Yes	No	
Lehigh+Pohopoco	Confl. Lehigh+Pohopoco	Ι	Yes	No	No	
Walnutport	Lehigh River	Ι	Yes	Yes	Yes	
Allentown	Jordan Creek	Ι	Yes	Yes	Yes	
Lehigh+Jordan	Confluence Lehigh+Jordan	Ι	Yes	No	No	
Bethlehem	<u> </u>					
* The local inflow list to some junctions includes an entry for one or more gaged flows in addition to an entry for computed or derived incremental local flow and/or total headwater flow.						
	ons marked with this symbol has had a polating a straight line through the las					

		Boundary or Interior	Incremental Inflow	Gage Location	Rating Curve
Junction Name	Stream Name	Junction	(Yes/No)	(Yes/No)	(Yes/No)
Barryville	Delaware River	I	Yes*	Yes	Yes
Del+Lackawaxen	Confluence Del+Lack	Ι	Yes*	No	No
Del+Mongaup	Confluence Del+Mongaup	Ι	No	Yes	No
Port Jervis	Delaware River	Ι	Yes	Yes	Yes
Montague	Delaware River	Ι	Yes	Yes	Yes†
Shoemakers	Bush Kill	В	Yes*	Yes	Yes
Del+Bush Kill	Confluence Del+Bush Kill	Ι	Yes	No	No
Tocks Island	Delaware River	Ι	Yes	Yes	Yes
Minisink Hills	Brodhead Creek	В	Yes	Yes	Yes
Del+Brodhead	Confluence Del+Brodhead	Ι	Yes	No	No
Belvidere	Delaware River	Ι	Yes	Yes	Yes
Easton	Delaware River	Ι	Yes	No	No
Delaware+Lehigh	Confluence Del+Lehigh	Ι	Yes	No	No
Merrill Creek_IN	Merrill Creek	В	Yes	No	No
Merrill Creek_OUT	Merrill Creek	Ι	No	No	No
Pohat+Merrill	Confl. Pohatcong+Merrill	Ι	Yes	No	No
Del+Pohatcong	Confl. Del.+Pohatcong Cr	Ι	Yes	No	No
BloomsBury	Musconetcong River	В	Yes	Yes	No
Riegelsville	Delaware River	Ι	Yes	Yes	Yes
Del+Musconetcong	Confl. Del.+Musconetcong	Ι	Yes	No	No
Frenchtown	Delaware River	Ι	Yes	Yes	No
Nockamixon_IN	Tohickon Creek	В	Yes	No	No
Nockamixon_OUT	Tohickon Creek	Ι	No	No	No
Del+Tohickon	Confluence Del+Tohickon	Ι	Yes	No	No
Stockton	Delaware River	Ι	Yes	No	No
New Hope	Delaware River	Ι	Yes	No	No
Washingtons Crossing	Delaware River	Ι	Yes	No	No
Trenton	Delaware River	Ι	Yes	Yes	Yes

Table 4.5 Mainstem Delaware River Basin Junctions

† The rating curve for the junctions marked with this symbol has had an extra point added to the rating curve provided by the USGS. The extra point was added by extrapolating a straight line through the last two values and determining stage for a flow larger than the largest computed unregulated flow.

4.2 Reaches

The reaches route water from one junction to another in the network. Routing is performed in HEC-ResSim using one of a handful of hydrologic routing methods. In this model, only three of the available methods were used: Null (direct translation – no lag or attenuation), Variable Lag & K, and Muskingum. Null routing was used for very short reaches that have no appreciable impact on the flow that can be represented in a one-hour timestep.

The Variable Lag & K method is a routing method used extensively by the NWS in their hydrologic forecasting models. Since calibration of routing parameters can be significantly labor intensive and because the NWS already had developed Lag & K routing parameters calibrated for much of the Delaware River Basin, at the onset of this project, HEC chose to add the Lag & K routing method to HEC-ResSim rather than redevelop routing parameters for the entire basin in another method. However, due to differences in model configurations and assumptions, the

routing in all the reaches of the basin had to be revisited and in many cases recalibrated. Some of the reasons for this are:

- 1) the NWS's Lag & K routing parameters were developed based on the assumption of a sixhour timestep while the HEC-ResSim model is computed on a one-hour timestep;
- 2) the discretization of the routing reaches in the model do not exactly match those used in the NWS's model;
- the NWS parameters were intended to manage the full range of flows (from low to high) while the HEC-ResSim model parameters were developed to route major flood flows; and
- 4) the initial implementation of the Lag & K method in HEC-ResSim inadequately manages an inherent weakness in the method that occurs when the variable lag parameter values decrease with increasing inflow values.

For those reaches that could not be easily re-calibrated with the Variable Lag & K method, the Muskingum method was used. This method provided a fairly simple means of approximating the lag and attenuation of the flood wave for several reaches of the model. It should be noted that the parameters derived for these reaches were for flood flows and will not likely translate well to low flow situations. Routing information for each reach is provided below and in Appendix B.

Three Upper Basin reaches were selected as examples for the following routing discussion and represent three routing methods: Downsville to Harvard (Muskingum), Stilesville to Hale Eddy (original Lag & K data), and Hancock to Callicoon (constant Lag). All other reaches in this and the other basins are summarized in Tables 4.6 through 4.10.

The Downsville to Harvard reach, illustrated in Figure 4.4 provides an example of the Muskingum routing method. The Muskingum routing method was chosen because the Variable Lag & K parameters were developed for a six-hour time-step did not account for attenuation in the reach which, though small, was needed to produce a better match to the observed flood flows.

Reach Name Downsville	to Harvard	✓ (<) 5 of 64 ()			
Description 4, 0.4, 4					
Routing Losses Observed Data					
Method Muskingum		Image: A state of the state			
Muskingum K (hrs)	3.00				
Muskingum X	0.4000				
Number of Subreaches	6				

Figure 4.4 Downsville to Harvard Reach, Muskingum Routing

For the Stilesville to Hale Eddy reach, the original Lag & K parameters provided by NWS were used since the variable K data as developed by the NWS were able to adequately represent the lag and attenuation in this reach for the three major flood events. Figure 4.5 shows the variable K parameters used.

Reach Name Stilesville to H	lale Eddy		🖌 🖌 🖌 2 of 64 🕨 🕽	1	
Description L=0, K0-300	Description L=0, K0-300:6.0;300-999999:3.0				
Routing Losses Observe	d Data			_	
Method Variable Lag & K		~			
Valiable Eag art				_	
CLag Values					
💿 Constant Lag (hrs)	0		10		
🔿 Lag vs. Inflow			8		
Inflow (cfs)	Lag (hrs.)		<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>		
		~	Su 6-		
			Inflow (cfs)		
		~			
⊂KValues				21	
r values					
O Constant K (hrs)	0				
● K vs. Outflow			6		
Outflow (cfs)	K (hrs.)		æ 4		
0.0	ix (iiio.)	6.0 🔨	ű.		
300.0		6.0	<u>×</u> 2		
300.01		1.0	0++++++++++++++++++++++++++++++++++++++		
999999.0		1.0	0 600,000		
		~	Outflow (cfs)		

Figure 4.5 Stilesville to Hale Eddy, Lag & K Routing – Variable K

The recalibration of the routing for the Hancock to Callicoon reach, illustrated by Figure 4.6, was required due to all four of the reasons listed (see page 23).

Reach Name Hancock to (Callicoon	I I of 64	
Description L=3	Description L=3		
Routing Losses Observ	ed Data		
Method Variable Lag & k	:	The lag values here decrease as inflows increase and were	
Lag Values		calibrated with a 6 hour timestep. For the three flood	
💿 Constant Lag (hrs)	3	events, it was determined that a constant lag of 3 hrs was	
🔘 Lag vs. Inflow		adequate.	
Inflow (cfs)	Lag (hrs.)	<u>ب</u> 12	
0.0			
1000.0		4 4	
1700.0 7500.0	1	2.0 0 600,000 6.0 Inflow (cfs)	
999999.0		6.0 v	
-KValues			
⊙ Constant K (hrs)	0	10	
🔘 Kivs. Outflow		8	

Figure 4.6 Hancock to Callicoon, Lag & K Routing – Constant Lag

- 1) As is true for all the Lag & K parameter data supplied by the NWS, the parameters were calibrated in a model using a six hour timestep.
- 2) For this reach, the parameters provided were for a reach that routes the combined Hale Eddy + Fishs Eddy flow to Callicoon. In the NWS model, neither Hale Eddy nor Fishs Eddy was routed to a confluence point before being combined and routed to Callicoon.
- 3) The Variable Lag parameters covered a broad range of flows which were not as effective in reproducing the observed extreme flood flows of the three events modeled. And,
- 4) When used in HEC-ResSim, this NWS set of Variable Lag parameters could produce a hydrograph that, under certain flow conditions, had a significant volume loss. Since the volume loss is caused by a weakness in the routing method and since the variability of the lag is not needed for the extreme flood flows modeled, a representative constant Lag was determined and used.

The following tables provide a summary of the reaches in each of the basins in the model.

Reach Name	Routing Method	Parameters
Cannonsville_OUT to Stilesville	Null	
Stilesville to Hale Eddy	Lag & K	L=0, K=0-300:6.0;300-999999:3.0
Hale Eddy to Hancock	Null	
Pepacton_OUT to Downsville	Null	
Downsville to Harvard	Muskingum	K=4, X= 0.4 , subreaches= 4
Harvard to Del_EB+Beaver Kill	Null	
Cooks Falls to Del_EB+Beaver Kill	Lag & K	Lag=3
Del_EB+Beaver Kill to Fishs Eddy	Null	
Fishs Eddy to Hancock	Null	
Hancock to Callicoon	Lag & K	Lag=3
Neversink_OUT to Neversink Gage	Null	
Neversink Gage to Bridgeville	Lag & K	Lag=3
Bridgeville to Godeffroy	Muskingum	K=6, X= 0.1 , subreaches= 2
Godeffroy to Del+Neversink	Lag & K	Lag=1

Table 4.6 Upper Basin Reaches

Table 4.7 Lackawaxen River Basin Reaches

Reach Name	Routing Method	Parameters
Jadwin_OUT to Honesdale	Null	
Honesdale to Lack_WB+Dyberry	Null	
Prompton_OUT to Prompton Gage	Null	
Prompton Gage to Lack_WB+Dyberry	Null	
Lack_WB+Dyberry to Hawley	Lag & K	Lag=6
Hawley to Lack+Wallenpaupack	Null	
Lake Wallenpaupack_OUT to Lack+Wallenpaupack	Null	
Lack+Wallenpaupack to Del+Lack	Lag & K	Lag=3

Reach Name	Routing Method	Parameters
Toronto_OUT to Mongaup+Black Lake Cr	Muskingum	K=1, X=0.1, subreaches=1
Swinging Bridge_OUT to Mongaup+Black Lake Cr	Null	
Mongaup+Black Lake Creek to Rio_IN	Muskingum	K=1, X=0.1, subreaches=1
Rio_OUT to Del+Mongaup	Null	

Table 4.8 Mongaup River Basin Reaches

Table 4.9 Lehigh River Basin Reaches

Reach Name	Routing Method	Parameters
F.E. Walter_OUT to White Haven	Null	
White Haven to Lehighton	Lag & K	Lag=6
Lehighton to Lehigh+Pohopoco	Null	
Beltzville_OUT to Parryville	Null	
Parryville to Pohopoco Mouth	Null	
Pohopoco Mouth to Lehigh+Pohopoco	Null	
Lehigh + Pohopoco to Walnutport	Lag & K	Lag=3
Walnutport to Lehigh + Jordan	Lag & K	Lag=5
Allentown to Lehigh+Jordan	Null	
Lehigh + Jordan to Bethlehem	Lag & K	Lag=1

Table 4.10 Mainstem Delaware River Basin Reaches

Reach Name	Routing Method	Parameters
Callicoon to Barryville	Lag & K	Lag=3
Barryville to Delaware + Lackawaxen	Null	
Del+Lackawaxen to Del+Mongaup	Lag & K	Lag=2
Del+Mongaup to Port Jervis	Null	
Port Jervis to Del+Neversink	Null	
Del+Neversink to Montague	Lag & K	Lag=3
Montague to Del+Bush Kill	Muskingum	K=5, X=0.1, subreaches=1
Shoemaker to Del+Bush Kill	Null	
Del+Bush Kill to Tocks Island	Muskingum	K=3, X= 0.1 , subreaches=1
Tocks Island to Del+Brodhead	Null	
Minisink Hills to Del+Brodhead	Null	
Del+Brodhead to Belvidere	Muskingum	K=4, X=0.1, subreaches=1
Belvidere to Easton	Muskingum	K=3, X=0.1, subreaches=1
Easton to Del+Lehigh	Null	
Del+Lehigh to Del+Pohatcong	Muskingum	K=1, X=0.1, subreaches=1
Merrill Creek_Out to Pohat+Merrill	Lag & K	K=1
Pohat+Merrill to Del+Pohatcong	Muskingum	K=2, X=0.1, subreaches=1
Del+Pohatcong to Riegelsville	Null	
Riegelsville to Del+Musconetcong	Null	
Bloomsbury to Del+Musconetcong	Muskingum	K=2, X=0.1, subreaches=1
Del+Musconetcong to Frenchtown	Muskingum	K=2, X=0.1, subreaches=1
Frenchtown to Del+Tohickon	Muskingum	K=1, X=0.1, subreaches=1
Nockamixon_Out to Del+Tohickon	Muskingum	K=2, X=0.1, subreaches=1
Del+Tohickon to Stockton	Null	
Stockton to New Hope	Muskingum	K=2, X=0.1, subreaches=1
New Hope to Washingtons Crossing	Null	
Washingtons Crossing to Trenton	Muskingum	K=3, X=0.1, subreaches=1

4.3 Reservoirs

The reservoir is the most complex element in HEC-ResSim. The physical data of a reservoir are represented by a pool and one or more dams. Both the pool and the dam are complex subelements of the reservoir. The pool contains the reservoir's elevation-storage-area relationship and can optionally include evaporation and seepage losses. The dam represents both an uncontrolled outlet and an outlet group – the top of dam elevation and length specifies the minimum parameters for an uncontrolled spillway and the dam may contain one or more controlled outlets.

Reservoir elements also hold the operational data for a reservoir. The operational data represents the goals and constraints that guide the release decision process. The operation data is grouped as a unit called an operation set. A reservoir can hold multiple operation sets, but only one operation set per reservoir may be used in an alternative. The operation set is made up of a set of operating zones, each of which contains a prioritized set of rules. Rules describe a minimum or maximum constraint on the reservoir releases.

Since the model of the Delaware River Basin was developed to analyze the operation of the system during flood events, some of the physical and operational data options were not used because they would not significantly impact the flows or stages during a flood event. The physical pool options not used were: evaporation, seepage, and leakage. Operationally, the most significant constraints not directly represented were low flow augmentation, drought operation, and hydropower demands. Although there are several reservoirs in the basin that are operated primarily for low flow augmentation and hydropower, the operation to meet these demands is not a factor when those reservoirs are reacting to a large inflow (flood) event.

4.3.1 Upper Basin Reservoirs

The three reservoirs in the Upper Basin are owned and operated by New York City (NYC). These reservoirs, Cannonsville, Pepacton, and Neversink provide drinking water to New York City through an interbasin transfer to Rondout Reservoir. Simulation of Rondout Reservoir was not within the scope of this study. In the model, the diversion of water from these reservoirs is represented with a diverted outlet from each reservoir and several operating rules to control the quantity and timing of the out-of-basin diversion flows. The three diverted outlets, Can_Tunnel, Pep_Tunnel, and Nev_Tunnel, are drawn as arrows in the schematic shown in Figure 4.7 and they connect downstream to the inflow junction of a reservoir named toNYC. The toNYC reservoir was added merely as a "receiver" for the diversions and is not an operational part of the model.

The figures in Section 4.3.1.1, detail the definition of Cannonsville Reservoir. Since all three reservoirs (Cannonsville, Pepacton, Neversink) are similar, only figures needed to illustrate some property or operation unique to that reservoir will be presented.

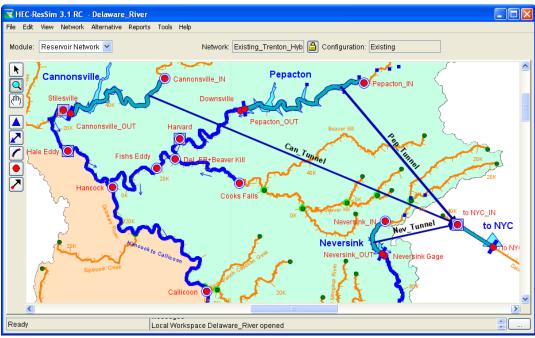


Figure 4.7 Upper Basin Reservoirs

4.3.1.1 Cannonsville

The reservoir editor in HEC-ResSim is shown in Figure 4.8. In this figure, the Physical tab is active, it contains two panels. The left panel holds the reservoir element tree, which illustrates the hierarchy of physical elements that make up the reservoir. The right panel is an edit pane –

😨 Reservoir Editor					
Reservoir Edit					
Reservoir Cannonsville	Description Placed	in service in 1964.	Largest drainage ba	asin of all of the NYC i	reservoirs (🛄 📕 📕 2 of 14 🕨 🗎
Physical Operations Observed	Data				
Cannonsville	Cannonsville				
Dam	Composite Release	e Capacity			
Spillway	Elevation (ft)	Controlled (cfs)	Uncontrolled (cfs)	Total (cfs)	
🖻 🛃 Can_Tunnel	1,030.0	1,650.9	0.0	1,650.9 🔨	1,160
- Diversion	1,035.0	1,759.9	0.0	1,759.9	
Routing	1,040.0	1,835.9	0.0	1,835.9	S 1,120
	1,045.0	1,921.6	0.0	1,921.6	· 癔 1,080
	1,050.0	2,002.4	0.0	2,002.4	<u>କ</u> ି 1,040
	1,055.0	2,081.1	0.0	2,081.1	
	1,060.0	2,159.8	0.0	2,159.8	0 200,000
	1,065.0	2,223.6	0.0	2,223.6	Flow (cfs)
	1,070.0	2,296.3	0.0	2,296.3	
	1,075.0	2,364.0	0.0	2,364.0	

Figure 4.8 Cannonsville – Physical Element Tree and Composite Outlet Capacity Table

when an element is selected in the tree, the edit pane displays the data entry fields and available options for defining that element. At the reservoir and group levels of the hierarchy, the edit pane shows a composite release capacity table for all outlets below that level.

Most of the physical data used to define the three NYC reservoirs was from a spreadsheet containing the data for the 2.1 Version of the OASIS model of the Delaware River Basin. The OASIS model spreadsheet provided the elevation-storage-area table, and the outlet capacity tables for the release works, spillway, and diversion tunnel. Figure 4.9 shows the edit pane for the Cannonsville pool. The edit pane is where the elevation-storage-area relationship is specified.

hysical Operations Observe	d Data			
Cannonsville	Cannonsville-Pool			
Dam	⊙ Linear Interpolation ○ C	onic Interpolation Initial Coni	: Depth (ft)	
Spillway	Elevation	Storage	Area]
🗠 🛃 Can_Tunnel	(TT)	(ac-ft)	(acre)	
 Diversion Routing 	1035.00	1534.44	500.00	
- Would g	1040.00	3130,26	730.00	
	1045.00	6966.36	830.00	T
	1050.00	11324.18	940.00	1,160
	1055.00	16326.46	1070.00	€ 1.120
	1060.00	22095.96	1240.00	\$ 1,080
	1065.00	28786.12	1450.00	
	1070.00	36581.09	1670.00	1,040
	1075.00	45419.47	1880.00	0 250,000
	1080.00	55301.27	2070.00	
	1085.00	66073.05	2250.00	Stor (ac-ft)
	1090.00	77949.63	2470.00	
	1095.00	90992.38	2700.00	1,160
	1100.00	105232.00	2940.00	€ 1,120
	1105.00	120422.97	3120.00	\$ 1.080
	1110.00	136565.29	3310.00	
	1115.00	153628.28	3480.00	1,040
	1120.00	171519.87	3650.00	1 1 1 1 1 1 1 1
	1125.00	190270.75	3830.00	0 3,000 6,000
	1130.00	209788.84	3980.00	Area (acre)
	1135.00	230135.54	4170.00	
	1140.00	251310.83	4350.00	
	1145.00	273498.85	4570.00	
	1150.00	296853.05	4820.00 🛩	

Figure 4.9 Cannonsville – Pool Definition

Figure 4.10 shows the edit pane for the Cannonsville Reservoir's dam definition. The dam data is used by HEC-ResSim to describe a default uncontrolled spillway. Since HEC-ResSim does not perform dam-break scenarios, should the reservoir pool elevation exceed the top of dam elevation, the dam will act as an uncontrolled spillway and allow water to flow over it. The capacity of this default spillway is computed with a standard weir equation using the dam elevation, length, and a coefficient of 3.0 (1.65 in SI units): Q= weir coef * length * height^(3/2).

Reservoir Cannonsville	Description Placed in section	ervice in 1964. Larges	t drainage basin of all c	of the NYC reservoirs (4	155 sq. mi	K € 2 of 14 ► H
Physical Operations Observed Data						
Cannonsville	Cannonsville-Dam					
Dam Release Works	Elevation at top of dam (ft)		1.	175.0	
Spillway □ ☆ Can_Tunnel	Length at top of dam (ft)			2	800.0	
 Diversion Routing 	Composite Release Ca	pacity				
	Elevation	Controlled	Uncontrolled	Total		
	(ft)	(cfs)	(cfs)	(cfs)	1.1	60
	1,030.0	1,032.0	0.0	1,032.0		20-
	1,035.0	1,141.0	0.0	1,141.0	je € 1,0	80
	1,040.0	1,217.0	0.0	1,217.0	음 1,0	40
	1,045.0	1,295.0	0.0	1,295.0		
	1,050.0	1,368.0	0.0	1,368.0		
	1,055.0	1,439.0	0.0	1,439.0		Flow
	1,060.0	1,510.0	0.0	1,510.0		(cfs)

Figure 4.10 Cannonsville – Dam Definition

The outlets that release water into the river downstream of the dam were added to the dam element. These outlets are Release Works and Spillway. The Release Works is a controlled outlet that represents the composite capacity of the controlled outlets at Cannonsville. The Spillway is an uncontrolled overflow weir. Figure 4.11 shows the edit pane for the Release Works and Figure 4.12 shows the edit pane for the uncontrolled Spillway. The capacity tables for these outlets were obtained from the OASIS model spreadsheet.

The image in Figure 4.13 (as well as many other similar figures in this chapter) was obtained through the use of Microsoft Bing[®] Maps. It shows the spillway at Cannonsville. The importance of this figure is that it shows water going over the spillway on a dry, sunny day. The image has no date, but by the somewhat random nature of the satellite photos available through

Reservoir Cannonsville Physical Operations Observed D		e in 1964. Largest drainage	basin of all of the NYC reservoir	rs (455 sq. mi 🥔 🔣 2 of 14 🕨 🕨
Cannonsville	Cannonsville-Dam-Release Wo	orks		
📮 🐺 Dam	Number of Gates of this type		1	
Release Works	Elevation	Max Capacity	Total Max	
🖻 📈 Can_Tunnel	(ft)	(cfs)	Capacity	1,160
 Diversion 	1030.0	1032.0	1032.0 🔨	1,140
Routing	1035.0	1141.0	1141.0	1,120
	1040.0	1217.0	1217.0	€ 1,100
	1045.0	1295.0	1295.0	à 1,080
	1050.0	1368.0	1368.0	□ 1,060 · · · · · · · · · · · · · · · · · ·
	1055.0	1439.0	1439.0	1,040
	1060.0	1510.0	1510.0	1,020
	1065.0	1566.0	1566.0	0 1,000 2,000
	1070.0	1631.0	1631.0	Capacity (cfs)
	1075.0	1691.0	1691.0	capacity (ordy

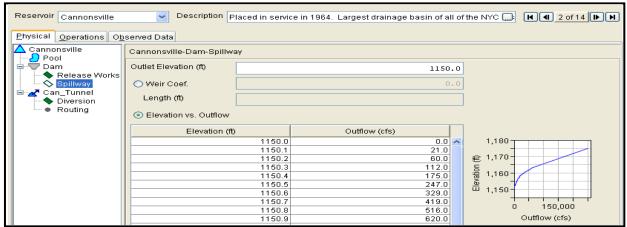


Figure 4.12 Cannonsville – Spillway

Figure 4.13 Cannonsville Spillway Photo

Bing[®] Maps, it is reasonable to assume water over the spillway is a fairly common occurrence at Cannonsville Reservoir.

As previously mentioned, the diversions from the NYC reservoirs are represented through the use of HEC-ResSim's diverted outlet element. When a diversion from a reservoir is drawn on the network schematic, a diverted outlet "group" is added to the reservoir element tree (Figure 4.14). This outlet group is created containing a controlled outlet. If the diversion connects to a junction at its outlet, then a Routing node is also included in the group.

Reservoir Cannonsville	Description Pla	iced in service in 1964. L	_argest drainage basin of	all of the NYC 🛄	K € 2 of 14 ► H
Physical Operations Obs	served Data				
Cannonsville	Cannonsville-Can_Tunnel-	Diversion			
Dam Release Works	Number of Gates of this typ	pe		1	
Spillway	Elevation	Max Capacity	Total Max		
Can_Tunnel	(ff)	(cfs)	Capacity	1,160	
Diversion	1040.0	618.9	618.9		
Routing	1050.0	634.4	634.4	1,120-	
	1060.0	649.8	649.8	€ 1,100-	
	1070.0	665.3	665.3	≥ 1,080-	
	1080.0	680.8	680.8	I,060-	
	1090.0	696.2	696.2	1,040-	
	1100.0	711.7	711.7	1,020+	
	1110.0	727.2	727.2	0	200 400 600 800
	1120.0	734.9	734.9	-1	Capacity (cfs)
	1130.0	750.4	750.4		

Figure 4.14 Cannonsville's Diverted Outlet – Can_Tunnel

The diverted outlet group at Cannonsville was given the name Can_Tunnel and the outlet inside it was simply called Diversion. This naming convention was replicated at Pepacton and Neversink Reservoirs. The diversion tunnel capacity tables from the OASIS model were applied to the Diversion outlet at each reservoir. The Null routing method was chosen for the reservoir diversion since the rate of transport of the diverted water is not relevant to the flood model.

Figure 4.15 shows the Operations tab of the HEC-ResSim Reservoir Editor for Cannonsville Reservoir. In the Operations tab, one or more operation sets can be defined to describe different reservoir operating plans. Each tab of the Operations Editor has a specific function in the description of an operation set, however the operational constraints for most reservoirs can be described on the first two tabs; Zone-Rules and Rel. Alloc. (Release Allocation).

💘 Reservoir Editor	
Reservoir Edit Operations Zone Rule	IF_Block
Reservoir Cannonsville	Description Placed in service in 1964. Largest drainage basin 📑 🕅 🕘 2 of 14 🕨 🕅
Operation Set FC Ops	Description Stor. Credit [Dec. Sched. Projected Elev]
Top of Dam Maximum Pool MinReL_Norm_45 SpillwayBuffer Anage Diversion F (Pepacton is Spilling) Close Tunnel Close Tunnel Anage Diversion MinReL_Norm_45 MinReL_Norm_45 MinReL_Norm_45 MinReL_Norm_45 MinReL_Norm_45 MinReL_Norm_45 MinReL_Norm_45 MinReL_Norm_45 MinReL_Norm_45 MinRystemDiv MinRystemDiv MinRystemDiv MinRystemDiv MinRystemDiv MinReL_Norm_45 MinRystemDiv MinRystemDiv MinRystemDiv MinRystemDiv MinReL_Norm_45	Operates Release From: Cannonsville Rule Name: Min@Hale Eddy_225 Function of: Date Downstream Location: Hale Eddy Parameter: Flow 01Jan 225.0 01Jan 225.0 Period Average Limit Edit Day of Week Multiplier Edit Day of Week Multiplier Edit Parameter: Flow Contingency Edit Flow Contingency
	OK Cancel Apply

Figure 4.15 Cannonsville Operations Editor – FC Ops

Operation sets are a set of zones and rules that describe the constraints on reservoir releases. Each zone can have a prioritized list of rules that are followed if the reservoir pool elevation is within that zone. Additional constraints can be applied to the rule list with *If-Blocks*. Other operational constraints can be defined by activating and specifying the data for any of the other tabs of the Operations editor.

The operation set displayed in Figure 4.15 is called *FC Ops*. There are two operation sets defined for each of the NYC reservoirs – *FC Ops* and *FC Ops-SpecDiv*. The *FC Ops* operation sets were developed to represent the standard flood operations at each reservoir. Included in this operation set is a subset of rules that attempt to define the operational constraints on the diversions as they were operated during the three flood events studied. In *FC Ops-SpecDiv* the primary operation of the reservoir is same as in *FC Ops*, but the rules constraining the diversion has been changed to exactly replicate the observed diversion record for the three flood events studied in order to avoid introducing errors related to not reproducing the observed diversion.

Development of each operation set began with the definition of the operating zones of the reservoirs. Operational information for the NYC reservoirs was drawn from the OASIS model. The OASIS model identified dead storage and max storage – using the elevation-storage relationship for each reservoir, these storage values were converted to elevation and used to represent the *Inactive* and *Top of Dam* zones, respectively. Similarly, the OASIS Upper and Lower Rule storages were converted to elevations and used to represent the top of the *Buffer* and *Conservation* zones. And, for modeling purposes, the extent of the storage and/or spillway capacity table was used to define the top of the *Maximum Pool* zone.

FC Ops – Normal Flood Operations

Since the primary purpose of the NYC reservoirs is to divert water to New York City, a group of diversion rules were developed in an attempt to mimic the observed operation of the diversions as well as to approximate the operations described in the OASIS model. The primary rules developed for the diversions are *MinSystemDiv* and *MaxSystemDiv*. These are downstream control rules for the control point, to NYC_IN, and are used in all three reservoirs so that they can share the responsibility to meet the water supply demand. In addition, a minimum release function rule for the diversion was added at Pepacton and Neversink to influence the allocation of the demand between the three reservoirs. The values of these local minimum requirements were estimated based on a review of the available observed data for the three events. The more complex operation of the diversions for water supply, as detailed in the OASIS model, were not attempted as they define operations during extended low flow and low storage periods and were not needed to assess flood operations.

The operation of the diversions during a flood event was determined to be different from normal operation. Based on analysis of the observed data provide for the three flood events, the diversions were suspended during each event. In most reservoir systems with interbasin water supply diversions, the diversions are seldom used to divert flood waters from one basin into another basin to avoid possibly causing flooding in the receiving basin. The rule used to represent this behavior in the model is Close Tunnel. At both Cannonsville and Pepacton the rule is contained within an If-block. The purpose of the If-block is to check if the other reservoir is spilling, if so then to stop diverting. This cross correlation between Cannonsville's and Pepacton's state of spill and the closing of the diversions was observed in the event data and used

to approximate the real operational criteria. The state of Rondout Reservoir, which receives the diversion as well as the state of the NYC water supply reservoirs in the Hudson River Basin are actually used to control the diversions. Since simulation of Rondout and the Hudson River Reservoirs was outside the scope of the watershed – the approximation was accepted as adequate.

Along with several other reservoirs in the Delaware River Basin, the NYC reservoirs share the responsibility for maintaining acceptable environmental flows in the Delaware River and its tributaries. The OASIS model identified a minimum at-site release requirement for each NYC reservoir as well as minimum flow targets for Montague and Trenton. These downstream constraints were initially added to each of the NYC reservoirs but were later removed from the model since minimum flow requirements have no impact on flooding. Other downstream flow objectives were found for each of the NYC reservoirs: Cannonsville has a flow objective for Hale Eddy; Pepacton has Fishs Eddy; and Neversink has Bridgeville. The objectives were added to the model to provide a basis for normal releases in the model before onset of a high flow event.

As single-purpose water supply reservoirs, the NYC reservoirs have no dedicated flood control storage. The target pool elevation for these reservoirs is at the crest of the uncontrolled spillways and these reservoirs spill regularly during normal and wet periods. The operations described in the OASIS model indicate that when the pool at any of the NYC projects exceeds spillway crest, the controlled gates should be utilized up to capacity to draw the reservoir pool back down to target as quickly as possible. However, observed data indicate that during the three flood events the release works were set at the minimum flow rate and thus the spillway passed the event through the reservoir. This operation was represented with a rule named Let-Dam-Fill-and-Spill. This rule is a maximum release rule of zero and is applied to the dam, effectively limiting all controlled outlets in the dam (diverted outlets are not considered part of the "dam"). The Let-Dam-Fill-and-Spill rule was placed as the lowest priority rule in the SpillwayBuffer and Conservation zones to allow higher priority rules to set the minimum release but to not allow guide curve operation to increase the minimum release. The SpillwayBuffer zone is not a standard operating zone of the NYC reservoirs. It was added to separate storage above the spillway crest into two parts: 1) the lower portion, the spillway buffer, to represent the region of the reservoir where the spillway is spilling, but normal conservation operations continue and 2) the upper portion to represent the region where diversion operations are suspended. A companion rule to the Let-Dam-Fill-or-Spill rule is the Spillway Flow Only rule, used in the Maximum Pool zone, which is also a maximum release rule of zero but is applied to the reservoir to limit flow from the outlet works and halt diversions when no higher priority rule is used to set the diversions.

The operations for all simulated reservoirs in the watershed represented are illustrated in Figure 4.14 through Figure 4.37 and summarized in Table 4.11 through Table 4.26. As needed, additional description is provided.

FC Ops-SpecDiv – Normal Flood Operations, Specified Diversions

As explained above, the operation set *FC Ops-SpecDiv* is based on the *FC Ops* operation set. The primary difference is how the diversion operations are handled. In *FC Ops-SpecDiv*, specified release rules defined as a function of an external time-series were used to operate the diversion. The external time-series contains the observed data for the diversion for the three events.

Name	Description	Reference
Cannonsville	FC Ops	OASIS Model 2.1
TOP OF DAM	1175 ft	
MAXIMUM POOL	1163 ft	No diversion flow
MinRel_Norm_45	Minimum Conservation Release = 45 cfs	OASIS Model
Spillway Flow Only	Maximum reservoir release set to zero. This rule	
	caps all higher priority min rules and forces flood	
	flows over the spillway.	
SPILLWAY BUFFER and	1151.4 ft	Allow diversion flow
NORMAL POOL	1150 ft, Spillway Crest	
Manage Diversion		Derived from
If Pepacton is spilling	If Pepacton pool > spillway buffer	observed events.
Close Tunnel	Set max diversion flow to zero	
Else	Else	
	Normal Diversion Rules (below)	
MinSystemDiv	min system diversion rate to 1100 cfs (700 mgd)	OASIS Model
MaxSystemDiv	max system diversion rate to 1238 cfs (800 mgd)	OASIS Model
MinRel_Norm_45	Minimum Conservation Release = 45 cfs	OASIS Model
Min@HaleEddy_225	Min flow at Hale Eddy = 225 cfs	OASIS Model
Let-Dam-Fill-and-Spill	Maximum dam release set to zero. This rule limits	
_	all higher priority min rules and forces flood flows	
	over the spillway.	
MINIMUM POOL	1056.28 ft	Minimum Pool
INACTIVE	1040 ft	

 Table 4.11
 Cannonsville Operations Summary, FC Ops

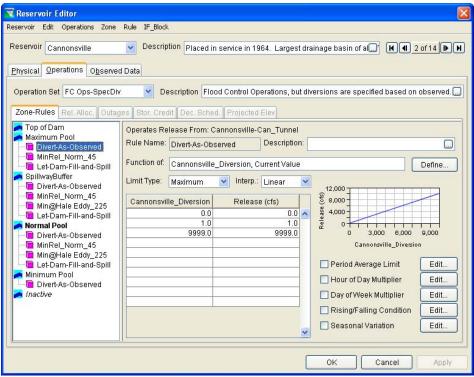


Figure 4.16 Cannonsville Operations Editor – FC Ops-SpecDiv

Name	Description	Reference
Cannonsville	FC Ops–SpecDiv (Specified Diversions)	OASIS Model 2.1
	Diversions are set to observed releases	
TOP OF DAM	1175 ft	
MAXIMUM POOL	1163 ft	
Divert-as-Observed	Function of external time series – used to set diversion	
	flows equal to observed. This rule replaces the other	
	rules in FC Ops that were used to attempt to mimic	
	diversion operations	
MinRel_Norm_45	Minimum Conservation Release = 45 cfs	OASIS Model
Let-Dam-Fill-and-Spill	Maximum dam release set to zero. This rule limits all	
	higher priority min rules and forces flood flows over	
	the spillway.	
SPILLWAY BUFFER	1151.4 ft	Allow diversion flow
and NORMAL POOL	1150 ft, Spillway Crest	
Divert-as-Observed		
MinRel_Norm_45	Minimum Conservation Release = 45 cfs	OASIS Model
Min@HaleEddy_225	Min flow at Hale Eddy = 225 cfs	OASIS Model
Let-Dam-Fill-or-Spill	Release set to zero	
MINIMUM POOL	1056.28 ft	Minimum Pool
Divert-as-Observed		
INACTIVE	1040 ft	

 Table 4.12
 Cannonsville Operations Summary, FC Ops-SpecDiv

4.3.1.2 Pepacton

Reservoir Pepacton	🔽 Des	cription Also) known as	Downsville Res	serv	roir or the C H 1 of
	Physical Operations Observed Data					
Pepacton Pool	Pepacton					
Dam Release Works	Composite	Release Cap	oacity			
Spillway	Elevatio	Controlle	Uncont	Total (cfs)		
eration Pep_Tunnel	1,140.0	1,120.5	0.0	1,120.5	^	1,320
Diversion	1,145.0	1,140.5	0.0	1,140.5		€ 1,280
• Routing	1,150.0	1,159.5	0.0	1,159.5		€ 1,280 u 1,240 tip 1,200 tip 1,200 all 1,160 all 1,100
	1,152.0	1,166.7	0.0	1,166.7		₩ 1,200
	1,155.0			1,181.0		
	1,160.0		0.0	1,203.8	-	1,120
	1,165.0	1,226.2	0.0	1,226.2		0 150,000
	1,170.0	1,247.6	0.0	1,247.6		Flow (cfs)
	1,175.0	1,270.4	0.0	1,270.4		
	1,180.0	1,293.1	0.0	1,293.1		
	1,185.0	1,312.0	0.0	1,312.0		
	1,190.0	1,329.8	0.0	1,329.8		
	1,195.0	1,347.6	0.0	1,347.6		

Figure 4.17 Pepacton Physical Element Tree and Composite Release Capacity

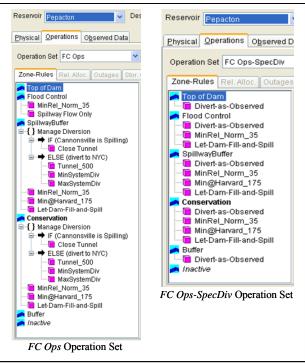


Figure 4.18 Pepacton Operations

The operations at Pepacton were described with the operations at Cannonsville. Table 4.13 and Table 4.14 summarize these operations.

Table 4.13	Pepacton O	perations	Summary.	FC Ops
Lable Hill	I epacton o	perations	Summing,	10000

Name	Description	Reference
Pepacton	epacton FC Ops	
TOP OF DAM	1304 ft	
MAXIMUM POOL	1290 ft	No diversion flow
MinRel_Norm_35	Minimum Conservation Release	OASIS Model
Spillway Flow Only	Maximum reservoir release set to zero. This rule forces flood flows over the spillway.	
SPILLWAY BUFFER	1280.65 ft	Allow diversion flow
and NORMAL POOL	1280 ft, Spillway Crest	
Manage Diversion		Derived from observed
If Cannonsville is spilling	If Cannonsville pool > spillway buffer	events.
Close Tunnel	Set max diversion flow to zero	
Else	Else	
	Normal Diversion Rules (below)	
Tunnel 500	min diversion rate to 500 cfs (325 mgd)	Estimated from observed
—		data
MinSystemDiv	min system diversion rate to 1100cfs (700mgd)	OASIS Model
MaxSystemDiv	max system diversion rate to 1238cfs (800mgd)	OASIS Model
MinRel Norm 35	Minimum Conservation Release = 35 cfs	OASIS Model
Min@Harvard 175	Min flow at Harvard = 175 cfs	OASIS Model
Let-Dam-Fill-and-Spill	Maximum dam release set to zero. This rule forces	
1	flood flows over the spillway.	
MINIMUM POOL	1165.87 ft	Minimum Pool
INACTIVE	1152 ft	

Name	Description	Reference
Pepacton	FC Ops–SpecDiv (Specified Diversions)	OASIS Model 2.1
_	Diversions are set to observed releases	
TOP OF DAM	1304 ft	
MAXIMUM POOL	1290 ft	
Divert-as-Observed	Function of external time series – used to set diversion	
	flows equal to observed. This rule replaces the other	
	rules in FC Ops that were used to attempt to mimic	
	diversion operations	
MinRel_Norm_35	Minimum Conservation Release = 35cfs	OASIS Model
Spillway Flow Only	Maximum reservoir release set to zero. This and	
	forces flood flows over the spillway.	
SPILLWAY BUFFER	1280.65 ft	
and NORMAL POOL	1280 ft, Spillway Crest	
Divert-as-Observed		
MinRel_Norm_35		
Min@Harvard 175	Min flow at Harvard = 175 cfs	OASIS Model
Let-Dam-Fill-and-Spill	Maximum dam release set to zero. This rule forces	
-	flood flows over the spillway.	
MINIMUM POOL	1165.87 ft	Minimum Pool
Divert-as-Observed		
INACTIVE	1152 ft	

 Table 4.14 Pepacton Operations Summary. FC Ops-SpecDiv

4.3.1.3 Neversink

Reservoir Neversink	🖌 🗸 Descriț	otion Finish	ed in 1953, b	egan sending wa	ater in 1954 🛄 🔣 🖊 🔳 👍 of
	erved Data Neversink Composite Re			Total (cfs) 753.4 753.4 771.4 787.4	4.400
	1,335.0 1,340.0 1,345.0 1,355.0 1,360.0 1,365.0 1,375.0 1,375.0 1,380.0 1,385.0	802.4 816.4 828.4 841.4 852.4 863.4 874.4 884.4 894.4 904.4 913.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	802.4 816.4 816.4 841.4 852.4 863.4 874.4 884.4 894.4 904.4 913.4	⊕ 1,320 0 120,000 Flow (cfs)

Figure 4.19 Neversink Physical Element Tree and Composite Release Capacity

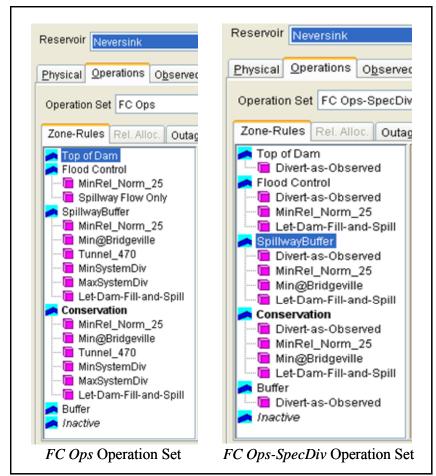


Figure 4.20 Neversink Operations

The operations at Neversink were described with the operations at Cannonsville. Table 4.15 and Table 4.16 summarize these operations. An important difference at Neversink is that in the FC

Ops operation set, no If-block was used to correlate the suspension of the diversion to conditions at the other reservoirs in the system. In the model, the suspension was triggered by pool elevation and is represented by the *Spillway Flow Only* rule the *Maximum Pool* zone.

4.3.2 Lackawaxen River Basin Reservoirs

There are three reservoirs in the Lackawaxen River Basin - two are USACE flood damage reduction reservoirs and the third is a hydropower reservoir owned and operated by PPL Generation, LLC. This portion of the model schematic is illustrated in Figure 4.21

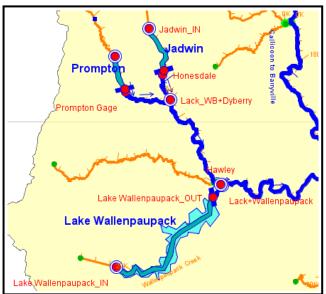


Figure 4.21 Lackawaxen River Basin Reservoirs

Name	Description	Reference
Neversink	FC Ops	OASIS Model 2.1
TOP OF DAM	1460 ft	
MAXIMUM POOL	1450 ft	No diversion flow
MinRel_Norm_25	Minimum Conservation Release = 25cfs	OASIS Model
Spillway Flow Only	Maximum reservoir release set to zero. This rule caps all higher priority min rules and forces flood flows over the spillway.	
SPILLWAY	1440.2 ft	Allow diversion flow
BUFFER	1440 ft, Spillway Crest	
and NORMAL		
POOL		
MinRel_Norm_25	Minimum Conservation Release = 25cfs	OASIS Model
Min@Bridgeville	Min flow at Bridgeville = 115cfs	OASIS Model
Tunnel_470	min diversion = $470cfs$ (303mgd)	
MinSystemDiv	min system diversion =1100 cfs (700mgd)	OASIS Model
MaxSystemDiv	max system diversion =1238 cfs (800mgd)	OASIS Model
Let-Dam-Fill-and-	Maximum dam release set to zero. This rule caps all	
Spill	higher priority min rules through the dam and forces	
	flood flows over the spillway.	
MINIMUM POOL	1332.71 ft	Minimum Pool
INACTIVE	1319. 04 ft	

Table 4.15 Neversink Operations Summary, FC Ops

Table 4.16 Neversink Operations Summary, FC Ops-SpecDiv

Name	Description	Reference
Neversink	FC Ops-SpecDiv (Specified Diversions)	OASIS Model 2.1
	Diversions are set to observed releases	
TOP OF DAM	1460 ft	
Divert-as-Observed	Function of external time series – used to set diversion	
	flows equal to observed. This rule replaces the other	
	rules in FC Ops that were used to attempt to mimic	
	diversion operations	
MAXIMUM POOL	1450 ft	Maximum Pool
Divert-as-Observed		
MinRel_Norm_25	Minimum Conservation Release = 25 cfs	OASIS Model
Let-Dam-Fill-and-Spill	Maximum dam release set to zero. This rule limits all	
	higher priority min rules and forces flood flows over the	
	spillway.	
SPILLWAY BUFFER	1440.2 ft	
and NORMAL POOL	1440 ft, Spillway Crest	
Divert as Observed		
MinRel_Norm_25	Minimum Conservation Release = 25 cfs	
Min@Bridgeville	Min flow at Bridgeville = 115cfs	OASIS Model
Let-Dam-Fill-and-Spill		
MINIMUM POOL	1332.71 ft	Minimum Pool
Divert as Observed		
INACTIVE	1319. 04 ft	

The Corps reservoirs, Prompton and Jadwin, utilize ungated outlets to control excess inflows. The maximum capacities of the primary outlets at these reservoirs were designed to equal channel capacity of the rivers immediately below the reservoirs. When inflows exceed this outlet capacity, the reservoirs will begin to fill. In addition to the primary outlets, each reservoir has an emergency spillway that will spill if and when the pool exceeds spillway crest.

4.3.2.1 Prompton

The main intake at Prompton was designed to allow the reservoir to maintain a recreation pool and a low level outlet was included to maintain a minimum flow in the downstream channel under low inflow conditions.

Figure 4.22 shows the physical element tree for the reservoir as well as the operations set and its zones.

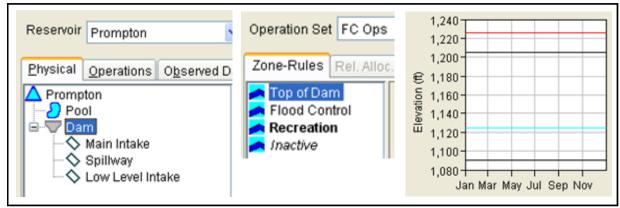


Figure 4.22 Prompton's Pool and Dam Elements and its "operating" zones

Table 4.17 summarizes the operation set for Prompton Reservoir. The summary is exceptionally brief since, without controllable outlets, there are no rules to constrain releases.

Name	Description	Reference
Prompton	FC Ops	Water Control Manual,
	Prompton has no gated outlets and therefore, no rules to	Prompton Reservoir,
	control releases. Releases are controlled by the capacities	September 1968, revised
	of the ungated outlets.	September 1997
TOP OF DAM	1226 ft	
FLOOD CONTROL	1205 ft – spillway crest	
RECREATION	1125 ft – main intake crest	
INACTIVE	1090 ft – bottom of pool	

Table 4.17 Prompton Operations Summary, FC Ops

4.3.2.2 Jadwin

The main intake at Jadwin is located at the invert of the natural channel and passes normal channel flow. No pool is maintained behind the dam and the reservoir, illustrated in Figure 4.23, is referred to as a dry dam.

The Water Control Manual document files that were provided by the Corps of Engineers, Philadelphia District included a note that states that the pool gage at Jadwin Reservoir begins reporting pool elevations hourly when the pool reaches elevation 990.0 feet. During periods of no storage, this gage reports a daily elevation of the water in the gage's stilling well, but this does not represent storage in the reservoir.

Figure 4.24 shows the physical element tree for the Jadwin Reservoir as well as its operations set and zones. Table 4.18 is the operations summary. Like Prompton's, this summary is exceptionally brief since, without controllable outlets, there are no rules to constrain releases.

Figure 4.23 Jadwin Reservoir, a dry dam

Figure 4.24 Jadwin's Pool and Dam Elements and its "operating" zones

Name	Description	Reference
Jadwin	FC Ops - Dry Dam	Water Control Manual, Prompton
	As a "dry dam", Jadwin has no gated outlets and	Reservoir, September 1968, revised
	therefore, no rules to control releases. Releases are	September 1997
	controlled by the capacities of the ungated outlets.	_
TOP OF DAM	1082 ft	
FLOOD	1053 ft, spillway crest	
CONTROL		
NORMAL POOL	989 ft	
INACTIVE	972 ft – note: bottom of pool = 980 ft	

 Table 4.18
 Jadwin Operations Summary, FC Ops – Dry Dam

4.3.2.3 Lake Wallenpaupack

Lake Wallenpaupack, the PPL project, is operated primarily for hydropower although operating documents indicate that it also operates to meet recreation and flood control objectives, as well

as providing flow augmentation to the Lackawaxen and Delaware Rivers during declared drought emergency periods (Emergency Action Plan, DRBC Resolution 2002-33). The dam is located on Wallenpaupack Creek and its gated spillway discharges directly into the creek. The Wallenpaupack powerhouse is located on the Lackawaxen River, approximately three miles downstream of the confluence of Wallenpaupack Creek and the Lackawaxen River. The pipeline was constructed to deliver water from the reservoir to the powerhouse.

Under normal operating conditions, all releases from Lake Wallenpaupack are made through the pipeline and powerhouse and the spillway gates are closed leaving the lower reach of Wallenpaupack Creek dry. Only under very high water conditions are the gates opened to allow the reservoir to spill into the creek. The decision to open the spillway gates at Lake Wallenpaupack involves a number of individuals and a complex set of conditions. The flood operations described in the model are an attempt to represent the most important factors that would precipitate a spill and the expected magnitude of the spill. The operation set, summarized in Table 4.19 does not cover all the conditions described in the Lake Wallenpaupack Emergency Action Plan, but does provide an adequate representation of the operation of the reservoir during the three modeled events.

4.3.3 Mongaup Basin Reservoirs

The three reservoirs modeled in this basin are Toronto, Swinging Bridge, and Rio. The Mongaup Basin section of the model schematic is illustrated in Figure 4.25.

Figure 4.25 Mongaup Basin Schematic

Name	Description	Reference
Lake Wallenpaupack	Vallenpaupack FC Ops Release Allocation – sequential: Pipeline Spillway	
TOP OF DAM	1200 ft	DRBC Resolution No. 2002-33
Max 6200_Spillway	Maximum Spillway Release of 6200 cfs. Spillway + Powerhouse = 8000 cfs	8000 cfs =Wallenpaupack Creek channel capacity
MAJOR FLOOD	1193 ft	1 2
Maintain Peak Release	Decreasing rate of change rule of zero – on the spillway. This will not allow spillway releases to decrease.	
IROC_Spillway	Increasing rate of change rule of 1000 cfs/hr	EAP, Dec07 pg G-14
ManageSpillway_MajorFC	This if-block is used to limit the spillway release as long as possible	
MaxSpill : pool>1192 ft	Maximum Spillway Release of 6200 cfs	
Max 6200_Spillway	Spillway + Powerhouse = 8000	
MediumSpill: pool > 1190 ft	Maximum Spillway Release of 4200 cfs	
Max 4200_Spillway	Spillway + Powerhouse = 6000	
MustSpill: pool > 1189 ft	Maximum Spillway Release of 2200 cfs	
Max 2200_Spillway	Spillway + Powerhouse = 4000	
Run Pipeline Full	Minimum pipeline release of 1999 cfs – this is great plant flow to full capacity. When the reservoir is a operation is to max out the powerhouse before com	bove target pool, the primary
FLOOD CONTROL	1189 ft	
DROC_Spillway	A decreasing rate of change rule of 2000 cfs – to limit how fast the spillway can be closed – a safety concern.	
	Salety concern.	
IROC_Spillway		EAP, Dec07 pg G-14
	Increasing rate of change rule of 1000 cfs/hr Since the bottom of the flood pool varies	EAP, Dec07 pg G-14 EAP, Dec07 pg G-15
	Increasing rate of change rule of 1000 cfs/hr	
Lower Flood Pool	Increasing rate of change rule of 1000 cfs/hr Since the bottom of the flood pool varies seasonally, this if-block is used to keep the	
Lower Flood Pool If pool > 1185 ft Keep Spillway Closed	Increasing rate of change rule of 1000 cfs/hr Since the bottom of the flood pool varies	
Lower Flood Pool If pool > 1185 ft Keep Spillway Closed Control Spillway on Recession: If inflow falling	Increasing rate of change rule of 1000 cfs/hr Since the bottom of the flood pool varies seasonally, this if-block is used to keep the spillway closed if the pool is below 1185.4. This if-block will maintain the peak spillway flow if the pool is approaching Major Flood, but	
Keep Spillway Closed Control Spillway on Recession: If inflow falling MaintainPeakRelease	Increasing rate of change rule of 1000 cfs/hr Since the bottom of the flood pool varies seasonally, this if-block is used to keep the spillway closed if the pool is below 1185.4. This if-block will maintain the peak spillway flow if the pool is approaching Major Flood, but the inflow is falling.	EAP, Dec07 pg G-15
Lower Flood Pool If pool > 1185 ft Keep Spillway Closed Control Spillway on Recession: If inflow falling MaintainPeakRelease Manage Spillway_Normal	Increasing rate of change rule of 1000 cfs/hr Since the bottom of the flood pool varies seasonally, this if-block is used to keep the spillway closed if the pool is below 1185.4. This if-block will maintain the peak spillway flow if the pool is approaching Major Flood, but the inflow is falling. This if block uses the <i>projected</i> pool elevation to li possible. Although the original structure of this if- <i>EAP</i> , <i>Dec07 pg G-28</i> , the computed results did not the decision structure was modified to attempt to be	<i>EAP, Dec07 pg G-15</i> mit the spillway release as long as block was based on the <i>Figure 1</i> , t match the observed operation – so
Lower Flood Pool If pool > 1185 ft Keep Spillway Closed Control Spillway on Recession: If inflow falling MaintainPeakRelease Manage Spillway_Normal Max Spill: proj pool > 1193 ft Max 6200_Spillway	Increasing rate of change rule of 1000 cfs/hr Since the bottom of the flood pool varies seasonally, this if-block is used to keep the spillway closed if the pool is below 1185.4. This if-block will maintain the peak spillway flow if the pool is approaching Major Flood, but the inflow is falling. This if block uses the <i>projected</i> pool elevation to li possible. Although the original structure of this if- <i>EAP</i> , <i>Dec07 pg G-28</i> , the computed results did not the decision structure was modified to attempt to be Maximum Spillway Release of 6200 cfs	<i>EAP, Dec07 pg G-15</i> mit the spillway release as long as block was based on the <i>Figure 1</i> , t match the observed operation – so
Lower Flood Pool If pool > 1185 ft Keep Spillway Closed Control Spillway on Recession: If inflow falling MaintainPeakRelease Manage Spillway_Normal Max Spill: proj pool > 1193 ft Max 6200_Spillway MustSpillMore: proj pool>1189 ft	Increasing rate of change rule of 1000 cfs/hr Since the bottom of the flood pool varies seasonally, this if-block is used to keep the spillway closed if the pool is below 1185.4. This if-block will maintain the peak spillway flow if the pool is approaching Major Flood, but the inflow is falling. This if block uses the <i>projected</i> pool elevation to li possible. Although the original structure of this if- <i>EAP</i> , <i>Dec07 pg G-28</i> , the computed results did not the decision structure was modified to attempt to be	<i>EAP, Dec07 pg G-15</i> mit the spillway release as long as block was based on the <i>Figure 1</i> , t match the observed operation – so
Lower Flood Pool If pool > 1185 ft Keep Spillway Closed Control Spillway on Recession: If inflow falling MaintainPeakRelease Manage Spillway_Normal Max Spill: proj pool > 1193 ft Max 6200_Spillway MustSpillMore: proj pool>1189 ft Max 4200_Spillway Don't Spill: pool <=1189 ft	Increasing rate of change rule of 1000 cfs/hr Since the bottom of the flood pool varies seasonally, this if-block is used to keep the spillway closed if the pool is below 1185.4. This if-block will maintain the peak spillway flow if the pool is approaching Major Flood, but the inflow is falling. This if block uses the <i>projected</i> pool elevation to li possible. Although the original structure of this if- <i>EAP</i> , <i>Dec07 pg G-28</i> , the computed results did not the decision structure was modified to attempt to be Maximum Spillway Release of 6200 cfs	<i>EAP, Dec07 pg G-15</i> mit the spillway release as long as block was based on the <i>Figure 1</i> , t match the observed operation – so
Lower Flood Pool If pool > 1185 ft Keep Spillway Closed Control Spillway on Recession: If inflow falling MaintainPeakRelease Manage Spillway_Normal Max Spill: proj pool > 1193 ft Max 6200_Spillway MustSpillMore: proj pool>1189 ft Max 4200_Spillway Don't Spill: pool <=1189 ft Keep Spillway Closed	Increasing rate of change rule of 1000 cfs/hrSince the bottom of the flood pool variesseasonally, this if-block is used to keep thespillway closed if the pool is below 1185.4.This if-block will maintain the peak spillwayflow if the pool is approaching Major Flood, butthe inflow is falling.This if block uses the <i>projected</i> pool elevation to lipossible. Although the original structure of this if-EAP, Dec07 pg G-28, the computed results did notthe decision structure was modified to attempt to bMaximum Spillway Release of 4200 cfsMaximum Spillway Release of 0 cfs	<i>EAP, Dec07 pg G-15</i> mit the spillway release as long as block was based on the <i>Figure 1</i> , t match the observed operation – so
Lower Flood Pool If pool > 1185 ft Keep Spillway Closed Control Spillway on Recession: If inflow falling MaintainPeakRelease Manage Spillway_Normal Max Spill: proj pool > 1193 ft Max 6200_Spillway MustSpillMore: proj pool>1189 ft Max 4200_Spillway Don't Spill: pool <=1189 ft Keep Spillway Closed Manage Pipeline	Increasing rate of change rule of 1000 cfs/hr Since the bottom of the flood pool varies seasonally, this if-block is used to keep the spillway closed if the pool is below 1185.4. This if-block will maintain the peak spillway flow if the pool is approaching Major Flood, but the inflow is falling. This if block uses the <i>projected</i> pool elevation to li possible. Although the original structure of this if- <i>EAP</i> , <i>Dec07 pg G-28</i> , the computed results did not the decision structure was modified to attempt to b Maximum Spillway Release of 6200 cfs Maximum Spillway Release of 0 cfs This if block used to force the power house to	<i>EAP, Dec07 pg G-15</i> mit the spillway release as long as block was based on the <i>Figure 1</i> , t match the observed operation – so
Lower Flood Pool If pool > 1185 ft Keep Spillway Closed Control Spillway on Recession: If inflow falling MaintainPeakRelease Manage Spillway_Normal Max Spill: proj pool > 1193 ft Max 6200_Spillway MustSpillMore: proj pool>1189 ft Max 4200_Spillway Don't Spill: pool <=1189 ft Keep Spillway Closed Manage Pipeline RunPipelineFull	Increasing rate of change rule of 1000 cfs/hrSince the bottom of the flood pool variesseasonally, this if-block is used to keep thespillway closed if the pool is below 1185.4.This if-block will maintain the peak spillwayflow if the pool is approaching Major Flood, butthe inflow is falling.This if block uses the <i>projected</i> pool elevation to lipossible. Although the original structure of this if-EAP, Dec07 pg G-28, the computed results did notthe decision structure was modified to attempt to bMaximum Spillway Release of 6200 cfsMaximum Spillway Release of 0 cfsThis if block used to force the power house toflow full if pool > 1 ft over guide curve	<i>EAP, Dec07 pg G-15</i> mit the spillway release as long as block was based on the <i>Figure 1</i> , t match the observed operation – so
Lower Flood Pool If pool > 1185 ft Keep Spillway Closed Control Spillway on Recession: If inflow falling MaintainPeakRelease Manage Spillway_Normal Max Spill: proj pool > 1193 ft Max 6200_Spillway MustSpillMore: proj pool>1189 ft Max 4200_Spillway Don't Spill: pool <=1189 ft Keep Spillway Closed Manage Pipeline	Increasing rate of change rule of 1000 cfs/hr Since the bottom of the flood pool varies seasonally, this if-block is used to keep the spillway closed if the pool is below 1185.4. This if-block will maintain the peak spillway flow if the pool is approaching Major Flood, but the inflow is falling. This if block uses the <i>projected</i> pool elevation to li possible. Although the original structure of this if- <i>EAP</i> , <i>Dec07 pg G-28</i> , the computed results did not the decision structure was modified to attempt to b Maximum Spillway Release of 6200 cfs Maximum Spillway Release of 0 cfs This if block used to force the power house to	<i>EAP, Dec07 pg G-15</i> mit the spillway release as long as block was based on the <i>Figure 1</i> , t match the observed operation – so

Table 4.19 Lake Wallenpaupack Operations Summary, FC Ops

Two other reservoirs exist in the Mongaup basin. Cliff Lake is located downstream of Toronto on Black Lake Creek and Mongaup Falls is located upstream of Rio. These reservoirs were not included in the model because they do not significantly impact the routing of flood water through the system. Figure 4.26 shows a map of the five reservoirs obtained from Google Maps[®].

The reservoirs in the Mongaup Basin are operated primarily for hydropower benefits, although some flow augmentation during declared drought emergency periods may be called for by the River Master⁴. These reservoirs have changed ownership within the last five years and access to operational data has been limited both for the DRBC and the current owners.

Although flood damage reduction is not one of the project purposes for the Mongaup reservoirs, all three reservoirs have overflow spillways with flashboards installed along the crest. The flashboards allow these reservoirs to maintain a higher pool than the spillway alone could provide and two of the three reservoirs operate with a normal pool at to or near the top of the flashboards. To represent the operation of the flashboards, the model includes a scripted state variable to determine if the flashboards are UP or DOWN and an If-block to define outlet capacity based on the flashboard state.

4.3.3.1 Toronto

Toronto Reservoir was built to work in tandem with Cliff Lake to supply water to Swinging Bridge from Black Lake Creek by means of a diversion from Cliff Lake. The capacity of the Cliff Lake diversion is small, thus it cannot divert a significant quantity of flood water to Swinging Bridge. Because they have little impact on flood flows, Cliff Lake and its diversion are not represented in the model and flow

Figure 4.26Mongaup Basin Reservoirs

from Toronto Reservoir enters the Mongaup River at the confluence above Rio.

Figure 4.27 shows the physical element tree for the Toronto Reservoir as well as its operation set and zones. Table 4.20 is the operations summary for Toronto.

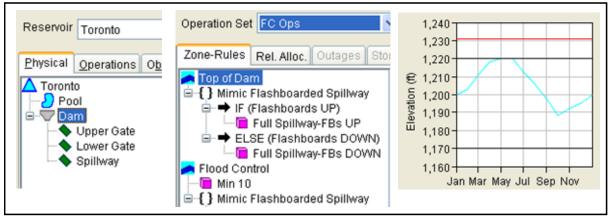


Figure 4.27 Toronto's Pool and Dam Elements and its "operating" zones

⁴ A description of the office and duties of the Delaware River Master can be found at: http://www.state.nj.us/drbc/river_master.htm

Name	Description	Reference
Toronto	FC Ops	Mongaup River Hydroelectric System
	Release Allocation, sequential:	Operating Plan, Draft – May 2007
	Lower Gate	and
	Upper Gate	Conversation with Mr. Joe Kimazewski,
	Spillway	the current superintendant.
TOP OF DAM	1231 ft	
Mimic Flashboarded	Using a state variable to determine	Toronto has a small flashboarded
Spillway	flashboard state,	spillway. Spillway crest=1215 ft.
		Top of Flashboards=1220 ft.
Flashboards UP:	Max Spillway flow limited - max	Flashboards are designed to fall when
Full Spillway-FBs UP	flow fn of top of flashboards	pool exceeds 1222.5 ft. An if-block, a
		state variable, and a few rules are used to
Flashboards DOWN:	Full Spillway flow – no flashboards	mimic the flashboarded spillway
Full Spillway-FBs		operation.
DOWN		
FLOOD CONTROL	1220 ft - top of flashboards	
Min 10	Minimum 10cfs release	Draft Operating Plan
Mimic Flashboarded	Same as aboveNote: when pool is	
Spillway	below spillway crest, flashboards	
	will not fall. However, if they have	
	already fallen, the pool will draw	
	down to the reset elevation.	
CONSERVATION	Seasonally varying: 1188-1220 ft	
Min 10	Minimum 10cfs release	Draft Operating Plan
Mimic Flashboarded	Same as above	
Spillway		
INACTIVE	1170 ft	

Table 4.20 Toronto Operations Summary, FC Ops

4.3.3.2 Swinging Bridge

Two sources were used to develop the operation set for Swinging Bridge Reservoir as well as the other two reservoirs modeled in the Mongaup Basin. The first source is the "Mongaup River Hydroelectric System Operating Plan, Draft – May 2007". This document provided some insight into the definition of the operating zones, but it specified only drought operation and a minimum flow requirement. It contained no information on flood operation. The second source was a Mr. Joe Kimazewski, the current superintendant of the Mongaup reservoirs⁵. Mr. Kimazewski provided a description of normal flood operations at Swinging Bridge: when the pool exceeds seasonally varying target, the hydropower plant is run at full capacity and the gated spillway is used to pass the remaining inflow. If inflow exceeds the release capacity of the plant plus the gated spillway, the pool will continues to rise. When the pool exceeds the trigger point of the flashboards, the spillway will gradually fall and releases will eventually stabilize to inflow until inflow starts to recede.

The 2005 flood event caused serious damage to one of the two penstocks at Swinging Bridge, resulting in this penstock being permanently closed, thus greatly reducing the normal release capacity of the reservoir and powerhouse. This event also caused the flashboarded spillways at both Swinging Bridge and Rio to fail (not operate as designed). According to the current operators, the remaining flashboards at both reservoirs were removed after the 2005 event and

⁵ The conversation with Joe Kimazewski was summarized in an email to the DRBC, dated 1 Jun 2009.

were not replaced until repairs at Swinging Bridge were completed some time in 2007. Figure 4.28 shows the dam at Swinging Bridge Reservoir as well as the spillway. Careful review of this image, obtained from Microsoft Bing[®] Maps and copyrighted in 2009, shows that the flashboarded section of the spillway had not been rebuilt at the time of the photo.

Figure 4.28 Swinging Bridge Reservoir

To represent the missing flashboards in the third event, a time-series of initial condition of the flashboard state was developed. This time-series identified the flashboards as "UP" at the start of the 2004 and 2005 events, but as "DOWN" at the start of the 2006 event. The scripted state variable was used to disable the ability to reset within the span of the event simulations. Due to the loss of Penstock 1, a scheduled outage was added to the Swinging Bridge operation set in the model. This outage reduces the release capacity of the Power Conduit by 32% and begins on 4 April 2005, just as the event is receding. This date is estimated since no records were available indicating when the sinkhole in Penstock 1 was found and the penstock "closed".

Figure 4.29 shows the physical element tree for Swinging Bridge Reservoir, a portion of its operation set, and a plot of the operation zones. Table 4.21 summarizes the operations set developed for Swinging Bridge.

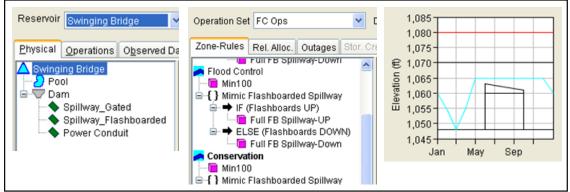


Figure 4.29 Swinging Bridge's Pool and Dam Elements and its "operating" zones

Name	Description	Reference
Swinging Bridge	FC Ops Release Allocation, sequential: Power Conduit Spillway-Gated Spillway-Flashboarded OUTAGE: Power Conduit - Penstock 1 was permanently disabled after April	Mongaup River Hydroelectric System Operating Plan, Draft – May 2007; and Conversation with Joe Kimazewski, the current superintendant
	2005 Event. Max Cap now about 1075 ft. With a 0.68 factor in scheduled outage, Max Cap = 1068 ft	
TOP OF DAM	1080 ft	
Mimic Flashboarded Spillway	Using a state variable to determine flashboard state,	This reservoir has a spillway with a gated section and a flashboarded section. Spillway crest=1065.
Flashboards Up – Full FB Spillway-UP	Max Spillway flow limited - max flow fn of top of flashboards	Top of Flashboards=1070. Flashboards are designed to fall when pool exceeds (1073 ft). An if-block, a
Flashboards Down – Full FB Spillway-Down	Full Spillway flow – no flashboards	state variable, and a few rules are used to mimic the flashboarded spillway operation.
FLOOD CONTROL	1070 ft – top of flashboards	
Min100	Minimum release of 100cfs	Draft Operating Plan
Mimic Flashboarded Spillway	Same as aboveNote: when pool is below spillway crest, flashboards will not fall. However, if they have already fallen, the pool will draw down to the reset elevation.	
CONSERVATION	Seasonally varying: 1048-1065 ft	
Min100	Minimum release of 100cfs	Draft Operating Plan
		Draft Operating Plan
Min100 Mimic Flashboarded	Minimum release of 100cfs	Draft Operating Plan Levels 2 and 1 are defined for summer operation of hydropower versus recreation and are meaningful only to low flow operation – no minimum flow is required from these zones
Min100 Mimic Flashboarded Spillway LEVEL 2 Mimic Flashboarded	Minimum release of 100cfs Same as above 1048 ft	Levels 2 and 1 are defined for summer operation of hydropower versus recreation and are meaningful only to low flow operation – no minimum flow
Min100 Mimic Flashboarded Spillway LEVEL 2 Mimic Flashboarded Spillway	Minimum release of 100cfs Same as above 1048 ft except summer varies 1063-1061 ft Same as above	Levels 2 and 1 are defined for summer operation of hydropower versus recreation and are meaningful only to low flow operation – no minimum flow
Min100 Mimic Flashboarded Spillway LEVEL 2 Mimic Flashboarded	Minimum release of 100cfs Same as above 1048 ft except summer varies 1063-1061 ft	Levels 2 and 1 are defined for summer operation of hydropower versus recreation and are meaningful only to low flow operation – no minimum flow

Table 4.21 Swinging Bridge Operations Summary, FC Ops

4.3.3.3 Rio

Rio is the downstream-most reservoir in the Mongaup River Basin. As such, Rio receives the releases from its upstream partners. In the 2005 event, the flashboards failed to fall at Swinging Bridge and Rio. The model indicates that they could have fallen. As with Swinging Bridge, the flashboards were removed after the 2005 event, so a similar time-series was developed to set the flashboard state initial condition for each event appropriately. The only observed records

available for the Mongaup system were daily outflows for Rio. Hourly flow information was not available.

Figure 4.30 shows the physical element tree for Rio, a portion of its operation set, and a plot of the operating zones. Table 4.22 summarizes Rio's *FC Ops* operation set.

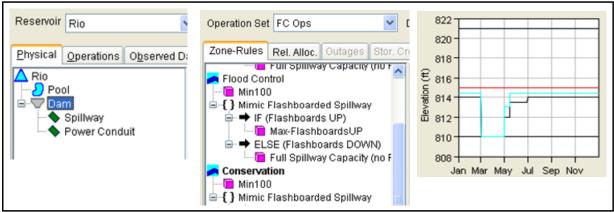


Figure 4.30 Rio's Pool and Dam Elements and its operating zones & rules

Table 4.22	Rio	Operations	Summary,	FC Ops
	1110	operations	Sammary,	1 C Op5

Name	Description	Reference
Rio	FC Ops	Mongaup River Hydroelectric System Operating Plan, Draft – May 2007 and Conversation with Joe Kimazewski, the current superintendant.
TOP OF DAM	821 ft	
Mimic Flashboarded Spillway	Using a state variable to determine flashboard state,	This reservoir has a flashboarded spillway Spillway crest=810 ft. Top of Flashboards=815 ft.
Boards Up – Full Spillway-FBs UP	Max Spillway flow limited - max flow fn of top of flashboards	Flashboards are designed to fall when pool exceeds (818 ft). An if-block, a state variable, and a few rules are used to
Boards Down – Full Spillway-FBs DOWN	Full Spillway flow – no flashboards	mimic the flashboarded spillway operation.
FLOOD CONTROL	815 ft – top of flashboards	
Min 100	Minimum 100cfs release	Draft Operating Plan
Mimic Flashboarded Spillway	Same as aboveNote: when pool is below spillway crest, flashboards will not fall. However, if they have already fallen, the pool will draw down to the reset elevation.	
CONSERVATION	Seasonally varying: 810-814.5 ft	
Min 100	Minimum 100cfs release	Draft Operating Plan
Mimic Flashboarded Spillway	Same as above	
MINIMUM	Seasonally varying: 810-814 ft	
Mimic Flashboarded Spillway	Same as above	
INACTIVE	810 ft - spillway crest	

4.3.4 Lehigh River Basin Reservoirs

The two reservoirs in the Lehigh River Basin (Figure 4.31) are owned and operated by the US Army Corps of Engineers. These are multipurpose reservoirs whose primary authorized purpose is flood damage reduction. Secondary purposes include recreation, water quality control and drought emergency water supply and low flow augmentation.

4.3.4.1 F.E. Walter

The operations for F.E. Walter are reasonably straightforward and well defined in its Water Control Manual. For flood damage reduction, it operates to not exceed a peak stage at Lehighton, Walnutport and Bethlehem, all on the

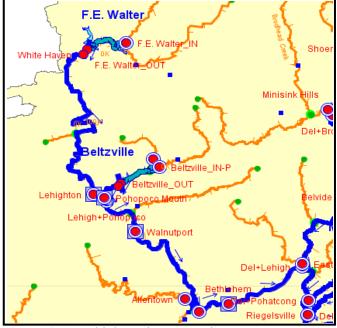


Figure 4.31 Lehigh Basin Reservoirs

Lehigh River. F.E. Walter also operates for a local channel capacity constraint so as to not flood its immediate downstream neighbors.

Deviations from F.E. Walter's summer pool are often requested and approved to enhance recreation and to increase water quality storage. To represent this in the model, the target pool for F.E. Walter for each of the three events was entered into a time-series record and used to define the guide curve in the F.E. Walter *FC Ops-Dev* operation set. As a result, the plot of the zones in Figure 4.32 looks unusual.

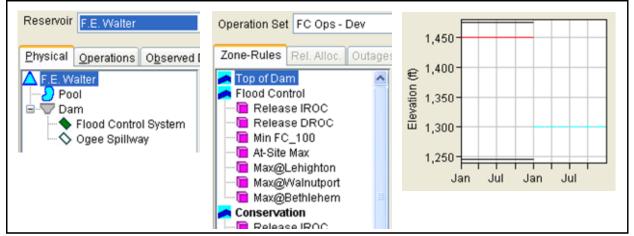


Figure 4.32 F.E. Walter's Pool and Dam Elements and its "operating zones" and rules

4.3.4.2 Beltzville

Like F.E. Walter, Beltzville's operations for flood damage reduction are straightforward and well defined in its Water Control Manual; in addition to a local channel capacity constraint, it operates in parallel with F.E. Walter to reduce peak flood flows so as not to exceed peak flood stage at Walnutport and Bethlehem.

Name	Description	Reference
F.E. Walter	FC Ops – BTB (by the book) FC Ops – Dev (deviation)	<i>Water Control Manual, CENAP 1994;</i> 1/22/09 Email from Christine Lewis- Coker, CENAP.
TOP OF DAM	1474 ft	
FLOOD CONTROL	1450 ft, Spillway Crest	
Release IROC	Increasing and decreasing rate of	WCM page 7-11, supported by
Release DROC	change constraints apply.	conversations and follow-up material
	Value of 500 cfs/hr is based primarily on observed data.	from Christine Lewis-Coker, CENAP
Min FC_100	100 cfs minimum release when "impounding for Flood Emergency"	WCM pg 7-13
At-Site Max	10,000 cfs maximum allowed release from the reservoir	WCM
Max@Lehighton	Operates for 9.7 ft Flood Control Initiation stage at Lehighton	<i>WCM</i> , Rating curve at Lehighton provides flow limit
Max@Walnutport	Operates for 6.3 ft Flood Control Initiation stage at Walnutport	<i>WCM</i> , Rating curve at Walnutport provides flow limit
Max@Bethlehem	Operates for 9.9 ft Flood Control Initiation stage at Bethlehem	<i>WCM</i> , Rating curve at Bethlehem provides flow limit
CONSERVATION	1300 ft (FC Ops – BTB)	WCM
	Defined with an external time-series	1/22/09 Email from Christine Lewis-
	(FC Ops – Dev)	<i>Coker, CENAP</i> -details conservation pool deviations in effect during the three events.
Same as above except MaxFC_100 rule replaced with:		
Min WQ_50	Water Quality min – 50cfs	WCM pg 7-6, 2003 revision.
INACTIVE	1250 ft , invert of inlet channel to FC Gates	

Table 4.23 F.E. Walter Operations Summary, FC Ops-BTB and FC Ops-Dev

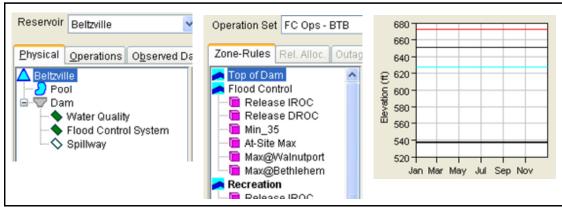


Figure 4.33 Beltzville's Pool and Dam Elements and its "operating zones" and rules

Name	Description	Reference
Beltzville	FC Ops – BTB (by the book)	Water Control Manual, CENAP 1994
TOP OF DAM	672 ft	
FLOOD CONTROL	651 ft, Spillway Crest	
Release IROC	Increasing and decreasing rate of	WCM page 7-11, supported by
Release DROC	change constraints apply.	conversations and follow-up material
	Value of 500 cfs/hr is based primarily	from Christine Lewis-Coker, CENAP
	on observed data.	
Min_35	Minimum required release	WCM
At-Site Max	Maximum allowed release from the	WCM
	reservoir	
Max@Walnutport	Operates for 6.3 ft Flood Control	WCM, Rating curve at Walnutport
	Initiation stage at Walnutport	provides flow limit
Max@Bethlehem	Operates for 9.9 ft Flood Control	WCM, Rating curve at Bethlehem
	Initiation stage at Bethlehem	provides flow limit
RECREATION	628 ft	
Same rule set as above		
INACTIVE	537 ft	

 Table 4.24 Beltzville Operations Summary, FC Ops-BTB

4.3.5 Mainstem Delaware River Basin Reservoirs

The two Mainstem Delaware reservoirs (Figure 4.34) modeled are Merrill Creek and Nockamixon. Each is located on a tributary of the Delaware River and is operationally different from the other reservoirs represented in the model.

4.3.5.1 Merrill Creek

Merrill Creek Reservoir was constructed to serve as an off-stream storage project for flow augmentation under low flow conditions. It is filled by a pumped diversion from the main stem Delaware River when the river flow is considered normal. The diversion is not used during flood events. The natural basin that drains into Merrill Creek is small, so even in a large event, Merrill Creek can store its natural flood waters and not increase flows in the lower

Figure 4.34 Mainstem Delaware Reservoirs

system beyond its flood control maximum release of 20 cfs. Records indicate that when Merrill Creek is releasing for flow augmentation, releases are often in excess of 100 cfs, so the flood control limit of 20 cfs was not considered to be a local channel capacity constraint.

Figure 4.35 shows Merrill Creek's physical element tree, a portion of its operation set, and a plot of the operation zones. Table 4.18 summarizes the *FC Ops* operation set developed for Merrill Creek.

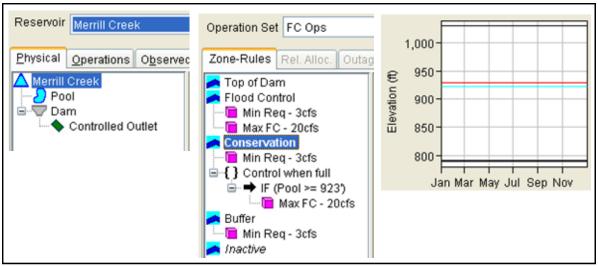


Figure 4.35 Merrill Creek's Pool and Dam Elements and its "operating" zones and rules

Name	Description	Reference
Merrill Creek	FC Ops	DRBC Docket D-77-110 CP, Docket 77-
		110-CP Amendment 1;
		1993 MCOG Plan of Operations;
		OASIS Model 2.1
TOP OF DAM	1030 ft	Estimate based on data in URS
	Estimated pool invert ~ 770 ft. Dam	Memorandum – RE: Reservoir Volume-
	height = 260 ft. Thus, top of dam= 1030	Elevation Curve
	ft	
FLOOD CONTROL	929 ft, Spillway crest	
Min Req – 3cfs	Minimum release of 3cfs	DRBC Docket D-77-110 CP;
		Plan of Operations
Max FC – 20cfs	Maximum release of 20cfs	DRBC Docket D-77-110 CP;
		Plan of Operations
CONSERVATION	923 ft	
Min Req – 3 cfs	Minimum release of 3cfs	
Limit Release when Full	This if-block and rule were added to	
If pool ≥ 923 ft	stabilize operation when pool is at	
Max FC – 20 cfs	guide curve.	
INACTIVE	790 ft	

Table 4.25 Merrill Creek Operations Summary, FC Ops

4.3.5.2 Nockamixon

The dam at Nockamixon State Park is designed to provide storage for recreation, flood damage reduction, and future water supply. The dam controls the runoff from a drainage area of 73.3 square miles and will reduce peak discharges of floods downstream from the site (Nockamixon O&M Manual). An image of the Nockamixon dam is shown in Figure 4.36.

Nockamixon's normal and flood damage reduction operations are straightforward: other than meeting a minimum flow requirement, the pool stores inflow until it reaches spillway crest, then the spillway manages the releases from the project.

Figure 4.36 Nockamixon Dam

To meet minimum and water supply requirements, the intake tower utilizes a set of four electronically operated sluice gates to deliver water into the diversion tunnel. At the downstream end of the diversion tunnel is an outlet structure that utilizes a number of different sized valves to control the release into the river. One of the valves, a 10 inch cone valve is locked in the open position. This valve is sized to provide the minimum release requirement from the project under all conditions. If the reservoir pool is below spillway crest, water supply releases can be made by operating one or more of the other valves in the outlet structure.

Figure 4.37 shows Nockamixon's physical element tree, the zone and rules tree for its *FC Ops* operation set, and a plot of the operating zones. Table 4.26 summarizes the operation set developed for Nockamixon.

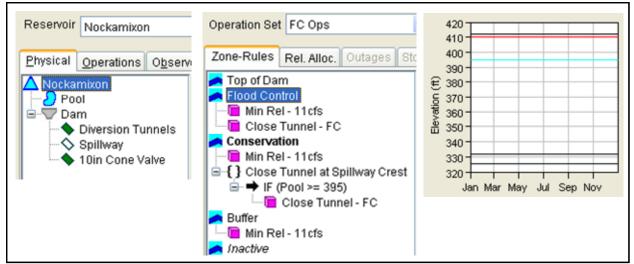


Figure 4.37 Nockamixon's Pool and Dam Elements and its "operating" zones and rules

Name	Description	Reference
Nockamixon	FC Ops Release Allocation, sequential:	Nockamixon O&M Manual; OASIS model 2.1;
	Cone Valve	Letter dated 22May1979 from
	Diversion Tunnel	Pennsylvania Dept of
	Spillway (uncontrolled)	Environmental Resources
TOP OF DAM	412 ft	
FLOOD CONTROL	409.9 ft	No source. Value is the last value in the elev-storage data found in documentation and the OASIS model
Min Rel – 11cfs	Min release, all the time, 11cfs – cone valve capacity	<i>PA Letter</i> , Cone Valve remains open at all times
Close Tunnel - FC	Max controlled release =0 used to direct flood flows to spillway. No flood control is provided for the downstream system (other than that controlled by the spillway capacity.) Therefore, all outlets other than the cone valve, are closed when the reservoir is spilling.	<i>O&M Manual</i> , Chapter 3, Section 7 "Flood Emergency Operation Procedures"
CONSERVATION	395 ft , Spillway Crest	O&M Manual
Min Rel – 11cfs		
Close Tunnel at	used to curtail tunnel flows if pool is sitting at	
Spillway Crest:	guide curve	
If (pool>=395)		
Close Tunnel - FC		
BUFFER	331.5 ft	
Min Rel – 11cfs		
INACTIVE	325.5 ft	

Table 4.26 Nockamixon Operations Summary, FC Ops

Chapter 5

Alternatives and Simulations

In HEC-ResSim, an Alternative is a construct that represents the combination of a reservoir network, the selection of an active operation set for each reservoir in the network, and the specification of the starting (or lookback) conditions and inflow time-series data for the network. A Simulation is a time window over which to compute and analyze one or more alternatives.

5.1 Alternatives

Two alternatives were created for the Delaware River Flood Analysis Model: *FC-PRMS* and *FC-GageQ*. The *FC-PRMS* alternative was the original alternative specified in the scope of work for the project. The United States Geological Survey (USGS) developed a PRMS (Precipitation Runoff Modeling System) model of the Delaware River Basin above Trenton to simulate the runoff and generate inflow time-series data for the HEC-ResSim model. The objective of the *FC-PRMS* alternative was to produce inflow for HEC-ResSim that could be used to adequately represent the flows that would be experienced in the basin under a selected set of hydrologic conditions. Reservoir operations and flow routing in the major tributaries and main stem Delaware River are simulated by HEC-ResSim. Due to uncertainties in rainfall-runoff modeling, the *FC-PRMS* alternative did not satisfactorily reproduce the peak flows or total volumes that occurred during the three major flood events of 2004, 2005 and 2006. The *FC-GageQ* alternative, using gaged and gage-based inflows, was developed to reduce the uncertainty and error contributed by the rainfall-runoff modeling, resulting in HEC-ResSim model output that more closely reproduces the peak flows and the total volumes that occurred during the three events.

The difference between the two alternatives is in the selection of the inflow time-series data. The source of the inflow data for the *FC-PRMS* alternative is the output from the PRMS rainfall-runoff model developed by the USGS. The source of the inflow data for the *FC-GageQ* alternative is the gage data provided by the USGS and the USACE Philadelphia District. Wherever flow from a headwater was directly measured by a gage, the gage record was used as the inflow time-series to the model at that junction. Where inflow was not measured, primarily at the reservoirs, an inflow record was derived either by calculation (inflow = outflow – change in storage, known as reverse pool routing) or by using the measured flow from a nearby subbasin and factoring that flow for the relative basin size to which it was applied. For the interior junctions, where total river flows were measured at two successive gages, the intervening local flows were calculated by routing the upstream gage flows to the downstream gage and subtracting the two flow records. In the absence of a rainfall-runoff model developed to supply inflows (such as a PRMS or an HEC-HMS (Hydrologic Modeling System) model), this is how inflows for an HEC-ResSim model would normally be developed.

Both alternatives use the same starting conditions and, for the most part, the same selection of operation sets; however, the NYC reservoirs use a different operation set (*FC Ops-SpecDiv*) is used for the NYC reservoirs in the *FC-GageQ* alternative than in the *FC-PRMS* alternative (*FC Ops*). The *FC Ops-SpecDiv* operation set uses the observed diversions for the NYC reservoirs. By using the observed diversions, errors associated with not correctly reproducing the diversion values are eliminated. The *FC Ops* operations set uses a function of storage in two of the three NYC reservoirs to generate the diversions and does not turn off the diversions at the same time that they happened during these three events.

5.2 Simulations

Three simulations were created for the model, one for each of the three recent flood events: September 2004, March-April 2005, and June-July 2006. In each simulation, both alternatives were computed and results analyzed. In the following sections, selected results are presented for all the reservoirs and most of the major flood forecast locations in the model to demonstrate the ability of the model to represent the reservoir operations and flow routing that occurred during the three flood events.

5.2.1 Upper Basin

The locations in the Upper Basin presented include the three NYC reservoirs: Cannonsville, Pepacton, and Neversink, as well as the downstream flood forecast locations: Hale Eddy, Harvard, and Bridgeville.

The observed data for the Upper Basin reservoirs was provided by the New York City Department of Environmental Protection (NYCDEP). Due to a computer malfunction, the hourly observed data for the three NYC reservoirs was lost for the 2004 event, so daily data was used to approximate the hourly record. In addition, the hourly record for the 2005 and 2006 events contains anomalies which are displayed in various figures in the following sections.

The outflow gage of each reservoir is maintained by the USGS. The observed data at these gages provided a complete and stable record of releases into the river for all three events. These gages were used to validate the operation of the reservoirs under the three modeled high flow events. Observed data at these outflow gages are included in the plots of results for Stilesville and Downsville, the outflow gage for Cannonsville and Pepacton, respectively; see

5.2.1.1 Cannonsville

Figure 5.1 through Figure 5.3 shows the standard HEC-ResSim reservoir plot for Cannonsville Reservoir for each of the three events. The upper plot region shows the computed reservoir pool elevation and operating zones for each alternative as well as the observed pool elevation. The lower plot region shows the computed pool inflow and outflow for each alternative as well as the observed pool outflow. It should be noted that pool outflow for the reservoirs in the upper basin is not equivalent to the flow that is released into the downstream system. The upper basin reservoirs have diverted outlets that may be diverting some of the total reservoir outflow out of the basin rather than to the dam's tailwater.

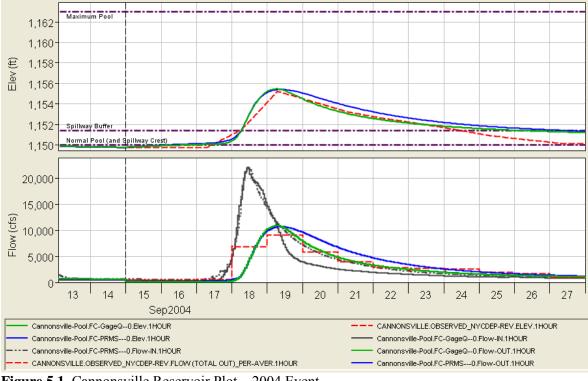
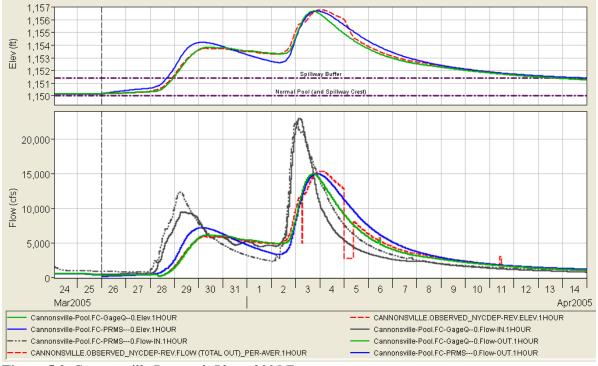
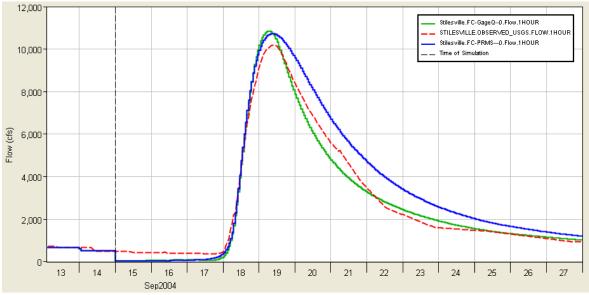


Figure 5.1 Cannonsville Reservoir Plot – 2004 Event




Figure 5.2 Cannonsville Reservoir Plot – 2005 Event

Since the *FC-GageQ* alternative is based on observed and derived-from-observed data, the *FC-GageQ* results compare well to the observed record. The *FC-PRMS* results at this location also compare well to the observed data. For example, in Figure 5.1 and Figure 5.2 the magnitude and timing of the peak inflow match well with the observed data for both alternatives.

Figure 5.3 Cannonsville Reservoir Plot – 2006 Event

In Figure 5.3, the computed pool elevation and outflow for the two alternatives does not match as well to the observed for the 2006 event as they did for the other two events. To verify the operation of Cannonsville for this event, the USGS gage record at Stilesville, Cannonsville's outflow gage was used. Figure 5.6 through 5.6 show the Stilesville Junction plots for the 2004, 2005, and 2006 events. These plots show that the two alternatives compare well to the gage record.

5.2.1.2 Stilesville

Figure 5.4 Stilesville Junction Plot – 2004 Event

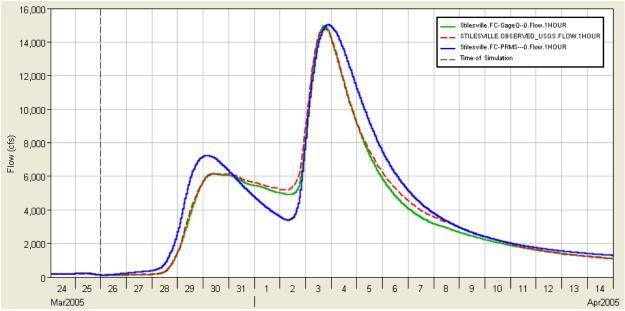


Figure 5.5 Stilesville Junction Plot – 2005 Event

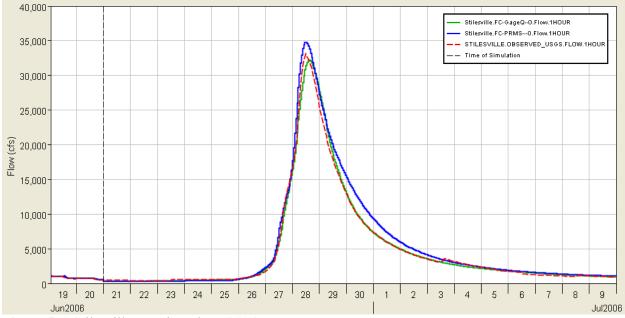


Figure 5.6 Stilesville Junction Plot – 2006 Event

5.2.1.3 Hale Eddy

Hale Eddy is the first NWS forecast location downstream of Cannonsville. An unregulated tributary, Oquaga Creek, enters the West Branch of the Delaware River above Hale Eddy. Plots showing cumulative local flow and outflow from Hale Eddy are shown in Figure 5.7 through Figure 5.9 for the three events. These plots show the impact of high flows out of Cannonsville combined with high local flows in the river.

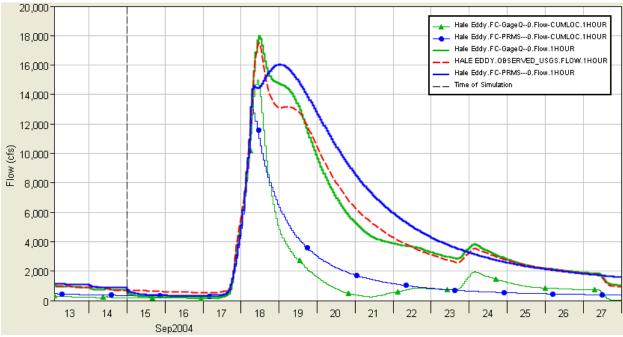


Figure 5.7 Hale Eddy Junction Plot – total and cumulative local flow – 2004 Event

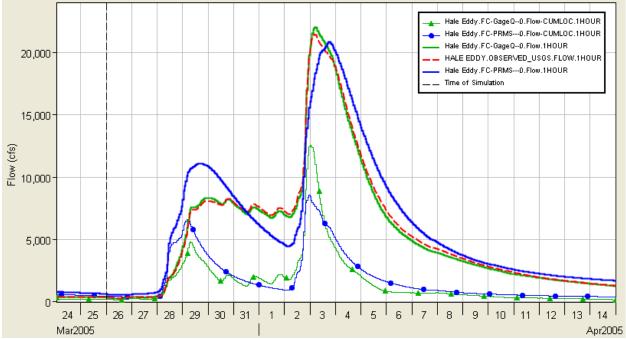


Figure 5.8 Hale Eddy Junction Plot – total and cumulative local flow – 2005 Event

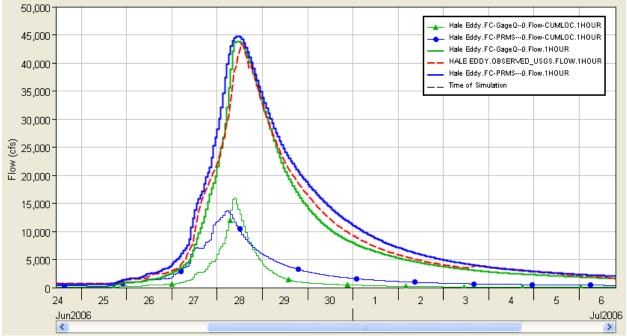
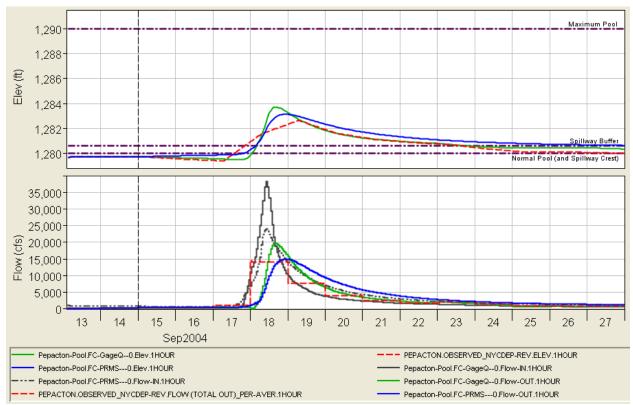



Figure 5.9 Hale Eddy Junction Plot – total and cumulative local flow – 2006 Event

5.2.1.4 Pepacton

Figure 5.10 Pepacton Reservoir Plot – 2004 Event

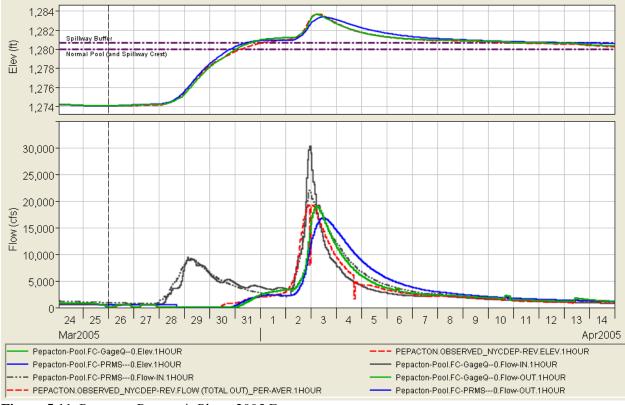


Figure 5.11 Pepacton Reservoir Plot – 2005 Event

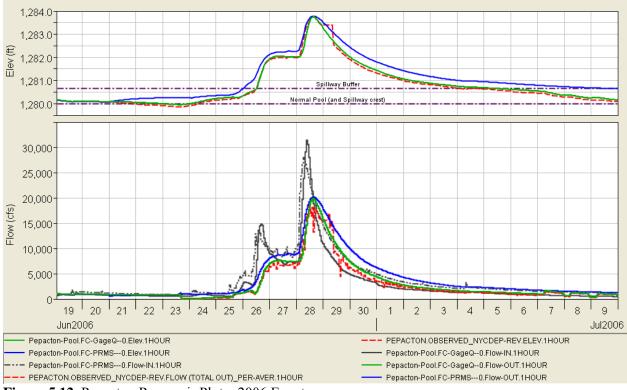


Figure 5.12 Pepacton Reservoir Plot – 2006 Event

5.2.1.5 Downsville

In the *FC-GageQ* alternative, the observed diversion flow from Pepacton was used in the simulation. With the diversion flow established, the sum of the controlled release and uncontrolled spillway flow closely matches the gaged outflow, as can be seen in the plots (Figure 5.13 through Figure 5.15).

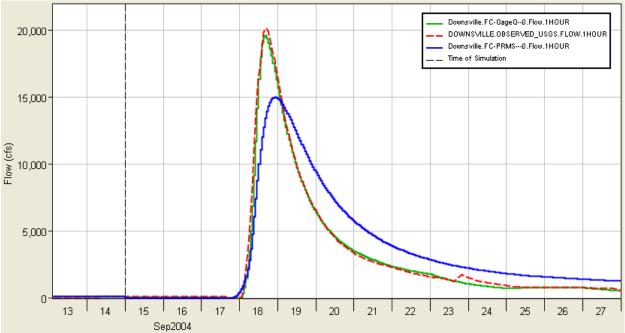


Figure 5.13 Downsville Operations Plot – 2004 Event

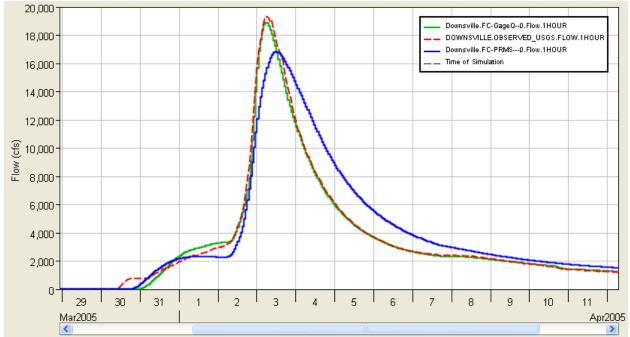


Figure 5.14 Downsville Operations Plot – 2005 Event

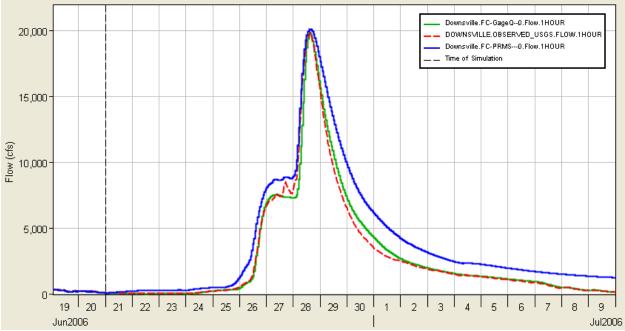


Figure 5.15 Downsville Operations Plot – 2006 Event

5.2.1.6 Harvard

Harvard is the first NWS forecast location downstream of the Pepacton Reservoir. Figure 5.16 through Figure 5.18 shows the computed total and cumulative local flow at Harvard for the three events.

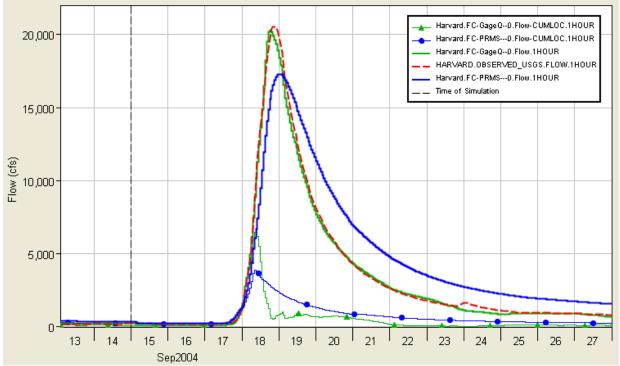


Figure 5.16 Harvard Total and Cumulative Local Flow – 2004 Event

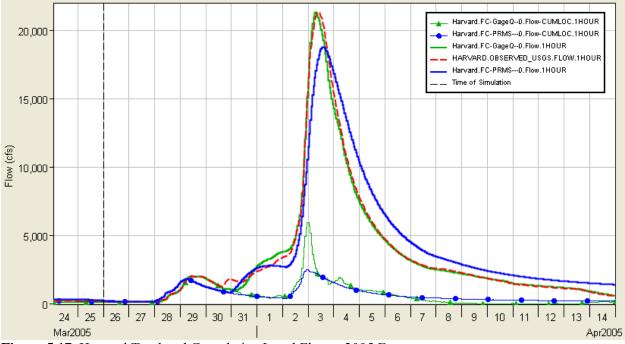
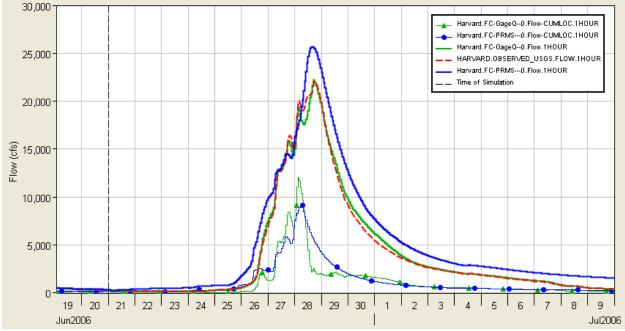



Figure 5.17 Harvard Total and Cumulative Local Flow – 2005 Event

Figure 5.18 Harvard Total and Cumulative Local Flow – 2006 Event

5.2.1.7 Barryville

Barryville is the last gage location on the Delaware River before the confluence with the Lackawaxen River. The high peak in the cumulative local flow and the broad peak of the outflow illustrated in Figure 5.19 indicates that the peak releases from the upstream reservoirs were delayed and the combination of spill with local flow did not substantially increase the peak flow at Barryville.

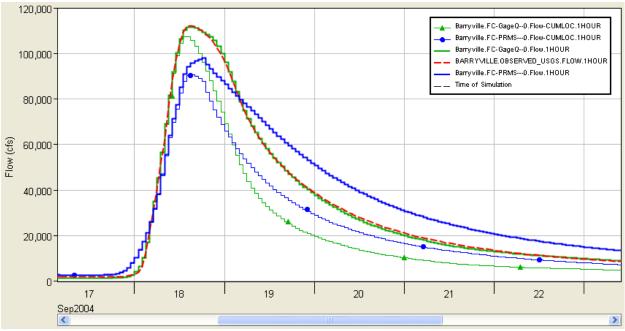


Figure 5.19 Barryville Total and Cumulative Local Flow – 2004 Event

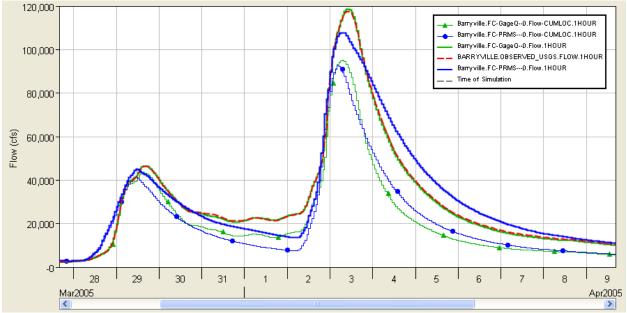


Figure 5.20 Barryville Total and Cumulative Local Flow – 2005 Event

Figure 5.21 shows a gap in the observed record during the peak of the 2006 event. Gaps like this can be seen in a number of other figures in this chapter and usually represent a failure of some kind in the gage measuring, recording, or reporting equipment.

5.2.1.8 Neversink

In the Delaware River Basin, New York City typically meets most of its water supply demands from Neversink and Pepacton Reservoirs, using Cannonsville to meet downstream flow

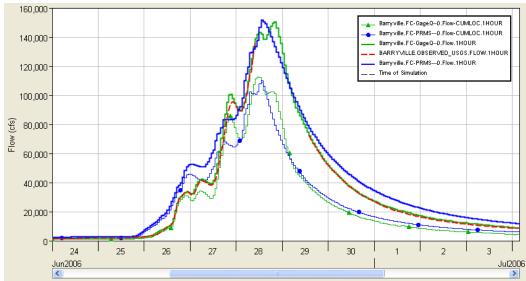


Figure 5.21 Barryville Total and Cumulative Local Flow – 2006 Event

objectives at Montague on the Delaware River. Defining the operation of the diversion was challenging given the preferential uses of the reservoirs.

As described in Chapter 3, the diversion operations are the primary operational difference between the *FC-GageQ* and *FC-PRMS* alternatives. The results of this difference are most apparent at Neversink Reservoir. In each of the three events, the *FC-PRMS* alternative produces a drawdown of the Neversink pool in advance of the event. This drawdown is primarily caused by the estimated diversion operations used in the *FC-PRMS* alternative and can be seen in Figure 5.22 through Figure 5.24. Following the Neversink Reservoir plots, Figure 5.25 through Figure 5.27, show plots of the Neversink diversion, were added to illustrate the difference in the operation of the diversion between the two alternatives.

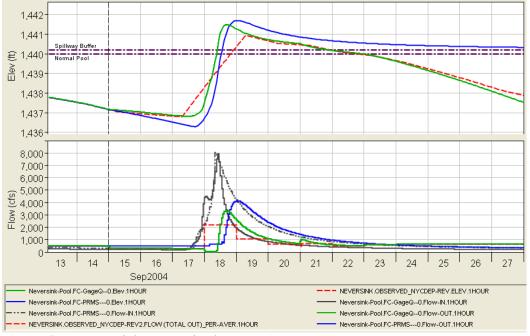


Figure 5.22 Neversink Reservoir Plot – 2004 Event

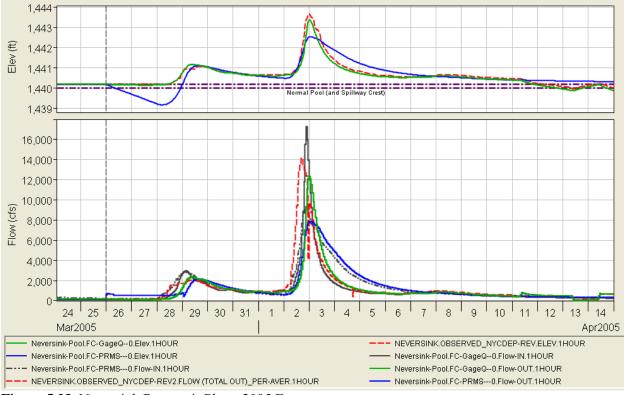


Figure 5.23 Neversink Reservoir Plot – 2005 Event

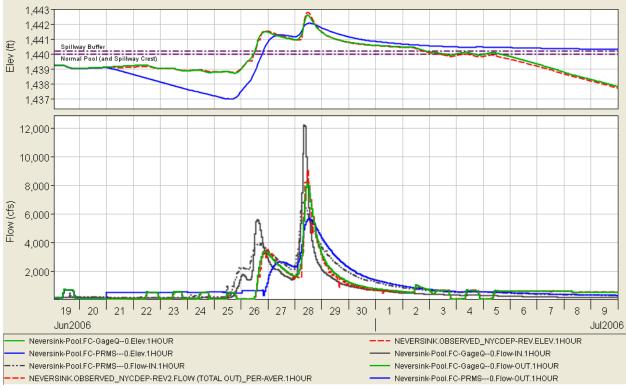


Figure 5.24 Neversink Reservoir Plot – 2006 Event

5.2.1.9 Neversink Diversion to NYC

The diversion flows from Neversink Reservoir are shown in Figure 5.25 through 5.27. In each figure, the *FC-PRMS* alternative, using the estimated diversion operations, produces a substantially larger diversion release than the *FC-GageQ* alternative, which diverts only as much as the observed record specifies.

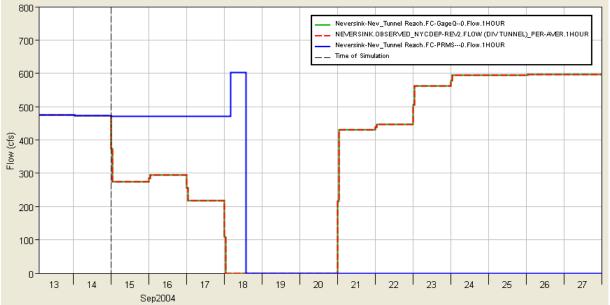


Figure 5.25 Neversink Diversion Plot – 2004 Event

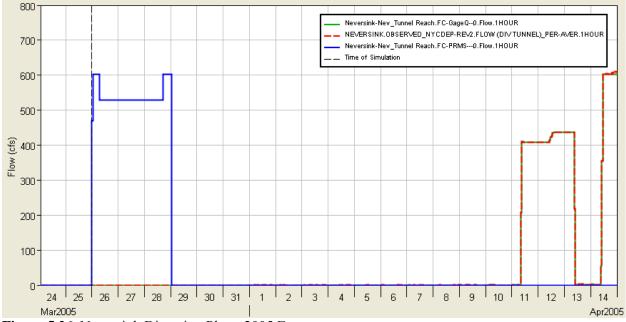


Figure 5.26 Neversink Diversion Plot – 2005 Event

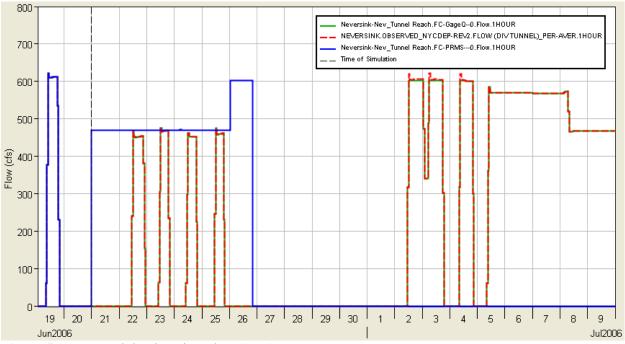


Figure 5.27 Neversink Diversion Plot – 2006 Event

5.2.1.10 Bridgeville

Bridgeville is the first NWS forecast location downstream of Neversink Reservoir. Figure 5.28 through 5.30 show model results at this location. In the 2004 event, the peak of the releases lagged behind the substantial peak of the local inflow producing a double peak at Bridgeville. In the 2005 and 2006 events, the peak of the local coincided with the arrival of the peak release.

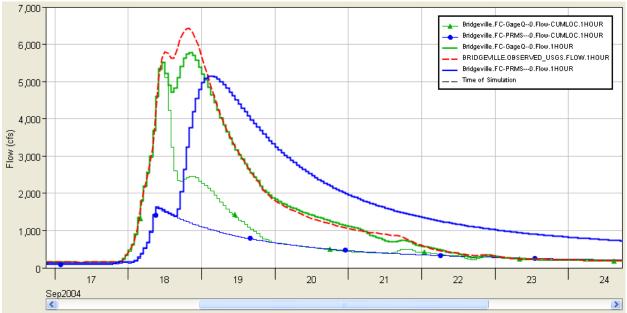


Figure 5.28 Bridgeville Junction Plot – total and cumulative local flow – 2004 Event

The simulated flows of the *FC-GageQ* alternative for the 2005 and 2006 events match the observed record reasonably well. The *FC-GageQ* results for 2004 do not match as well. The shape and timing of the hydrograph is good, but the magnitudes of the peaks are significantly different. Review of the results upstream at Neversink Reservoir and downstream at Montague showed that results at these locations matched the observed record well, so no model adjustments were made for Bridgeville.

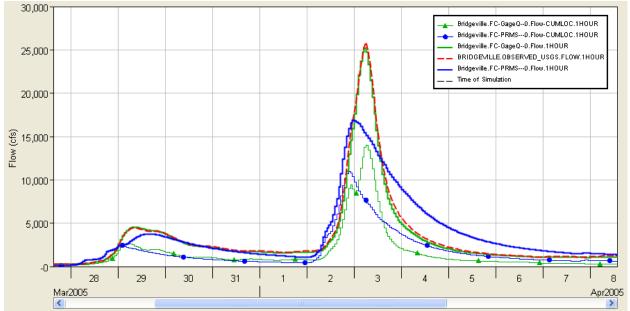


Figure 5.29 Bridgeville Junction Plot - total and cumulative local flow - 2005 Event

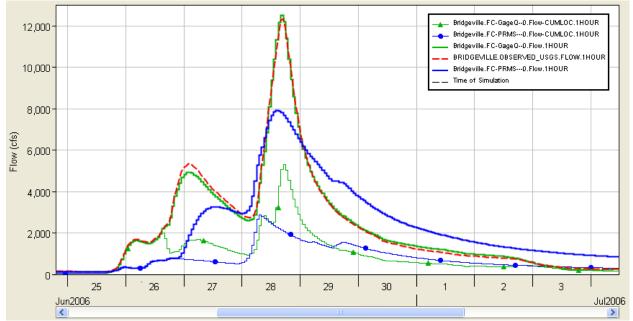


Figure 5.30 Bridgeville Junction Plot - total and cumulative local flow - 2006 Event

5.2.2 Lackawaxen River Basin

The Lackawaxen Basin contains three reservoirs that provide flood control to the basin, two US Army Corps of Engineers flood damage reduction reservoirs and a PPL hydropower reservoir. The USACE reservoirs, Prompton and Jadwin, were designed with primary outlet works that have a maximum uncontrolled release capacity equal to the local channel capacity. The spillway operations of the PPL project, Lake Wallenpaupack, are designed to not exceed channel capacity even during the largest probable inflow events.

5.2.2.1 Prompton

The main intake at Prompton was designed to maintain a recreation pool at 1,124 feet. A smaller, lower level intake was also included to maintain a minimum channel flow during dry conditions. The sill of the emergency spillway is at 1,205 feet, well above the highest level reached during these three events. Model results for the three events are show in Figures 5.31 through 5.33. Although results for the *FC-GageQ* alternative match the basic shape and timing of the observed elevation and outflow hydrographs, the results miss the recorded peak release and pool elevation for all three events. As is true for most reservoirs, this is likely due to the accuracy of the reservoir storage and outlet capacity data. Due to sedimentation processes in the reservoir pool, the storage-elevation relationship used in the model may not accurately reflect the shape of the reservoir during one or more of these events. Also, the outlet capacity data used in the model represents the design capacities and may not reflect the as-built or as-modified condition of the structures.

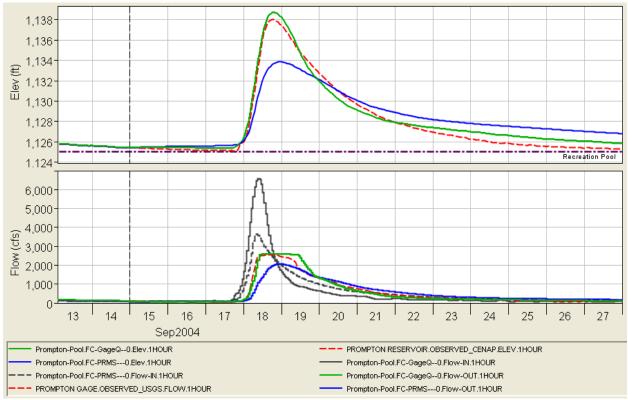


Figure 5.31 Prompton Reservoir Plot – 2004 Event

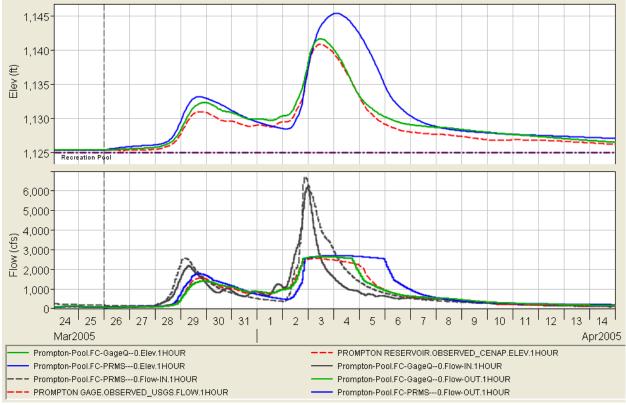


Figure 5.32 Prompton Reservoir Plot – 2005 Event

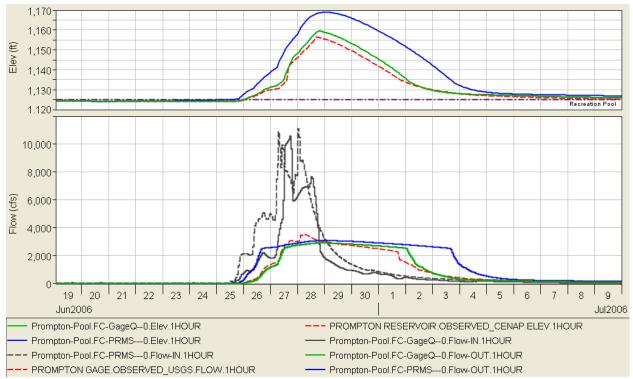


Figure 5.33 Prompton Reservoir Plot – 2006 Event

5.2.2.2 Jadwin

As a flood control reservoir, Jadwin is what is often referred to as a dry dam. The outlet works were designed to pass normal stream flows up to the downstream channel capacity. Thus, under normal conditions, no pool is maintained behind Jadwin dam. However, once inflows exceed outlet capacity, the pool will begin to fill. After the inflow event recedes, the outlet will continue to flow at capacity until the pool has emptied.

The natural channel invert is 973 feet at the intake to the outlet tunnel and normal channel depth ranges between 974 and 990 feet. The pool gage at Jadwin is located near the upstream face of the dam and does not measure depths in the natural stream channel. When the dam is dry, the gage records a value of approximate 989.2 feet as shown in Figures 5.34 through 5.36. 990 feet is the minimum measurement the gage recognizes as the point at which actual storage occurs in the reservoir.

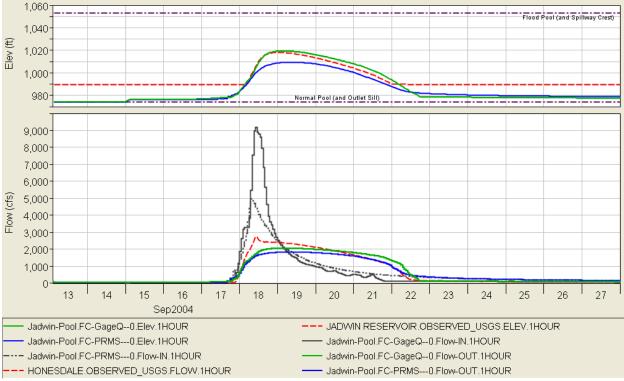
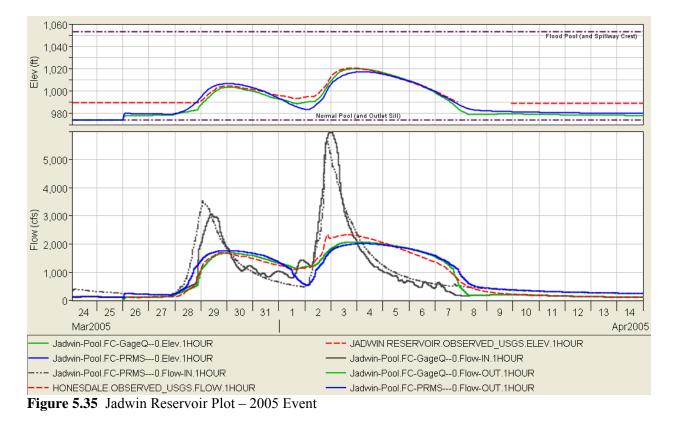



Figure 5.34 Jadwin Reservoir Plot – 2004 Event

All three events modeled were large enough to produce a pool behind Jadwin dam. The 2004 event raised the pool by over forty feet in about thirty-six hours, reaching a maximum pool elevation of about 1,019 feet. Similar behavior was exhibited during the 2005 event with a maximum pool height of about 1,020 feet. 2006 was the largest of the three events at Jadwin, both in terms of peak inflow and duration. This event caused the pool to rise to approximately 1,040 feet, still thirteen feet below the spillway crest of 1,053 feet.

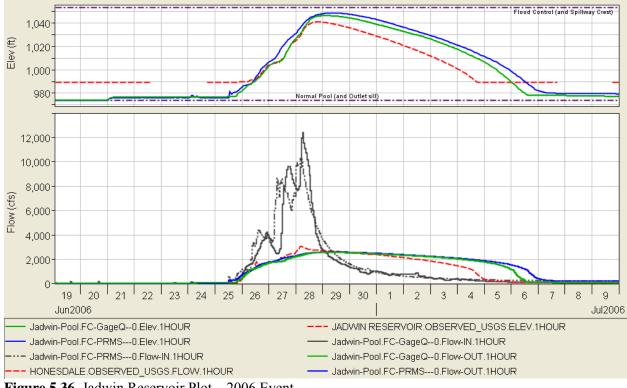


Figure 5.36 Jadwin Reservoir Plot – 2006 Event

5.2.2.3 Hawley

Hawley is a USGS stream gage location just upstream of the confluence of the Lackawaxen River with Wallenpaupack Creek and reflects releases from both Prompton and Jadwin. Although this location is not directly impacted by releases from Lake Wallenpaupack, this gage can be used by the operators at Lake Wallenpaupack to determine required releases. The plots in Figure 5.37 through Figure 5.39 show computed and observed flow and stage at Hawley for the three events. The results for the *FC-GageQ* match the observed record well, however the peak flows in the 2004 and 2006 events are not quite captured. This is due to the limitations of the model to mimic the recorded peak releases from Prompton and Jadwin Reservoirs.

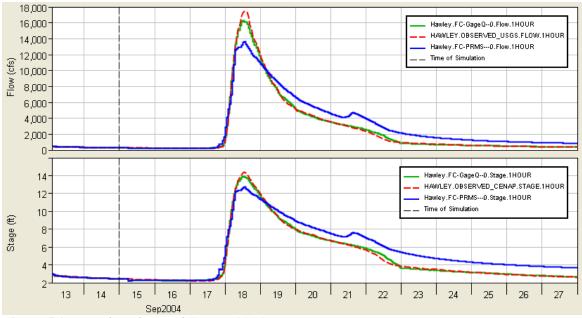


Figure 5.37 Hawley Flow and Stage – 2004 Event

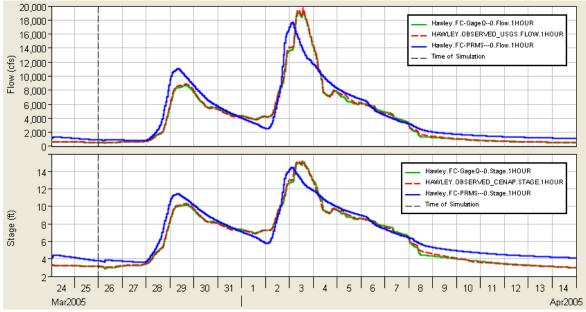


Figure 5.38 Hawley Flow and Stage – 2005 Event

Figure 5.39 Hawley Flow and Stage – 2006 Event

5.2.2.4 Lake Wallenpaupack

The model results at Lake Wallenpaupack differ from observed for at least three reasons. The first reason is the quality and completeness of the observed data. Two sources of data were provided for Lake Wallenpaupack: 1) Pennsylvania Power and Light (PPL) – the owner/operator of the reservoir and 2) the Federal Energy Regulatory Commission (FERC). The PPL data covered all three events and included pool elevation and flow. However, review of the data identified that the observed flow record represented powerhouse flow only and did not include spillway flow. The FERC data covered only part of the 2005 and 2006 events, but included separate records for the powerhouse and the spillway, as well as a combined total. Another difference between the two sources of observed data was in the pool elevation data. The pool elevations in the two records were similar but the FERC record showed somewhat higher pool elevations.

A second reason for the differences between model results and the observed data is in the inflow estimates. The observed data from FERC included a record labeled "estimated 4 hour average inflow" for the 2005 and 2006 events. This data was used to validate the derived inflows based on gage flow in a nearby basin adjusted for basin size.

The third reason for the differences is the operation scheme defined in the model. As noted in Chapter 3, PPL flood operations are complex and involve real-time decisions made by consensus of the various managers of the reservoir's systems. The flood operations in the model represent normal flood operations as described in the manual and uses the most important factors that would result in a decision to release from the spillway.

Since the primary purpose of Lake Wallenpaupack is to generate hydropower, normal flood operations of the reservoir focus on conserving water in the pool (not spilling). A real-time runoff and reservoir model is used by the operators to forecast inflow and pool elevation. As the pool rises during an event, the first action is to release from the powerhouse at full capacity. If the pool continues to rise, the forecasted pool elevation from PPL's real-time model is used by the managers to determine if the spillway should be used and, if so, to what extent. A number of conditions are involved in the determination to open the spillway gates, some of which can not be represented in the HEC-ResSim model – including the forecasted information supplied to the operators by the PPL model. A simplified set of conditions was defined in the model to approximate the PPL operators' decision-making procedure.

Although the model does not fully mimic the observed operation during the three events, some key behaviors are replicated. For example, the 2004 event did not produce a high enough pool to compel the operators to make spillway releases and the model reflected this. Both the 2005 and 2006 events caused the operators to use the spillway and the model reflected those spill decisions. The spill produced by the model was of lesser magnitude but of longer duration for both events. Model results for Lake Wallenpaupack are illustrated in Figure 5.40 through Figure 5.42.

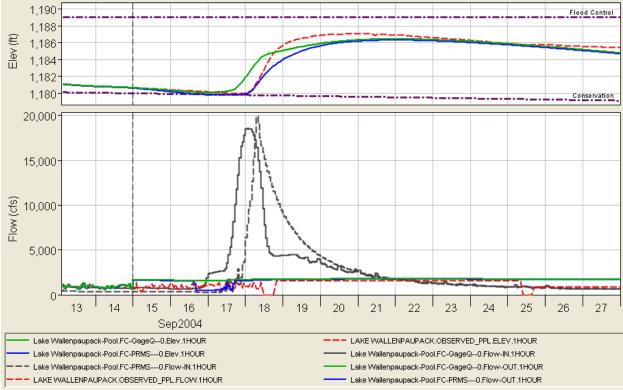


Figure 5.40 Lake Wallenpaupack Reservoir Plot – 2004 Event

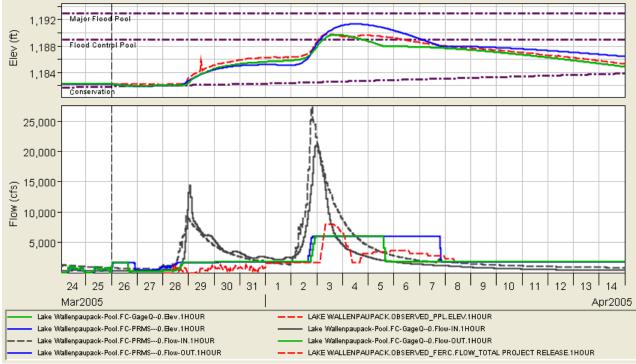


Figure 5.41 Lake Wallenpaupack Reservoir Plot – 2005 Event

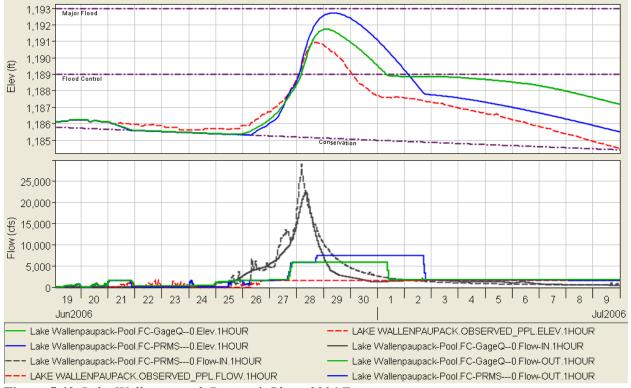


Figure 5.42 Lake Wallenpaupack Reservoir Plot – 2006 Event

5.2.3 Mongaup River Basin

The reservoirs modeled in the Mongaup system of five hydropower reservoirs include: Toronto, Swinging Bridge, and Rio. Little observed data was available to validate this portion of the model. The available data included the hourly record for the Mongaup Valley gage located upstream of Swinging Bridge, some daily average release information for Rio, and the gage record for the Port Jervis gage located on the Delaware River just downstream of the confluence with the Mongaup River.

Other operational information was obtained during a telephone conversation with the current superintendant of operations of the Mongaup system. Unfortunately, neither the superintendant of operations nor his staff were involved in the operation of these reservoirs during the modeled events because the system was sold and none of the staff that was in place at the time remained, only anecdotal information was available.

5.2.3.1 Toronto

Toronto Reservoir does not have a hydropower generation facility; storage is its primary purpose. Under normal conditions, Toronto operates in tandem with Cliff Lake to maintain a stable conservation pool at Swinging Bridge by means of a tunnel from Cliff Lake. Under high flow conditions, the tunnel capacity is too small to impact flood operation, so Cliff Lake and its tunnel were not represented in this model. Figure 5.43 through Figure 5.45 show model results for Toronto Reservoir.

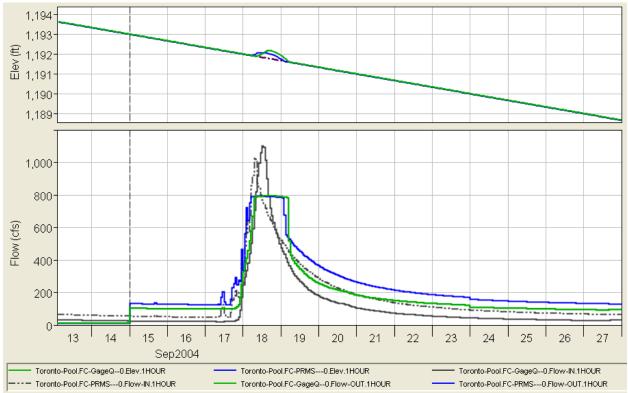


Figure 5.43 Toronto Reservoir Plot – 2004 Event

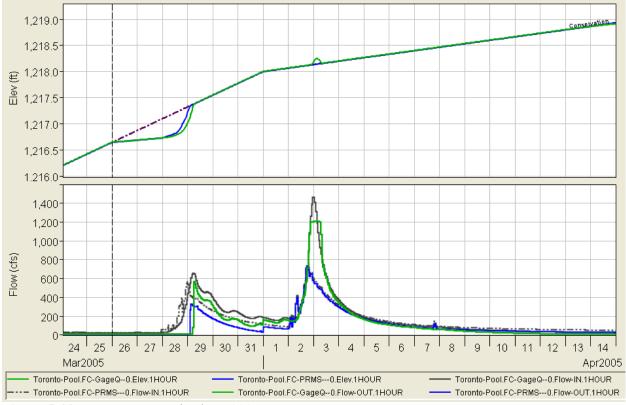


Figure 5.44 Toronto Reservoir Plot – 2005 Event

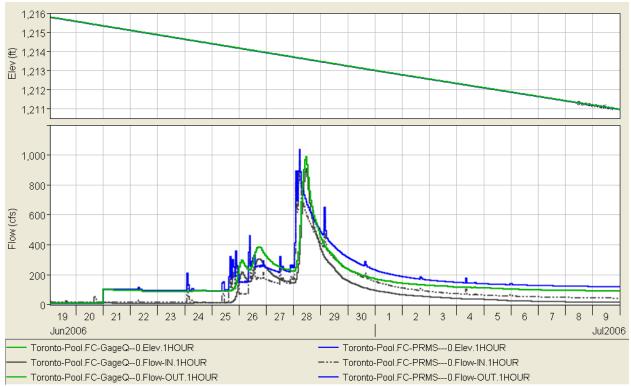


Figure 5.45 Toronto Reservoir Plot – 2006 Event

5.2.3.2 Swinging Bridge

Inflow to Swinging Bridge was derived from the USGS gage at Mongaup Valley. The operations manual in use at the time of the three events indicates that inflow can be estimated as approximately 1.68 times the Mongaup Valley gage. The current operators use a factor of 1.55 to estimate, therefore, the model uses a factor of 1.55. The nearest downstream gage to assess the validity of that assumption is the Port Jervis gage and, as illustrated in Figure 5.46 through Figure 5.48, the model does well at reproducing the observed flows at that location.

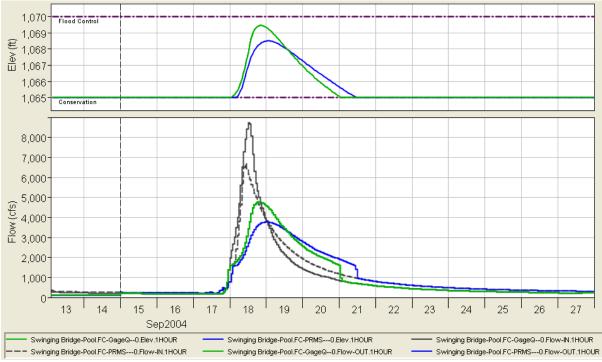


Figure 5.46 Swinging Bridge Reservoir Plot – 2004 Event

Other information gathered regarding operation of Swinging Bridge during the three events includes:

- The 2004 event passed through the system without adverse incident.
- The 2005 event caused a sinkhole to form in the main penstock to the power house resulting in permanent closure of the penstock. This event was also reported to produce pool elevations in excess of the 1,072.5 feet trigger elevation of the flashboards. However, they did not fall as designed and were removed after the event.
- As a result of the 2005 event, the flashboards were still absent at the time of the 2006 event and the release capacity of the powerhouse was reduced by approximately 68% due to the loss of Penstock 1.

The 2005 event was difficult to simulate without additional observed information. For example, the model uses the seasonally varying target pool as the starting condition of the reservoir pool. This is a reasonable assumption since hydropower operators typically want to maintain as high a head on the reservoir as they can to maximize power generation. With this starting condition and the 1.55 factor on the Mongaup Valley gage as inflow, the pool elevation at Swinging Bridge

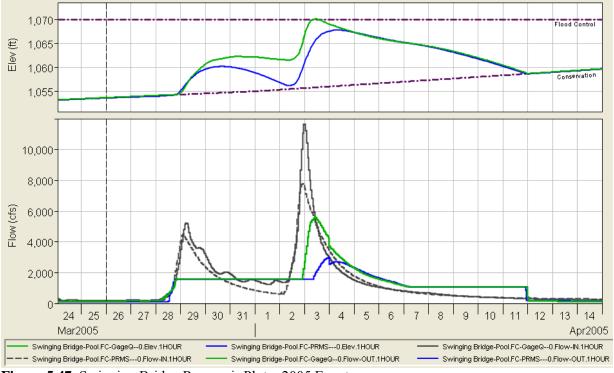


Figure 5.47 Swinging Bridge Reservoir Plot – 2005 Event

barely reaches the top of the flashboards, 2.5 feet shy of the flashboard trigger elevation. A significantly higher starting condition or inflow would have been needed to cause the pool to reach the reported elevation.

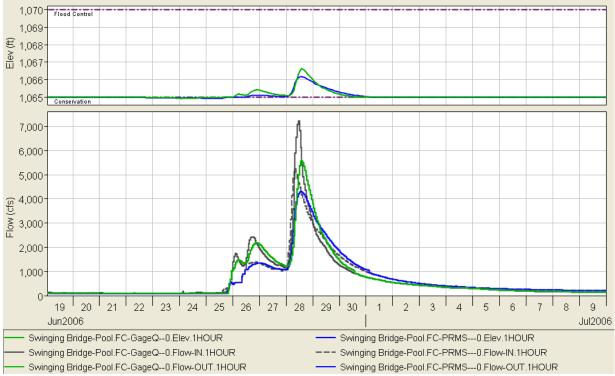


Figure 5.48 Swinging Bridge Reservoir Plot – 2006 Event

5.2.3.3 Rio

As with Swinging Bridge, the 2004 event passed through Rio Reservoir without incident. Figure 5.49 shows the model results at Rio for the 2004 event.

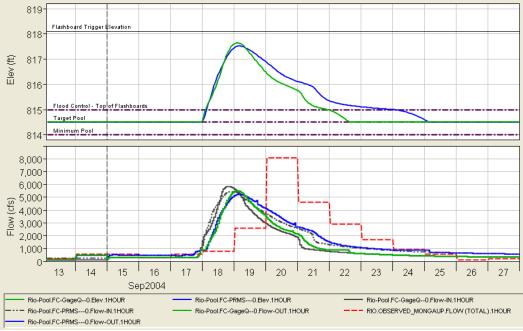


Figure 5.49 Rio Reservoir Plot – 2004 Event

The 2005 event was reported to produce pool elevations in excess of the flashboard trigger elevation of 818 feet, but the flashboards did not fall as designed here, either. Using the seasonally varying target pool elevation as a starting condition, the peak pool elevation reached

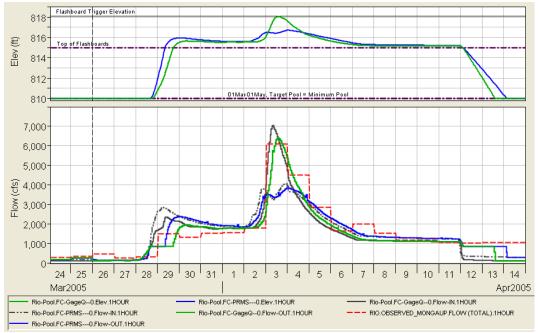


Figure 5.50 Rio Reservoir Plot – 2005 Event

in the model exceeded 818 feet and triggered the flashboards. However, the large pulse of water that was produced did not appear in the daily release record for Rio nor in the hourly flow record at Port Jervis, both of which correlate with the report of the flashboard failure. To mimic the flashboard failure in the model, the flashboard trigger was set artificially higher in the model. As can be seen in Figure 5.50 and Figure 5.53, the resulting releases produced a good match to the observed record at both Rio and Port Jervis.

After the 2005 event, due to damage at Swinging Bridge and presumed failure of the flashboarded spillways at both Swinging Bridge and Rio, the flashboards were removed at both reservoirs until repairs were complete at Swinging Bridge. At the time of the 2006 event, the flashboarded spillways had still not been rebuilt. This situation was modeled by initializing the state of the flashboards to DOWN, starting the pool at spillway crest, and not allowing the flashboards to reset during the simulation. Figure 5.51 shows that the model did not match the observed release record at Rio, but, at Port Jervis the simulated flows matched observed well (see Figure 5.54). Possible reasons for this include: the observed record at Rio may reflect only the powerhouse flows or the inflows to Rio were substantially smaller due to significantly altered operations at Swinging Bridge.

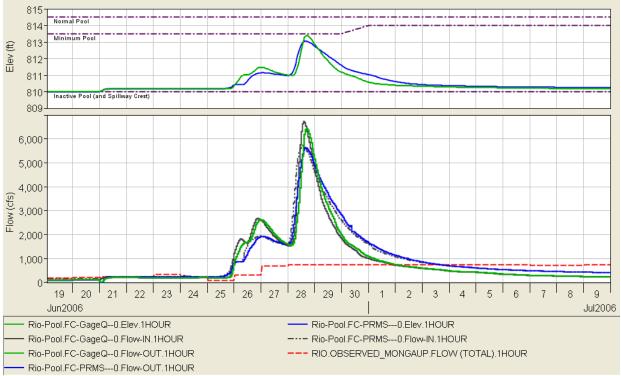


Figure 5.51 Rio Reservoir Plot – 2006 Event

5.2.3.4 Port Jervis

Port Jervis is the streamflow gage station downstream of the Mongaup River system. As the next major gage on the main stem Delaware below Barryville, this gage includes flow entering from the Lackawaxen and Mongaup Rivers as well as local flow from smaller tributaries. These two basins were probably the most difficult to model due to limited observed data and their inflows contribute more than 20% of the total flow at Port Jervis Figure 5.52 through Figure

5.54 illustrate how well the *FC-GageQ* model results compare to the observed flows for all three events, demonstrating that the model adequately represents the reservoir operation and impact of the flows from the Lackawaxen and Mongaup basins.

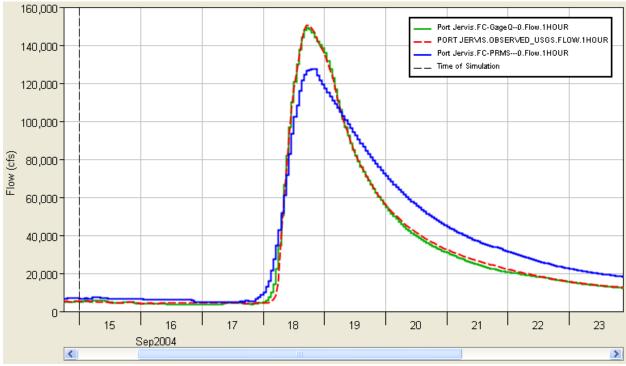


Figure 5.52 Port Jervis Operations Plot – 2004 Event

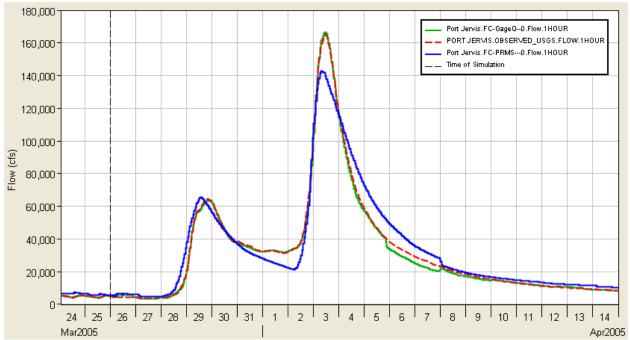


Figure 5.53 Port Jervis Operations Plot – 2005 Event

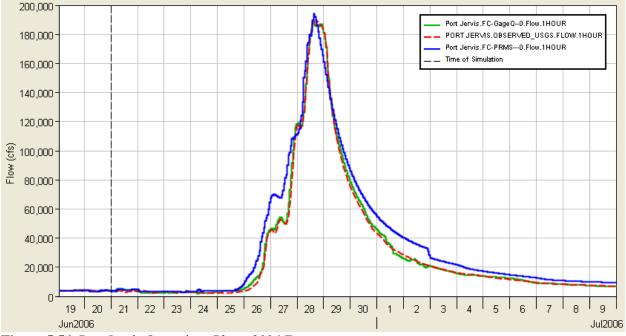


Figure 5.54 Port Jervis Operations Plot – 2006 Event

5.2.4 Lehigh River Basin

The reservoirs in the Lehigh River basin are owned and operated by the US Army Corps of Engineers, Philadelphia District. They are multipurpose reservoirs with significant storage reserved for flood damage reduction and well-defined operating plans. These operating plans have been included in the model for F.E. Walter and Beltzville Reservoirs. However, as with all plans that involve human intervention and decision making, simulating what an operator actually does during an event is difficult. The following plots show that the model is accurately simulating the operating plan for these reservoirs. Differences between simulated and observed operation are primarily because the operators must use estimated information to make operating decisions while the model has limited perfect foresight of the local flows when making release decisions for downstream operation.

5.2.4.1 F.E. Walter

F.E. Walter's flood control operating plan includes constraints for stage at Lehighton, Walnutport, and Bethlehem. Maximum stage is the operating criteria for each of these locations, and responsibility for controlling for these locations is shared with Beltzville Reservoir. In all three events, Walnutport was the controlling constraint. Results for F.E. Walter for all three events are shown in Figure 5.55 through Figure 5.57.

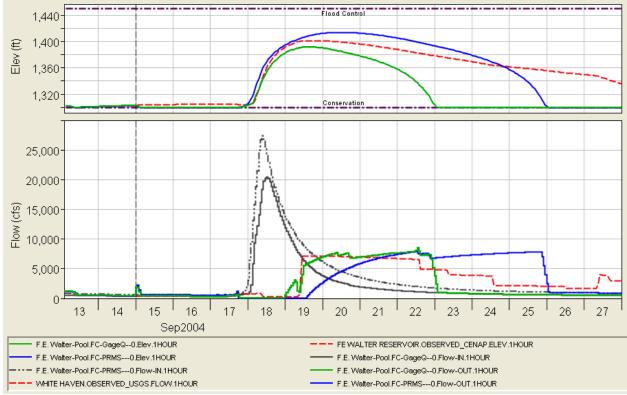


Figure 5.55 F.E. Walter Reservoir Plot – 2004 Event

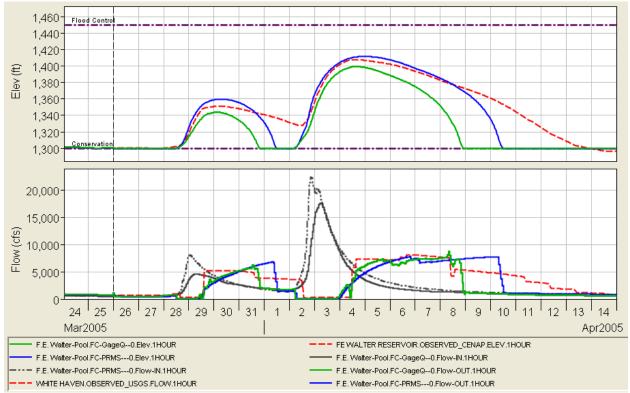


Figure 5.56 F.E. Walter Reservoir Plot – 2005 Event

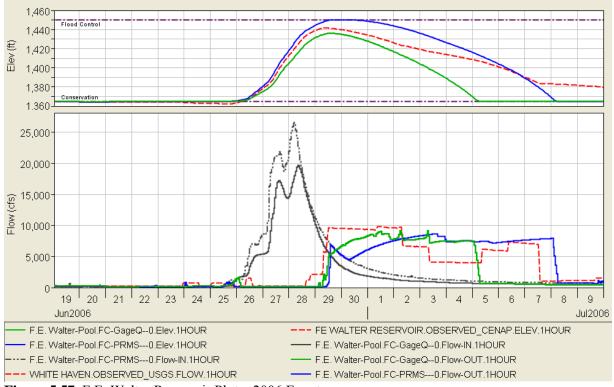


Figure 5.57 F.E. Walter Reservoir Plot – 2006 Event

5.2.4.2 Lehighton

Figure 5.58 through Figure 5.60 show that although flows at Lehighton exceeded the flood storage initiation stage, this was due to high intervening local flow below the reservoir and not reservoir releases.

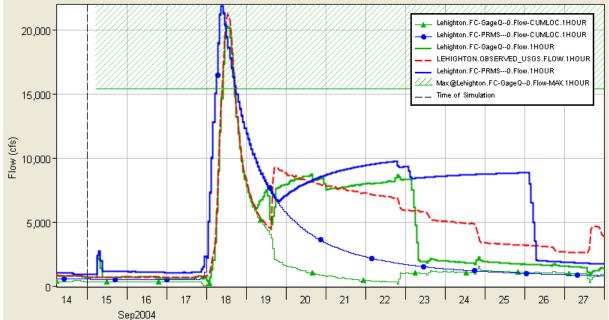


Figure 5.58 Lehighton Operations Plot – with cumulative local flow added – 2004 Event

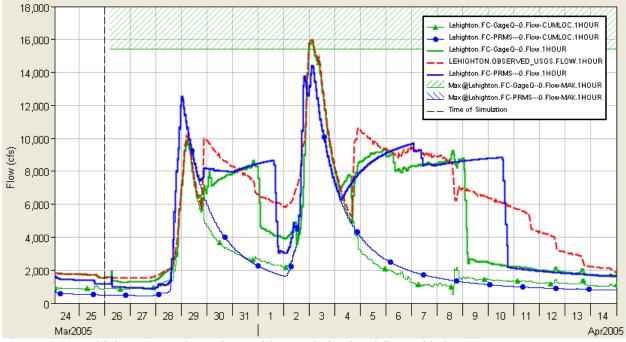


Figure 5.59 Lehighton Operations Plot – with cumulative local flow added – 2005 Event

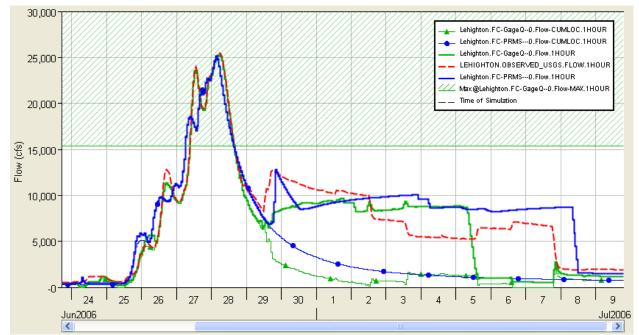
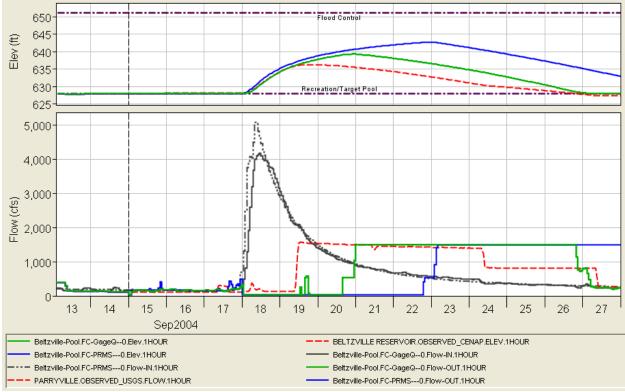



Figure 5.60 Lehighton Operations Plot – with cumulative local flow added – 2006 Event

5.2.4.3 Beltzville

Figure 5.61 Beltzville Reservoir Plot – 2004 Event

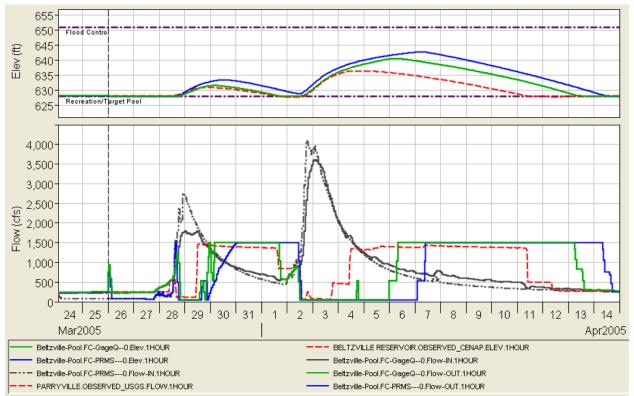


Figure 5.62 Beltzville Reservoir Plot – 2005 Event

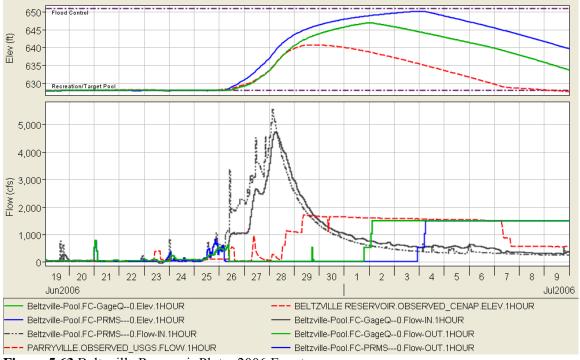


Figure 5.63 Beltzville Reservoir Plot – 2006 Event

5.2.4.4 Walnutport

As previously mentioned Beltzville and F.E. Walter work together to mitigate flooding at Walnutport and Bethlehem on the Lehigh River. Figures 5.64 though 5.66 shows that during the three modeled events, Walnutport was the controlling operational constraint and the model adequately simulates how the reservoirs operated for flows at this location.

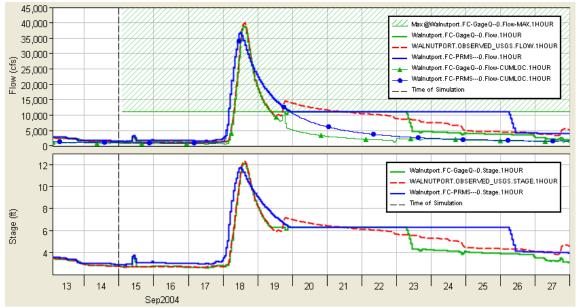


Figure 5.64 Walnutport Operations Plot – with cumulative local flow added – 2004 Event

Although flows at Walnutport and Bethlehem exceeded flood stage during these events, this was due to the local flow below the reservoirs. In each case, the reservoirs gates were closed and all inflow was stored to limit the peak of the flood event.

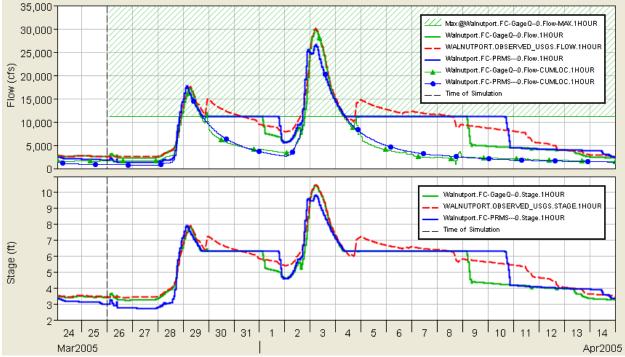
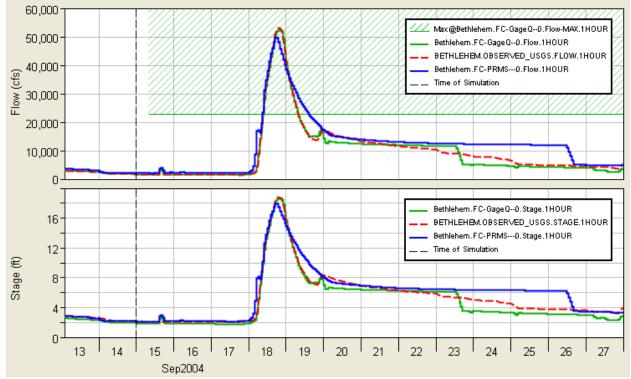



Figure 5.65 Walnutport Operations Plot – with cumulative local flow added – 2005 Event

Figure 5.66 Walnutport Operations Plot – with cumulative local flow added – 2006 Event

5.2.4.5 Bethlehem

Figure 5.67 Bethlehem Operations Plot – Flow and Stage – 2004 Event

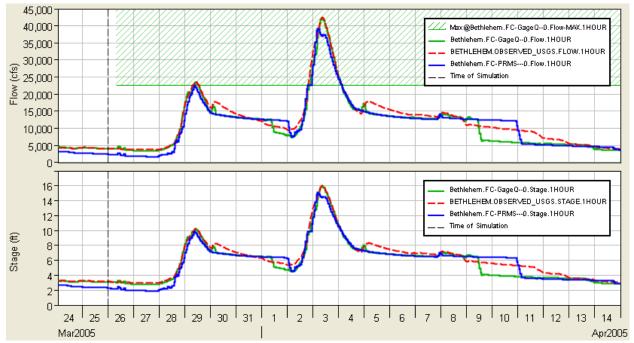


Figure 5.68 Bethlehem Operations Plot– Flow and Stage – 2005 Event

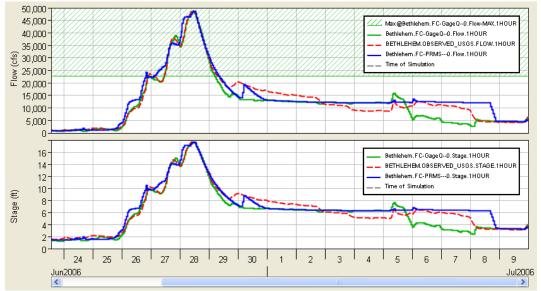


Figure 5.69 Bethlehem Operations Plot – Flow and Stage – 2006 Event

5.2.5 Mainstem Delaware River Basin

5.2.5.1 Montague

The Montague gage is the next major gaging station downstream of Port Jervis on the Delaware River. The Neversink River enters above Montague. Montague is an operational point for low flows on the Delaware River, but not for high flows.

Similar to Port Jervis, all three events are well represented by the *FC-GageQ* alternative. This is exhibited in Figures 5.70 through 5.72.

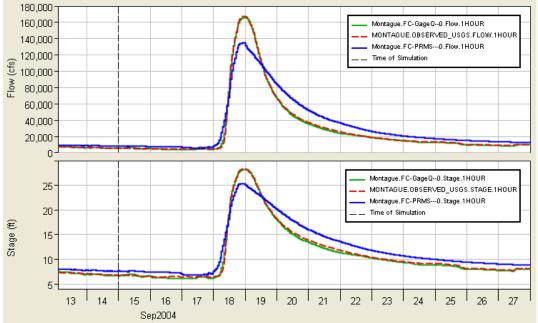


Figure 5.70 Montague Flow and Stage – 2004 Event

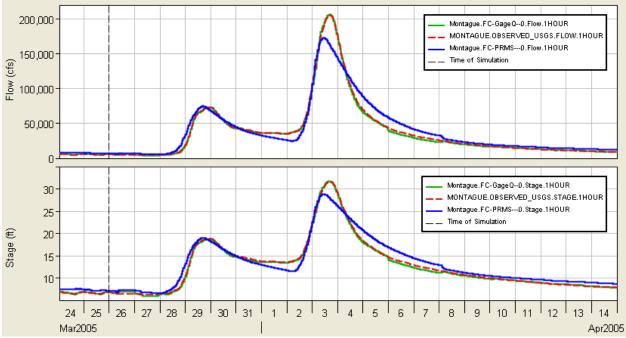


Figure 5.71 Montague Flow and Stage – 2005 Event

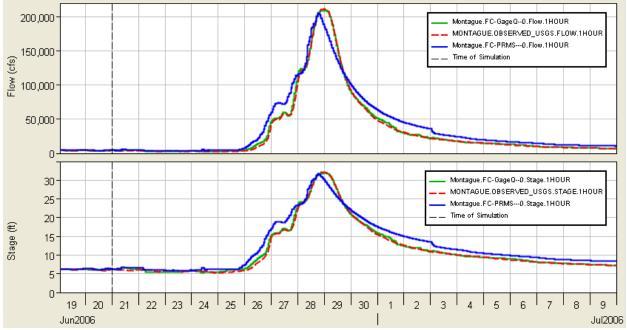
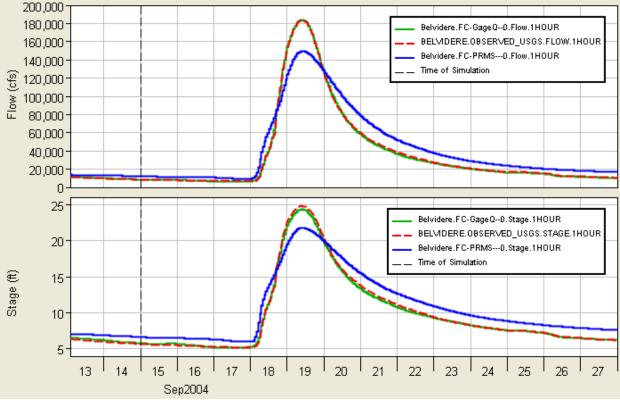



Figure 5.72 Montague Flow and Stage – 2006 Event

5.2.5.2 Belvidere

The gage at Belvidere captures all intervening flow downstream of Montague. Observed data from gages on the larger tributaries entering this reach of the Delaware were used to represent the tributary contributions. Local inflows from the smaller, ungaged tributaries were calculated

by routing the combination of the Montague and larger tributary gage records to Belvidere and subtracting the routed flow from the Belvidere record.

Figure 5.73 Belvidere Flow and Stage – 2004 Event

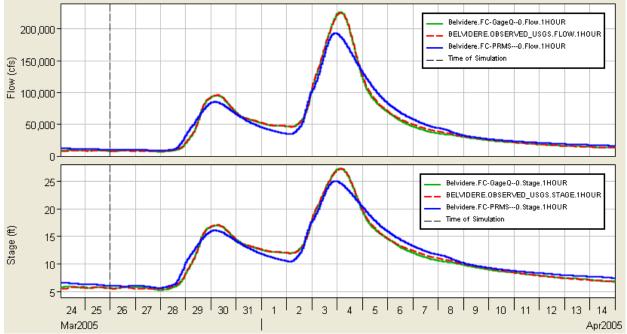


Figure 5.74 Belvidere Flow and Stage – 2005 Event

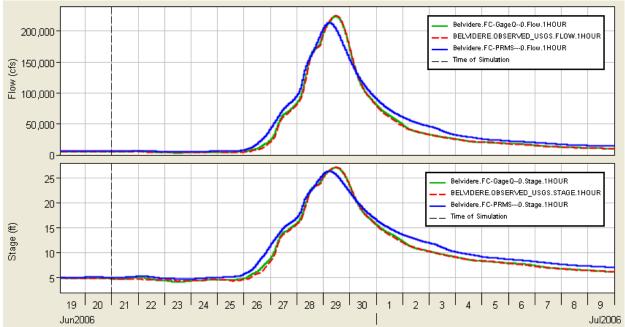


Figure 5.75 Belvidere Flow and Stage – 2006 Event

5.2.5.3 Merrill Creek

Merrill Creek Reservoir is an off stream pumped storage project built by the some of the power companies to provide low flow augmentation during drought conditions, allowing them to offset their consumptive use resulting from power generation. The natural creek in which the reservoir was constructed has a very small contributing basin which is easily managed by the six feet of flood control storage at Merrill Creek. An emergency spillway which discharges into Lopatcong Creek was included in the reservoir "just in case" but it is not expected to ever flow. The conservation pool is filled by a pumped diversion from the Delaware River. Neither the emergency spillway nor the pumped diversion were represented in the model as the reservoir did not spill and the pumps are not used during high flows in the Delaware River or flood operation of the reservoir.

The operation plan for Merrill Creek indicates that most non-flood releases are made to meet low flow augmentation requirements to manage the salt front in the lower Delaware River. At all times, Merrill Creek must maintain an at-site minimum flow of 3 cfs. Flood operations simply identify a maximum release of 20 cfs.

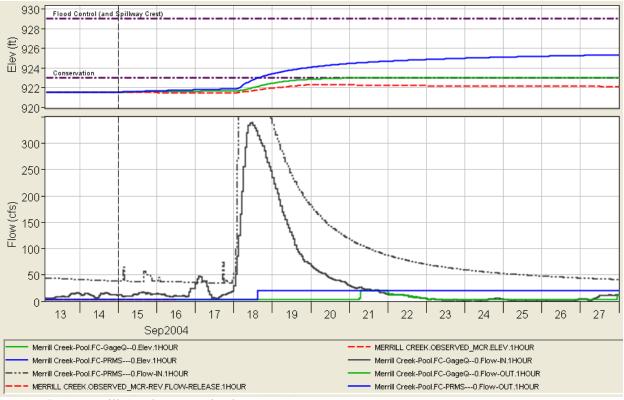


Figure 5.76 Merrill Creek Reservoir Plot – 2004 Event

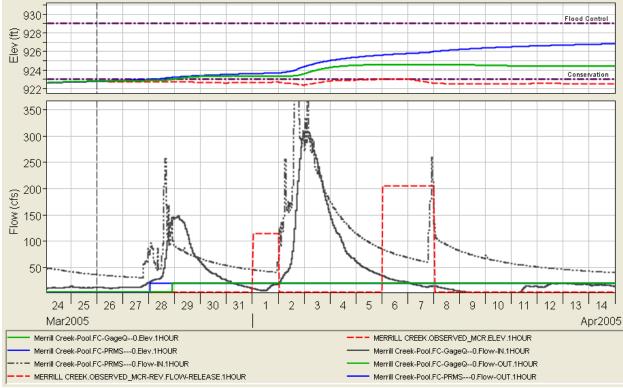
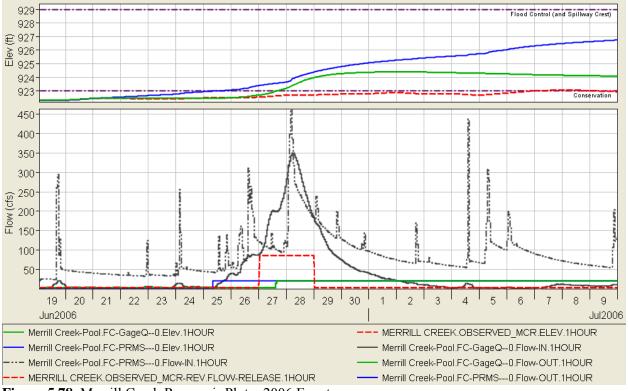
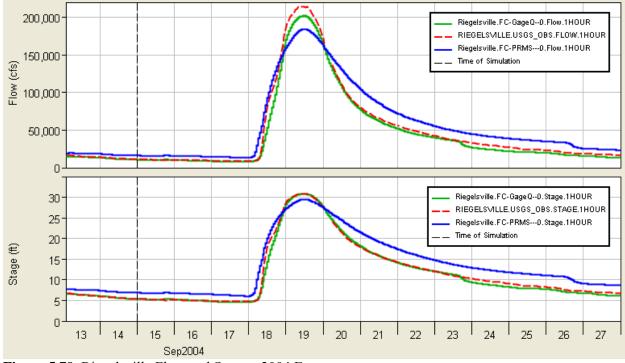


Figure 5.77 Merrill Creek Reservoir Plot – 2005 Event




Figure 5.78 Merrill Creek Reservoir Plot – 2006 Event

5.2.5.4 Riegelsville

The Riegelsville gage is located on the Delaware River just upstream of the confluence with the Musconetcong River. Several tributaries enter the Delaware upstream of this gage including the Lehigh River. Riegelsville is a primary forecast location for the NWS River Forecast Center. The stages at several downstream locations for which there are no established rating curves are estimated using regression relationships based on the stage at Riegelsville. Using the rating curve for Riegelsville, *FC-GageQ* alternative of the model under-predicts the peak stage at Riegelsville by approximately six percent in comparison with the observed record.

The rating curve at Riegelsville is not consistently maintained by the USGS. Because the Riegelsville stage is so important for the prediction of stage at other NWS flood forecast locations, the rating curve at Riegelsville was evaluated by DRBC personnel. It was decided that since the simulated flow at Belvidere and Bethlehem were within approximately one percent of the observed flows and attenuation in the river could account for not observing an increase in flow due to the small tributaries between Belvidere, Bethlehem and Riegelsville, the flows in the Riegelsville rating curve in the model were reduced by six percent such that lower flows would produce higher observed stages and allow better predictions of stages at the locations without rating curves. For reference, the original rating curve was placed at the Del+Musconetcong junction because the reported flow at the Riegelsville gage includes flow from the Musconectong.

Figure 5.79 through Figure 5.81 show simulated flow and stage at Riegelsville for each of the three events modeled. The simulated stages illustrated were produced using the modified rating

curve. The observed flows illustrated were produced by the USGS using the original rating curve.

Figure 5.79 Riegelsville Flow and Stage – 2004 Event

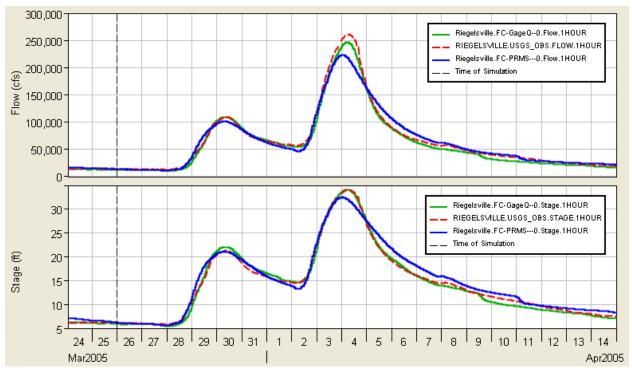


Figure 5.80 Riegelsville Flow and Stage – 2005 Event

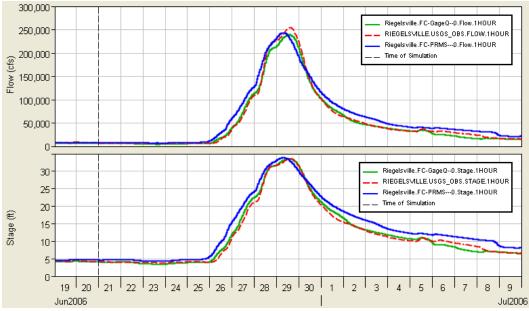


Figure 5.81 Riegelsville Flow and Stage – 2006 Event

5.2.6 Nockamixon

Nockamixon Reservoir is located on Tohickon Creek in Nockamixon State Park, Pennsylvania. Although it was built primarily as a recreation reservoir, it does have a flood control pool of approximately 15 feet. However, flood control operations call for the closure of the primary flow augmentation outlets and allow the spillway to discharge inflow up to spillway capacity. Nockamixon has a minimum release requirement of 11 cfs. A sixteen-inch cone valve is used to meet the minimum flow requirement at all times, even during flood operations. Observed data was not available for Nockamixon Reservoir.

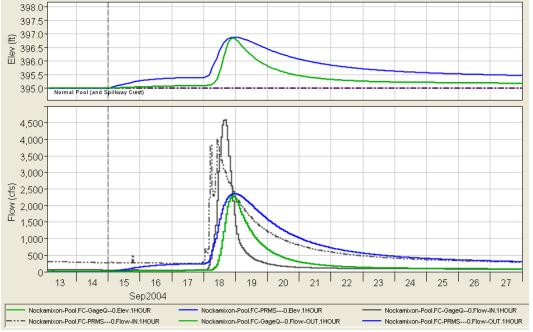


Figure 5.82 Nockamixon Reservoir Plot – 2004 Event

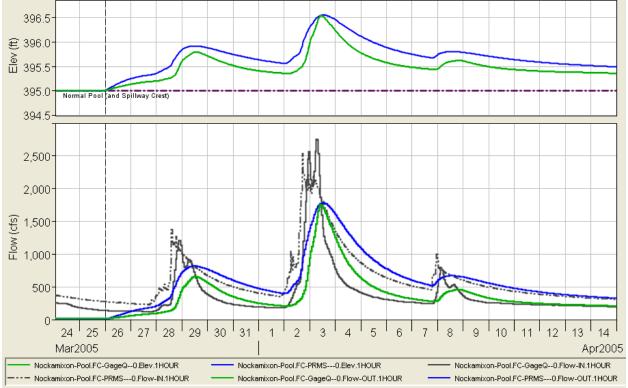


Figure 5.83 Nockamixon Reservoir Plot – 2005 Event

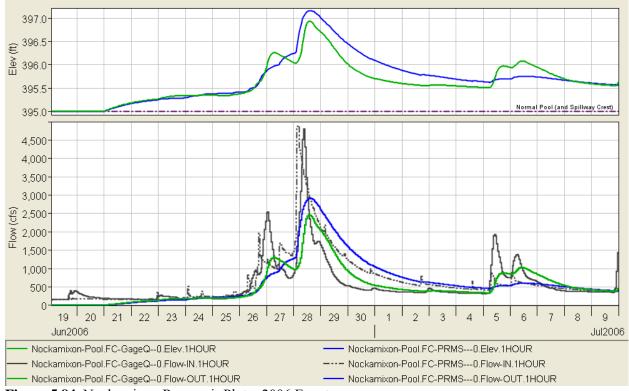


Figure 5.84 Nockamixon Reservoir Plot – 2006 Event

5.2.7 Trenton

Trenton is the downstream-most point in the model and the downstream-most gage location on the Delaware that is not affected by tides. Trenton is also a major forecast location for the NWS. As illustrated in Figures 5.85 through 5.87, the model results for both alternatives compare favorably to the observed record at Trenton.

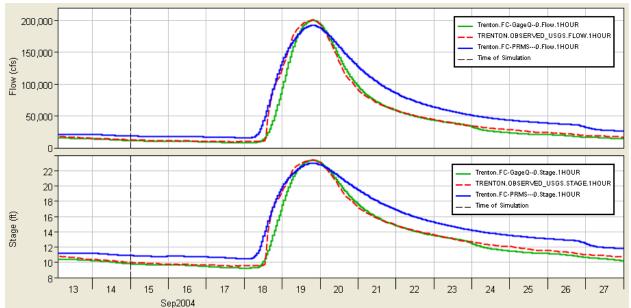


Figure 5.85 Trenton Flow and Stage – 2004 Event

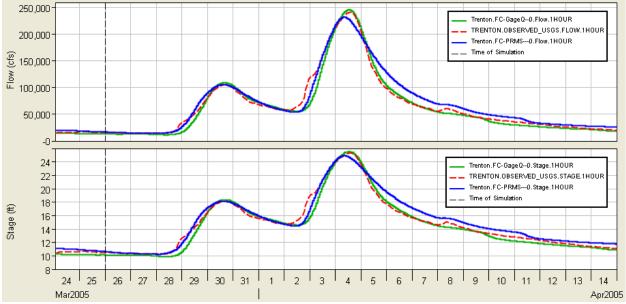
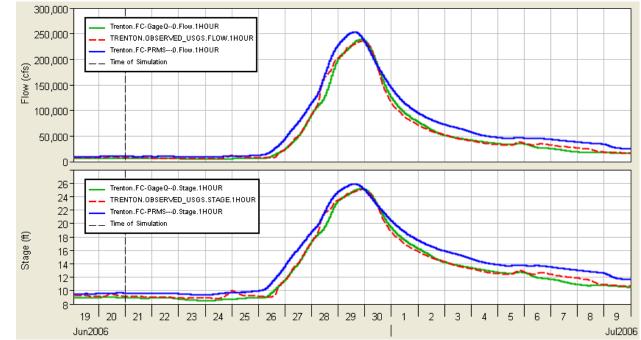



Figure 5.86 Trenton Flow and Stage – 2005 Event

Figure 5.87 Trenton Flow and Stage – 2006 Event

Chapter 6 Summary

6.1 Model Summary

The reservoir simulation and routing model developed by the USACE, Hydrologic Engineering Center as a component of the Delaware River Flood Analysis Model simulates the operation of thirteen reservoirs in the basin and the routing of their releases along with intervening local flows through the river system down to Trenton. The purpose of the model is to serve as the basis for analysis of alternative flood risk management strategies.

Data for the model was provided by the US Geological Survey, the US Army Corps of Engineers, Philadelphia District, the National Weather Service, and the Delaware River Basin Commission and its partner agencies. Streamflows downstream of the reservoirs on the main stem Delaware River and some of its major tributaries are well gaged. However, some of the major tributaries as well as most of the minor tributaries are not well gaged which made modeling of the reservoir operations and routing on these streams challenging.

At the request of the Delaware River Basin Commission, two base alternatives were developed. In the model, these alternatives were named *FC-PRMS* and *FC-GageQ*. Both alternatives simulate the individual reservoir flood operating policies in effect at the time of the three events studies.

The *FC-PRMS* alternative uses inflows computed by the PRMS-based hydrology model developed by the USGS as the rainfall-runoff component of the Flood Analysis Model. The objective of the PRMS model was to produce inflow for HEC-ResSim that could be used to adequately represent the flows that would be experienced in the basin under a selected set of hydrologic conditions. Due to uncertainties in rainfall-runoff modeling, the DRBC determined that the *FC-PRMS* alternative did not satisfactorily reproduce the peak flows or total volumes that occurred during the three major flood events of 2004, 2005 and 2006.

The *FC-GageQ* alternative uses gaged and derived-from-gaged inflows. The objective of this alternative was to reduce the uncertainty and error contributed by the rainfall-runoff modeling by using the observed flow record to develop the inflows to the model and to carefully configure the operations in order to reproduce as closely as possible the observed flow in the system. With only one exception (described in Chapter 4), all operational adjustments made in the *FC-GageQ* alternative are reflected in the FC-PRMS alternative.

6.2 Recommended Application of the Model

Due to the different sources of inflows, the recommended uses of each alternative are different. The use of inflows produced by a rainfall-runoff model makes the *FC-PRMS* alternative

appropriate for investigating the response of the reservoir system to differing inflow scenarios. The PRMS model could be used to develop an assortment of inflow data sets for the ResSim model representing different rainfall intensities, storm centerings and distribution, soil moisture conditions, and other variations on basin conditions.

On the other hand, the *FC-GageQ* alternative which uses observed and derived-from-observed inflow is designed specifically for its current inflow data set. This alternative would be appropriate to use in investigating the impacts of changes in initial reservoir conditions or different reservoir operating plans.

6.3 Recommendations for Model Enhancements

Although the model is ready for use by the DRBC in their flood operations analysis of the Delaware River system above Trenton, the following suggestions for further enhancement to the model could be pursued should data and resources become available.

The flood operation of Lake Wallenpaupack could also be expanded. The current operation defined in the model is a simplification of the complex operating guidelines described in the Lake Wallenpaupack Emergency Action Plan (EAP). The EAP describes a release decision policy that relies on consensus by a number of managers, each responsible for a different aspect of the Lake Wallenpaupack Hydropower System who must take into account situational factors that are outside the scope of the model. With the assistance of the operators of Lake Wallenpaupack, it may be possible to redevelop the flood operations in the model so that the key factors that influence release decisions at the lake could be accounted for and the appropriate release for each trigger level defined.

At the time this model was developed, the new owners of the reservoirs in the Mongaup River Basin were just beginning to process the records they inherited. With experience and reorganization, the new owners will likely be able to play a more active role in describing the behavior of the Mongaup Reservoirs during high flow conditions and provide more data for development of a more robust operating scheme for the model. One of the key elements of a new operating scheme could be improvement of the scripts that model the flashboard operation. These scripts currently assume that when the flashboards fall, they all fall at once. In reality, this is rarely the case. Enhancements to the scripts and the operation set could be added to define a more incremental falling behavior of the flashboards.

Lastly, the remaining three reservoirs that exist in the basin could be added to the model. While none of these reservoirs is currently tasked to operate to reduce flood peaks in the rivers downstream of them, any reservoir, large or small, can have an impact on flood flow routing in a system. That impact is typically related to the lag and attenuation of the flood hydrograph as it is routed through a reservoir pool, possibly resulting in a small reduction in peak flows at damage centers. In addition, as with the 13 other reservoirs in the basin, possible changes in operating schemes could be investigated at these reservoirs to determine if they could play a more active role in reducing flood risk.

Chapter 7

References

- DRBC, 1984. "Docket No. D-77-110 CP, Merrill Creek Owners Group (MCOG), **Merrill Creek** Reservoir, Pumping Station and Transmission Main, Warren County, New Jersey", Delaware River Basin Commission, October 24, 1984, 11 p.
- DRBC, 1990. "Docket No. D-77-110 CP (Amendment 1), Merrill Creek Owners Group (MCOG), Merrill Creek Reservoir Project, Warren County, New Jersey", Delaware River Basin Commission, May 23, 1990, 8 p.
- DRBC, 2002. "Resolution No. 2002-33", Delaware River Basin Commission, November 25, 2002, 6 p.
- DRBC, 2004. "Resolution No. 2004-3, Docket No. D-77-20 CP (Revision 7)", Delaware River Basin Commission, April 21, 2004, 11 p.
- Hydrologic Engineering Center, 2007. "HEC-ResSim, Reservoir System Simulation, User's Manual, Version 3.0, April 2007", U.S. Army Corps of Engineers, Report CPD-82, Davis, Calif., 512 p.
- MCR, 1999. <u>Letter</u> from Merrill Creek Reservoir, Subject: **Merrill Creek** Reservoir Project, Reservoir Volume Elevation Curve, August 26, 1999, 6 p.
- NWS, 2006. "Model Simulations for the Upper Delaware River Basin Flooding of April, 2005", National Weather Service-Middle Atlantic River Forecast Center, State College, PA, August 2006, 7 p.
- PA-DER. "Operation and Maintenance Manual for **Nockamixon** State Park Dam, Bucks County, Pennsylvania", Department of Environmental Resources (PA-DER), Bureau of Operation and Maintenance, Harrisburg, Pennsylvania, 33 p.
- PA-DER, 1979. *Letter* from Commonwealth of Pennsylvania, Department of Environmental Resources, May 22, 1979, (re: DRBC Docket No. D-66-122CP), 2 p.
- Mirant, 2007. "**Mongaup** River Hydroelectric System Operating Plan", Mirant NY-Gen, LLC, New York, May 7, 2007 DRAFT, 17 p.

- OASIS, 2004. **OASIS Model 2.1** -- "simbase2.1_run_ocl.zip", "NYC-reservoir-data-OASIS-july2007.xls", and email correspondence from DRBC, August December 2007.
- PPL, 2007. "Emergency Action Plan, Wallenpaupack Hydroelectric Station, FERC Project No. 487, PA Dam No. 52-051, NATDAM Nos. PA00302 (Dam) and PA83011 (Dike), Dam, Dike, or Pipeline Emergency", PPL Generation, LLC, Allentown, PA, 1975, Revised December 28, 2007, 86 p.
- USACE, 2003a. "Water Control Manual (Revised), **Francis E. Walter** Dam and Reservoir, Lehigh River Basin, Pennsylvania", U. S. Army Corps of Engineers, Philadelphia District, Philadelphia, PA, October 1961, Revised October 1994 and Revised February-April 2003.
- USACE, 2003b. "Water Control Manual (Revised), Beltzville Dam and Lake, Lehigh River Basin, Pennsylvania", U. S. Army Corps of Engineers, Philadelphia District, Philadelphia, PA, February 1972, Revised April 1985 and Revised June 1996 and Revised March-April 2003.
- USACE, 1997a. "Water Control Manual, **Jadwin** Reservoir, Dyberry Creek Pennsylvania, Lackawaxen River Basin", U. S. Army Corps of Engineers, Philadelphia District, Philadelphia, PA, September 1968, Revised September 1997, 127 p.
- USACE, 1997b. "Water Control Manual, **Prompton** Reservoir, West Branch Lackawaxen River Pennsylvania, Lackawaxen River Basin", U. S. Army Corps of Engineers, Philadelphia District, Philadelphia, PA, September 1968, Revised September 1997, 146 p.

Appendix A

Scope of Work Delaware River Basin Flood Analysis Model

Originally Prepared and Approved – 6 Aug 2007 Revised and Approved – 29 Feb 2008

U.S. Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center

DELAWARE RIVER BASIN

FLOOD ANALYSIS MODEL

Scope of Work

Prepared for

Delaware River Basin Commission

Submitted by: U.S. Geological Survey U.S. Army Corps of Engineers – Hydrologic Engineering Center NOAA - National Weather Service

corrected February 29, 2008

DELAWARE RIVER BASIN FLOOD ANALYSIS MODEL

Problem:

Three major main stem floods between September of 2004 and June of 2006 have focused attention on the potential effects of storage volumes (voids) in major reservoirs within the Delaware River Basin on downstream discharges. Some of the major reservoirs were designed and built for flood control purposes while others were designed for water supply, hydropower, and recreation.

Evaluation of alternative operational scenarios for this complex reservoir system can be improved by use of a physically-based flood analysis model that simulates runoff and streamflow routing, incorporating the impact of storage in and discharge from major reservoirs.

DRBC Resolution 2006-20 authorizes the Executive Director of the Delaware River Basin Commission (DRBC) to develop a flood analysis model for the basin. Complex models that represent rainfall and snowmelt runoff, reservoir hydraulics, and flow routing are required and need to be combined into a single flood analysis model. The tool is needed to allow:

- The DRBC and others the capability to evaluate the potential for the basin's major reservoirs to be operated for flood mitigation;
- The DRBC and others to evaluate the feasibility of various reservoir operating alternatives;
- The DRBC and others to evaluate the effect of reservoir voids of different magnitudes on streamflow at locations downstream from the reservoirs;
- The DRBC and others the ability to examine, modify, and improve the model and datasets as new information and technology become available; and
- The DRBC and others to use the output from the tool as an educational instrument for demonstrating the operations of reservoirs and basin hydrology.

In cooperation with the Delaware River Basin Commission (DRBC), the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE) - Hydrologic Engineering Center (HEC), and the NOAA's National Weather Service (NWS) will develop an integrated flood analysis model for the Delaware River Basin to allow evaluation of flood operations at individual reservoirs and the reservoir system.

Purpose:

Develop a flood analysis model that will allow the evaluation of existing reservoirs for flood mitigation. The model will provide data to evaluate the effects of various reservoir operating alternatives on flooding at locations downstream of the reservoirs. The tool will incorporate rainfall/runoff processes, reservoir operations and flow routing components into a model for simulation of flood hydrographs at USGS stream gage locations and co-located NWS flood forecast points on the Delaware River and its tributaries.

Objectives:

- 1. Construct a rainfall/runoff and snowmelt model for the non-tidal Delaware River Basin to Trenton, New Jersey, for the non-tidal Schuylkill River Basin, and for the non-tidal Christina River Basin.
- 2. Construct reservoir simulation models for 15 reservoirs in the Delaware River Basin, as designated by the DRBC.
- 3. Construct a flow routing model for the Delaware River and major tributaries above Trenton, as well as for the non-tidal Schuylkill and Christina Rivers.
- 4. Integrate datasets for rainfall/runoff and snowmelt, reservoir simulation, and routing models into a common database structure and framework.
- 5. Integrate the rainfall/runoff, reservoir simulation, and flow routing models into a single operational tool that will incorporate a graphical user interface for input parameters and datasets as well as output from the models. The modeling system will be modular and allow future

incorporation of improved algorithms and improved datasets, such as higher-resolution digital elevation models (DEM's). As an initial step, the model components will first be applied to a pilot watershed to avoid incompatibility and integration issues, and to provide opportunities for reviewer inputs on the final model development approach. The pilot application will provide a test of model function and integration of features rather than calibration.

Approach:

The multi-agency project team will include participation of NWS, HEC, and USGS. Project coordination will be provided by the USGS Pennsylvania Water Science Center, with additional USGS contributions by the New Jersey and New York Water Science Centers, National Research Program, and Office of Surface Water. HEC will have lead responsibility for the reservoir and flow-routing models, and will contribute to all project products. USACE Philadelphia District will provide information on USACE reservoirs in the basin. The NWS Middle Atlantic River Forecast Center (MARFC), as well as Eastern Region Headquarters and Office of Hydrologic Development, will focus primarily, but not exclusively, on assisting with the flow-routing model components. Ongoing advisory input will be sought from staff of the Delaware River Basin Commission, the USGS Delaware River Master, and the Delaware River Basin Commission Flood Advisory Committee.

Task 1 – Database Development and Maintenance:

A unified relational database will be constructed for the flood analysis model. The database will contain all data needed to simulate streamflow using the rainfall/runoff, reservoir, and flow-routing components described in following tasks. This database will provide a controlled system to quality assure input information and minimize redundancy in compiling input data that may be used in more than one model component. Many of the spatial GIS coverages needed have already been compiled for USGS projects in the Basin such as the ongoing National Water Quality Assessment (Fischer and others, 2004) and the SPARROW basin-scale nutrient transport model (Chepiga and others, 2004). Streamflow routing model datasets are in use for current river forecasting by MARFC. Additional datasets will include USACE reservoir storage curves and operation rules, radar and gage precipitation, stream gage rating curves, digital elevation model, streams, hydrologic response units, streamflow-routing parameters and coefficients. USGS will lead this task.

Description of Subtasks:

1.1 Determine required data sets needed for model development, design database structure, and identify format and metadata requirements.

Deliverable: Electronic text file including description of database structure Expected Completion: Sep 07

Responsible Party: USGS

1.2 Acquire available data sets including spatial datasets such as the 1:24,000 National Hydrography Dataset (NHD) and Delaware Basin NAWQA land use and other coverages.

Deliverable: Electronic database files

Expected Completion: Nov 07

Responsible Party: USGS; DRBC will provide reservoir physical and operational data (including elevation, storage, area of the pool, dam elevation and length, outlet capacity tables, pool levels for operation (top of flood, top of con, top of power, inactive, etc) and release objective and constraints) and diversion data (including demand and conduit capacity).

1.3 Populate and update working database and spatial database, fill data gaps using appropriate procedures.

Deliverable: Electronic database files Expected Completion: Jan 08 Responsible Party: USGS 1.4 Quality assure and maintain the database, incorporate new datasets from modeling tasks, or from outside efforts

Deliverable: Electronic database files Expected Completion: Jan 09 Responsible Party: USGS

Task 2 – Rainfall/Runoff Model Development:

The USGS Precipitation Runoff Modeling System (PRMS) will be used for the rainfall/runoff model component (Leavesley and others, 1983). PRMS is a modular-design, deterministic, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on streamflow (Leavesley and others, 1983; Leavesley and Saindon, 1995).

Geospatial datasets for the rainfall/snowmelt/runoff model component using the USGS Precipitation Runoff Modeling System (PRMS) include:

raster (e.g.: NEXRAD) precipitation and gage precipitation air temperature solar radiation (estimated where unavailable) digital elevation model (DEM) hydrologic response units (sub-watersheds) stream locations land use

Description of Subtasks:

2.1 Construct pilot watershed PRMS model for part of Delaware River Basin

Deliverable: Presentation of pilot model construction and preliminary results for the East and West Branches of the Delaware River, electronic datafiles for use in other model components Expected Completion: Nov 07 Responsible Party: USGS

2.2 Construct full Delaware River Basin PRMS model above Trenton

Deliverable: Electronic model files Expected Completion: Feb 08 Responsible Party: USGS

2.3 Calibrate and verify PRMS model discharges using three recent high-flow events

Deliverable: Electronic model files Expected Completion: Mar 08 Responsible Party: USGS

2.4 Construct, calibrate and verify PRMS model for Schuylkill Basin

Deliverable: Electronic model files Expected Completion: Apr 08 Responsible Party: USGS

2.5 Construct, calibrate and verify PRMS model for Christina Basin

Deliverable: Electronic model files Expected Completion: May 08 Responsible Party: USGS

Task 3 – Reservoir Simulation and Flow Routing – (HEC-ResSim):

HEC will lead development and application of HEC-ResSim for simulation of reservoirs and flow routing. HEC-ResSim (USACE, 2007) was developed to assist in planning studies for evaluating proposed reservoirs in a system and to assist in sizing the flood control and conservation storage requirements for each project. HEC-ResSim will be used to determine the influence of major reservoirs on streamflow in the basin and evaluate selected alternative reservoir release rules to mitigate downstream flooding.

HEC will coordinate with the DRBC, USGS and NWS in the creation of a HEC-ResSim model of the Delaware River Basin. See Appendix A for a list of the reservoirs to be modeled.

Description of Subtasks:

3.1. Gather and analyze data required for flow-routing and reservoir modeling. These data include:

- time-series data (computed inflow and incremental local flow hydrographs from PRMS, observed flow hydrographs, observed reservoir pool elevations and releases and the associated computed reservoir inflows, etc.) for the three major flood events that have occurred within the last 4 years,
- physical and operational reservoir data including reservoir pool definition (elevation-storage-area tables), outlet capacity curves, hydropower plant data (outflow and generation capacities, efficiency, losses, etc), operational zones, minimum and maximum release requirements, etc.,
- rating curves at each stream gage location, and
- routing reach parameters from existing NWS forecasting models.

Other resources that will be needed include reservoir regulation manuals or other descriptions of the current reservoir operational objectives and constraints, and geo-referenced map files of the Delaware River Basin including a rivers and streams map file, a lakes map file that identifies the reservoir locations and extents, and, if available, a watershed boundary map file that may include the sub-basin delineations, a stream gage locations map file, and a state boundaries map file.

Deliverable: Electronic data files Expected Completion: Jan 08

Responsible Party: HEC, with data from DRBC and USACE Philadelphia District

3.2. Develop a model schematic that identifies the key locations in the watershed. Key locations include reservoirs, gage locations, control points, forecast points, and any other locations that are needed as data transfer points between the PRMS model and the HEC-ResSim model or for information for the analysis of results. Geo-referenced map files (identified in step 1) will be used as the background of the model schematic and for delineation of the stream alignment (the framework or skeleton upon which the model schematic is created). The map files will be obtained from and/or shared with the PRMS modelers so that both models will use the same units and spatial transformation.

Deliverable: Model schematic map (digital) and definitions (text file)

Expected Completion: Feb 08

Responsible Party: HEC

3.3. HEC, in cooperation with USGS, and in consultation with NWS, will evaluate the use of several alternative approaches for flow routing in the main channel and major tributaries of the Delaware River. HEC-ResSim contains seven methods for routing streamflow (Coefficient, Muskingum, Muskingum-Cunge 8-pt Channel, Muskingum-Cunge Prismatic Channel, Modified Puls, SSARR, and Working R&D Routing), each method with its own set of routing parameters. In addition, the NWS variable lag & K routing method will be incorporated into HEC-ResSim so that existing operational parameters developed by NWS can be used, where applicable.

Deliverable: Updated executables for HEC-ResSim with NWS flow routing Expected Completion: Nov 07 Responsible Party: HEC, with input from NWS

3.4. Define the physical and operational data for each major reservoir in the basin. Physical reservoir data include: reservoir pool storage definition, dam elevation and length, outlets and their release capacities, and power plant data (if applicable). Defining the operational data includes specifying the operation zones or levels, the rules that constrain the releases for each zone, and a release allocation strategy that indicates how the releases will be allotted to the available outlets.

Deliverable: Datasets for reservoir simulation with HEC-ResSim

Expected Completion: Apr 08

Responsible Party: HEC, in cooperation with DRBC and input from USACE Philadelphia District

3.5. For each river junction that will receive incremental local inflow (i.e., subbasin runoff from hydrologic model), identify the source and an appropriate ratio (usually 1.0). In addition to key control point locations, the NWS forecast locations and USGS gage locations will be identified and included as junctions. Discharge to stage conversion at relevant locations will be computed from available rating curves.

Deliverable: Datasets for local inflow in HEC-ResSim and table of ratios Expected Completion: Apr 08 Responsible Party: HEC, in consultation with USGS

3.6. Demonstration of the model for the "pilot" basin will be done by simulation of three selected highflow events using observed (flow and reservoir elevation & releases) datasets from NWS, USGS, and USACE Philadelphia District.

Deliverable: Electronic model files Expected Completion: Nov 07 Responsible Party: HEC

3.7. Verification of the models for the Delaware Basin to Trenton, the Schuylkill Basin, and the Christina Basin will be done by simulation of three selected high-flow events using observed (flow and reservoir elevation & releases) datasets from NWS, USGS, and USACE Philadelphia District. A single alternative will be developed to represent the current conditions and operations in the watershed. It is expected to be the basis for future modeling efforts by the DRBC.

Deliverable: Electronic model files Expected Completion: Jun 08 Responsible Party: HEC

Task 4 – Integration of the model components into the Modular Modeling System (MMS):

The Modular Modeling System (MMS) (Leavesley and others, 1996) is an open-source computer software system developed to (1) provide the integrated software environment needed to develop, test, and evaluate physical-process algorithms; (2) facilitate integration of user-selected algorithms into operational physical-process models; and (3) provide a common framework in which to apply historic or new models and analyze their results. MMS uses a library that contains modules for simulating a variety of physical processes (Leavesley and others, 1996). The MMS will be used to link all simulation models utilized in the system to a common database (Task 1) and to a graphical user interface (Task 5) for user interactions and the analysis of simulation results. This will provide a database-centered approach to support model applications and analysis. PRMS is currently incorporated in MMS, and interfaces will be developed to incorporate HEC-ResSim complete with the newly integrated flow routing algorithms into

MMS, as needed. Data interfaces for DSS format data, used by HEC-ResSim, have already been developed for MMS. USGS will lead this task.

Description of Subtasks:

4.1. Construct interfaces to prepare model input from common database

Deliverable: Updated MMS files Expected Completion: Nov 07 Responsible Party: USGS

4.2. Construct interfaces to read model component output and convert to common database structure

Deliverable: Updated MMS files Expected Completion: Nov 07 Responsible Party: USGS

4.3. Construct interfaces to link output from one model component to input for another model component. Such links include:

- discharge output from PRMS linked to reservoir inflow for HEC-ResSim
- incremental local flow from PRMS linked to flow routing in HEC-ResSim

Deliverable: Updated MMS files Expected Completion: Nov 07 Responsible Party: USGS, in consultation with HEC

4.4. Construct interfaces to prepare model results for graphical display in the common database format

Deliverable: Update MMS and GUI tool files Expected Completion: Jul 08 Responsible Party: USGS

Task 5 – Graphical User Interface (GUI) Development:

A graphical user interface (GUI) that will enable a user to modify input data, apply the linked flood analysis model, and analyze the results will be developed by USGS. A user's guide explaining how to use the GUI and documenting the capabilities and functionality of the flood analysis model will be written. The GUI will:

- Package the rainfall/runoff, reservoir simulation, and flow routing model components into a single management tool to provide the technical support for evaluating potential flood operating scenarios.
- Have a pre-processor graphical user interface to facilitate alternative flood scenario simulations by incorporating the following;
 - 1. User friendly input for climatic data to facilitate simulation of historic flood events, snowmelt or other user defined scenarios.
 - 2. The capability to simulate single or multiple storms over a 10-day period.
 - 3. The functionality to allow the user to simulate flood events under varied reservoir pool void and operating conditions.
 - 4. The functionality to allow the user to change predefined operating rules of existing reservoirs.
- Have post-processing capabilities to display:
 - 1. A selectable map of the basin showing the reservoirs and forecast points.
 - 2. Graphical display of the hydrograph for USGS gaging stations and co-located NWS flood forecast points, including a display of water elevation showing the stream cross section for the gage location where available.

 Provide other options, such as historic rainfall and snowmelt event hydrographs at gaging stations and NWS forecast points for selection by the user to compare to user generated hydrographs using different reservoir operation scenarios.

Description of Subtasks:

5.1. Modify existing GUI for pilot application

Deliverable: Updated GUI tool files Expected Completion: Nov 07 Responsible Party: USGS

5.2. Design and program custom DRBC user input interface

Deliverable: Electronic GUI files Expected Completion: May 08 Responsible Party: USGS, in consultation with DRBC

5.3. Design and program custom DRBC graphical output components of GUI

Deliverable: Electronic GUI files Expected Completion: May 08

Responsible Party: USGS, in consultation with DRBC

5.4. Revise and improve GUI input and output components based on advisory input from DRBC and others

Deliverable: Final GUI electronic files Expected Completion: Jul 08 Responsible Party: USGS

Implementation Strategy

The implementation strategy includes an initial focus on a flood analysis model for the East and West Branches of the Delaware River. This "pilot basin" approach will avoid late-stage incompatibility and integration issues between model components and provide DRBC and advisors with an opportunity for timely input on the final basin-wide approach.

A coordination meeting of the USGS and HEC modelers and a DRBC representative will be held at the onset of the project to identify the key locations (subtask 3.2) and to establish a naming convention for these locations and other model elements. Both the pilot basin and the overall watershed will be addressed.

Project progress and plans will be communicated via scheduled monthly teleconferences and project milestones which will involve face-to-face meetings among project participants.

- **Milestone 1** will occur about 4 months after the agreement is signed (Nov 07) and will involve a presentation of the integrated model, including rainfall and snowmelt runoff, reservoir simulation, and flow routing for the selected "pilot" basin. After successful completion of this milestone, including an advisory peer review, the model will be expanded to the entire study area.
- Milestone 2 will be 11 to 13 months into the project (Aug 08). It is anticipated the Delaware Basin model will be completed and discussion will focus on calibration and operation of the model and details associated with the products.
- **Milestone 3** will occur 18 months after the project start (Jan 09) and will include presentation of model results and product deliverable.

Products:

A joint USGS/HEC Report will be written that will document the flood analysis model development, including the rainfall/runoff, reservoir simulation, and flow routing components. This final report will also present results of selected applications to evaluate the impact of reservoir operations on flood mitigation. A users' guide will be written and included as an appendix of the joint final report. USGS will prepare an Open-File report on development of the rainfall/runoff model and documentation of the model database. HEC will prepare a report on the reservoir modeling and flow routing, focusing primarily on the aspects or features that subsequent modelers will need to be aware of as further alternatives are developed. At least one journal article or technical conference presentation will be written describing the integrated model of runoff, stream flow routing, and reservoir storage and releases in the Delaware River Basin.

USGS and HEC will deliver and install the flood analysis model, with all necessary input files and software components, on DRBC computer systems, and train DRBC staff in its operation. USGS and HEC will prepare presentations suitable for delivery to the public that describe model development, calibration, verification, and results of simulation of historic high flow events such as the floods of September 2004, April 2005, and June 2006.

In summary, project products will include:

- Documentation of the model development, model assumptions, model database, and model calibration and verification in a joint USGS/HEC report (Draft in Dec 08).
- A user's guide for running the flood analysis model. The user's guide will document the capabilities and functionality of the tool. The user's guide will be included in the final report (Draft in Dec 08).
- A USGS Open-File report on details of rainfall/runoff modeling and the model database (Draft in Jul 08).
- A HEC report on reservoir modeling and flow routing (Draft in Jul 08).
- Journal article or technical conference presentation (Draft in Jan 09).
- Delivery of the model in a package that will allow modification, additional simulation, expansion, and distribution by DRBC. USGS products are generally public domain. HEC-ResSim software is free and models developed using these tools can be used by anyone. (Initial version Jul 08, with ongoing updates).
- Development and, if requested, delivery of public presentations for DRBC on modeling results (Dec 07, Aug 08, Jan 09).

References:

- Chepiga, Mary; Colarullo, S.J.; and Fischer, J.M., 2004, Preliminary analysis of estimated total nitrogen and total phosphorus loads and factors affecting nutrient distribution within the Delaware River Basin [abs.], in Proc. of the American Water Resources Assoc. 2004 Spring Specialty Conf. - Geographic Information Systems (GIS) and Water Resources III: American Water Resources Assoc., May 17-19, 2004, Nashville, Tenn.
- Fischer, J.M., Riva-Murray, Karen, Hickman, R.E., Chichester, D.C., Brightbill, R.A., Romanok, K.M., and Bilger, M.D., 2004, Water quality in the Delaware River Basin, Pennsylvania, New Jersey, New York, and Delaware, 1998-2001: USGS Circular 1227, 38 p.
- Flippo, H. N., Jr. and Madden, T. M., Jr., 1994, Calibration of a streamflow-routing model for the Delaware River and its principal tributaries in New York, New Jersey, and Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 93-4160, 54 p.
- Hydrologic Engineering Center, 2007, HEC-ResSim, Reservoir System Simulation, User's Manual Version 3.0: U.S. Army Corps of Engineers, Report CPD-82, Davis, Calif., 512 p.
- HydroLogics, Inc., 2002, Modeling the Delaware River Basin with OASIS, Prepared for the Delaware River Basin Commission.
- Leavesley, G.H., Lichty, R.W., Troutman, B.M., and Saindon, L.G., 1983, Precipitation-runoff modeling system--User's manual, USGS Water Resources Investigation Rep. 83-4238, 207 p.
- Leavesley, G.H., and Stannard, L.G., 1995. The precipitation-runoff modeling system—PRMS, *in* Singh V.P. (ed.), Computer Models of Watershed Hydrology, Water Resources Publications: Highlands Ranch, CO; p. 281–310.
- Leavesley, G.H., Restrepo, P.J., Markstrom, S.L., Dixon, M., and Stannard, L.G., 1996a, The Modular Modeling System (MMS): User's Manual, USGS Open-File Report 96-151, 142 p.
- Leavesley, G.H., Markstrom, S.L., Brewer, M.S., and Viger, R.J., 1996b, The modular modeling system (MMS)—the physical process modeling component of a database-centered decision support system for water and power management. *Water, Air, and Soil Pollution* **90**: 303–311.
- National Weather Service-Middle Atlantic River Forecast Center, 2006, Model simulations for the Upper Delaware River Basin flooding, 7 p. http://www.state.nj.us/drbc/Flood Website/NWSResSimRPTAug2006.pdf
- National Weather Service, 2007 (accessed online), National Weather Service River Forecast System (NWSRFS) User Manual: http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/htm/xrfsdocpdf.php
- Quinodoz, H.A., 2006, Reservoir operations and flow modeling to support decision making in the Delaware River Basin: Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract H41D-0441.
- U.S. Army Corps of Engineers, 1984, Delaware River Basin Survey Report, 83 p., appendices.
- U.S. Army Corps of Engineers, 2007 (accessed online), HEC-ResSim: <a href="http://www.hec.usace.army.mil/software/hec-ressim/hecressim/h
- Watson, K.M., Reiser, R.G., Nieswand, S.P., and Schopp, R.D., 2005, Streamflow characteristics and trends in New Jersey, water years 1897-2003: U.S. Geological Survey Scientific Investigations Report 2005-5105, 131 p.
- Zagona, E.A., Fulp, T.J., Goranflo, H.M., and Shane, R.M., 1998, RiverWare: A general river and reservoir modeling environment: Proceedings of the First Federal Interagency Hydrologic Modeling Conference, Las Vegas, Nevada, April 19-23, 1998, pp. 5-113-120.

Budget:

Total (gross) costs by Task are shown in Table 1.

Table 1: Summary of estimated budget (in gross dollars) by Task.

Tasks	Total Cost
Database Development	\$80,000
Rainfall/Runoff Model Development	\$220,000
Reservoir Simulation and Flow Routing Model Development	\$209,000
Model Integration and GUI Tool Development	\$35,000
Products & Management	\$191,000
NOAA-NWS In-kind services (divided	\$30,000
among proj. tasks)	(estimated value)
Total	\$765,000

Funds to conduct the proposed work will be provided by DRBC with additional funds and in-kind support from USGS and USACE, and in-kind support by NWS. USGS funds would come from the Federal-State Cooperative Program and are subject to the availability of funds. NWS staff availability may be affected by operational needs during hydrologic events. Funding sources for the project are listed in table 2.

Table 2: Summary of estimated funding (in gross dollars) (¹USGS contribution is subject to availability of Federal-Cooperative Program funds; ² scheduling of NWS in-kind support is subject to staff availability due to hydrologic events; ³Estimated monetary value for NOAA NWS's in-kind services provided; ⁴Proposed cost-sharing agreement between DRBC and USACE)

Agencies	Total
DRBC	\$500,000
USGS Match ¹	\$100,000
& in-kind	\$35,000
NOAA's NWS in-kind 2 (about $\frac{1}{3}$ FTE)	\$30,000 ³
USACE ⁴	\$100,000
Total contribution	\$765,000

The project will be completed 18 months from the signing of the Joint Funding Agreement. **Project Timeline**

60, 18 Rpt Jan 17 Dec 16 Nov 15 ö 14 Sep **Basin Model Complete** Pres. 13 Aug Months after agreement is signed 2008 12 ٦ſ 1 ηυ 10 May Apr თ Mar ω Feb ~ Jan ശ Pres "PILOT" Dec ഹ Nov 4 2007 ო Oct Sep 2 Aug ~ Responsible Agency USACE USGS USACE USACE USGS USGS NSGS USGS NSGS Reservoir Sim. Flow Routing Model Develop. 1. Database Development 5. GUI Tool Development Rainfall/Runoff Model Implementation Strategy Product prep./delivery TASKS 4. Model Integration Development ю ц сі

Table 3: Timeline for project (💹 indicates approximate timing of review meetings w/ DRBC, USACE, and USGS)

Figure 1: Map of Delaware River Basin showing major reservoirs (DRBC, 2007)

Exhibit A1 - The Delaware River Basin Model(s)

The Delaware River Basin extends into four states along northeast coast of the U.S. The river's headwaters are primarily in New York and Pennsylvania and the lower basin covers parts of New Jersey and Delaware. The river ends at the Delaware Bay which flows into the Atlantic Ocean, the tidal influence of which extends up river as far as Trenton, NJ.

The DRBC has identified three major subbasins of the Delaware River to be represented by the hydrologic and reservoir simulation model(s): 1) the middle and upper portion of the Delaware River Basin ending at Trenton; 2) the Schuylkill River basin ending at the confluence with the Delaware River; and, 3) the Christina River Basin ending at its confluence with the Delaware River.

A list of reservoirs that exist within the three basins was provided by the DRBC (see Table A1-1). The list includes a total of 26 reservoirs, 15 of which have been identified to be of primary interest for the study. 8 reservoirs are of secondary interest, but funding limitations precludes them from being included in the reservoir operations model. The remaining 3 reservoirs were identified as being located in small sub-basins that are not modeled as part of this study.

	RESERVOIR *, **	PURPOSE ¹	STORAGE (I	MG)	LOCATION
			WS/WSA/P	FL	STREAM, COUNTY, STATE
			total usable		
		PRIMARILY	Y WATER SUP	PLY RE	ESERVOIRS
1	Penn Forest (2) D	WS	6,510	-	Wild Creek; Carbon, PA
2	Wild Creek (2) D	WS	3,910	-	Wild Creek; Carbon, PA
3	Still Creek (2) S	WS	2,701	-	Still Creek; Schuylkill, PA
4	Ontelaunee (2) S	WS	3,793	-	Martins Creek; Berks, PA
5	Green Lane (2) S	WS	4,376	-	Perkiomen Creek; Montgomery, PA
	Geist (nw)	WS	3,512	-	Crum Creek; Delaware, PA
6	Edgar Hoopes (2) C	WS	2,199	-	Trib. of Red Clay Creek; New Castle, DE
	Union Lake (nw)	WS	3,177	-	Maurice River; Cumberland, NJ
7	Hopatcong (2) D	WS ²	5,995	-	Musconetcong River; Sussex, Morris, NJ
8	Nockamixon (1) D	WS ³	11,990	-	Tohickon Creek; Bucks, PA
	Subtotal:		48,164		
	NEW YORK CI	TY RESERVOI	RS, WATER SU	PPLY A	AND FLOW AUGMENTATION
9	Cannonsville (1) D	WS, WSA	98,400	-	W. Br. Delaware River; Delaware, NY
10	Neversink (1) D	WS, WSA	35,581	-	Neversink River; Sullivan, NY
11	Pepacton (1) D	WS, WSA	147,926	-	E. Br. Delaware River; Delaware, NY
	Subtotal:		281,907		
	НҮ	DROELECTRI	C POWER GEN	ERATI	ON RESERVOIRS
12	Lake Wallenpaupack (1) D	Р	29,813	-	Wallenpaupack Creek; Wayne, PA
13	Mongaup System (1) D				
14 15	Resv's Rio, Toronto, & Swinging Bridge	Р	15,314	-	Mongaup River; Sullivan, NY
	Subtotal:		45,127		

Table A1-1 – Reservoirs in the Delaware River Basin: Purpose, Capacity, and Location DRBC 3/21/07

Table A1-1 – Reservoirs in the Delaware River Basin: Purpose, Capacity, and	Location DRBC 3/21/07
CONTINUED	

	RESERVOIR *, **	PURPOSE ¹	STORAGE	E (MG)	LOCATION
			WS/WSA/P	FL	STREAM, COUNTY, STATE
			total usable		
	MULTIPURPOSE OR FL	OOD LOSS REDU	UCTION RESEI	RVOIRS	
16	Prompton (1) D	FL	none	6,614	W. Br. Lackawaxen River; Wayne, PA
17	Beltzville (1) D	WSA, FL	12,978	8,797	Pohopoco Creek; Carbon, PA
18	Marsh Creek (1) C	WS,WSA,FL ⁵	4,040	1,160	Marsh Creek; Chester, PA
	Chambers Lake (2) (Hibernia Dam)	WS,WSA	383	-	Birch Run; Chester, PA
19	Blue Marsh (1) S	WSA,FL	4,757	10,554	Tulpehocken Creek; Berks, PA
	Lake Galena (nw)	WS,FL	1,629	1,127	N. Br. Neshaminy Creek; Bucks, PA
20	Francis E. Walter (1) D	FL	none	35,190	Lehigh River; Luzerne, Carbon, PA
21	Jadwin (1) D	FL	none	7,983	Dyberry Creek; Wayne, PA
22	Merrill Creek (1) D	WSA	15,640	-	Merrill Creek; Hunterdon, NJ
	Subtotal:		39,427	71,425	
	Total Storage		414,625		

¹ Purposes:

WS-Water supply primarily for local use.

WSA- Water supply primarily for flow augmentation to replace consumptive uses and meet instream needs.

FL- Flood loss reduction.

(Many of these reservoirs are also designed to enhance fish and wildlife habitat and increase recreational opportunities).

P- Hydroelectric Power Generation

- ² Used for water supply only on an emergency basis
- ³ Used for flow maintenance during drought emergencies
- * The number in the ()s indicates modeling priority.** The letter indicates major sub-basin:
 - D = Delaware, S = Schuylkill, C = Christina
 - nw: Reservoir not located within modeled sub-basins
- ⁴ Authorized storage; 28,200 acre-feet to spillway crest
 ⁵ Used for flow maintenance in Brandywine Creek

Table A1-2 – Simplified list of the Priority 1 and 2 reservoirs in the Delaware River Basin listed by majorsubbasin.The Priority 1 reservoirs will be modeled, the Priority 2 reservoirs will not.

Delaware Basin above Trenton	Schuylkill Basin	Christina Basi	n
Priority 1 (reservoirs to be modeled)		1	
Nockamixon	Blue Marsh	Marsh Creek	
Cannonsville (NY)			
Neversink (NY)			
Pepacton (NY)			
Lake Wallenpaupack			
Mongaup – <i>Rio</i>			
Mongaup – <i>Toronto</i>			
Mongaup - Swinging Bridge			
Prompton			
Beltzville			
Francis E Walter			
Jadwin			
Merrill Creek			
Basin Total = 13	1		1
Priority 2 (reservoirs for future consideration)			
Penn Forest	Still Creek	Edgar Hoopes	
Wild Creek	Green Lane	Chambers Lake	
Hopatcong	Ontelaunee	(Hibernia Dam)	
Basin Total = 3	3		2
The following reservoirs will not be modeled			
Geist			
Union Lake			
Lake Galena			

Appendix B Model Data

The data used in the model to define the reservoirs, reaches, and junctions are tabulated below. These tables do not include operational information which was summarized in Chapter 4, nor is the input and observed time-series data included. This data can be accessed directly from the model.

B.1 Reservoir Pool and Outlet Data

B.1.1 Upper Basin Reservoirs

Cannonsville

Cann	onsville - Po	ool		ille - Release orks	Cannon Spilly		Cannonsvill Diver	rsion
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	Max capacity (cfs)	Elevation (ft)	Outflow (cfs)	Elevation (ft)	Max Capacity (cfs)
1035	1534.4	500	1030	1032	1150	0	1040	618.9
1040	3130.3	730	1035	1141	1150.1	21	1050	634.4
1045	6966.4	830	1040	1217	1150.2	60	1060	649.8
1050	11324	940	1045	1295	1150.3	112	1070	665.3
1055	16326	1070	1050	1368	1150.4	175	1080	680.8
1060	22096	1240	1055	1439	1150.5	247	1090	696.2
1065	28786	1450	1060	1510	1150.6	329	1100	711.7
1070	36581	1670	1065	1566	1150.7	419	1110	727.2
1075	45419	1880	1070	1631	1150.8	516	1120	734.9
1080	55301	2070	1075	1691	1150.9	620	1130	750.4
1085	66073	2250	1080	1750	1151	731	1140	758.1
1090	77950	2470	1085	1803	1151.2	973	1150	773.6
1095	90992	2700	1090	1857	1151.4	1240		
1100	105232	2940	1095	1910	1151.6	1530		
1105	120423	3120	1100	1960	1151.8	1840		
1110	136565	3310	1105	2014	1152	2180		
1115	153628	3480	1110	2060	1152.2	2530		
1120	171520	3650	1115	2109	1152.4	2910		
1125	190271	3830	1120	2160	1152.6	3300		
1130	209789	3980	1125	2202	1152.8	3720		
1135	230136	4170	1130	2243	1153	4150		
1140	251311	4350	1135	2285	1153.5	5310		
1145	273499	4570	1140	2331	1154	6570		
1150	296853	4820	1145	2371	1154.5	7930		
1155	321619	5070	1150	2421	1155	9390		
1160	347704	5400			1155.5	10940		

Appendix B - Model Data

Cann	onsville - Po	ool		ville - Release Vorks	Cannons Spillv			lle - Tunnel- ersion Max
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	Max capacity (cfs)	Elevation (ft)	Outflow (cfs)	Elevation (ft)	Capacity (cfs)
1163	363356	5600			1156	12570		
1175	440000	6500			1156.5	14280		
					1157	16080		
					1157.5	17950		
					1158	19910		
					1158.5	22550		
					1159	25780		
					1159.5	29400		
					1160	33380		
					1160.5	37650		
					1161	42220		
					1161.5	47050		
					1162	52120		
					1162.5	57440		
					1163	62970		
					1175	250000		

Pepacton

Elevation (ft)Storage (ac-ft)Area (ac-ft)Elevation (ft)Max (cfs)Elevation (ft)Outflow (cfs)Elevation (ft)Max Capacity (cfs)11456137.810001140367128001152753.5115210772136011453871280.1701160762.8116022188158011504061280.22001170773.6117039404188011554241280.33751180789.1118059720216011604411280.45851190796.8119083228250011654581280.58251200804.5119596148266011704741280.610951210820.51200109743280011754891280.713951220835.51205124106295011805041280.817151230843.21210139205310011855191280.920651240851.9121515500932301190533128124351260881.91225188798356012005611281.441301270889.61230206812372012055741281.651001280897.41235225747390012105871281.861401280 <td< th=""></td<>
115210772136011453871280.1701160762.8116022188158011504061280.22001170773.6117039404188011554241280.33751180789.1118059720216011604411280.45851190796.8119083228250011654581280.58251200804.5119596148266011704741280.6109512108201200109743280011754891280.713951220835.51205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.21220171551340011955471281.232451260881.91225188798356012005611281.441301270889.61230206812372012055741281.651001280897.4
116022188158011504061280.22001170773.6117039404188011554241280.33751180789.1118059720216011604411280.45851190796.8119083228250011654581280.58251200804.5119596148266011704741280.6109512108201200109743280011754891280.713951220835.51205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.21220171551340011955471281.232451260881.91225188798356012005611281.441301270889.61230206812372012055741281.651001280897.4
117039404188011554241280.33751180789.1118059720216011604411280.45851190796.8119083228250011654581280.58251200804.5119596148266011704741280.6109512108201200109743280011754891280.713951220835.51205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.21220171551340011955471281.232451260881.91225188798356012005611281.441301270889.61230206812372012055741281.651001280897.4
118059720216011604411280.45851190796.8119083228250011654581280.58251200804.5119596148266011704741280.6109512108201200109743280011754891280.713951220835.51205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.21220171551340011955471281.232451260881.91225188798356012005611281.441301270889.61230206812372012055741281.651001280897.4
119083228250011654581280.58251200804.5119596148266011704741280.6109512108201200109743280011754891280.713951220835.51205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.21220171551340011955471281.232451260881.91225188798356012005611281.441301270889.61230206812372012055741281.651001280897.4
119596148266011704741280.6109512108201200109743280011754891280.713951220835.51205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.21220171551340011955471281.232451260881.91225188798356012005611281.441301270889.61230206812372012055741281.651001280897.4
1200109743280011754891280.713951220835.51205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.21220171551340011955471281.232451260881.91225188798356012005611281.441301270889.61230206812372012055741281.651001280897.4
1205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.21220171551340011955471281.232451260881.91225188798356012005611281.441301270889.61230206812372012055741281.651001280897.4
1210139205310011855191280.920651240851121515500932301190533128124351250874.21220171551340011955471281.232451260881.91225188798356012005611281.441301270889.61230206812372012055741281.651001280897.4
121515500932301190533128124351250874.21220171551340011955471281.232451260881.91225188798356012005611281.441301270889.61230206812372012055741281.651001280897.4
1220171551340011955471281.232451260881.91225188798356012005611281.441301270889.61230206812372012055741281.651001280897.4
1225188798356012005611281.441301270889.61230206812372012055741281.651001280897.4
1230 206812 3720 1205 574 1281.6 5100 1280 897.4
1235 225747 3900 1210 587 1281.8 6140
1240 245725 4100 1215 599 1282 7255
1245 266686 4310 1220 612 1282.2 8440
1250 288628 4500 1225 624 1282.4 9695
1255 311492 4700 1230 636 1282.6 11015
1260 335736 4900 1235 647 1282.8 12390
1265 360594 5100 1240 659 1283 13830
1270 386372 5300 1245 670 1283.5 17700
1275 413072 5490 1250 681 1284 21910
1280 440998 5690 1255 692 1284.5 26450
1285 469846 5870 1260 703 1285 31300
1290 498693 6050 1265 713 1304 200000
1304 600000 6700 1270 724
1275 734
1280 744

Neversink

Pepacton - Pool Pepacton - Release Works Pepacton - Spillway Diversion Kax (ft) Xorage (ac-ft) Area (ac-ft) Area (acre) Max Elevation (ft) Outflow (cfs) Elevation Max Elevation (ft) Max Capacity (cfs) 1145 6137.8 1000 1140 367 1280 0 1152 753.5 1152 10772 1360 1145 387 1280.1 70 1160 762.8 1160 22188 1580 1150 406 1280.2 200 1170 773.6 1170 39404 1880 1155 424 1280.3 375 1180 789.1 1180 59720 2160 1160 441 1280.4 585 1190 796.8 1190 83228 2500 1165 458 1280.5 825 1200 804.5 1195 96148 2660 1170 474 1280.6 1095 1210 820.2 1205 124106
(ft)(ac-ft)(acre)Elevation (ft)(cfs)Elevation (ft)(cfs)(ft)(cfs)11456137.810001140367128001152753.5115210772136011453871280.1701160762.8116022188158011504061280.22001170773.6117039404188011554241280.33751180789.1118059720216011604411280.45851190796.8119083228250011654581280.58251200804.5119596148266011704741280.6109512108201200109743280011754891280.713951220835.51205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.2
11456137.810001140367128001152753.5115210772136011453871280.1701160762.8116022188158011504061280.22001170773.6117039404188011554241280.33751180789.1118059720216011604411280.45851190796.8119083228250011654581280.58251200804.5119596148266011704741280.6109512108201200109743280011754891280.713951220835.51205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.2
116022188158011504061280.22001170773.6117039404188011554241280.33751180789.1118059720216011604411280.45851190796.8119083228250011654581280.58251200804.5119596148266011704741280.6109512108201200109743280011754891280.713951220835.51205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.2
117039404188011554241280.33751180789.1118059720216011604411280.45851190796.8119083228250011654581280.58251200804.5119596148266011704741280.6109512108201200109743280011754891280.713951220835.51205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.2
118059720216011604411280.45851190796.8119083228250011654581280.58251200804.5119596148266011704741280.6109512108201200109743280011754891280.713951220835.51205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.2
119083228250011654581280.58251200804.5119596148266011704741280.6109512108201200109743280011754891280.713951220835.51205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.2
119596148266011704741280.6109512108201200109743280011754891280.713951220835.51205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.2
1200109743280011754891280.713951220835.51205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.2
1205124106295011805041280.817151230843.21210139205310011855191280.920651240851121515500932301190533128124351250874.2
1210139205310011855191280.920651240851121515500932301190533128124351250874.2
1215 155009 3230 1190 533 1281 2435 1250 874.2
1220 171551 3400 1195 547 1281.2 3245 1260 881.0
1220 1/1551 5700 1175 577 1201.2 5245 1200 001.7
1225 188798 3560 1200 561 1281.4 4130 1270 889.6
1230 206812 3720 1205 574 1281.6 5100 1280 897.4
1235 225747 3900 1210 587 1281.8 6140
1240 245725 4100 1215 599 1282 7255
1245 266686 4310 1220 612 1282.2 8440
1250 288628 4500 1225 624 1282.4 9695
1255 311492 4700 1230 636 1282.6 11015
1260 335736 4900 1235 647 1282.8 12390
1265 360594 5100 1240 659 1283 13830
1270 386372 5300 1245 670 1283.5 17700
1275 413072 5490 1250 681 1284 21910
1280 440998 5690 1255 692 1284.5 26450
1285 469846 5870 1260 703 1285 31300
1290 498693 6050 1265 713 1304 200000
1304 600000 6700 1270 724
1275 734
1280 744

B.1.2 Lackawaxen Basin Reservoirs

Prompton

1132

1133

5660

6021

357

366

Dwo	mpton - Poo	J	Promotor	- Main Intake	Prompton	- Snillwov	Prompton - Int	
Elevation	Storage	Area	Elevation	Outflow	Elevation	- Spinway Outflow	Elevation	Outflow
(ft)	(ac-ft)	(acre)	(ft)	(cfs)	(ft)	(cfs)	(ft)	(cfs)
1090	0	0	1125	0	1205	0	1122.8	0
1091	1	1	1126.2	80	1206	199.99	1122.9	5
1092	2	2	1127.5	200	1207	300	1122.92	6
1093	5	3	1128	300	1208	500	1123	8
1094	8	4	1128.5	450	1209	850	1123.06	9
1095	13	5	1129.5	700	1210	1250	1123.18	10
1096	18	6	1131	1100	1211	1850	1123.25	11
1097	25	7	1132.5	1400	1212	2450	1123.36	13
1098	32	8	1132.7	1550	1212.9	3000	1123.46	15
1099	41	9	1135	2500	1214.2	4000	1123.5	16
1100	50	10	1160	2900	1215.5	5000	1123.57	17
1101	63	16	1168.4	3050	1219	8000	1123.65	18
1102	82	22	1188.5	3400	1220.2	9000	1123.7	20
1103	107	28	1205	3650	1223	11800	1123.78	21
1104	138	34			1224.2	13000	1123.79	21
1105	175	40			1226	15000	1123.82	22
1106	219	48					1123.91	23
1107	271	56					1124.06	26
1108	331	64					1124.13	27
1109	399	72					1124.49	33
1110	475	80					1124.54	34
1111	562	93					1124.61	35
1112	661	106					1125	40
1113	774	119						
1114	899	132						
1115	1038	145						
1116	1192	164						
1117	1366	183						
1118	1558	202						
1119	1770	221						
1120	2000	240						
1121	2246	252						
1122	2504	264						
1123	2775	277						
1124	3058	290						
1125	3355	303						
1126	3661	310						
1127	3975	317						
1128	4296	325						
1129	4625	333						
1130	4962	341						
1131	5307	349						
1122	5660	257						

	mpton - Poo			Main Intake		1	1 - Spillway
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	Outflow (cfs)	Elevation (ft)		Outflow (cfs)
1134	(u e 11) 6392	375	(11)	(CIS)	(11)		(015)
1134	6771	384					
1135	7159	391					
1130	7553	398					
1137	7353	405					
1139	8364	413					
1140	8781	421					
1141	9205	428					
1142	9637	435					
1143	10075	442					
1144	10521	450					
1145	10975	458					
1146	11438	467					
1147	11909	476					
1148	12390	485					
1149	12880	495					
1150	13380	505					
1151	13888	512					
1152	14404	519					
1153	14926	526					
1154	15456	533					
1155	15992	540					
1156	16536	547					
1157	17086	554					
1158	17644	561					
1159	18208	568					
1160	18780	575					
1161	19359	583					
1162	19946	591					
1163	20541	599					
1164	21144	607					
1165	21755	615					
1166	22374	623					
1167	23001	631					
1168	23636	639					
1169	24279	648					
1170	24932	657					
1171	25593	665					
1172	26262	673					
1173	26939	681					
1174	27624	690					
1175	28319	699					
1176	29021	706					
1177	29731	713					
1178	30447	720					
1179	31171	727					
1180	31901	734					
1181	32639	741					

							Prompton -	Low L
	mpton - Poo		-	Main Intake	Prompton -		Int	ake
evation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	Outflow (cfs)	Elevation (ft)	Outflow (cfs)	Elevation (ft)	Outfl (cfs
1182	33383	748	()	()	()	()	()	(
1183	34135	755						
1184	34893	762						
1185	35659	702						
1186	36433	777						
1187	37213	784						
1187	38001	791						
1188	38795	791						
1109	39597	805						
1191	40405	812						
1192	41221	819						
1193	42043	826						
1194	42873	833						
1195	43709	840						
1196	44552	846						
1197	45402	853						
1198	46258	860						
1199	47122	868						
1200	47995	877						
1201	48876	886						
1202	49767	895						
1203	50666	904						
1204	51575	913						
1205	52492	922						
1206	53419	932						
1207	54357	943						
1208	55305	954						
1209	56265	965						
1210	57235	976						
1211	58216	986						
1212	59207	996						
1213	60209	1007						
1214	61221	1018						
1215	62245	1029						
1216	63278	1038						
1217	64321	1047						
1218	65373	1057						
1219	66435	1067						
1220	67507	1077						
1221	68588	1086						
1222	69679	1095						
1223	70778	1104						
1224	71886	1113						
1225	73005	1123						
1226	74133	1134						
1227	75273	1146						
1228	76425	1158						
1229	77589	1170						

Pro	mpton - Poo	1	Prompton -	Main Intake	Prompton - Spillway		Prompton - Low Level Intake	
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	Outflow (cfs)	Elevation (ft)	Outflow (cfs)	Elevation (ft)	Outflow (cfs)
1230	78765	1182						
1231	79952	1191						
1232	81148	1201						
1233	82354	1211						
1234	83570	1221						
1235	84796	1231						
1236	86031	1239						
1237	87274	1247						
1238	88585	1255						
1239	89784	1264						
1240	91053	1273						

Jadwin

Pro	mpton - Pool		Promptor Inta		Prompton -	Spillway		· Low Level ake
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	Outflow (cfs)	Elevation (ft)	Outflow (cfs)	Elevation (ft)	Outflow (cfs)
1090	0	0	1125	0	1205	0	1122.8	0
1091	1	1	1126.2	80	1206	199.99	1122.9	5
1092	2	2	1127.5	200	1207	300	1122.92	6
1093	5	3	1128	300	1208	500	1123	8
1094	8	4	1128.5	450	1209	850	1123.06	9
1095	13	5	1129.5	700	1210	1250	1123.18	10
1096	18	6	1131	1100	1211	1850	1123.25	11
1097	25	7	1132.5	1400	1212	2450	1123.36	13
1098	32	8	1132.7	1550	1212.9	3000	1123.46	15
1099	41	9	1135	2500	1214.2	4000	1123.5	16
1100	50	10	1160	2900	1215.5	5000	1123.57	17
1101	63	16	1168.4	3050	1219	8000	1123.65	18
1102	82	22	1188.5	3400	1220.2	9000	1123.7	20
1103	107	28	1205	3650	1223	11800	1123.78	21
1104	138	34			1224.2	13000	1123.79	21
1105	175	40			1226	15000	1123.82	22
1106	219	48					1123.91	23
1107	271	56					1124.06	26
1108	331	64					1124.13	27
1109	399	72					1124.49	33
1110	475	80					1124.54	34
1111	562	93					1124.61	35
1112	661	106					1125	40
1113	774	119						
1114	899	132						
1115	1038	145						
1116	1192	164						
1117	1366	183						
1118	1558	202						
1119	1770	221						
1120	2000	240						
1121	2246	252						
1122	2504	264						
1123	2775	277						
1124	3058	290						
1125	3355	303						
1126	3661	310						
1127	3975	317						
1128	4296	325						
1129	4625	333						
1130	4962	341						
1131	5307	349						
1132	5660	357						
1133	6021	366						
1134	6392	375						
1135	6771	384						

Pro	mpton - Pool	l		on - Main take	Prompton -	Spillway	Prompton - Int	Low Level
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	Outflow (cfs)	Elevation (ft)	Outflow (cfs)	Elevation (ft)	Outflow (cfs)
1136	7159	391	()	()	()	()	()	()
1137	7553	398						
1138	7955	405						
1139	8364	413						
1140	8781	421						
1141	9205	428						
1142	9637	435						
1143	10075	442						
1144	10521	450						
1145	10975	458						
1146	11438	467						
1147	11909	476						
1148	12390	485						
1149	12880	495						
1150	13380	505						
1151	13888	512						
1152	14404	519						
1153	14926	526						
1154	15456	533						
1155	15992	540						
1156	16536	547						
1157	17086	554						
1158	17644	561						
1159	18208	568						
1160	18780	575						
1161	19359	583						
1162	19946	591						
1163	20541	599						
1164	21144	607						
1165	21755	615						
1166	22374	623						
1167	23001	631						
1168	23636	639						
1169	24279	648						
1170	24932	657						
1171	25593	665						
1172	26262	673						
1173	26939	681						
1174	27624	690						
1175	28319	699						
1176	29021	706						
1177	29731	713						
1178	30447	720						
1179	31171	727						
1180	31901	734						
1181	32639	741						
1182	33383	748						
1183	34135	755						

Pro	mpton - Pool	l	Prompto Inta		Prompton	- Spillway		1 - Low Leve Itake
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	Outflow (cfs)	Elevation (ft)	Outflow (cfs)	Elevation (ft)	Outflow (cfs)
1184	34893	762						
1185	35659	770						
1186	36433	777						
1187	37213	784						
1188	38001	791						
1189	38795	798						
1190	39597	805						
1191	40405	812						
1192	41221	819						
1193	42043	826						
1194	42873	833						
1195	43709	840						
1196	44552	846						
1197	45402	853						
1198	46258	860						
1199	47122	868						
1200	47995	877						
1201	48876	886						
1202	49767	895						
1203	50666	904						
1204	51575	913						
1205	52492	922						
1206	53419	932						
1207	54357	943						
1208	55305	954						
1209	56265	965						
1210	57235	976						
1211	58216	986						
1212	59207	996						
1213	60209	1007						
1214	61221	1018						
1215	62245	1029						
1216	63278	1038						
1217	64321	1047						
1218	65373	1057						
1219	66435	1067						
1220	67507	1077						
1221	68588	1086						
1222	69679	1095						
1223	70778	1104						
1224	71886	1113						
1225	73005	1123						
1226	74133	1134						
1227	75273	1146						
1228	76425	1158						
1229	77589	1170						
1230	78765	1182						
1231	79952	1191						

Pro	mpton - Pool	l	Prompton - Main Intake		Prompton	- Spillway	Prompton - Low Level Intake		
Elevation (ft)			Elevation (ft)	Outflow (cfs)	Elevation (ft)	Outflow (cfs)	Elevatie (ft)	on Outflow (cfs)	
1232	81148	1201							
1233	82354	1211							
1234	83570	1221							
1235	84796	1231							
1236	86031	1239							
1237	87274	1247							
1238	88585	1255							
1239	89784	1264							
1240	91053	1273							

Lake Wallenpaupack

Lake Wa	llenpaupack	- Pool		allenpaupack - 'ipeline		npaupack - Gated pillway
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	Max capacity (cfs)	Elevation (ft)	Max capacity (cfs)
1145	0	0	1164.9	1200	1176	0
1150	20000	2300	1170	1400	1177.83	1000
1160	52000	4600	1180	1600	1178.9	2000
1162	61391	4690	1185	1750	1180.01	3250
1164	70996	4780	1189	1800	1181.16	4750
1166	80909	4880			1182.36	6500
1168	90975	4970			1183.61	8500
1170	101102	5060			1184.9	10750
1172	111229	5150			1186.23	13250
1174	121664	5240			1187.6	16000
1176	132098	5320			1189.01	19000
1178	142839	5400			1190.16	22250
1180	153580	5480			1190.69	25750
1182	164628	5560			1191.3	29500
1184	175676	5640			1191.98	33500
1186	186724	5720			1192.77	37750
1188	198079	5790			1194.38	42250
1190	209741	5840			1199.35	47618
1192	221402	5890				
1194	233371	5940				
1196	245340	6000				
1198	257615	6050				
1200	269584	6100				

B.1.3 Mongaup Basin Reservoirs

Toronto

Tor	onto - Pool		Toronto - U	Upper Gate	Toronto - I	lower Gate	Toronto - Spillway		
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	Max capacity (cfs)	Elevation (ft)	Max capacity (cfs)	Elevation (ft)	Max capacity (cfs)	
1165	0		1180	0	1146	0	1215	0	
1170	918.27		1180.5	50	1146.2	50	1215.5	80	
1175	2066.1		1181.2	75	1147	75	1216	180	
1180	3214		1182	100	1147.5	100	1216.5	300	
1185	5050.5		1182.5	125	1148.5	125	1217	440	
1190	7001.8		1183.5	150	1150	150	1217.5	610	
1195	9297.5		1184.5	175	1151.5	175	1218	800	
1200	11938		1186	200	1153.5	200	1218.5	1020	
1205	14922		1187	225	1155.3	225	1219	1250	
1210	18021		1188.5	250	1158	250	1219.5	1500	
1215	21350		1190.5	275	1160	275	1220	1750	
1220	25023		1192	300	1163	300	1220.5	2050	
1222.5	26860		1194	325	1166	325	1221	2350	
1225	28007		1198	375	1172.5	375	1221.5	2650	
1231	33250		1202.5	425	1180.5	425	1222	2950	
			1207	475	1189	475	1222.5	3250	
			1214.5	550	1203.5	550	1223	3600	
			1222.5	625	1219.5	625	1224	4300	
			1224	640	1223	640	1225	5000	

Swinging Bridge

Swingi	ng Bridge - I	Pool	0 0	g Bridge - ly Gated	Swinging Spillway Fla	ashboarded	Swinging Br Con	duit
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	Max capacity (cfs)	Elevation (ft)	Max capacity (cfs)	Elevation (ft)	Max capacity (cfs)
1010	229.57		1065	0	1065	0	1048	1570
1015	918.27		1065.5	300	1065.5	1100	1073	1570
1020	2295.7		1066	500	1066	2300		
1022	2754.8		1066.6	800	1066.6	3700		
1025	3673.1		1066.9	1000	1066.9	4300		
1030	5739.2		1067.5	1400	1067.5	5500		
1035	8034.9		1068	1800	1068	6500		
1040	10101		1068.5	2200	1068.5	7500		
1045	12856		1069	2750	1069	8350		
1048	14692		1069.5	3250	1069.5	9250		
1050	16070		1070	3900	1070	10000		
1055	19513		1070.5	4600	1070.5	10700		
1060	23646		1071	5500	1071	11200		
1065	28007		1071.5	6500	1071.5	11600		
1070	32979		1072	7600	1072	12000		
1072	34435		1072.1	7980	1072.1	12020		
1075	37420		1072.4	8840	1072.4	12160		
1080	41781		1072.5	9200	1072.5	12200		
			1073	10800	1073	12800		

Rio

	Rio - Pool		Rio - Dam	Spillwov
				Max
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	capacity (cfs)
720	0		810	0
730	344.35		810.5	1000
740	734.62		811	1600
750	1239.7		811.5	2700
755	1561.1		812	3400
760	1836.6		812.5	4300
765	2180.9		813	5500
770	2754.8		813.5	6800
775	3443.5		814	8200
780	4132.2		814.5	9600
785	5280.1		815	11250
790	6542.7		815.5	13000
798.5	9182.7		816	14500
805	11478		817	18100
810	13085		818	21800
815	15152		820	29800
821	19978		822	38500
			823	43000

Rio - Dam Cond	
Elevation (ft)	Max capacity (cfs)
810	870
815	870

B.1.4 Lehigh Basin Reservoirs

F.E. Walter

F.E.	Walter - Po	ol	F.E. Walter - Sys	Flood Control tem	F.E. Walte Spillv	
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	Max capacity (cfs)	Elevation (ft)	Outflow (cfs)
1245	0	0	1300	9600	1450	0
1246	2	1	1310	10500	1451	2000
1247	4	1	1320	11400	1452	4000
1248	5	2	1330	12000	1453	7000
1249	7	3	1340	12600	1454	12000
1250	9	4	1350	13050	1455	16000
1251	13	4	1360	13500	1456	22000
1252	18	4	1370	13950	1457	28000
1253	22	4	1380	14400	1458	35000
1254	26	5	1390	15000	1459	42000
1255	31	5	1400	15600	1460	50000
1256	38	6	1410	15900	1461	59000
1257	46	7	1420	16500	1462	68000
1258	53	8	1430	17100	1463	78000
1259	61	9	1440	17700	1464	88000
1260	68	10	1450	18300	1465	98000
1261	83	12			1466	109000
1262	98	14			1467	120000
1263	113	16			1468	132000
1264	128	18			1469	144000
1265	143	20			1470	156000
1266	166	21			1471	169000
1267	188	22			1472	180000
1268	211	23				
1269	233	24				
1270	256	25				
1271	286	27				
1272	316	29				
1273 1274	346 376	31 33				
1274	376 406	35				
1275	400	36				
1270	481	37				
1277	518	38				
1270	556	39				
1280	593	40				
1281	638	42				
1282	683	44				
1283	728	46				
1284	773	48				
1285	818	50				
1286	873	52				
1287	928	54				
1288	983	56				

F.E.	Walter - Po	പ
Elevation	Storage	Area
(ft)	(ac-ft)	(acre)
1289	1038	58
1290	1093	60
1291	1150	62
1292	1223	64
1293	1288	66
1294	1353	68
1295	1418	70
1296	1493	72
1297	1568	74
1298	1643	76
1299	1718	78
1300	1793	80
1300	1883	84
1301	1973	88
1302	2063	92
1303	2003	96
1304	2133	100
1305	2353	100
1300	2353 2463	104
1307	2403	112
1308	2683	112
1309	2083 2793	120
1310	2793	120
1311	3053	124
1312	3033	128
1313	3183	132
1314	3443	130
		140
1316	3593	
1317	3743	148
1318	3893	152
1319	4043	156
1320	4193	160
1321	4366	165
1322	4538	170
1323	4711	175
1324	4883	180
1325	5056	185
1326	5253	190
1327	5451	195
1328	5648	200
1329	5846	205
1330	6043	210
1331	6268	216
1332	6493	222
1333	6718	228
1334	6943	234
1335	7168	240
1336	7423	246
1337	7678	252

	Flood Control tem	F.E. Walte Spillv	
Elevation (ft)	Max capacity (cfs)	Elevation (ft)	Outflow (cfs)

F.E.	Walter - Po	ol		Flood Control tem	F.E. Walt Spill	
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	Max capacity (cfs)	Elevation (ft)	Outflow (cfs)
1338	7933	258				
1339	8188	264				
1340	8443	270				
1341	8733	278				
1342	9023	286				
1343	9313	200 294				
1344	9603	302				
1345	9893	310				
1346	10223	318				
1340	10533	326				
1348	10883	334				
1349	11213	342				
1349	11213	350				
1350	11343	361				
1351	11921	301				
1352	12298	372				
1353		383 394				
1354	13053 13431	394 405				
1355	13431	403				
1350	13803	410				
1357	14290	427				
1358	14728	438 449				
1359	15593	449				
1360	16085	400				
1361	16577	472				
1362	17069	485				
1363	17069	498 511				
1364	18053	524				
1365	18033	537				
1367	19164	549				
	19164 19720	549 562				
1368 1369						
1369	20275 20831	574 587				
1370	20831 21449	587 600				
1371						
	22068	612 625				
1373 1374	22686 23305	625 637				
1374	23305	650				
1375	23923 24598	660				
1376	24398 25273	670				
	25273 25948					
1378 1379		680 690				
	26623 27298					
1380	27298	700 710				
1381	28023					
1382	28748	720				
1383	29473 20108	730 740				
1384	30198	740 750				
1385	30923	750 760				
1386	31698	760		D 10		

F.E. Walter - Pool								
Elevation	Storage	Area						
(ft)	(ac-ft)	(acre)						
1387	32473	770						
1388	33248	780						
1389	34023	790						
1390	34798	800						
1391	35628	812						
1392	36458	824						
1393	37288	836						
1394	38118	848						
1395	38948	860						
1396	39838	872						
1397	40728	884						
1398	41618	896						
1399	42508	908						
1400	43398	920						
1400	44354	934						
1401	45310	949						
1402	46266	963						
1404	47222	978						
1405	48178	992						
1405	49194	1002						
1400	50210	1002						
1407	51226	1011						
1403	52242	1021						
1409	53258	1030						
1411	54338	1040						
1412	55418	1050						
1412	56498	1072						
1414	57578	1103						
1414	58658	1120						
1415	59818	1120						
1410	60978	1150						
1418	62138	1168						
1419 1420	63298	1184						
1420	64458 65705	1200						
1421	65705	1219						
1422	66953	1238						
1423	68200	1257						
1424	69448 70605	1276						
1425	70695	1295						
1426	72038	1314						
1427	73380	1333						
1428	74723	1352						
1429	76065	1371						
1430	77408	1390						
1431	78853	1412						
1432	80298	1432						
1433	81743	1456						
1434	83188	1478						
1435	84633	1500						

	Flood Control tem		F.E. Walte Spilly	
Elevation (ft)	Max capacity Elevation (ft) (cfs)		Elevation (ft)	Outflow (cfs)

				Flood Control	F.E. Walt	
F.E.	F.E. Walter - Pool		Sys	stem	Spill	way
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	Max capacity (cfs)	Elevation (ft)	Outflow (cfs)
1436	86188	1522				
1437	87743	1544				
1438	89298	1566				
1439	90853	1588				
1440	92408	1610				
1441	94073	1632				
1442	95738	1654				
1443	97403	1676				
1444	99086	1698				
1445	100733	1720				
1446	102508	1742				
1447	104283	1764				
1448	106058	1786				
1449	107833	1808				
1450	109608	1830				
1451	111496	1853				
1452	113383	1876				
1453	115271	1899				
1454	117158	1922				
1455	119046	1945				
1456	121048	1968				
1457	123051	1991				
1458	125053	2014				
1459	127056	2037				
1460	129058	2060				
1461	131171	2081				
1462	133283	2102				
1463	135396	2123				
1464	137508	2144				
1465	139621	2165				
1466	141850	2191				
1467	144080	2217				
1468	146309	2242				
1469	148539	2268				
1470	150768	2294				
1471	153149	2329				
1472	155529	2363				
1473	157910	2398				
1474	160290	2432				

Beltzville

Dal	tzville - Pool		Poltavillo V	Votor Quality		Beltzville - Flood Control		- Spillway
Del	tzville - Pool			Max	Deitzville	- Spillway		
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	capacity (cfs)	Elevation (ft)	capacity (cfs)	Elevation (ft)	Outflow (cfs)
501	0	0	515.4	0	503.3	0	651	0
502	1	1	516	50	506	280	652	200
503	2	2	518	75	509	400	652.5	400
504	4	3	525	125	518	600	653	800
505	8	4	530	150	527.5	800	653.5	1400
506	12	4	535	175	540	1100	654	2000
507	17	5	541	200	560	1290	654.5	2800
508	24	6	547	225	580	1560	655	3600
509	31	7	555	250	610	1900	655.5	4700
510	39	8	564	275	651	2350	656	5600
511	49	11	573	300			656.5	6700
512	61	13	583	325			657	7900
513	75	15	594	350			657.7	10000
514	91	17	606	375			658.4	12000
515	109	20	618	400			659.1	14000
516	131	23	631	425			659.7	16000
517	155	25	645	450			660.8	20000
518	181	28	651	460			661.9	24000
519	211	31					662.9	28000
520	243	33					663.8	32000
521	277	36					664.7	36000
522	315	40					665.6	40000
523	357	43					666.5	44000
524	402	47					667.1	47000
525	451	51						
526	503	54						
527	559	58						
528	619	62						
529	683	66						
530	752	71						
531	825	76						
532	904	81						
533	988	87						
534	1078	93						
535	1174	100						
536	1277	106						
537	1387	113						
538	1503	119						
539	1625	125						
540	1753	132						
541	1888	137						
542	2028	143						
543	2174	149						
544	2326	155						
545	2484	161						
546	2647	165						

					Boltzvillo - F	lood Control			
Beltzville - Pool		1	Beltzville - V	Vater Quality		tem	Beltzville - Spillwa		
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	Max capacity (cfs)	Elevation (ft)	Max capacity (cfs)	Elevation (ft)	Outflow (cfs)	
547	2814	170							
548	2987	175							
549	3164	179							
550	3345	184							
551	3532	190							
552	3725	195							
553	3923	201							
554	4127	207							
555	4337	213							
556	4551	216							
557	4770	221							
558	4993	226							
559	5222	231							
560	5456	237							
561	5695	241							
562	5939	247							
563	6189	253							
564	6445	259							
565	6707	266							
566	6976	272							
567	7261	278							
568	7533	285							
569	7821	291							
570	8115	298							
571	8417	306							
572	8727	314							
573	9045	322							
574	9371	330							
575	9706	339							
576	10049	347							
577	10400	355							
578	10758	362							
579	11124	369							
580	11496	376							
581	11876	384							
582	12264	392							
583	12660	400							
584	13064	408							
585	13476	416							
586	13470	425							
587	14326	434							
588	14520	442							
589	15210	442							
590	15210	458							
590	16127	467							
592	16559	407							
592 593	17081	477 487							
595 594	17081	487 496							

Appendix B - Model Data

		_				lood Control		~
Bel	tzville - Poo	l	Beltzville - V	Vater Quality Max	Sys	tem Max	Beltzville	- Spillway
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	capacity (cfs)	Elevation (ft)	capacity (cfs)	Elevation (ft)	Outflow (cfs)
595	18072	504						
596	18580	512						
597	19097	521						
598	19623	531						
599	20159	542						
600	20707	553						
601	21266	565						
602	21836	576						
603	22418	588						
604	23012	599						
605	23617	611						
606	24234	623						
607	24863	635						
608	25505	649						
609	26160	661						
610	26827	674						
611	27507	686						
612	28200	700						
613	28907	714						
614	29629	729						
615	30365	743						
616	31115	757						
617	31879	772						
618	32659	787						
619	33403	802						
620	34163	818						
621	34989	834						
622	35831	850						
623	36689	866						
624	37563	882						
625	38454	899						
626	39361	915						
627	40284	931						
628	41223	947						
629	42178	964						
630	43151	981						
631	44141	1000						
632	45151	1020						
633	46182	1042						
634	47235	1064						
635	48312	1089						
636	49408	1103						
637	50521	1123						
638	51654	1144						
639	52808	1164						
640	53983	1185						
641 642	55177 56391	1204 1224						

						lood Control		
Bel	tzville - Poo	1	Beltzville - W	Vater Quality Max	Sys	tem Max	Beltzville	- Spillway
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	capacity (cfs)	Elevation (ft)	capacity (cfs)	Elevation (ft)	Outflow (cfs)
643	57626	1245						
644	58881	1266						
645	60158	1287						
646	61455	1308						
647	62773	1328						
648	64111	1348						
649	65470	1370						
650	66852	1393						
651	68254	1411						
652	69676	1433						
653	71120	1456						
654	72591	1485						
655	74091	1516						
656	75617	1536						
657	77166	1561						
658	78741	1590						
659	80344	1616						
660	81974	1643						
661	83629	1667						
662	85309	1693						
663	87016	1721						
664	88751	1750						
665	90517	1781						
666	92309	1804						
667	94126	1830						
668	95970	1857						
669	97841	1885						
670	99739	1912						
671	101666	1942						
672	103625	1976						

B.1.5 Mainstem Reservoirs

Merrill Creek

Merrill Creek - Pool								
Elevation (ft)	Storage (ac-ft)	Area (acre)						
770	0	0						
780	1500	60						
790	2915.4	116						
800	4235.1	147						
810	5861.6	177						
820	7795	210						
830	10066	244						
840	12674	278						
850	15651	317						
860	19058	364						
870	22894	405						
880	27190	452						
890	31947	501						
900	37195	551						
910	42934	595						
920	49102	640						
923	51036	653						
929	55056	683						

Merrill Creek - C	Merrill Creek - Controlled Outlet								
Elevation (ft)	Max capacity (cfs)								
790	0								
923	162								
929	168								

Nockamixon

Nock	amixon - Po	ool	Nockar Diversion			xon - 10in Valve	Nocka	Nockamixon - Spillway				
Elevation (ft)	Storage (ac-ft)	Area (acre)	Elevation (ft)	Max capacity (cfs)	Elevation (ft)	Max capacity (cfs)	Outlet Elevation (ft)	Weir Coef.	Weir Length (ft)			
312	0	0	311	0	325.58	0	395	2.6	350			
325.5	398.95	80	312	10	326	1						
340	1933.4	170	313	150	327.5	1.6						
360	7733.6	500	314	300	336	5.5						
365	10465	610	316	700	337.5	6						
370	13749	730	318	1200	338.5	6.2						
375	17646	850	320	1850	350	7.6						
380	22280	980	321	2150	370	9.2						
385	27589	1180	323	2800	390	10.8						
390	33451	1300	324	3100	393	11						
395	40202	1450	326	3600	400	11.5						
400	47875	1650	328	4050								
405	56774	1850	330	4450								
410	66595	2150	332	4750								
412	71500	2300	334	5100								
			336	5400								
			338	5700								
			340	6000								
			341	6150								
			343	6400								
			344	6500								
			395	6500								

) Discharge (cfs)	6 9410							3 10900																		1 15100		3 15700
	Stage (ft)	9.	9.	9.	9.	1	10.	10.	10.3	10.	10.	10.	10.	10.	10.	1	11.	11.	11.	11.	11.	11.	11.	11.	11.	1	12.	12.	12.
	Discharge (cfs)	4480	4630	4780	4930	5090	5240	5400	5560	5730	5890	6060	6230	6400	6570	6750	6920	7100	7280	7470	7650	7840	8030	8220	8420	8610	8810	9010	9210
	Stage (ft)	6.8	6.9	L	7.1	7.2	7.3	7.4	7.5	7.6	T.T	7.8	7.9	8	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9	6	9.1	9.2	9.3	9.4	9.5
	Discharge (cfs)	1250	1330	1420	1510	1600	1700	1790	1890	1990	2100	2190	2300	2420	2520	2640	2760	2880	3000	3120	3250	3380	3510	3640	3780	3910	4050	4190	4340
D)	Stage (ft)	4	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	9	6.1	6.2	6.3	6.4	6.5	6.6	6.7
Hale Eddy Rating Table	Discharge (cfs)	70	86	104	101	1 15	C+1	168	193	220	249	280	313	348	385	473	171 171	404 101	100	700	100	400 005	60/	10/	Q7Q	268 050	869 0001	1100	1170
Hale Eddy	Stage (ft)	1.3	1.4	1 ج ا	16	0.1	1./	1.8	1.9	2	2.1	2.2	2.3	2.4	2.5	26) [i c	1.7 0 C	7.8 7.8	2.9	, ب د	1.0	2.5	ن. د د	4. v 4. r	0.0 7	0.0 C).) 0, C	3.0 3.9

Junction Rating Curves

B.2

Upper Basin Junctions

B.2.1

Discharge (cfs)	37500	38000	38600	39100	39700	40300	40900	41500	42200	42800	43400	44000	44700	45300	46000	55000			
Stage (ft)	18.1	18.2	18.3	18.4	18.5	18.6	18.7	18.8	18.9	19	19.1	19.2	19.3	19.4	19.5	20.8			
Discharge (cfs)	28400	28800	29300	29700	30200	30600	31100	31500	32000	32500	32900	33400	33900	34400	34900	35400	35900	36400	36900
Stage (ft)	16.2	16.3	16.4	16.5	16.6	16.7	16.8	16.9	17	17.1	17.2	17.3	17.4	17.5	17.6	17.7	17.8	17.9	18
Discharge (cfs)	21200	21500	21800	22200	22500	22900	23200	23600	24000	24400	24700	25100	25500	25900	26300	26700	27100	27500	27900
Stage (ft)	14.3	14.4	14.5	14.6	14.7	14.8	14.9	15	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9	16	16.1
Discharge (cfs)	15900	16200	16400	16700	17000	17200	17500	17800	18000	18300	18600	18900	19100	19400	19700	20000	20300	20600	20900
Stage (ft)		12.5	12.6	12.7	12.8	12.9	13	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9	14	14.1	14.2

Appendix B - Model Data

Harvard Rating Table	ng Table		-		-		-
Stage (ft) D	Discnarge (cfs)	Stage (ft)	Discnarge (cfs)	Stage (ft)	Discnarge (cfs)	Stage (ft)	Discnarge (cfs)
2.1	47	5.4	1740	8.7	5500	12	11100
2.2	64	5.5	1830	8.8	5650	12.1	11300
2.3	84	5.6	1910	8.9	5790	12.2	11500
2.4	105	5.7	2000	6	5940	12.3	11700
2.5	130	5.8	2090	9.1	0609	12.4	11900
2.6	156	5.9	2190	9.2	6240	12.5	12100
2.7	185	9	2280	9.3	6390	12.6	12300
2.8	216	6.1	2380	9.4	6540	12.7	12600
2.9	249	6.2	2470	9.5	6700	12.8	12800
33	284	6.3	2570	9.6	6860	12.9	13000
3.1	322	6.4	2680	9.7	7020	13	13200
3.2	361	6.5	2780	9.8	7180	13.1	13400
3.3	403	6.6	2880	9.9	7340	13.2	13600
3.4	447	6.7	2990	10	7500	13.3	13800
3.5	493	6.8	3100	10.1	7670	13.4	14100
3.6	541	6.9	3210	10.2	7840	13.5	14300
3.7	591	7	3320	10.3	8000	13.6	14500
3.8	643	7.1	3440	10.4	8180	13.7	14700
3.9	697	7.2	3550	10.5	8350	13.8	15000
4	753	7.3	3670	10.6	8520	13.9	15200
4.1	811	7.4	3790	10.7	8700	14	15400
4.2	871	7.5	3910	10.8	8870	14.1	15600
4.3	933	7.6	4030	10.9	9050	14.2	15900
4.4	266	T.T	4160	11	9230	14.3	16100
4.5	1060	7.8	4290	11.1	9420	14.4	16300
4.6	1130	7.9	4410	11.2	9600	14.5	16600
4.7	1200	8	4540	11.3	9790	14.6	16800
4.8	1270	8.1	4680	11.4	0266	14.7	17100
4.9	1350	8.2	4810	11.5	10200	14.8	17300
5	1420	8.3	4940	11.6	10400	14.9	17500
5.1	1500	8.4	5080	11.7	10500	15	17800
5.2	1580	8.5	5220	11.8	10700	15.1	18000
5.3	1660	8.6	5360	11.9	10900	15.2	18300

Stage (ft) Discharge (cfs)					
Discharge Stage (cfs)					2300
Stage (ft) Dischai (cfs)					
Discharge St. (cfs)					
Stage (ft) Discha (cfs			16		
Discharge (cfs)	18500	18800	19000	19300	19500
Stage (ft)	15.3	15.4	15.5	15.6	15.7

Fishs Eddy Rating Table		Discharce		Discharge		Discharge
	Stage (ft)	(cfs)	Stage (ft)	Discutat ge (cfs)	Stage (ft)	Discutatige (cfs)
	6.5	3200	9.8	12400	13.1	28400
	6.6	3390	9.6	12800	13.2	28900
	6.7	3580	10	13200	13.3	29500
	6.8	3770	10.1	13600	13.4	30000
	6.9	3970	10.2	14000	13.5	30500
	L	4180	10.3	14500	13.6	31100
	7.1	4390	10.4	14900	13.7	31600
	7.2	4610	10.5	15300	13.8	32100
	7.3	4830	10.6	15700	13.9	32700
	7.4	5060	10.7	16200	14	33200
	7.5	5300	10.8	16600	14.1	33700
	7.6	5540	10.9	17100	14.2	34300
	T.T	5790	11	17600	14.3	34800
	7.8	6040	11.1	18000	14.4	35400
	7.9	6310	11.2	18500	14.5	35900
	8	6570	11.3	19000	14.6	36500
	8.1	6840	11.4	19500	14.7	37000
	8.2	7120	11.5	20000	14.8	37600
	8.3	7410	11.6	20500	14.9	38100
	8.4	7700	11.7	21000	15	38700
	8.5	8000	11.8	21500	15.1	39200
	8.6	8300	11.9	22000	15.2	39800
	8.7	8610	12	22500	15.3	40300
	8.8	8930	12.1	23100	15.4	40900
	8.9	9250	12.2	23600	15.5	41400
	6	9580	12.3	24100	15.6	42000
	9.1	9920	12.4	24600	15.7	42500
	9.2	10300	12.5	25200	15.8	43100
	9.3	10600	12.6	25700	15.9	43700
	9.4	11000	12.7	26200	16	44200
	9.5	11300	12.8	26800	16.1	44800
	9.6	11700	12.9	27300	16.2	45400
	9.7	12100	13	27800	16.3	45900

Discharge (cfs)	74100	74700	75400	76000	76600	77200	77800	78500	79100	79700	80400	81000	94000		
Stage (ft)	20.9	21	21.1	21.2	21.3	21.4	21.5	21.6	21.7	21.8	21.9	22	24.2		
Discharge (cfs)	64700	65300	66000	66600	67300	67900	68600	69200	69800	70400	71000	71700	72300	72900	73500
Stage (ft)	19.4	19.5	19.6	19.7	19.8	19.9	20	20.1	20.2	20.3	20.4	20.5	20.6	20.7	20.8
Discharge (cfs)	55100	55700	56300	56900	57600	58200	58800	59500	60100	60800	61400	62100	62700	63400	64000
Stage (ft)	17.9	18	18.1	18.2	18.3	18.4	18.5	18.6	18.7	18.8	18.9	19	19.1	19.2	19.3
Discharge (cfs)	46500	47100	47600	48200	48800	49300	49900	50500	51100	51600	52200	52800	53400	54000	54500
Stage (ft)	16.4	16.5	16.6	16.7	16.8	16.9	17	17.1	17.2	17.3	17.4	17.5	17.6	17.7	17.8

	Discharge (cfs)	9480	9630	9780	9940	10100	10200	10400	10600	10700	10900	11000	11200	11400	11500	11700	11900	12000	12200	12400	12500	12700	12900	13000	13200	13400	13700	13900	14100	14300	14600	14800	15000	15300
	Stage (ft)	14.2	14.3	14.4	14.5	14.6	14.7	14.8	14.9	15	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9	16	16.1	16.2	16.3	16.4	16.5	16.6	16.7	16.8	16.9	17	17.1	17.2	17.3	174
	Discharge (cfs)	5030	5140	5260	5380	5500	5630	5750	5870	6000	6130	6250	6380	6510	6640	6780	6910	7040	7180	7310	7450	7590	7730	7870	8010	8150	8290	8440	8580	8730	8880	9030	9180	9330
	Stage (ft)	10.9	11	11.1	11.2	11.3	11.4	11.5	11.6	11.7	11.8	11.9	12	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9	14	14.1
	Discharge (cfs)	1790	1870	1950	2030	2110	2200	2280	2370	2450	2540	2630	2720	2820	2910	3000	3100	3200	3290	3390	3490	3600	3700	3800	3910	4020	4120	4230	4340	4450	4570	4680	4790	4910
	Stage (ft)	7.6	7.7	7.8	6.7	8	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9	6	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9	10	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8
Bridgeville Rating Table	Discharge (cfs)	47	64	84	106	132	160	191	224	261	300	342	386	434	484	537	593	651	713	TTT	844	907	67	1030	1090	1150	1220	1290	1350	1420	1500	1570	1640	1720
Bridgeville	Stage (ft)	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	9	6.1	6.2	6.3	6.4	6.5	9.9	6.7	6.8	6.9	L	7.1	7.2	7.3	7.4	7.5

Discharge (cfs)	30300	30600	31000	31300	31700	32000	32400	32700	33100	33400	33800	34200	34500	34900	35200		
Stage (ft)	22.6	22.7	22.8	22.9	23	23.1	23.2	23.3	23.4	23.5	23.6	23.7	23.8	23.9	24		
Discharge (cfs)	24800	25100	25400	25700	26100	26400	26700	27000	27300	27600	28000	28300	28600	29000	29300	29600	30000
Stage (ft)	20.9	21	21.1	21.2	21.3	21.4	21.5	21.6	21.7	21.8	21.9	22	22.1	22.2	22.3	22.4	22.5
Discharge (cfs)	19900	20200	20400	20700	21000	21300	21600	21800	22100	22400	22700	23000	23300	23600	23900	24200	24500
Stage (ft)	19.2	19.3	19.4	19.5	19.6	19.7	19.8	19.9	20	20.1	20.2	20.3	20.4	20.5	20.6	20.7	20.8
Discharge (cfs)	15500	15800	16000	16300	16500	16800	17000	17300	17500	17800	18000	18300	18500	18800	19100	19300	19600
Stage (ft)	17.5	17.6	17.7	17.8	17.9	18	18.1	18.2	18.3	18.4	18.5	18.6	18.7	18.8	18.9	19	19.1

Callicoon Rating Table	າg Table				·		
Stage (ft) Discharge (cfs)	narge fs)	Stage (ft)	Discharge (cfs)	Stage (ft)	Discharge (cfs)	Stage (ft)	Discharge (cfs)
2.7	310	9	11200	9.3	33200	12.6	60400
2.8	419	6.1	11800	9.4	33900	12.7	61300
2.9	536	6.2	12400	9.5	34700	12.8	62200
ю	660	6.3	12900	9.6	35400	12.9	63100
3.1	790	6.4	13500	9.7	36200	13	64000
3.2	958	6.5	14100	9.8	36900	13.1	65000
3.3	1100	6.6	14600	6.6	37700	13.2	65900
3.4	1250	6.7	15200	10	38500	13.3	66800
3.5	1430	6.8	15900	10.1	39300	13.4	67800
3.6	1600	6.9	16400	10.2	40000	13.5	68700
3.7	1770	7	17100	10.3	40800	13.6	00269
3.8	1970	7.1	17700	10.4	41600	13.7	70600
3.9	2210	7.2	18300	10.5	42400	13.8	71600
4	2460	7.3	19000	10.6	43200	13.9	72500
4.1	2780	7.4	19700	10.7	44000	14	73500
4.2	3110	7.5	20300	10.8	44900	14.1	74500
4.3	3430	7.6	21000	10.9	45700	14.2	75500
4.4	3800	T.T	21700	11	46500	14.3	76400
4.5	4180	7.8	22300	11.1	47300	14.4	77400
4.6	4540	7.9	23000	11.2	48200	14.5	78400
4.7	4960	8	23700	11.3	49000	14.6	79400
4.8	5390	8.1	24400	11.4	49800	14.7	80400
4.9	5790	8.2	25100	11.5	50700	14.8	81400
5	6260	8.3	25800	11.6	51600	14.9	82400
5.1	6730	8.4	26500	11.7	52400	15	83400
5.2	7180	8.5	27300	11.8	53300	15.1	84400
5.3	7680	8.6	28000	11.9	54100	15.2	85500
5.4	8210	8.7	28700	12	55000	15.3	86500
5.5	8670	8.8	29500	12.1	55900	15.4	87500
5.6	9190	8.9	30200	12.2	56800	15.5	88500
5.7	0996	6	31000	12.3	57700	15.6	89600
5.8	10200	9.1	31700	12.4	58600	15.7	90906
5.9	10700	9.2	32500	12.5	59500	15.8	91700

Discharge (cfs)) 176000																															
Stage (ft)	22.7	22.8	22.9	23																														
Discharge (cfs)	131000	132000	133000	134000	136000	137000	138000	139000	140000	142000	143000	144000	145000	146000	148000	149000	150000	151000	153000	154000	155000	156000	158000	159000	160000	161000	163000	164000	165000	167000	168000	169000	170000	172000
Stage (ft)	19.3	19.4	19.5	19.6	19.7	19.8	19.9	20	20.1	20.2	20.3	20.4	20.5	20.6	20.7	20.8	20.9	21	21.1	21.2	21.3	21.4	21.5	21.6	21.7	21.8	21.9	22	22.1	22.2	22.3	22.4	22.5	22.6
Discharge (cfs)	92700	93800	94800	95900	00696	98000	99100	100000	101000	102000	103000	105000	106000	107000	108000	109000	110000	111000	112000	113000	115000	116000	117000	118000	119000	120000	121000	123000	124000	125000	126000	127000	128000	130000
Stage (ft)	15.9	16	16.1	16.2	16.3	16.4	16.5	16.6	16.7	16.8	16.9	17	17.1	17.2	17.3	17.4	17.5	17.6	17.7	17.8	17.9	18	18.1	18.2	18.3	18.4	18.5	18.6	18.7	18.8	18.9	19	19.1	19.2

Discitarge (cfs) 1.9 3		Dischance		Diachance		Dicohouco
1.9	Stage (ft)	Discnarge (cfs)	Stage (ft)	Discnarge (cfs)	Stage (ft)	Discnarge (cfs)
ω	3.6	816	6.7	3530	9.8	8050
	3.7	871	6.8	3650	9.9	8220
4.6	3.8	929	6.9	3780	10	8390
6.9	3.9	988	L	3910	10.1	8570
10	4	1050	7.1	4040	10.2	8750
16	4.1	1110	7.2	4170	10.3	8930
22	4.2	1180	7.3	4300	10.4	9110
30	4.3	1250	7.4	4430	10.5	9290
40	4.4	1320	7.5	4560	10.6	9470
52	4.5	1390	7.6	4690	10.7	9650
66	4.6	1460	T.T	4830	10.8	9830
81	4.7	1540	7.8	4960	10.9	10000
66	4.8	1620	7.9	5100	11	10200
119	4.9	1700	8	5240	11.1	10400
141	5	1780	8.1	5390	11.2	10600
166	5.1	1860	8.2	5530	11.3	10800
194	5.2	1950	8.3	5680	11.4	11000
224	5.3	2040	8.4	5820	11.5	11200
254	5.4	2130	8.5	5970	11.6	11400
286	5.5	2230	8.6	6120	11.7	11500
321	5.6	2320	8.7	6270	11.8	11700
358	5.7	2420	8.8	6420	11.9	11900
397	5.8	2520	8.9	6570	12	12200
436	5.9	2620	6	6730	12.1	12400
478	9	2730	9.1	6890	12.2	12600
522	6.1	2840	9.2	7050	12.3	12800
568	6.2	2950	9.3	7210	12.4	13000
615	6.3	3060	9.4	7370	12.5	13200
662	6.4	3170	9.5	7540	12.6	13400
712	6.5	3290	9.6	7710	12.7	13600
763	9.9	3410	9.7	7880	12.8	13800

B.2.2 Lackawaxen Basin Junctions

Discharge (cfs)	45100	45400	45800	46200	46600	47000	47400	47800	48200	48600	49000	49400	49800	50200	50700	51100	51500	51900																
Stage (ft)	23.1	23.2	23.3	23.4	23.5	23.6	23.7	23.8	23.9	24	24.1	24.2	24.3	24.4	24.5	24.6	24.7	24.8																
Discharge (cfs)	32800	33100	33500	33800	34100	34500	34800	35200	35500	35800	36200	36500	36900	37300	37600	38000	38300	38700	39000	39400	39800	40100	40500	40900	41200	41600	42000	42400	42700	43100	43500	43900	44300	44700
Stage (ft)	19.7	19.8	19.9	20	20.1	20.2	20.3	20.4	20.5	20.6	20.7	20.8	20.9	21	21.1	21.2	21.3	21.4	21.5	21.6	21.7	21.8	21.9	22	22.1	22.2	22.3	22.4	22.5	22.6	22.7	22.8	22.9	23
Discharge (cfs)	22500	22700	23000	23300	23600	23900	24100	24400	24700	25000	25300	25600	25900	26200	26500	26800	27100	27400	27700	28000	28300	28600	28900	29200	29600	29900	30200	30500	30800	31100	31500	31800	32100	32500
Stage (ft)	16.3	16.4	16.5	16.6	16.7	16.8	16.9	17	17.1	17.2	17.3	17.4	17.5	17.6	17.7	17.8	17.9	18	18.1	18.2	18.3	18.4	18.5	18.6	18.7	18.8	18.9	19	19.1	19.2	19.3	19.4	19.5	19.6
Discharge (cfs)	14100	14300	14500	14700	14900	15200	15400	15600	15900	16100	16300	16600	16800	17000	17300	17500	17800	18000	18300	18500	18800	19000	19300	19500	19800	20000	20300	20600	20800	21100	21400	21600	21900	22200
Stage (ft)	12.9	13	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9	14	14.1	14.2	14.3	14.4	14.5	14.6	14.7	14.8	14.9	15	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9	16	16.1	16.2

	t) Discharge (cfs)	8.9 11500													10.2 14900					-				
	Stage (ft)	~				0,	0,							1(1(1(1(1(1(12.26666667				
	Discharge (cfs)	4050	4300	4600	4900	5300	5700	6100	6500	6850	7200	7550	1900	8200	8500	8800	9100	9400	9700	10000	10300	10600	10900	11200
	Stage (ft)	9.9	6.7	6.8	6.9	L	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9	8	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8
	Discharge (cfs)	845	930	1020	1110	1200	1300	1400	1500	1620	1740	1860	1990	2130	2280	2430	2590	2750	2920	3100	3280	3460	3650	3850
ole	Stage (ft)	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	9	6.1	6.2	6.3	6.4	6.5
White Haven Rating Table	Discharge (cfs)	2.7	4.7	7.8	12	19	28	43	63	83	105	131	158	188	222	260	302	350	403	462	526	595	675	760
White Have	Stage (ft)	2	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	ŝ	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4	4.1	4.2

B.2.3 Lehigh Basin Junctions

	Discharge (cfs)	19700	20000	20200	20500	20800	21000	21300	21600	21900	22100	22400	22600	22900	23200	23400	23700	24000	24200	24500	24700	25000	25200	25500	25800	26000	26300	26500	26800	40000				
	Stage (ft)	11.3	11.4	11.5	11.6	11.7	11.8	11.9	12	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9	14	18.4				
	Discharge (cfs)	11000	11200	11500	11800	12000	12300	12500	12800	13100	13300	13600	13900	14100	14400	14600	14900	15100	15400	15700	15900	16200	16500	16800	17000	17300	17600	17900	18100	18400	18600	18900	19200	19400
	Stage (ft)	8	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9	6	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.6	10	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9	11	11.1	11.2
	Discharge (cfs)	2750	2930	3110	3300	3500	3700	3910	4130	4350	4580	4830	5080	5330	5600	5830	6070	6320	6570	6830	2090	7360	7630	7910	8200	8470	8750	9030	9310	0096	9870	10100	10400	10700
	Stage (ft)	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	9	6.1	6.2	6.3	6.4	6.5	9.9	6.7	6.8	6.9	7	7.1	7.2	7.3	7.4	7.5	7.6	7.T	7.8	7.9
tating Table	Discharge (cfs)	84	104	126	152	181	214	248	284	323	365	410	459	512	568	628	692	760	834	913	<i>L</i> 66	1090	1180	1280	1380	1490	1600	1720	1850	1980	2120	2270	2420	2580
Lehighton Rating Table	Stage (ft)	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	ŝ	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4	4.1	4.2	4.3	4.4	4.5	4.6

Stage (ft) Discharge (cfs)		5.4 1380			5.7 1560				11.4 5000				Stage (ft) Discharge (cfs)	7.5 15900	7.6 16300	7.7 16700				8.1 18400		8.3 19300				8.7 21100	8.8 21600	8.9 22000	9 22500	9.1 23000		
Discharge (cfs)		765	820	875	930	985	1040	1100	1150	1210	1260		Discharge (cfs)	8320	8650	8980	9320	0026	10100	10500	10800	11200	11600	12000	12400	12800	13100	13500	13900	14300	14700	
Stage (ft)	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2		Stage (ft)	5.5	5.6	5.7	5.8	5.9	9	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9	L	7.1	7.2	כנ
Discharge (cfs)	168	207	249	297	345	393	443	491	545	600	655		Discharge (cfs)	2820	3060	3320	3580	3810	4050	4290	4550	4800	5070	5340	5620	5910	6200	6490	6780	7080	7380	
Stage (ft)	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4	4.1		Stage (ft)	3.5	3.6	3.7	3.8	3.9	4	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	(L
Parryville Rating Table Stage (ft) Discharge (cfs)		0.43	2.5	6.1	12	21	33	51	73	100	133	Walnutport Rating Table	Discharge (cfs)	115	156	204	262	331	409	498	597	707	828	961	1100	1260	1430	1600	1770	1960	2160	
Parryville R Stage (ft)	2.09	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3	Walnutport	Stage (ft)	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	ŝ	3.1	3.2	

Discharge (cfs)	65200	65900	66700	67500	68300	69100	69800	70600	71400	72200	73000	73900	74700	75500	76300	77100	77800					
Stage (ft)						16.6																
Discharge (cfs)	49700	50400	51000	51600	52300	52900	53600	54200	54900	55500	56300	57000	57700	58400	59200	59900	60600	61400	62100	62900	63600	64400
Stage (ft)	13.9	14				14.4																
Discharge (cfs)	36600	37200	37700	38300	38900	39400	40000	40600	41200	41800	42400	43000	43600	44200	44800	45400	46000	46600	47200	47800	48500	49100
Stage (ft)	11.7	11.8	11.9	12	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8
Discharge (cfs)	24900	25400	25900	26400	26900	27500	28000	28500	29000	29500	30100	30600	31200	31700	32200	32800	33300	33800	34400	34900	35500	36000
Stage (ft)	9.5	9.6	9.7	9.8	9.6	10	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9	11	11.1	11.2	11.3	11.4	11.5	11.6

	Discharge (cfs)	28200	28500	28800	29100	29500	29800	30100	30400	30700	31100	31400	31700	32000	32400	32700	33000	33300	33700	34000	34300	34600	35000	35300	35600	36000	36300	36600	37000	37300	37600	38000	38300	38700	39000	39300	39700	40000
	Stage (ft)	11.7	11.8	11.9	12	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9	14	14.1	14.2	14.3	14.4	14.5	14.6	14.7	14.8	14.9	15	15.1	15.2	
	Discharge (cfs)	17000	17300	17600	17900	18200	18500	18800	19100	19400	19700	20000	20300	20600	20900	21200	21500	21800	22100	22400	22700	23000	23300	23600	23900	24200	24500	24800	25100	25400	25700	26000	26300	26600	26900	27200	27600	00622
	Stage (ft)	8	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9	6	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9	10	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9	11	111.1	11.2	11.3	11.4	11.5	11.6
	Discharge (cfs)	7010	7260	7500	7730	0267	8200	8440	8680	8920	9170	9410	9650	0066	10200	10400	10700	11000	11300	11600	11800	12100	12400	12700	13000	13300	13500	13800	14100	14400	14700	15000	15300	15600	15800	16100	16400	16700
	Stage (ft)	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	9	6.1	6.2	6.3	6.4	6.5	9.9	6.7	6.8	6.9	7	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	6.1
Bethlehem Rating Table	Discharge (cfs)	170	181	243	313	401	503	610	743	895	1060	1240	1390	1560	1730	1920	2100	2280	2480	2680	2930	3130	3320	3520	3720	3930	4170	4390	4620	4860	5100	5350	5580	5820	6060	6300	6540	6770
Bethlehen	Stage (ft)	0.68	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	7	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4	4.1	4.2

Discharge (rfs)	76100	76800	77400	78000	78700	79300	80000	80600	81300	81900	82600	83200	83900	84500	85200	85900	86500	87200	87900	88600	89300	89900	90600	91300	92000		
Stage (ft)	23.5	23.6	23.7	23.8	23.9	24	24.1	24.2	24.3	24.4	24.5	24.6	24.7	24.8	24.9	25	25.1	25.2	25.3	25.4	25.5	25.6	25.7	25.8	25.9		
Discharge (rfs)	61700	62200	62600	63100	63600	64100	64600	65000	65500	66000	66500	67000	67500	68000	68600	69100	69700	70200	70800	71300	71900	72400	73000	73600	74200	74900	75500
Stage (ft)	20.8	20.9	21	21.1	21.2	21.3	21.4	21.5	21.6	21.7	21.8	21.9	22	22.1	22.2	22.3	22.4	22.5	22.6	22.7	22.8	22.9	23	23.1	23.2	23.3	23.4
Discharge (cfs)	50400	50800	51100	51500	51900	52300	52700	53100	53500	53900	54300	54700	55100	55500	55900	56300	56700	57100	57500	57900	58400	58800	59300	59800	60200	60700	61200
Stage (ft)	18.1	18.2	18.3	18.4	18.5	18.6	18.7	18.8	18.9	19	19.1	19.2	19.3	19.4	19.5	19.6	19.7	19.8	19.9	20	20.1	20.2	20.3	20.4	20.5	20.6	20.7
Discharge (cfs)	40300	40700	41000	41400	41700	42100	42400	42800	43100	43500	43900	44300	44600	45000	45400	45800	46100	46500	46900	47300	47700	48100	48400	48800	49200	49600	50000
Stage (ft)	15.4	15.5	15.6	15.7	15.8	15.9	16	16.1	16.2	16.3	16.4	16.5	16.6	16.7	16.8	16.9	17	17.1	17.2	17.3	17.4	17.5	17.6	17.7	17.8	17.9	18

Stage (ft) Discharge (cfs)	11.7 32400	11.8 32900	11.9 33400	12 34000	12.1 34500	12.2 35000	12.3 35600	12.4 36100	12.5 36600			12.8 38300	12.9 38800	13 39400	13.1 39900	13.2 40500	13.3 41000	13.4 41600	13.5 42200	13.6 42700	13.7 43300		13.9 44400	14 45000			14.3 46700	14.4 47300	14.5 47900		14.7 49100	14.8 49700	14.9 50300
Discharge (cfs)	16100	16600	17000	17400	17900	18300	18800	19200	19700	20100	20600	21000	21500	22000	22400	22900	23400	23800	24300	24800	25300	25800	26300	26800	27300	27800	28300	28800	29300	29800	30300	30800	31300
Stage (ft)	8.3	8.4	8.5	8.6	8.7	8.8	8.9	6	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.6	10	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9	11	11.1	11.2	11.3	11.4	11.5
Discharge (cfs)	4650	4890	5130	5380	5640	5910	6170	6450	6730	7020	7310	7610	7920	8230	8540	8870	9200	9530	9870	10200	10600	10900	11300	11700	12000	12400	12800	13200	13600	14000	14400	14900	15300
Stage (ft)	4.9	5	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	9	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9	L	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9	8	8.1
Stage (ft) (cfs)	277	312	351	392	438	487	541	599	661	728	801	879	962	1050	1150	1250	1360	1470	1600	1730	1870	2020	2170	2340	2510	2700	2890	3100	3310	3540	3750	3970	4190
Stage (ft) Div	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	ω	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4	4.1	4.2	4.3	4.4	4.5	4.6	4.7

B.2.4 Mainstem Junctions

Discharge (cfs)	143000	145000	147000	148000	150000	152000	153000	155000	156000	158000	160000	161000	163000	165000	166000	168000	170000	172000	173000	175000	177000	178000	180000	182000	184000	185000	187000	189000						
Stage (ft)	28.1	28.3	28.5	28.7	28.9	29.1	29.3	29.5	29.7	29.9	30.1	30.3	30.5	30.7	30.9	31.1	31.3	31.5	31.7	31.9	32.1	32.3	32.5	32.7	32.9	33.1	33.3	33.5						
Discharge (cfs)	96300	97000	97700	98500	99200	00666	101000	102000	104000	105000	106000	108000	109000	111000	112000	114000	115000	117000	118000	120000	121000	123000	125000	126000	128000	129000	131000	132000	134000	136000	137000	139000	140000	142000
Stage (ft) I	21.9	22	22.1	22.2	22.3	22.4	22.5	22.7	22.9	23.1	23.3	23.5	23.7	23.9	24.1	24.3	24.5	24.7	24.9	25.1	25.3	25.5	25.7	25.9	26.1	26.3	26.5	26.7	26.9	27.1	27.3	27.5	27.7	27.9
Discharge (cfs)	72900	73500	74200	74900	75500	76200	76900	77500	78200	78900	79600	80200	80900	81600	82300	83000	83700	84400	85000	85700	86400	87100	87800	88500	89200	89900	00906	91300	92000	92700	93400	94200	94900	95600
Stage (ft)	18.5	18.6	18.7	18.8	18.9	19	19.1	19.2	19.3	19.4	19.5	19.6	19.7	19.8	19.9	20	20.1	20.2	20.3	20.4	20.5	20.6	20.7	20.8	20.9	21	21.1	21.2	21.3	21.4	21.5	21.6	21.7	21.8
Discharge (cfs)	51500	52100	52700	53300	53900	54500	55100	55700	56300	56900	57500	58200	58800	59400	60000	60600	61300	61900	62500	63200	63800	64400	65100	65700	66400	67000	67600	68300	68900	69600	70200	70900	71600	72200
Stage (ft) 1	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9	16	16.1	16.2	16.3	16.4	16.5	16.6	16.7	16.8	16.9	17	17.1	17.2	17.3	17.4	17.5	17.6	17.7	17.8	17.9	18	18.1	18.2	18.3	18.4

	Discharge (cfs)	68500	69500	70600	71700	72700	73800	74900	76000	77100	78300	79400	80500	81700	82800	84000	85100	86300	87500	88700	89800	91000	92300	93500	94700	95900	97200	98400	99700	101000	102000	103000	105000	106000	107000	109000	110000	111000
	Stage (ft) I	12.7	12.8	12.9	13	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9	14	14.1	14.2	14.3	14.4	14.5	14.6	14.7	14.8	14.9	15	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9	16	16.1	16.2	16.3
	Discharge (cfs)	34800	35600	36300	37100	37900	38700	39500	40400	41200	42000	42900	43700	44600	45400	46300	47200	48100	49000	49900	50800	51700	52600	53500	54500	55400	56400	57400	58300	59300	60300	61300	62300	63300	64300	65300	66400	67400
	Stage (ft)	6	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9	10	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9	11	11.1	11.2	11.3	11.4	11.5	11.6	11.7	11.8	11.9	12	12.1	12.2	12.3	12.4	12.5	12.6
	Discharge (cfs)	10700	11200	11700	12200	12800	13300	13900	14400	15000	15600	16200	16800	17400	18000	18600	19300	20000	20600	21300	22000	22700	23400	24200	24900	25500	26200	26900	27500	28200	28900	29600	30400	31100	31800	32500	33300	34000
	Stage (ft)	5.3	5.4	5.5	5.6	5.7	5.8	5.9	9	6.1	6.2	6.3	6.4	6.5	9.9	6.7	6.8	6.9	7	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9	8	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9
Port Jervis Rating Table	Stage (ft) Discharge (cfs)	1.69 535	1.7 543	1.8 632	1.9 729	2 836		2.2 1080			2.5 1520		2.7 1870		2.9 2270						3.5 3780			3.8 4740	3.9 5080			4.2 6070					4.7 8030		4.9 8880	5 9340	5.1 9780	-

Discharge (cfs)	222000	224000	226000	227000	229000	231000	233000	235000	237000	239000	241000	242000	244000	246000	248000	250000	252000	254000					
Stage (ft)	23.3																						
Discharge (cfs)	182000	183000	185000	187000	188000	190000	192000	193000	195000	197000	199000	200000	202000	204000	206000	207000	209000	211000	213000	215000	216000	218000	220000
Stage (ft)															22.4								
Discharge (cfs)	145000	147000	148000	150000	151000	153000	154000	156000	157000	159000	161000	162000	164000	165000	167000	168000	170000	172000	173000	175000	177000	178000	180000
Stage (ft)	18.7	18.8	18.9	19	19.1	19.2	19.3	19.4	19.5	19.6	19.7	19.8	19.9	20	20.1	20.2	20.3	20.4	20.5	20.6	20.7	20.8	20.9
Discharge (cfs)	113000	114000	115000	117000	118000	119000	121000	122000	123000	125000	126000	128000	129000	131000	132000	133000	135000	136000	138000	139000	141000	142000	144000
Stage (ft)	16.4	16.5	16.6	16.7	16.8	16.9	17	17.1	17.2	17.3	17.4	17.5	17.6	17.7	17.8	17.9	18	18.1	18.2	18.3	18.4	18.5	18.6

	Discharge (cfs)	46000	46700	47400	48000	48700	49400	50100	50700	51400	52100	52800	53500	54200	54900	55600	56300	57100	57800	58500	59200	60000	60700	61400	62200	62900	63700	64400	65200	65900	66700	67500	68300	00069	69800	70600	71400	12200
	Stage (ft)	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9	16	16.1	16.2	16.3	16.4	16.5	16.6	16.7	16.8	16.9	17	17.1	17.2	17.3	17.4	17.5	17.6	17.7	17.8	17.9	18	18.1	18.2	18.3	18.4	18.5	18.6	18.7
	Discharge (cfs)	24300	24800	25400	25900	26400	27000	27500	28000	28600	29200	29700	30300	30800	31400	32000	32600	33100	33700	34300	34900	35500	36000	36600	37200	37800	38400	39100	39700	40300	40900	41500	42200	42800	43400	44100	44700	45400
	Stage (ft)	11.4	11.5	11.6	11.7	11.8	11.9	12	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9	14	14.1	14.2	14.3	14.4	14.5	14.6	14.7	14.8	14.9	CI
	Discharge (cfs)	8680	9010	9350	0696	10000	10400	10700	11100	11500	11800	12200	12600	13000	13400	13800	14200	14600	15000	15400	15800	16300	16700	17100	17600	18000	18500	19000	19400	19900	20400	20800	21300	21800	22300	22800	23300	23800
	Stage (ft)	T.T	7.8	7.9	8	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9	6	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.6	10	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9	11	11.1	11.2	č .11
Montague Rating Table	Discharge (cfs)	, (00	663	773	891	1020	1150	1290	1430	1590	1740	1910	2080	2260	2450	2640	2840	3040	3250	3470	3690	3920	4150	4390	4640	4890	5150	5410	5680	5960	6240	6520	6820	7110	7420	7720	8040 8220	8300
Montague	Stage (ft)	4.04	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	9	6.1	6.2	6.3	6.4	6.5	9.9	6.7	6.8	6.9	L	7.1	7.2	7.3	7.4	7.5	0./

t) Discharge	30.2 188000	30.3 190000		30.5 192000		30.7 194000	30.8 195000	30.9 197000	31 198000	31.1 199000	31.2 200000	31.3 201000	31.4 203000	31.5 204000	31.6 205000	31.7 206000		31.9 209000	32 210000				32.4 215000					32.9 221000		33.1 224000		33.3 226000	33.4 227000		33.6 230000	33.7 231000	33.8 232000	33.9 234000
Stage (ft)	сı)	(n)	<u> </u>	с.) (сı,	с.) (<u> </u>	<u> </u>		C 1	<u> </u>	с.) (<u> </u>	с.) С.)	с.) (<u> </u>	с.) С.)	сı,		сı,	(n)	сı)	с.) С.)	<u> </u>	с.) ((T)	(r)	сı)		сı,	(m)	(n)	(m)	сı)	(m)	с.) ((1)	9
Discharge	146000	147000	148000	150000	151000	152000	153000	154000	155000	156000	157000	158000	159000	161000	162000	163000	164000	165000	166000	167000	168000	169000	170000	172000	173000	174000	175000	176000	177000	178000	179000	180000	182000	183000	184000	185000	186000	187000
Stage (ft)	26.4	26.5	26.6	26.7	26.8	26.9	27	27.1	27.2	27.3	27.4	27.5	27.6	27.7	27.8	27.9	28	28.1	28.2	28.3	28.4	28.5	28.6	28.7	28.8	28.9	29	29.1	29.2	29.3	29.4	29.5	29.6	29.7	29.8	29.9	30	30.1
Discharge	107000	108000	109000	110000	111000	112000	113000	114000	115000	116000	117000	118000	119000	120000	121000	122000	123000	124000	125000	126000	127000	128000	129000	130000	131000	132000	133000	134000	136000	137000	138000	139000	140000	141000	142000	143000	144000	145000
Stage (ft)	22.6	22.7	22.8	22.9	23	23.1	23.2	23.3	23.4	23.5	23.6	23.7	23.8	23.9	24	24.1	24.2	24.3	24.4	24.5	24.6	24.7	24.8	24.9	25	25.1	25.2	25.3	25.4	25.5	25.6	25.7	25.8	25.9	26	26.1	26.2	26.3
Discharge	73000	73800	74600	75400	76200	77000	77800	78600	79500	80300	81100	82000	82800	83700	84500	85400	86300	87200	88100	89000	89900	90800	91700	92600	93500	94400	95400	96300	97200	98200	99100	100000	101000	102000	103000	104000	105000	106000
Stage (ft)	18.8	18.9	19	19.1	19.2	19.3	19.4	19.5	19.6	19.7	19.8	19.9	20	20.1	20.2	20.3	20.4	20.5	20.6	20.7	20.8	20.9	21	21.1	21.2	21.3	21.4	21.5	21.6	21.7	21.8	21.9	22	22.1	22.2	22.3	22.4	22.5

(t) Discharge (cfs)		35.1 250000			
Stage (ft)					
Discharge (cfs)					
Stage (ft)	34.5	34.6	34.7	34.8	34.9
Discharge (cfs)	235000	236000	238000	239000	240000
Stage (ft)	34	34.1	34.2	34.3	34.4

	Discharge (cfs)	54200	54800	55500	56100	56700	57400	58000	58700	59300	60000	60600	61200	61800	62500	63100	63800	64400	65000	65700	66300	67000	67600	68200	68900	69500	70200	70800	71500	72100	72800	73400	74000	74600	75300	75900	76600	77200
	Stage (ft) I	15.3	15.4	15.5	15.6	15.7	15.8	15.9	16	16.1	16.2	16.3	16.4	16.5	16.6	16.7	16.8	16.9	17	17.1	17.2	17.3	17.4	17.5	17.6	17.7	17.8	17.9	18	18.1	18.2	18.3	18.4	18.5	18.6	18.7	18.8	18.9
	Discharge (cfs)	30700	31300	32000	32700	33400	34100	34800	35500	36200	36900	37500	38100	38700	39300	39900	40500	41100	41700	42300	42900	43500	44100	44800	45400	46000	46600	47200	47900	48500	49100	49700	50400	51000	51600	52300	52900	53500
	Stage (ft)	11.6	11.7	11.8	11.9	12	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9	14	14.1	14.2	14.3	14.4	14.5	14.6	14.7	14.8	14.9	15	15.1	15.2
	Discharge (cfs)	10700	11200	11600	12000	12500	12900	13400	13800	14300	14800	15200	15700	16200	16700	17200	17700	18200	18800	19300	19800	20400	20900	21500	22100	22700	23200	23800	24400	25000	25600	26200	26800	27500	28100	28700	29400	30000
ole	Stage (ft)	7.9	8	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9	6	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.6	10	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9	11	11.1	11.2	11.3	11.4	11.5
Tocks Island Rating Table	Discharge (cfs)	190	304	425	550	680	814	950	1120	1310	1500	1690	1900	2140	2390	2650	2890	3170	3460	3760	4070	4380	4710	5040	5380	5740	6100	6460	6820	7180	7550	7930	8310	8700	0606	9490	0066	10300
Tocks Islan	Stage (ft) D	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	9	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9	L	7.1	7.2	7.3	7.4	7.5	7.6	7.T	7.8

Discharge	210000	213000	216000	219000	222000	225000	228000	231000	234000	237000	240000	243000	246000	249000	252000	255000	259000	262000	265000	268000	272000	275000	278000	282000	285000	288000	290000		
Stage (ft)	32.9	33.1	33.3	33.5	33.7	33.9	34.1	34.3	34.5	34.7	34.9	35.1	35.3	35.5	35.7	35.9	36.1	36.3	36.5	36.7	36.9	37.1	37.3	37.5	37.7	37.9	38		
Discharge	140000	142000	143000	145000	147000	149000	151000	154000	156000	159000	161000	163000	166000	168000	171000	173000	176000	178000	181000	183000	186000	189000	191000	194000	197000	199000	202000	205000	207000
Stage (ft)	27.1	27.3	27.5	27.7	27.9	28.1	28.3	28.5	28.7	28.9	29.1	29.3	29.5	29.7	29.9	30.1	30.3	30.5	30.7	30.9	31.1	31.3	31.5	31.7	31.9	32.1	32.3	32.5	32.7
Discharge	97200	00626	98700	99400	100000	101000	102000	103000	105000	106000	108000	109000	111000	112000	114000	116000	117000	119000	121000	122000	124000	126000	128000	129000	131000	133000	135000	136000	138000
Stage (ft)	21.9	22	22.1	22.2	22.3	22.4	22.5	22.7	22.9	23.1	23.3	23.5	23.7	23.9	24.1	24.3	24.5	24.7	24.9	25.1	25.3	25.5	25.7	25.9	26.1	26.3	26.5	26.7	26.9
Discharge (cfs)	00622	78500	79200	79800	80500	81100	81800	82500	83100	83800	84400	85100	85800	86400	87100	87800	88400	89100	89800	90500	91100	91800	92500	93200	93800	94500	95200	95900	96600
Stage (ft)	19	19.1	19.2	19.3	19.4	19.5	19.6	19.7	19.8	19.9	20	20.1	20.2	20.3	20.4	20.5	20.6	20.7	20.8	20.9	21	21.1	21.2	21.3	21.4	21.5	21.6	21.7	21.8

	Discharge (cfs)	61800	62700	63600	64500	65500	66400	67300	68300	69200	70200	71200	72100	73100	74100	75100	76100	77100	78100	79100	80100	81100	82200	83200	84200	85300	86300	87400	88500	89500	90906	91700	92800	93900	95000	00096	97100	98100
	Stage (ft)	13.7	13.8	13.9	14	14.1	14.2	14.3	14.4	14.5	14.6	14.7	14.8	14.9	15	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9	16	16.1	16.2	16.3	16.4	16.5	16.6	16.7	16.8	16.9	17	17.1	17.2	17.3
	Discharge (cfs)	31200	31900	32600	33300	34000	34700	35500	36200	36900	37700	38500	39200	40000	40800	41600	42400	43200	44000	44800	45700	46500	47400	48200	49100	49900	50800	51700	52600	53500	54400	55300	56200	57200	58100	59000	60000	00609
	Stage (ft)	10	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9	11	11.1	11.2	11.3	11.4	11.5	11.6	11.7	11.8	11.9	12	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13	13.1	13.2	13.3	13.4	13.5	13.6
	Discharge (cfs)	10700	11100	11600	12000	12400	12900	13300	13800	14300	14800	15200	15700	16200	16700	17300	17800	18300	18900	19400	20000	20500	21100	21700	22300	22900	23500	24100	24700	25400	26000	26600	27300	27900	28500	29200	29900	30500
	Stage (ft)	6.3	6.4	6.5	9.9	6.7	6.8	6.9	7	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9	8	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9	9	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9
Belvidere Rating Table	Discharge (cfs)		935	1060	1190	1330	1480	1640	1800	1970	2160	2350	2550	2760	2980	3200	3440	3680	3940	4200	4460	4740	5020	5310	5610	5910	6230	6550	6880	7220	7570	7930	8300	8680	0906	9450	9860	10300
Belvidere F	Stage (ft) I	2.6	2.7	2.8	2.9	ŝ	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	9	6.1	6.2

Discharge (rfs)		28.9 252000				0.3 258000	29.4 260000	261000	0.6 263000	9.7 265000	29.8 266000	.9 268000		0.1 271000	0.2 273000					30.7 282000		•									8 304000		32 308000		2.2 312000	32.3 314000		2.5 318000
Stage (ft)	28	28		29.1	29.2	29	29	29	29	29.7	29	29		30.1	30.2	30.3	30	30	30	30	30	30		31.1	31.2	31.3	31	31	31	31.7	31	31		32.1	32.2	32	32.4	32
Discharge	193000	195000	196000	198000	199000	201000	202000	203000	205000	206000	208000	209000	211000	212000	214000	215000	217000	218000	220000	221000	223000	224000	226000	227000	229000	230000	232000	233000	235000	236000	238000	239000	241000	242000	244000	246000	247000	249000
Stage (ft)	25	25.1	25.2	25.3	25.4	25.5	25.6	25.7	25.8	25.9	26	26.1	26.2	26.3	26.4	26.5	26.6	26.7	26.8	26.9	27	27.1	27.2	27.3	27.4	27.5	27.6	27.7	27.8	27.9	28	28.1	28.2	28.3	28.4	28.5	28.6	28.7
Discharge (rfs)	143000	144000	145000	147000	148000	149000	151000	152000	153000	154000	156000	157000	158000	160000	161000	162000	163000	165000	166000	167000	169000	170000	171000	173000	174000	175000	177000	178000	180000	181000	182000	184000	185000	186000	188000	189000	191000	192000
Stage (ft)	21.2	21.3	21.4	21.5	21.6	21.7	21.8	21.9	22	22.1	22.2	22.3	22.4	22.5	22.6	22.7	22.8	22.9	23	23.1	23.2	23.3	23.4	23.5	23.6	23.7	23.8	23.9	24	24.1	24.2	24.3	24.4	24.5	24.6	24.7	24.8	24.9
Discharge	99200	100000	101000	102000	103000	105000	106000	107000	108000	109000	110000	111000	112000	113000	115000	116000	117000	118000	119000	120000	121000	123000	124000	125000	126000	127000	128000	130000	131000	132000	133000	134000	136000	137000	138000	139000	141000	142000
Stage (ft)	17.4	17.5	17.6	17.7	17.8	17.9	18	18.1	18.2	18.3	18.4	18.5	18.6	18.7	18.8	18.9	19	19.1	19.2	19.3	19.4	19.5	19.6	19.7	19.8	19.9	20	20.1	20.2	20.3	20.4	20.5	20.6	20.7	20.8	20.9	21	21.1

Discharge	602000	606000	000609	612000	615000	619000	622000	625000	628000	632000	635000	638000	642000	645000	648000	652000	655000	659000	662000	665000	000699	672000	676000	000629	683000	686000	000069	693000	000969	700000					
Stage (ft)	431	43.2	43.3	43.4	43.5	43.6	43.7	43.8	43.9	44	44.1	44.2	44.3	44.4	44.5	44.6	44.7	44.8	44.9	45	45.1	45.2	45.3	45.4	45.5	45.6	45.7	45.8	45.9	46					
Discharge	495000	498000	501000	504000	507000	510000	513000	516000	519000	522000	525000	528000	531000	534000	537000	540000	543000	546000	549000	552000	555000	558000	561000	564000	567000	571000	574000	577000	580000	583000	586000	589000	593000	596000	599000
Stage (ft)	396	39.7	39.8	39.9	40	40.1	40.2	40.3	40.4	40.5	40.6	40.7	40.8	40.9	41	41.1	41.2	41.3	41.4	41.5	41.6	41.7	41.8	41.9	42	42.1	42.2	42.3	42.4	42.5	42.6	42.7	42.8	42.9	43
Discharge	40000	403000	405000	408000	410000	413000	415000	418000	420000	423000	426000	428000	431000	434000	437000	439000	442000	445000	447000	450000	453000	456000	458000	461000	464000	467000	470000	472000	475000	478000	481000	484000	487000	489000	492000
Stage (ft)	361	36.2	36.3	36.4	36.5	36.6	36.7	36.8	36.9	37	37.1	37.2	37.3	37.4	37.5	37.6	37.7	37.8	37.9	38	38.1	38.2	38.3	38.4	38.5	38.6	38.7	38.8	38.9	39	39.1	39.2	39.3	39.4	39.5
Discharge	32,0000	322000	325000	327000	329000	331000	333000	335000	337000	339000	341000	344000	346000	348000	350000	352000	355000	357000	359000	362000	364000	366000	369000	371000	373000	376000	378000	381000	383000	385000	388000	390000	393000	395000	398000
Stage (ft)	32.6	32.7	32.8	32.9	33	33.1	33.2	33.3	33.4	33.5	33.6	33.7	33.8	33.9	34	34.1	34.2	34.3	34.4	34.5	34.6	34.7	34.8	34.9	35	35.1	35.2	35.3	35.4	35.5	35.6	35.7	35.8	35.9	36

) Discharge (cfs)	12.7 46400	12.8 46900	12.9 47500	13 48100	13.1 48700	3.2 49300	3.3 49900	3.4 50500	3.5 51100	3.6 51700	13.7 52400		3.9 53600	14 54200	14.1 54800	14.2 55400	14.3 56100	[4.4 56700	14.5 57300	[4.6 57900	14.7 58600	14.8 59200	[4.9 59900	15 60500						5.6 64400		5.8 65700	5.9 66300	16 67000	.6.1 67700	6.2 68400	6.2 60000
	Stage (ft)	1	1	1		1	1	1	1	1	1	1	1	1		Ť	Ţ	1	Ť	Ţ	1	1	1	1		1	1	1	1	1	1	1	1	1		1	_	-
	Discharge (cfs)	26800	27200	27700	28200	28700	29200	29700	30200	30700	31200	31700	32300	32800	33300	33800	34300	34900	35400	35900	36400	36900	37500	38000	38500	39100	39600	40100	40700	41200	41800	42300	42900	43400	44000	44600	45200	15800
	Stage (ft)	9	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.6	10	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9	11	11.1	11.2	11.3	11.4	11.5	11.6	11.7	11.8	11.9	12	12.1	12.2	12.3	12.4	12.5	176
	Discharge (cfs)	11100	11500	11900	12300	12600	13000	13500	13900	14200	14600	15000	15400	15800	16200	16600	17000	17400	17900	18300	18700	19100	19500	20000	20400	20800	21300	21700	22200	22600	23100	23500	24000	24400	24900	25300	25800	76300
Riegelsville Official Rating Table	Stage (ft)	5.3	5.4	5.5	5.6	5.7	5.8	5.9	9	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9	L	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9	8	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	0 0
le Official	Discharge (cfs)	1080	1230	1370	1530	1680	1850	2030	2210	2400	2600	2810	3030	3250	3480	3720	3970	4230	4500	4770	5050	5340	5640	5950	6270	6600	0069	7200	7550	7900	8250	8600	8950	9300	9650	10000	10400	10700
Riegelsvil	Stage (ft)	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	ŝ	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	52

Discharge (cfs)	253000	256000	259000	262000	265000	268000	271000	274000	277000	280000	284000	287000	290000	293000	296000	30000	303000	306000	310000	313000	316000	320000	323000	326000	330000	333000	337000	340000	342000						
Stage (ft)	33.5	33.7	33.9	34.1	34.3	34.5	34.7	34.9	35.1	35.3	35.5	35.7	35.9	36.1	36.3	36.5	36.7	36.9	37.1	37.3	37.5	37.7	37.9	38.1	38.3	38.5	38.7	38.9	39						
Discharge (cfs)	162000	164000	166000	168000	171000	173000	175000	178000	180000	182000	185000	187000	190000	192000	194000	197000	199000	202000	204000	207000	210000	213000	215000	218000	221000	224000	227000	229000	232000	235000	238000	241000	244000	247000	250000
Stage (ft)	26.5	26.7	26.9	27.1	27.3	27.5	27.7	27.9	28.1	28.3	28.5	28.7	28.9	29.1	29.3	29.5	29.7	29.9	30.1	30.3	30.5	30.7	30.9	31.1	31.3	31.5	31.7	31.9	32.1	32.3	32.5	32.7	32.9	33.1	33.3
Discharge (cfs)	97100	98000	98900	00266	101000	102000	104000	106000	108000	110000	111000	113000	115000	117000	119000	121000	122000	124000	126000	128000	130000	132000	134000	136000	138000	140000	142000	144000	146000	148000	150000	153000	155000	157000	159000
Stage (ft)	19.9	20	20.1	20.2	20.3	20.5	20.7	20.9	21.1	21.3	21.5	21.7	21.9	22.1	22.3	22.5	22.7	22.9	23.1	23.3	23.5	23.7	23.9	24.1	24.3	24.5	24.7	24.9	25.1	25.3	25.5	25.7	25.9	26.1	26.3
Discharge (cfs)	69700	70400	71100	71800	72500	73200	73900	74600	75300	76000	76700	77400	78100	78800	79600	80300	81000	81800	82600	83500	84300	85100	86000	86800	87600	88500	89300	90200	91000	91900	92800	93600	94500	95400	96200
Stage (ft)	16.4	16.5	16.6	16.7	16.8	16.9	17	17.1	17.2	17.3	17.4	17.5	17.6	17.7	17.8	17.9	18	18.1	18.2	18.3	18.4	18.5	18.6	18.7	18.8	18.9	19	19.1	19.2	19.3	19.4	19.5	19.6	19.7	19.8

	Discharge (cfs)	61800	62700	63600	64500	65500	66400	67300	68300	69200	70200	71200	72100	73100	74100	75100	76100	77100	78100	79100	80100	81100	82200	83200	84200	85300	86300	87400	88500	89500	00906	91700	92800	93900	95000	00096	97100	98100
	Stage (ft)	13.7	13.8	13.9	14	14.1	14.2	14.3	14.4	14.5	14.6	14.7	14.8	14.9	15	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9	16	16.1	16.2	16.3	16.4	16.5	16.6	16.7	16.8	16.9	17	17.1	17.2	173
	Discharge (cfs)	31200	31900	32600	33300	34000	34700	35500	36200	36900	37700	38500	39200	40000	40800	41600	42400	43200	44000	44800	45700	46500	47400	48200	49100	49900	50800	51700	52600	53500	54400	55300	56200	57200	58100	59000	60000	00009
	Stage (ft)	10	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9	11	11.1	11.2	11.3	11.4	11.5	11.6	11.7	11.8	11.9	12	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13	13.1	13.2	13.3	13.4	13.5	13.6
	Discharge (cfs)	10700	11100	11600	12000	12400	12900	13300	13800	14300	14800	15200	15700	16200	16700	17300	17800	18300	18900	19400	20000	20500	21100	21700	22300	22900	23500	24100	24700	25400	26000	26600	27300	27900	28500	29200	29900	30500
ating Table	Stage (ft)	6.3	6.4	6.5	9.9	6.7	6.8	6.9	L	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9	8	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9	9	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	6.6
Riegelsville Modified Rating Table	Discharge (cfs)	820	935	1060	1190	1330	1480	1640	1800	1970	2160	2350	2550	2760	2980	3200	3440	3680	3940	4200	4460	4740	5020	5310	5610	5910	6230	6550	6880	7220	7570	7930	8300	8680	0906	9450	9860	10300
Riegelsville	Stage (ft) D	2.6	2.7	2.8	2.9	3	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	9	6.1	6.2

(ft) Discharge (cfs)		28.9 252000		29.1 255000			29.4 260000	29.5 261000	29.6 263000	29.7 265000	29.8 266000	29.9 268000	30 270000			30.3 275000	30.4 277000					•	31 288000							31.7 302000	31.8 304000	31.9 306000	32 308000		32.2 312000	32.3 314000	32.4 316000	32.5 318000
Discharge Stage (ft) (cfs)	193000	195000	196000	198000	199000	201000	202000	203000	205000	206000	208000	209000	211000	212000	214000	215000	217000	218000	220000	221000	223000	224000	226000	227000	229000	230000	232000	233000	235000	236000	238000	239000	241000	242000	244000	246000	247000	249000
Stage (ft)	25	25.1	25.2											26.3				26.7							27.4											28.5		
Discharge (cfs)	143000	144000	145000	147000	148000	149000	151000	152000	153000	154000	156000	157000	158000	160000	_	162000	163000	165000	_			-	171000	173000	1	_	-	1	180000	181000	182000	1	185000	1	188000	189000	191000	192000
Stage (ft)	21.2	21.3	21.4	21.5	21.6	21.7	21.8	21.9	22	22.1	22.2	22.3	22.4	22.5	22.6	22.7	22.8	22.9	23	23.1	23.2	23.3	23.4	23.5	23.6	23.7	23.8	23.9	24	24.1	24.2	24.3	24.4	24.5	24.6	24.7	24.8	24.9
Discharge (cfs)	99200	100000	101000	102000	103000	105000	106000	107000	108000	109000	110000	111000	112000	113000	115000	116000	117000	118000	119000	120000	121000	123000	124000	125000	126000	127000	128000	130000	131000	132000	133000	134000	136000	137000	138000	139000	141000	142000
Stage (ft)	17.4	17.5	17.6	17.7	17.8	17.9	18	18.1	18.2	18.3	18.4	18.5	18.6	18.7	18.8	18.9	19	19.1	19.2	19.3	19.4	19.5	19.6	19.7	19.8	19.9	20	20.1	20.2	20.3	20.4	20.5	20.6	20.7	20.8	20.9	21	21.1

Stage (ft) Discharge (cfs)	43.1 602000	43.2 606000	43.3 609000	43.4 612000	43.5 615000	43.6 619000	43.7 622000	43.8 625000	43.9 628000	44 632000	44.1 635000					44.7 655000	44.9 662000			45.3 676000	-	-	45.7 690000		45.9 696000	46 700000					
Stage (ft) Discharge (cfs)			39.8 501000	39.9 504000	40 507000	40.1 510000	40.2 513000	40.3 516000	40.4 519000	40.5 522000	40.6 525000		40.8 531000		41 537000			41.5 552000	41.6 555000					42.3 577000				42.7 589000		• •	43 599000
Stage (ft) Discharge (cfs)		36.2 403000	36.3 405000	36.4 408000	36.5 410000	36.6 413000	36.7 415000	36.8 418000	36.9 420000	37 423000	37.1 426000	37.2 428000	37.3 431000	-						38.3 458000							,	39.2 484000		7	39.5 492000
Stage (ft) Discharge (cfs)		32.7 322000	32.8 325000	32.9 327000	33 329000	33.1 331000				33.5 339000								34.5 362000										35.7 390000	35.8 393000		36 398000

	Discharge (cfs)	106000	108000	110000	111000	113000	114000	116000	118000	119000	121000	123000	124000	126000	128000	130000	131000	133000	135000	137000	138000	140000	142000	144000	146000	148000	149000	151000	153000	155000	157000	159000	160000	162000	164000	166000	168000 170000	
	Stage (ft)	18.2	18.3	18.4	18.5	18.6	18.7	18.8	18.9	19	19.1	19.2	19.3	19.4	19.5	19.6	19.7	19.8	19.9	20	20.1	20.2	20.3	20.4	20.5	20.6	20.7	20.8	20.9	21	21.1	21.2	21.3	21.4	21.5	21.6	21.7 21.8	
	Discharge (cfs)	54700	55900	57100	58400	59600	60900	62100	63400	64700	65900	67200	68500	00669	71200	72500	73900	75200	76600	78000	79400	80800	82200	83600	85100	86500	88000	89500	00606	92400	93900	95400	00026	98500	10000	102000	103000 105000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Stage (ft)	14.5	14.6	14.7	14.8	14.9	15	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9	16	16.1	16.2	16.3	16.4	16.5	16.6	16.7	16.8	16.9	17	17.1	17.2	17.3	17.4	17.5	17.6	17.7	17.8	17.9	18 18.1	
	Discharge (cfs)	17900	18700	19500	20300	21100	21900	22800	23700	24600	25500	26400	27300	28300	29200	30100	31100	32000	33000	33900	34900	35900	36900	37900	38900	40000	41000	42100	43200	44300	45400	46500	47600	48800	49900	51100	52300 53500)))
	Stage (ft)	10.8	10.9	11	11.1	11.2	11.3	11.4	11.5	11.6	11.7	11.8	11.9	12	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9	14	14.1	14.2	14.3 14.4	
ing Table	Discharge (cfs)	1000	1090	1290	1510	1750	1990	2240	2510	2800	3100	3410	3730	4080	4450	4830	5230	5610	6040	6490	6950	7430	7930	8450	8980	9530	10100	10700	11300	11900	12500	13200	13900	14600	15300	16000	16600 17100	
Trenton Rating Table	Stage (ft) Di	7.15	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9	8	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9	6	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9	10	10.1	10.2	10.3	10.4	10.5	10.6 10.7	

Stage (ft) Discharge (cfs)	33.4 461000	33.5 464000	33.6 467000	33.7 470000		33.9 477000	34 480000	34.1 484000	34.2 487000		34.4 493000		34.6 500000	34.7 503000	34.8 507000			35.4 527000		35.7 538000	35.8 541000	36 548000	36.2 555000		36.4 562000	36.5 566000	36.6 569000	36.7 573000	36.8 576000	36.9 580000	37 583000
Stage (ft) Discharge S (cfs) (cfs)	29.6 346000	29.7 349000	29.8 352000	29.9 355000	30 358000	30.1 361000	30.2 363000	30.3 366000	30.4 369000	30.5 372000	30.6 375000	30.7 378000	30.8 381000		31 387000				31.8 411000		32 417000			32.5 432000	32.6 435000	32.7 439000	32.8 442000	32.9 445000	33 448000	33.1 451000	33.2 454000
Stage (ft) Discharge (cfs) (cfs)	25.8 252000		26 257000	26.1 259000	26.2 261000	26.3 264000	26.4 266000	26.5 268000	26.6 270000	26.7 273000			27 280000		27.2 285000							28.4 314000	28.6 319000		28.8 325000	28.9 327000	29 330000	29.1 332000	29.2 335000	29.3 338000	29.4 341000
Stage (ft) Discharge (cfs)	22 173000	22.1 175000	22.2 177000			_										23.6 205000															25.6 248000

Discharge (cfs)	861000	865000	870000	874000	878000	883000	887000	891000	896000	000006	905000	000606	914000	918000	923000	927000	931000	936000	940000	945000	950000		
Stage (ft)	44	44.1	44.2	44.3	44.4	44.5	44.6	44.7	44.8	44.9	45	45.1	45.2	45.3	45.4	45.5	45.6	45.7	45.8	45.9	46		
Discharge (cfs)	764000	768000	772000	776000	780000	785000	789000	793000	000262	801000	805000	810000	814000	818000	822000	827000	831000	835000	839000	844000	848000	852000	857000
Stage (ft)	41.7	41.8	41.9	42	42.1	42.2	42.3	42.4	42.5	42.6	42.7	42.8	42.9	43	43.1	43.2	43.3	43.4	43.5	43.6	43.7	43.8	43.9
Discharge (cfs)	673000	677000	680000	684000	688000	692000	000969	700000	704000	708000	712000	716000	720000	724000	728000	732000	736000	740000	744000	748000	752000	756000	760000
Stage (ft)	39.4	39.5	39.6	39.7	39.8	39.9	40	40.1	40.2	40.3	40.4	40.5	40.6	40.7	40.8	40.9	41	41.1	41.2	41.3	41.4	41.5	41.6
Discharge (cfs)	587000	591000	594000	598000	601000	605000	000609	612000	616000	620000	624000	627000	631000	635000	639000	642000	646000	650000	654000	657000	661000	665000	669000
Stage (ft)	37.1	37.2	37.3	37.4	37.5	37.6	37.7	37.8	37.9	38	38.1	38.2	38.3	38.4	38.5	38.6	38.7	38.8	38.9	39	39.1	39.2	39.3

B.3 Reaches and Routing Parameters (alphabetic listing)

Routing	Parameters
Null	
Null	
Null	
Muskingum	3, 0.1, 1
	2, 0.1, 1
	2, 0.1, 1
Ű	6, 0.1, 2
	L=3
Null	
Lag & K	L=3
<u> </u>	5, 0.3, 1
	3, 0.3, 1
	L=2
	1, 0.1, 1
U	-,, -
	2, 0.1, 1
U	L=3
	4, 0.4, 4
	, , .
	2, 0.1, 1
	L=1
	L=3
	E 5
	L=3
	L=6
Null	
	L=1
	L=3
	L-J
	L=1
	1, 0.1, 1
e e e e e e e e e e e e e e e e e e e	5, 0.3, 1
	L=3
Null	L-3
	NullNullNullNullMuskingumMuskingumMuskingumMuskingumLag & KNullLag & KMuskingumMuskingumMuskingumLag & KMuskingumLag & KMuskingumLag & KMuskingumLag & KMuskingumNullMuskingumNullNullNullNullNullNullNullNullNullNullNullNullNullNullNullNullNullLag & KNullNullNullNullNullLag & KLag & KLag & KNullLag & KNullMuskingumMuskingumMuskingumMuskingum

Reach Name	Routing	Parameters
New Hope to Washingtons Crossing	Null	
Nockamixon_OUT to Del+Tohickon	Muskingum	2, 0.1, 1
Parryville to Pohopoco Mouth	Null	
Pepacton_OUT to Downsville	Null	
Pohat+Merrill to Del+Pohatcong	Muskingum	2, 0.1, 1
Pohopoco Mouth to Lehigh+Pohopoco	Null	
Port Jervis to Del+Neversink	Null	
Prompton Gage to Lack_WB+Dyberry	Null	
Prompton_OUT to Prompton Gage	Null	
Riegelsville to Del+Musconetcong	Null	
Rio_OUT to Del+Mongaup	Null	
Shoemakers to Del+Bush Kill	Null	
Stilesville to Hale Eddy	Lag & K	L=0, K0-300:6.0;300-999999:3.0
Stockton to New Hope	Muskingum	2, 0.1, 1
Swinging Bridge_OUT to Mongaup+Black		
Lake Cr	Null	
Tocks Island to Del+Brodhead	Null	
Toronto_OUT to Mongaup+Black Lake Cr	Muskingum	1, 0.1, 1
Walnutport to Lehigh+Jordan	Lag & K	L=5
Washingtons Crossing to Trenton	Muskingum	3, 0.1, 1
White Haven to Lehighton	Lag & K	L=6