

US Army Corps of Engineers Hydrologic Engineering Center

Simulation of Streamflow Regulation Effects on the Water Quality of the Allegheny River

February 1983

REPORT DO	CUMENTATION PAGE			Form Approved OMB No. 0704-0188
existing data sources, gathering and maintaini burden estimate or any other aspect of this co Services and Communications Directorate (07 subject to any penalty for failing to comply with PLEASE DO NOT RETURN YOUR FORM TO	ng the data needed, and completing and rev llection of information, including suggestions 04-0188). Respondents should be aware th a collection of information if it does not disp OTHE ABOVE ORGANIZATION.	for rec at notv	the collection ducing this bur withstanding ar currently valid	ny other provision of law, no person shall be OMB control number.
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE		3. DATES C	COVERED (From - To)
February 1983	Project Report			
4. TITLE AND SUBTITLE Simulation of Streamflow Regulation	on Effects on the Water Quality	5a.	CONTRACT	NUMBER
of the Allegheny River		5b.	GRANT NUM	BER
		5c.	PROGRAM E	LEMENT NUMBER
6. AUTHOR(S)		5d.	PROJECT N	JMBER
Paul W. Hadley, Gerald T. Orlob - R. G. Willey - Hydrologic Engineer		5e.	TASK NUMB	ER
	C	5F.	WORK UNIT	NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			MING ORGANIZATION REPORT NUMBER
US Army Corps of Engineers			PR-6	
Institute for Water Resources				
Hydrologic Engineering Center (HI	EC)			
609 Second Street				
Davis, CA 95616-4687				
9. SPONSORING/MONITORING AGENCY N	AME(S) AND ADDRESS(ES)		10. SPONS	OR/ MONITOR'S ACRONYM(S)
US Army Corps of Engineers			11. SPONS	OR/ MONITOR'S REPORT NUMBER(S)
Pittsburgh District				
William S. Moorhead Federal Build	ling			
1000 Liberty Avenue				
Pittsburgh, PA 15222-4186				
12. DISTRIBUTION / AVAILABILITY STATE				
Approved for public release; distrib	ution is unlimited.			
13. SUPPLEMENTARY NOTES				
14. ABSTRACT			1	
This report documents the water qu				
reservoirs compared to both smaller				
"Water Quality for Rivers-Reservoi		ated a	ind verified	to observed water quality data and
used to simulate the two alternative	conditions.			

15. SUBJECT TERMS

river system analysis, water quality, reservoir regulation evaluation, WQRRS, Allegheny River, basin, reservoirs, low flow, natural flow, calibrated, alternative, conditions, operation, stream hydraulics, Muskingum routing, channel geometry, hydrologic, meteorologic, flow, observed, simulated, temperature, Kiskimineta River, Upper Clarion River, duration curves, pH, hydrographs, ungaged

16. SECURITY CLASS	IFICATION OF:		17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON
a. REPORT U	b. ABSTRACT U	c. THIS PAGE U	OF ABSTRACT UU	of pages 130	19b. TELEPHONE NUMBER

Simulation of Streamflow Regulation Effects on the Water Quality of the Allegheny River

February 1983

Prepared by: G.T. Orlob & Associates Benicia, CA

Prepared for: US Army Corps of Engineers Pittsburgh District William S. Moorhead Federal Building 1000 Liberty Avenue Pittsburgh, PA 15222-4186

and

US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center 609 Second Street Davis, CA 95616

(530) 756-1104 (530) 756-8250 FAX www.hec.usace.army.mil

PREFACE

This report was prepared by G. T. Orlob and Associates of Benicia, California, under the supervision of Dr. Gerald T. Orlob. Mr. Paul W. Hadley performed the computer simulations for the study and prepared the draft report. Mr. Donald J. Smith of Resource Management Associates of Lafayette, California, served as consultant to the project.

Appendix C was written by Mr. R. G. Willey of the Hydrologic Engineering Center to provide the reader with water quality duration curves. The development of the water quality duration curves was beyond the scope of the contract with G. T. Orlob and Associates.

The entire project was administered under the direction of Mr. Willey for the Corps of Engineers Pittsburgh District and the Office Chief of Engineers.

SIMULATION OF STREAMFLOW REGULATION EFFECTS ON THE WATER QUALITY OF THE ALLEGHENY RIVER

TABLE OF CONTENTS

		Page
	LIST OF TABLES	iii
	LIST OF FIGURES	iv
I.	INTRODUCTION	1
II.	SUMMARY	2
III.	DESCRIPTION OF THE STUDY AREA	3
	Physical Setting The Corps of Engineers Reservoir System and its Operation	3 7
IV.	METHOD OF STUDY	10
	WQRRS Model Stream Hydraulics - Muskingum Routing Water Quality Module Channel Geometry Data Hydrologic - Meteorologic Data Adjustment of Flow Measurements Water Quality Data	10 10 12 13 13 18 24
V.	RESULTS	25
	Simulated vs. Observed Water Quality Effects of Alternative Operations Effects of Operations on Allegheny River Water Temperature Extremes Effects of Operations on the Kiskiminetas River Effects of Operations on the Lower Allegheny River Effects of Operations on the Upper Clarion	25 29 29 29 33
	River	33
VI.	CONCLUDING COMMENT	33
	RE FERENCES	39
	APPENDIX A: Water Quality Data Sources	
	APPENDIX B: Water Quality Statistics for Selected Sites in the Allegheny River Basin	
	APPENDIX C: Allegheny River Water Quality Duration Curves	

LIST OF TABLES

Table No.	Title	Page
1.	Allegheny River Basin Principal Tributaries	5
2.	Allegheny River Low Flow	6
3.	Corps of Engineers Reservoirs in the Allegheny River Basin	8
4.	Summary of pH Values in the Kiskiminetas River	9
5.	Pattern Hydrographs for Distributing Ungaged Flows	19
6.	Allegheny River Flow Balance	23

LIST OF FIGURES

Figure No	• <u>Title</u>	Page
1	Allegheny River Watershed	4
2	Geometric Representation of Stream System and Mass Transport Mechanisms	11
3	Schematic Diagram of Allegheny River System	14
4	Schematic Diagram of the Allegheny River	15
5	Schematic of Clarion River	1.6
6	Schematic of French Creek	17
7	Schematic of Kiskiminetas River	17
8	Observed and Computed Flows, Allegheny River at Franklin, Pa., 1977 Study Period	20
9	Regression Analysis of Observed and Computed Flows Allegheny River at Franklin, Pa., 1977 Study Period	21
10	Computed Water Surface Profiles, Allegheny River Between Franklin and Parker, 1977 Study Period	22
11	Allegheny River at Freeport (RM 32), 1977 TDS	26
12	Kiskiminetas River at Vandergrift, 1977 TDS	26
13	Allegheny River at Freeport (RM 32), 1977 pH	27
14	Allegheny River at Natrona, 1977 pH	27
15	Kiskiminetas River at Vandergrift, 1977 pH	28
16	Allegheny River Water Temperature	30
17	Kiskiminetas River at Vandergrift, 1977 pH	31
18	Kiskiminetas River at Vandergrift, 1977 Flow	31
19	Kiskiminetas River at Vandergrift, 1977 TDS	32
20	Kiskiminetas River at Vandergrift, 1977 Flow	32
21	Allegheny River at Freeport and Natrona, 1977 pH	34
22	Allegheny River at Freeport and Natrona, 1977 Flow	34
23	Allegheny River at Freeport and Natrona, 1977 TDS	35
24	Allegheny River at Freeport and Natrona, 1977 Flow	35

LIST OF FIGURES - Continued

Figure	No. <u>Title</u>	Page
25	Allegheny River at Natrona, 1977 pH	36
26	Allegheny River at Natrona, 1977 Flow	36
27	Clarion River near Ridgeway (RM 81), 1977 DO	37
28	Clarion River near Ridgeway (RM 81), 1977 Flow	37
29	Clarion River near Ridgeway (RM 81), 1977 BOD	38
30	Clarion River near Ridgeway (RM 81), 1977 Flow	38

.

I. INTRODUCTION

The United States Army Corps of Engineers (COE) operates a system of nine reservoirs in the Allegheny River basin that controls approximately 45% of the total drainage area of the basin. In addition to the flood control and recreation benefits that these facilities provide, the COE has operated the reservoir system to enhance the water quality of the Allegheny River since the construction of Allegheny Reservoir (Kinzua Dam) in 1967. The principal water quality objective of the system operation is to control the adverse effects of the acid mine drainage that pollutes the Kiskiminetas River on the water quality of the lower Allegheny River.

The purpose of this study was to develop and test a model that could simulate water quality conditions in the Allegheny River basin under different hydrologic and reservoir operational conditions. The periods chosen for study were 1 June 1975 through 31 October 1975, and 1 July 1977 through 30 September 1977. Streams modeled in this study include a 190.5 mile reach of the Allegheny River from Kinzua Dam downstream to the vicinity of Pittsburgh, Pennsylvania, and three major, regulated tributaries: French Creek, the Clarion River, and the Kiskiminetas River. The selected hydrologic conditions are:

0	Existing Conditions		all facilities in place operated as they were during study period.	and the
0	Pattern A	en las	all facilities in place operated as they were during study period, except that	

outflow from Kinzua Dam is reduced to 500 cfs during the period from 5 July through 30 September for both test years.

 No Corps Storage - unregulated streamflows as they would occur without Corps of Engineers reservoirs in the basin.

Hydraulic and water quality simulations were performed using a COE computer program entitled "Water Quality for River-Reservoir Systems" (Smith, 1978). Data required as input to the program included geometric cross section data for each river or river reach, flow rates, meteorological data and water quality data.

Results of water quality simulations were analyzed using the COE computer programs "Water Quality Statistics" (WQSTAT), "Water Quality Plot" (WQPLOT), and "Water Quality Profile" (WQPROFILE). Information is provided for comparison purposes in the form of statistical summaries of system responses and graphical displays of selected water quality constituents at key locations and times. Data files, including both input data and simulation results, are the principal products of the study. This report provides documentation of study methodology and preliminary interpretation of illustrative examples of simulation results.

II. SUMMARY

The Hydrologic Engineering Center (HEC) computer program "Water Quality for River-Reservoir Systems" (WQRRS) was applied to the Allegheny River System between Lock and Dam No. 2 (River Mile 6.7) and Kinzua Dam (River Mile 197.2). Hydrologic conditions for the system, including major tributaries, were simulated for the summers of 1975 and 1977. Three conditions of operation were considered:

- Existing Conditions--with all facilities in place and operating,
- O Pattern A--with the outflow of Allegheny Reservoir reduced to 500 cfs over the period 5 July through 30 September, and
- ^o No Corps Storage--with no Corps of Engineers regulation.

These results were then used in WQRRS to simulate changes in water quality, including temperature, alkalinity, total dissolved solids, pH, BOD, and dissolved oxygen for each of the selected operating conditons. Simulation results of Existing Conditions study case compared favorably with observed water quality conditions during the 1975 and 1977 study periods. Therefore, the model was considered suitable for use in analysis of the effects of storage and regulation on water quality, particularly of extreme events that may be of environmental or economic consequence. Illustrative examples of comparisons that can be made with the results of simulations are presented and briefly described.

Streamflows during both the 1975 and 1977 study periods were considered to be above normal. As such, these study periods provided little representation of the low-flow conditions under which streamflow regulation can provide maximum enhancement of water quality throughout the basin, and particularly in the lower Allegheny River. However, the following general conclusions are evident from analysis of the simulation results.

- The existence of storage and regulation in the Allegheny River system tends to reduce water quality extremes.
- ⁰ In the absence of Corps of Engineers facilities in the basin or without planned system operation of existing facilities, there is an increased likelihood that adverse water quality changes could occur.

Additional detailed analysis, not within the scope of the present study, is required to evaluate specific consequences of storage, regulation or other means of water quality control in the Allegheny River System. Basic water quality data which were used in this study and which may be required in subsequent analysis are documented on files. They are identified as to source in Appendix A. Results of 30 simulation runs performed with WQRRS are available also on computer output files and are summarized in statistical form in Appendix B.

III. DESCRIPTION OF THE STUDY AREA

PHYSICAL SETTING

From its source in north central Pennsylvania, the Allegheny River flows in a northwest direction into New York State. The river then turns toward the southwest and flows back into Pennsylvania. After re-entering Pennsylvania, the Allegheny River flows southwest for 210 miles to Pittsburgh, Pennsylvania, where it joins the Monongahela River to form the Ohio River (Figure 1). The total length of the Allegheny River is 321 miles.

The Allegheny River drains an area of 11,778 square miles. Approximately 83% of the drainage basin is in Pennsylvania, and the remainder is in New York State. The Allegheny River basin, including major tributaries, is shown in Figure 1. The drainage areas and slopes of principal tributaries are listed in Table 1.

Elevations in the Allegheny River basin range from 2,993 feet NGVD* on Allegheny Mountain to less than 700 feet NGVD in the thalweg at the mouth of the Allegheny River. The northwestern portion of the basin is a mature glaciated plateau with gentle slopes and many lakes and swamps. The remainder of the Allegheny River drainage basin is characterized by rough topography, particularly in the eastern tributary areas. The northeastern part of the basin is a highly dissected peneplain. To the southeast in the Allegheny Mountain section, the drainage is dominated by several large In this area, the amplitude of folding is approximately structural folds. 2,000 feet between anticlinal crest and synclinal troughs. The Conemaugh River and Loyalhanna Creek are the major Allegheny River tributaries draining this mountainous region.

The climate of the Allegheny River basin is temperate and humid with fairly wide seasonal variations in temperature. Temperatures in excess of 90°F and below 0°F can be expected annually throughout the study area. The prevailing wind is from the west or has a westerly component. Precipitation in the basin varies with location and ranges from 36 to 43 inches per year.

The unregulated stream discharges in the Allegheny River basin have a wide seasonal variation. The highest flows generally occur during the months of December through April when soils are saturated or frozen and conducive to high runoff. However, it is possible for major floods to occur at anytime of the year. Most of the floods during the winter and early spring periods are the results of prolonged rainfall over large areas, sometimes accompanied by snow melt. The summer floods generally result from intense thunderstorm rainfall, which may be very local in extent. However, tropical storms may also occur during the summer and fall seasons and can cause extensive flooding over the basin. The river normally freezes in the winter months, and ice jams frequently cause local flooding.

The Allegheny River basin can be characterized as low to moderate yielding at base flow with the ground water contribution to stream flow being relatively uniform throughout the basin. The discharge of unregulated streams is often low in the late summer and early fall. The average 7-consecutive-day-once-in-ten-year low-flow is shown in Table 2 for selected locations on the Allegheny River mainstem.

*National Geodetic Vertical Datum

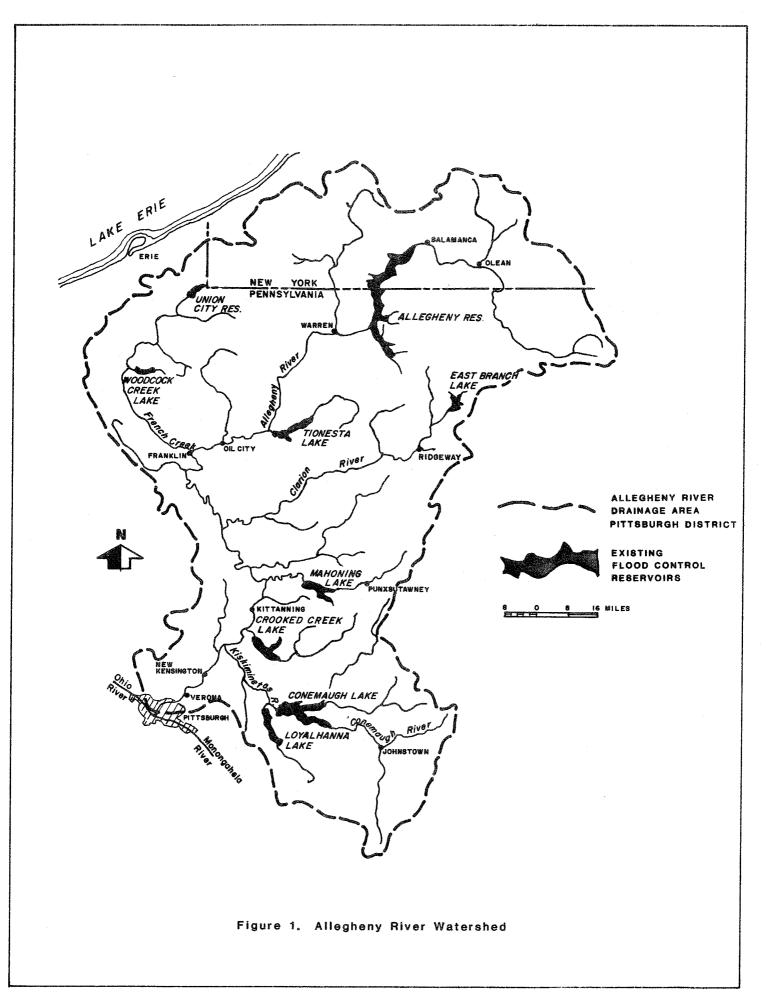


Table 1. ALLEGHENY RIVER BASIN PRINCIPAL TRIBUTARIES

TRIBUTARY	DRAINAGE AREA SQ. MI.	LENGTH MILLES	ENTERS AI LB OR RB	ENTERS ALLEGHENY RIVER LB OR MILES ABOVE RB MOUTH	AVERAGE SLOPE FT/MI
Kiskiminetas River	1,887	27	LB	30.2	3.4
Crooked Creek	292	57	LB	40.2	9.1
Mahoning Creek	425	64	LB	55.5	8.0
Red Bank Creek	573	56	LB	64.0	8.4
Clarion River	1,252	101	LB	84.5	6.0
French Creek	1,235	115	RB	124.1	6.5
0il Creek	318	43	RB	131.4	9.5
Tionesta Creek	478	39	LB	151.4	13.1
Brokenstraw Creek	338	51	RB	181.3	5.8
Conewango Creek	898	51	RB	188.9	4.0
Olean Creek (a)	208	6	RB	251.9	3.6
Potato Creek (a)	224	27	LB	273.7	5.4
Allegheny River (TOTAL)	11,778	321		-	3.1

(a) Upstream of Kinzua Dam.

Location	Drainage <u>Area</u> (sq. mile)	River Mile	7-consecutive-day 10-year average recurrence interval (cfs)
Franklin	5,982	123.9	1,250
L/D 7 (Kittanning)	8,973	45.7	2,250
L/D 4 (Natrona)	11,410	24.2	2,900

Table 2. ALLEGHENY RIVER LOW FLOW

Approximately 1.5 million persons reside within the boundaries of the Allegheny River drainage basin. Population densities are highest in the lower Allegheny and Kiskiminetas River basin counties of Allegheny, Westmoreland, Armstrong, and Cambria. The total combined population of counties entirely or partially within the basin is 3.7 million persons (from 1970 census).

Along the 30 miles of the Allegheny River downstream of the confluence of the Kiskiminetas River, there are ten water supply treatment plants that withdraw water from the river. The combined design average withdrawal of these ten facilities is more than one hundred million gallons per day, and the population served is approximately 900,000 persons.

Manufacturing industries in the basin are diversified. The major industries are: primary metal products, electrical machinery equipment and supplies, fabricated metal products, petroleum, wood, stone, clay, and glass products. The principal manufacturing communities include: Jamestown and Olean, New York; and Oil City, Meadville, Bradford, Warren, Franklin, Johnstown, Indiana, Punxsutawney, Johnsonburg, Ridgeway, Dubois, New Kensington, Vandergrift, and Pittsburgh, Pennsylvania.

A series of locks and dams in the lower 72 miles of the Allegheny River facilitates commercial and recreational navigation.

There are nine existing fossil fuel, one hydroelectric, and one pumped storage electric power generating facilities in the basin. Total combined capacity is 6,744.5 megawatts, and thermal pollution problems exist at low flow in several reaches of the river.

Coal, oil, natural gas, stone, clay, sand and gravel are commercially extracted in the basin. Oil production, especially in the northeastern portion of the basin, has resulted in localized pollution by brines and other oil field wastes. Acid mine drainage from active and abandoned bituminous coal mining operations is the most serious water quality problem in the southern part of the Allegheny River drainage basin. Mine drainage is contributed by all major left bank tributaries from the Clarion River south to the mouth of the Allegheny River. The severely degraded Kiskiminetas River, however, is the most significant single source of acid loading not only in the Allegheny River drainage, but the entire Ohio River basin.

Other important land uses include agriculture and silviculture. All of the Allegheny National Forest is drained by the Allegheny River. Considerable outdoor recreation facilities exist in the National Forest, Corps of Engineers projects, and State Forests, gamelands and parks of the basin.

THE CORPS OF ENGINEERS RESERVOIR SYSTEM AND ITS OPERATION

Eight tributary reservoirs and one mainstem impoundment have been constructed in the Allegheny River basin by the Corps of Engineers. The locations of these projects are shown in Figure 1, and the pertinent data are presented in Table 3.

All of the reservoirs are operated for flood control. The reservoirs reduce flood flows by storing water during peak runoff periods. Stream flows are then increased during low-flow periods by gradually releasing the water stored during the high runoff periods. Allegheny Reservoir, Woodcock Creek Lake, and East Branch Clarion River Lake also have storage allocated for low-flow augmentation and water quality: 549,000, 4,000, and 64,300 With its large volume of storage, Allegheny acre-feet, respectively. Reservoir is the most effective for maintaining downstream water quality. The rate of normal low-flow release is predicated on the natural flows at Franklin and Natrona, Pennsylvania. The outflow, however, can be adjusted to control critical water quality conditions on either the Allegheny River or the Ohio River. Woodcock Creek Lake and East Branch Clarion River Lake are operated primarily to meet tributary requirements rather than mainstem objectives.

In 1967, a system operation of Allegheny River basin reservoirs was initiated to control water quality in the Allegheny River. One of the principal objectives of the system operation is to mitigate the impact of the grossly polluted Kiskiminetas River on the lower Allegheny River.

The acidic Kiskiminetas River enters the Allegheny River 30 miles upstream of Pittsburgh. It drains an area of 1,887 square miles. Below its point of confluence with the Allegheny River, the Kiskiminetas River drainage accounts for 17% of the total Allegheny River drainage area. Experience has demonstrated that during summer low-flow periods when the contribution of the Kiskiminetas River is roughly 17% or less of the total Allegheny River flow, the Allegheny River can assimilate the Kiskiminetas acid loading through dilution and neutralization without any significant depression in downstream pH. Prior to the initiation of the current system operation, this 17% limit was frequently exceeded and produced acid slugs and fish kills in the lower Allegheny River.

Reservoir operations are now designed to limit the percentage of the total discharge that the Kiskiminetas River contributes to the total Allegheny River flow at their confluence. This limitation is more restrictive during summer low-flow periods. During higher flow periods that generally occur during the winter and early spring months, a greater percentage of the Kiskiminetas River flow can be tolerated without any adverse effect on Allegheny River water quality and aquatic life.

7

	Initial Date of	Drainage Area	Stor (acre	Storage cre feet)	Average Discharge*	* Authorized
Reservoir	Operation	sq.mi.	Full Pool	Summer Pool	cfs	Р
Allegheny Reservoir (Kinzua Dam)	Jan 1967	2,180	1,180,000	573,000	3,834	Flood control, low-flow augmentation for water quality control of Allegheny River and downstream points, power generation and recreation.
Tionesta Lake	Dec 1940	478	133,400	7,800**	867	Flood control
Union City Reservoir	Jul 1970	220	47,650	20	427	Flood control
Woodcock Creek Lake	Jan 1974	45.6	20,000	4,930	76.3	Flood control, low-flow augmentation for water quality control and recreation
East Branch Clarion River Lake	Jun 1952	72.4	84,300	65,300	136	Flood control, low-flow augmentation of Clarion and downstream rivers for water quality
Mahoning Creek Lake	Jun 1951	340	74,200	9,520***	598	Flood control and recreation
Crooked Creek Lake	May 1940	277	93,900	4,500**	423	Flood control
Conemaugh Ríver Lake	Nov 1953	1,351	273,600	4,000**	2,388	Flood control
Loyalhanna Lake	Sep 1942	290	95,300	2,000**	483	Flood control
* Through 1979 ** Mínimum Pools *** As of August	07 1081 a					

Potentially, eight of the nine reservoirs in the Allegheny River basin can be utilized in this water quality system operation (Union City Reservoir is excluded since it does not have a permanent storage pool). However, Allegheny Reservoir and Conemaugh River Lake play the principal and crucial roles in the operation.

Allegheny Reservoir, located 168 miles upstream of the mouth of the Kiskiminetas River, supplies most of the high quality augmentation for dilution and neutralization. Conemaugh River Lake is located within and controls 72% of the Kiskiminetas River basin. As can be seen in Table 4, the Conemaugh Dam outflow is extremely acidic. When necessary, Conemaugh River Lake is used to retain acid flows until augmentation is available from Allegheny Reservoir and to prevent acid peaks from the Conemaugh River basin from coinciding with first flush acid shock loading from the downstream uncontrolled portion of the Kiskiminetas watershed. Conemaugh River Lake was not designed for this purpose, and the operation temporarily uses a portion of its flood control storage for one to two weeks following a storm event.

Table	4.	SUMMARY	OF	pH*	VALUES	IN	THE	
		KISKIMI	NET.	AS R	IVER			

Location	Period	Number of Observations	Max	Min	Mean
Conemaugh Dam Outflow	Jan 72 to Dec 77	154	4.8	2.6	3,9
Kiskiminetas River at Vandergrift (River Mile 10.9)**	Jan 75 to Dec 77	17,719	6.0	2.4	4.2

* Unadjusted arithmetic mean of observed pH values.

** ORSANCO robot monitor data.

The day-to-day success of the water quality system operation is dependent upon the ability to predict downstream conditions in sufficient time to enable the augmentation releases to travel the reach from Kinzua Dam (which controls Allegheny Reservoir) to the mouth of the Kiskiminetas River. This system cannot immediately counteract heavy thundershowers that occur over the lower uncontrolled Kiskiminetas watershed. There still could be a fish-killing slug of highly acidic water flowing from the lower Allegheny River before any Corps operation could minimize the problem. However, since Kinzua Dam was placed into operation in 1967, there have been no fish kills.

The Corps of Engineers presently has a four-station Allegheny River water quality monitoring network to provide real time surveillance in the basin. The system is presently being operated by the Ohio River Valley Water Sanitation Commission (ORSANCO) and consists of three Corps of Engineers robot monitors and the existing ORSANCO monitor at Oakmont. The Corps stations are located at the Allegheny Reservoir outflow (River Mile 197.2), the Allegheny River at Lock and Dam (L/D) 5 above the Kiskiminetas River (River Mile 30.4), the Kiskiminetas River at Vandergrift, and the Allegheny River at Oakmont below the Kiskiminetas River (River Mile 13.3). Water quality data collected hourly by ORSANCO are available to the Corps of These data, in combination with other available data, are used Engineers. during critical periods as part of the reservoir regulation considerations. The monitor at L/D 5 serves as the base station for operations and generally reflects the upstream water quality conditions. The Vandergrift monitor gives an indication of the severity of the acid slug, while the monitor at Oakmont located on the left bank of the Allegheny River, 20 miles downstream of the mouth of the Kiskiminetas River, reflects the conditions after mixing. Experience has shown that total mixing does not always occur in the Therefore, additional data are collected from water companies along river. both banks of the lower Allegheny River to supplement robot monitor data during these periods.

IV. METHOD OF STUDY

WQRRS MODEL

The Water Quality for River-Reservoir System (WQRRS) model consists of three separate but integrable programs: the reservoir water quality module (WQRRSR), the stream hydraulics module (SHP), and the stream water quality module (WQRRSQ). The Muskingum Hydrologic Routing option of SHP and WQRRSQ are discussed below.

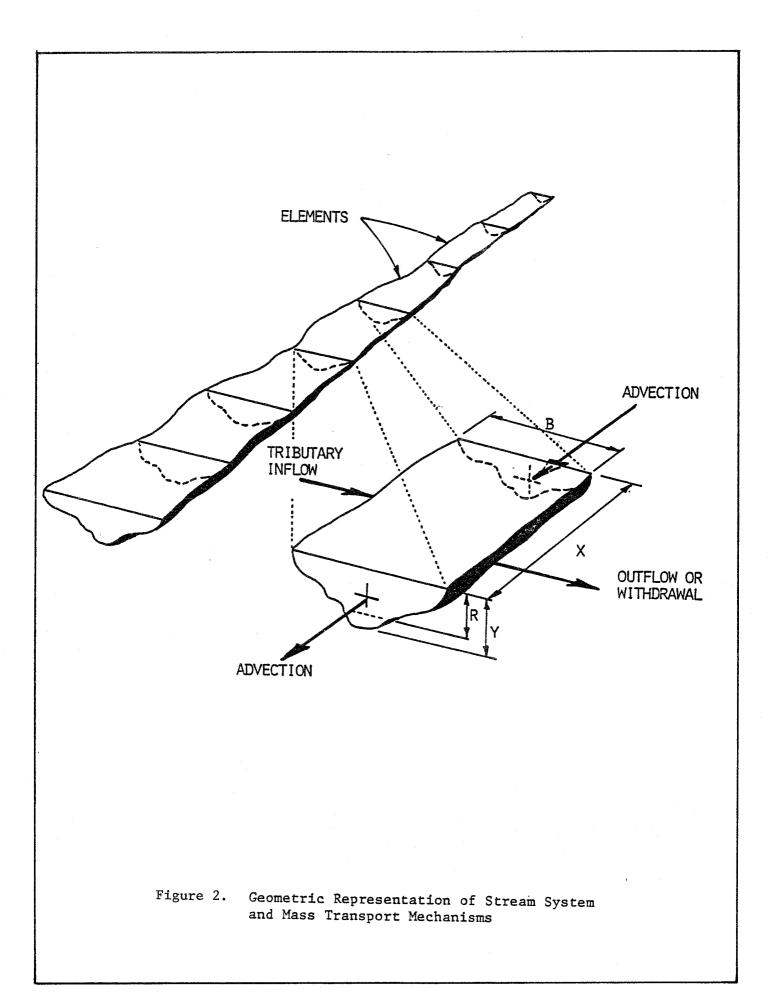
STREAM HYDRAULICS - MUSKINGUM ROUTING

The stream system in SHP is represented as a linear network of volume elements as illustrated in Figure 2. Each element is characterized by length, width, cross sectional area, hydraulic radius, and a specific relationship between flow and depth.

The Muskingum method provides the capability to route streamflow dynamically through the system, rather than assuming steady state hydraulic conditions and either uniform or gradually varied flow profiles. This method is well suited to simulation of the rapidly changing flow conditions actually experienced in the Allegheny River basin.

The Muskingum method is based on the assumption that the incremental storage in a stream element is related to flow entering and leaving a channel reach (an element in the model), i.e.,

$$S = K(0) + X(K) (I-0)$$
 (1)


where

S = total storage in the element, m^3

 $I = inflow, m^3/sec$

 $0 = outflow, m^3/sec$

- K = empirical coefficient, seconds
- X = empirical coefficient (dimensionless)

The routing coefficients K and X for the rivers simulated in this study were provided by the Pittburgh District of the Corps of Engineers. These coefficients have been integrated into the operational program for the Allegheny system.

WATER QUALITY MODULE

The stream water quality module WQRRSQ simulates water quality changes in a stream system by using the same series of elements in the hydraulics module, each element acting as a completely mixed reactor. The principles of conservation of heat and mass are used to derive equations that represent the dynamics of temperature and conservative and non-conservative substances. In general form the conservation equation is stated for WQRRSQ as

$$\nabla \frac{\partial C}{\partial t} = \Delta z \ Q_z \ \frac{\partial C}{\partial z} + \Delta z \ A_z \ D_c \ \frac{\partial^2 C}{\partial z^2} + Q_i \ C_i - Q_o \ C \ \pm \nabla S$$
(2)

where

- C = thermal energy or concentration of a specified constituent in a stream in appropriate units, e.g., kcal, mg/L
- $V = volume of the fluid element, m^3$
- t = time coordinate, seconds
- z = space coordinate, meters (vertical for reservoirs and horizontal for streams)
- Q_z = advection, m³/sec
- A_z = element cross sectional area, m²
- D_z = coefficient of effective diffusion, m²/sec
- $Q_i = lateral inflow, m^3/sec$
- Ci = inflow thermal energy or constituent concentration in appropriate units, e.g., kcal, mg/l
- $Q_0 = 1$ ateral outflow, m³/sec
- S = all sources and sinks in appropriate units, e.g., kcal/sec, mg/L/sec, etc.

Details concerning individual terms in equation 2 may be found in documentation for WQRRS (Smith, 1978).

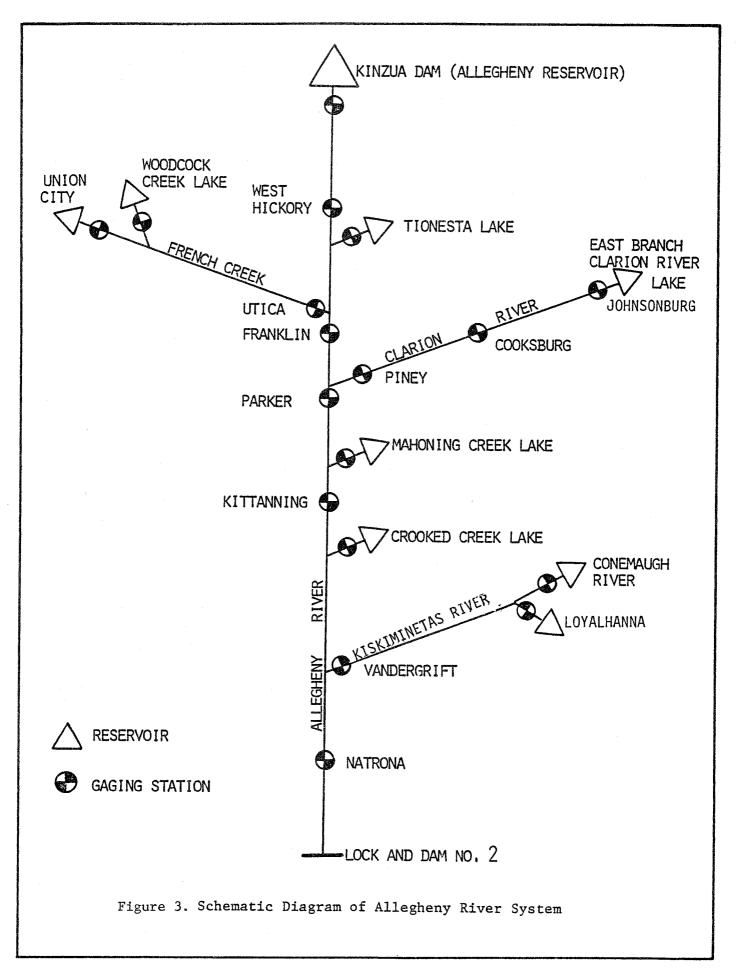
The WQRRSQ model was modified for this study to simulate three power plants along the Allegheny River. To represent prototype behavior, a quantity of water equal to the amount of cooling water used by each plant was assumed to be withdrawn from an upstream element and returned to the Allegheny River at the location of the particular power plant discharge. The quality of the water discharged by each power plant was set equal to the quality of water in the withdrawal element plus a user-specified increment of quality. The average temperature rise of effluent cooling water was simulated in this way for each computational time step. Evaporation losses were considered to be negligible in the overall water budget.

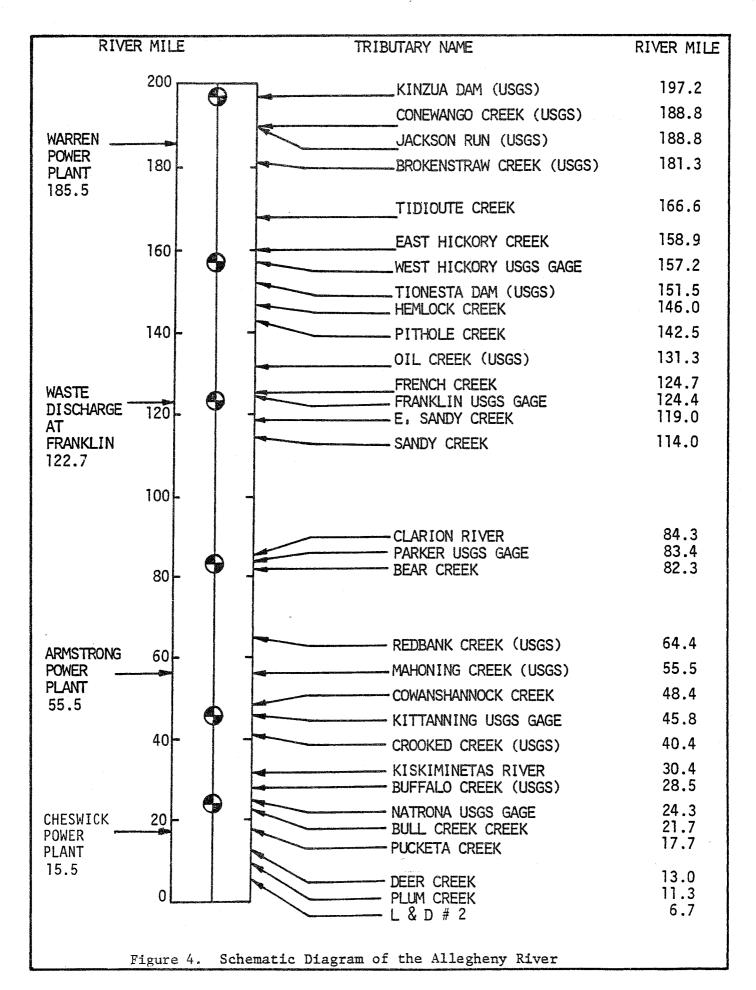
Because of the low pH values common in both the Kiskiminetas River and the lower Clarion River, special attention was given to the technique for estimation of pH changes, particularly over the pH range of 3 to 7 likely to be experienced in the system. Tetra Tech, Inc., of Lafayette, California, was retained by HEC to study and modify, as necessary, the WQRRSQ pH subroutine PHCO2 (Tetra Tech, 1980).

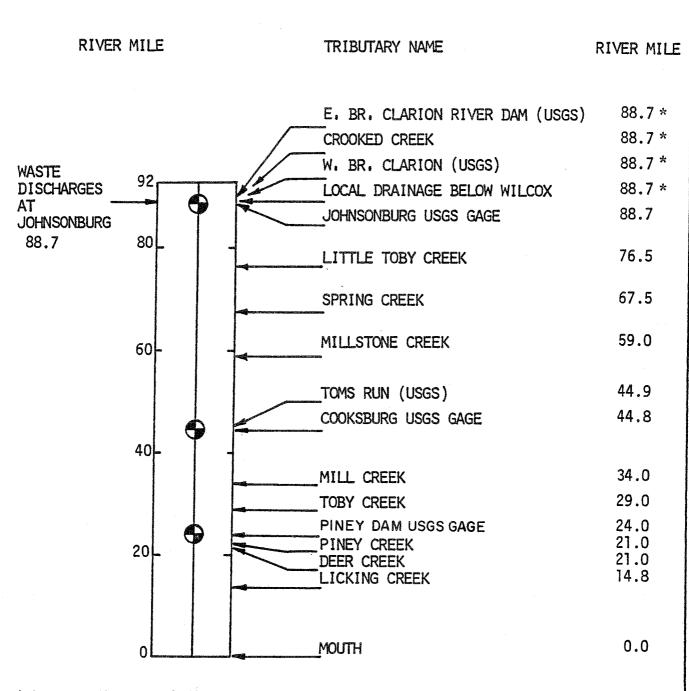
Normally, the model calculates pH based on the carbonate buffering system. Although this scheme does not take into account the sulfate system also present in waters polluted by acid mine drainage, Tetra Tech determined that low pH waters could be simulated using WQRRSQ with the same accuracy achieved by more complex models (Tetra Tech, 1980). The subroutine PHCO2 was modified to avoid stability problems with the carbonate equilibrium equations in the low pH region. Modifications are included in the WQRRSQ programs currently being distributed by HEC.

CHANNEL GEOMETRY

Cross section data for the Allegheny River were obtained from the Corps of Engineers, Pittsburgh District. French Creek, Clarion River, and Kiskiminetas River cross section data were obtained from the Flood Insurance Administration. Channel geometry data were processed for use in the WQRRSQ model at HEC; the computer program Geometric Elements from Cross Section Coordinates (GEDA) was used.

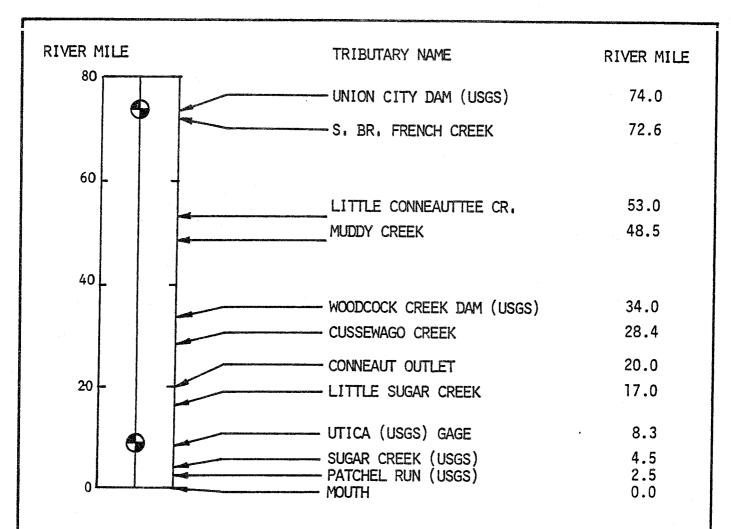

HYDROLOGIC - METEROLOGIC DATA

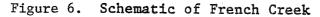

Meterologic data required by the WQRRSQ model include dry bulb and dewpoint temperatures, wind speed and cloud cover. The necessary data are recorded at National Weather Service Class One Stations. Data for this study were recorded at the Pittsburgh Airport on an hourly basis. The Pittsburgh data were applied basin-wide with no adjustments.


Streamflow in the study area was considered by the U.S. Geological Survey (USGS) as "excessive" for both the 1975 and 1977 study periods (USGS, 1975, 1976, 1977). Flow data were taken from USGS recording gages located throughout the basin. These data were compiled on a mean daily basis.

The locations of USGS gages on the mainstem Clarion, French, Kiskiminetas and Allegheny rivers and at COE reservoirs are shown in Figure 3. USGS gages on other tributaries are noted in Figures 4 through 7.

Two methods were used to estimate the magnitudes of flows from ungaged tributaries. In the first method, a representative hydrograph was chosen for each river reach between streamflow gaging stations for tributaries to the Allegheny River and to the Clarion River downstream of the Piney Dam Gage. The total volume of ungaged flow occurring during the study period between gages was then calculated. This volume was allocated to ungaged tributaries based on the fraction of flow occurring in the pattern hydrograph on a given





*The contribution of flow to the Clarion River from this source was assumed to be located at river mile 88.7 as a boundary condition due to the lack of channel cross section data above river mile 88.7.

Figure 5. Schematic of Clarion River

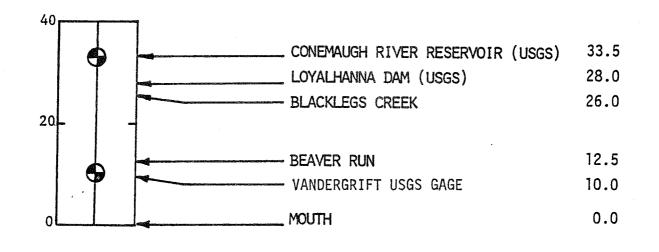


Figure 7. Schematic of Kiskiminetas River

day and on the relative size of each ungaged drainage area. Pattern hydrographs used for this method of allocating flow are listed in Table 5.

In the second method, a daily flow balance was made to estimate the magnitudes of flows from ungaged tributaries to French Creek, the Clarion River upstream of the gage at Piney Dam, and the Kiskiminetas River. After the recorded flows at all upstream gages were subtracted from that of the most downstream gage, the difference was distributed to ungaged tributaries based on their relative drainage areas. When this difference was negative, a small flow was assigned to each ungaged tributary. In these rivers the mean daily flow balance method proved superior to the model hydrograph approach in reproducing observed flows at the downstream gages.

Piney Dam is a significant feature of the Clarion River. It is a hydroelectric project near the community of Clarion, Pennsylvania. Peaking operations at Piney Dam can cause irregular flow in the 24 miles of the Clarion River below the project and further downstream along the Allegheny River. Because of a lack of data on the pattern of releases made by Piney Dam, actual reservoir operations could not be simulated.

An example of the results of the flow routing performed in this study, in preparation for the water quality simulation, is shown in Figure 8. Agreement between observed flows (indicated by x's) and simulated flows (solid line) is regarded as excellent, considering the assumptions inherent in the model and the accuracy of field measurements. Agreement between simulated and observed flows is generally confirmed, also, by the correlation graph of Figure 9, where the regression line of best fit is not distinguishable from a 45° line of perfect correlation. It is noted that greatest scatter occurs for higher flows, where differences are often accounted for by slight shifts in phase between simulated peaks and actual observations.

Typical simulated water surface profiles for the Allegheny River between Franklin and Parker (a distance of about 42 miles) are shown in Figure 10. Profiles are shown for four conditions at 10-day intervals during the 1977 study period in order to illustrate the consistent hydraulic behavior of the system over a fairly wide range of flow conditions. The channel bottom is indicated for reference purposes.

ADJUSTMENT OF FLOW MEASUREMENTS

Flow measurements are typically accurate to within plus or minus five percent of the actual flow. A particularly noteworthy error in flow measurement occurs in the lower Allegheny. A flow balance based on USGS recording gages consistently produces a net negative inflow of water between Kittanning and Natrona. For example, recorded mean daily flows for water year 1975 are shown in Table 6 (USGS, 1975). Table 5. PATTERN HYDROGRAPHS FOR DISTRIBUTING UNGAGED FLOWS

Ríver	Upstream Gage(s)	Downstream Gage	Pattern Hydrograph
Allegheny	Allegheny Reservoir	West Hickory	Brokenstraw Creek
Allegheny	West Hickory, French Creek at Utica	Franklin	0il Creek
Allegheny	Franklin and Clarion River at Piney Dam	Parker	Oil Creek
Clarion	Piney Dam and Allegheny at Franklin	Allegheny at Parker	Toms Run
Allegheny	Parker	Kittanning	Redbank Creek
Allegheny	Kittanning, Kiskiminetas at Vandergrift	Lock & Dam #2	Buffalo Creek

19

.

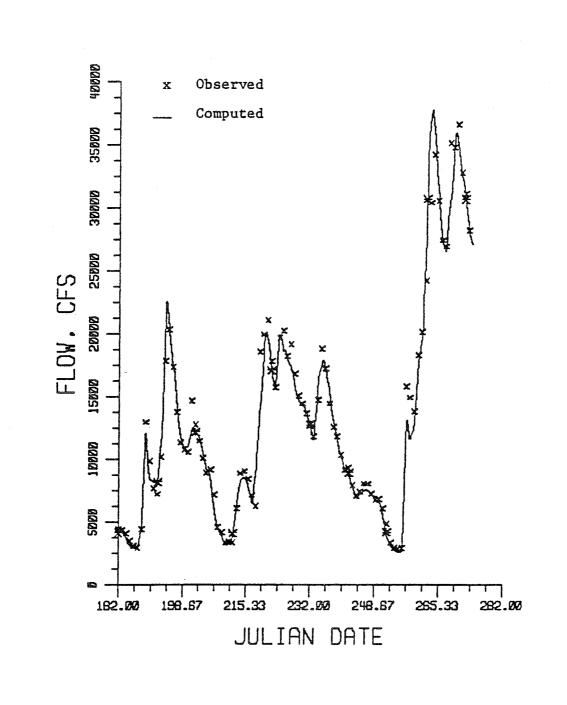
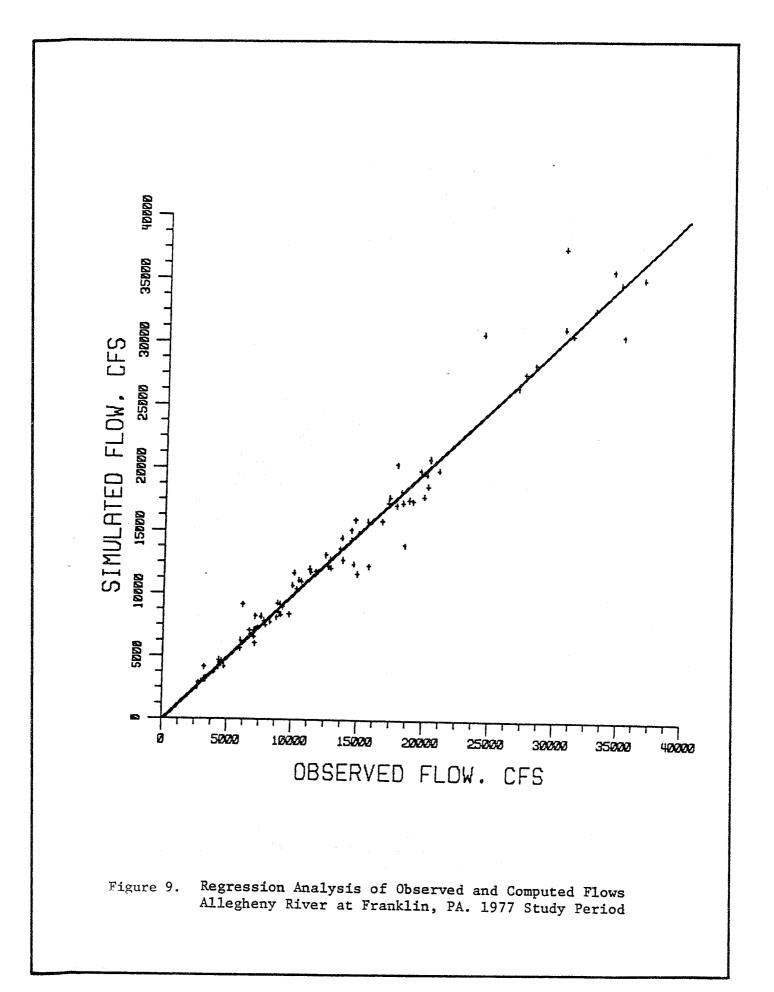
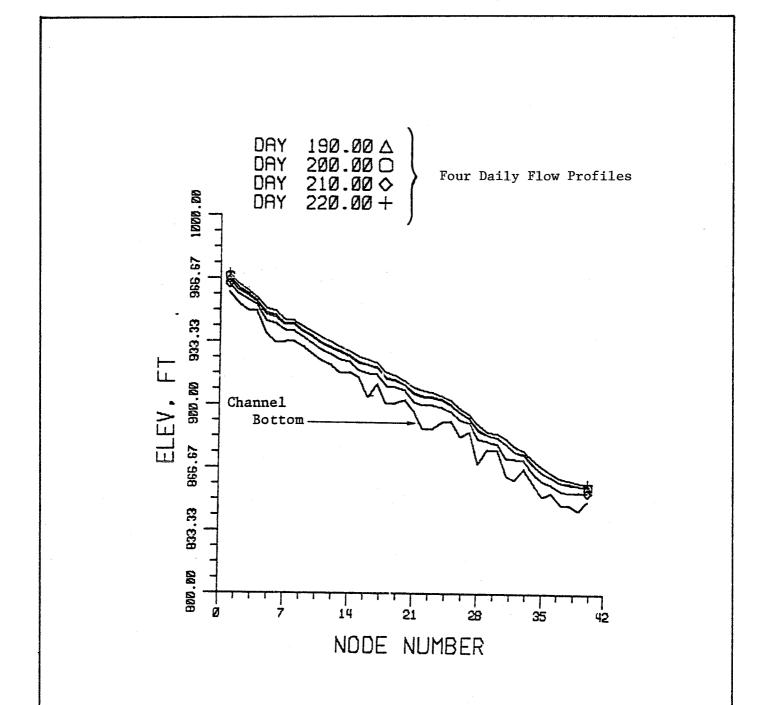




Figure 8. Observed and Computed Flows, Allegheny River at Franklin, PA. 1977 Study Period

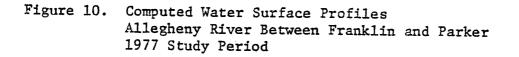


Table 6. ALLEGHENY RIVER FLOW BALANCE

Because of the negative flow balance in the USGS gages between Kittanning and Natrona, flow measured by the COE at Lock and Dam No. 2 was used to determine the volume of water to be allocated to ungaged tributaries in the Allegheny River below Kittanning. Flow measurements at Natrona were not used. This resulted in a better water balance for the system as a whole; that is, it minimized error attributable to water balance.

WATER QUALITY DATA

To represent the effect of rapidly changing hydrologic and meteorologic conditions on water quality, an extensive water quality data base was necessary. Flow/quality relationships were developed for those streams where sufficient data were available. These relationships and temperature measurements were adjusted as appropriate to describe the quality in nearby streams where data were lacking. Mr. Michael Koryak of the Pittsburgh District Corps of Engineers contributed greatly in the development of water quality data for this project through his special experience in the study area.

Excellent data were derived from the four Ohio River Sanitation Commission (ORSANCO) robot monitors described in Section III.B. The ORSANCO monitors record water temperature, dissolved oxygen, conductivity, and pH on an hourly basis.

Dissolved oxygen concentrations in the tributaries and reservoir outflows were considered to be at 95 percent of saturation based on temperature observations. The exception was for the outflow of Allegheny Reservoir, where the ORSANCO dissolved oxygen measurements were used.

Observed BOD measurements in the study area are scarce. Those records available suggested that reservoir outflows contain significant organic matter, comparable to concentrations found in streams in the study area (Pennsylvania Department of Environmental Resources, 1975, 1976). Hence, in the absence of more definitive data, BOD's were estimated to be at the fixed level of 2.0 mg/l for both tributaries and reservoir outflows.

The only wastewater discharges considered in the study were at Johnsonburg on the Clarion River and at Franklin on the Allegheny River. The quality of these discharges was based on typical values in the literature (Gehm and Rudolfs, 1953; Isaac, 1953; Metcalf and Eddy, 1972), except when effluent concentrations were actually recorded. Significant improvement in the treatment of these wastewaters occurred between the 1975 and 1977 study periods. This improvement was noted in assigning the quality in the 1977 study period.

Three thermal discharges were considered in the study. Temperatures of cooling water discharged from each of three coal fired power plants on the mainstem of the Allegheny River were determined from the net temperature rise over the condensers. Average temperature rises and discharge rates were specified for each plant according to the Federal Energy Regulatory Commission (1980) and the USGS (1981) (Allegheny Power System, 1980).

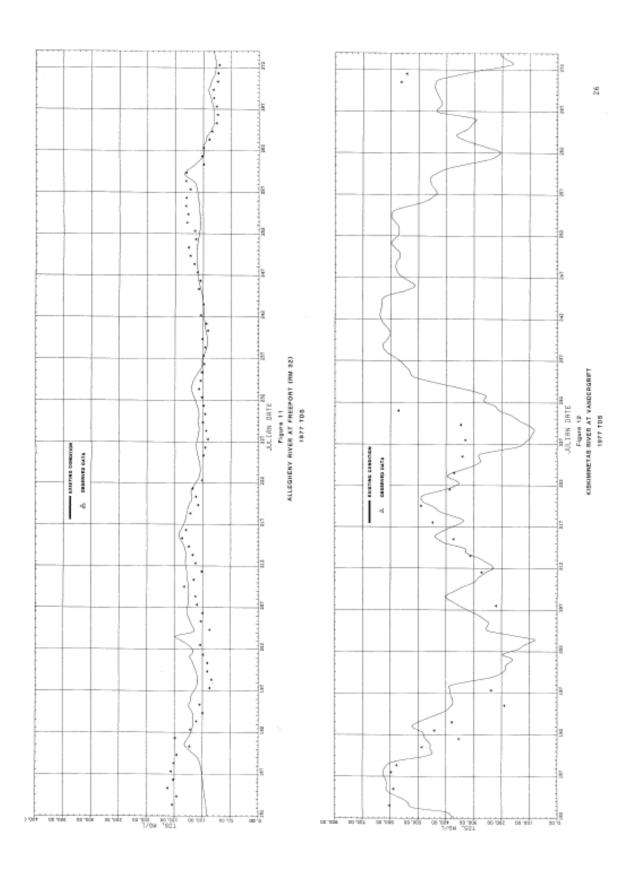
A listing of water quality data sources is presented in Appendix A.

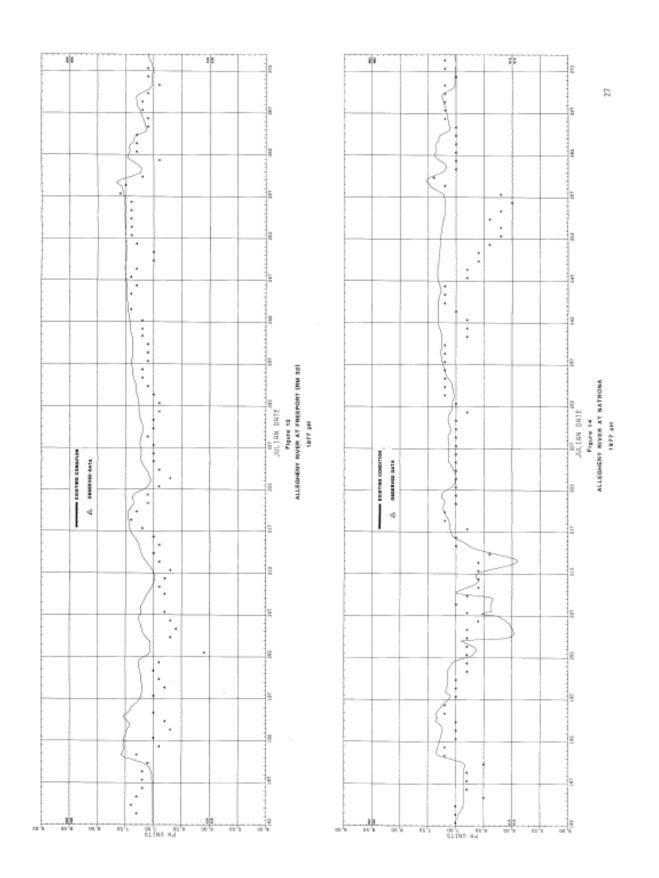
V. RESULTS

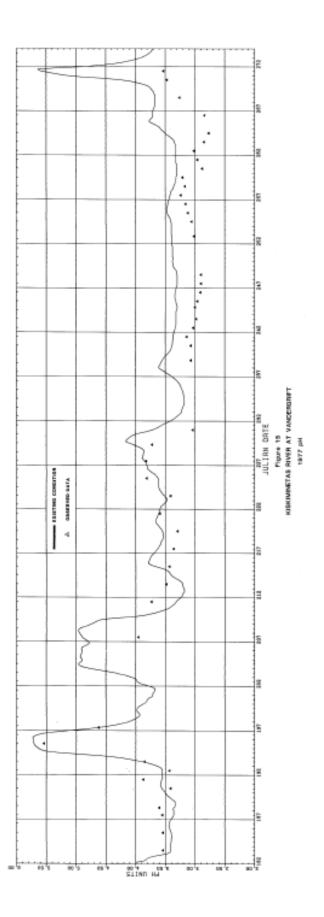
An enormous body of information concerning the water quality responses of the Allegheny River system to the three operation scenarios and the two hydrologic sequences is available for review. Details of some 30 simulation runs (15 each for two study periods, involving a system of 6 major stream reaches, 7 water quality parameters, etc.) are presented in output files supplied to HEC. Statistical summaries are included as Appendix B.

The top half of the statistical summaries define the characteristics (minimum, maximum, mean, and standard deviation) of the simulated water quality at a specified river mile location and an associated error analysis, if observed data is available for that location. The bottom half is used for constructing the quality duration graphs shown in Appendix C. These data describe the percent of simulated values that exceed one of the ten linearly-spaced lower bounds between a user specified maximum and minimum.

These data are of such magnitude that it is unrealistic to review them all here. Rather, it is more appropriate to highlight results with a few selected examples. Accordingly, the following illustrative comparisons have been chosen:


- ^o Simulated vs. Observed Water Quality
- ⁰ Effects of Operations on Allegheny River Water Temperature Extremes
- ^o Effects of Operations on the Kiskiminetas River
- ^o Effects of Operations on the Lower Allegheny River
- ⁰ Effects of Operations on the Upper Clarion River


SIMULATED VS. OBSERVED WATER QUALITY


Figures 11 through 15 illustrate the capability of the model to represent water quality changes in the lower Allegheny River and the Kiskiminetas River under Existing Conditions for the 1977 study period. Simulated pH and TDS histories are compared to observations at three locations: at Freeport and Natrona on the Allegheny River (above and below the Kiskiminetas River confluence) and in the lower reach of the Kiskiminetas River.

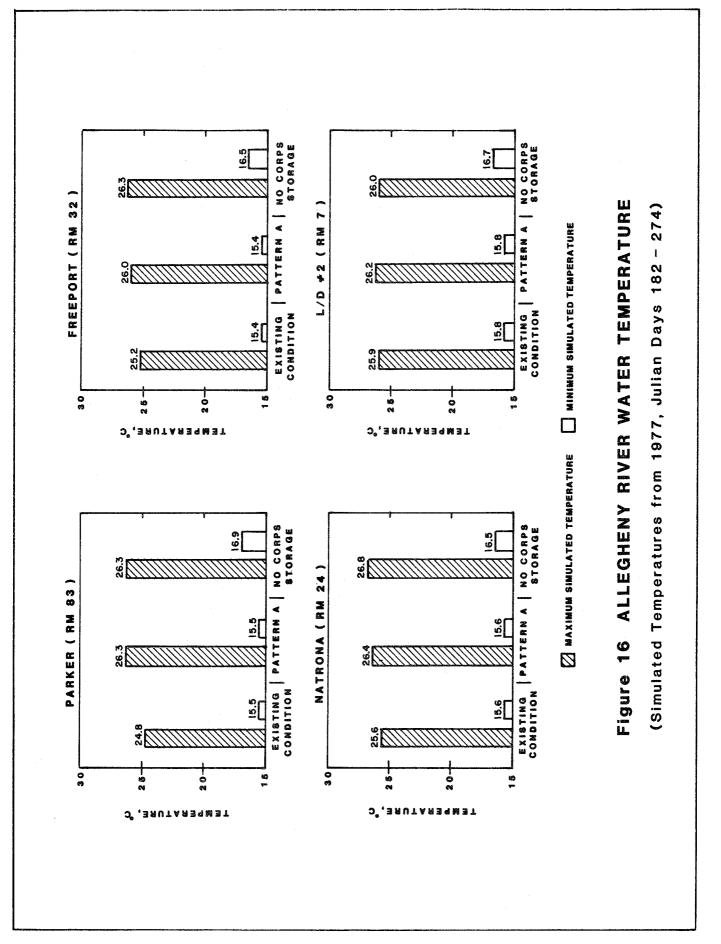
The TDS simulations appear to give a good account of observed behavior at Freeport and Vandergrift. The TDS history at Natrona responds closely to the more variable Kiskiminetas flow, which superimposes its more mineralized water on the less variable and lower TDS water of the Allegheny River passing Freeport.

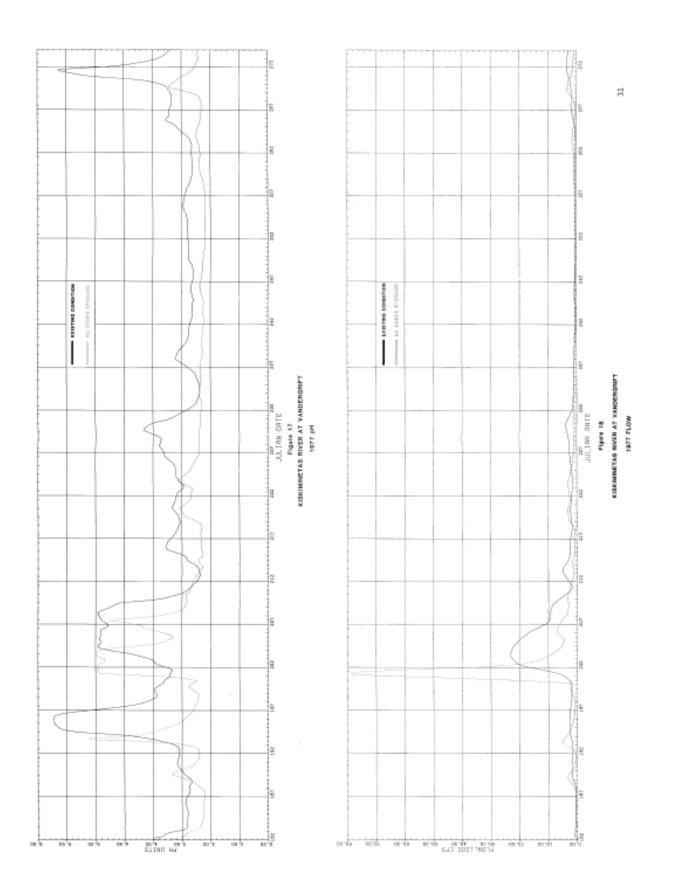
The well mixed condition assumed in deriving the model is not entirely appropriate to the Allegheny River below its confluence with the Kiskiminetas River, since an acid plume often occurs along the left bank in this reach. Observed data at Natrona are taken from the right bank and often do not reflect the low pH condition along the left bank resulting from incomplete to minimal mixing of the two streams.

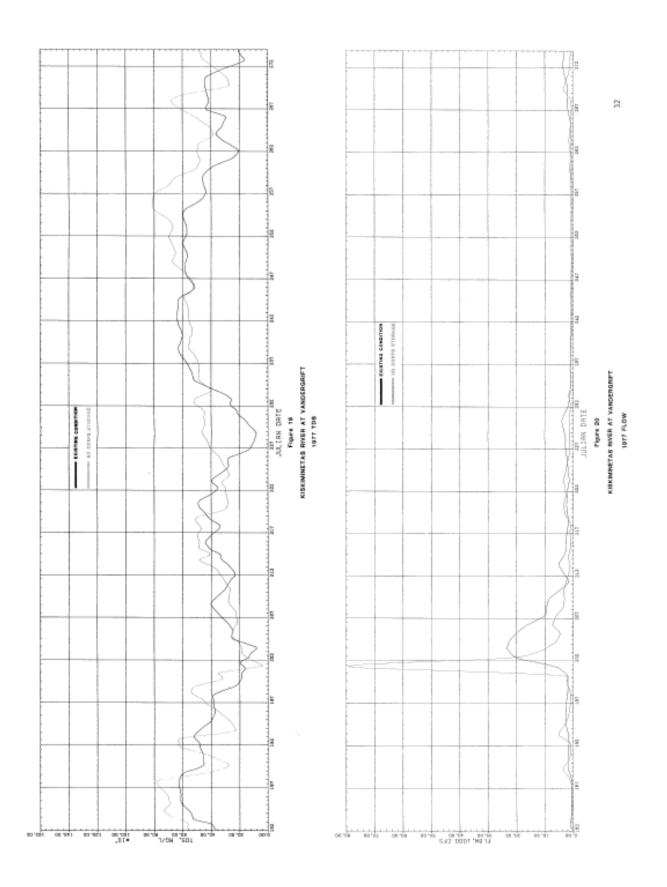
During the period 28-29 July 1977, this unmixed condition gave rise to violations of the minimum pH standard of 6.0 along the left bank of the Allegheny River over the entire thirty mile reach from the Kiskiminetas River to Pittsburgh. Except for a minor depression in pH, no evidence of such a severe condition can be found in the observed data at Natrona. Results of simulation during this time also show only a minor depression in pH.

The depression in pH along the left bank of the lower Allegheny River during the period mentioned above resulted from intensive dewatering of mines in the Conemaugh River basin. The extreme acidity of that drainage was not detected by ORSANCO's Vandergrift monitor, which was transmitting erroneously high pH values during this time. While simulation of the pH conditions at Vandergrift can be seen to be falling during the period 28-29 July 1977 (Julian dates 209-210), the extreme acidity of the Kiskiminetas River during this time may have been underestimated in simulation.

Recognizing the conservative nature of the model in assuming a well mixed condition and the possible underestimate of the acid load of the Kiskiminetas River during extreme acid pollution events, the simulation results suggest a credible performance of the model in simulating short term water quality trends. The results also suggest that a subsequent analysis focusing on the unique hydraulic and water quality characteristics of the lower Allegheny River is required to accurately quantify changes in water quality across the width of the Allegheny River, as well as along the direction of flow.


EFFECTS OF ALTERNATIVE OPERATIONS


Effects of Operations on Allegheny River Water Temperature Extremes

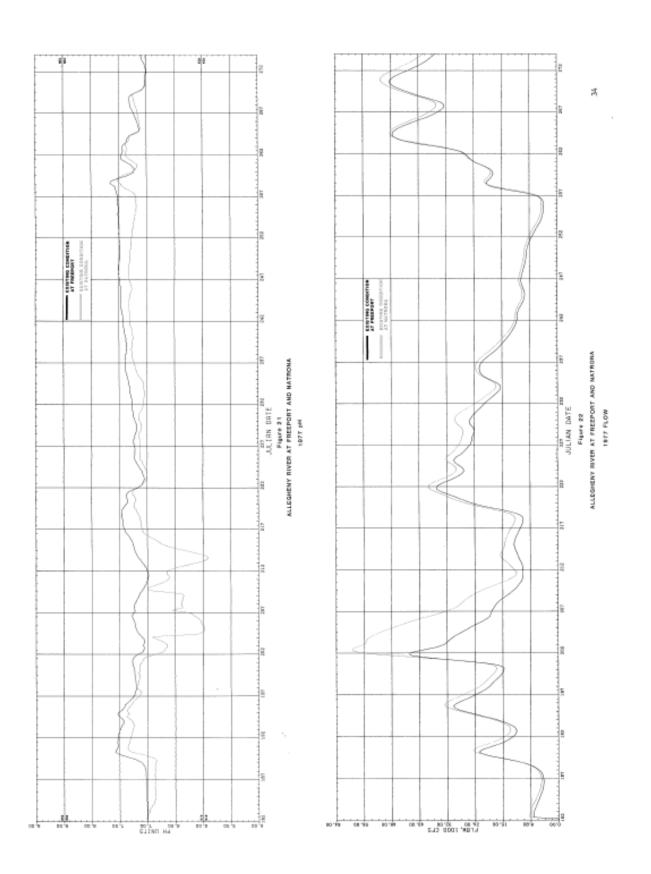

Figure 16 illustrates the effect of reservoir storage and operation on temperature extremes (maxima and minima) in the reach of the Allegheny River between Parker and Lock and Dam No. 2 (River Mile 83 to 7). As might be expected, the existing scheme of regulation assures the narrowest range of variation, roughly between 15.5° C and 26° C for the 1977 study period (1 July through 30 September). Pattern A preserves similar minima. However, due to greater control of releases, maxima are $1-2^{\circ}$ C higher than for Existing Conditions. The No Corps Storage case exhibits generally higher values, both in minima and maxima. Minimum temperatures are about 1.5° C higher, while maxima are 1.5° C to 3° C higher than for Existing Conditions and 0.2° C to 1.5° C higher than for "Pattern A."

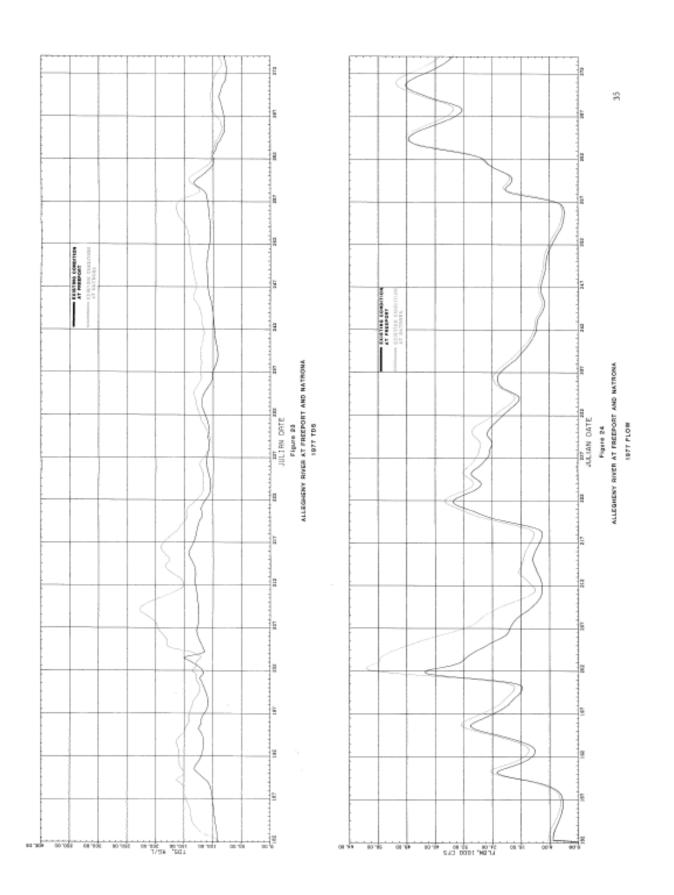
Effects of Operations on the Kiskiminetas River

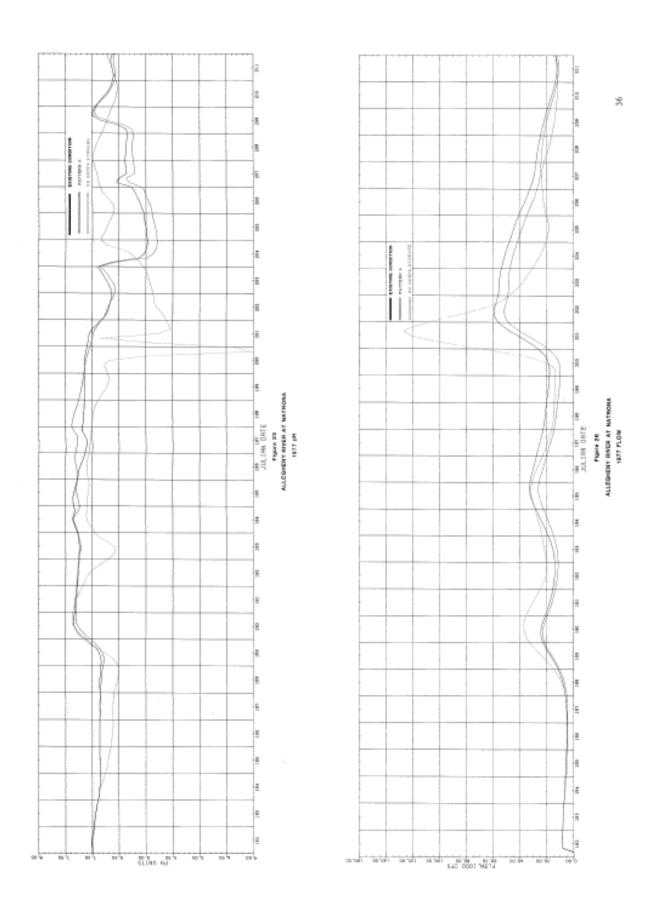
The influence of Corps of Engineers storage on the Kiskiminetas River is demonstrated in Figures 17 through 20. The histories of pH and TDS in the Kiskiminetas River at Vandergrift for 1977 are simulated under the hypothetical condition of No Corps Storage. Generally, the absence of reservoirs results in higher, less attenuated pollutional episodes. Fluctuations in TDS are indicative of the close association of quality and flow in the Kiskiminetas drainage. The flows in Figures 18 and 20 are mean daily flows.

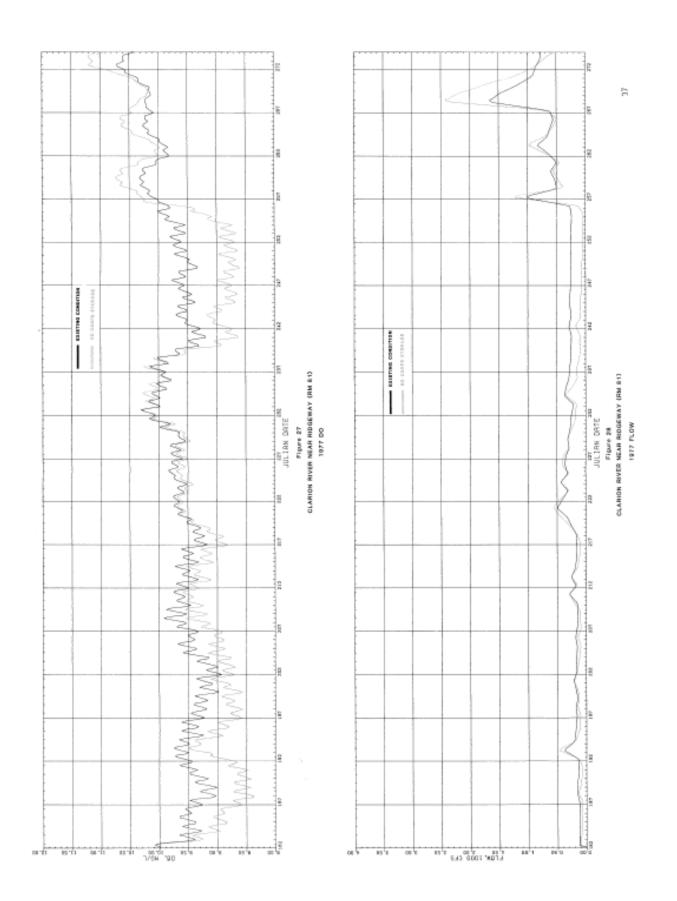
Effects of Operations on the Lower Allegheny River

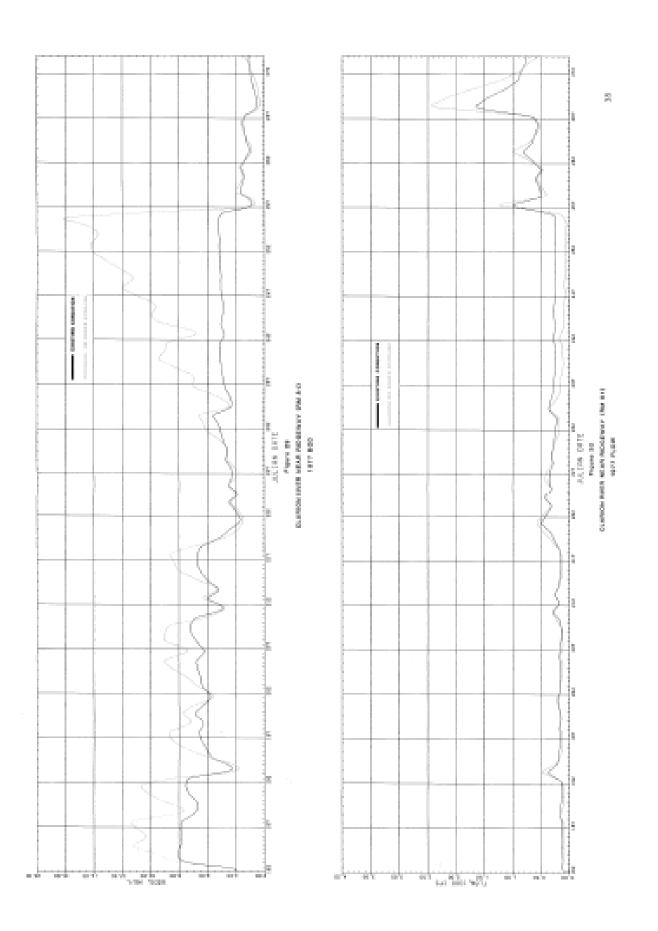
The simulated impact of the Kiskiminetas River on the Allegheny River under Existing Conditions in 1977 is demonstrated in Figures 21 through 24. A significant increase in flow at Natrona can be seen (Figure 22) starting on day 202 compared to the flow at Freeport. Associated with this increased flow is a significant decrease in pH between Freeport and Natrona (Figure 21). A similarly significant increase in TDS at Natrona (Figure 23) can be attributed to the Kiskiminetas River flows. The flows in Figures 22 and 24 are mean daily flows.


In contrast to the above discussion, Figures 25 and 26 illustrate the impacts of regulation during the 1977 study period on the pH at Natrona due to the Pattern A operation at Kinzua Dam and due to all nine projects in the basin. Most notable in this comparison is the attenuation by storage (Figure 25) of the occasional pH extremes that result with the first wash following a storm. This effect is seen in the event beginning at day 200, when the pH under unregulated conditions dropped to about 4.0. In contrast, with regulation according to Pattern A, the pH was maintained above 7.0. Again, the severe acid dewatering episode of days 209 and 210 that was previously discussed did not show up in these simulations. The flows in Figure 26 are mean daily flows.


Effects of Operations on the Upper Clarion River


The influence of existing storage in moderating the impact of organic wastewater in the system is illustrated by comparison of simulation results depicted in Figures 27 through 30 for the Clarion River near Ridgeway (River Mile 81) for 1975 conditions. The BOD load carried by the stream is greatly attenuated by regulation as compared to the No Corps Storage condition (Figure 29). The peak BOD in the No Corps Storage case was about 16 mg/1 (see Day 255), while under Existing Conditions it was reduced to about 5.2 mg/1. As shown in Figure 27, this would result in an increased dissolved oxygen concentration at Ridgeway and points downstream. The flows in Figures 28 and 30 are mean daily flows.


VI. CONCLUDING COMMENT


The comparisons made here only illustrate the capabilities of the model and merely serve to show the general nature of changes in water quality that can occur due to the existence of a capacity for streamflow regulation in the Allegheny system. Many more comparisons can be made, and much more detailed analysis of results is possible. The data are on tape and have been summarized in graphical and statistical forms for HEC and the Pittsburgh District Corps of Engineers.

REFERENCES

- Allegheny Power System. October 7, 1980. Personal communication. Greensburg, Pennsylvania.
- Federal Energy Regulatory Commission. August 4, 1980. Personal communication. Washington, D.C.
- Gehm, H.W. and Rudolfs, W. 1953. Industrial Wastes: Their Disposal and Treatment. Reinhold Publishing. New York.
- Isaac, P.C.G. 1953. "The Treatment of Trade Wastewaters and the Prevention of River Pollution." Contractors' Record Ltd., London.
- Metcalf and Eddy, Inc. 1972. <u>Wastewater Engineering: Collection, Treatment,</u> Disposal. McGraw-Hill. New York.
- Pennsyvlania Department of Environmental Resources. 1975. "Comprehensive Water Quality Management Plan, COWAMP Study Area 5".
- Pennsylvania Department of Environmental Resources. 1976. "Comprehensive Water Quality Management Plan, COWAMP Study Area 9".
- Smith, Donald J. 1978. "Water Quality for River-Reservoir Systems." Generalized Computer Program, US Army Corps of Engineers, Hydrologic Engineering Center. Davis, California.
- Tetra Tech, Inc. 1980. "Acid Mine Drainage Modification to WQRRS Model." Project Report to the Hydrologic Engineering Center, Davis, California.
- U.S. Geological Survey. 1975. "Water Resources Data for Pennsylvania Water Year 1975." Water-Data Report PA-75-3.
- U.S. Geological Survey. 1976. "Water Resources Data for Pennsylvania Water Year 1976." Water-Data Report PA-76-3.
- U.S. Geological Survey. 1977. "Water Resources Data for Pennsylvania Water Year 1977." Water-Data Report PA-77-3.
- U.S. Geological Survey. April 10, 1981. Personal communication. Pittsburgh Office.

APPENDIX A

WATER QUALITY DATA SOURCES

..

A-1. ALLEGHENY RIVER WATER QUALITY DATA

	DATA SOURCE INI	DEX NUMBER
TRIBUTARY	TEMPERATURE	QUALITY
Conewango Creek	2	1
Jackson Run	2	1
Brokenstraw Creek	3	1
Tidioute Creek	4	1
East Hickory Creek	4	1
Hemlock Creek	4	1
Pithole Creek	5	1
0il Creek	5	1
East Sandy Creek	6	6
Sandy Creek	6	6
STREAM	TEMPERATURE	QUALITY
Bear Creek	7	1, 10
Redbank Creek	9	1, 10
Cowanshannock Creek	7	1, 10
Buffalo Creek	8	1, 10
Bull Creek	8	1, 10
Pucketa Creek	8	1
Deer Creek	8	1
Plum Creek	8	1 1

DATA SOURCES

- 1. Flow/quality relationship
- 2. Allegheny Reservoir inflow temperature
- 3. Union City Reservoir inflow temperature
- 4. Union City Reservoir inflow temperature adjusted downward to account for local conditions
- 5. Woodcock Creek Lake inflow temperature
- 6. Same as Muddy Creek in French Creek basin
- 7. Loyalhanna Reservoir inflow temperature
- 8. Loyalhanna inflow temperature adjusted to account for local conditions
- 9. East Branch Clarion Reservoir inflow adjusted to account for local conditions
- 10. Observed data for Bull Creek from Tarentum water works, Tarentum, PA.

A-2. FRENCH CREEK WATER QUALITY DATA

TRIBUTARY TEMPERATURE QUALITY
South Branch, French Creek 3 1, 6
Little Conneautte Creek 2 1, 6
Muddy Creek Iwice per month 1, twice per
measurements from COE month measurements from
COE
Cussewago Creek 4 1, 6
Conneaut Outlet 5 1, 6
Little Sugar Creek 4 1, 6
Sugar Creek 4 1, 6
Patchel Run 4 1, 6

DATA SOURCES

- 1. Flow/quality relationship
- 2. Union City Reservoir inflow temperature
- 3. Union City Reservoir inflow temperature adjusted to account for local conditions
- 4. Woodcock Creek Reservoir inflow temperature
- 5. Woodcock Creek Reservoir inflow temperature adjusted to account for local conditions
- 6. pH measurements for Muddy Creek, Corps of Engineers

A-3. CLARION RIVER WATER QUALITY DATA

	DATA SOURCE IN	DEX NUMBER
TRIBUTARY	TEMPERATURE	QUALITY
Crooked Creek	2	1
West Branch, Clarion River	2	1
Local drainage below Wilcox	2	1
Little Toby Creek	3	1
Spring Creek	3	1
Millstone Creek	3	- 1
Toms Run	3	1
Mill Creek	3	1 .
Toby Creek	3	1
Piney Creek	3	1
Deer Creek	3	1
Licking Creek	3	1

DATA SOURCES

,

- 1. Flow/quality relationship
- 2. East Branch Clarion River Reservoir inflow temperature
- 3. East Branch Clarion River Reservoir temperature adjusted to account for local conditions

A-4. KISKIMINETAS RIVER WATER QUALITY DATA

דר הייז דר היי		
TRIBUTARY	TEMPERATURE	QUALITY
Blacklegs Creek	1	2
Beaver Run	1	2

DATA SOURCES

1. Daily data from COE Pittsburgh extrapolated from local thermographs

2. Flow/quality relationship

		DATA SOURCE	INDEX NUMBER	····		
	INFL	.OW	OUTFLOW			
RESERVOIR	TEMPERATURE	QUALITY	TEMPERATURE	QUALITY		
Allegheny	3	5	1	1, 2		
Tionesta Lake	3	5	2	2		
Union City	3	5	2	2		
Woodcock Creek	3	5	2	2		
East Branch Clarion Ri	ver 3	5	2	2,3		
Mahoning Creek	6	5,7	2	2		
Crooked Creek	6	5, 7	2	2		
Conemaugh	3	5	3	4		
Loyalhanna	3	5	3	4		
-						

A-5. INFLOW/OUTFLOW WATER QUALITY DATA FOR COE RESERVOIRS IN THE ALLEGHENY RIVER BASIN

DATA SOURCES

- 1. ORSANCO monitor, hourly measurements
- 2. COE data, twice per month
- 3. Daily temperature data from COE Pittsburgh
- 4. Daily quality data from COE Pittsburgh
- 5. Flow/quality relationships
- 6. Loyalhanna Creek Reservoir inflow temperature
- 7. Alkalinity measurements of Loyalhanna Creek Reservoir inflow

A-6. INSTREAM WATER QUALITY DATA

RIVER	LOCATION	SOURCE
Allegheny	Freeport	ORSANCO monitor Freeport Water Co.
Allegheny	Natrona	Clearview Water Co.; USGS
Kiskiminetas	Vandergrift	ORSANCO monitor

A-6

APPENDIX B

WATER QUALITY STATISTICS FOR SELECTED SITES IN THE ALLEGHENY RIVER BASIN

B-1 French Creek Below Meadville

"Existing Conditions," 1975

1975 STUDY PERIOD-FREM STATISTICS FOR EXISTIN		NS NEAR M	EADVILL	E				
					÷			
EGINNING OF REACH RIVER		73. 13						
ND OF REACH RIVER	MILE	0, 73						
UBREACH LENGTH (MILES)		1.85						
OMPUTATION INTERVAL (HON	æs)	4						
IRST DAY OF SIMULATION P	PERIOD	152	(13	N 75)			
AST DAY OF SIMULATION PE		304	(31 00	T 73)			
UMBER OF DAYS IN SIMULA	TION PERIOD	152						
BSERVATIONS AT RIVER MIL		24.99						
BSERVATIONS AT RIVER MIL IRST DAY OF STUDY PERIOD			(2)	JN 73	•			
	>	153	(2) (31)					
IRST DAY OF STUDY PERIOD AST DAY OF STUDY PERIOD WHEER OF DAYS IN STUDY A	PERIOD	153 304 152	(31 0	7 7:	12			
IRST DAY OF STUDY PERIOD AST DAY OF STUDY PERIOD UMBER OF DAYS IN STUDY A	PERIOD	153 304 152	(31 0)	7 7:	12			
IRST DAY OF STUDY PERIOD AST DAY OF STUDY PERIOD WHEER OF DAYS IN STUDY P ATER QUALITY PARAMETERS	PERIOD AT RIVER M	153 304 132 ILE 24	(31 D)	7 7:	12			
IRST DAY OF STUDY PERIOD AST DAY OF STUDY PERIOD UMBER OF DAYS IN STUDY A	PERIOD AT RIVER M	153 304 152	(31 D)	7 7:	12			
IRST DAY OF STUDY PERIOD AST DAY OF STUDY PERIOD WHEER OF DAYS IN STUDY P ATER QUALITY PARAMETERS	PERIOD AT RIVER M NTS	153 304 132 ILE 24	(31 04 ******** 99 912 ON VAL	T 7:	•			
IRST DAY OF STUDY PERIOD AST DAY OF STUDY PERIOD WHEER OF DAYS IN STUDY P ATER QUALITY PARAMETERS	AT RIVER M	153 304 152 ILE 24 SIHULATI MAXIMUM	(31 00 99 912 ON VAL	T 7:	TD. DEV.			
IRST DAY OF STUDY PERIOD AST DAY OF STUDY PERIOD WHEER OF DAYS IN STUDY P MATER QUALITY PARAMETERS WHEER OF SIMULATION POIN ARAMETER FLOW(M++3/5)	PERIOD AT RIVER M VTS MINIMUM 3.7	153 304 152 	(31 00 999 912 DN VAL ME 24	T 7:	ito. dev. 23. 4			
IRST DAY OF STUDY PERIOD AST DAY OF STUDY PERIOD UMBER OF DAYS IN STUDY 1 ASTER QUALITY PARAMETERS NUMBER OF SIMULATION POIN ARAMETER FLOW (M++3/5) TEMP (DEGREE C)	AT RIVER M NTS MINIMUM 3.7 4.1	153 304 152 ILE 24 SIHULATI MAXIMUM 104.4 32.8	(31 0) 999 912 0N VAL ME 24 18	JES -	17D. DEV. 23. 4 5. 4			
IRST DAY OF STUDY PERIOD AST DAY OF STUDY PERIOD WHEER OF DAYS IN STUDY P MATER QUALITY PARAMETERS WHEER OF SIMULATION POIN ARAMETER FLOW(M++3/5)	AT RIVER M NTS MINIMUM 3.7 4.1 7.5	153 304 152 	(31 0) 99 912 0N VAL ME 24 18 9	JES - N S 4	TD. DEV. 23.4 5.4 1.0			
IRST DAY OF STUDY PERIOD AST DAY OF STUDY PERIOD UMBER OF DAYS IN STUDY F ATER QUALITY PARAMETERS WMBER OF SIMULATION POIN ARAMETER FLOW(M++3/S) TEMP(DEGREE C) OXY (MG/L) ALKA(MG/L AS CACO3)	AT RIVER M NTS HINIMUM 3.7 4.1 7.5 42.9	153 304 152 ILE 24 SIMULATI MAXIMUM 104.4 32.8 12.4 100.7	(31 0) 999 912 DN VAL 24 18 97	JES - NN S 4	(TD. DEV. 23.4 5.4 1.0 14.3			
IRST DAY OF STUDY PERIOD AST DAY OF STUDY PERIOD WHEER OF DAYS IN STUDY 1 """"""""""""""""""""""""""""""""""""	AT RIVER M NTS MINIMUM 3.7 4.1 7.5 42.9 64.	153 304 152 ILE 24 SIMULATI MAXIMUM 104.4 32.8 12.4 100.7 125.	(31 0) 99 912 DN VAL 18 9 77 10	UES - N S 6 4	TD. DEV. 23.4 5.4 1.0 14.3 15.			
IRST DAY OF STUDY PERIOD AST DAY OF STUDY PERIOD UMBER OF DAYS IN STUDY F ATER QUALITY PARAMETERS WMBER OF SIMULATION POIN ARAMETER FLOW(M++3/S) TEMP(DEGREE C) OXY (MG/L) ALKA(MG/L AS CACO3)	AT RIVER M NTS MINIMUM 3.7 4.1 7.5 42.9 64.	153 304 152 ILE 24 SIMULATI MAXIMUM 104.4 32.8 12.4 100.7	(31 0) 99 912 DN VAL 18 9 77 10	UES - N 5 6 4	(TD. DEV. 23.4 5.4 1.0 14.3			
IRST DAY OF STUDY PERIOD AST DAY OF STUDY PERIOD UMBER OF DAYS IN STUDY F ATER QUALITY PARAMETERS WMBER OF SIMULATION POIN ARAMETER FLOW(M++3/S) TEMP(DEGREE C) OXY (MG/L) ALKA(MG/L AS CACO3) HARD(MG/L AS CACO3)	PERIOD AT RIVER H NTS HINIMUM 3.7 4.1 7.5 42.9 64. 77.	153 304 152 ILE 24 SIMULATI MAXIMUM 104.4 32.8 12.6 100.7 125. 148. 8.3	(31 0) 9912 ON VALI 248 77 10 12 77	UES - N S 6 4 1.	TD. DEV. 23.4 5.4 1.0 14.3 15.			

ALLEGHENY RIVER WATER GUALITY STUDY 1975 STUDY PERIOD-FRENCH CREEX STATISTICS FOR EXISTING CONDITIONS NEAR MEADVILLE WATER GUALITY PARAMETERS AT RIVER MILE 24.99 NUMBER OF SIMULATION POINTS 912

					INTERVAL	S.				
PARAMETER	1	2	3	4	5	6	7	8	9	.10
TEMP (DECREE C)	100.00	98.79	96.49	82. 02	67. 34	34. 50	35. 53	15. 57	3. 84	0.85
LOWER BOUND	4.15	7.01	9.88	12.74	15.61	18.47	21.34	24. 21	27.07	29.94
DXY (MC/L)	100.00	95.82	79.17	51.21	37. 50	28. 29	15.13	3. 40	1.10	0. 77
LOWER BOUND	7.50	8.02	8. 53	9.05	9.56	10.06	10. 59	11.11	11.62	12.14
ALKA (HO/L AS CACOS)	100.00	95.29	92.87	87. 50	79.28	66.12	53.18	41.12	22, 70	12.83
LOWER BOUND	42.90	48.69	54. 47	60.26	65.05	71.84	77.63	83. 42	89.20	94.99
HARD (MG/L AS CACO3)	100.00	100.00	100.00	96.71	93.64	89.47	79.71	58, 99	38. 05	17.43
LOWER BOUND	39.96	48, 45	56. 93	65. 42	73. 91	82, 39	90.88	9 9, 37	107.85	116. 34
TDS (HG/L)	100.00	94.63	93. 53	90.46	78. 51	70. 61	59. 87	39. 47	31.69	12.94
LOWER BOUND	77. 02	84.10	91.17	98.24	105.31	112 39	119.46	126. 53	133. 60	140. 65
PH	100.00	95.94	94.08	90.24	87.39	79.93	55. 37	30. 81	22. 48	6. 91
LOWER BOUND	6.60	6.78	6.95	7.13	7.31	7.48	7.66	7.83	8.01	8.18
BOD (HG/L)	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99. 78	81.80	52. 53
LOWER BOUND	0. 50	0. 64	0.79	0. 93	1.07	1. 22	1.36	1. 50	1. 65	1. 79

B-2 French Creek Below Meadville

"No Corps Storage," 1975

ALLEOHENY RIVER WATER GUALITY STUDY 1975 STUDY PERIOD-FRENCH CREEK STATISTICS FOR NO CORPS STORAGE NEAR MEADVILLE SECINNING OF REACH RIVER MILE 73.13 END OF REACH RIVER MILE 0.93 SUBREACH LENGTH (MILES) 1.85 COMPUTATION INTERVAL (HOURS) 4 FIRST DAY OF SIMULATION PERIOD LAST DAY OF SIMULATION PERIOD NUMBER OF DAYS IN SIMULATION PERIOD 152 (1 JUN 75) 304 (31 OCT 75) 152 OBSERVATIONS AT RIVER MILE FIRST DAY OF STUDY PERIOD 24.99 153 (2 JUN 75) 304 (31 DCT 75) LAST DAY OF STUDY PERIOD NUMBER OF DAYS IN STUDY PERIOD 152 ************************ HATER QUALITY PARAMETERS AT RIVER HILE 24. 99 NUMBER OF SIMULATION POINTS 912 GIMIN ATTOM MALINE

		SIMULATION	VALUES	
PARAHETER	MINIHUM	MAXIMUM	MEAN	STD. DEV.
FLOW(M*+3/S)	4. 3	138. 0	23. B	25. 3
TEMP (DEOREE C)	3. 7	32. 9	18.3	5.6
OXY (MO/L)	7. 3	12.8	9.5	1.1
ALXA(MO/L AS CACO3)	30. 5	103.0	76.0	18.7
HARD (MO/L AS CACOS)	51.	136.	102.1	18.
TDS (HO/L)	84.	168.	123.	20.
•				
PH	6.7	8. 3	7.6	7.5
SOD (HG/L)	1.4	1.9	1.8	0.1
· ***************************	********	**********	*******	*****

ALLEGHENY RIVER WATER QUALITY STUDY 1975 STUDY PERIOD-FRENCH CREEK STATISTICS FOR NO CORPS STORAGE NEAR MEADVILLE WATER QUALITY PARAMETERS AT RIVER MILE 24.99 NUMBER OF SIMULATION POINTS 912

PARAMETER		INTERVALS								
	1	2	З	4	5	6	7	8	9	10
TEMP (DEGREE C)	100.00	98. 90	95. 29	79.39	66.23	53. 29	36. 51	15, 90	4. 06	0. 88
LOWER BOUND	3.71	6.63	9. 55	12.47	15.40	18.32	21.24	24.16	27.09	
DXY (MG/L)	100.00	96. 93	78.84	51.10	39. 58	29.71	18.42	4,06		30. 02
LOWER BOUND	7.47	8.01	8. 54	9.09	9.62				1.32	0.66
ALKA(NO/L AS CACOS)	100.00	96.38	92.21	84. 87		10.15	10. 69	11.22	11.76	12.30
LOWER BOUND	30, 46	37.72			78.29	71.16	60. 42	43.09	31. 91	15.68
HARD (MO/L AS CACOS)	100.00		44.99	52. 25	59. 52	66. 78	74.05	81. 31	88 57	95 84
LOWER BOUND		100.00	99.01	95.18	89. 60	76.21	64. 59	42.76	24. 23	7 79
	39.96	49. 57	59.18	68. 78	78.39	88.00	97.61	107.21	116.82	126.43
TDS (HO/L)	100.00	94.41	86. 84	76.64.	60, 20	41.45	31.80	19.08	10.42	2.96
LOWER BOUND	83. 72	92. 13	100. 35	108.96	117.38	125.79	134, 21	142.62	151.04	159.45
PH	100.00	96.60	94.41	94.30	90.79	75.33	54.71	32.79	25.00	15. 57
LOWER BOUND	6.69	6.86	7.02	7.19	7.36	7. 52	7.69	7.85	8.02	
30D (HQ/L) -	100.00	100.00	100.00	100.00	100.00	. 100. 00	100.00			8.15
LOWER BOUND	0.50	0.64	0.79	0. 93				99.45	73.36	52.63
		v. a-	V. 7 Y	V. YJ	1.08	1. 22	1.36	1.51	1.65	1.80

B-3 Clarion River Near Ridgeway

"Existing Conditions," 1975

ALLECHENY RIVER WATER QUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS CLARION RIVER BEGINNING OF REACH RIVER MILE 87.65 1.06 END OF REACH RIVER MILE SUBREACH LENGTH (MILES) 2.11 COMPUTATION INTERVAL (HOURS) 4 152 (1 JUN 75) 304 (31 OCT 75) FIRST DAY OF SIMULATION PERIOD LAST DAY OF SIMULATION PERIOD NUMBER OF DAYS IN SIMULATION PERIOD 152 OBSERVATIONS AT RIVER MILE 81.31 FIRST DAY OF STUDY PERIOD 153 (2 JUN 73) LAST DAY OF STUDY PERIOD 304 (31 OCT 75) NUMBER OF DAYS IN STUDY PERIOD 192 ***** WATER QUALITY PARAMETERS AT RIVER MILE 81.31 NUMBER OF SIMULATION POINTS 912 - SIMULATION VALUES ---HINIMUM MAXIMUM MEAN STD. DEV. PARAMETER 11.1 8.6 FLOW(M++3/S) 4. 8 58. 5 25.0 4.0 TEMP (DEGREE C) 5.8 15.3 0.8 OXY (MO/L) 8. 2 12.0 10.0 ALKA(HO/L AS CACO3) 7.3 22.3 15.7 3.0 HARD (MO/L AS CACO3) 12. 56. 38. 7. TDS (MO/L) 35. 111. 85. 14. 7.4 7.0 7.0 6.1 РН 8.2 ROD (MG/L) 2.6 6.0 1.6 *****

ALLECHENY RIVER WATER GUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS CLARION RIVER WATER GUALITY PARAMETERS AT RIVER MILE 81.31 NUMBER OF SIMULATION POINTS 912

					INTERVALS	3				
PARAMETER	i	2	З	4	5	6	7	8	9	10
TEMP (DEGREE C)	100.00	98. 03	92, 00	79. 82	61.95	50. 77	32, 35	20. 61	6. 58	1. 54
LOWER BOUND	5.79	7.71	9.63	11. 55	13.47	15.39	17.31	19.23	21.15	23. 07
DXY (MG/L)	100.00	97.37	87.72	71.82	63.60	45. 29	27.85	13.38	6. 36	1.97
LOWER BOUND	8.23	8. 61	8.99	9.36	9.74	10.12	10.49	10.87	11.25	11. 62
ALKA (MG/L AS CACOS)	100.00	97.48	94. 52	85. 31	82. 57	72.26	48. 57	17.43	10.42	5.15
LOWER BOUND	7.29	8.80	10, 30	11.80	13. 31	14.81	16. 32	17.82	19.32	20. 83
HARD (MO/L AS CACO3)	100.00	98. 68	97.37	93.64	87.25	83. 35	32.74	20.18	9.76	2, 85
LOWER BOUND	12.29	16.66	21.04	25. 42	27.80	34.17	38. 55	42. 93	47.30	51.68
TDS (MC/L)	100.00	98.25	95.94	91.12	87.14	85. 64	77.41	57. 98	7.35	2.74
LOWER BOUND	35.06	42.70	50, 33	57. 97	65.60	73.24	80.87	88. 51	96.14	103. 78
PH	100.00	98. 57	98.14	96. 93	91.45	89 91	R4 76	74 22	70 77	77 71
LOWFR BOUND	6.11	6.25	6. 38	6. 52	6. 65	6.79	6. 92	7.05	7.19	7. 32
BOD (MG/L)	100.00	96. 82	86.73	79.17	72.48	63. 93	54.06	43. 53	34.10	18. 66
LOWER BOUND	2. 59	3.15	3.72	4. 28	4.84	5.41	5.97	6.54	7.10	7.66

B-4 Clarion River Near Ridgeway

"No Corps Storage," 1975

***	***	***	****	****	********	******	*****	********	
ALLECHENY RIVER WATER G	UALITY STU	Y							
1775 STUDY PLRIUD									
STATISTICS FOR NO CORPS									
**************************************			******	***					
BEGINNING OF REACH RIVER M		87.65							
END OF REACH RIVER M		1.06							
SUBREACH LENGTH (MILES)		2.11							
COMPUTATION INTERVAL (HOUR	(S)	4							
FIRST DAY OF SIMULATION PE	RIOD	152 (1 JUN	75)					
LAST DAY OF SIMULATION PER	100	304 (31 OCT 1	75)					
NUMBER OF DAYS IN SIMULATI	ON PERIOD	152							
OBSERVATIONS AT RIVER MILE		81. 31							
FIRST DAY OF STUDY PERIOD	-	153 (2 JUN 1	75)					
LAST DAY OF STUDY PERIOD		304 (31 OCT 3	75)					
NUMBER OF DAYS IN STUDY PE		152							
*****	****	*******	******	***					
WATER QUALITY PARAMETERS A									
NUMBER OF SIMULATION POINT	rs	91	2						
		SIMULATION							
PARAMETER	MINIMUM			STD. DEV.					
FLOW(M*+3/S)		82.7		10.7					
TEMP (DEGREE C)	5.1		16. 9	5.4					
DXY (MG/L)		12.4		1.3					
ALKA (MG/L AS CACO3)	6.8	68.4							
HARD (MO/L AS CACOS)	11.		60.						
TDS (MG/L)	30.	379.							
PH		7.8	7.4	7.4					
BOD (MG/L)	2. 4	31.1	11.4	7.2					

...

ALLEGHENY RIVER WATER GUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE CLARION RIVER WATER GUALITY PARAMETERS AT RIVER MILE 81.31 NUMBER OF SIMULATION POINTS 912

				INTERVAL	S				
1	2	3	4	5	6	7	8	9	10
100.00	98. 79	88. 27	68. 20	59. 54	48, 14	37. 83	11. 95	4.06	1.75
5, 07	7. 59	10.11	12.63	15. 15	17.67	20.19	22.70	25. 22	27.74
100.00	98.36	96.49	91.45	70. 07	56. 58	41.89	31.69	7. 57	1. 21
	6.70	7.33	7.97	8. 60	9.24	9.87	10. 51	11.14	11.78
	94.08	81.91	68, 20	49.12	34. 98	30.15	19. 52	6.36	2. 63
			25, 30	31.46	37.63	43. 80	49.97	56.13	62. 30
			74.56	61.62	45.29	33.88	26.43	13.16	4. 28
				51. 34	61.35	71.36	81.37	91.39	101.40
					29.39	20. 50	9. 21	4. 71	2. 19
					204. 32	239.42	274. 31	309.20	344.09
					87.83	82.46	74.78	65. 57	41.34
					7.15	7.28	7.41	7. 54	7.67
						18. 53	7 89	4. 82	2.19
2, 42	5.29	8, 17	11.04	13. 92	16.79	19.67	22. 55	25. 42	28. 30
	5.07 100.00 6.04 100.00 6.79 100.00 11.29 100.00 30.07 100.00 6.49 100.00	100.00 98.79 5.07 7.59 100.00 98.36 6.06 6.70 100.00 94.08 6.79 12.96 100.00 95.50 11.29 21.30 100.00 88.60 30.07 64.96 100.00 99.57 6.49 6.62 100.00 78.40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

B-5 Clarion River Near Piney

"Existing Conditions," 1975

ALLECHENY RIVER WATER QUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS CLARION RIVER Adagaseossaseessaaseese INCUI DAIA dasaaseessaseessaseessaasee BEGINNING OF REACH RIVER MILE 87, 65 1.06 END OF REACH RIVER MILE SUBREACH LENGTH (MILES) 2.11 COMPUTATION INTERVAL (HOURS) 4 152 (1 JUN 75) 304 (31 DCT 75) FIRST DAY OF SIMULATION PERIOD LAST DAY OF SIMULATION PERIOD NUMBER OF DAYS IN SIMULATION PERIOD OBSERVATIONS AT RIVER MILE FIRST DAY OF STUDY PERIOD 152 24. 29 153 (2 JUN 75) 304 (31 OCT 75) LAST DAY OF STUDY PERIOD NUMBER OF DAYS IN STUDY PERIOD 152 **** ***** WATER GUALITY PARAMETERS AT RIVER MILE 24.29 912 NUMBER OF SIMULATION POINTS ----- SIMULATION VALUES -MINIHUM MAXIMUM MEAN STD. DEV. PARAMETER 48. 9 39.3 FLOW(M++3/5) 9.3 240.2 4. 5 TEMP (DEGREE C) 5.6 27.6 16.3 0.9 7.9 12.3 9.9 DXY (MG/L) -6.1 16.0 27. 130. 5.9 71. 3.0 ALKA(MG/L AS CACO3) 20. HARD (HG/L AS CACO3) 27. 31. TDS (MG/L) 205. 112. 46. 5. 8 5.1 3. 9 7.3 PH 5. 0 2.1 2.8 0. A BOD (MG/L) ******************** ALLEGHENY RIVER WATER QUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS CLARION RIVER WATER QUALITY PARAMETERS AT RIVER MILE 24.29 NUMBER OF SIMULATION POINTS 912

					INTERVAL	S				
PARAMETER	1	2	Э	4	5	6	7	8	9	10
	100.00	78. 6 8	92. 54	71.49	62.28	53.18	38. 93	12. 83	2. 96	1. 21
TEMP (DEGREE C)	5. 64	7.84	10.03	12.23	14.43	16.62	18.82	21.01	23. 21	25.40
LOWER BOUND				76.21	51, 10	41.01	32.24	18.97	3.40	0.68
DXY (MG/L)	100.00	78, 68	95.72		9.62	10.06	10.50	10.94	11.38	11.82
LOWER BOUND	7.86	8. 30	8.74	9.18			20.72	10.75	6.69	2.85
ALKA (HO/L AS CACO3)	99.89	99. 55	98.36	96.71	90.46	61.62		9.39	11.60	13.80
LOWER BOUND	-6.04	-3, 84	-1.63	0. 57	2. 78	4.98	7.19		2, 41	0.66
HARD (MO/L AS CACO3)	100.00	95.72	84. 43	73. 57	53. 40	33. 99	25. 22	7.13		
LOWER BOUND	26. 67	36.99	47, 30	57.62	67.94	78. 25	88. 57	78.88	109.20	119.51
	100.00	95.94	83. 22	74.01	49, 67	31.14	20. 61	5.81	2.30	0.44
TDS (MG/L)	46.25	62.18	78.10	94.03	109.95	125.88	141.80	157.73	173.65	187. 58
LOWER BOUND		99.23	98.25	78.14	97. 37	95.94	92.21	80.15	32.46	6. 47
PH	100.00			4. 93	5.27	5.61	5.94	6.28	6. 62	6 96
LOWER BOUND	3.92	4. 25	4. 59		22. 04	14, 25	6.03	2. 52	0.99	0.33
BOD (HG/L)	100.00	79.17	50. 22	34. 43			3.84	4.13	4, 42	4.71
LOWER BOUND	2.09	2.38	2. 67	2.96	3, 25	3. 55	3.04			

B-6 Clarion River Near Piney

"No Corps Storage," 1975

.

1975 STUDY PERIOD STATISTICS FOR NO COR						
BEGINNING OF REACH RIVER	NPUT DATA	87.65				
END OF REACH RIVER	MILE	1.05				
SUBREACH LENGTH (MILES)		2. 11				
COMPUTATION INTERVAL (HO	URS)	2. 11 4				
FIRST DAY OF SIMULATION	PERIOD	152	(1. JUN	75)		
LAST DAY OF SIMULATION P	ERIOD	304	(31 OCT	75)		
NUMBER OF DAYS IN SIMULA	TION PERIOD	152				
OBSERVATIONS AT RIVER MI						
FIRST DAY OF STUDY PERIC			(2 JUN			
LAST DAY OF STUDY PERIOD NUMBER OF DAYS IN STUDY	PERIOD	304		/3/		

WATER QUALITY PARAMETERS						
NUMBER OF SIMULATION POI	NTS		912			
		SIMULATI	ON VALUES		-	
	HINIHUM					
FLOW(M++3/S)	4.9	263.4	45. 5	40, 1	8	
TEMP(DEGREE C) DXY (MG/L)	5.9	27.0	16.2	4. 4	4	
	8.0	12.2	9.9	0.	9	
ALKA(MG/L AS CACO3)	-6. 9	30.4	6. 3	4. 3	3	
ALKA(MG/L AS CACO3) Hard(Mg/L As CACO3) TDS (Mg/L)	20. 14	265	126	£7.	•	
28	3. 9		*		•	
		8.7		4. · 0. 8	•	
BOD (MG/L)						

ALLECHENY RIVER WATER GUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE CLARION RIVER WATER GUALITY PARAMETERS AT RIVER MILE 24.29 NUMBER OF SIMULATION POINTS 912

				INTERVAL	S				
" 1	2	З	4	5	6	7	8	9	10
100.00	98. 7 9	90. 68	71. 49	63, 05	55, 48	39. 36	14, 47	3, 29	1.21
5.86	7. 98	10.10	12.21	14. 33	16.45		20. 68		24. 91
100.00	98, 90	95.72	78. 62	49.12	40, 35		21.38		0.99
7. 95	8. 38	8. 80	9.22	9.64	10.07		10, 91		11.76
77.87	98. 7 9	95. 50	75. 22	20. 94	10.31		1.54		0. 55
-6. 87	-3.14	0. 59	4.31	8.04	11.77	15.50	19.23	22.96	26. 69
100.00	93. 97	79.06	60.64	39.69	28.84	16.89	6.36	1.64	0. 22
25. 47	40. 02	54. 57	69.12	83. 67	98.22	112.77	127.32	141.87	156. 42
100.00	93. 31	78. 95	59. 54	36. 51	28.84	16.45	5, 81	2.30	0. 22
43. 56	65.75	87. 94	110.13	132. 32	154.51	176.70	198.89	221.08	243. 27
100.00	98.46	97. 81	97.04	96. 05	93.86	87.94	57.79	19.30	4.71
3. 87	4. 23	4. 59	4.96	5. 32	5.69	6.05	6. 42	6. 78	7.14
100.00	42. 87	17.98	5.81	2.30	1.54	1.21	Q. 88	0. 55	0. 33
2.08	2.74	3. 41	4.07	4.73	5.40	6.06	6.73	7.39	8.05
	5.86 100.00 7.95 99.89 -6.87 100.00 25.47 100.00 43.56 100.00 3.87 100.00	100.00 98.79 5.86 7.98 100.00 98.90 7.95 8.38 99.89 98.79 -6.87 -3.14 100.00 93.97 25.47 40.02 100.00 93.31 43.56 45.75 100.00 98.46 3.87 4.23 100.00 42.87		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

B-7 Clarion River Near St. Petersburg

"Existing Conditions," 1975

STATISTICS FOR EXISTING CONDITIONS CLARION RIVER conceresons attest the INPUT DATA SECONDERED CONSTRAINTS BEGINNING OF REACH RIVER MILE 87.65 RIVER MILE 1.06 END OF REACH SUBREACH LENGTH (MILES) 2.11 COMPUTATION INTERVAL (HOURS) 4 152 (1 JUN 75) 304 (31 OCT 75) FIRST DAY OF SIMULATION PERIOD LAST DAY OF SIMULATION PERIOD NUMBER OF DAYS IN SIMULATION PERIOD 152 OBSERVATIONS AT RIVER MILE FIRST DAY OF STUDY PERIOD 3.17 153 (2 JUN 75) 304 (31 OCT 75) LAST DAY OF STUDY PERIOD NUMBER OF DAYS IN STUDY PERIOD 152 WATER QUALITY PARAMETERS AT RIVER MILE 3. 17 912 NUMBER OF SIMULATION POINTS ----- SIMULATION VALUES KEAN STD. DEV. MINIMUM MAXIMUM PARAMETER 54. 5 11.2 324. 2 62.0 FLOW (#++3/5) 5. 5 27.8 16.8 4.8 TEMP (DEGREE C) 9.8 0.9 8.0 12. 3 OXY (MG/L) 2.2 ALKA (MG/L AS CACO3) HARD (MG/L AS CACO3) 3.8 -5.0 11.8 42. 166. 103. 26. 37.

147.

5.8

2. 6

5.1

0.4

ALLEGHENY RIVER WATER QUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS CLARION RIVER WATER QUALITY PARAMETERS AT RIVER MILE 3.17 NUMBER OF SIMULATION POINTS 912

62.

4.0

2.0

232.

7.3

4.2

ALLECHENY RIVER WATER GUALITY STUDY

1975 STUDY PERIOD

TDS (MG/L)

BOD (MG/L)

PH

					INTERVAL	S				
ARAMETER	1	2	Э	4	5	6	7	8	9	10
TEMP (DEGREE C)	100.00	98.79	93. 75	73.03	63. 05	55. 92	43. 97	22. 70	5. 59	1.64
LOWER BOUND	5. 47	7.71	9.94	12.17	14.41	16.64	18.87	21.11	23. 34	25. 5
OXY (HO/L)	100.00	97.26	84.76	58.66	45.72	38, 49	30. 92	10.96	1.97	0. 8
LOWER BOUND	8,03	8.46	8.89	9.33	9.76	10.19	10.62	11.05	11.48	11.9
ALKA (MG/L AS CACO3)	99.89	99.45	97.81	92.76	66.67	22.04	8. 22	2.08	0.44	0.0
LOHER BOUND	-5.00	-3.00	-1.00	1.00	3.00	5.01	7.01	9.01	11.01	13.0
HARD (MO/L AS CACO3)	100.00	98. 57	93.64	84. 21	73. 57	55, 59	36.73	21.60	5. 81	1.2
	34. 96	48.05	61.13	74.21	87.29	100.37	113.45	126. 53	139.61	152.6
	100.00	97.26	89.47	80.37	68.42	50, 33	34.76	22. 04	8.44	2. 3
TDS (MG/L)	62.24	79.20	96.16	113.12	130.08	147.03	163.99	180. 95	197.91	214.8
LOWER BOUND	100.00	99.01	97.81	96.71	96.16	94, 85	92.43	80. 92	36. 51	6. 2
PH	4,00	4.32	4.65	4.97	5.30	5, 63	5.95	6. 28	6.60	6.9
LOWER BOUND	100.00	64.58	38. 92	21.05	10.31	2.96	0.66	0.33	0.00	0.0
BOD (MO/L) Lower Bound	2.05	2.34	2.64	2. 94	3. 23	3. 53	3. 82	4. 12	4.41	4. 7

B-8 Clarion River Near St. Petersburg

"No Corps Storage," 1975

ATUAN 868105	QUALITY ST	UD¥							
1975 STUDY PERIOD STATISTICS FOR NO COR	DE STOPAGE		TUED						
5141151115 FOR NU CON	NOIT RATA 4		******		•				
EGINNING OF REACH RIVER					-				
EDINAING OF REACH RIVER									
UEREACH LENGTH (MILES)		2.11							
CMPUTATION INTERVAL (HO		4							
IRST DAY OF SIMULATION	PERIOD	152	(1)	JN 75)				
AST DAY OF SIMULATION P	ERIOD	304	(31 0	CT 75.)				
UMBER OF DAYS IN SIMULA	TION PERIOD	152							
DESERVATIONS AT RIVER MI	LE	3. 17							
FIRST DAY OF STUDY PERIO	D	153 304	(2)	UN 75)				
AST DAY OF STUDY PERIOD	1			CT 75)				
NUMBER OF DAYS IN STUDY	PERIOD	152							
******************	*********	********	*****	*****	•				
LATER QUALITY PARAMETERS	AT RIVER M	ILE C	****** . 17	*****	•				
ATER QUALITY PARAMETERS	AT RIVER M	********	****** . 17	*****	•				
NUMBER OF DAYS IN STUDY JATER QUALITY PARAMETERS NUMBER OF SIMULATION POI	AT RIVER M	ILE C	******). 17 912						
ATER GUALITY PARAMETERS	AT RIVER M	ILE SIMULAT	912	UES -					
ATER GUALITY PARAMETERS	AT RIVER M NTS	SIMULATI	0N VAL	UES -	TD. DEV.				
ATER GUALITY PARAMETERS WHEER OF SIMULATION POI ARAMETER FLOW (M++3/3)	AT RIVER M NTS MINIMUM 6.9	ILE SIMULATI MAXIMUM 347.2	0. 17 912 ON VAL	UES AN S . 6	TD. DEV. 36. 2				
ATER QUALITY PARAMETERS WHEER OF SIMULATION POI ARAMETER FLOW(M++3/3) TEMP(DEGREE C)	AT RIVER M NTS MINIHUM 6.9 5.6	ILE SIMULATI MAXIMUM 347.2 27.7	. 17 912 ON VAL ME 58	UES - An S .6 .8	TD. DEV. 36. 2 4. 8				
ATER QUALITY PARAMETERS WHEER OF SIMULATION POI ARAMETER FLOW (M++3/3) TEMP (DEGREE C) OXY (MG/L)	AT RIVER M NTS MINIHUM 6.9 5.6 9.1	ILE SIMULATI MAXIMUM 347.2 27.7 12.3). 17 912 ION VAL ME 58 16 9	UES AN S .6 .8 .9	TD. DEV. 36. 2 4. 8 0. 9				
ATER QUALITY PARAMETERS AUMBER OF SIMULATION POI PARAMETER FLOW(M++3/3) TEMP(DEGREE C) DXY (MG/L) ALKA(MG/L AS CACO3)	AT RIVER M NTS MINIHUM 6.9 5.6 8.1 -6.0	ILE SIMULATI MAXIMUM 347.2 27.7 12.3 21.1). 17 912 ION VAL ME 58 16 9	UES - AN S . 6 . 8 . 9 . 9	TD. DEV. 36. 2 4. 8 0. 9 3. 3				
ATER GUALITY PARAMETERS WHEER OF SIMULATION POI ARAMETER FLOW(M+3/3) TEMP(DEGREE C) OXY (MG/L) ALKA(MG/L AS CACO3) HARD(MG/L AS CACO3)	AT RIVER M NTS MINIMUM 6.9 5.6 8.1 -6.0 39.	SIMULATI MAXIHUM 347.2 27.7 12.3 21.1 209.). 17 912 ION VAL ME 58 16 9 3	UES - AN S .6 .8 .9 .9 .9 .9	TD. DEV. 56. 2 4. 8 0. 9 3. 3 38.			-	
JATER GUALITY PARAMETERS JUNSER OF SIMULATION POI PARAMETER FLOW(M**3/3) TEMP(DECREE C) OIY (MG/L) ALKA(MG/L AS CACO3) HARD(MG/L AS CACO3) TDS (MG/L)	AT RIVER M NTS MINIHUM 6.9 5.6 8.1 -6.0 39. 60.	SIMULATI MAXIHUM 347.2 27.7 12.3 21.1 209. 294.	. 17 912 ON VAL ME 58 14 9 3 11	UES An S . 6 . 8 . 9 . 9 . 9 . 9 . 9 . 5.	TD. DEV. 56. 2 4. 8 0. 9 3. 3 38. 54.			-	
ATER GUALITY PARAMETERS WHEER OF SIMULATION POI ARAMETER FLOW(M+3/3) TEMP(DEGREE C) OXY (MG/L) ALKA(MG/L AS CACO3) HARD(MG/L AS CACO3)	AT RIVER M NTS MINIMUM 6.9 5.6 8.1 -6.0 39. 60. 3.9	SIMULATI MAXIMUM 347.2 27.7 12.3 21.1 209. 296. 7.5	. 17 912 ON VAL ME 58 14 9 3 11 14 55	UES An S . 6 . 8 . 9 . 9 . 9 . 9 . 9 . 5.	TD. DEV. 56. 2 4. 8 0. 9 3. 3 38.			-	

ALLEGHENY RIVER WATER QUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE CLARION RIVER WATER QUALITY PARAMETERS AT RIVER MILE 3.17 NUMBER OF SIMULATION POINTS 912

					INTERVAL	S				
PARAMETER	1	2	3	4	5	6	7	8	9	10
TEMP(DEGREE C)	100.00	98. 79	92.11	72, 59	63. 05	56.14	43, 53	22, 26	5.92	1. 64
LOWER BOUND	5. 60	7.82	10.03	12.24	14.45	16.66	18.87	21.08	23. 30	25. 51
OXY (MG/L)	100.00	97.48	83. 99	57.13	43, 53	37.72	30. 26	11.95	1.54	0. 88
LOWER BOUND	8.11	8. 53	8.95	9.37	9.78	10.20	10.62	11.04	11.46	11.87
ALKA (MG/L AS CACO3)	79.89	98. 57	73.86	72.70	29. 61	10.42	3, 84	1.75	0. 66	0.44
LOWER BOUND	-5.94	-3. 24	-0. 53	2.18	4.89	7.60	10.31	13.02	15.72	18. 43
HARD(MG/L AS CACO3)	100.00	97.70	88. 27	73. 66	56.14	37. 50	29.93	17.54	8, 77	1.75
LOWER BOUND	34. 96	52.40	69.83	87.27	104.70	122.14	139. 57	157.01	174.44	191.87
TDS (MG/L)	100.00	96.27	84.10	72.26	50, 55	36. 73	29. 50	17.32	7.79	1.86
LOWER BOUND	59.64	83. 31	106. 97	130. 64	154.30	177.97	201.63	225.30	248.96	272. 63
PH -	100.00	98.14	95. 61	73. 53	91.78	88. 27	81. 59	58, 55	20.83	2. 96
LOWER BOUND	3. 93	4. 28	4.64	5.00	5, 35	5.71	6.07	6. 43	6.78	7.14
80D (MG/L)	100.00	44. 85	17.11	5. 92	2, 52	1.54	1.21	0. 88	0. 55	0.33
LOWER BOUND	2.03	2, 50	2.97	3.44	3. 91	4.38	4.85	5. 32	5.79	6. 27

B-9 Kiskiminetas River Near Vandergrift

"Existing Conditions," 1975

***	***********	····	****	*********	********	*********	*********	*********	
ALLEGHENY RIVER WATER	QUALITY ST	JDY							
1975 STUDY PERIOD			NETAC BINE						
STATISTICS FOR EXISTIN	NG CONDITIO	NS KISKIN	INEINS AIVE	.п. .ж					
****			**********	W					
BEGINNING OF REACH RIVER		33.01							
END OF REACH RIVER	MILE	0.49							
SUBREACH LENGTH (HILES)		2. 11							
COMPUTATION INTERVAL (HO	JRST	д							
		150	(1 JUN 75						
FIRST DAY OF SIMULATION		304	(31 OCT 75						
LAST DAY OF SIMULATION P	TTON BERIOD								
NUMBER OF DAYS IN SIMULA		10.35							
OBSERVATIONS AT RIVER MI			(2 JUN 75	5 3					
LAST DAY OF STUDY PERIOD			(31 OCT 75						
NUMBER OF DAYS IN STUDY		152	191 981 16						
PROPER OF DAID IN DIGAL			********	**					
WATER GUALITY PARAMETERS			. 35						
NUMBER OF SIMULATION POI			912						
					ER	ROR	NO. OF	MINIMUM	MAXIMUM
	40-00 ex-44 40 40 40 40	SIMULATI	ON VALUES -		(SIMULA	TED-OBS.)	OBSERVED	OBSERVED	
PARAMETER	MINIMUM	MAXIMUM	MEAN S	STD, DEV.	MEAN	STD. DEV.	VALUES	VALUE	VALUE
FLOW(M++3/S)	17.1	243. 8	73. 1	51.8					
TEMP (DEGREE C)	8. 2	29. 0	19. 5	4.8	-2.1	1.4	129	13. 9	30.1
DXY (MG/L)	7.7	11.1	8.9	0.9	1.8	0.9	108	5.6	8.9
ALKA (MG/L AS CACO3)	-29.3	1.2	-13.1	7.0					
HARD (MG/L AS CACO3)	93.	373.	201	76.					
TDS (MG/L)	149.	722.	364	154.	-27.	73.		145.7	618 8
PH	3.2	5.6	3.6	3.9	0 0	0.5	129	2. 5	53
BOD (MG/L)	1.8	2.0	1. 9	0.1					
****	******	*******	*********	*****	****	********	*****	*********	**********
ALLEGHENY RIVER WATER	QUALITY SI	UDT							
1975 STUDY PERIOD STATISTICS FOR EXISTI		Ne VIEVIN	INCTAS DIUS	FR					
STATISTICS FUR EXIST	NG CUNULILL	NG KIGKI 111 C 10). 35	, , , , , , , , , , , , , , , , , , ,					
WATER QUALITY PARAMETERS			912						
NUMBER OF SIMULATION POI	RIS .		7.6						
PERC	ENT OF SIMU	LATION PO	INTS EXCEE	DING LOWER	BOUND OF	EACH INTER	RVAL		
1 210									
				INTERVA		-		7 10	
PARAMETER	1	2	3 4	5	6	7	9 '	, 10	

ARAMETER	1	2	3	4	5	6	7	8	4	10
TEMP (DEGREE C)	100.00	98. 57	95, 18	77.08	64. 80	58. 55	50.11	35.86	10. 53	2.08
	8, 22	10.31	12.39	14.48	16.56	18.65	20.74	22.82	24 91	26. 99
LOWER BOUND		87. 80	57.24	47.48	41.12	35.09	25.99	11.95	2.41	1.43
OXY (MG/L)	100.00		8.36	8.70	9.05	9.39	9.74	10.08	10.42	10.77
LOWER BOUND	7.67	8. 02			73.68	54.82	37.72	24.34	14.36	6.25
ALKA(MO/L AS CACO3)	99.78	95.83	90.13	85.42		-14.00	-10.96	-7.91	-4.86	-1.82
LOWER BOUND	-29.24	-26.19	-23.15	-20, 10	-17.05		20.61	17.43	14,58	4.82
HARD(MC/L AS CACO3)	100.00	87.61	71.82	50. 55	37.83	30.15		289 26	317.30	345. 34
LOWER BOUND	93. 01	121.04	149.08	177.12	205.15	233.19	261.23		13.27	4.39
TDS (MG/L)	100.00	86.73	69. 52	48.79	36.95	28.84	18.97	17.21		
LOWER BOUND	149.05	206.46	263.86	321.27	378.68	435. 09	493.49	550.90	608.31	665.71
PH	100.00	74.12	35, 20	18.09	9,87	6.36	2.96	1.86	1 10	0.44
LOWER BOUND	3, 23	3.46	3.70	3.93	4.17	4.41	4.64	4.88	5.11	5. 35
	100.00	93.20	84. 51	68. 31	61.29	51.75	44. 96	33.99	3.73	0.00
BOD (MG/L)	1. 76	1.78	1.81	1.83	1.86	1.88	1.90	1.93	1. 95	1. 98
LOWER BOUND	1.79	4.70			*******	******	*******	*******	******	*****

B-10 Kiskiminetas River Near Vandergrift

"No Corps Storage," 1975

ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR BEGINNING OF REACH RIVER END OF REACH RIVER SUBREACH LENGTH (MILES) COMPUTATION INTERVAL (HO FIRST DAY OF SIMULATION P NUMBER OF DAYS IN SIMULA OBSERVATIONS AT RIVER MI	QUALITY ST PS STORAGE NPUT DATA * MILE MILE URS) PERIOD ERIOD ERIOD FF	UDY KISKIMIN 33.01 0.49 2.11 4 152 304 152 304 0.35	ETAS RI	UN 75)	******			*******		
FIRST DAY OF STUDY PERIOD LAST DAY OF STUDY PERIOD NUMBER OF DAYS IN STUDY	**********	********	******	JUN 75) DCT 75)						
WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI	NTS		912							
PARAMETER FLOW(M++3/S) TEMP(DEGREE C) OXY (MG/L) ALKA(MG/L AS CACO3) HARD(MG/L AS CACO3)	MINIMUM 9.2 8.9	417.4	ME 70	EAN STD 3.6 7.1	. DEV. 64. 2 5. 1					
HARD(MG/L AS CACO3) TDS (MG/L) PH BOD (MG/L)	167. 3.0 1.7	425. 724. 5.8 2.0	22 38 ******	21. 36. 3. 4 1. 9	88. 145. 3.6 0.1	••				
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI	PS STORAGE	KISKIMIN AILS 1		IVER						
PERC	ENT OF SIM	JLATION P	DINTS E				EACH IN	TERVAL		
PARAMETER			3	4		6	7	8	9	10
LOWER BOUND DXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND TDS (MG/L)	100.00 8.93 100.00 7.55 99.89 -49.47 100.00 85.41 100.00 167.03 100.00 3.01 100.00 1.70	11.07 94.74 7.88 96.38 -44.25 -90.13 122.06 1 90.02 222.75 2 44.80 3.29 98.25	13.22 73.68 8.21 89.80 39.03 70.61 55.71 70.61 70.61 24.12 3.58 95.30	15.36 54.93 78.95 -33.80 52.63 189.37 52.63 334.19 11.84 3.86 91.56	17. 51 47. 81 8. 88 71. 05 -28. 58 39. 80 223. 02 39. 80 389. 91 6. 14 4. 15 77. 74	19.65 38.82 9.21 58.11 -23.36 32.13 256.67 32.13 445.63 4.71 4.43 61.40	21.79 35.42 9.54 40.57 -18.14 25.00 270.32 25.00 501.35 3.95 4.72 51.97	23, 94 25, 33 9, 87 23, 14 -12, 91 15, 13 323, 97 15, 13 557, 07 2, 30 5, 00 42, 32	26.08 16.01 10.20 12.94 -7.69 9.65 357.62 9.65 612.79 0.77 5.29 25.00	371.27

B-11 Allegheny River Near Warren

"Existing Conditions," 1975

ALLEGHENY RIVER WATER GUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS NEAR WARREN BEGINNING OF REACH RIVER MILE 196.28 RIVER MILE 125. 61 END OF REACH SUBREACH LENGTH (MILES) 1. 81 COMPUTATION INTERVAL (HOURS) 4 153 (2 JUN 75) 304 (31 DCT 75) FIRST DAY OF SIMULATION PERIOD LAST DAY OF SIMULATION PERIOD NUMBER OF DAYS IN SIMULATION PERIOD 152 7 OBSERVATIONS AT RIVER MILE FIRST DAY OF STUDY PERIOD 185.41 153 (2 JUN 75) (31 OCT 75) 304 LAST DAY OF STUDY PERIOD 152 NUMBER OF DAYS IN STUDY PERIOD **** ******* WATER GUALITY PARAMETERS AT RIVER MILE 185.41 912 NUMBER OF SIMULATION POINTS ----- SIMULATION VALUES ------MINIMUM MAXIMUM MEAN STD. DEV. PARAMETER 127.4 97 9 24.1 391.2 FLCH(M**3/S) 29. 2 18.0 4. 2 10.6 TEMP (DEGREE C) 9.4 0.6 11.7 DXY (MG/L) 8. 3 60 49.0 36. 9 ALKA (MG/L AS CACO3) 24. 5 47. 8. HARD (MG/L AS CACO3) 33. 63. 97. 82. 8. 63. TDS (MG/L) 6.9 7.4 7.2 78 PH 0.0 1.9 20 2.0 500 (MG/L) ************** *** ALLECHENY RIVER WATER QUALITY STUDY 1975 STUDY PERIOD

STATISTICS FOR EXISTING CONDITIONS NEAR WARREN WATER QUALITY PARAMETERS AT RIVER MILE 185.41 NUMBER OF SIMULATION POINTS 912

						INTERVALS	3				
PARAMETER	1	5	:	з "	4	5	6	7	8	9	10
TEMP (DEGREE C)	100	00 93.	09 74	. 56	57.35	45. 94	36. 62	21.82	11.07	3.51	0.66
LOWER BOUND	10.	56 12	43 14	30	16.17	18.04	19.90	21.77	23.64	25 51	27.38
OXÝ (MG/L)	100	00 94.	41 73	46	46.38	24.23	15.02	10.53	6.91	3.40	0.77
LOWER BOUND	8	32 8	66 9	00	9.34	9.67	10.01	10.35	10.69	11.03	11 36
ALKA(MC/L AS CACO3)	100	00 91.	12 86	62	81.14	67.00	54. 61	38. 39	21.49	13.27	3. 62
LOWER BOUND	24.			41	31.87	34. 32	36.78	39. 23	41.69	44.14	46.59
HARD (MG/L AS CACO3)		00 90	90 76	. 32	72.59	57.68	45.50	27 63	19.19	14.25	5.04
LOWER BOUND		37 36.	37 39	. 37	42.37	45. 37	48.36	51.36	54.36	57.36	60. 36
TDS (MG/L)	100.	00 94	30 89	14	84.76	72.04	65. 35	51.32	30.92	17.32	3. 73
LOWER BOUND	62.		28 69	73	73.18	76.62	80.07	83.51	86.96	90.41	93.85
2H	100	00 99	01 95	61	88. 93	67.08	49.23	32. 24	15.89	5. 37	0.88
LOWER BOUND	6	90 6.	96 7	01	7 07	7.12	7.19	7.23	7. 28	7.34	7.39
SOD (MG/L)	-	00 97	89 98	25	91.01	73, 90	63. 93	63.93	61.07	48.79	21.16
LOWER BOUND	1	90 '1	91 1	. 91	1.92	1.93	1.94	1. 95	1.96	1.97	1.97

B-12 Allegheny River Near Warren

1.79

1 74

1 89

1 93

"Pattern A." 1975

ALLEGHENY RIVER WATER GUALITY STUDY

STATISTICS FOR PATTERN A NEAR WARREN

1975 STUDY PERIOD

SEGINNING OF REACH RIVER MILE 196.28 END OF REACH RIVER MILE 125.61 SUBREACH LENGTH (MILES) 1.81 COMPUTATION INTERVAL (HOURS) 4 FIRST DAY OF SIMULATION PERIOD 152 (1 JUN 75) LAST DAY OF SIMULATION PERIOD 304 (31 OCT 75) NUMBER OF DAYS IN SIMULATION PERIOD 152 OBSERVATIONS AT RIVER MILE 185.41 FIRST DAY OF STUDY PERIOD 153 (2 JUN 75) LAST DAY OF STUDY PERIOD (31 OCT 75) 304 NUMBER OF DAYS IN STUDY PERIOD 152 ** }** *************************** ****** WATER GUALITY PARAMETERS AT RIVER HILE 185.41 NUMBER OF SIMULATION POINTS 912 ----- SIMULATION VALUES ------PARAMETER MINIMUM MAXIMUM MEAN STD. DEV. 104 0 FLOW(M++3/5) 19.6 391.2 119.7 TEMP (DEGREE C) 31.9 10.6 18.3 4.7 OXY (MG/L) 8.0 11.7 94 0.7 ALKA (MG/L AS CACO3) HARD (MG/L AS CACO3) 24. 5 41.3 59.6 9.6 33. 79. 53. 13 TDS (MG/L) 113 89. 63 13. 6.9 74 7.2 PH 7.8 20 BOD (MG/L) 1 9 20 0 0 ALLEGHENY RIVER WATER GUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR PATTERN A NEAR WARREN WATER QUALITY PARAMETERS AT RIVER MILE 185.41 NUMBER OF SIMULATION POINTS 912 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL INTERVALS 10 PARAMETER 2 7 . 9 1 з 4 5 6 8 7 89 2 74 TEMP (DEGREE C) 100.00 91.12 68. 31 51.54 41.56 29.82 17 11 0.88 12.69 16.96 LOWER BOUND 10.56 14.83 19.09 21. 23 23.36 25 49 27. 63 29 76 96.82 OXY (MG/L) 100.00 85. 53 62.06 38. 05 17.21 12.94 7.79 4.17 0.88 10.60 LOWER BOUND 8. 02 8, 39 8.76 9.13 9.49 9.86 10 23 10.97 11.33 ALKA (MG/L AS CACO3) 100.00 89.14 83. 55 69.19 57. 13 47.26 41 67 25 22 14 14 4.50 LOWER BOUND 49.12 24.51 28. 02 31.54 35.05 38. 57 42.09 45.60 52.64 56 15 HARD(MG/L AS CACOB) 100.00 85.09 58.00 49.23 45 50 39.36 25.11 11.29 5.15 72.26 LOWER BOUND 42.43 51.49 33. 37 37.90 46.96 60. 55 65.08 69 62 74 15 56.02 100.00 71.49 63.05 49 01 TDS (MG/L) 92.54 41.45 31.36 17 21 5. 81 85.86 87. 53 97 76 LOWER BOUND 67.06 72 17 102.88 108 00 82.41 92.64 71.05 100.00 99.01 95. 61 1 43 PH 89 04 53.84 37.91 28.73 12.06 7 12 7.23 7 34 7 39 LOWER BOUND 6 90 6.96 7 01 7.07 7 18 7 28 BOD (MG/L) 100 00 100 00 100 00 100.00 100 00 100.00 100.00 100.00 100 00 68 86 LOHER BOUND 1.84

1.64

1 69

1.55

1.60

1.50

B-13 Allegheny River Near Warren

"No Corps Storage," 1975

ALLEGHENY RIVER WATER QUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE NEAR WARREN BEGINNING OF REACH RIVER MILE 196.28 END OF REACH RIVER MILE 125.01 SUBREACH LENGTH (MILES) 1.81 COMPUTATION INTERVAL (HOURS) 4 FIRST DAY OF SIMULATION PERIOD 152 (1 JUN 75) LAST DAY OF SIMULATION PERIOD 304 (31 OCT 75) NUMBER OF DAYS 'IN SIMULATION PERIOD 152 OBSERVATIONS AT RIVER MILE FIRST DAY OF STUDY PERIOD 185.41 153 (2 JUN 75) (31 OCT 75) 304 LAST DAY OF STUDY PERIOD 152 NUMBER OF DAYS IN STUDY PERIOD ******** WATER GUALITY PARAMETERS AT RIVER MILE 185 41 NUMBER OF SIMULATION POINTS 912 ----- SIMULATION VALUES ------MEAN STD. DEV. MINIMUM MAXIMUM PARAMETER 118 3 18.6 789.6 116.9 FLOW(M**3/S) 5.8 32.4 16.7 TEMP(DEGREE C) 6.1 12.0 9.8 1.1 7.8 OXY (MG/L) 12.5 40.2 ALKA(MG/L AS CACO3) 17 4 80. 5 15 42. 113. 78. HARD(MG/L AS CACO3) 28. 52. 177. 113 TDS (MG/L) 7.8 7.0 7.2 6.5 РН 2.0 0.0 2.0 1.9 BOD (MG/L) *****

ALLEGHENY RIVER WATER GUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE NEAR WARREN OWATER GUALITY PARAMETERS AT RIVER MILE 185. 41 912 NUMBER OF SIMULATION POINTS

					INTERVAL	.S				
PARAMETER	1	2	З	4	5	6	7	8	9	10
TEMP(DEGREE C)	100.00	91.67	76. 86	62. 94	52. 08	38. 49	20. 07	7 89	1.86	0. 55
LOWER BOUND	6.08	8.72	11.36	14. 00	16.64	19.28	21.92	24 56	27.20	29. 84
DXY (MC/L)	100.00	98.03	88, 82	67.98	52. 52	39 91	34.65	26 21	15.02	6.03
LOWER BOUND	7.77	8.19	8. 52	9. 04	9. 46	9.88	10.30	10.73	11.15	11. 57
ALKA(MG/L AS CACO3)	100.00	94. 52	80. 26	61 18	33, 33	16.89	9.87	8.99	3.73	2. 63
LOWER BOUND	17.38	23. 70	30.03	36. 35	42.67	48 99	55. 31	61.64	67 96	74. 28
HARD(MG/L AS CACO3)	100.00	97.37	92.00	81.36	69. 52	49.23	37.61	23.46	8 55	1.64
LOWER BOUND	42.05	49.13	56. 21	63. 28	70.36	77.44	84 51	91.59	78. 66	105.74
TDS (MG/L)	100.00	96.71	90. 02	78.95	58. 88	43.86	35. 96	20. 61	8.11	2.19
LOWER BOUND	51.65	64. 23	76.81	87.40	101.98	114.56	127.15	139 73	152.31	164.89
PH	100.00	93. 42	81.58	63.49	55. 59	46. 49	33. 22	4.82	2. 63	0.99
LOWER BOUND	6. 52	6.65	6.78	6.90	7.03	7 16	7. 28	7 41	7 53	7.66
BOD (MG/L)	100.00	100 00	100.00	100.00	100.00	100.00	100.00	100.00	99 01	67.87
LOWER BOUND	1.50	1.55	1.60	1.65	1.70	1.75	1.79	1.84	1:89	1.94

B-14 Allegheny River Near Franklin

"Existing Conditions," 1975

ALLEGHENY RIVER WATE 1975 STUDY PERIOD	R GUALITY ST	rudy								
STATISTICS FOR EXIST	ING CONDITIO	INS NEAR P	RANKLIN							
****************			******	*****						
BEGINNING OF REACH RIVE		124. 19								
	R KILE	84.80								
SUBREACH LENGTH (MILES)		1.01								
COMPUTATION INTERVAL (H	OURS	4								
FIRST DAY OF SIMULATION	PERIOD	152	(1 JU	N 75)	-					
LAST DAY OF SIMULATION	PERIOD	304	(31 00	T 75)						
NUMBER OF DAYS IN SIMUL	ATION PERIO) 152								
OBSERVATIONS AT RIVER M	ILE	120. 16								
FIRST DAY OF STUDY PERI	0D	153	(2)0	N 75)						
LAST DAY OF STUDY PERIO	Ď	304	(31 00	T 75)						
NUMBER OF DAYS IN STUDY	PERIOD	152								
******	*********	********	*******	****						
WATER QUALITY PARAMETER	S AT RIVER 1	1ILE 120	D. 16							
NUMBER OF SIMULATION PO	INTS		912							
		- SIMULAT	ION VALU	ES						
PARAMETER	MINIMUM	MAXIMUM	MEA	N STE	DEV.					
FLOW(M##3/S)		875.7			185.9					
TEMP (DEGREE C)	7.5				5.0					
DXY (MG/L)		11 3	. 9.		0.9					
ALKA(MG/L AS CACO3)	37.4	11.3 57.0	43.		7.8					
HARD (MG/L AS CACOS)					10.					
	37.	76. 105.	57 87		· 11.					
TDS (MG/L) Ph			7.							
BOD (MG/L)	6.9 1.5				7.6					
BUD (NG/C/		1.9			0.1					
**********************	**********	*********	*******	*****	********	•				
ALLEGHENY RIVER WATER	R GUALITY ST	UDY								
1975 STUDY PERIOD										
STATISTICS FOR EXIST										
WATER QUALITY PARAMETERS		ILE 120								
NUMBER OF SIMULATION POI	INTS		912							
PER	CENT OF SIMU	LATION PO	INTS EX	EEDIN	G LOWER	BOUND OF	EACH IN	TERVAL		
					INTERVAL	e				
PARAMETER	1	2	з	4	S	5 6	7	8	9	10
•	-	-	-		~	•	•		,	
TEMP(DEGREE C)	100.00	98.36 8	9.80	71.82	58. 55	46.71	37. 50	13.49	4. 50	1. E
LOWER BOUND	7.48	9.84 1				19.27		23.98	26.34	28.6

					THERVAL	3				
ARAMETER	1	2	Э	4	5	6	7	8	9	10
TEMP (DEGREE C)	100.00	98.36	89. 80	71.82	58. 55	46. 71	37. 50	13. 49	4. 50	1.86
LOWER BOUND	7.48	9.84	12.20	14. 55	16. 91	19.27	21.62	23. 98	26.34	28.69
GXY (MG/L)	100.00	97. 59	91.67	70. 50	55. 92	49.01	39.25	25.33	6.25	1.21
LOWER BOUND	7 43	7. 82	8. 20	8.58	8, 97	9.35	9.74	10.12	10.50	10.89
ALKA(MG/L AS CACO3)	100.00	91.56	88.60	84.65	67.00	52.41	41.45	32.46	21.71	10.42
LOWER BOUND	27. 57	30. 52	33.46	36. 41	37.35	42.30	45.25	48.19	51.14	54.08
HARD(MG/L AS CACO3)	100.00	91. 78	88. 71	75.33	58. 88	49.67	34. 76	24. 67	12.28	4. 82
LOWER BOUND	39.06	42. 80	46.54	50. 29	54. 03	57.77	61.51	65. 25	68. 99	72. 73
TDS (MG/L)	100.00	94.52	89 80	85. 53	77.19	60. 53	44.19	32. 35	26.10	12.72
LOWER BOUND	61.94	66. 21	70.49	74.77	79.04	83. 32	87.60	91.87	96.15	100.43
PH	100.00	95.72	94. OB	88. <u>38</u>	85, 53	72.70	57.43	35. 75	25. 44	17.98
LOWER BOUND	6. 91	7.02	7.12	7.22	7. 32	7.43	7 53	7 63	7 73	784
80D (MG/L)	100.00	98 7 9	97.81	95. 72	87.80	71.27	58. 33	49.56	41.12	8.77
LÖWER BOUND	1.43	1.48	1.53	1.58	1.63	1. 68	1.73	1.78	1.83	1.89

B-15 Allegheny River Near Franklin

"Pattern A," 1975

ALLEGHENY RIVER WATER GUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR PATTERN & NEAR FRANKLIN JEGINNING OF REACH RIVER MILE 124.19 END OF REACH RIVER MILE 84.80 SUBREACH LENGTH (MILES) 1 01 COMPUTATION INTERVAL (HOURS) 152 (1 JUN 75) 304 (31 DCT 75) FIRST DAY OF SIMULATION PERIOD LAST DAY OF SIMULATION PERIOD NUMBER OF DAYS IN SIMULATION PERIOD 152 OBSERVATIONS AT RIVER MILE 120.16 153 (2 JUN 75) FIRST DAY OF STUDY PERIOD 304 (31 OCT 75) LAST DAY OF STUDY PERIOD NUMBER OF DAYS IN STUDY PERIOD 152 **** WATER QUALITY PARAMETERS AT RIVER MILE 120.16 912 NUMBER OF SIMULATION POINTS ----- SIMULATION VALUES ------MINIMUM MAXIMUM MEAN STD. DEV. PARAMETER 238.3 171 4 44 0 875.7 FLON(M*+3/5) 5. 0 7.5 18.6 31.9 TEMP (DEGREE C) 74 93 0.9 11.3 OXY (MG/L) 65.8 46.5 ALKA(MG/L AS CACO3) 11.1 39. 14. 87 119. 61. HARDING/L AS CACOSI 90. 15. TDS (MG/L) 63. B. O 5. 9 7.5 7.6 PH 0.1 1 8 BOD (MG/L) 1.5 19 ALLECHENY RIVER WATER GUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR PATTERN A NEAR FRANKLIN WATER GUALITY PARAMETERS AT RIVER MILE 120.16 NUMBER OF SIMULATION POINTS 912 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL INTERVALS PARAMETER 7 9 10 1 2 3 4 6 8 5 89. 36 100.00 97.04 9 76 3.40 1 32 TEMP (DEGREE C) 70.07 56.58 31.36 45.50 9 93 97 59 27.06 LOWER BOUND 7.48 29 50 24.61 12.38 14.82 17 27 19.72 22.16 100.00 39 47 25.33 6. 25 1 21 UXY (MG/L) 92.21 73. 79 56. 25 49.67 972 LOWER BOUND 10.88 12.17 7.40 7.79 8. 18 8. 56 8.95 9 34 10 11 10.50 40.13 ALKA(MG/L AS CACO3) 100.00 90. 46 86.07 68.86 50.11 42.76 30 48 20 29 LOWER BOUND 27. 57 31.40 35.24 39 07 42.90 46. 73 50 57 54 40 58 23 62.06 80.70 HARD(MG/L AS CACO3) 1.00. 00 91.12 60.42 49.45 42.54 39 36 28. 62 17 76 3.73 LOWER BOUND 58.43 63.27 68.12 72.96 77 80 82.64 39.06 43. 90 48.75 53.59 86.95 73 45 92.98 76. 97 26.54 18.53 3.95 TDS (MG/L) 100.00 54.82 41.89 37.17 96.49 67.70 90.73 108.00 113.76 LOWER BOUND 61.94 79.21 84.97 102.24 29.50 45.07 26.10 PH 100.00 95.61 93.86 88. 05 79.17 68.42 15.67 7. 49 7.71 7.33 7 94 LOWER BOUND 6.91 7.03 7.26 7.37 7. 60 7.14 BOD (MG/L) 100.00 100.00 97.81 66.67 49 56 41.23 8 77 99.34 94.19 81.91 1 43 1.73 1 78 1 83 1 88 LOWER BOUND 1.58 1 48 1.63 1 53 1 68

B-16 Allegheny River Near Franklin

"No Corps Storage," 1975

ALLEGHENY RIVER WATER QUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE NEAR FRANKLIN SEGINNING OF REACH RIVER MILE 124 19 END OF REACH RIVER MILE 84.80 SUBREACH LENGTH (MILES) 1.01 COMPUTATION INTERVAL (HOURS) 4 FIRST DAY OF SIMULATION PERIOD 152 (1 JUN 75) LAST DAY OF SIMULATION PERIOD (31 OCT 75) 304 NUMBER OF DAYS IN SIMULATION PERIOD OBSERVATIONS AT RIVER MILE FIRST DAY OF STUDY PERIOD 152 120.16 (2 JUN 75) (31 OCT 75) 153 LAST DAY OF STUDY PERIOD 304 NUMBER OF DAYS IN STUDY PERIOD 152 ******** WATER QUALITY PARAMETERS AT RIVER MILE 120.16 NUMBER OF SIMULATION POINTS 912 ----- SIMULATION VALUES ------MINIMUK MAXIMUM MEAN STD. DEV. PARAMETER 229.9 FLOW(M++3/5) 1473.6 235.3 43.1 31.5 12.4 TEMP (DEGREE C) 4.8 74 5.7 18.1 9.5 DXY (MG/L) 1.1 ALKA (MG/L AS CACO3) 19. 5 69.7 45.7 10.4 15. HARD (MG/L AS CACO3) 40. 103. 74. TDS (MG/L) -50. 146. 102. 22. 7.6 PH 6. 8 8.0 7. 5 BOD (MG/L) 1. 5 2.0 1.8 0.1 ***** ALLECHENY RIVER WATER GUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE NEAR FRANKLIN

WATER GUALITY PARAMETERS AT RIVER MILE 120.16 NUMBER OF SIMULATION POINTS 912

	INTERVALS										
PARAMETER	1	2	3	4	5	6	7	8	9	10	
TEMP (DEGREE ()	100.00	98.79	92.32	72. 48	63. 38	50. 66	43. 97	17 43	4 71	1.84	
LOWER BOUND	4. 79	7.45	10.13	12.80	15.48	18.15	20.83	23 50	26.18	28.84	
OXY (MG/L)	100.00	96. 93	82.13	54. 06	47.15	35. 86	27 63	12.50	4 39	0. 64	
LOWER # BOUND	7.41	7.92	8.42	8. 93	9.43	9.94	10.44	10. 95	11. 45	11.98	
ALKA(MG/L AS CACO3)	100.00	97. 92	95.18	84. 76	70.94	51.10	37.17	26. 43	7 68	1. 75	
LOWER BOUND	19.44	24.48	29.51	34. 55	39. 58	44.62	49.66	54 69	59.73	64.76	
HARD(HG/L AS CACO3)	100.00	97. 59	93.09	81.80	69.41	54.39	40. 02	27.96	18.75	4 28	
LOWER BOUND	40.06	46.35	52.65	58.94	65.24	71. 53	77 83	84.12	90. 41	96.71	
TDS (MG/L)	100.00	97. 92	94. 52	83. 55	68. 97	54 82	39. 25	30.92	19.41	4. 28	
LOWER BOUND	49.55	59.19	68.83	78.47	88.11	97.75	107.39	117 03	125.67	136.31	
PH.	100.00	96. 93	92.43	86. 51	77.85	65.79	53. 95	35 96	26. 97	12.04	
LOWER BUUND	6.83	6.96	7.08	7 20	7. 32	7 45	7. 57	7.69	7.81	7.94	
BOD (MG/L)	100.00	99. 78	99. 23	96. 27	87 17	69.96	55. 59	50 11	37 72	21.27	
LOWER BOUND	1.42	1.47	1.53	1.58	1.64	1.69	1 74	1.30	1.85	1. 91	

B-17 Allegheny River Near Freeport

"Existing Conditions," 1975

*****	****	*********	******	*******	********	****	******	********	•
ALLECHENY RIVER WATER	R QUALITY ST	'UDY							
1975 STUDY PERIOD				,					
STATISTICS FOR EXIST									
			*******	***					
BEGINNING OF REACH RIVER END OF REACH RIVER		83.80							
	MILE	6.72 1.01							
SUBREACH LENGTH (MILES)									
COMPUTATION INTERVAL (HO	JOK 5 1	4							•
FIRST DAY OF SIMULATION	PERIOD	152	(1 JUN	75)					
LAST DAY OF SIMULATION P	PERIOD	304	(31 OCT	75)					
NUMBER OF DAYS IN SIMULA	TION PERIOD	152							
OBSERVATIONS AT RIVER MI	ILE	31.90							
FIRST DAY OF STUDY PERIC	ac	153	(2 JUN	75)					
LAST DAY OF STUDY PERIOD)	304	(31 OCT						
NUMBER OF DAYS IN STUDY	PERIOD	152							
****	****	******	****	***					
WATER QUALITY PARAMETERS	S AT RIVER M	ILE 31.	90						
NUMBER OF SIMULATION POI	INTS	ç	12						
					ER	ROR	ND. OF	MINIMUM	MAXIMUM
	an an an an an an an an	SIMULATIC	IN VALUES		(SIMULA	TED-085.)	OBSERVED	OBSERVED	OBSERVED
PARAMETER	MINIMUM	MAXIMUM	MEAN	STD. DEV.	MEAN	STD. DEV.	VALUES	VALUE	VALUE
FLOW(M++3/S)	87. 1	1484. 3	387. 8	291.6					
TEMP (DEGREE C)	8. 8	26.6	18.4	4. 8	-2.6	0.8	138	10. 9	28.6
OXY (MG/L)	6.9	11.1	8.9	1.2					
ALKA (MG/L AS CACO3)	20.7	46.5	32, 8	7.0					
HARD(MG/L AS CACO3)	50.	100.	75.	13.					
TDS (MG/L)	64.	144.	110.	20.	35.	11.	137	41. 5	109.7
PH	6. 9	7.7	7.4	7. 7	0.5	0.3	137	6.4	7.8

ALLEGHENY RIVER WATER QUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS LOWER ALLEGHENY WATER QUALITY PARAMETERS AT RIVER MILE 31.90 NUMBER OF SIMULATION POINTS 912

	INTERVALS										
ARAMETER	1	2	Э	4	5	6	7	8	9	10	
TEMP (DEGREE C)	100 00	95.94	85. 96	71.60	63. 93	57.35	48.36	44.08	19. 52	3. 91	
LOWER BOUND	8.78	10.56	12.34	14.13	15. 91	17.69	19.47	21.25	23. 03	24.83	
OXY (MG/L)	100.00	92.43	65.90	60.75	54. 50	44.08	38. 27	31.03	20.72	4.61	
LOWER BOUND	6.91	7.33	7.75	8.14	8. 59	9.00	9 41	9.83	10.25	10.66	
ALKA (MG/L AS CACO3)	100.00	92.11	78.07	67.21	55.04	43.31	37.61	27. 52	13.71	4. 08	
LOWER BOUND	20.64	23. 23	25.81	28, 40	30.99	33, 58	36.17	38.75	41.34	43. 93	
HARD (MG/L AS CACO3)	100.00	91.12	86.18	75.11	57.89	46 82	39. 69	26.75	12.06	2.41	
LOWER BOUND	49.85	54.92	59.98	63.05	70.11	75.18	80.24	85. 31	90.37	95.44	
TDS (MG/L)	100.00	98.79	94.19	85. 42	80.04	58.00	42.11	36.07	26.75	12. 28	
LOWER BOUND	61.94	70.13	78.32	86. 51	94 70	102.89	111.08	119.27	127:46	135.6	
PH	100.00	98.14	95.39	90.13	83. 22	68.20	60.09	47.26	33. 88	7.01	
LOWER BOUND	6.88	6.97	7.05	7.14	7 22	7.31	7.40	7.48	7.57	7.65	
BOD (MG/L)	100.00	82.02	69.74	64.69	61.40	59.76	48.79	40.90	14.69	1. 10	
LOWER BOUND	0.50	0.65	0.80	0.95	1, 10	1.25	1.40	1.55	1.70	1.8	

B-18 Allegheny River Near Freeport

"Pattern A," 1975

ALLEGHENY RIVER WATER QUALITY STUDY

1975 STUDY PERIOD

LOWER BOUND

STATISTICS FOR PATTERN & LOWER ALLEGHENY SEGINNING OF REACH RIVER MILE 83.80 END OF REACH RIVER MILE 6.72 SUBREACH LENGTH (MILES) 1.01 COMPUTATION INTERVAL (HOURS) FIRST DAY OF SIMULATION PERIOD 152 (1 JUN 75) LAST DAY OF SIMULATION PERIOD 304 (31 DCT 75) NUMBER OF DAYS IN SIMULATION PERIOD 152 OBSERVATIONS AT RIVER MILE FIRST DAY OF STUDY PERIOD 31. 90 153 (2 JUN 75) LAST DAY OF STUDY PERIOD 304 (31 OCT 75) NUMBER OF DAYS IN STUDY PERIOD 152 **** WATER GUALITY PARAMETERS AT RIVER MILE 31.90 NUMBER OF SIMULATION POINTS 912 ----- SIMULATION VALUES -----PARAMETER MINIMUM MAXIMUM MEAN STD. DEV. FLOW(M*+3/5) 380. 1 297.5 68.2 1484.3 18.4 TEMP (DEGREE C) 4. 8 8.8 26.5 OXY (MG/L) 6.9 11.1 8. 8 1.3 ALKA (MG/L AS CACO3) 20.7 51.6 33. 5 8. 1 HARD(MG/L AS CACO3) 50. 105. 78. 16. TDS (MG/L) 64. 159. 113. 24. PH 6.9 7.8 7.4 7.7 BOD (MG/L) 0.4 1.9 1.2 0.5 **** *********** ALLEGHENY RIVER WATER QUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR PATTERN A LONER ALLECHENY WATER GUALITY PARAMETERS AT RIVER MILE 31.90 NUMBER OF SIMULATION POINTS 912 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL INTERVALS PARAMETER 1 2 З 4 7 8 9 6 10 5 TEMP (DEGREE C) 100.00 96.05 85.96 48. 57 71.71 64. U. 15. 88 64.04 57.35 44, 30 21.93 4 06 12. 33 LOWER BOUND 10. 56 8.78 14.10 17.65 19.43 21.20 22. 98 24.75 OXY (MG/L) 100.00 90.46 65.13 60.86 54. 50 44.19 38, 60 31.36 20.72 4. 61 LOWER BOUND 6. 89 7.31 7.73 8.15 8. 57 8.99 9.41 9.82 10.24 10. 65 ALKA(MG/L AS CACO3) 100.00 88. 93 73. 57 60.42 44. 52 38. 73 25.88 19.74 8. 00 2.63 LOWER BOUND 20.64 23.75 26.85 29.96 33.06 36.17 39. 28 42.38 45.49 48.60 HARD(MG/L AS CACO3) 100.00 90.35 85. 31 70.07 53. 07 44. 52 39.14 32.13 23 90 15.46 LOWER BOUND 49.85 55.39 60. 92 66.46 71.99 77. 53 83.06 88. 60 94.13 99.67 TDS (MG/L) 88. 73 100.00 98.46 83. 55 66.12 35.20 31.47 22.81 43.75 5.59 LOWER BOUND 61.94 71.64 81.34 91.04 100.75 110.45 120.15 129.85 137.55 149 26 РН 100.00 97.70 76.75 65. 90 58.00 21.93 95.18 88.71 39.47 5. 92 LOWER BOUND 6 97 7. 06 7.24 6. 88 7.15 7.34 7 43 7. 52 7.61 7.70 BOD (MG/L) 100.00 17.98 81 80 70.07 51.64 65.13 62.06 60.09 41.89 1.64

0.74

0.59

0.43

1.06

1.22

1.37

1.53

1.69

1.84

0.90

B-19 Allegheny River Near Freeport

"No Corps Storage," 1975

ALLECHENY RIVER WATER QUALITY STUDY

......

.....

......

1975 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE LOWER ALLEGHENY SEGINNING OF REACH RIVER MILE 83. 80 END OF REACH RIVER MILE 6.72 SUBREACH LENGTH (MILES) 1.01 COMPUTATION INTERVAL (HOURS) 4 FIRST DAY OF SIMULATION PERIOD 152 (1 JUN 75) LAST DAY OF SIMULATION PERIOD 304 (31 OCT 75) NUMBER OF DAYS IN SIMULATION PERIOD 152 OBSERVATIONS AT RIVER MILE 31.90 FIRST DAY OF STUDY PERIOD 153 (2 JUN 75) LAST DAY OF STUDY PERIOD (31 OCT 75) 304 NUMBER OF DAYS IN STUDY PERIOD 152 ****************** ****** ***** ****** WATER QUALITY PARAMETERS AT RIVER MILE 31. 90 NUMBER OF SIMULATION POINTS 912 ----- SIMULATION VALUES -MINIMUM MAXIMUM MEAN STD. DEV. PARAMETER FLOW(M++3/S) 63. 1 2091.9 374.8 337.1 TEMP (DEGREE C) 7.9 26.8 18.2 5: 2 7.0 OXY (MG/L) 11.5 8. 9 1.4 ALKA(MG/L AS CACO3) 59.7 17.7 32.8 8. 1 HARD (MG/L AS CACO3) 48. 117. 86. 19. TDS (MG/L) 60. 183. 126. 33. 7.8 PH 6.8 7.2 7: 5 BOD (MG/L) 1.9 0.4 1.2 0 5 ***** ALLEGHENY RIVER WATER QUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE LOWER ALLEGHENY WATER QUALITY PARAMETERS AT RIVER MILE 31.90 912 NUMBER OF SIMULATION POINTS PERCENT OF SIMUL/TION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL INTERVALS 7 8 9 10 2 ় 6 4 5 1 3 PARAMETER 49.89 45.94 20. 50 4.06 64.04 57.24 100.00 95.39 83. 33 71.16 TEMP (DEGREE C) 17.36 19.25 21.14 23.03 24.92 15.47 7.91 9.80 11.69 13. 58 LOWER BOUND 3.95 36. 51 26.75 16.89 86.40 100.00 64.04 55. 92 51.10 41.23 OXY (MG/L) 11.07 9.71 10 16 10.61 LOWER BOUND 6. 98 7.44 7. 89 8.34 8.80 9.25 14.91 2. 08 1.64 0.99 94.85 78.73 54.61 40.90 23.36 100.00 ALKA(MG/L AS CACO3) 51. 34 42.92 47.13 55. 56 26. 07 38.71 LOWER BOUND 17.64 21.86 30.28 34.49 17.54 41.45 35.09 25.00 52.19 100.00 96.60 93.86 81.36 66. 56 HARD (MG/L AS CACO3) 82. 23 89.17 96.11 103.04 109.98 61.43 54.49 68.36 75. 30 LOWER BOUND 47.55 33. 66 24.89 13.49 47.70 36. 51 96.05 91.89 79.50 63. 38 100.00 TDS (MC/L) 158.55 170 92 146.19 84: 37 96.73 109.10 121.46 133.83 59.64 72.00 LOWER BOUND 1.21 18.86 4.71 73.90 48. 68 36. 51 95.83 85.75 54. 50 100.00 РН 7.61 7.71 7.50 6. 98 7.09 7.19 7.30 7:40 6. 77 6.88 LOWER BOUND 62.39 59.76 50.77 43.53 18.42 2.96 65.90 70.07 100.00 86.84 BOD (MG/L) 1. 27 1 57 1 49 1 84 1.05 1.21 0.74 0.89 LOWER BOUND 0.42 0.58

B-20 Allegheny River Near Natrona

"Existing Conditions," 1975

ALLECHENY RIVER WATER	QUALITY ST	********* UDY	********	**********	********	*******	********	********	
1975 STUDY PERIOD STATISTICS FOR EXISTIN		NS LOWER A							

BEGINNING OF REACH RIVER		83, 80							
END OF REACH RIVER									
SUBREACH LENGTH (MILES)		1.01							
COMPUTATION INTERVAL (HOU		4							
		•							
FIRST DAY OF SIMULATION P	ERIOD	152	(1 JUN)	75)					
LAST DAY OF SIMULATION PE	RIDD	304	(31 OCT)						
NUMBER OF DAYS IN SIMULAT	ION PERIOD	152							
OBSERVATIONS AT RIVER MIL	ε	24.63							
FIRST DAY OF STUDY PERIOD		153	(2 JUN)	75)					
FIRST DAY OF STUDY PERIOD		304	(31 OCT)	75)					
NUMBER OF DAYS IN STUDY P	ERIOD	152							
********	********	*****	******	***					
WATER QUALITY PARAMETERS	AT RIVER H	ILE 24.	63						
NUMBER OF SIMULATION POIN	TS	ç	712						
						ROR		MINIHUM	HAXIMUM
						TED-OBS.)		OBSERVED	
PARAMETER				STD. DEV.	MEAN	STD. DEV	VALUES	VAL.UE	VAĻUE
FLOW(M**3/S)		1624. 0							
TEMP(DEGREE C)				4. 8		0.9	47	12.0	27.0
OXY (MG/L)	7.1	10.9	8. 8	1. 2		0.3		8.0	9.8
ALKA(MG/L AS CACO3)	15.1	40.1	25. 0	5. 9	0.8		47	11.0	33. 0
HARD(MG/L AS CACO3)	58.	139.	94.	22.	-2.	19.	47	55.0	140.0
TDS (MG/L)	87.	234.	150.	40.	-11.	11.	. 6	108. 5	217.0
PH	6.8	7. 5	7.1	7.6	0, 1	0.4	° 47	[°] 5. 6	7.6
BOD (MG/L)	0.6	1.9	1.3	0.4					
****	*******	*******	********	***	*******	*********	********	********	*********

ALLEGHENY RIVER WATER QUALITY STUDY ALLEGHEAT RIVER WATER GUALIIT STUDY 1973 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS LOWER ALLEGHEANY WATER QUALITY PARAMETERS AT RIVER MILE 24.63 NUMBER OF SIMULATION POINTS 912

	INTERVALS									
PARAMETER	1	2	3	4	5	6	7	8	9	10
TEMP (DEGREE C)	100.00	96. 71	87. 94	73. 46	64.14	58 11	48, 79	45, 18	19.52	3. 75
LOWER BOUND	8.61	10.43	12.25	14.07	15.87	17.70	19. 32	21.34	23, 16	24.98
DXY (MG/L)	100.00	88.71	64.14	59. 32	52.96	43.07	37.50	31, 25	17.41	5.26
LOWER BOUND	7.10	7. 49	7.87	8. 25	8.64	9.02	9.41	9.79	10, 17	10. 56
ALKA(MG/L AS CACO3)	100.00	94.19	71. 05	56. 91	47.70	35.75	20. 39	11.73	4.06	3.18
LOWER BOUND	15.13	17.63	20.13	22. 62	25, 12	27. 62	30, 11	32. 61	35, 11	37.60
HARD(MG/L AS CACO3)	100.00	89. 25	83.11	63.71	48, 68	43.20	32, 57	27.85	13.05	3. 51
LOWER BOUND	57.44	65. 57	73.70	81. 93	87. 76	98.09	106.22	114.35	122, 48	130.61
TDS (MG/L)	100.00	100,00	91.34	81.80	57.35	43.31	37.28	29.71	17.65	3.18
LOWER BOUND	61.94	79.12	96. 30	113.48	130, 66	147.84	165.02	182, 19	199.37	216. 55
PH	100.00	95. 61	85.42	70.29	51, 86	34.76	24, 12	14. SD	8.22	2.41
LOWER BOUND	6.80	6. 87	6. 74	7.01	7.08	7.16	7.23	7.30	7.37	7 44
BOD (MG/L)	100.00	85. 09	73.79	65. 57	62.94	60.31	48. 90	40, 90	15.02	1 10
LOWER BOUND	0. 56	0.70	0.85	0.99	1.14	1.28	1.42	1. 57	1. 71	1.86
*******	****	*******	****	******	*******	*******	-	*******		

B-21 Allegheny River Near Natrona

"Pattern A," 1975

ALLEGHENY RIVER WATER QUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR PATTERN & LOWER ALLEGHENY BEGINNING OF REACH RIVER MILE 83. 80 RIVER MILE 6. 72 END OF REACH SUBREACH LENGTH (MILES) 1.01 COMPUTATION INTERVAL (HOURS) 4 152 (1 JUN 75) 304 (31 OCT 75) FIRST DAY OF SIMULATION PERIOD LAST DAY OF SIMULATION PERIOD NUMBER OF DAYS IN SIMULATION PERIOD DESERVATIONS AT RIVER MILE FIRST DAY OF STUDY PERIOD 152 24.63 153 (2 JUN 75) 304 (31 OCT 75) LAST DAY OF STUDY PERIOD NUMBER OF DAYS IN STUDY PERIOD 152 *** *** WATER GUALITY PARAMETERS AT RIVER MILE 24.63 NUMBER OF SIMULATION POINTS 912 ----- SIMULATION VALUES ------MINIMUM MAXIMUM HEAN STD. DEV. 87.3 1624.0 458.2 336.4 PARAMETER 1624. 0 336. 4 FLOW(M++3/S) TEMP (DEGREE C) 26. 8 8.6 48 18.6 1.2 10.9 OXY (MG/L) 7.2 8,8 ALKA(MG/L AS CACO3) HARD(MG/L AS CACO3) 15.1 44.2 25. 0 6.4 267 99. 157. 27. 58. 87. 48 TDS (MG/L) 7.1. 1.3 7.5 7.5 6.8 PH 0.5 1.9 0.4 BOD (MC/L) ALLEGHENY RIVER WATER QUALITY STUDY 1975 STUDY PERIOD STATISTICS FOR PATTERN A LOWER ALLEGHENY WATER QUALITY PARAMETERS AT RIVER MILE 2 24.63 NUMBER OF SIMULATION POINTS 912 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL

					INTERVAL	.5				
PARAMETER	1	2	3	4	5	6	7	8	9	. 10
TEMP (DEGREE C)	100.00	96.71	87. 72	73. 25	64 04	58. 00	48.79	45.18	17.98	4 05
LOWER BOUND	8.61	10.43	12.26	14.08	15. 91	17.73	19.55	21. 38	23.20	25.02
OXY (MG/L)	100.00	85. 53	63. 38	58. 66	52, 30	42.76	37.17	30. 26	17.76	5 04
LOWER BOUND	7.18	7.56	7.94	8. 31	8. 69	9 07	9.44	9.82	10 20	10.57
ALKA(MG/L AS CACO3)	100. 00	88. 05	64.04	51.54	35. 75	24.89	13.60	4.17	3 29	2.30
LOWER BOUND	15.13	18.04	20.95	23.86	26 77	29.68	32.59	35.50	38.41	41.32
HARD(MO/L AS (CACO3)	100.00	87.06	78.07	51.54	44.85	34. 98	29.61	26. 54	6.14	2. 63
LOWER BOUND	57.44	67.45	77.47	87.48	97, 49	107. 50	117.51	127.52	137.53	147.55
TDS (MG/L)	100,00	100.00	87.83	68. 31	45.72	38.82	30.15	27.85	7.89	2.63
LOWER BOUND	61.94	82.44	102.94	123.45	143.95	164.45	184.96	205.46	225. 96	246.46
PH	100.00	92. 98	81.03	66.12	49.67	32.57	22.48	13, 39	8.11	4 61
LOWER BOUND	6.80	6.87	6.94	7.01	7.08	7.16	7. 23	7.30	7.37	7.44
BOD (MG/L)	100.00	87.61	75.00	66. 12	63. 49	60. 75	52. 30	41.45	17.00	1 10
LOWER BOUND	0.51	0.66	0.81	0.96	1.11	1.26	1.40	1.55	1.70	1.85

B-22 Allegheny River Near Natrona

ALLECHENY RIVER WATER QUALITY STUDY 1975 STUDY PERIOD "No Corps Storage," 1975

...........

STATISTICS FOR NO CO	DDC CTODAAC	LOUED AL	COUCHY						
00 UN 101103 FUR AU CU									
BEGINNING OF REACH RIVE	D MILC	83. 80	********						
	RMILE	6. 72							
SUBREACH LENGTH (MILES)		1.01							
COMPUTATION INTERVAL (H		4. 4							
		4							
FIRST DAY OF SIMULATION	PERIOD	152	(1 JUN	75)					
LAST DAY OF SIMULATION	PERIOD	304	(31 001	75)					
LAST DAY OF SIMULATION A NUMBER OF DAYS IN SIMULA	ATION PERIOR) 152							
CBSERVATIONS AT RIVER M	ILE	24.63							
FIFST DAY OF STUDY PERI	OD	153	(2 JUN	75)					
LAST DAY OF STUDY PERIO	D	304	(31 001	75)					
FIFST DAY OF STUDY PERIO LAST DAY OF STUDY PERIO NUMBER OF DAYS IN STUDY	PERIOD	152							
*** * * * * * * * * * * * * * * * * * *	**********	********	******	****					
HATER QUALITY PARAMETER		IILE 24	1. 63						
NUMBER OF SIMULATION PO	INTS		912						
				_					
PARAMÉTER				S					
	MUNINUM	MAXIMUM	MEAN	STD. DEV.					
FLOW(M++3/S) TEMP(DEGREE C)	76.1	2283.3	453.6	382.					
OXY (MG/L)	0.1 7 1	27.0	18.3	5.					
	1.1	11.4	8. 7	1. :				41	
ALKA(MG/L AŠ CACO3) Hard(Mg/L AS CACO3)	13.0	47.1	23.3	6.					
TDS (MG/L)		107. 375	107.	28 49					
PH	/ 2 . 2 A	<i>د ا</i> ح	107.	····					
EDD (MG/L)	0.5	1 9	0. i	0.					
				· · ·	v				
***********************		********	********	********	*****				
******************			********	********	*****				
	76. 1 8, 1 7, 1 13. 0 53. 72. 6. 4 0. 5		********	*******	*****				
			*******	*****	****				
				*****	****				
ALLEGHENY RIVER WATER				*****	****				
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR	R GUALITY ST	UDY			••••				
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS	R GUALITY ST RPS STORAGE 5 AT RIVER M	UDY	ECHENY		••••				
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS	R GUALITY ST RPS STORAGE 5 AT RIVER M	UDY LOWER ALL ILE 24	ECHENY	•••••	••••				
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI	R GUALITY ST RPS STORAGE 3 AT RIVER M INTS	UDY LOWER ALL ILE 24	ECHENY - 63 912						
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI	R GUALITY ST RPS STORAGE 3 AT RIVER M INTS	UDY LOWER ALL ILE 24	ECHENY - 63 912			F EACH IN	ITERVAL		
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI	R GUALITY ST RPS STORAGE 5 AT RIVER M	UDY LOWER ALL ILE 24	ECHENY - 63 912			F EACH IN	ITERVAL		
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC	R QUALITY ST RPS STORAGE S AT RIVER M INTS CENT OF SIMU	UDY LOWER ALL ILE 24 LATION PC	ECHENY 63 912 Ints Exc	EEDING LO		F EACH IN	ITERVAL		
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI	R QUALITY ST RPS STORAGE S AT RIVER M INTS CENT OF SIMU	UDY LOWER ALL ILE 24	EGHENY 63 912 Ints Exc	EEDING LOU	IER BOUND O		NTERVAL 8	9	10
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI FERO PARAMETER	R QUALITY ST RPS STORACE S AT RIVER M INTS CENT OF SIMU	UDY LOWER ALL ILE 24 LATION PC 2	ECHENY . 63 912 Ints Exc 3	EEDING LOS INTER 4 S	IER BOUND O IVALS	7	8	-	10
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C)	R GUALITY ST RPS STORAGE S AT RIVER M INTS CENT OF SIMU 1 100.00	UDY LOWER ALL ILE 24 LATION PC 2 95.61 8	ECHENY - 63 912 	EEDING LOS INTER 4 5 2. 29 63.	NER BOUND O WALS 3 6 93 57.24	7 49. 23	8 46. 05	18.42	10
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND	R QUALITY ST RPS STORAGE S AT RIVER M INTS CENT OF SIMU 1 100.00 8.12	UDY LOWER ALL ILE 24 LATION PC 2 75.61 8 10.01 1	EGHENY - 63 912 INTS EXC 3 2.89 7 1.90 1	EEDING LOG INTEF 4 5 5. 29 63. 3. 79 15.	VER BOUND O VALS 3 6 93 57.24 68 17.57	7 49. 23 19. 46	8 46.05 21.35	18.42 23.24	
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DECREE C) LOWER BOUND OXY (MG/L)	R QUALITY ST RPS STORAGE S AT RIVER M INTS ENT OF SIMU 1 100.00 8.12 100.00	UDY LOWER ALL ILE 24 LATION PC 2 95.61 8 10.01 1 87.50 6	ECHENY 63 912 INTS EXC 3 2.89 7 1.90 1 3.60 5	EEDING LOG INTER 4 5 2. 29 63. 3. 79 15 3. 62 50	VER BOUND O VALS 3 57.24 68 17.57 11 40.90	7 49. 23 19. 46 35. 96	8 46,05 21,35 26,34	18.42 23.24 14.80	4. 06
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DECREE C) LOWER BOUND OXY (MG/L)	R QUALITY ST RPS STORAGE S AT RIVER M INTS ENT OF SIMU 1 100.00 8.12 100.00	UDY LOWER ALL ILE 24 LATION PC 2 75.61 8 10.01 1 87.50 6 7.52	ECHENY 63 912 INTS EXC 3 2.89 7 1.90 1 3.60 5 7.95	EEDING LOG INTER 4 5 2. 29 63. 3. 79 15. 3. 62 50. 3. 38 8.	JER BOUND O RVALS 3 57.24 68 17.57 11 40.90 81 9 23	7 49.23 19.46 35.96 9.68	8 46,05 21,35 26,34 10,11	18.42 23.24 14.80 10.55	4.06 25.13 4.06 10.98
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND OXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3)	R GUALITY ST RPS STORAGE S AT RIVER M INTS ENT OF SIMU 100.00 8.12 100.00 7.09 100.00	UDY LOWER ALL ILE 24 LATION PC 2 75.61 8 10.01 1 87.50 6 7.52 90.46 5	EGHENY - 63 912 INTS EXC 3 2.89 7 1.90 1 3.60 5 7.95 3	EEDING LOS INTER 4 5 5. 29 63. 3. 79 15. 3. 62 50. 3. 38 8. 9. 36 8.	JER BOUND O RVALS 5 6 93 57 24 68 17.57 11 40.90 81 9 23 66 11.62	7 49, 23 19, 46 35, 96 9, 68 5, 92	8 21.35 26.34 10.11 2.63	18.42 23.24 14.80 10.55 1.64	4.06 25.13 4.06 10.98 0.99
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND ALKA(MG/L) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND	R GUALITY ST RPS STORAGE S AT RIVER M INTS ENT OF SIMU 1 100.00 8.12 100.00 7.09 100.00 12.95	UDY LOWER ALL ILE 24 LATION PC 2 95.61 8 10.01 1 87.50 6 7.52 90.46 5 16.57 2	EGHENY 63 912 INTS EXC 3 2.89 7 1.90 1 3.60 5 7.95 9 9.87 3 0.19 2	EEDING LOS INTER 4 5 5. 29 63. 3. 79 15 3. 62 50. 3. 38 8. 9. 36 23. 3. 80 27.	VER BOUND O VALS 3 6 93 57.24 68 17.57 11 40.90 81 9 23 68 11.62 42 31.04	7 49.23 19.46 35.96 9.68 5.92 34.66	8 21.35 26.34 10.11 2.63 38.28	18.42 23.24 14.80 10.55 1.64 41.90	4.06 25.13 4.06 10.98 0.99 45.52
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND OXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3)	R GUALITY ST RPS STORAGE S AT RIVER M INTS ENT OF SIMU 1 100.00 8.12 100.00 7.09 100.00 12.75 100.00	UDY LOWER ALL ILE 24 LATION PC 2 75.61 8 10.01 1 87.50 6 7.52 70.46 5 70.46 5 70.46 5 70.46 5 70.46 5 70.46 8	EGHENY - 63 912 INTS EXC 3 2.89 7 1.90 1 3.60 5 7.95 3 0.19 23 0.19 23 7.28 7	EEDING LOG INTEF 4 5 3. 79 15 3. 62 50 3. 38 8. 7. 36 23. 3. 80 23. 3. 80 23. 3. 80 31.	VER BOUND O VALS 5 6 93 57 24 68 17.57 11 40.90 81 9 25 68 11.62 75 38.38	7 49.23 19.46 35.96 9.68 5.92 34.66 32.68	8 46,05 21,35 26,34 10,11 2,63 38,28 25,99	18.42 23.24 14.80 10.55 1.64 41.90 10.76	4.06 25.13 4.06 10.98 0.99 45.52 1.32
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND MARD(MG/L AS CACO3) LOWER BOUND	R QUALITY ST RPS STORAGE S AT RIVER M INTS ENT OF SIMU 1 100.00 8.12 100.00 7.08 100.00 12.95 100.00 53.15	UDY LOWER ALL ILE 24 LATION PC 2 93.61 8 10.01 1 87.50 6 7.52 90.46 5 16.57 8 55.94 8 64.72 7	EGHENY . 63 912 INTS EXC 3 2. 89 7 1. 90 1 3. 60 5 7. 95 3 0. 19 2 0. 19 2 7. 28 7 6. 29 8	EEDING LOG INTEF 4 5 0. 29 63. 3. 79 15. 3. 62 50. 3. 38 8. 7. 36 23. 3. 80 27. 0. 50 51. 7. 86 99.	VER BOUND O VALS 3 57.24 68 17.57 11 40.90 81 9 23 68 11.62 42 31.04 75 38.38 44 111.01	7 49. 23 19. 46 35. 96 9. 68 5. 92 34. 68 32. 68 122. 58	8 46.05 21.35 26.54 10.11 2.63 38.23 25.99 134.15	18.42 23.24 14.80 10.55 1.64 41.90 10.96 145.72	4.06 25.13 4.06 10.98 0.97 43.52 1.32 157 30
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND TDS (MG/L)	R GUALITY ST RPS STORAGE S AT RIVER M INTS ENT OF SIMU 1 100.00 8.12 100.00 7.09 100.00 12.95 100.00 53.15 100.00	UDY LOWER ALL ILE 24 LATION PC 2 75.61 8 10.01 1 87.50 6 7.52 90.46 5 16.57 2 75.94 8 64.72 7 77.48 9	EGHENY . 63 912 INTS EXC 3 2. 89 7. 90 1. 90 1 9. 87 3 0. 19 2. 9. 87 3 0. 19 2 7. 28 7 1. 56 7	EEDING LOS INTER 4 5 2. 29 63. 3. 79 15. 3. 62 50. 3. 38 8. 9. 36 23. 3. 80 27. 0. 50 51. 7. 86 99. 7. 74 57.	VER BOUND O VALS 3 57 24 68 17,57 11 40.90 81 9 23 68 11.62 42 31.04 75 38.38 44 111.04 75 38.38	7 49, 23 19, 46 35, 96 9, 68 5, 92 34, 66 32, 68 122, 58 123, 00	8 44,05 21,35 24,34 10,11 2,63 38,28 25,99 134,15 28,95	18.42 23.24 14.80 10.55 1.64 41.90 10.76 145.72	4.06 25.13 4.06 10.98 0.97 45.52 1.32 1.57 30
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND MARD(MG/L AS CACO3) LOWER BOUND	R GUALITY ST RPS STORAGE S AT RIVER M INTS ENT OF SIMU 1 100.00 8.12 100.00 1.00 100.00 12.95 100.00 53.15 100.00 61.94	UDY LOWER ALL ILE 24 LATION PC 2 75.61 8 10.01 1 87.50 6 7.52 70.46 5 16.57 2 75.94 8 64.72 7 93.29 10	EGHENY - 63 912 INTS EXC 3 2.89 7.95 - .60 5 - .987 3 0.19 2.89 7.95 - .28 7.95 - .28 7.95 - .28 7.28 7.28 .28 .28 .28 .28 .28 .28 .28	EEDING LOG INTER 4 5 5. 29 63. 3. 79 15. 3. 62 50. 3. 38 8. 7. 36 23. 3. 80 27. 5. 50 31. 7. 84 99. 7. 84 99. 7. 84 99. 7. 84 99. 7. 84 91. 7. 74	VER BOUND O VALS 3 57.24 68 17.57 11 40.90 81 9 23 68 11.62 42 31.04 75 38.38 44 111.01 35 42.21	7 49. 23 19. 46 35. 96 9. 68 5. 92 34. 66 32. 68 122. 58 33. 00	8 46.05 21.35 26.54 10.11 2.63 38.28 25.99 134.15 28.95	18.42 23.24 14.80 10.55 1.64 41.90 10.76 145.72 13.27	4.06 25.13 4.06 10.98 0.99 45.52 1.32 157 30 1.32 254 12
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND ALKA(MG/L) LOWER BOUND MARD(MG/L AS CACO3) LOWER BOUND TDS (MG/L) LOWER BOUND PH	R QUALITY ST RPS STORAGE S AT RIVER M INTS ENT OF SIMU 1 100.00 8.12 100.00 7.09 100.00 12.75 100.00 53.15 100.00 61.74 100.00	UDY LOWER ALL ILE 24 LATION PC 2 75.61 8 10.01 1 87.50 6 7.52 70.46 5 70.46 5 70.46 5 70.46 5 75.94 8 64.72 7 77.48 9 93.29 9 93.29 9	EGHENY . 63 912 INTS EXC 3 2. 89 7 1. 90 1 3. 60 5 7. 95 3 0. 19 2 7. 28 7 6. 29 8 1. 56 7 4. 65 12 2. 00 7	EEDING LOG INTEF 4 5 5. 29 63. 3. 79 15. 3. 62 50. 3. 38 8. 7. 36 23. 3. 80 27. 5. 50 51. 7. 86 99. 7. 74 57. 5. 00 147. 7. 98 99.	VER BOUND O VALS 3 57 24 68 17.57 11 40.90 81 9 25 68 11.62 42 31.04 75 38.38 44 111.01 35 42.21 35 168.71	7 49. 23 19. 46 35. 96 5. 92 34. 68 32. 68 122. 58 33. 00 190. 06	8 46.05 21.35 26.54 10.11 2.63 36.28 25.99 134.15 28.95 211.41	18.42 23.24 14.80 10.55 1.64 41.90 10.96 145.72 13.27 232.77 8.77	4.06 25.13 4.06 10.98 0.97 45.52 1.32 157.30 1.32 254.12 4.61
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COP WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND TDS (MG/L) LOWER BOUND PH LOWER BOUND BOD (MG/L)	R QUALITY ST RPS STORAGE S AT RIVER M INTS ENT OF SIMU 1 100.00 8.12 100.00 7.09 100.00 12.75 100.00 53.15 100.00 61.94 100.00 6.38	UDY LOWER ALL ILE 24 LATION PC 2 75.61 8 10.01 1 87.50 6 7.52 7 70.46 5 70.46 5 75.94 8 64.72 7 77.48 9 93.27 10 78.57 9	EGHENY . 63 912 INTS EXC 3 2. 89 7 1. 90 1 3. 60 5 7. 95 3 0. 19 2 7. 28 7 4. 65 12 2. 00 7 6. 60 7 . 60 7	EEDING LOG INTEF 4 5 5. 29 63. 3. 79 15. 3. 62 50. 3. 38 8. 7. 36 23. 3. 80 27. 5. 36 99. 7. 74 57. 5. 00 147. 7. 09 38. 5. 71 6.	VER BOUND O VALS 3 57 24 68 17.57 11 40.90 81 9 25 68 11.62 42 31.04 75 38.38 44 111.01 35 42.21 35 168.71 77 40.46	7 49. 23 19. 46 35. 96 9. 68 5. 92 34. 68 32. 68 122. 58 33. 00 190. 06 19. 85 7. 05	8 46.05 21.35 26.54 10.11 2.63 38.28 25.99 134.15 28.95 211.41 13.27 7.16	18.42 23.24 14.80 10.55 1.64 41.90 10.76 145.72 13.27 232.77 8.77 7.27	4.06 25.13 4.06 10.98 0.97 45.52 1.32 157.30 1.32 254.12 4.61 7.38
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND MARD(MG/L AS CACO3) LOWER BOUND TDS (MG/L) LOWER BOUND PH LOWER BOUND BOD (MG/L) LOWER BOUND	R GUALITY ST RPS STORAGE S AT RIVER M INTS ENT DF SIMU 1 100.00 8.12 100.00 7.08 100.00 12.95 100.00 53.15 100.00 61.94 100.00 6.38 100.00 6.38 100.00 6.38	UDY LOWER ALL ILE 24 LATION PC 2 75.61 8 10.01 1 87.50 6 7.52 70.46 5 16.57 2 75.94 8 64.72 7 93.29 10 78.37 9 6.49 7 0.62	EGHENY 63 912 INTS EXC 3 2.89 7 1.90 1 3.60 5 7.95 3 0.19 2 7.28 7 6.29 8 1.56 7 4.65 12 2.00 7 6.60 6 0.78 6 1.57 12 1.56 12 1.	EEDING LOS INTER 4 5 5. 29 63. 3. 79 15. 3. 62 50. 3. 38 8. 9. 36 23. 3. 80 27. 5. 36 99. 7. 74 57. 5. 00 147. 7. 09 58. 5. 71 6. 5. 93 1	VER BOUND O VALS 3 57.24 68 17.57 11 40.90 81 9 25 68 11.62 42 31.04 75 38.38 44 111.01 35 42.21 35 168.71 77 40.46 83 6.94 94 60.09	7 49. 23 19. 46 35. 96 9. 68 5. 92 34. 66 32. 68 122. 58 33. 00 190. 06 19. 83 7. 05 52. 19	8 46.05 21.35 26.54 10.11 2.63 38.28 25.99 134.15 28.95 211.41 13.27 7.16 42.87	18.42 23.24 14.80 10.55 1.64 41.90 10.96 145.72 13.27 232.77 8.77 7.27 24.01	4.06 25.13 4.06 10.98 0.97 45.52 1.32 157.30 1.32 254.12 4.61 7.38 3.40
ALLEGHENY RIVER WATER 1975 STUDY PERIOD STATISTICS FOR NO COP WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND TDS (MG/L) LOWER BOUND PH LOWER BOUND BOD (MG/L)	R GUALITY ST RPS STORAGE S AT RIVER M INTS ENT OF SIMU 1 100.00 8.12 100.00 7.08 100.00 12.95 100.00 53.15 100.00 61.94 100.00 6.38 100.00 6.38 100.00 6.38	UDY LOWER ALL ILE 24 LATION PC 2 75.61 8 10.01 1 87.50 6 7.52 70.46 5 16.57 2 75.94 8 64.72 7 93.29 10 78.37 9 6.49 7 0.62	EGHENY 63 912 INTS EXC 3 2.89 7 1.90 1 3.60 5 7.95 3 0.19 2 7.28 7 6.29 8 1.56 7 4.65 12 2.00 7 6.60 6 0.78 6 1.57 12 1.56 12 1.	EEDING LOS INTER 4 5 5. 29 63. 3. 79 15. 3. 62 50. 3. 38 8. 9. 36 23. 3. 80 27. 5. 36 99. 7. 74 57. 5. 00 147. 7. 09 58. 5. 71 6. 5. 93 1	VER BOUND O VALS 3 57.24 68 17.57 11 40.90 81 9 25 68 11.62 42 31.04 75 38.38 44 111.01 35 42.21 35 168.71 77 40.46 83 6.94 94 60.09	7 49. 23 19. 46 35. 96 9. 68 5. 92 34. 66 32. 68 122. 58 33. 00 190. 06 19. 83 7. 05 52. 19	8 46.05 21.35 26.54 10.11 2.63 38.28 25.99 134.15 28.95 211.41 13.27 7.16 42.87	18.42 23.24 14.80 10.55 1.64 41.90 10.96 145.72 13.27 232.77 8.77 7.27 24.01	4.06 25.13 4.06 10.98 0.97 45.52 1.32 157.30 1.32 254.12 4.61 7.38 3.40

B-23 French Creek Below Meadville

ALLEGHENY RIVER WATER QUALITY STUDY

"Existing Conditions," 1977

1977 STUDY PERIOD-FRENCH CREEK STATISTICS FOR EXISTING CONDITIONS NEAR MEADVILLE BEGINNING OF REACH RIVER MILE 73.13 0.93 END OF REACH RIVER MILE SUBREACH LENGTH (MILES) 1.85 COMPUTATION INTERVAL (HOURS) A 182 (1 JUL 77) 273 (30 SEP 77) FIRST CAY OF SIMULATION PERIOD LAST DAY OF SIMULATION PERIOD NUMBER OF DAYS IN SIMULATION PERIOD 91 OBSERVATIONS AT RIVER MILE FIRST DAY OF STUDY PERIOD 24.99 183 (2 JUL 77) 273 (30 SEP 77) LAST DAY OF STUDY PERIOD 91 NUMBER OF DAYS IN STUDY PERIOD **** WATER GUALITY PARAMETERS AT RIVER MILE 24.99 NUMBER OF SIMULATION POINTS 54A ----- SIMULATION VALUES ------MEAN STD. DEV. MINIMUM MAXIMUM PARAMETER 126. 9 40. 6 32.1 5.0 FLOW(M**3/5) 28.7 20.8 3.0 TEMP (DEGREE C) 14.8 8.9 0.5 7.9 9.9 DXY (MG/L) 42. 5 80.7 67.3 11.2 ALKAING/L AS CACOS) 19 104. 163. HARD(MG/L AS CACO3) 68. 20. 122. TOS (MG/L) -81. 185. 6.9 8.2 7 5 7 5 1.8 РН 1. 7 0 1 1.6 ROD (MC/L) **** **** ALLEGHENY RIVER WATER GUALITY STUDY 1977 STUDY PERIOD-FRENCH CREEK STATISTICS FOR EXISTING CONDITIONS NEAR MEADVILLE WATER GUALITY PARAMETERS AT RIVER MILE 24.99 546 NUMBER OF SIMULATION POINTS PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL INTERVALS . 10 7 8 9 4 6 2 З 5 1 PARAMETER 20. 51 10.26 3.11 0.73 41 58 100.00 90.11 79.30 69.41 61.54 TEMP (DEGREE C) 24 59 25.98 27 38 21.80 23.20 17.62 19.02 20.41 LOWER BOUND 14.84 16.23 0.73 20.33 8.79 69.05 28.75 100.00 51.47 39.01 97.25 88. 28 OXY (MG/L) 9.39 9 59 9.80 9.18 8.14 8.35 8. 56 8.75 8.97 LOWER BOUND 7.93 59 34 40. 66 17 59 70.33 93.96 85.16 81.50 77.29 75.09 100.00 ALKA(MG/L AS CACO3) 76.91 69 24 73.08 57. 75 61.58 65 41 50 08 53. 91 46.25 LOWER BOUND 42.42 1.47 5.49 91.58 60.26 32.23 20.70 13.55 11.36 100.00 95.24 HARD(MG/L AS CACO3) 143 66 153.16 115.15 124.65 134.15 77.14 96.14 105.64 LOWER BOUND 67.63 86.64 36.63 16.30 8.79 5.31 1.65 93. 22 63.55 20.88 100.00 95.24 TDS (MG/L) 174 49 132 90 143.30 153.69 164 09 101 71 122.51 LOWER BOUND 112.11 80. 92 91.32 5.04 59.89 21.43 10.44 84.07 80.77 72.16 РН 100.00 95.24 92.31 7 12 7 94 8 07 7.53 7 67 7.80 6.99 7.40 7.26 6. 85 LOWER BOUND 86. 81 79.12 65.75 39.56 23.81 18.32 100.00 99.45 99 08 95.79 BOD (MG/L)

1.66

1.70

1.56

LOWER BOUND

1. 59

1.63

1.76

1.73

1.80

1.83 1.87

B-24 French Creek Below Meadville

"No Corps Storage," 1977

******************	*******	******	*****	******	*******	********	*******	*******	********	*****
ALLEGHENY RIVER WATER	GUALITY ST	'UDY								
1977 STUDY PERIOD-FRE	ACH CREEK									
STATISTICS FOR NO CORP	S STORAGE	NEAR MEA	DVILLE							
	JUSIT DATA a	********		******						
BEGINNING OF REACH RIVER END OF REACH RIVER SUBREACH LENGTH (MILES) COMPUTATION INTERVAL (HOU	MILE	73.13								
END DE REACH RIVER	RIF	0 93								
CHORACH ENGTH (MILES)		1 95								
ACHOUT TION INTERNAL (NO	1863	1. UJ								
COMPUTATION INTERANC (AUG	1631									
FIRST DAY OF SIMULATION F LAST DAY OF SIMULATION F NUMBER OF DAYS IN SIMULAT OBSERVATIONS AT RIVER MIL FIRST DAY OF STUDY PERIOD										
FIRST DAY OF SIMULATION A	-EKIUU	104								
LAST DAY OF SIMULATION PE	RIUD	2/3		EP ///						
NUMBER OF DAYS IN SIMULAT	FION PERIOD	9 91								
OBSERVATIONS AT RIVER MIL	-E	24. 99								
FIRST DAY OF STUDY PERIO)	183	(2)	UL 77)						
LAST DAY OF STUDY PERIOD		273	(30 5	EP 77)						
FIRST DAY OF STUDY PERIOD LAST DAY OF STUDY PERIOD NUMBER OF DAYS IN STUDY F	PERIOD	91								
*********************	***	*******	******	******						
WATER GUALITY PARAMETERS	AT RIVER M	IILE 2	4.99							
NUMBER OF SIMULATION POIN			546							
		- SIMULAT	ION VAL	.UES						
PARAMETER	MINIHUM	HAXIHUM	ME	AN STD.	DEV.					
FIOU(Mee3/S)	6.3	190.9	43	1. 3	39.7					
TEMP (DECREE C)	14.0	28.3	20	. 8	3.0					
	8.0	10.0	Ē	9	0.5					
	34.4	07 4	40	. 7	14 7					
ALKA(MU/L AS CACUS)	 	140		20	20					
HARD(MG/L AS CACUS)	33.	140.	7		×V.					
TDS (MG/L)	82.	152.	11	.0.	17.					
PARAMETER FLOW(M++3/S) TEMP(DEGREE C) OXY (MG/L) ALKA(MG/L AS CACO3) HARD(MG/L AS CACO3) TDS (MG/L) PH BOD (MG/L)	7.3	8. 3	7	7 6	7.9					
BOD (MG/L)	1.6	1.9	1	. 9	0.1					
***************************************	*********	****	*****	*******	******	**				
ALLEGHENY RIVER WATER	QUALITY S	TUDY								
1977 STUDY PERIOD-FRE										
STATISTICS FOR NO COR		NEAR MEA	DVILLE							
WATER QUALITY PARAMETERS	AT PIUSE	411 E 2	4 99							
NUMBER OF SIMULATION POI			546		•					
NUMBER OF SINULATION FOI	113		040							
	ENT OF SIM	U ATTON P	OTNTS I	EXCEEDIN	C LOWER	BOUND OF	EACH IN	TERVAL		
PERC	ENT OF STR	JCATION 1	01.010							
					INTERVAL	s				
	1	`	3	4		6	7	8	9	10
PARAMETER	1	4	3	-	-	•	•	-		
			00.00	75 00	44 29	50 73	29 30	14 29	4 21	0 92
TEMP (DEGREE C)	100.00	47.80	70.27	/5.07	09.47	31.13	22 55	27 98	25 42	26 85
LOWER BOUND	13.97	15.40	15.83	18.40	17.07	35 30	74 54	14 45	4 76	2 01
UXY (MG/L)	100.00	95. 24	85.16	67.73	48.JJ	35.40	20.00	9 4 2	9 4 2	9 83
LOWER BOUND	8.00	8.20	8.41	8.61	8. 81	9.02	7. 44	7.76	7 02	9 61
ALKA(MG/L AS CACO3)	100.00	90.11	81.14	71.25	63. 92	56. 59	47.27	40.00	23.40	79 43
LOWER BOUND	34. 37	37. 28	44.20	49.12	54.04	58.95	63.8/	68./Y	13.11	2 01
HARD(MG/L AS CACO3)	100.00	87. 56	80, 40	67.22	52. 56	41. 21	20.70	12.04	J. 00	121 20
LOWER BOUND	54.45	62.99	71.54	80.07	88.64	97.19	105.74	114.29	122.04	101.07
TDS (HG/L)	100.00	81. 50	71.98	60. 07	45.79	37.38	25. 27	12.64	8.79	J. 11
LOWER BOUND	82. 02	89. 05	96.08	103. 12	110, 15	117.18	124.22	131.25	138.29	143.32
PH	100.00	100. 00	98. 90	84. 07	77.47	67 03	39. 38	15.30	10.07	4.75
LOWER BOUND	6. 99	7.12	7. 25	7.38	7.52	7.65	7.78	7.91	8, 04	8.17
BOD (MG/L)	100.00	96. 52	86.45	83. 15	71.06	52.38	41.39	26 92	23. 26	12.09
TEMP(DEGREE C) LOWER BOUND DIY (MC/L) LOWER BOUND ALKA(MC/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND TDS (MG/L) LOWER BOUND BOD (MG/L) LOWER BOUND	1.64	1.66	1.69	1. 72	1.74	1.77	1.80	1.82	1.85	1 88

B-25 Clarion River Near Ridgeway

"Existing Conditions," 1977

*** ALLEGHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS CLARION RIVER BEGINNING OF REACH RIVER MILE 87.65 END OF REACH RIVER MILE 1.05 SUBREACH LENGTH (MILES) 2.11 COMPUTATION INTERVAL (HOURS) 4 182 (1 JUL 77) FIRST DAY OF SIMULATION PERIOD LAST DAY OF SIMULATION PERIOD 273 (30 SEP 77) NUMBER OF DAYS IN SIMULATION PERIOD OBSERVATIONS AT RIVER MILE FIRST DAY OF STUDY PERIOD 91 81.31 183 (2 JUL 77) 273 (30 SEP 77) LAST DAY OF STUDY PERIOD NUMBER OF DAYS IN STUDY PERIOD 91 ***** WATER QUALITY PARAMETERS AT RIVER MILE 81.31 NUMBER OF SIMULATION POINTS 546 ----- SIMULATION VALUES ------MINIMUM MAXIMUM MEAN STD. DEV. PARAMETER 9.8 7.8 3.3 46.6 FLOW(N++3/S) 2 4 22.9 17 1 10 9 TEMP (DEGREE C) 9.7 0.4 10.7 DXY (MG/L) .8.9 7.7 * 5. 6 28.7 18.1 ALKA(MG/L AS CACO3) 40. 13. 15. HARD (MG/L AS CACO3) 61. 73. 30 TDS (MG/L) 32. 152. 7.5 6.7 7.7 7.3 РН 1.4 8.1 5 2 BOD (MG/L) 2.5 *******

ALLEGHENY RIVER WATER GUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS CLARION RIVER 81.31 WATER QUALITY PARAMETERS AT RIVER MILE NUMBER OF SIMULATION POINTS 546

					INTERVALS	5				
ARAMETER	1	2	З	4	5	6	7	8	ċ	. 10
TEMP(DEGREE C) LOWER BOUND OXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND	100.00 10.68 100.00 8.72 100.00 7.66 100.00 15.28	97.44 12.08 97.44 9.10 96.34 9.77 95.42 21.26	92.67 13.29 90.29 9.28 89.56 11.88 84.25 27.24	83.70 14.49 74.18 9.46 67.58 13.98 66.30 33.22	73 44 15 70 48 90 9 64 51 65 16 09 37 73 39 20	55.95 16.90 30.59 9 82 40 29 18.20 31.14 45.18	35 35 18 11 20 88 10 00 38 83 20 30 24 36 51 16	17 22 19 31 11. 17 10. 18 32 97 22. 41 18. 13 57. 14	6 41 20 51 3 48 10 36 18 50 24 52 0 00 63 12	1 53 21 72 2 38 10 54 26 59 26 62 0 00 69 10 9 89
TDS (MG/L) LOWER BOUND PH LOWER BOUND BOD (MG/L) LOWER BOUND	100.00 32.07 100.00 6.72 100.00 2.52	97 44 44 03 96 89 6 82 92 31 3 08	92.49 55.98 94.32 6.91 81.32 3.64	80 77 67 94 90 84 7 01 77 11 4 19	56.04 77.90 88.10 7.10 65.57 4.75	39 56 91.86 80.04 7.20 37.91 5 31	34.07 103.82 76.37 7.29 32.60 5.87	2674 11578 58.42 7.38 24.18 6.43	21 61 127 73 35 71 7 48 10 44 6 99	9 87 139.65 16 46 7 57 5 10 7 55

B-26 Clarion River Near Ridgeway

"No Corps Storage," 1977

************ ALLEGHENY RIVER WATER GUALITY STUDY 1977 STUDY FEFIOD STATISTICS FOR NO CORPS STORAGE CLARION RIVER BESINNING OF REACH RIVER MILE 87 55 END OF REACH 1.06 RIVER MILE SUBREACH LENGTH (MILES) 2.11 COMPUTATION INTERVAL (HOURS) 4 182 (1 JUL 77) 273 (30 SEP 77) FIRST DAY OF SIMULATION PERIOD LAST DAY OF SIMULATION PERIOD 91 NUMBER OF DAYS IN SIMULATION PERIOD 81.31 DESERVATIONS AT RIVER MILE FIRST DAY OF STUDY PERIOD 183 (2 JUL 77) 273 (30 SEP 77) NUMBER OF DAYS IN STUDY PERIOD 91 WATER QUALITY PARAMETERS AT RIVER MILE 81.31 546 NUMBER OF SIMULATION POINTS MINIMUM MAXIMUM MEAN STD. . MEAN STD DEV

PARAMETER	MINIMUM	MAXIMUN	INC, MIN	310.024
FLOW (M++3/5)	0.9	68.3	90	11.4
TEMP (DEGREE C)	9.3	24 9	18, 2	36
CAY (MG/L)	8.4	11 2	94	0. 7
ALKA (MG/L AS CACO3)	6.9	51.3	28. 4	10. 9
HARD (MG/L AS CACOS)	13.	87.	51.	19
TDE (MG/L)	27.	264	125.	55.
2H	6.6	7.8	7.3	74
•	2.3	16.1	7.0	3.2
50D (MG/L)		********	*******	****

ALLEGNENY RIVER WATER GUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE CLARION RIVER WATER GUALITY FARAMETERS AT RIVER MILE 81.31 NUMBER OF SIMULATION POINTS 546

					INTERVAL	S				
PARAMETER	1	2	3	4	5	5	7	8	9	10
TEMP (DEGREE C)	100.00	97. 99	90. 84	83. 70	75.82	66 48	52. 38	36. 08	14 84	2 75
LOWER BOUND	9.30	10.87	12.43	13.99	15.56	17.12	18. 69	20 25	21 82	23. 38
DXY (MG/L)	100.00	94.14	69.78	53.85	41.76	20 75	21. 98	11.72	4. 95	2. 38
LOWER BOUND	8.36	8. 65	8.93	9. 22	9. 50	979	10.07	10.36	10 64	10. 93
ALMAING/L AS CACOS)	100.00	94.51	85.53	71.98	61.36	51.47	37 73	18.32	971	4. 95
LOWER BOUND	6, 92	11.36	15.80	20. 24	24.68	29 12	33. 56	38.00	42.44	46.88
HARDING/L AS CACO3)	100.00	94.69	86. 81	74.73	64.65	55. 86	44 14	27.47	15.02	5 49
LOWER BOUND	12.87	20.24	27.63	35.00	42. 37	49.74	57.11	64.48	71.85	79. 22
TDS (MG/L)	100.00	93.22	77.29	63.55	51.83	36 81	20. 51	12.27	6. 23	1.28
LOWER BOUND	27 27	50.99	74.71	98.43	122 15	145 87	169. 59	193.31	217.03	240.74
PH	100.00	96.89	94.14	90.66	85.90	76.92	71.05	63.19	54. 95	26.74
LOWER BOUND	6 63	6.75	6.87	6 99	7, 10	7.22	7.34	7. 46	7 57	7.69
BOD (MG/L)	100.00	81.14	64 29	52.93	38.64	22.34	13.92	7 14	5.49	1 10
LOWER BOUND	2 35	3 73	5 11	6.48	7 86	9.24	10 62	12.00	13 38	14 76

B-27 Clarion River Near Piney

OXY (HG/L)

TDS (MG/L)

BOD (HG/L)

РH

LOWER BOUND

LOWER BOUND

LOWER BOUND

LOWER BOUND

LOWER BOUND

LOWER BOUND

ALKA (MG/L AS CACO3)

HARD (MG/L AS CACO3)

"Existing Conditions," 1977

ALLECHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS CLARION RIVER BEGINNING OF REACH RIVER MILE 87 65 1.06 END OF PEACH RIVER MILE SUBREACH LENGTH (MILES) 2.11 COMPUTATION INTERVAL (HOURS) 4 182 (1 JUL 77) FIRST DAY OF SIMULATION PERIOD 273 (30 SEP 77) LAST DAY OF SIMULATION PERIOD NUMBER OF DAYS IN SIMULATION PERIOD 91 24.29 OBSERVATIONS AT RIVER MILE 183 (2 JUL 77) FIRST DAY OF STUDY PERIOD (30 SEP 77) 273 LAST DAY OF STUDY PERIOD 91 NUMBER OF DAYS IN STUDY PERIOD **** ****** WATER QUALITY PARAMETERS AT RIVER MILE 24.29 NUMBER OF SIMULATION POINTS 546 ----- SIMULATION VALUES ------MEAN STU. DEV. KINIMUM MAXIMUM PARAMETER 47.2 31 4 10 7 160.6 FLOW(M**3/5) 19.0 3.0 10 7 25.6 TEMP (DEGREE C) 0.6 94 8. 5 11.1 OXY (HG/L) 16.4 7.0 3.8 -13.2 ALKA (MG/L AS CACO3) 82 17. 145. HARD (MG/L AS CACO3) 40 28 121. 219. TDS (MG/L) 60 4 6 54 77 3.6 ен 33 2.5 0 3 2.1 BOD (MG/L) **** ALLECHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS CLARION RIVER 24.29 WATER QUALITY PARAMETERS AT RIVER MILE 546 NUMBER OF SIMULATION POINTS PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL INTERVALS 9 8 + 10 6 7 2 з ۵ 5 PARAMETER 1 1 47 79 49 67.95 48 17 26.74 6 04 97.62 92.49 85.16 100.00 TEMP (DEGREE C) 21.15 22 64 24 13 13.70 15.19 16 68 18.17 19.66 LOWER BOUND 10.72 12.21

80. 59

8.98

99.08

-6.56

84 62

60.86

84.07

92 00

97.80

4.41

42.31

2.46

97.44

99.45

-9 88

96. 52

50 31

96.15

76.07

98.72

3.99

2.26

66. 30

8.72

100.00

8, 45

99 82

-13.21

100.00

39 76

60 14

3. 58

100 00

100.00

100.00

2.07

D		0	7	
р	-	2	1	

36 26

9 51

96.15

0 08

49.08

81.95

46.15

95 97

5.24

15 57

2 84

123.85

55.13

97.99

-3.24

68.32

71.41

67.03

107.92

96.70

4 82

28.39

2.65

9.24

4 21

4 40

1 10

0.92

10 56

13.37

124 15

187 56

15 75

6 91

0 00

3 62 -

15.75

10. 04

52.20

13 19

103.05

12.27

155.71

83.70

6.07

2. 20

3.23

6.73

10.81

10.30

19 41

10 05

5. 68

5.31

113.60

171.64

37.73

6.49

0.00

3.42

23. 08

9. 77

91.58

3.41

92. 50

26. 01

23. 63

94 69

5.66

6.23

3 04

139.78

2 20

0 00

10 83

16 70

134 70

203 49

10 26

7 32

0 00

3 91

0 37

0 27

B-28 Clarion-River Near Piney

"No Corps Storage," 1977

ALLEGHENY RIVER WATER GUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE CLARION RIVER BEGINNING OF REACH RIVER MILE 87 65 END OF REACH 1.06 RIVER MILE SUBREACH LENGTH (MILES) 2.11 4 COMPUTATION INTERVAL (HOURS) FIRST DAY OF SIMULATION PERIOD 182 (1 JUL 77) LAST DAY OF SIMULATION PERIOD 273 (30 SEP 77) NUMBER OF DAYS IN SIMULATION PERIOD OBSERVATIONS AT RIVER MILE FIRST DAY OF STUDY PERIOD 71 24.29 183 (2 JUL 77) 273 (30 SEP 77) LAST DAY OF STUDY PERIOD NUMBER OF DAYS IN STUDY PERIOD 91 WATER GUALITY PARAMETERS AT RIVER MILE 24.29 NUMBER OF SIMULATION POINTS 546 ----- SIMULATION VALUES ------MINIMUM MAXIMUM MEAN STD. DEV. PARAMETER FLOW(M++3/S) 6.8 180.8 46.4 34.8 TEMP (DEGREE C) 10.6 25.7 19 0 3.1 9.4 OXY (MG/L) 0.6 8.4 11.1 7.9 4.6 ALKA (MG/L AS CACO3) -12.8 18.6 HARD(MG/L AS CACO3) 36. 163. 88. 25. TOS (MG/L) 56. 244 131. 38 7.8 54 4 7 PH. 3.6 BOD (MG/L) 2.0 4 8 2.5 0.4

ALLEGHENY, FIVER WATER GUALITY STUDY 1977 TUDY PERIOD STATISTICS FOR ND CORPS STORAGE CLARION RIVER WATER GUALITY PARAMETERS AT RIVER MILE 24 29 NUMBER OF SIMULATION POINTS 546

					INTERVAL	.s				
FARAMETER	1	2	з	4	5	6	7	8	9	10
TEMP (DEGREE C)	100.00	97. 62	92 49	85.16	79.49	68.32	49.27	27 29	6. 59	1 65
LOWER BOUND	10. 59	12.10	13.61	15.12	16.64	18.15	19. 66	21 17	22.68	24 19
OXY (MOVE)	100.00	95.79	79.67	54. 76	36. 08	22. 53	15.75	11 54	4 03	2.01
LOWER SOUND	8.42	8.69	8.97	9.24	9 51	978	10.05	10.33	10.60	10 87
ALKA (MOTE AS CACOS)	99.82	99.45	99.08	98. 17	95.79	90. 29	55.13	25.82	13 37	4 03
LUWER BOUND	-12.77	-9.49	-6. 21	-2. 93	0.35	3. 63	6. 91	10 18	13 46	16.74
HARD (MG/L AS CACO3)	100.00	96. 52	83 88	69 41	53.66	28.21	15.39	9 34	4.95	1. 47
LOWER BOUND	35. 86	48. 57	61.28	73. 99	86. 70	99.41	112.12	124 83	137.54	150.25
TDS (MG/L)	100.00	95. 97	82. 78	66.48	47.80	26. 19	14.84	8,42	4. 03	1.10
LOWER BOUND	55. 54	74.43	93.32	112.21	131.10	149.99	168.83	187 77	206.65	225. 55
PH	100.00	98.72	97. 80	96. 34	95.60	93.59	82. 97	38 28	16.12	10.62
LOWER BOUND	3.60	4.01	4.43	4.84	5.26	5 68	6.09	6.51	6 93	7 34
BOD MG/L)	100.00	55.13	32.97	18.68	6.23	2.93	0.73	0.73	0 37	0.37
LOWER BOUND	2.04	2.32	2.59	2.87	3.15	3 43	3.70	3 78	4 25	4 54

B-29 Clarion River Near St. Petersburg

"Existing Conditions," 1977

ALLECHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS CLARION RIVER 87. 55 BEGINNING OF REACH RIVER MILE END OF REACH RIVER MILE 1.06 SUBREACH LENGTH (MILES) 2 11 COMPUTATION INTERVAL (HOURS) 4 182 (1 JUL 77) 273 (30 SEP 77) FIRST DAY OF SIMULATION PERIOD LAST DAY OF SIMULATION PERIOD NUMBER OF DAYS IN SIMULATION PERIOD OBSERVATIONS AT RIVER MILE 91 3.17 FIRST DAY OF STUDY PERIOD 183 (2 JUL 77) (30 SEP 77) LAST DAY OF STUDY PERIOD 273 91 NUMBER OF DAYS IN STUDY PERIOD ***** 3 17 WATER QUALITY PARAMETERS AT RIVER MILE 546 NUMBER OF SIMULATION POINTS ----- S'MULATION VALUES ------MINIMUM MAXIMUM MEAN STD. DEV PARAMETER 209.4 - 63.5 42 6 FLOW(M##3/5) 14.1 19 3 3 1 TEMP (DEGREE C) 11.2 25 4 8.6 11.0 9.4 0.5 OXY (MG.L) 4.3 2.6 -9.8 9.8 ALKA(MG/L AS CACO3) 58. 184. 117. 25. HARD(MG/L AS CACO3) 158. - 34. TDS (MG/L) 83. 246. 4.7 72 5 4 3.7 PH 0.2 2.3 BOD (MG/L) 2.0 2.9 ******************* ALLEGHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS CLARION RIVER WATER QUALITY PARAMETERS AT RIVER MILE 3. 17 NUMBER OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF TACH INTERVAL INTERVALS

					THERANE	. J				
PARAMETER	1	2	З	4	5	6	7	8	÷	10
TEMP (DEGREE C)	100.00	97 25	90.29	84.43	80. 22	70.33	51. 47	31. 58	9 69	1 28
LOWER BOUND	11.17	12 61	14.04	15 46	16.89	18. 31	19.74	21.16	22 59	24 01
DXY (MG/L)	100.00	92.31	65. 57	46. 52	28.75	21.06	15.02	10.44	3 85	2 20
LOWER BOUND	8. 57	8.82	9.06	9.30	9.55	979	10.04	10.28	10 52	10.77
ALKA (MG/L AS CACO3)	99.82	99 27	98.72	96.34	86.08	37. 36	4.95	0.00	0 00	0 00
LOWER BOUND	-9.78	-6.80	-3.82	-0.84	2.14	5 12	8.10	11.08	14 06	17 04
HARD (MG/L AS CACO3)	100.00	97.25	89, 10	78.02	62 64	48.35	29.67	13.37	2.93	0 55
LOWER BOUND	57.64	70 30	82.95	95.60	108.26	120 91	133. 57	146.22	158.68	171.53
TDS (MG/L)	100.00	96 52	85.16	76.74	60 81	48.35	27.11	13.55	4 03	0. 55
LOWER BOUND	83. 22	99.51	115.80	132, 10	148.39	164 68	180. 97	197.27	213. 56	229 85
PH	100.00	98.72	97.80	96.34	95 42	93.77	84.80	61.90	28 94	13.55
LOWER BOUND	3.71	4.06	4.41	4.76	5.11	5 46	5.81	6.16	6.52	6.87
BOD (MG/L)	100.00	51.47	26.01	10.07	3 11	0 00	000	0.00	0 00	0 00
LOWER BOUND	1.97	2.17	2.38	2 58	2.78	2.99	3.17	3.37	3 60	3.80

B-30 Clarion River Near St. Petersburg

"No Corps Storage," 1977

		*******	*******	******	******					
ALLEGHENY RIVER WATER	R QUALITY S	TUDY			*******	********	*******	*******	********	
1977 STUDY PERIOD	•									
STATISTICS FOR NO COP										
	THOUT DATA	CLARION	RIVER							
	INPUT LATA			****						
BEGINNING OF REACH RIVER		87. 65								
END OF REACH RIVER	R MILE	1.06								
SUBREACH LENGTH (MILES)		2.11								
COMPUTATION INTERVAL (HO	JURS)	4			-					
FIRST DAY OF SIMULATION	959100									
LAST DAY OF SIMULATION A			(1 JU							
AUXIED OF DAVE IN STRUCT	CRIUD	273	(30 SE	P 77)						
NUMBER OF DAYS IN SIMUL	ATION PERIOD) 91								
OBSERVATIONS AT RIVER M	ILE .	3.17								
FIRST DAY OF STUDY PERIC		183	(2 JU	L 77)						
LAST DAY OF STUDY PERIOD)	273	(30 SE							
NUMBER OF DAYS IN STUDY	PERIOD	91								

WATER QUALITY PARAMETERS	AT OTUPO N			*****						
NUMBER OF STMULATION DOL	NTO NIVER P		3. 17							
NUMBER OF SIMULATION POI	inis		546							
		SIMULAT	ON VALU	ES						
PARAMETER	MINIMUM	MAXIMUM		N STD						
FLOW(M**3/S)	90	229.5	62.		46 0					
TENO (DEÓDEE A)					40 0					
TEMP (DEGREE C)	11 1	2,5.4	19.	3	3.1					
OXY (HG/L)	8.6	11.0	9	4	0 6					
ALKA(MG/L AS CACO3)	-7.4	10.9	4.	A	2.9				-	
HARD (MG/L AS CACO3)	53	211	126	-	34					
TDS (MG/L)		211.	140		-					
PH	77.	273.	169		46.					
F.N.	3.7	7:3	S	4	4.8					
				•						
BOD (MG/L)	1.9	3.4	2.	3	0.2					
	1.9	3.4	2.	3	0.2	••				
BOD (MG/L) •• ****	1.9	3.4	2.	3	0.2	**				
	1. 9 **********	3.4	2.	3	0.2	**				
	1, 7 + + 3 # 3 # 3 # 3 # 3 # + + - 3 # 3 # 3 # 3 # 3 # 3 #	3.4	2.	3	0.2	••				
** *** * * * * * * * * * * * * * * * * *	*******	3, 4 **** ***	2.	3	0.2	••				
ALLEGHENY RIVER WATER	*******	3, 4 **** ***	2.	3	0.2	••				
ALLEGHENY RIVER WATER	QUALITY ST	3.4	2.	3	0.2	••				
ALLEGHENY RIVER WATER	QUALITY ST	3.4	2.	3	0.2	••				
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR	QUALITY ST	3.4	2.	3	0.2	••				
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER OUALITY PARAMETERS	QUALITY ST PS STORAGE	3.4 	2. ••••••	3	0.2	••				
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR	QUALITY ST PS STORAGE	3.4 	2.	3	0.2	••				
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI	QUALITY ST PS STORAGE AT RIVER M	3.4 UDY CLARION F	2. ••••••• IVER •. 17 546	3	0.2					
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI	QUALITY ST PS STORAGE	3.4 UDY CLARION F	2. ••••••• IVER •. 17 546	3	0.2		EACH IN	TERVAL		
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI	QUALITY ST PS STORAGE AT RIVER M	3.4 UDY CLARION F	2. ••••••• IVER •. 17 546	3	0.2		EACH IN	TERVAL		
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC	QUALITY ST PS STORAGE AT RIVER M	3.4 UDY CLARION F	2. ••••••• IVER •. 17 546	3 ******	0.2	BOUND OF	EACH IN	TERVAL		
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI	QUALITY ST PS STORAGE AT RIVER M	3.4 UDY CLARION F	2. ••••••• IVER •. 17 546	3 ******	0.2	BOUND OF	EACH IN	TERVAL	9	10
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC	QUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU	3.4 UDY CLARION F ILE LATION PC	2. IVER 17 546 INTS EX	3 *** * * *	0.2	BOUND OF			9	10
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	QUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU	3.4 UDY CLARION F ILE 3 LATION PC	2. IVER 17 546 INTS EX	3 *** * * * CEED IN	0.2	BOUND OF -S 6	7	8		
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C)	GUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU 1 100.00	3.4 UDY CLARION F ILE 3 LATION PC 2 97.25 9	2. IVER 1. 17 546 IINTS EX 3	3 *** * * * CEEDIN 4 84. 80	0. 2 C LOWER INTERVAL 5 80. 04	BOUND OF -5 -6 71.61	7 51_47	8 32, 23	10. 07	1 28
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER OUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND	GUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU 1 100.00 11 10	3.4 UDY CLARION F ILE 2 2 77.25 1253 1	2. IVER 17 546 INTS EX 3 0. 29 3. 97	3 *** * * * 4 34. 80 15. 40	0. 2 	BOUND OF -5 -6 71.61 18.27	7 51_47 19_70	8 32 23 21 13	10. 07 22. 57	1 28
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND OXY (MG/L)	GUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU 1 100.00 11 10 100 00	3.4 	2. IVER 17 546 INTS EX 3 0. 29 13. 97	3 *** * * * 4 84. 80 15. 40 45. 79	0. 2 C LOWER INTERVAL 5 80. 04 14. 83 28. 02	BOUND OF -5 -6 71.61 18.27 20 51	7 51 47 19 70 14 84	8 32 23 21 13 10 62	10.07 22.57 3.66	1 28
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND OXY (MG/L) LOWER BOUND	QUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU 1 100.00 11 10 100.00 8 58	3.4 UDY CLARION F LE 2 97.25 12.53 12.53 12.53 8.83	2. IVER 17 546 INTS EX 3. 9. 97 9. 07	3 4 34. 80 15. 40 15. 47 9. 32	0. 2 	BOUND OF -5 -6 71.61 18.27	7 51_47 19_70	8 32 23 21 13	10. 07 22. 57	1 28
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND OXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3)	QUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU 1 100.00 11 10 100.00 8 58	3.4 UDY CLARION F LE 2 97.25 12.53 12.53 12.53 8.83	2. IVER 17 546 INTS EX 3. 9. 97 9. 07	3 *** * * * 4 84. 80 15. 40 45. 79	0. 2 C LOWER INTERVAL 5 80. 04 14. 83 28. 02	BOUND OF -5 -5 -71, 61 19, 27 20 51 -9, 81	7 51 47 19 70 14 84	8 32 23 21 13 10 62	10.07 22.57 3.66	1 28 24 00 2 20
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND OXY (MG/L) LOWER BOUND	QUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU 1 100.00 11 10 100 00 8 58 99 82	3.4 	2. IVER 17 546 INTS EX 3. 9. 9. 8. 72	3 4 34. 80 15. 40 15. 47 9. 32	0.2 LOWER INTERVAL 80.04 16.83 28.02 9.57	BOUND OF -5 -5 -71, 61 19, 27 20 51 -9, 81	7 51 47 19 70 14 84 10 06 8 79	8 32 23 21 13 10 42 10 30 0 00	10.07 22.57 3.66 10.55 0.00	1 28 24 00 2 20 10 80 0 00
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND OXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3)	GUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU 1 100.00 11 10 100.00 11 10 100.00 9 58 99 82 -9.43	3.4 	2. IVER 17 546 INTS EX 3 0. 29 0. 29 1. 55 4 9. 07 3. 55 4 9. 07 3. 55 4 3. 55 4 3. 55 4 5. 17 5. 17	3 ****** 4 84. 80 15. 40 15. 40 15. 40 15. 29 9. 32 75. 24 -0. 60	0.2 C LOWER INTERVAL 5 80.04 16.83 28.02 9.57 81.68 2.35	BOUND OF -5 6 71.61 18.27 20.51 9.81 41.94 5.29	7 19 70 14 84 10 06 8 79 8.24	8 32 23 21 13 10 62 10 30 0 00 11 18	10.07 22.57 3.66 10.55 0.00 14.13	1 28 24 00 2 20 10 30 0 00 17 07
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER OUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND OXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3)	GUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU 1 100.00 11 10 100 00 8 58 99 82 -9 43 100 00	3.4 	2. IVER 17 546 INTS EX 3. 9. 07 8. 72 4. 3. 54 9. 07 8. 72 4. 3. 55 5. 5. 5. 5. 6. 7. 5. 6. 7. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	3 ****** 4 34. 80 15. 40 45. 79 9 32 75. 24 -0. 60 74. 34	0.2 	BOUND OF -5 6 71.61 18.27 20.51 9.81 41.94 5.29 41.94	7 19 70 14 84 10 06 8 79 8. 24 32. 05	8 32.23 21.13 10.62 10.30 0.00 11.18 16.30	10.07 22.57 3.66 10.55 0.00 14.13 6.04	1 22 24 00 2 20 10 30 0 00 17 07 1 65
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND MARD(MG/L AS CACO3) LOWER BOUND	GUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU 1 100.00 11 10 100 00 8 58 99 82 -9 43 100 00 53 25	3.4 	2. IVER 17 546 INTS EX 3.97 4.72 4.74 10	3 ******* 4 34. 80 15. 40 45. 79 9. 32 75. 24 -0. 60 74. 36 74. 36	0.2 	BOUND OF -5 6 71.61 18.27 20.51 9.81 41.94 5.29 41.94 131.98	7 51 47 19 70 14 84 10 06 8 79 8 24 32 05 147 72	8 32.23 21.13 10.62 10.30 0.00 11.18 16.30 163.47	10.07 22.57 3.66 10.55 0.00 14.13 6.04 179.22	1 22 24 00 2 20 10 30 0 00 17 07 1 65 194 96
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND TDS (MG/L)	QUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU 1 100.00 11 10 100.00 11 10 100.00 8 58 99 82 -9 43 100.00 53 25 100.00	3.4 	2. IVER 17 546 INTS EX 3.55 9.07 8.72 6.29 0.29 1.55 9.07 8.72 0.3,55 1.55 0.29 1.55	3 4 34. 80 15. 40 4 35. 79 9 32 75. 24 -0. 60 74. 36 00. 49 58. 50	0.2 	BOUND OF -5 6 71.61 19.27 20.51 9.81 41.94 5.29 41.94 5.29 41.94 5.29 41.94 5.29 41.94 5.29 41.94 5.29 41.94 5.20 6 5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20	7 51 47 19 70 14 84 10 06 8 79 8 24 32 05 147 72 21 79	8 32 23 21 13 10 62 10 30 0 00 11 18 16 30 163 47 10, 07	$ \begin{array}{c} 10. 07 \\ 22. 57 \\ 3. 66 \\ 10. 55 \\ 0. 00 \\ 14. 13 \\ 6. 04 \\ 179. 22 \\ 4. 21 \\ \end{array} $	1 28 24 00 2 20 10 30 0 00 17 07 1 65 194 96 1 47
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND OXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L) LOWER BOUND TDS (MG/L) LOWER BOUND	GUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU 1 100.00 11 10 100.00 11 10 100.00 11 2 100.00 8 58 99 82 -9 43 100.00 53 25 100.00 77 22	3.4 	2. IVER 17 546 INTS EX 3 0. 29 0. 29 0. 29 0. 29 0. 29 0. 29 1. 3. 55 4. 74 1. 3. 52 0. 88 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	3 *** * * * 34. 80 15. 40 45. 79 9 32 75. 24 -0. 60 74. 34 -0. 49 -0. 49 -0. 49 -0. 50 -0. 49 -0. 50 -0. 49 -0. 50 -0. 40 -0. 50 -0. 40 -0. 50 -0. 50 -0	0.2 	BOUND OF 5 6 71.61 18.27 20.51 9.81 9.81 9.81 9.81 9.81 9.1.94 131.98 36.08 126.36	7 51,47 19,70 14,84 10,06 8,24 32,05 147,72 21,79 208,19	8 32.23 21.13 10.42 10.30 0.00 11.18 16.30 163.47 10.07 230.01	10.07 22.57 3.66 10.55 0.00 14.13 6.04 179.22	1 22 24 00 2 20 10 30 0 00 17 07 1 65 194 96
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER OUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND OXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND TDS (MG/L) LOWER BOUND PH	GUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU 1 100.00 11 10 100.00 11 10 100.00 11 10 100.00 13 25 100.00 77 22 100.00	3.4 	2. IVER 17 546 INTS EX 3. 9.07 8.72 4.74 10 8.74 0.88 14.74 10 0.88 14.74 10 10 10 10 10 10 10 10 10 10	3 ****** 4 34. 80 15. 40 45. 79 9. 32 75. 24 74. 36 90. 49 98. 50 95. 24	0.2 LOWER INTERVAL 5 90.04 16.83 28.02 9.57 81.68 2.35 56.96 116.23 51.65 164.53 94.32	BOUND OF -5 6 71.61 18.27 20.51 9.81 41.94 5.29 41.94 131.98 36.08 186.36 92.67	7 51,47 19,70 14,84 10,06 8,24 32,05 147,72 21,79 208,19	8 32 23 21 13 10 62 10 30 0 00 11 18 16 30 163 47 10, 07	$ \begin{array}{c} 10. 07 \\ 22. 57 \\ 3. 66 \\ 10. 55 \\ 0. 00 \\ 14. 13 \\ 6. 04 \\ 179. 22 \\ 4. 21 \\ \end{array} $	1 28 24 00 2 20 10 30 0 00 17 07 1 65 194 56 1 47
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER OUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND TDS (MG/L) LOWER BOUND PH LOWER BOUND	GUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU 1 100.00 11 10 100.00 11 10 100.00 11 10 100.00 13 58 99 82 -9.43 100.00 53 25 100.00 77 22 100.00	3.4 	2. IVER 17 546 INTS EX 3. 9.07 8.72 4.74 10 8.74 0.88 14.74 10 0.88 14.74 10 10 10 10 10 10 10 10 10 10	3 ****** 4 34. 80 15. 40 45. 79 9. 32 75. 24 74. 36 90. 49 98. 50 95. 24	0.2 	BOUND OF -5 6 71.61 18.27 20.51 9.81 41.94 5.27 41.94 131.98 36.08 186.36 92.67	7 51,47 19,70 14,84 10,06 8,24 32,05 147,72 21,79 208,19	8 32.23 21.13 10.42 10.30 0.00 11.18 16.30 163.47 10.07 230.01	10.07 22.57 3.66 10.55 0.00 14.13 6.04 179.22 4.21 251.84	1 28 24 00 2 20 10 80 0 00 17 07 1 65 194 96 1 47 273 67 12 45
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND TDS (MG/L) LOWER BOUND PH LOWER BOUND BOD (MG/L)	GUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU 1 100.00 11 10 100.00 1 10 100.00 8 58 9 82 -9 82 -9 82 100.00 53 25 100.00 77 22 100.00 3 73	3.4 	2. IVER 17 546 INTS EX 3.97 3.97 3.97 8.72 9.07 8.72 4.74 10 8.72 4.74 10 8.72 4.74 10 14 7.55 4.74 10 14 7.25 4.7 4.44	3 ******* 4 34. BO 15. 40 45. 79 9. 32 79. 24 -0. 49 -0. 49 -0. 49 -0. 49 -0. 49 -0. 49 -0. 27 -0. 24 -0. 49 -0. 49	0.2 	BOUND OF -5 -5 -5 -5 -71.61 18.27 -20.51 -9.81 -41.94 -5.29 -41.94 -5.29 -41.94 -5.29 -41.94 -5.29	7 51,47 19,70 14,84 10,06 8,79 8,74 32,05 147,72 21,79 208,77 5,86	8 32.23 21.13 10.67 10.30 11.18 16.30 163.47 10.07 230.01 57.33 6.22	10.07 22.57 3.66 10.55 0.00 14.13 6.04 179.22 4.21 251.84 251.84 26.01 6.58	1 28 24 00 2 20 10 80 0 00 17 07 1 65 194 56 1 47 273 67 12 45 6 93
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER OUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER TEMP(DEGREE C) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND TDS (MG/L) LOWER BOUND PH LOWER BOUND	GUALITY ST PS STORAGE AT RIVER M NTS ENT OF SIMU 1 100.00 11 10 100.00 1 10 100.00 8 58 9 82 -9 82 -9 82 100.00 53 25 100.00 77 22 100.00 3 73	3.4 	2. IVER 17 546 INTS EX 3.97 3.97 3.97 8.72 9.07 8.72 4.74 10 8.72 4.74 10 8.72 4.74 10 14 7.55 4.74 10 14 7.25 4.7 4.44	3 ******* 4 34. BO 15. 40 45. 79 9. 32 79. 24 -0. 49 -0. 49 -0. 49 -0. 49 -0. 49 -0. 49 -0. 27 -0. 24 -0. 49 -0. 49	0.2 LOWER INTERVAL 5 80.04 16.83 28.02 9.57 81.68 2.35 56.96 116.23 51.65 164.53 94.32 5.15 3.85	BOUND OF -5 -5 -5 -5 -71.61 18.27 -20.51 -9.81 -41.94 -5.29 -41.94 -5.29 -41.94 -5.29 -41.94 -5.29	7 51,47 19,70 14,84 10,06 8,24 32,05 147,72 21,79 208,19 52,97	8 32.23 21.13 10.67 10.30 11.18 16.30 163.47 10.07 230.01 57.33	10. 07 22. 57 3. 66 10. 55 0 00 14. 13 6. 04 179 22 4 21 251. 84 25. 01	1 28 24 00 2 20 10 80 0 00 17 07 1 65 194 96 1 47 273 67 12 45

B-31 Kiskiminetas River Near Vandergrift

"Existing Conditions," 1977

1977 STUDY PERIOD STATISTICS FOR EXIST BEGINNING OF REACH RIVER	INPUT DATA + R MILE R MILE	NS KISKIMI 33.01							
FIRST DAY OF SIMULATION LAST DAY OF SIMULATION NUMBER OF DAYS IN SIMUL OBSERVATIONS AT RIVER M FIRST DAY OF STUDY PERIO	PERIOD PERIOD ATION PERIOD ILE OD	273 91 10, 35 183		77) 77)					
LAST DAY OF STUDY PERIO		273	(30 SEP	773					
LAST DAY OF STUDY PERIO NUMBER OF DAYS IN STUDY HATER GUALITY PARAMETER NUMBER OF SIMULATION PO	PERIOD	91 ********	35		55	200	NO 05	bit T 5.1 T ball star	MAY The rea
NUMBER OF DAYS IN STUDY	PERIOD S AT RIVER M INTS	91 ILE 10.	35 44	***				MINIMUM	MAXIMUM
NUMBER OF DAYS IN STUDY	PERIOD S AT RIVER M INTS	91 ILE 10. SIMULATIC	35 46 N VALUES	***	(SIMULA	TED-OBS.)	OBSERVED	OBSERVED	OBSERVED
NUMBER OF DAYS IN STUDY HATER GUALITY PARAMETER NUMBER OF SIMULATION PO	PERIOD S AT RIVER M INTS	91 ILE 10.	35 46 N VALUES	***	(SIMULA		OBSERVED		OBSERVED
NUMBER OF DAYS IN STUDY WATER GUALITY PARAMETER NUMBER OF SIMULATION PO PARAMETER	PERIOD S AT RIVER M INTS MINIMUM	91 ILE 10. SIMULATIC MAXIMUM	35 46 M VALUES MEAN	*** STD. DEV.	(SIMULA	STD. DEV.	OBSERVED	OBSERVED	OBSERVED
NUMBER OF DAYS IN STUDY WATER GUALITY PARAMETER NUMBER OF SIMULATION PO PARAMETER FLOW(M++3/5)	PERIOD S AT RIVER M INTS MINIMUM 12.5	91 ILE 10. SIMULATIC MAXIMUM 659.8	35 46 M VALUES MEAN 82.0	STD. DEV. 129. 8 2. 8	(SIMULA MEAN	STD. DEV.	OBSERVED VALUES	OBSERVED VALUE	OBEERVED VALUE
NUMBER OF DAYS IN STUDY WATER GUALITY PARAMETER NUMBER OF SIMULATION PO PARAMETER FLOW(M++3/S) TEMP(DEGREE C) OXY (MG/L)	PERIOD S AT RIVER M INTS MINIMUM 12.5 15.3 7.5	91 ILE 10. SIMULATIC MAXIMUM 659.8 28.9 9,7	35 44 M VALUES MEAN 82. 0 22. 2 8. 3	STD. DEV. 129. 8 2. 8 0. 5	(BIMULA MEAN -2.1	ATED-OBS.) STD. DEV. 1.6	OBSERVED VALUES	OBSERVED VALUE 18.6	OBSERVED VALUE 28. 4
NUMBER OF DAYS IN STUDY WATER QUALITY PARAMETER NUMBER OF SIMULATION PO PARAMETER FLOW(M++3/S) TEMP(DEGREE C) OXY (MG/L) ALKA(MG/L AS CACO3)	PERIOD S AT RIVER M INTS MINIMUM 12.5 15.3 7.5 -33.4	91 IILE 10. SIMULATIC MAXIMUM 659.8 28.9 9.7 3.9	35 46 M VALUES MEAN 82.0 22.2 8.5 -14.7	STD. DEV. 129. B 2. 8 0. 5 9. 2	(BIMULA MEAN -2.1	ATED-OBS.) STD. DEV. 1.6	OBSERVED VALUES	OBSERVED VALUE 18.6	OBSERVED VALUE 28. 4
NUMBER OF DAYS IN STUDY WATER GUALITY PARAMETER NUMBER OF SIMULATION PO PARAMETER FLOW(M++3/S) TEMP(DEGREE C) OXY (MG/L) ALKA(MG/L AS CACO3) HARD(MG/L AS CACO3)	PERIOD S AT RIVER M INTS MINIHUM 12.5 15.3 7.5 -33.4 37.	91 ILE 10. SIMULATIC MAXIMUM 659.8 28.9 9.7 3.9 341.	35 44 M VALUES MEAN 82. 0 22. 2 8. 3	STD. DEV. 129. 8 2. 8 0. 5 9. 2 83.	(BIMULA MEAN -2.1	ATED-OBS.) STD. DEV. 1.6	OBSERVED VALUES 52 43	OBSERVED VALUE 18.6	OBSERVED VALUE 28. 4
NUMBER OF DAYS IN STUDY WATER QUALITY PARAMETER NUMBER OF SIMULATION PO PARAMETER FLOW(M++3/S) TEMP(DEGREE C) OXY (MG/L) ALKA(MG/L AS CACO3)	PERIOD S AT RIVER M INTS MINIMUM 12.5 15.3 7.5 -33.4	91 IILE 10. SIMULATIC MAXIMUM 659.8 28.9 9.7 3.9	35 44 44 MEAN 82.0 22.2 8.5 -14.7 228.	STD. DEV. 129. B 2. 8 0. 5 9. 2	(BIHULA MEAN -2. 1 0. 5	TED-OB8.) STD. DEV. 1.6 1.1	OBSERVED VALUES 52 43 32	085ERVED VALUE 18.6 6.2 99.8	OBSERVED VALUE 28.4 10.6

ALLEGHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS KISKIMINETAS RIVER WATER QUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546

PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL

					INTERVAL	.8				
PARAMETER	1	2	3	4	5	5	7	8	9	10
TEMP (DEGREE C)	100.00	98. 17	90.11	80. 77	73. 08	58. 24	32. 42	17.40	8. 42	1. 28
LOWER BOUND	15.28	16.65	18.01	19.38	20.74	22.11	23. 47	24.84	26. 20	27. 56
DXY (HG/L)	100.00	94. 87	83. 52	75. 64	51.83	31.68	20. 70	16.67	8. 42	1. 83
LOWER BOUND	7. 51	7.73	7.95	8.17	8. 39	8. 61	8. 83	9.05	9.27	9.49
ALKA (MO/L AS CACO3)	99.82	95.05	93. 22	76. 92	58.06	51.10	36. 63	23.44	14.65	8. 61
LOWER BOUND	-33. 41	-29. 68	-25. 95	-22. 22	-18.49	-14.76	-11.03	-7.30	-3. 37	0.16
HARD(MG/L AS CACO3)	100.00	98. 53	93.04	82. 60	74.91	65.75	59.16	43.96	32, 23	25. 64
LOWER BOUND	37. 36	67.73	78. 10	128.47	158, 83	187. 20	219. 57	249.94	280. 30	310.67
TDS (MG/L)	100.00	95.24	87.38	82. 23	71.06	62. 27	49.45	34.62	27.66	15. 93
LOWER BOUND	80. 42	135.25	192, 10	247.95	303.79	359. 63	415.47	471.31	527.15	583, 00
PH	100.00	28.24	33. 52	19.41	13. 92	12.27	10.44	4. 21	3. 66	2.75
LOWER BOUND	3, 18	3.43	3.69	3.94	4. 20	4.46	4.71	4. 97	5, 22	5.48
800 (MG/L)	100.00	98.90	97. 25	90.48	75.09	59. 34	41.21	23. 81	13.19	4. 21
LOWER BOUND	1.75	1.77	1.79	1.81	1.83	1.85	1.86	1.88	1.90	1. 92
**********	********	*******	*****	*******	*******	*******	*******	*******	*******	******

а

B-32 Kiskiminetas River Near Vandergrift

"No Corps Storage," 1977

1277 STUDY FERID 1277 STUDY FERID STATISTICS FOR NG CORPS STURAGE KIEKIMINETAS RIVER HEDINING OF REACH RIVER HILE 0.49 SUBREACH LENOTH (HILES) 2.11 COMPUTATION INTERVAL (HOURS) 4 FIRST DAY OF SIMULATION PERIOD 182 (1 JUL 77) LAST DAY OF SIMULATION PERIOD 183 (2 JUL 77) LAST DAY OF SIMULATION PERIOD 183 (2 JUL 77) LAST DAY OF SIMUP FERIOD 10.33 PIRST DAY OF SIMUP FERIOD 133 (2 JUL 77) LAST DAY OF SIMUP FERIOD 133 (2 JUL 77) LAST DAY OF SIMUP FERIOD 133 (2 JUL 77) LAST DAY OF SIMUP FERIOD 133 (2 JUL 77) LAST DAY OF SIMUP FERIOD 133 (2 JUL 77) LAST DAY OF SIMUP FERIOD 133 (2 JUL 77) LAST DAY OF SIMUP FERIOD 133 (2 JUL 77) LAST DAY OF SIMUP FERIOD 233 (30 SEP 77) NUMBER OF DAYS IN STUDY PERIOD 133 (2 JUL 77) LAST DAY OF SIMUP FERIOD 233 (30 SEP 77) NUMBER OF DAYS IN STUDY FERIOD 133 (2 JUL 77) LAST DAY OF SIMUP FERIOD 233 (30 SEP 77) NUMBER OF DAYS IN STUDY FERIOD 133 (2 JUL 77) LAST DAY OF SIMUP FERIOD 233 (3 SEP 77)	ALLECHENY RIVER WATER	QUALITY ST	UDY	******	*******	*******	********		*******	******	******	
ALLEOMENN RIVER MULE 33.01 PROJINING OF REACH RIVER MILE 0.49 SUBREACH LEOTH (MILES) 2.11 COMPUTATION INTERVAL (MOURS) 4 FIRST DAY OF SIMULATION PERIDD 182 (1 JUL 77) LAST DAY OF SIMULATION PERIDD 183 (2 JUL 77) LAST DAY OF SIMULATION PERIDD 233 (30 SEP 77) NUMBER OF DAYS IN SINCHAPTION PERIDD 233 (30 SEP 77) NUMBER OF STUDY PERIDD 233 (30 SEP 77) NUMBER OF SIMULATION PERIDD 233 (30 SEP 77) NUMBER OF SIMULATION PERIDD 233 (30 SEP 77) NUMBER OF SIMULATION PERIDD 346 FLOB(IN+*3/S) 11.5 2247.0 SIMULATION VALUES 546 FUDK(IN+*3/S) 11.5 2247.0 TEMP (DECREE C) 14.3 28.9 21.7 2.9 OXY (MC/L) 7.6 9.7 9 4.6 -27.0 11.0 MAD (MC/L) 36 3.7 TH (MC/L) 41 32.2 470 162.7 TH (MC/L) 13 32.7 TH (MC/L) 41 32.3 34 5 PERCENT OF SIMULATION POINTS 346 PERCENT OF SIMULATION POINTS 346 PE	1977 STUDY PERIOD											
Getal River Mile 33.01 END OF REACH RIVER MILE 3.01 SUBREACH LENGTH (MILES) 2.11 COMPUTATION INTERVAL (HOURS) 4 FIRST DAY OF SIMULATION PERIOD 192 (1 JUL 77) LAST DAY OF SIMULATION PERIOD 192 (1 JUL 77) LAST DAY OF SIMULATION PERIOD 192 (1 JUL 77) LAST DAY OF STUDY PERIOD 183 (2 JUL 77) LAST DAY OF STUDY PERIOD 273 (30 SEP 77) NUMBER OF DAYS IN STUDY PERIOD 13 MATER QUALITY PARAMETERS AT RIVER MILE 10.33 NUMBER OF SIMULATION VALUES 346 FLEMMENTER STANUM MAXIMUM MEAN STD.DEV. FLEMMENTER STANUM AND MAXIMUM AND MEAN STD.DEV. FLEMMENTER STANUM AND MAXIMUM MEAN STD.DEV. FLEMMENTER STANUM AND MAXIMUM MEAN STD.DEV. FLEMMENTER STANUM AND MAXIMUM MEAN STD.DEV. FLEMMENT STUDY PERIOD 3.1 3.1 3.1 3.1 <						a						
END OF REACH RIVER NILE 0.49 SUBREACH LENGTH (NILES) 2.11 COMPUTATION INTERVAL (HOURS) 4 FIRST DAY OF SIMULATION PERIOD 192 (1 JUL 77) UNHER OF DAYS IN SITUDATION PERIOD 273 (20 SEP 77) UNHER OF DAYS IN SITUDATION PERIOD 273 (20 SEP 77) UNHER OF DAYS IN SITUDATION PERIOD 273 (20 SEP 77) UNHER OF DAYS IN SITUDATION PERIOD 273 (20 SEP 77) UNHER OF DAYS IN SITUDATION PERIOD 273 (20 SEP 77) UNHER OF STUDA PERIOD 273 (20 SEP 77) UNHER OF STUDA PERIOD 213 (2 JUL 77) LAST DAY OF STUDA PERIOD 213 (2 JUL 77) LAST DAY OF STUDA PERIOD 3183 (2 JUL 77) LAST DAY OF STUDA PERIOD 3183 (2 JUL 77) LAST DAY OF STUDA PERIOD 31 NUMESE OF SIMULATION FOINTS 346 NUMESE OF SIMULATION FOINTS 346 NUMESE OF SIMULATION ALLES					******							
SUBREACH LENGTH (MILES) 2.11 COMPUTATION INTERVAL (MOURS) 4 FIRST DAY OF SIMULATION PERIOD 182 (1 JUL 77) LAST DAY OF SIMULATION PERIOD 273 (30 SEP 77) MUMBER OF DAYS IN SIMULATION PERIOD 273 (30 SEP 77) MUMBER OF STUDY PERIOD 273 (30 SEP 77) MUMBER OF SIMULATION MALUES FROM(MCL AS CACC3) -37, 9 (4, -27, 0 11, 0 MARO(MCL AS CACC3) -37, 9 (4, -27, 0 11, 0 MARO(MCL AS CACC3) -37, 9 (4, -27, 0 11, 0 MARO(MCL AS CACC3) -37, 9 (4, -27, 0 11, 0 MARO(MCL AS CACC3) -37, 9 (4, -27, 0 11, 0 MARO(MCL AS CACC3) -30, 26, 478, 271, 77, BOD (MC/L) 1, 8 2, 0 1, 9 STATISTICS FOR MOD DRPS STORACE KISKININETAS RIVER MATER QUALITY PARAMETERS ALTIVER MILE 10, 33 MUMER OF SIMULATION POINTS 544 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL LOWER BOUND 14, 27 15, 72 17, 71 8, 63 16, 73 8 9 10 TEMP (DECREE C) 100, 00 79, 780 71, 78 0, 60 71, 43 64, 12, 64 25, 49 1, 47 COY (MC/L) SCACC3) 77, 68 7, 81 8, 03 70, 26, 37 18, 66 13, 60 7, 78 8 7, 01 4 COVER BOUND 7, 58 7, 81 8, 00 8, 28 8, 51 8, 74 8, 97 9 20 7, 44 9, 01 COVER BOUND 7, 58 7, 81 8, 00 8, 28 8, 51 8, 74 8, 97 9 20 7, 44 9, 01 LOWER BOUND 7, 58 7, 81 8, 00 8, 28 8, 51 8, 74 8, 97 9 20 7, 44 9, 01 LOWER BOUND 7, 58 7, 81 8, 50 8, 28 8, 51 8, 74 8, 97 9 20 7, 44 9, 01 LOWER BOUND 7, 58 7, 81 8, 50 8, 28 8, 51 8, 74 8, 97 9 20 7, 44 9, 01 LOWER BOUND 7, 58 7, 81 4, 10, 47 70, 58 6, 13, 00 38, 44 77, 26 4, 90 4, 23 38 13 LOWER BOUND 2, 2												
COMPUTATION INTERVAL (HOURS) 4 FIRST DAY OF SIMULATION PERIOD 192 (1 JUL 77) (JOS SEP 77) NUMBER OF DAYS IN SIMULATION PERIOD 91 DBSERVATIONS AT RIVER NILE 10.33 FIRST DAY OF SIMULATION PERIOD 133 (2 JUL 77) (JOS SEP 77) NUMBER OF DAYS IN SIMULATION PERIOD 133 (2 JUL 77) (JOS SEP 77) NUMBER OF SIMULATION PERIOD 273 (30 SEP 77) NUMBER OF SIMULATION POIDTS 514 PARAMETER MINIMUM HALMIN MEAN STD. DEV. FLOW(M+3/5) 11.3 2247.0 BIL1 227.4 TECH (DECREE C) 14.3 ALKARMOLA & CAC03 -39.7 4.6 ALMAR MOLA & CAC03 -28.4 478.2 ALMAR MOLA & CAC03 -28.4 70. TECH (DECREE C) 14.3 21.4 ALLEOMENV RIVER MATER QUALITY STUDY 1977 STUDY FERIOD 3.1 3.7 STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER MATER QUALITY PARAMETERS AT RIVER MILE 10.35 MUMBER OF SIMULATION POINTS 546 546 PERIOD STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER MATER QUALITY PARAMETERS AT RIVER MILE 10.35 MUMALTION POINTS 546 <		RILE										
FIRST DAY OF SIMULATION PERIOD 192 (1 JUL 77) LAST DAY OF SIMULATION PERIOD 273 (30 SEP 77) MUMBER OF DAYS IN SIMULATION PERIOD 183 (2 JUL 77) DESERVATIONS AT RIVER MILE 10.33 FIRST DAY OF STUDY PERIOD 183 (2 JUL 77) LAST DAY OF STUDY PERIOD 273 (30 SEP 77) MUNGER OF DAYS IN STUDY PERIOD 273 (30 SEP 77) MUNGER OF SIMULATION POINTS 544 MUNGER OF SIMULATION POINTS 544 FLOU(IN++3/S) 11.3 227.0 51.1 227.4 TEMP (DECREE C) 14.3 28.8 21.7 2.9 OXY (MO/L) 7.6 7.9 8.6 0.5 ALLEOHENY RIVER WATER GUALITY STUDY 11.9 MARD (MO/L) 1.8 12.470. 162. PM 3.1 5.1 3.3 3.7 BOD (MO/L) 1.8 2.0 1.9 0.0 STATISTICS FOR ND CORPS STORAGE KISKIMINETAS RIVER MATER QUALITY PARAMETERS AT RIVER MILE 10.35 MUMBER OF SIMULATION POINTS 346 FERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL MUMATION POINTS MUNDER OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PARAMETER 10 <td colspa<="" td=""><td></td><td></td><td>2.1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td> <td></td> <td>2.1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			2.1	1							
LAST DAY OF SIMULATION PERIDD 273 (30 SEP 77) WHERE OF DAYS IN SIMULATION PERIDD 91 DESERVATIONS AT RIVER MILE 10.35 FIRST DAY OF STUDY PERIDD 273 (30 SEP 77) WHERE OF STUDY PERIDD 91 WHERE OF SIMULATION PERIDD 91 PARAMETER MINIMUM MAXIMUM MEAN STD. DEV. FLOW(MH=3/5) 11.5 2247.0 81.1 227.4 TEDM/DECREE C) 14.3 28.8 21.7 2.9 OXY (MO/L) 7.6 9, 8.6 0.5 ALKA(MO/L AS (CACO3) 26. 478. 271. 97. TDS (MO/L) 1.8 2.0 1.9 0.0 WHERE OF SIMULATION VALUES PARAMETER MINIMUM MAXIMUM MEAN STD. DEV. HARD(MO/L AS (CACO3) 26. 478. 271. 97. TDS (MO/L) 1.8 2.0 1.9 0.0 SIATISTICS FOR NO COMPS STORAGE KISKIMINETAS RIVER WHERE OF SIMULATION POINTS SX6 MUMBER OF SIMULATION POINTS SX6 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PERCENT OF SIMULATION POINTS SX6 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PERCENT OF SIMULATION POINTS SX6 PERCENT OF SIMULATION POINTS SX6 PERCENT OF SIMULATION POINTS SX6 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PERCENT OF SIMULATION POINTS SX6 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PARAMETER 1 2 3 4 5 6 7 8 9 10 TEMP(DECREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.47 1.47 LOWER BOUND 7.38 7.91 8.03 8.28 5.18 8.77 7.88 2.01 LOWER BOUND 7.38 7.91 8.03 70 22.37 18.86 31.0 9.34 4.92 57.39 LOWER BOUND 7.39 7.91 7.91 7.91 7.91 7.91 7.91 7.91 7.9	COMPUTATION INTERVAL (HC	JURS)		4,								
LAST DAY OF SIMULATION PERIDD 273 (30 SEP 77) WHERE OF DAYS IN SIMULATION PERIDD 91 DESERVATIONS AT RIVER MILE 10.35 FIRST DAY OF STUDY PERIDD 273 (30 SEP 77) WHERE OF STUDY PERIDD 91 WHERE OF SIMULATION PERIDD 91 PARAMETER MINIMUM MAXIMUM MEAN STD. DEV. FLOW(MH=3/5) 11.5 2247.0 81.1 227.4 TEDM/DECREE C) 14.3 28.8 21.7 2.9 OXY (MO/L) 7.6 9, 8.6 0.5 ALKA(MO/L AS (CACO3) 26. 478. 271. 97. TDS (MO/L) 1.8 2.0 1.9 0.0 WHERE OF SIMULATION VALUES PARAMETER MINIMUM MAXIMUM MEAN STD. DEV. HARD(MO/L AS (CACO3) 26. 478. 271. 97. TDS (MO/L) 1.8 2.0 1.9 0.0 SIATISTICS FOR NO COMPS STORAGE KISKIMINETAS RIVER WHERE OF SIMULATION POINTS SX6 MUMBER OF SIMULATION POINTS SX6 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PERCENT OF SIMULATION POINTS SX6 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PERCENT OF SIMULATION POINTS SX6 PERCENT OF SIMULATION POINTS SX6 PERCENT OF SIMULATION POINTS SX6 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PERCENT OF SIMULATION POINTS SX6 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PARAMETER 1 2 3 4 5 6 7 8 9 10 TEMP(DECREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.47 1.47 LOWER BOUND 7.38 7.91 8.03 8.28 5.18 8.77 7.88 2.01 LOWER BOUND 7.38 7.91 8.03 70 22.37 18.86 31.0 9.34 4.92 57.39 LOWER BOUND 7.39 7.91 7.91 7.91 7.91 7.91 7.91 7.91 7.9												
AUMBER OF DAYS IN SIMULATION PERIOD 91 DOBSERVATIONS AT RIVER HILE 10.35 FIRST DAY OF STUDY PERIOD 183 (2 JUL 77) LAST DAY OF STUDY PERIOD 71 WURDER OF DAYS IN STUDY PERIOD 71 WURDER OF SIMULATION FOINTS 544 MATER QUALITY PARAMETERS AT RIVER MILE 10.33 WURDER OF SIMULATION FOINTS 544 MATER QUALITY PARAMETER 4 RIVER MILE 10.32 ALLEGNENY RIVER WATER QUALITY STUDY 137 STUDY 4.6 -27.0 11.0 WOOD MOAL, AS CACO3) 23, 478, 271. 97. PD (MOAL) 4.1, 812, 470. 182. PHO (MOAL) 4.1, 812, 470. 182. PHO (MOAL) 4.1, 812, 470. 182. PHO (MOAL) 54, 45, 200 SIL 1, 227.4 WATER QUALITY PARAMETERS AT RIVER MILE 10.33 NUMBER OF SIMULATION POINTS 546 FERCENT OF SIMULATION POINTS 546 7 8 9 10 TEMP (DEGREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER DOWN 1.427 15.72 17.17 18.63 20.08 21.37 7.7 88 201 LOWER BOUND 7.38 7.81 8.03 8.28 8.31 8.74 8.97 72.0 9.44 9.56 ALLEGNEN STUDY PERIOD 7.80 7.81 7.81 8.03 7.22.37 1.82.52 9.22.99 ALLOWER BOUND 7.88 7.91 8.03 7.22.57 1.82.52 9.23.71 7.88 2.10 LOWER BOUND 7.88 7.91 8.03 7.22.44 2.59 8.27.33 LOWER BOUND 7.89 7.81 8.03 8.28 8.31 8.74 8.97 7.20 9.44 9.67 ALLOWER BOUND 7.89 7.81 7.81 8.03 7.22.67 1.18.85 1.00 7.34 6.97 1.42 8.52 TOT SINCLASS 7.81 7.81 8.03 7.22.67 1.18.85 1.00 7.34 6.97 1.42 7.57 7.58 7.51 7.52 7.57 7.58 7.51 8.52 7.57 7.58 7.51 5.52 7.57 7.58 7.51 5.52 7.57 7.58 7.51 8.53 7.52 7.57 7.58 7.51 8.53 7.52 7.57 7.58 7.51 8.53 7.51 8.53 7.52 7.57 7.58 7.51 8.53 7.51 8.53 7.52 7.57 7.58 7.51 8.53 7.51 8.53 7.51 8.53 7.52 7.57 7.58 7.57 7.58 7.51 8.53 7.51 8.53 7.51 8.53 7.52 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.51 4.167 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.57 7.58 7.51 4.52 7.57 7.58 7.57												
Deservations at River MiLE 10.33 FIRST DAY OF STUDY PERIOD 123 (3 0 SEP 77) NUMBER OF DAYS IN STUDY PERIOD 273 (30 SEP 77) NUMBER OF DAYS IN STUDY PERIOD 91 MATER QUALITY PARAMETERS AT RIVER MILE: 10.33 NUMBER OF SIMULATION POINTS 546 FLOUKIM+37/S) 11.5 2247.0 81.1 227.4 TEMP(DECREE C) 14.3 228 21.7 2.9 QXY (MO/L) 7.6 9.9 8.6 0.5 ALKA(MO/L AS CACO3) -39.9 4.6 -27.0 11.0 MARD(MO/L AS CACO3) 26. 478. 271. 97. TDS (MO/L) 41. 812. 470. 162. PH 3.1 5.1 3.3 3.7 BOD (MO/L) 1.8 2.0 0.0 0 MATER QUALITY PARAMETERS AT RIVER MILE: 10.35 NUMBER OF SIMULATION VALUES ALLEGHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER MATER QUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION FOINTS 546 FECCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PARAMETER 1 2 3 4 5 7 8 9 10 TEMP(DEGREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER BOUND 10.00 77.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER BOUND 10.00 77.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER BOUND 10.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER BOUND 10.00 97.80 97.75 71.57 18.63 20.09 21.33 22.97 92 4.44 25.98 27.33 LOWER BOUND 7.98 6.33 70 8.53 73.24 4.05 6.37 8 9 10 LOWER BOUND 7.98 6.33 70 8.53 73.24 4.95 31.72 8.04 1.47 21.57 7.98 2.01 LOWER BOUND 7.98 6.33 70 8.53 72.24 7.35 73.44 3.77 1.85 2.07 1.47 2.08 27.35 LOWER BOUND 7.98 6.31 72.03 7.78 8.54 8.50 9.20 4.47 7.18 22.53 1.57 3.54 1.57 3.54 4.57 9.57 3.54 4.57 9.57 3.57 3.54 1.57 3.57 3.57 3.57 3.57 3.57 3.57 3.57 3					SEP 77)							
FIRST DAY OF STUDY PERIOD 183 (2 JUL 77) LAST DAY OF STUDY PERIOD 71 WUMBER OF DAYS IN STUDY PERIOD 71 WUMBER OF SIMULATION POINTS 546 TEMPIDECREE C) 14.3 28.8 21.7 2.9 DAYER COLOR SIMULATION MAILHOM MEAN STD. DEV. FLOW(M*+375) 11.5 2247.0 81.1 227.4 TEMPIDECREE C) 14.3 28.8 21.7 2.9 DAYER COLOR SCOOL 7.6 7.9 8.6 0.5 ALKA(MO/L AS CACO3) -27.9 4.6 -27.0 11.0 HARD(MO/L AS CACO3) -28. 478. 271. 97. TDS (MO/L) 7.6 7.8 7.9 0.0 MATER OUALITY PRAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS BOD (MO/L) 1.8 2.0 1.9 0.0 TEMPIDECREE C) 14.3 28.8 21.7 2.9 DAYE (MO/L) 7.6 9.9 8.6 0.5 ALKA(MO/L AS CACO3) 22. 478. 271. 97. TDS (MO/L) 41. 812. 470. 162. PH 3.1 3.1 3.3 3.7 BOD (MO/L) 1.8 2.0 1.9 0.0 TEMPIDECREE C) 100.00 97.80 91.76 0.0 FERCENT OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS 546 TEMP(DEGREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER BOUND 14.27 15.72 17.17 18.63 20.08 21.53 22.97 20.4 4.23 69.27 35 OXY (MO/L) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER BOUND 7.58 7.38 7.38 4.43 76 31.48 25.82 17.77 7.88 2.01 LOWER BOUND 7.58 7.38 7.38 4.43 76 31.48 25.82 17.77 7.88 2.01 LOWER BOUND 7.58 7.38 7.38 4.43 76 31.48 0.52 82 17.77 7.88 2.01 LOWER BOUND 7.58 7.38 7.38 7.34 4.43 76 31.48 0.57 7.44 23 76 2.01 LOWER BOUND 7.58 7.38 7.38 1.30 7.26.37 18.86 13.00 9.34 6.96 3.30 LOWER BOUND 7.58 7.38 7.38 4.43 7.6 31.48 25.82 17.77 7.88 2.01 LOWER BOUND 7.58 7.38 7.38 4.43 7.42.57 7.20 7.44 22.57 2.05 7.4 23 2.57 7.4 23 2.57 7.4 23 2.57 7.4 24 7.78 28 7.21 7.77 7.88 7.31 1.50 1.50 7.75 7.97 87.03 7.74 7.75 8.43 7.75 7.97 8.43 7.95 7.43 7.75 8.73 8.73 8.74 4.25 7.20 7.44 2.75 2.52 0.20 MARD(MO/L AS CACO3) 100.00 97.80 97.70 7.89 01 72 33 0.17 1.3 1.97 4.33 7.7 4.53 7.34 4.33 7.55 7.35 7.34 4.30 7.55 7.43 4.75 4.55 7.55 7.55 7.57 5.75 7.57 5.75 7.57 5.75 7.57 5.75 7.57 5.75 7.57 5.75 7.57 5.75 7.57 5.75 7.57 5.75 7.57 5.75 7.57 5.75	NUMBER OF DAYS IN SIMULA	ATION PERIOD	9	1								
NUMBER OF DAYS IN STUDY PERIOD 91 WATER QUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546 FARAMETER MINIMUM MAXIMUM MEAN STD. DEV. FLOW(M*+375) 11.5 2247.0 81.1 227.4 TEMP/DECREE C) 14.3 28.8 21.7 2.9 QXY (MO/L) 7.6 9,9 8.6 0.5 ALKA(MO/L AS CACO3) -39,9 4.6 -27.0 11.0 MARD(MO/L AS CACO3) -37,9 4.6 -27.0 11.0 MARD(MO/L AS CACO3) -37,9 4.6 -27.0 162. PH 3.1 5.1 3.3 3.7 BOD (MO/L) 1.8 2.0 1.9 0.0 ***********************************			. 10.3	5								
NUMBER OF DAYS IN STUDY PERIOD 91 WATER QUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546 FARAMETER MINIMUM MAXIMUM MEAN STD. DEV. FLOW(M*+375) 11.5 2247.0 81.1 227.4 TEMP/DECREE C) 14.3 28.8 21.7 2.9 QXY (MO/L) 7.6 9,9 8.6 0.5 ALKA(MO/L AS CACO3) -39,9 4.6 -27.0 11.0 MARD(MO/L AS CACO3) -37,9 4.6 -27.0 11.0 MARD(MO/L AS CACO3) -37,9 4.6 -27.0 162. PH 3.1 5.1 3.3 3.7 BOD (MO/L) 1.8 2.0 1.9 0.0 ***********************************	FIRST DAY OF STUDY PERIC	סנ										
MATER QUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS S44 FLOW(M1+3/S) MINITUM MAINIMM FLOW(M1+3/S) 11.3 2247.0 B1.1 227.4 TEMP(DEGREE C) 14.3 228.8 ALKA(MC/L AS CACO3) -39.9 4.6 -27.0 MAD (MG/L AS CACO3) -39.9 4.6 -27.0 TEMP(DEGREE C) 14.3 328.8 21.7 2.9 MAX (MG/L AS CACO3) -39.9 4.6 -27.0 11.0 MABD(MG/L AS CACO3) -39.9 4.6 -27.0 11.0 MABD (MG/L AS CACO3) -31.3 3.1 3.3.7 37.7 B0D (MG/L) 1.8 2.0 1.9 0.0 ITTS STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER INTERVALS PARAMETER 1 2 3 4 5 6 7 8 9 10 TEMP(DEGREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 FLEP (DEGREE C) <td>LAST DAY OF STUDY PERIOD</td> <td>)</td> <td>27:</td> <td>3 (30</td> <td>SEP 77)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	LAST DAY OF STUDY PERIOD)	27:	3 (30	SEP 77)							
WATER QUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546 PARAMETER MINIMUM MAXIMUN FLOWING/S/S) 11.3 2247.0 B1.1 227.4 TEMP/DECREE C) 14.3 28.8 21.7 2.9 QXY (MG/L) 7.6 9.9 8.6 0.5 ALKA(MG/L AS CACO3) -39.9 4.6 -27.0 11.0 MARD(MG/L AS CACO3) 23.9 4.6 -27.0 11.0 MARD(MG/L AS CACO3) -39.9 4.6 -27.0 10.0 ************************************			9	1								
NUMBER OF SIMULATION POINTS 544 PARAMETER MININUM MAINUM MEAN STD. DEV. FLDW(M++3/S) 11.3 2247.0 81.1 227.4 OXY (MG/L) 7.6 9.9 8.6 0.5 ALKA(MG/L AS CACO3) -39.9 4.6 -27.0 11.0 MABD(MG/L AS CACO3) -26.478.271.97. 97. 10.2 TOS (MG/L) 1.3 3.1 3.3.7 3.7 BOD (MG/L AS CACO3) 1.8 2.0 1.9 0.0 ************************************	****************	*********	******	*****	******							
PARAMETER MINIMUM MAXIMUM MEAN STD. DEV. FLOB(H+3/5) 11.3 2247.0 81.1 227.4 TEMP(DEGREE C) 14.3 28.8 21.7 2.9 DXY (MG/L) 7.6 9.7 8.6 0.3 ALKA(MG/L AS (ACO3) 26. 478. 271. 97. TDS (MG/L) 3.1 5.1 3.3 3.7 BOD (MG/L) 1.8 812. 470. 162. PH 3.1 5.1 3.3 3.7 BOD (MG/L) 1.8 82.0 1.7 0.0 STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER MATER GUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546 PARAMETER 1 2 3 4 5 6 7 8 7 10 TEMP(DEGREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER BOUND 14.27 15.72 17.17 18.63 20.09			ILE									
PARAMETER MINIMUM MAXIMUM MEAN STD. DEV. FLOB(H+3/5) 11.3 2247.0 81.1 227.4 TEMP(DEGREE C) 14.3 28.8 21.7 2.9 DXY (MG/L) 7.6 9.7 8.6 0.3 ALKA(MG/L AS (ACO3) 26. 478. 271. 97. TDS (MG/L) 3.1 5.1 3.3 3.7 BOD (MG/L) 1.8 812. 470. 162. PH 3.1 5.1 3.3 3.7 BOD (MG/L) 1.8 82.0 1.7 0.0 STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER MATER GUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546 PARAMETER 1 2 3 4 5 6 7 8 7 10 TEMP(DEGREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER BOUND 14.27 15.72 17.17 18.63 20.09												
FLDW(M+=3/5) 11.5 2247.0 81.1 227.4 TEMPCORREE C) 14.3 28.8 21.7 2.9 OXY (HG/L) 7.6 9.9 8.6 0.5 ALKA(HG/L AS CACCG3) -39.9 4.6 -27.0 11.0 HARD(HG/L AS CACCG3) 26. 478.2 271.97. 97. TDS (HG/L) 41. 812.4 470.162. 97. PH 3.1 5.1 3.3 3.7 BOD (HG/L) 1.8 2.0 1.9 0.0 ************************************												
TEMP(DEGREE C) 14.3 28.8 21.7 2.9 OXY (MG/L) 7.6 9.9 8.6 0.5 ALKA(MG/L AS CACO3) -39.9 4.6 -27.0 11.0 HARD(MG/L AS CACO3) 26. 478. 271. 97. TDS (MG/L) 41. 812. 470. 162. PH 3.1 5.1 3.3 3.7 BOD (MG/L) 1.8 2.0 1.9 0.0 ***********************************												
ALKA(MG/L AS CACO3) -37.9 4.6 -27.0 11.0 HARD(MG/L AS CACO3) 26. 478. 271. 97. TDS (MG/L) 41. 812. 470. 162. PH 3.1 5.1 3.3 3.7 BOD (MG/L) 1.8 2.0 1.9 0.0 THEOREM OF STORAGE KISKIMINETAS RIVER WATER GUALITY STUDY 1977 STUDY PERIDD STATISTICS FOR ND CORPS STORAGE KISKIMINETAS RIVER WATER GUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PARAMETER 1 2 3 4 5 6 7 8 7 10 TEMP(DEGREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER BOUND 1.427 15.72 17.17 18.63 20.08 21.53 22.99 24.44 25.89 27.35 OXY (MG/L) 100.00 97.81 91.75 8.28 8.51 8.74 8.97 9.20 9.44 9.67 ALKA(MG/L AS CACO3) 97.63 79.85 48.90 33.70 26.37 18.86 13.00 9.34 6.96 31.03 LOWER BOUND 7.58 79.81 48.90 33.70 26.37 18.86 13.00 9.34 6.96 3.10 LOWER BOUND 23.47 70.80 116.14 161.47 20.60 23.51 13.0 -8.70 -4.25 0.20 LOWER BOUND 23.47 70.80 116.14 161.47 70.80 23.51 13.15 -8.70 -4.25 0.20 LOWER BOUND 23.47 70.80 116.14 161.47 20.60 225.13 277.46 342.79 388.12 433.45 LOWER BOUND 23.47 70.80 116.14 161.47 20.80 23.53 21.97 35.13 13 LOWER BOUND 23.47 70.80 116.14 161.47 20.80 23.51 277.46 342.79 388.12 433.45 LOWER BOUND 23.47 70.80 116.14 161.47 20.80 23.51 277.46 342.79 388.12 433.45 LOWER BOUND 40.76 118.00 195.25 272.47 349.74 426.97 504 23 581.48 35.62 24.73 395.13 13 LOWER BOUND 40.76 118.00 195.25 272.47 349.74 426.97 504 23 581.48 35.62 25.73 59.35 13 LOWER BOUND 40.76 118.00 195.25 272.47 349.74 426.97 504 23 581.47 33.57 LOWER BOUND 40.76 118.00 195.25 272.47 349.74 426.97 504 23 581.49 33.50 3.71 3.91 4.12 4.32 4.52 4.73 4.93 BDD (MG/L) 100.00 97.60 73.04 78.75 79.57 4.41.76 21.23 5.13 2.97 4.47 42 BDD (MG/L) 100.00 77.60 73.04 78.75 79.74 426.97 504 23 591.49 4.55 7.72 59.74 H UNUER BOUND 1.78 1.80 1.92 1.92 1.92 1.91 4.12 4.32 4.52 4.73 4.93 BDD (MG/L) 100.00 77.60 73.04 78.75 79.57 4.41.76 21.23 5.13 2.97 14.17 4.124 52 4.73 4.93 BDD (MG/L) 100.00 77.60 73.04 78.75 79.75 4.51 4.176 21.19 1.91 1.95	FLOW(M++3/S)			0 8	1.1							
ALKA(MG/L AS CACO3) -37.9 4.6 -27.0 11.0 HARD(MG/L AS CACO3) 26. 478. 271. 97. TDS (MG/L) 41. 812. 470. 162. PH 3.1 5.1 3.3 3.7 BOD (MG/L) 1.8 2.0 1.9 0.0 THEOREM OF STORAGE KISKIMINETAS RIVER WATER GUALITY STUDY 1977 STUDY PERIDD STATISTICS FOR ND CORPS STORAGE KISKIMINETAS RIVER WATER GUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PARAMETER 1 2 3 4 5 6 7 8 7 10 TEMP(DEGREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER BOUND 1.427 15.72 17.17 18.63 20.08 21.53 22.99 24.44 25.89 27.35 OXY (MG/L) 100.00 97.81 91.75 8.28 8.51 8.74 8.97 9.20 9.44 9.67 ALKA(MG/L AS CACO3) 97.63 79.85 48.90 33.70 26.37 18.86 13.00 9.34 6.96 31.03 LOWER BOUND 7.58 79.81 48.90 33.70 26.37 18.86 13.00 9.34 6.96 3.10 LOWER BOUND 23.47 70.80 116.14 161.47 20.60 23.51 13.0 -8.70 -4.25 0.20 LOWER BOUND 23.47 70.80 116.14 161.47 70.80 23.51 13.15 -8.70 -4.25 0.20 LOWER BOUND 23.47 70.80 116.14 161.47 20.60 225.13 277.46 342.79 388.12 433.45 LOWER BOUND 23.47 70.80 116.14 161.47 20.80 23.53 21.97 35.13 13 LOWER BOUND 23.47 70.80 116.14 161.47 20.80 23.51 277.46 342.79 388.12 433.45 LOWER BOUND 23.47 70.80 116.14 161.47 20.80 23.51 277.46 342.79 388.12 433.45 LOWER BOUND 40.76 118.00 195.25 272.47 349.74 426.97 504 23 581.48 35.62 24.73 395.13 13 LOWER BOUND 40.76 118.00 195.25 272.47 349.74 426.97 504 23 581.48 35.62 25.73 59.35 13 LOWER BOUND 40.76 118.00 195.25 272.47 349.74 426.97 504 23 581.47 33.57 LOWER BOUND 40.76 118.00 195.25 272.47 349.74 426.97 504 23 581.49 33.50 3.71 3.91 4.12 4.32 4.52 4.73 4.93 BDD (MG/L) 100.00 97.60 73.04 78.75 79.57 4.41.76 21.23 5.13 2.97 4.47 42 BDD (MG/L) 100.00 77.60 73.04 78.75 79.74 426.97 504 23 591.49 4.55 7.72 59.74 H UNUER BOUND 1.78 1.80 1.92 1.92 1.92 1.91 4.12 4.32 4.52 4.73 4.93 BDD (MG/L) 100.00 77.60 73.04 78.75 79.57 4.41.76 21.23 5.13 2.97 14.17 4.124 52 4.73 4.93 BDD (MG/L) 100.00 77.60 73.04 78.75 79.75 4.51 4.176 21.19 1.91 1.95	TEMP(DEGREE C)	14. 3	28.1	8 2	1.7	2.9						
ALKA(MG/L AS CACO3) -37.9 4.6 -27.0 11.0 HARD(MG/L AS CACO3) 26. 478. 271. 97. TDS (MG/L) 41. 812. 470. 162. PH 3.1 5.1 3.3 3.7 BOD (MG/L) 1.8 2.0 1.9 0.0 THEOREM OF STORAGE KISKIMINETAS RIVER WATER GUALITY STUDY 1977 STUDY PERIDD STATISTICS FOR ND CORPS STORAGE KISKIMINETAS RIVER WATER GUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PARAMETER 1 2 3 4 5 6 7 8 7 10 TEMP(DEGREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER BOUND 1.427 15.72 17.17 18.63 20.08 21.53 22.99 24.44 25.89 27.35 OXY (MG/L) 100.00 97.81 91.75 8.28 8.51 8.74 8.97 9.20 9.44 9.67 ALKA(MG/L AS CACO3) 97.63 79.85 48.90 33.70 26.37 18.86 13.00 9.34 6.96 31.03 LOWER BOUND 7.58 79.81 48.90 33.70 26.37 18.86 13.00 9.34 6.96 3.10 LOWER BOUND 23.47 70.80 116.14 161.47 20.60 23.51 13.0 -8.70 -4.25 0.20 LOWER BOUND 23.47 70.80 116.14 161.47 70.80 23.51 13.15 -8.70 -4.25 0.20 LOWER BOUND 23.47 70.80 116.14 161.47 20.60 225.13 277.46 342.79 388.12 433.45 LOWER BOUND 23.47 70.80 116.14 161.47 20.80 23.53 21.97 35.13 13 LOWER BOUND 23.47 70.80 116.14 161.47 20.80 23.51 277.46 342.79 388.12 433.45 LOWER BOUND 23.47 70.80 116.14 161.47 20.80 23.51 277.46 342.79 388.12 433.45 LOWER BOUND 40.76 118.00 195.25 272.47 349.74 426.97 504 23 581.48 35.62 24.73 395.13 13 LOWER BOUND 40.76 118.00 195.25 272.47 349.74 426.97 504 23 581.48 35.62 25.73 59.35 13 LOWER BOUND 40.76 118.00 195.25 272.47 349.74 426.97 504 23 581.47 33.57 LOWER BOUND 40.76 118.00 195.25 272.47 349.74 426.97 504 23 581.49 33.50 3.71 3.91 4.12 4.32 4.52 4.73 4.93 BDD (MG/L) 100.00 97.60 73.04 78.75 79.57 4.41.76 21.23 5.13 2.97 4.47 42 BDD (MG/L) 100.00 77.60 73.04 78.75 79.74 426.97 504 23 591.49 4.55 7.72 59.74 H UNUER BOUND 1.78 1.80 1.92 1.92 1.92 1.91 4.12 4.32 4.52 4.73 4.93 BDD (MG/L) 100.00 77.60 73.04 78.75 79.57 4.41.76 21.23 5.13 2.97 14.17 4.124 52 4.73 4.93 BDD (MG/L) 100.00 77.60 73.04 78.75 79.75 4.51 4.176 21.19 1.91 1.95	OXY (MG/L)	7.6	9.1	9	8.6	0.5						
HT 3.1 3.1 3.1 3.1 3.7 BOD (MG/L) 1.8 2.0 1.9 0.0 ALLEGHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER WATER QUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS 546 PARAMETER 1 2 3 4 5 6 7 8 9 10 TEMP (DECREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14<10	ALKA (MG/L AS CACO3)	-39 9	4	A -2	7 0	11.0						
HT 3.1 3.1 3.1 3.1 3.7 BOD (MG/L) 1.8 2.0 1.9 0.0 ALLEGHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER WATER QUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS 546 PARAMETER 1 2 3 4 5 6 7 8 9 10 TEMP (DECREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14<10		26	479		71							
HT 3.1 3.1 3.1 3.1 3.7 BOD (MG/L) 1.8 2.0 1.9 0.0 ALLEGHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER WATER QUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS 546 PARAMETER 1 2 3 4 5 6 7 8 9 10 TEMP (DECREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14<10		A1	217		70							
BOD (HG/L) 1.8 2.0 1.9 0.0 ALLEGHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIDD STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER WATER QUALITY PARAMETERS AT RIVER MILE NUMBER OF SIMULATION POINTS STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER WATER QUALITY PARAMETERS AT RIVER MILE MULATION POINTS STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER WATER QUALITY PARAMETERS AT RIVER MILE MULATION POINTS STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER MUMER BOUND OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PARAMETER 12 MULATION POINTS STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER UMER BOUND 1 12 3 4 5 6 7 8 9 10 CORPS STORAGE KISKIMINETAS RIVER INTERVALS INTERVALS INTERVALS INTERVALS <td colspan<<="" td=""><td></td><td>2 1</td><td></td><td>. 7 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td> <td>2 1</td> <td></td> <td>. 7 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		2 1		. 7 1							
ALLEGHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR ND CORPS STORAGE KISKIMINETAS RIVER WATER QUALITY PRAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS PERCENT OF SIMULATION POINTS STATESTICS FOR ND CORPS STORAGE KISKIMINETAS RIVER WATER ADALTY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS STATESTICS FOR ND CORPS STORAGE KISKIMINETAS RIVER WATER ADALTY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS PARAMETER 1 2 3 4 5 6 7 8 9 10 TEMP (DECREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER BOUND 14.27 15.72 17.17 18.63 20.08 21.53 22.99 24.44 25.89 27.35 OXY (M07L) 100.00 95.97 87.35 73.44 43.96 31.68 25.82 17.77 7.88 20 14.97 47.47 LOWER BOUND 7.59 7.91 8.03 8.28 8.51 8.74 8.97 9.0 9.0 4.96 3.30 LOWER BOUND 7.59 7.91 8.03 3.0			5.									
ALLEOHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIDD STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER WATER QUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL INTERVALS PARAMETER 1 2 3 INTERVALS PARAMETER 1 2 3 6 7 9 PARAMETER 1 2 3 6 7 9 10 TEMP (DEGREE C) 100.00 97.80 91.76 80.40 71.43 61.17 7.88 7 1 OXY (Mg/L) 100.00 9.73 7.35 COVER BOUND 1.42 3 7 7 7 COVER (Mg/L) 100.00 7.87 7.35 7.34 <td cols<="" th=""><th></th><th></th><th>E.</th><th>~</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td>	<th></th> <th></th> <th>E.</th> <th>~</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			E.	~							
1977 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER WATER QUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PARAMETER 1 2 3 4 5 6 7 8 9 10 TEMP (DEGREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER BOUND 14.27 15.72 17.17 18.63 20.09 21.53 22.99 24.44 25.89 27.33 OXY (MG/L) 100.00 95.97 87.55 73.44 43.96 31.68 25.82 17.77 7.88 2 01 LOWER BOUND 7.58 7.91 8.05 8.28 8.51 8.74 8.97 9.20 9.44 9.67 LOWER BOUND 7.58 7.91 8.05 8.28 8.51 8.74 8.97 9.20 9.44 9.67 LOWER BOUND 7.58 7.91 8.05 8.28 8.51 8.74 8.97 9.20 9.44 9.67 LOWER BOUND -39.86 -33.41 -30.96 -26.51 -22.05 -17.60 -13.15 -8.70 -4.25 0.20 MARD(MG/L AS CAC03) 100.00 98.90 96.52 84.25 71.25 60.44 37.18 22.33 15.93 5.13 LOWER BOUND 25.47 70.80 116.14 161.47 206.80 252.13 277.46 342.79 38.12 433.45 TDS (MG/L) 100.00 98.90 97.07 89.01 72.53 61.90 38.64 23.26 16.30 5.31 LOWER BOUND 40.76 118.00 195.25 272.49 349.74 426.99 504 23 581.48 658.72 735.97 PH 100.00 31.08 16.67 10.62 7.69 6.59 4.75 4.58 3.85 2.56 LOWER BOUND 3.10 3.30 3.50 3.71 3.91 4.12 4.32 4.52 4.73 4.93 BOD (MG/L) 100.00 97.80 93.04 78.75 59.34 41.76 21.23 5.13 2.93 1.47 BOD (MG/L) 100.00 97.80 93.04 78.75 59.34 41.76 21.23 5.13 2.93 1.47 LOWER BOUND 1.78 1.80 1.82 1.84 1.84 1.89 1.91 1.91 1.97			*******	*******	*******	********	*					
1977 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER WATER QUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PARAMETER 1 2 3 4 5 6 7 8 9 10 TEMP (DEGREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER BOUND 14.27 15.72 17.17 18.63 20.09 21.53 22.99 24.44 25.89 27.33 OXY (MG/L) 100.00 95.97 87.55 73.44 43.96 31.68 25.82 17.77 7.88 2 01 LOWER BOUND 7.58 7.91 8.05 8.28 8.51 8.74 8.97 9.20 9.44 9.67 LOWER BOUND 7.58 7.91 8.05 8.28 8.51 8.74 8.97 9.20 9.44 9.67 LOWER BOUND 7.58 7.91 8.05 8.28 8.51 8.74 8.97 9.20 9.44 9.67 LOWER BOUND -39.86 -33.41 -30.96 -26.51 -22.05 -17.60 -13.15 -8.70 -4.25 0.20 MARD(MG/L AS CAC03) 100.00 98.90 96.52 84.25 71.25 60.44 37.18 22.33 15.93 5.13 LOWER BOUND 25.47 70.80 116.14 161.47 206.80 252.13 277.46 342.79 38.12 433.45 TDS (MG/L) 100.00 98.90 97.07 89.01 72.53 61.90 38.64 23.26 16.30 5.31 LOWER BOUND 40.76 118.00 195.25 272.49 349.74 426.99 504 23 581.48 658.72 735.97 PH 100.00 31.08 16.67 10.62 7.69 6.59 4.75 4.58 3.85 2.56 LOWER BOUND 3.10 3.30 3.50 3.71 3.91 4.12 4.32 4.52 4.73 4.93 BOD (MG/L) 100.00 97.80 93.04 78.75 59.34 41.76 21.23 5.13 2.93 1.47 BOD (MG/L) 100.00 97.80 93.04 78.75 59.34 41.76 21.23 5.13 2.93 1.47 LOWER BOUND 1.78 1.80 1.82 1.84 1.84 1.89 1.91 1.91 1.97												
1977 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER WATER QUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PARAMETER 1 2 3 4 5 6 7 8 9 10 TEMP (DEGREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER BOUND 14.27 15.72 17.17 18.63 20.09 21.53 22.99 24.44 25.89 27.33 OXY (MG/L) 100.00 95.97 87.55 73.44 43.96 31.68 25.82 17.77 7.88 2 01 LOWER BOUND 7.58 7.91 8.05 8.28 8.51 8.74 8.97 9.20 9.44 9.67 LOWER BOUND 7.58 7.91 8.05 8.28 8.51 8.74 8.97 9.20 9.44 9.67 LOWER BOUND 7.58 7.91 8.05 8.28 8.51 8.74 8.97 9.20 9.44 9.67 LOWER BOUND -39.86 -33.41 -30.96 -26.51 -22.05 -17.60 -13.15 -8.70 -4.25 0.20 MARD(MG/L AS CAC03) 100.00 98.90 96.52 84.25 71.25 60.44 37.18 22.33 15.93 5.13 LOWER BOUND 25.47 70.80 116.14 161.47 206.80 252.13 277.46 342.79 38.12 433.45 TDS (MG/L) 100.00 98.90 97.07 89.01 72.53 61.90 38.64 23.26 16.30 5.31 LOWER BOUND 40.76 118.00 195.25 272.49 349.74 426.99 504 23 581.48 658.72 735.97 PH 100.00 31.08 16.67 10.62 7.69 6.59 4.75 4.58 3.85 2.56 LOWER BOUND 3.10 3.30 3.50 3.71 3.91 4.12 4.32 4.52 4.73 4.93 BOD (MG/L) 100.00 97.80 93.04 78.75 59.34 41.76 21.23 5.13 2.93 1.47 BOD (MG/L) 100.00 97.80 93.04 78.75 59.34 41.76 21.23 5.13 2.93 1.47 LOWER BOUND 1.78 1.80 1.82 1.84 1.84 1.89 1.91 1.91 1.97		-										
1977 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER WATER QUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL PARAMETER 1 2 3 4 5 6 7 8 9 10 TEMP (DEGREE C) 100.00 97.80 91.76 80.40 71.43 61.17 36.63 14 10 5.49 1.47 LOWER BOUND 14.27 15.72 17.17 18.63 20.09 21.53 22.99 24.44 25.89 27.33 OXY (MG/L) 100.00 95.97 87.55 73.44 43.96 31.68 25.82 17.77 7.88 2 01 LOWER BOUND 7.58 7.91 8.05 8.28 8.51 8.74 8.97 9.20 9.44 9.67 LOWER BOUND 7.58 7.91 8.05 8.28 8.51 8.74 8.97 9.20 9.44 9.67 LOWER BOUND 7.58 7.91 8.05 8.28 8.51 8.74 8.97 9.20 9.44 9.67 LOWER BOUND -39.86 -33.41 -30.96 -26.51 -22.05 -17.60 -13.15 -8.70 -4.25 0.20 MARD(MG/L AS CAC03) 100.00 98.90 96.52 84.25 71.25 60.44 37.18 22.33 15.93 5.13 LOWER BOUND 25.47 70.80 116.14 161.47 206.80 252.13 277.46 342.79 38.12 433.45 TDS (MG/L) 100.00 98.90 97.07 89.01 72.53 61.90 38.64 23.26 16.30 5.31 LOWER BOUND 40.76 118.00 195.25 272.49 349.74 426.99 504 23 581.48 658.72 735.97 PH 100.00 31.08 16.67 10.62 7.69 6.59 4.75 4.58 3.85 2.56 LOWER BOUND 3.10 3.30 3.50 3.71 3.91 4.12 4.32 4.52 4.73 4.93 BOD (MG/L) 100.00 97.80 93.04 78.75 59.34 41.76 21.23 5.13 2.93 1.47 BOD (MG/L) 100.00 97.80 93.04 78.75 59.34 41.76 21.23 5.13 2.93 1.47 LOWER BOUND 1.78 1.80 1.82 1.84 1.84 1.89 1.91 1.91 1.97												
STATISTICS FOR NO CORPS STORAGE KISKIMINETAS RIVER WATER QUALITY PARAMETERS AT RIVER MILE 10.35 NUMBER OF SIMULATION POINTS STATISTICS FOR NO CORPS AT RIVER MILE 10.35 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL INTERVALS PARAMETER 1 2 3 4 5 6 7 8 9 10 INTERVALS PARAMETER 1 2 3 4 5 6 7 8 9 10 TEMP (DEGREE C) 100.00 97.80 71.76 80.40 71.43 61.14 10 COUVE 14:27 15.72 17.17 18.63 20.99 24.44 25.89 27.95 20 COUVED 7.57 7.51 1.64												

B-33 Allegheny River Near Warren

"Existing Conditions," 1977

1977 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS NEAR WARREN BEGINNING OF REACH RIVER MILE 196.28 END OF REACH 125.61 RIVER MILE SUBREACH LENGTH (MILES) 1.81 COMPUTATION INTERVAL (HOURS) 4 (1 JUL 77) (30 SEP 77) FIRST DAY OF SIMULATION PERIOD 182 LAST DAY OF SIMULATION PERIOD 273 NUMBER OF DAYS IN SIMULATION PERIOD 91 OBSERVATIONS AT RIVER MILE FIRST DAY OF STUDY PERIOD 185. 41 183 (2 JUL 77) LAST DAY OF STUDY PERIOD NUMBER OF DAYS IN STUDY PERIOD 273 (30 SEP 77) 91 ***** -----WATER GUALITY PARAMETERS AT RIVER MILE 185.41 546 NUMBER OF SIMULATION POINTS

		SIMULATION	VALUES	48 M 45 45 45 45 45
PARAMETER	MINIMUM	MAXIMUM	MEAN	STD. DEV.
FLOW (M++3/5)	37. 2	517.3	214.4	127.4
TEMP (DEGREE C)	17.4	25.1	20.2	1.4
OXY (MG/L)	7.8	10.0	9.0	0.4
ALKA(MG/L AS CACO3)	23. 2	54.6	33.7	5.4
HARD(HG/L AS CACO3)	45.	· 98.	69.	13.
TDS (MG/L)	63.	111.	87.	11.
PH	6.6	7.3	6.9	7.5
BOD (MG/L)	1.9	2.0	2.0	0.0
***	*****	******	******	*****

ALLEGHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS NEAR WARREN WATER QUALITY PARAMETERS AT RIVER MILE 185.41 NUMBER OF SIMULATION POINTS 546

ALLEGHENY RIVER WATER GUALITY STUDY

惑

					INTERVAL	.s				
PARAMETER	i	2	3	4	5	6	7	8	9	10
TEMP (DEGREE C)	100.00	95, 79	83.70	61.72	37. 73	19.41	8, 42	5.49	1 47	0 92
LOWER BOUND	17.35	18. 13	18. 91	19 68	20.46	21.24	22. 02	22.79	23. 57	24 35
DXY (MG/L)	100.00	99.27	95.60	88.46	74. 91	58.79	37.73	16.12	8.61	2. 38
LOWER BOUND	7. 74	7.97	8. 20	8.43	8. 66	8.89	9.11	9.34	9. 57	9 80
ALKA(MG/L ÁS CACO3)	100.00	89. 83	46.70	12.09	6.04	1. 28	0. 37	0.00	0.00	0. 00
LOWER BOUND	23.14	28. 33	33. 52	38. 72	43. 91	49.11	54. 30	59.49	64.69	69 89
HARD(MG/L AS CACO3)	100.00	90.29	86. 08	71.98	54.95	39.01	27.47	12.82	4.03	0. 92
LOWER BOUND	44.56	50.18	55. 80	61.43	67.05	72. 68	78. 30	83. 93	89 55	95.18
TDS (MC/L)	100.00	91.39	87. 55	71.43	43. 59	29. 67	11.90	2. 75	0.00	0 00
LOWER BOUND	63.04	69. 26	75. 47	81. 69	87. 91	94. 13	100.35	106.57	112.79	119.01
PH	100.00	97.80	91.21	79. 49	58, 79	32. 78	21.43	11.72	4 03	0.55
LOWER BOUND	6. 63	6.70	6.77	5.84	6.90	6. 97	7.04	7.11	7.17	7.24
BOD (MG/L)	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	87.91	44. 87
LOWER BOUND	1. 80	1.82	1.83	1.85	1.87	1.89	1. 91	1.93	1. 95	1 96

B-34 Allegheny River Near Warren

"Pattern A," 1977

ALLEGHENY RIVER WATER GUALITY STUDY

1977 STUDY PERIOD STATISTICS FOR PATTERN A NEAR WARREN ******** BEGINNING OF REACH RIVER MILE 196.28 END OF REACH RIVER MILE 125.61 SUBREACH LENGTH (MILES) 1.81 COMPUTATION INTERVAL (HOURS) 4 FIRST DAY OF SIMULATION PERIOD 182 (1 JUL 77) LAST DAY OF SIMULATION PERIOD 273 (30 SEP 77) NUMBER OF DAYS IN SIMULATION PERIOD 91 OBSERVATIONS AT RIVER MILE FIRST DAY OF STUDY PERIOD 185. 41 183 (2 JUL 77) LAST DAY OF STUDY PERIOD 273 (30 SEP 77) NUMBER OF DAYS IN STUDY PERIOD 91 ****** **************** ****** WATER GUALITY PARAMETERS AT RIVER MILE 185.41 NUMBER OF SIMULATION POINTS 546 ----- SIMULATION VALUES ------MINIMUM MAXIMUM PARAMETER MEAN STD. DEV. FLOW(M++3/5) 20. 2 517.3 128.4 137.6 TEMP (DEGREE C) 16.6 28 3 21.3 2.1 DXY (MG/L) 7. 8 10.0 8.8 0.4 ALKA(MG/L AS CACO3) 23. 2 59.7 46.6 10.3 HARD (MG/L AS CACO3) 45. 100. 75. 14. TDS (MG/L) 63. 122. 98. 16. PH 6.7 7.4 7.1 7.5 BOD (MG/L) 1.9 2.0 2.0 0.0 ****** ******* ******* ALLEGHENY RIVER WATER GUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR PATTERN & NEAR WARREN WATER GUALITY PARAMETERS AT RIVER MILE 185.41 NUMBER OF SIMULATION POINTS 546 PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL INTERVALS -----

IETER	1	2	3	4	5	6	7	8	9	· 10
P(DEGREE C)	100.00	95. 05	88 46	70. 51				_		
LOWER BOUND	16.61	17.78			44.51	25. 64	12. 45	7.14	2. 93	0.73
(MG/L)			18.95	20.12	21.29	22.46	23. 62	24. 79	25 96	27.13
	100.00	99. 27	96.15	87. 38	65.75	37.55	19.78	7.14	2. 93	1.65
LOWER BOUND	7.74	7.97	8. 20	8, 43	8, 66	8.89	9.11	9.34	9.57	
A(HG/L AS CACO3)	100.00	92.12	85.71	72.16	67.22	56.96	29.49			7. 80
LOWER BOUND	23.14	28. 33	33. 52	38.72	43. 91	-		0.37	0. 00	0.00
D(MG/L AS CACO3)	100.00	90.29	87.00			49.11	54.30	59.49	64.69	67. 88
LOWER BOUND	44.56			85.16	74.54	62. 09	43. 22	30.40	18, 68	5. 31
(MG/L)		50.18	55, 80	61.43	67.05	72. 68	78.30	83.93	87.55	95 18
	100.00	91.39	87.55	86. 08	75. 82	68.50	52.20	36. 63	21.79	3.66
LOWER BOUND	63.04	69.26	75.47	81.69	87.91	94.13	100.35	106.57		
	100,00	96. 52	88.10	82. 42	76. 37	64.84			112.79	119.01
LOWER BOUND	6.71	6.78	6.85	6. 92			54.95	26. 37	9.16	3.85
(MG/L)	100.00	100.00			6. 99	7. 06	7.12	7.19	7. 26	7. 33
			100.00	100. 00	100. 00	100.00	100.00	97.62	77.84	43.59
	1.80	1.82	1.83	1.85	1.87	1.89	1.91	1.93	1.95	1.96
LOWER BOUND	1. 80 *********	1. 82	1. 83 *******	1.85		-			7 1.89 1.91 1.93	

B-35 Allegheny River Near Warren

"No Corps Storage," 1977

ALLECHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE NEAR WARREN BEGINNING OF REACH RIVER MILE 196.28 END OF REACH RIVER MILE 125.61 SUBREACH LENGTH (MILES) 1.81 COMPUTATION INTERVAL (HOURS) 4 FIRST DAY OF SIMULATION PERIOD 182 (1 JUL 77) LAST DAY OF SIMULATION PERIOD 273 (30 SEP 77) NUMBER OF DAYS IN SIMULATION PERIOD 91 OBSERVATIONS AT RIVER MILE 185.41 FIRST DAY OF STUDY PERIOD 183 (2 JUL 77) LAST DAY OF STUDY PERIOD (30 SEP 77) 273 NUMBER OF DAYS IN STUDY PERIOD 91 ***** WATER GUALITY PARAMETERS AT RIVER MILE 185.41 NUMBER OF SIMULATION POINTS 546 -- SIMULATION VALUES PARAMETER MINIMUM MAXIMUM MEAN STD. DEV. FLOW(M++3/S) 42. 2 221.9 961. 4 260.1 TEMP (DEGREE C) 27.4 · 16.3 21.6 2.1 DXY (MG/L) 8.0 9.5 8.6 0.3 42.2 29.0 6.3 ALKA (MG/L AS CACO3) 14.9 HARD (MG/L AS CACO3) 100. 70. 34. 15. 29. 56. 225. 104. TDS (MG/L) 6. 9 7.4 7.2 7.8 РН 1.9 2. 0 2.0 0.0 BOD (MG/L) **** ***** ALLEGHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE NEAR WARREN WATER QUALITY PARAMETERS AT RIVER MILE 185.41 346 NUMBER OF SIMULATION POINTS PERCENT OF SIMULATION POINTS EXCEEDING LOWER BOUND OF EACH INTERVAL INTERVALS 2. 4 7 8 9 10 3 6 PARAMETER 1 5 90.84 10.26 1. 47 100.00 94.32 85. 35 73.99 38.10 21.79 4.21 TEMP (DEGREE C) 19.61 20. 73 22.97 25. 21 26.34 LOWER BOUND 16.24 17. 37 18.49 21, 85 24.09 9. 52 82.97 OXY (MG/L) 100.00 93. 77 42. 31 22. 34 12.45 4. 95 0,00 0.00 LOWER BOUND 7.96 8. 17 8.37 8. 58 8. 78 8.99 9.19 9.40 9.60 9.81 ALKA (HO/L AS CACO3) 100.00 97. 80 88. 10 78.21 67.77 36. 96 37. 73 23. 63 13.37 2.75 36.74 LOWER BOUND 14.85 17.58 20.32 23.06 25.79 28, 53 31.27 34.00 39.48 HARD (HG/L AS CACO3) 100.00 99.45 93. 59 79.85 70.33 60.81 42. 57 27.47 15.20 7.14 LOWER BOUND 40.94 47.51 54.09 67.23 73.81 80.38 86. 95 93. 53 34.37 60.66 41.94 25. 27 13.00 2. 38 0.92 0. 55 TDS (MO/L) 100.00 81.87 66.85 1.28 LOWER BOUND 191.39 55.64 89. 58 106. 55 123. 52 140.48 157.45 174.42 208.36 72. 61 15.02 93.04 92. 31 86. 45 74. 54 57. 51 6.96 2. 38 100.00 24 94.87 7.01 7.08 6. 97 7.15 7.24 7.29 7.33 LOWER BOUND 6. 92 7.10 7.20 54.40 100.00 100.00 99.63 96.89 87.73 87.73 71.98 28.75 800 (MG/L) 100.00 1. 90 1.94 1.95 1.96 LOWER BOUND 1.87 1.90 1. 91 1.92 1. 93 1.96 ***** ----************** ***********

B-36 Allegheny River Near Franklin

"Existing Conditions," 1977

ALLECHENY RIVER WATE						*******				
1977 STUDY PERIOD	R QUALITY S	TUDY				******			*******	******
STATISTICS FOR EXIST	ING CONDITI	ING NELO	CANKE TA	a a						
*****	INPUT DATA									
IRECINNING OF PEACH OTHER		174 10								
END OF REACH RIVE	RMITE	84, 80								
SUBREACH LENGTH (MILES)										
COMPUTATION INTERVAL (H		1.01								
COM UNATION INTERVAL (A	00837	4								
FIRST DAY OF STMULATION										
FIRST DAY OF SIMULATION LAST DAY OF SIMULATION I NUMBER OF DAYS IN SIMUL	PERIOD	182		۱L 77)						
LAST DAT UP STRUCATION I	PERIOD	273	(30 SE	(P 77)						
NUMBER OF DAYS IN SIMUL	ATION PERIO	91								
UBSERVATIONS AT RIVER M	ILE	120. 16								
FIRST DAY OF STUDY PERI	פכ	183	(2 JL	几 77)						
LAST DAY OF STUDY PERIO	D	273	(30 SE	P 77)						
OBSERVATIONS AT RIVER M FIRST DAY OF STUDY PERIO LAST DAY OF STUDY PERIO NUMBER OF DAYS IN STUDY	PERIOD	91								
	**********	********	******	*****						
WATER GUALITY PARAMETERS	S AT RIVER I	ILE 120). 16							
NUMBER OF SIMULATION PO.	INTS		546							
		- SIMULATI	ON VALU	FS						
PARAMETER										
FLOW(M++3/S)	73.0	1048 1	201	3 J.L	750 1					
PARAMETER Flow(M++3/S) Temp(degree C)	16.0	25 9		5	200.1					
OXY (MG/L)	10. V	23.0	<1.	2	<. Z					
ALKA (MG/L AS CACO3)		7. 4		<u>.</u>	0.3					
	2J. 7	33.3	38.	1	6.4					
HARD(MG/L AS CACO3)	46.	88.	70	•	11.					
TDS (MG/L) Ph	67.	111.	92	•	10.			- "		
	MINIMUM 73.0 16.0 8.1 25.9 46. 69. 7.0 1.6	8.0	7.	3	7.6					
BOD (MG/L)	1.6	1. 8	1.	7	0.1					
*****	********	*******	******	******	******	*1				
ALLEGHENY RIVER WATER	R GUALITY ST	UDY	•							
1977 STUDY PERIOD	•									
STATISTICS FOR EXIST	ING CONDITIC	INS NEAR F	RANKLIN							
WATER QUALITY PARAMETERS										
	5 AT RIVER N	ILE 120	. 16							
NUMBER OF SIMULATION POI	S AT RIVER N INTS		546 S46							
NUMBER OF SIMULATION POI	NTS									
NUMBER OF SIMULATION POI	NTS .		546							
NUMBER OF SIMULATION POI	ENT OF SIMU		546	CEEDIN	G LOWER	BOUND OF	EACH IN	TERVAL		
NUMBER OF SIMULATION POI	NTS .		546	CEEDIN			EACH IN	TERVAL		
NUMBER OF SIMULATION POI	NTS CENT OF SIMU	LATION PO	546)INTS EX		INTERVAL	S				
NUMBER OF SIMULATION POI	INTS LENT OF SIMU 1	LATION PO	546 DINTS EX	4	INTERVAL	S 6	7	8	9	10
NUMBER OF SIMULATION POI	INTS LENT OF SIMU 1	LATION PO	546 DINTS EX	4	INTERVAL	S 6	7	8		
NUMBER OF SIMULATION POI	INTS LENT OF SIMU 1	LATION PO	546 DINTS EX	4	INTERVAL	S 6	7	8		
NUMBER OF SIMULATION POI	INTS LENT OF SIMU 1	LATION PO	546 DINTS EX	4	INTERVAL	S 6	7	8		
NUMBER OF SIMULATION POI	INTS LENT OF SIMU 1	LATION PO	546 DINTS EX	4	INTERVAL	S 6	7	8		
NUMBER OF SIMULATION POI	INTS LENT OF SIMU 1	LATION PO	546 DINTS EX	4	INTERVAL	S 6	7	8		
NUMBER OF SIMULATION POI	INTS LENT OF SIMU 1	LATION PO	546 DINTS EX	4	INTERVAL	S 6	7	8		
NUMBER OF SIMULATION POI	INTS LENT OF SIMU 1	LATION PO	546 DINTS EX	4	INTERVAL	S 6	7	8		
NUMBER OF SIMULATION POI	INTS LENT OF SIMU 1	LATION PO	546 DINTS EX	4	INTERVAL	S 6	7	8		
NUMBER OF SIMULATION POI	INTS LENT OF SIMU 1	LATION PO	546 DINTS EX	4	INTERVAL	S 6	7	8		
NUMBER OF SIMULATION POI	INTS LENT OF SIMU 1	LATION PO	546 DINTS EX	4	INTERVAL	S 6	7	8		
NUMBER OF SIMULATION POI	INTS LENT OF SIMU 1	LATION PO	546 DINTS EX	4	INTERVAL	S 6	7	8		
NUMBER OF SIMULATION POI	INTS LENT OF SIMU 1	LATION PO	546 DINTS EX	4	INTERVAL	S 6	7	8		
NUMBER OF SIMULATION POI PER(PARAMETER TEMP(DEGREE C) LOWER BOUND OXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND TDS (MG/L) LOWER BOUND PH	INTS ENT OF SIMU 100.00 15.54 100.00 8.12 100.00 25.83 100.00 46.25 100.00 68.83 100.00	2 97.07 16.57 96.52 93.77 8.28 93.77 8.28 93.77 8.50 50.47 50.47 74.14 73.05 7 95.42 7	546 DINTS EX 3 73.41 77.60 70.29 88.43 84.63 91.73 92.74 94.68 90.29 77.27 77.47 7.27	4 82.05 83.63 66.48 85.38 83.38 83.15 83.39 84.39 84.39 84.39 84.39 84.39 84.39 84.39 84.39 84.39 84.39 84.4	INTERVAL 5 68.86 19.65 41.94 8.74 45.97 37.63 75.27 63.11 71.79 85.70 51.63	S 43. 19 20. 68 30. 59 8. 90 34. 98 40. 57 59. 14 57. 14 57. 32 59. 72 35. 53 35. 53 35. 53	7 47.80 21.71 17.03 9.05 22.87 43.52 48.90 71.53 48.90 71.53 48.90 71.53	8 24. 91 22. 73 4. 78 9. 21 8. 79 46. 47 39. 01 75. 75 30. 59 98. 36 18. 50	5.86 23.76 0.00 4.04 49.42 19.23 79.96 15.38 102.57 8.97	1. 28 24. 79 0. 00 9. 51 2. 38 52. 37 11. 36 84. 17 4. 76 106. 79 3. 11
NUMBER OF SIMULATION POI PER(PARAMETER TEMP(DEGREE C) LOWER BOUND OXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND TDS (MG/L) LOWER BOUND PH	INTS ENT OF SIMU 100.00 15.54 100.00 8.12 100.00 25.83 100.00 46.25 100.00 68.83 100.00	2 97.07 16.57 96.52 93.77 8.28 93.77 8.28 93.77 8.50 50.47 50.47 74.14 73.05 7 95.42 7	546 DINTS EX 3 73.41 77.60 70.29 88.43 84.63 91.73 92.74 94.68 90.29 77.27 77.47 7.27	4 82.05 83.63 66.48 85.38 83.38 83.15 83.39 84.39 84.39 84.39 84.39 84.39 84.39 84.39 84.39 84.39 84.39 84.4	INTERVAL 5 68.86 19.65 41.94 8.74 45.97 37.63 75.27 63.11 71.79 85.70 51.63	S 43. 19 20. 68 30. 59 8. 90 34. 98 40. 57 59. 14 57. 14 57. 32 59. 72 35. 53 35. 53 35. 53	7 47.80 21.71 17.03 9.05 22.87 43.52 48.90 71.53 48.90 71.53 48.90 71.53	8 24. 91 22. 73 4. 78 9. 21 8. 79 46. 47 39. 01 75. 75 30. 59 98. 36 18. 50	5.86 23.76 0.00 4.04 49.42 19.23 79.96 15.38 102.57 8.97	1. 28 24. 79 0. 00 9. 51 2. 38 52. 37 11. 36 84. 17 4. 76 106. 79 3. 11
NUMBER OF SIMULATION POI PER(PARAMETER TEMP(DEGREE C) LOWER BOUND OXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND TDS (MG/L) LOWER BOUND PH	INTS ENT OF SIMU 100.00 15.54 100.00 8.12 100.00 25.83 100.00 46.25 100.00 68.83 100.00	2 97.07 16.57 96.52 93.77 8.28 93.77 8.28 93.77 8.50 50.47 50.47 74.14 73.05 7 95.42 7	546 DINTS EX 3 73.41 77.60 70.29 88.43 84.63 91.73 92.74 94.68 90.29 77.27 77.47 7.27	4 82.05 83.63 66.48 85.38 83.38 83.15 83.39 84.39 84.39 84.39 84.39 84.39 84.39 84.39 84.39 84.39 84.39 84.4	INTERVAL 5 68.86 19.65 41.94 8.74 45.97 37.63 75.27 63.11 71.79 85.70 51.63	S 43. 19 20. 68 30. 59 8. 90 34. 98 40. 57 59. 14 57. 14 57. 32 59. 72 35. 53 35. 53 35. 53	7 47.80 21.71 17.03 9.05 22.87 43.52 48.90 71.53 48.90 71.53 48.90 71.53	8 24. 91 22. 73 4. 78 9. 21 8. 79 46. 47 39. 01 75. 75 30. 59 98. 36 18. 50	5.86 23.76 0.00 4.04 49.42 19.23 79.96 15.38 102.57 8.97	1. 28 24. 79 0. 00 9. 51 2. 38 52. 37 11. 36 84. 17 4. 76 106. 79 3. 11
NUMBER OF SIMULATION POI PER(PARAMETER TEMP(DEGREE C) LOWER BOUND OXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND TDS (MG/L) LOWER BOUND PH	INTS I 100.00 15.54 100.00 8.12 100.00 25.83 100.00 46.25 100.00 48.83 100.00 6.97 100.00 1.60	2 97.07 16.57 16.57 96.28 93.77 8.28 93.77 8.28 93.77 8.28 95.05 50.47 50.47 53.05 74.14 73.05 7.07 91.76 7 1.63	546 DINTS EX 3 23. 41 7. 60 90. 29 88. 43 94. 63 94. 73 94. 74 95. 29 97. 27 77. 17 71. 79 1. 67	4 82. 05 18. 63 66. 48 85. 38 34. 68 83. 15 58. 87 83. 33 81. 49 63. 55 7. 27 51. 83 1. 70	INTERVAL 5 68.86 19.65 41.94 8.74 45.97 37.63 75.27 63.11 71.79 85.70 51.65 7.37 40.11 1.73	S 43. 19 20. 68 30. 59 8. 90 34. 98 40. 57 59. 14 57. 12 59. 72 35. 53 7. 48 23. 53 7. 481 1. 77	7 47. 80 21. 71 17. 03 22. 89 43. 52 48. 90 71. 53 48. 90 71. 53 49. 14 25. 09 7. 59 17. 59 1. 80	8 24. 91 22. 73 4. 78 9. 21 8. 79 46. 47 39. 01 75. 75 98. 36 18. 50 7. 68 7. 68 1. 83	5.86 23.76 0.00 4.04 49.42 19.23 79.26 15.38 102.57 8.97 7.78 0.00 1.87	1. 28 24. 79 0. 00 9. 51 2. 38 52. 37 11. 36 84. 17 4. 76 106. 79 3. 11 7. 89 0. 00

B-37 Allegheny River Near Franklin

:

"Pattern A," 1977

ALLEGHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR PATTERN & NEAR FRANKLIN BEGINNING OF REACH RIVER MILE 124. 19 END OF REACH RIVER MILE 84. 80 SUBREACH LENGTH (MILES) 1.01 COMPUTATION INTERVAL (HOURS) 4 182 (1 JUL 77) 273 (30 SEP 77) FIRST DAY OF SIMULATION PERIOD LAST DAY OF SIMULATION PERIOD NUMBER OF DAYS IN SIMULATION PERIOD 91 DESERVATIONS AT RIVER MILE FIRST DAY OF STUDY PERIOD 120. 16 183 (2 JUL 77) 273 (30 SEP 77) LAST DAY OF STUDY PERIOD NUMBER OF DAYS IN STUDY PERIOD 91 *** WATER QUALITY PARAMETERS AT RIVER MILE 120.16 NUMBER OF SIMULATION POINTS 546 ----- SIMULATION VALUES ------MEAN STD. DEV. MINIMUM MAXIMUM PARAMETER : 295. 1 FLOW(M##3/S) 49.3 1068. 0 264.0 21.5 TEMP (DEGREE C) 16.0 27.6 2.6 OXY (MG/L) 7.9 94 8.7 0.4 ALKA(MG/L AS CACO3) HARD(MG/L AS CACO3) 25.9 72.8 44.8 8. 8 74. 14. 46. 111. 99. TDS (MG/L) 69. 143. 17. 7.0 8.0 7.5 7.7 РН 1.7 0.1 1.8 ROD (MG/L) 1.6 ****** *********************** ALLECHENY RIVER WATER GUALITY STUDY 1977 STUDY PERIOD

STATISTICS FOR PATTERN A NEAR FRANKLIN WATER QUALITY PARAMETERS AT RIVER MILE 120.16 NUMBER OF SIMULATION POINTS 346

					INTERVAL	S				
PARAMETER	1	2	3	4	5	6	7	8	9	10
TEMP(DEGREE C)	100.00	96.70	89. 19	76.37	66. 48	55. 13	33, 33	15 38	7.69	2 75
LOWER BOUND	15.54	16.75	17.96	19.17	20.38	21.59	22.79	24.00	25. 21	26. 42
DXY (MG/L)	100, 00	93.59	83. 70	73.08	48, 90	35. 53	25.64	12.45	2. 56	0. 00
LOWER BOUND	7.90	8.08	8. 26	8.43	8. 61	` 8.79	8.96	9.14	9.32	9.49
ALKA(MG/L AS CACO3)	100.00	93.04	86. 81	67.77	51.47	35. 53	15.75	2.01	1.47	0. 91
LOWER BOUND	25.83	30. 54	35. 24	39.95	44.65	49.36	54.06	58, 77	63.47	68. 18
HARD(HG/L AS CACO3)	100.00	92.86	84. 07	74.18	55.86	37.36	24 73	11.17	5.13	3. 11
LOWER BOUND	46. 25	52. 69	59.13	65. 56	72.00	78.43	84. 87	71.30	97.74	104.17
TDS (MG/L)	100.00	91.39	83. 52	66. 83	47.45	29.67	24.73	10. 62	4. 58	2. 54
LOWER BOUND	68. 83	76.22	83. 61	71.00	98. 40	105.79	113.18	120. 57	127.96	135. 35
PH	100.00	95. 42	92.31	86. 81	75.64	69.23	54. 95	41.21	25.09	6.98
LOWER BOUND	6.97	7.07	7.17	7.27	7.37	7.48	7. 58	7.68	7,78	7.88
BOD (MG/L)	100,00	95.97	81. 68	38.79	47.07	27.11	18. 68	10, 81	0.00	0.00
LOWER BOUND	1. 56	1.60	1.63	1.67	1. 71	1.75	1.78	1.82	1.86	1.89

B-38 Allegheny River Near Franklin

.

"No Corps Storage," 1977

ALLECHENY RIVER WATE										
	R QUALITY	STUDY				*******	*******	*******	*******	*******
1977 STUDY PERIOD										
STATISTICS FOR NO CO	PPS STOPAN		-							
***********	INDUT BATA	- NEAN FA	ANACIN							
BEGINNING OF REACH RIVE	INFUL DAIA	*******	******	*******						
END OF REACH ATVE		124.1	9							
END OF REACH RIVE	K MILE	84. 8								
SUBREACH LENGTH (MILES)		1.0	1							
COMPUTATION INTERVAL (H	OURS)		4							
FIRST DAY OF SIMULATION LAST DAY OF SIMULATION I NUMBER OF DAYS IN SIMUL	PERIOD	18	2 (1	JUI 771						
LAST DAY OF SIMULATION	PERIOD		2 120							
NUMBER OF DAYS IN STMU	ATION PROID	<u>د</u> م	3 (30	JEF ///						
ORSERVATIOUS AT RIVER M			1							
FIRST DAY OF STUDY BEDI		120.1	<u> </u>							
LAST DAY OF STUDY PERIO		18	3 (2	JUL 77)						
NUMBER OF DAVE IN CTUDY		27	3 (30	SEP 77)						
OBSERVATIONS AT RIVER M FIRST DAY OF STUDY PERIO LAST DAY OF STUDY PERIO NUMBER OF DAYS IN STUDY	PERIOD	9	1							
	*********	*******	*****	*******						
WATER GUALITY PARAMETERS NUMBER OF SIMULATION PO	S AT RIVER	MILE 1	20.16 546							
PARAMETER FLOW(M++3/S)		SIHULA								
SE DELOMAND (C)	MINIHUN 73. (17. 4 7. 6 19. (42. 60. 7. 1 1. (I MAXIMU	m	MENN STI	DEV.					
TEMB(DECOEE a)	/3.1	1557.	6 4:	31. 6	364.2					
TEMP(DEGREE C) QXY (HG/L)	17.4	26.	9 2	21.6	2. 2					
UXY (HG/L)	7. 9	7 9.	4	8.6	0.4					
ALKA(MG/L AS CACO3) HARD(MG/L AS CACO3)	19. 5	5.49.	5 :	34. 0	8. 1					
HARD (MG/L AS CACO3)	42.	93		69.	15.					
TDS (MG/L)	60.	160		97.	22.					
PH	7. 1	7.	9	7.4	7.8					
BOD (MG/L)	1. 5	5 1.	8	1.7	0.1					
	*********	*****	******	*******		6.3.4				
*****	********	*****	******	********	*******	**4				
********	*********	********	******	********	******	**4				
**************************************	********	********	******	********	*******	***				
			******	*******	*******	***				
ALLEGHENY RIVER WATER			*****	*****	******	***				
ALLEGHENY RIVER WATER 1977 STUDY PERIOD	R QUALITY S	STUDY			******	***				
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR	R GUALITY S	TUDY			******	**4				
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS	R GUALITY S RFS STORAGE S AT RIVER	TUDY			******	6				
ALLECHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS	R GUALITY S RFS STORAGE S AT RIVER	TUDY			******	6 - 4 -€				
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COP WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI	R GUALITY S RFS STORAGE S AT RIVER INTS	STUDY NEAR FR. MILE 1	ANXLIN 20.16 546							·
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COP WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI	R GUALITY S RFS STORAGE S AT RIVER	STUDY NEAR FR. MILE 1	ANXLIN 20.16 546				· EACH IN	ITERVAL		
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM	TUDY NEAR FR MILE 1	ANKLIN 20. 16 546 POINTS	EXCEEDIN		BOUNE OF	F EACH IN	ITERVAL		
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC	R GUALITY S RFS STORAGE S AT RIVER INTS	STUDY NEAR FR. MILE 1	ANKLIN 20. 16 546 POINTS	EXCEEDIN	G LOWER INTERVAL	BOUNE OF			9	10
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM 1	TUDY NEAR FR. MILE 1: NULATION 1	ANKLIN 20.16 546 Points 3	EXCEEDIN 4	IG LOWER INTERVAL 5	BOUNE UF	7	8	-	
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM 1	TUDY NEAR FR. MILE 1: NULATION 1	ANKLIN 20.16 546 Points 3	EXCEEDIN 4	IG LOWER INTERVAL 5	BOUNE UF	7	8	-	
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COP WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM 1	TUDY NEAR FR. MILE 1: NULATION 1	ANKLIN 20.16 546 Points 3	EXCEEDIN 4	IG LOWER INTERVAL 5	BOUNE UF	7	8	-	
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM 1	TUDY NEAR FR. MILE 1: NULATION 1	ANKLIN 20.16 546 Points 3	EXCEEDIN 4	IG LOWER INTERVAL 5	BOUNE UF	7	8	-	
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM 1	TUDY NEAR FR. MILE 1: NULATION 1	ANKLIN 20.16 546 Points 3	EXCEEDIN 4	IG LOWER INTERVAL 5	BOUNE UF	7	8	-	
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM 1	TUDY NEAR FR. MILE 1: NULATION 1	ANKLIN 20.16 546 Points 3	EXCEEDIN 4	IG LOWER INTERVAL 5	BOUNE UF	7	8	-	
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM 1	TUDY NEAR FR. MILE 1: NULATION 1	ANKLIN 20.16 546 Points 3	EXCEEDIN 4	IG LOWER INTERVAL 5	BOUNE UF	7	8	-	
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COP WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM 1	TUDY NEAR FR. MILE 1: NULATION 1	ANKLIN 20.16 546 Points 3	EXCEEDIN 4	IG LOWER INTERVAL 5	BOUNE UF	7	8	-	
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COP WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM 1	TUDY NEAR FR. MILE 1: NULATION 1	ANKLIN 20.16 546 Points 3	EXCEEDIN 4	IG LOWER INTERVAL 5	BOUNE UF	7	8	-	
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COP WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM 1	TUDY NEAR FR. MILE 1: NULATION 1	ANKLIN 20.16 546 Points 3	EXCEEDIN 4	IG LOWER INTERVAL 5	BOUNE UF	7	8	-	
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COP WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM 1	TUDY NEAR FR. MILE 1: NULATION 1	ANKLIN 20.16 546 Points 3	EXCEEDIN 4	IG LOWER INTERVAL 5	BOUNE UF	7	8	-	
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COP WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM 1	TUDY NEAR FR. MILE 1: NULATION 1	ANKLIN 20.16 546 Points 3	EXCEEDIN 4	IG LOWER INTERVAL 5	BOUNE UF	7	8	-	
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COP WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM	TUDY NEAR FR. MILE 1: NULATION 1	ANKLIN 20.16 546 Points 3	EXCEEDIN 4	IG LOWER INTERVAL 5	BOUNE UF	7	8	-	
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COP WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM	TUDY NEAR FR. MILE 1: NULATION 1	ANKLIN 20.16 546 Points 3	EXCEEDIN 4	IG LOWER INTERVAL 5	BOUNE UF	7	8	-	
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COP WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM	TUDY NEAR FR. MILE 1: NULATION 1	ANKLIN 20.16 546 Points 3	EXCEEDIN 4	IG LOWER INTERVAL 5	BOUNE UF	7	8	-	
ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR NO COR WATER GUALITY PARAMETERS NUMBER OF SIMULATION POI PERC PARAMETER	R GUALITY S RFS STORAGE S AT RIVER INTS CENT OF SIM	TUDY NEAR FR. MILE 1: NULATION 1	ANKLIN 20.16 546 Points 3	EXCEEDIN 4	IG LOWER INTERVAL 5	BOUNE UF	7	8	-	

B-39 Allegheny River Near Freeport

"Existing Conditions," 1977

.

******	*****	*****	******	****					
ALLEGHENY RIVER WATER	QUALITY STU	DY					*********	********	
1977 STUDY PERIOD									
STATISTICS FOR EXISTI	NG CONDITION	S LOWER AL	LEGHENY						
***		****	***	***					
BEGINNING OF REACH RIVER		83. 80							
END OF REACH RIVER	MILE	6.72							
SUBREACH LENGTH (MILES)		1.01-							
COMPUTATION INTERVAL (HO	URS)	4							
FIRST DAY OF SIMULATION	PERIOD	182 (1 JUL 7	77)					
LAST DAY OF SIMULATION P			30 SEP 7						
NUMBER OF DAYS IN SIMULA									
OBSERVATIONS AT RIVER MI		31, 90							
FIRST DAY OF STUDY PERIO	D	183 (2 JUL 7	77)					
LAST DAY OF STUDY PERIOD		273 (30 SEP 7	77)					
NUMBER OF DAYS IN STUDY	PERIOD	91							
***	***	***	***	***		·* .			
WATER QUALITY PARAMETERS		LE 31.9	0						
NUMBER OF SIMULATION POI	NTS	54	6						
					ERRC		NO. OF	MINIMUM	MAXIMUM
***		SIMULATION			(SIMULAT		OBSERVED	OBSERVED	OBSERVED
PARAMETER FLOW(M++3/S)		MAXINUM		STD. DEV.	MEAN S	TD. DEV.	VALUES	VALUE	VALUE
TEMP(DEGREE C)	110.2	1368.2	568.9	322. 9					
OXY (MG/L)	15.4 7.5	25.3 9.3	21. 1 8. 3	2. 3	-1.5	1.5	57	19.7	26.4
				0.5	-1.0	1. 3	. 56	7.0	12.2
ALKA (MG/L AS CACO3) HARD (MG/L AS CACO3)	16.3	40.2	29.4	5. 9	-97	4.6	25	15.0	50.0
TDS (MG/L)	56.	114.	84.	13.	_				
PH	77.	150.	110.	15.	3.	23.	55	- 84. 3	161.8
BOD (MG/L)	7.0	7.7	7.3	7.7	0.2	0.4	58	6.1	9. 5
1	0.8	1.8	1.3	0.2		· · ·			
· · · · · · · · · · · · · · · · · · ·	***************************************	пт т ттттт	********	*******	*******	****	********	******	****

ALLEGHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR EXISTING CONDITIONS LOWER ALLEGHENY WATER GUALITY PARAMETERS AT RIVER MILE 31.90 NUMBER OF SIMULATION POINTS 546

ARAMETER		-	_	_	INTERVAL	.s				•
ARAMEIER	1	2	3	4	5	6	7	8	9	10
TEMP (DEGREE C)	100.00	97.62	91.76	84, 43	79.49	67. 58	54. 21	36. 08		
LOWER BOUND	15.35	16.35	17.34	18.34	19.33	20. 32	21.32		16.85	4.03
DXY (MG/L)	100.00	96.15	77.11	56.41	42.12			22. 31	23. 31	24. 30
LOWER BOUND	7.45	7.64	7,83			34. 62	25.46	18.68	12. 27	4. 95
ALKA (MG/L AS CACOS)	100.00		· · + -	8.02	8. 22	8.41	8. 60	8.79	8. 78	9 17
LOWER BOUND		97.44	91.39	86. 08	70. 51	51.83	40.11	31.14	22. 34	8.79
	16.30	18. 69	21.08	23. 48	25. 87	28. 26	30.65	33.04	35. 43	37.82
HARD (MG/L AS CACO3)	100.00	92.49	87. 91	81.14	70.15	50.73	34.43	25.82	5 13	0. 55
LOWER BOUND	55.74	61.55	67.36	73.17	78.97	84.78	90. 59	96.39	102.20	108.01
TDS (MG/L)	100.00	92.49	88.64	78.21	63. 55	38, 83	24.91	12.27		
LOWER BOUND	77.12	84, 41	91.69	98.97	106.25	113.54			3. 48	0. 55
PH	100.00	88.46	80.04	73.44			120.82	128.10	135. 38	142.67
LOWER BOUND	6.97				54.76	44. 32	35.16	23.08	5. 31	0.73
BOD (HG/L)	-,	7.04	7.11	7.18	7. 25	7.32	7.39	7.46	7. 53	7.60
	100.00	94.69	85.71	79.12	65. 38	45.97	23.99	7.51	0. 55	0.00
LOWER BOUND	0.78	0.90	1.02	1.15	1.27	1.39	151	1.64	1. 76	1.88

B-40 Allegheny River Near Freeport

. . .

"Pattern A," 1977

ALLEGHENY RIVER WATER	QUALITY ST	UDY	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		***********	****	**********
1977 STUDY PERIOD STATISTICS FOR PATTERN		LEOUENY					
sessessessessessessessessessessessesses	PUT DATA #	*******	******	***			
BEGINNING OF REACH RIVER	HILE	83. 80					
END OF REACH RIVER		6.72					
SUBREACH LENGTH (MILES)		1.01					
COMPUTATION INTERVAL (HOU	3 5)	4					
FIRST DAY OF SIMULATION P	ERIOD	182	(1 JUL 7	7)			
LAST DAY OF SIMULATION PE		273	(30 SEP 7	7)			
NUMBER OF DAYS IN SIMULAT							
OBSERVATIONS AT RIVER MIL							
LAST DAY OF STUDY PERIOD			(2 JUL 7 (30 SEP 7				
NUMBER OF DAYS IN STUDY PI		91					
******				***			
WATER GUALITY PARAMETERS							
NONBER OF STROEATION POIN	13		546				
			ON VALUES				
PARAMETER		MAXIMUM		STD. DEV.			
FLOW(M##3/S) TEMP(DEGREE C)			482.8				
DXY (MG/L)		25.9		2.3 0.5			
ALKA (MG/L AS CACOS)	15.0	9.3 44.7	30.7	7.4	-	•	
HARD (MG/L AS CACO3)	56.	44. 7 125.	89.	14.			
TDS (MG/L)		167.		19.			
PH		7.7		7.6			
BDD (MG/L)	0.8	1.8	1.3	0. 2			
	**********	*********	*********	*****	** *		
ALLEGHENY RIVER WATER (1977 STUDY PERIOD	DALITY SIC	JUY					
STATISTICS FOR PATTERN	A LOWER AL	LECHENY					
WATER QUALITY PARAMETERS A							
NUMBER OF SIMULATION POINT	S		546				
		-	NTO EVACE		BOUND OF EACH	* *	
PERCEP			INIS EALLE	DING LUWER	BUUND OF EACH	INTERVAL	
				INTERVAL	.s		

					INTERVAL	.s				
PARAMETER	1	2	3	4	5	6	7	8	9	10
TEMP (DEGREE C)	100.00	97.62	90. 29	84. 25	78. 57	65.75	44. 51	30. 40	9, 71	2. 93
LOWER BOUND	15.35	16. 41	17.46	18. 52	19.58	20. 63	21.69	22.74	23, 80	24.85
OXY (MG/L)	100.00	93, 96	77.11	49. 82	42, 86	26.74	22. 71	17.22	12.82	4.95
LOWER BOUND	7.38	7.58	7.78	7.98	8.17	8. 37	8. 57	8.77	8, 96	9.16
ALKA(MG/L AS CACO3)	100.00	97.07	91.03	84. 98	63.37	49.08	40.11	31.32	15, 02	8.06
LOWER BOUND	14.95	17.93	20. 91	23. 89	26.87	29.85	32.83	35.81	38.79	41.77
HARD(MG/L AS CACO3)	100.00	91.76	88. 46	85.71	67.40	46.15	30.40	12.45	1.28	0.73
LOWER BOUND	55.74	62.71	69.68	75. 65	83. 62	90. 58	97. 55	104. 52	111.49	118.46
TDS (MG/L)	100.00	91.03	87.00	79.67	58. 79	41. 21	26. 37	13.00	4.21	0.73
LOWER BOUND	77.12	86. 12	75.11	104.11	113.10	122.09	131.09	140.08	149.08	158.07
PH	100.00	88.46	81. 32	73. 81	66.85	50. 92	42.12	35, 53	25. 64	5.13
LOWER BOUND	6.97	7.04	7.11	7.18	7. 25	7. 32	7.39	7.46	7. 53	7.60
BOD (HG/L)	100.00	94. 51	83. 70	74.36	58.42	32. 97	23. 08	7. 51	0. 55	0.00
LOWER BOUND	0. 78	0.90	1.02	1.15	1. 27	1.39	1.51	1.64	1.76	1.88
*****	*********	*******	*******	******	*******	*******	******	*******	*******	******

B-41 Allegheny River Near Freeport

.

"No Corps Storage," 1977

	•							
******	****	******	******	*******	*****	***	*****	************
ALLECHENY RIVER WATER	R QUALITY STUDY							
1977 STUDY PERIOD STATISTICS FOR NO COP	DE ETOBACE I OL		OWENY					
2141121122 FUR NU CUR				***				
BEGINNING OF REACH RIVER		83. 80						
END OF REACH RIVER		6.72						
SUBREACH LENGTH (MILES)		1.01						
COMPUTATION INTERVAL (HO	URS)	4						
FIRST DAY OF SIMULATION	PERIOD	182	(I JUL	77)				
LAST DAY OF SIMULATION A			(30 SEP					
NUMBER OF DAYS IN SIMULA	ATION PERIOD	91						
OBSERVATIONS AT RIVER M		31. 90						
FIRST DAY OF STUDY PERI		183	(2 JUL	77)				
LAST DAY OF STUDY PERIO			(30 SEP	77)				
NUMBER OF DAYS IN STUDY	PERIOD	91	******	***				
WATER QUALITY PARAMETER								
NUMBER OF SIMULATION PO		. 5	46					
	51							
PARAMETER	KINIHUH HA			STD. DEV.				
FLOW/H##3/S)		866. 5	619.5	438.9				
TEMP (DEGREE C)	16.5	26.2	21.4	 ∠. ∠ 0. 5 				
DXY (MG/L)	7.4		26. 3	5.7				
ALKA (MG/L AS CACO3)	14.3		∡a. J 78.	15.			-	
HARD (MG/L AS CACO3)		108. 189.	108.	24				
TDS (MG/L) Ph	6.9	7.7	7.2	7.6				*
800 (MG/L)	0.7	1.8	1.3	0.2				
化化学学学学学学学学学学学学学学学学学	*********		****	*******	****			
and the second								
ALLECHENY RIVER WATER	R QUALITY STUDY	•						
1977 STUDY PERIOD								
STATISTICS FOR NO COP								•
WATER GUALITY PARAMETERS								
NUMBER OF SIMULATION PO	INTS	54	46					
6 6 7	ENT OF SIMULAT	-		EDING LOUE	0 001MD	OF FACH IN	ITEQUAL	
PER	CUL OF STUDEAT	TON LOD		LUXING LUWE			TI Lesi TV Pilles	

					INTERVAL	S				
PARAMETER	1	2	3	4	5	6	7	8	9	10
TEMP (DEGREE C)	100.00	95. 60	88. 10	78. 75	68. 13	55. 86	36. 26	20. 70	7.14	275
LOWER BOUND	16.48	17.46	18.44	19.41	20. 39	21.36	22. 34	23. 32	24.29	25. 27
OXY (MG/L)	100.00	94.69	82. 42	63.00	51.10	43.96	32.60	25.82	20.15	6.78
LOWER BOUND	7.36	7.53	7.70	7.87	8.04	8. 21	9. 38	8. 55	8. 72	8.89
ALKA(MG/L AS CACO3)	100.00	96.70	91.58	75. 27	48.17	32. 97	25.46	20. 33	6. 59	1. 47
LOWER BOUND	14.25	16. 93	19.61	22. 29	24. 97	27. 65	30. 33	33.01	35. 69	38. 37
HARD (MO/L AS CACO3)	100.00	91. 58	87.00	75.27	63.19	46. 34	36. 45	26. 01	11.90	2. 93
LOWER BOUND	48.85	54.81	60.76	66.72	72.67	78. 63	84. 59	90. 54	96. 50	102.45
TDS (MG/L)	100.00	87.19	76. 56	49.27	31.14	18.86	7. 51	4.40	2. 93	1.65
LOWER BOUND	67. 53	79. 70	91.85	104. 03	116. 20	128.36	140. 53	152.69	164. 86	177.02
2H	100.00	88.83	80. 59	74. 18	49.27	35. 90	28. 57	20. 51	2. 56	0. 55
LOWER BOUND	6. 93	7.01	7.09	7.17	7.25	7.33	7. 40	7.48	7. 56	7.64
300 (MQ/L)	100.00	93. 95	90.11	83. 88	72. 34	50. 37	27. 47	12.82	0. 73	000
LOWER BOUND	0.69	0.82	0.95	1.09	1.21	1.35	1.48	1.61	1. 74	1.87

B-42 Allegheny River Near Natrona

"Existing Conditions," 1977

ALLEGHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR EXISTI BEGINNING OF REACH RIVER END OF REACH RIVER SUBREACH LENGTH (MILES) COMPUTATION INTERVAL (HO	QUALITY ST NG CONDITIO NPUT DATA * MILE MILE URS)	UDY NS LOWER 83.80 6.72 1.01 4	ALLEGHENY ********	***	******				· · · ·
LAST DAY OF SIMULATION P	ERIOD	273	(30 SEP	77)					
FIRST DAY OF SIMULATION LAST DAY OF SIMULATION P NUMBER OF DAYS IN SIMULA	TION PERIOD	91							
ADCCOVATIONS AT RIVER MI	15	24 63							
FIRST DAY OF STUDY PERIO	U .	273	(30 SEP	77)					
FIRST DAY OF STUDY PERIO LAST DAY OF STUDY PERIOD NUMBER OF DAYS IN STUDY	PERIOD	91							
******************	*********	********	*********	***					
WATER GUALITY PARAMETERS			546						
NUMBER OF SINCLATION FOI	NI J				E	RROR	NO. OF		MAXIMUM
		SIMULAT	ION VALUES		(SIMUL MEAN	ATED-OBS.)	OBSERVED		OBSERVED
PARAMETER	MINIMUM	HAXIMUM 1677.1	MEAN 654.3	STD. DEV. 377. 5	MEAN	STD. DEV.	VALUES	VALUE	VALUE
FLOW(M++3/5) Temp(degree C)	120.0	25.6		2.3					
BXY (MG/L)	7.5	9.3	8.2	0.5					
ALKA(MG/L AS CACO3)	4. 2	38. 2	25. 3	7.5	0.2	7.4	91	18.0	37 0
HARD (MG/L AS CACO3)	59.	149.	25.3 97. 136.	19.					
TDS (MG/L)									
PH BOD (MG/L)	5.9				0.1	0.4	91	- 6.O	7.4
\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$				0.2		********		*********	********
ALLECHENY RIVER WATER 1977 STUDY PERIOD STATISTICS FOR EXIST WATER QUALITY PARAMETERS NUMBER OF SIMULATION POI	ING CONDITIO	DNS LOWER	ALLEGHEN 4. 63 546	Y					
> PERC	CENT OF SIM	ULATION P	DINTS EXC	EEDING LOW	ER BOUND OF	F EACH INTE	ERVAL		
				INTER	VALS				
PARAMETER	1	2	3	4 5		7	8	9 10	
TEMP(DEGREE C) LOWER BOUND DXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND	100.00 15.61 100.00 7.45 100.00 4.23	16.62 95.60 7.64 98.35	17.62 1 73.81 5 7.83 94.87 8		20 8.39 25 74.54	21.65 24.18 8.58 59.16	22.65 23 18.13 12 8.77 8 39.38 21	. 82 3. 8 . 66 24 6 . 45 4. 9 . 95 9. 1 . 43 10. 4 . 40 34. 8	5 5 4 4
HARD (MG/L AS CACO3)			86.26 6	8.32 51.	47 35. 35	21.25	8.61 4	.95 2.7	5
LOWER BOUND	59.34				26 104.24			. 19 140. 1	
TDS (MG/L)	100.00 84.62			8.24 36. 7 61 141			6.59 3 184.93 199	.11 1.6 .27 213.6	
LOWER BOUND	100.00				58 87.91			. 55 2.2	
LOWER BOUND	5. 90	6.07	6. 23	6.37 6.	56 6.72	6.88	7.05 7	. 21 7. 3	
BOD (MG/L)	100.00			9.49 63.				. 37 0. 0	
LOWER BOUND	0.80	0.92		1.16 <u>1</u> . *********				.76 1.8	-

B-43 Allegheny River Near Natrona

"Pattern A," 1977

1977 STUDY PERIOD STATISTICS FOR PATTER	R GUALITY ST									
**************************************			*****	*****						
BEGINNING OF REACH RIVE		83. 80								
	R MILE	6.72								
SUBREACH LENGTH (MILES)		1.01								
COMPUTATION INTERVAL (H	OURS)	4								
FIRST DAY OF SIMULATION		182		UL 77)						
LAST DAY OF SIMULATION		273	(30 5	EP 77)						
NUMBER OF DAYS IN SIMUL		.91 24, 63								
OBSERVATIONS AT RIVER M FIRST DAY OF STUDY PERI		183	(2)	UL 77)						
LAST DAY OF STUDY PERIO		273								
NUMBER OF DAYS IN STUDY		91								
***		******	*****	*****						
WATER QUALITY PARAMETER: NUMBER OF SIMULATION PO	S AT RIVER M		4.63 546							
PARAMETER	MINIHUM	SIMULAT MAXIMUM		AN STD						
FLOW(M++3/S)	126. 5	1465.8			365.4					
TEMP(DEGREE C)	15.6	26.3		. 3	2.3					
DXY (MG/L)	7.4	9.3			0.5					
ALKA (MG/L AS CACO3)	Э. О	41.2	25	5. 8	9.1					
HARD (MG/L AS CACO3)	59.	161.	10	3.	21.			-	-	
TDS (MG/L)	85.	245.	14		33.					
PH	5.7	7.5	6	5.8	6.6					
BOD (MG/L)	0.8	1.8			0.2					
************************		*******				1.36.35				
*****	*********	*******	******	*******	*******					
****** * ********** * * * * ****	**********	*******	******		********					

ALLEGHENY RIVER WATE			******							
ALLEGHENY RIVER WATE 1977 STUDY PERIOD	R QUALITY ST	UDY								
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE	R QUALITY ST RN A LOWER A	UDY LLECHENY								
ALLEGHENY RIVER WATE 1977 Study Period Statistics for Patte Water Quality Parameter	R QUALITY ST RN A LOWER A S AT RIVER M	UDY LLECHENY	4. 63							
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE	R QUALITY ST RN A LOWER A S AT RIVER M	UDY LLECHENY			-					
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO	R QUALITY ST RN A LOWER A S AT RIVER M	UDY LLECHENY ILE 2	4. 63 346		-		EACH IN	TERVAL		
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO	R GUALITY ST RN A LOWER A S AT RIVER M INTS	UDY LLECHENY ILE 2	4. 63 346	EXCEEDIN	G LOWER	BOUND OF	EACH IN	TERVAL		
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO PER	R QUALITY ST RN A LOWER A S AT RIVER M INTS CENT OF SIMU	UDY LLECHENY ILE 2 LATION P	4.63 546 Dints E	EXCEEDIN	G LOWER	BOUND OF			8	10
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO	R GUALITY ST RN A LOWER A S AT RIVER M INTS	UDY LLECHENY ILE 2	4. 63 346	EXCEEDIN	G LOWER	BOUND OF	EACH IN 7	TERVAL B	9	.10
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO PER PARAMETER	R QUALITY ST RN A LOWER A S AT RIVER M INTS CENT OF SIMU 1	UDY LLECHENY ILE 2 LATION P 2	4.63 546 DINTS E 3	EXCEED IN	G LOWER INTERVAL 5	BOUND OF S	7	8		.10 3 48
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO PER	R QUALITY ST RN A LOWER A S AT RIVER M INTS CENT OF SIMU 1	UDY LLEGHENY ILE 2 LATION P 2 96.52	4.63 546 Dints E	EXCEEDIN	G LOWER	BOUND OF			9 7.88 24.20	-
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO PER PARAMETER TEMP(DEGREE C)	R QUALITY ST RN A LOWER A S AT RIVER M INTS CENT OF SIMU 1 100.00 15.61	UDY LLECHENY ILE 2 LATION P 2 96.52 16.69	4. 63 346 DINTS E 3 87. 73	2XCEED I N 4 82. 97	G LOWER INTERVAL 5 76. 74	BOUND OF S 6 63.74	7 41. 39	8 21. 25	7. 88	3 48
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO PER PARAMETER TEMP(DECREE C) LOWER BOUND	R QUALITY ST RN A LOWER A S AT RIVER M INTS CENT OF SIMU 1 100.00 15.61	UDY LLEGHENY ILE 2 LATION P 2 96.52 16.69 94.32	4. 63 346 DINTS E 3 87. 73 17. 76	XCEEDIN 4 82.97 18.83	G LOWER INTERVAL 3 76. 74 19. 91	BOUND OF .S 6 63. 74 20. 98 27. 47 9. 35	7 41. 39 22. 05 20. 88 8. 55	8 21.25 23.13 16.48 8.74	7,89 24,20 12,82 8,94	3 48 25, 27 4 95 9 13
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO PER PARAMETER TEMP(DECREE C) LOWER BOUND OXY (MG/L)	R QUALITY ST RN A LOWER A S AT RIVER M INTS CENT OF SIMU 1 100.00 15.61 100.00 7.37 100.00	UDY ILE 2 LATION P 2 96.52 16.69 94.32 7.57 97.62	4.63 546 DINTS E 3 87.73 17.76 77.29 7.76 92.67	4 82.97 18.83 59.52 7.96 85.16	G LOWER INTERVAL 5 76.74 19.91 43.42 8.16 81.32	BOUND OF .S 63. 74 20. 98 27. 47 8. 35 65. 93	7 41.39 22.05 20.88 8.55 51.43	8 21.25 23.13 16.48 8.74 41.03	7.88 24.20 12.82 8.94 21.25	3 48 25 27 4 95 9 13 8 97
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO PER PARAMETER TEMP(DEGREE C) LOWER BOUND OXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND	R QUALITY ST RN A LOWER A S AT RIVER M INTS CENT OF SIMU 1 100.00 15.61 100.00 7.37 100.00 3.03	UDY LLEGHENY ILE 2 LATION P 2 96.52 16.69 94.32 7.57 97.62 6.83	4.63 346 DINTS E 3 87.73 17.76 77.29 7.76 92.67 10.67	4 82.97 18.83 59.52 7.96 85.16 14.49	G LOWER INTERVAL 5 76.74 19.91 45.42 8.16 81.32 18.32	BOUND OF S 6 63. 74 20. 98 27. 47 8. 35 65. 93 22. 14	7 22.05 20.88 8.35 51.43 25.96	8 21.25 23.13 16.48 8.74 41.03 29.78	7.88 24.20 12.82 8.94 21.25 33.61	3 48 25.27 4 95 9 13 8 97 37 43
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO PER PARAMETER TEMP(DECREE C) LOWER BOUND OXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3)	R QUALITY ST RN A LOWER A S AT RIVER M INTS CENT OF SIMU 1 100.00 15.61 100.00 7.37 100.00 3.03 100.00	UDY LLEGHENY ILE 2 LATION P 2 96.52 16.69 94.32 7.57 97.62 6.83 91.94	4. 63 346 DINTS E 3 87. 73 17. 76 77. 29 7. 76 72. 67 10. 67 85. 90	4 82.97 18.83 59.52 7.96 83.16 14.49 79.67	G LOWER INTERVAL 5 76.74 19.91 45.42 81.62 18.32 57.69	BOUND OF .S 6 63.74 20.98 27.47 8.35 65.93 22.14 36.43	7 22.03 20.88 8.55 51.63 25.96 15.75	8 23. 13 16. 48 8. 74 41. 03 29. 78 9. 71	7.88 24.20 12.82 8.94 21.25 33.61 4.95	3 48 25.27 4 95 9 13 8 97 37 43 2 56
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO PER PARAMETER TEMP(DECREE C) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND	R QUALITY ST RN A LOWER A S AT RIVER M INTS CENT OF SIMU 1 100.00 15.61 100.00 7.37 100.00 3.03 100.00 39.34	UDY LLEGHENY ILE 2 LATION P 2 96.52 16.69 94.32 7.57 97.62 6.85 91.94 69.53	4.63 546 DINTS E 3 87.73 17.76 77.29 7.76 72.67 10.67 85.90 79.72	4 82.97 18.83 59.52 7.96 85.16 14.49 14.49 89.92	G LOWER INTERVAL 5 76.74 19.91 43.42 8.16 81.32 18.32 57.69 100.11	BOUND OF 5 6 63.74 20.98 27.47 8.35 65.93 22.14 36.45 110.30	7 22.03 20.88 8.35 51.63 25.95 15.75 120.49	8 21, 25 23, 13 16, 48 8, 74 41, 03 29, 78 9, 71 130, 69	7.88 24.20 12.82 8.94 21.25 33.61 4.95 140.88	3 48 25.27 4 95 9 13 8 97 37 43 2 56 151.07
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO PER PARAMETER TEMP(DECREE C) LOWER BOUND OXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L)	R QUALITY ST RN A LOWER A S AT RIVER M INTS CENT OF SIMU 1 100.00 15.61 100.00 7.37 100.00 3.03 100.00 39.34 100.00	UDY LLEGHENY ILE 2 LATION P 2 76.52 16.69 94.32 7.57 97.62 6.83 91.94 69.53 91.76	4. 63 546 0 INTS E 3 87. 73 17. 76 77. 29 7. 76 92. 67 10. 67 85. 90 79. 72 82. 42	4 82.97 18.83 59.52 7.96 85.16 14.49 79.67 89.92 69.41	G LOWER INTERVAL 5 76.74 19.91 43.42 8.16 81.32 18.32 18.32 57.69 100.11 42.86	BOUND OF 5 6 63.74 20.98 27.47 8.35 65.93 22.14 36.43 110.30 22.34	7 41. 39 22. 05 20. 88 8. 55 51. 65 25. 96 15. 75 120. 49 13. 37	8 21. 25 23. 13 16. 48 8. 74 41. 03 29. 78 9. 71 130. 68 9. 71	7.88 24.20 12.82 8.94 21.25 33.61 4.95 140.88 5.86	3 48 25.27 4 95 9 13 8 97 37 43 2 56 151.07 2 01
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO PER PARAMETER TEMP(DECREE C) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND	R QUALITY ST RN A LOWER A S AT RIVER M INTS CENT OF SIMU 1 100.00 15.61 100.00 7.37 100.00 3.03 100.00 39.34 100.00 - 84.62 1	UDY LLEGHENY ILE 2 LATION P 2 96.52 16.69 94.32 7.57 97.62 6.83 91.94 91.75 00.66 1	4.63 346 GINTS E 3 87.73 17.76 77.76 72.67 10.67 83.90 79.72 83.90 79.72 82.42 16.70	4 82.97 18.83 59.52 7.96 85.16 14.49 79.67 89.92 89.92 41 132.74	G LOWER INTERVAL 5 76.74 19.91 43.42 8.16 81.32 18.32 57.69 100.11 42.86 148.79	BOUND OF S 6 63. 74 20. 98 27. 47 8. 35 55. 93 22. 14 36. 45 110. 30 22. 34 164. 83	7 41. 39 22. 05 20. 88 8. 55 51. 65 25. 96 15. 75 120. 49 13. 37	5 21. 25 23. 13 14. 48 8. 74 41. 03 29. 78 9. 71 130. 69 9. 71 196. 92	7.88 24.20 12.82 8.94 21.25 33.61 4.95 140.88 5.86	3 48 25.27 4.95 9.13 8.97 37 43 2.54 151.07 2.01 229.00
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO PER PARAMETER TEMP(DEGREE C) LOWER BOUND OXY (MG/L) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND TDS (MG/L) LOWER BOUND	R GUALITY ST RN A LOWER A S AT RIVER M INTS CENT OF SIMU 1 100.00 15.61 100.00 3.03 100.00 39.34 100.00 59.34 100.00 - 84.62 1 100.00	UDY ILE CHENY ILE 2 LATION P 2 94.52 16.69 94.32 7.57 97.62 6.85 91.94 69.53 91.94 69.53 91.76 00.66 1 97.07	4.63 346 GINTS E 3 87.73 17.76 77.76 72.67 10.67 83.90 79.72 83.90 79.72 82.42 16.70	4 82.97 18.83 59.52 7.96 85.16 14.49 79.67 89.92 69.41	G LOWER INTERVAL 5 76.74 19.91 43.42 8.16 81.32 18.32 18.32 57.69 100.11 42.86	BOUND OF 5 6 63.74 20.98 27.47 8.35 65.93 22.14 36.43 110.30 22.34	7 41. 39 22. 05 20. 88 8. 55 51. 45 25. 96 15. 75 120. 49 13. 37 180. 87	8 21. 25 23. 13 16. 48 8. 74 41. 03 29. 78 9. 71 130. 68 9. 71	7.88 24.20 12.82 8.94 21.25 33.61 4.95 140.88 5.86 212.96	3 48 25.27 4 95 9 13 8 97 37 43 2 56 151.07 2 01
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO PER PARAMETER TEMP(DECREE C) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND TDS (MG/L) LOWER BOUND PH	R GUALITY ST RN A LOWER A S AT RIVER M INTS CENT OF SIMU 1 100.00 15.61 100.00 3.03 100.00 39.34 100.00 59.34 100.00 - 84.62 1 100.00	UDY LLEGHENY ILE 2 LATION P 2 94. 32 7. 57 97. 62 6. 83 91. 94 69. 53 91. 76 00. 66 1 97. 07 5. 91	4. 63 346 DINTS E 3 87. 73 17. 76 77. 29 92. 67 10. 67 85. 90 79. 72 82. 42 16. 70 95. 42	4 82.97 18.83 59.52 7.96 83.16 14.49 79.67 89.92 69.41 132.74 92.86	G LOWER INTERVAL 5 76.74 19.91 43.42 0.16 81.32 18.32 57.69 100.11 42.86 148.79 91.38	BOUND OF .S 6 43.74 20.98 27.47 9.35 45.93 22.14 36.45 110.30 22.34 164.83 88.46	7 41. 39 22. 03 20. 88 8. 35 51. 63 25. 96 15. 75 120. 49 13. 37 180. 87 84, 98	8 21. 25 23. 13 16. 48 8. 74 41. 03 29. 78 9. 71 130. 69 9. 71 196. 92 70. 15	7.88 24.20 12.82 8.94 21.25 33.61 4.95 140.88 5.86 212.96 48.72	3 48 25.27 4.95 9.13 8.97 37 43 2.56 151.07 2.01 229.00 13.02
ALLEGHENY RIVER WATE 1977 STUDY PERIOD STATISTICS FOR PATTE WATER QUALITY PARAMETER NUMBER OF SIMULATION PO PER PARAMETER TEMP(DECREE C) LOWER BOUND ALKA(MG/L AS CACO3) LOWER BOUND HARD(MG/L AS CACO3) LOWER BOUND TDS (MG/L) LOWER BOUND PH LOWER BOUND	R QUALITY ST RN A LOWER A S AT RIVER M INTS CENT OF SIMU 1 100.00 15.61 100.00 7.37 100.00 3.03 100.00 39.34 100.00 - 84.62 1 100.00 5.73 100.00 0.80	UDY LLEGHENY ILE 2 LATION P 2 74. 32 7. 57 97. 62 6. 83 91. 94 69. 33 91. 94 69. 33 91. 76 00. 66 1 97. 07 5. 91 92. 31 0. 92	4.63 346 0 INTS E 37.76 77.76 72.67 92.67 92.67 93.97 92.42 95.429 84.62 1.04	4 82.97 18.83 59.52 7.96 85.16 14.49 79.67 89.92 69.41 132.74 92.86 6.28 73.27 1.16	G LOWER INTERVAL 5 76.74 19.91 43.42 8.13 18.32 57.69 100.11 42.86 148.79 91.58 6.46 57.14 1.28	BOUND OF .S 6 63. 74 20. 98 27. 47 8.5 65. 93 22. 14 36. 45 110. 30 22. 34 164. 83 88. 46 6. 64 37. 36 1. 40	7 41. 39 22. 05 20. 88 8. 55 51. 45 25. 96 15. 75 120. 49 13. 37 180. 87 84, 98 64. 82 24. 18 1. 52	9 21. 25 23. 13 14. 48 8. 74 41. 03 29. 78 9. 71 130. 69 9. 71 196. 92 70. 15 7. 00 9. 89 1. 64	7.88 24.20 12.82 8.94 21.25 33.61 4.95 140.88 5.86 212.96 48.72 7.18 0.37 1.76	3 48 25.27 4.95 9.13 8.97 37 43 2.56 151.07 2.01 229.00 15.02 7.36 0.00 1.58

B-44 Allegheny River at Natrona

"No Corps Storage," 1977

*****	********	*********	****	********	*******
ALLECHENY RIVER WATER G	UALITY ST	UDY			
1977 STUDY PERIOD					
STATISTICS FOR NO CORPS					
**************************************			******	***	
BEGINNING OF REACH RIVER M					
END OF REACH RIVER M		6.72			
SUBREACH LENGTH (MILES)		1.01			
COMPUTATION INTERVAL (HOUR	S)	4			
FIRST DAY OF SIMULATION PE	RIOD	182	(1 JUL	77)	
LAST DAY OF SIMULATION PER	IOD	273	(30 SEP	77)	
NUMBER OF DAYS IN SIMULATI	ON PERIOD	91			
OBSERVATIONS AT RIVER MILE		24.63			
FIRST DAY OF STUDY PERIOD		183	(2 JUL)	77)	
LAST DAY OF STUDY PERIOD		273	(30 SEP	77)	
NUMBER OF DAYS IN STUDY PE					
*********		• =		***	
WATER QUALITY PARAMETERS A	T RIVER M	TIE 24 4	43		
NUMBER OF SIMULATION POINT			46		
NORDER OF STRUCKTOR FOIRT	3	. . .	+0		
		SIMULATION	VALUES		
PARAMETER		MAXIMUM			
FLOW(M++3/5)		3590. 3			
TEMP (DEGREE C)		26.7			
DYY /HO/LA					

MININUM	MAXIMUM	MEAN	STD. DEV.
121. 0	3590. 3	704. 2	533.1
16. 5	26.7	21.4	2.1
7.4	9.0	8. 2	0.4
-4.6	39.2	21.9	6.1
44.	157.	93,	23.
67.	243.	136.	35.
4.0	7.5	6.4	5.4
0.7	1. 9	1.3	0.2
****	********	********	*********
	121.0 16.5 7.4 -4.6 44. 67. 4.0 0.7	121.0 3590.3 16.5 26.7 7.4 9.0 -4.6 39.2 44. 157. 67. 243. 4.0 7.5 0.7 1.8	121.0 3590.3 704.2 16.5 26.7 21.4 7.4 7.0 8.2 -4.6 39.2 21.9 44. 157.93. 67.243.136. 4.0 7.5 6.4

ALLEGHENY RIVER WATER QUALITY STUDY 1977 STUDY PERIOD STATISTICS FOR NO CORPS STORAGE LOWER ALLEGHENY WATER QUALITY PARAMETERS AT RIVER MILE 24.63 NUMBER OF SIMULATION POINTS 346

PARAMETER	INTERVALS									
	1	2	3	4	5	6	7	8	9	10
TEMP (DEGREE C)	100.00	95.05	86, 26	77.84	67.95	52. 38	34. 07	10.62	3. 48	0.73
LOWER BOUND	16.51	17.53	18, 55	19.57	20. 58	21.60	22.62	23. 63		
OXY (HG/L)	100.00	95.97	83. 88	67.95	51.83	40.48	30.22			25.67
LOWER BOUND	7.40	7. 57	7.73	7,90	8,07	8. 23	8.40	24.54	17.58	6.04
ALKA (MO/L AS CACO3)	99.82	99.63	99.45	79.08				8. 56	8.73	9.89
LOWER BOUND	-4. 61	-0.22	4.16		90.84	80. 95	50. 92	25. 27	6. 96	1.65
HARD (MO/L AS CACOS)	100.00	94.14		8. 54	12. 93	17. 31	21.70	26. 08	30. 46	34. 85
LOWER BOUND	44.36		87.36	71.61	54.40	35. 90	17.03	10. 81	4. 21	0. 92
TDS (MG/L)		55. 67	66. 78	78.29	87.60	100, 91	112.22	123. 53	134.84	146.15
	100.00	91, 58	83.15	62.27	49.17	30. 22	12.27	7.14	3.48	1.65
LOWER BOUND	67.23	84. 82	102.41	120.01	137, 60	155.19	172.78	190. 37	207.96	225. 55
PH	100.00	99. 63	99.63	97: 6 3	97. 63	78. 53	96.13	95.60	78.39	8.06
LOWER BOUND	4. 03	4. 38	4.73	5.09	5.44	5.79	6.14	6. 50	6.85	7.20
BOD (MC/L)	100.00	93.41	87. 73	84. 43	71.06	48.72	28.39	10.26	1.28	0.00
LOWER BOUND	0. 73	0.86	0, 78	1.11	1.24	1.37	1.49	1 62	1.75	1 87
*****	*********	*******	*******	*******	*******	*******	******			1 8/

APPENDIX C

ALLEGHENY RIVER

WATER QUALITY DURATION CURVES

APPENDIX C

ALLEGHENY RIVER WATER QUALITY DURATION CURVES

by

R. G. WILLEY¹

GENERAL INTRODUCTION

This report is an expansion of "Simulation of Streamflow Regulation Effects on the Water Quality of the Allegheny River" by Paul W. Hadley and Gerald T. Orlob. Preparation of the duration curves was beyond the scope of the contract leading to this report. This Appendix was written after the rest of the report was completed and is included for the readers convenience. The duration curves are to be used in conjunction with water quality benefit curves for computation of the water quality benefits due to modified flow regulations. Numerous graphical displays define the water quality impacts of Kinzua Reservoir reregulation (Pattern A) and the impacts of the entire nine Corps of Engineers (COE) Reservoirs under present regulation (No COE Storage). The data used to develop these graphs is provided in Appendix B.

In all of the graphs in this Appendix, the same legend applies. If no impact exists the Existing Condition symbol will suppress the Pattern A symbol — — and/or the No COE Storage symbol — … The graphs show water quality constituent vs. percent of the time exceeded. The water quality duration curves are analogous to flow duration curves in their development and in their use to determine average annual benefits.

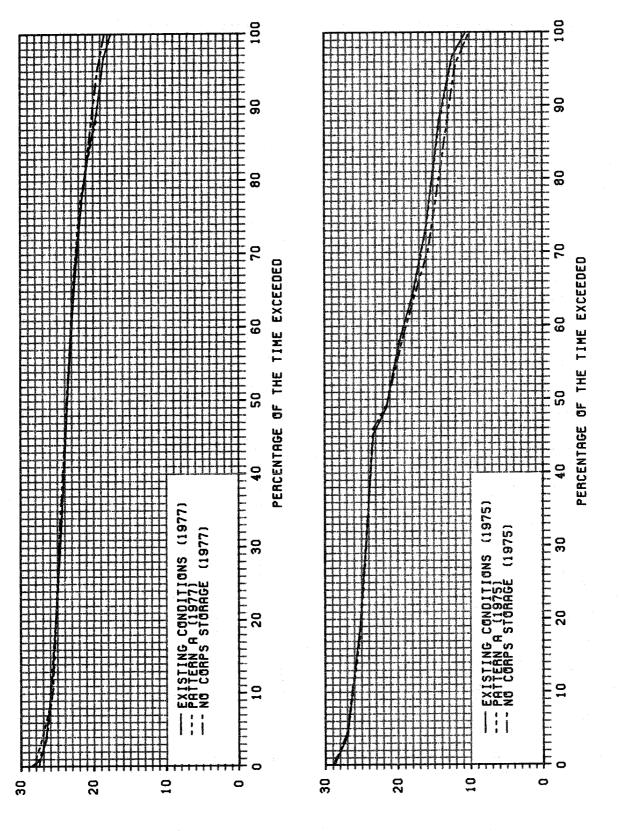
¹Hydraulic Engineer, Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California.

ALLEGHENY RIVER WATER QUALITY AT NATRONA

The integrated impact of all nine COE reservoirs on river temperature, alkalinity, pH and TDS with present regulation or with Pattern A regulation is shown in Figures C-1 through C-4.

Allegheny River Temperature at Natrona

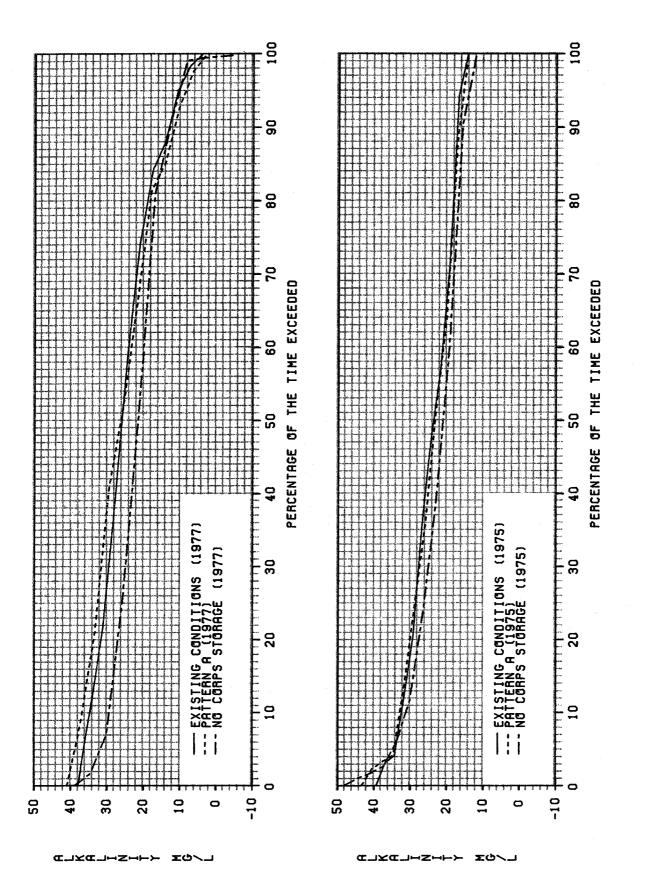
The graph for the temperature at Natrona during the 1975 study period (see Figure C-1) shows that about 35% of the time the No COE Storage case would cause slightly cooler water. No impact occurs during the remaining time. The Pattern A case shows no impact compared to Existing Conditions.


During the 1977 study period there is no significant impact for either alternative.

Allegheny River Alkalinity at Natrona

During the 1975 study period, Figure C-2 shows that the alkalinity would not change 95% of the time for the Pattern A case and would experience only minor impacts due to No COE Storage. The No COE Storage case would be slightly lower than the Existing Condition about 95% of the time. Both alternatives would exceed Existing Conditions about 5% of the time.

The graph for the 1977 study period shows that the alkalinity for the Pattern A case exceeds the Existing Condition about 50% of the time. The No COE Storage case is lower than the Existing Condition case about 90% of the time.


In general, the impact of the alternatives is only slightly significant. Although the impact is difficult to predict, existing regulation probably provides a slightly higher alkalinity than the alternative cases studied.

AT NATRONA FIGURE C-1. ALLEGHENY RIVER WATER TEMPERATURE

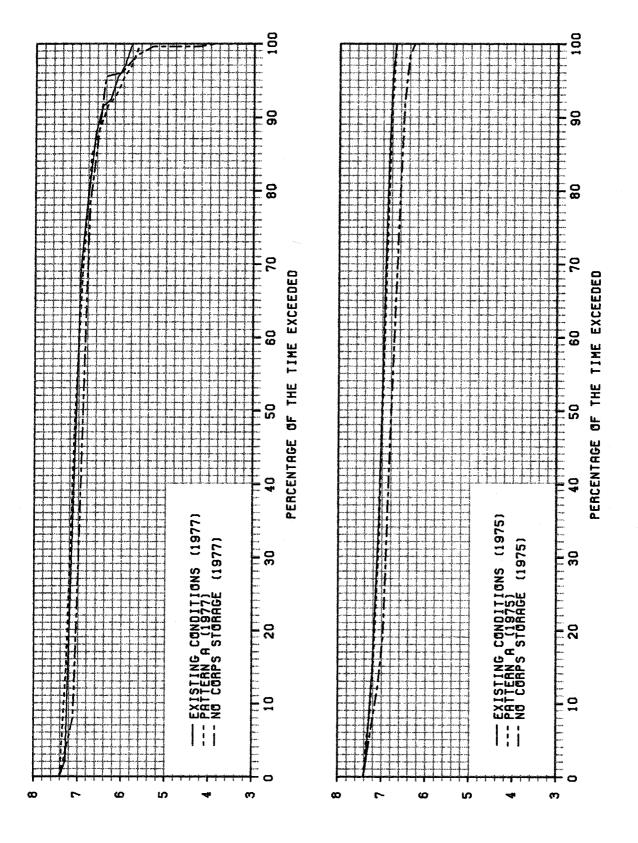
HEXTRECHDCH OFTWHOW

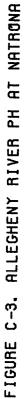
HERFERGHORE CHINHON

Allegheny River pH at Natrona

During the 1975 study period, Figure C-3 shows that the pH would be slightly lower 95% of the time for the No COE Storage case and no impact during the remaining time. The Pattern A case has no impact.

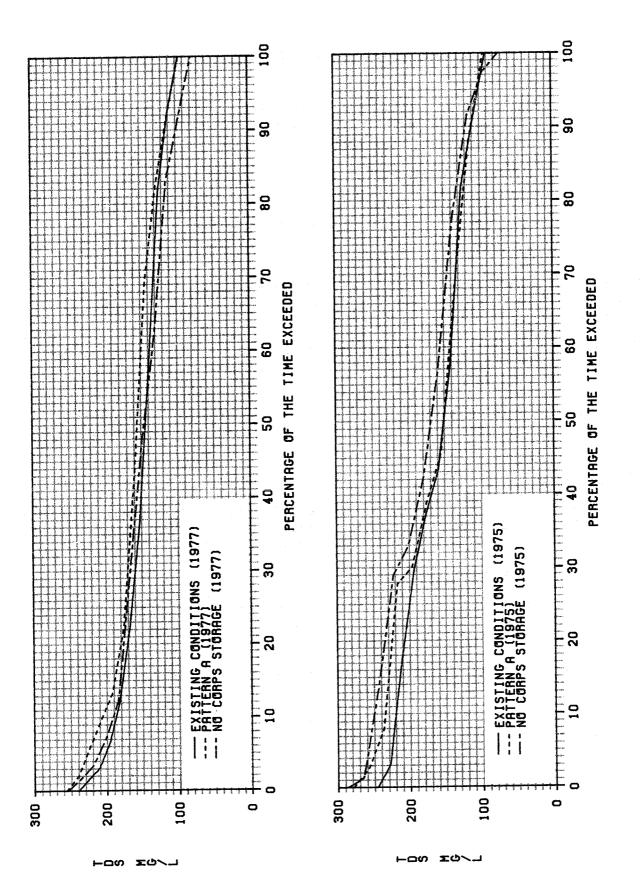
During the 1977 study period, the pH was slightly lower than the Existing Condition 90% of the time for the No COE Storage case. During an additional 2% of the time, a very significant drop in pH occurs for the No COE Storage case. The Pattern A case is slightly lower than the Existing Condition 10% of the time and no impact the remaining time.

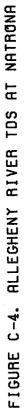

In general, slightly decreased pH would occur most of time for the No COE Storage case. No significant impact would occur for the Pattern A regulation.


Allegheny River TDS at Natrona

During the 1975 study period, Figure C-4 shows that the Pattern A case would cause higher TDS than the Existing Condition about 30% of the time and no significant impact during the remaining time. The No COE Storage case would cause significantly higher TDS than the Existing Condition 95% of the time and lower TDS for 2% of the time.

The graph for the 1977 study period shows that the Pattern A case would cause higher TDS than the Existing Condition about 90% of the time and no impact the remaining time. The No COE Storage case is only slightly higher than the Existing Condition about 50% of the time and only slightly lower the other 50% of the time.


In general, during a significant portion of the time, the Pattern A regulation would cause higher TDS, with no impact the remaining time. The No COE Storage case would cause higher TDS part of the time and equally lower TDS the remaining time. The proportion of the positive or negative impact time can not be predicted.



٩T

٩T

C-7

FRENCH CREEK WATER QUALITY AT MEADVILLE

The impact of Union City and Woodcock Reservoirs under present regulation is contrasted to the case without reservoir storage. The results are shown at Meadville in Figures C-5 through C-8.

French Creek Temperature at Meadville

During both the 1975 and 1977 study periods, Figure C-5 shows that the projects have no significant impact on the stream temperature.

French Creek Alkalinity at Meadville

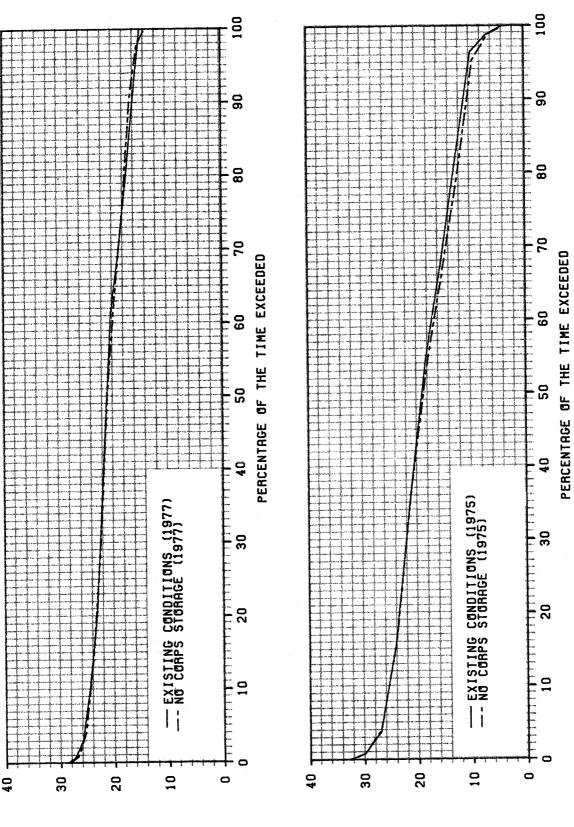
During the 1975 study period, Figure C-6 shows that the alkalinity would be slightly higher for the No COE Storage case about 40% of the time and significantly lower about 40% of the time.

During the 1977 study period, the No COE Storage case causes significantly lower alkalinity 80% of the time and only slightly higher 5% of the time.

In general, the alkalinity for the unregulated case is significantly lower during at least 50% of the time with only minor differences the remaining time.

French Creek pH at Meadville

During both the 1975 and 1977 study periods, Figure C-7 shows that there is little impact due to regulation most of the time, with a slightly lower pH due to the regulated conditions 15% of the time.


French Creek TDS at Meadville

During the 1975 study period (see Figure C-8), the regulated case causes slightly lower TDS 20% of the time with no impact the remaining time.

During the 1977 study period, slightly higher TDS would exist during the entire time for the regulated case.

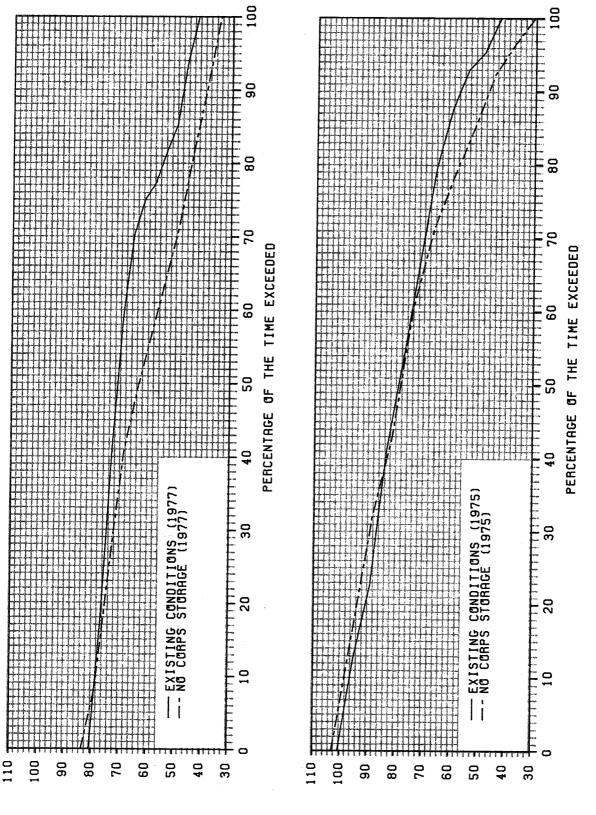
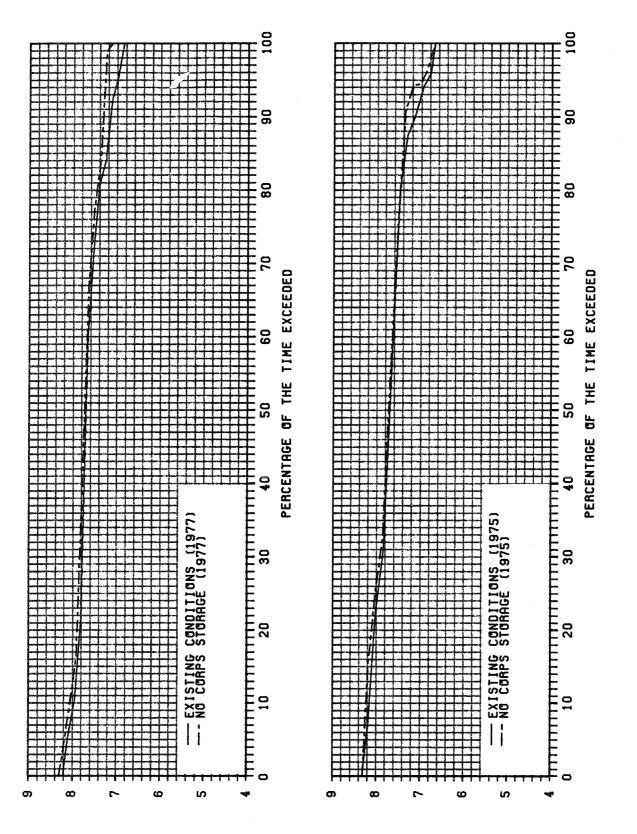

Although the 1975 impact is in the opposite direction of the 1977 impact, the magnitudes of the impacts are too small to be of any consequence.

FIGURE C-5. FRENCH CREEK WATER TEMPERATURE AT MEADVILLE

HEXTREHDER CHINHON


FEXTERCTORE CETONOS

CUXCUHZHFF KO/U

CUKCUHZHFY ZQ/J

a.x

a.I

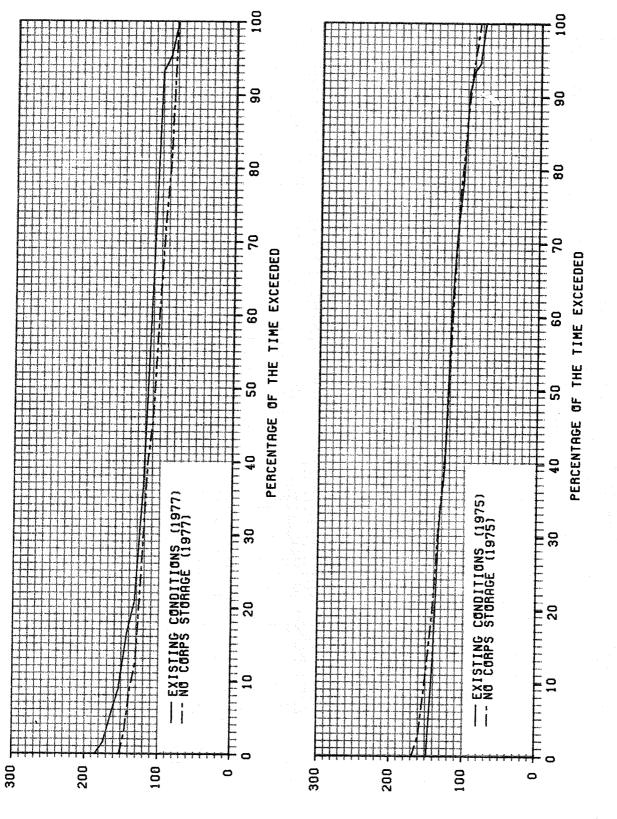


FIGURE C-8. FRENCH CREEK TDS AT MEADVILLE

HOS XO/J

LLGA NO-1

KISKIMINETAS RIVER WATER QUALITY NEAR VANDERGRIFT

The impact of Loyalhana and Conemaugh Reservoirs under present regulation is contrasted to the case without reservoir storage. The results are shown near Vandergrift in Figures C-9 through C-12.

Kiskiminetas River Temperature near Vandergrift

During both the 1975 and 1977 study periods, Figure C-9 shows that the projects cause slightly warmer water under the regulated condition.

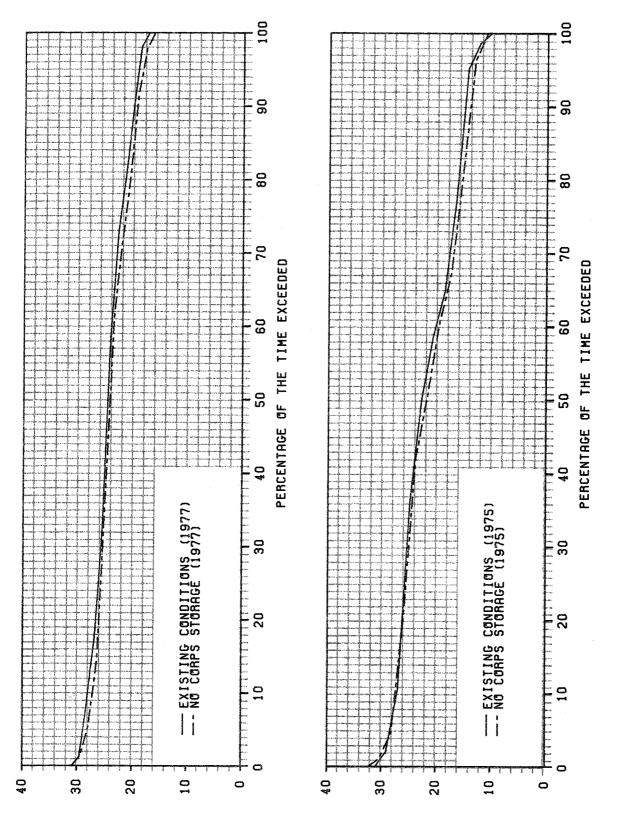
Kiskiminetas River Alkalinity near Vandergrift

During both the 1975 and 1977 study period, Figure C-10 shows that the projects cause significantly higher alkalinity under regulated conditions.

Kiskiminetas River pH near Vandergrift

During the 1975 study period, Figure C-11 shows that the projects cause higher pH water over 95% of the time under regulated conditions and only slightly lower pH during less than 5% of the time.

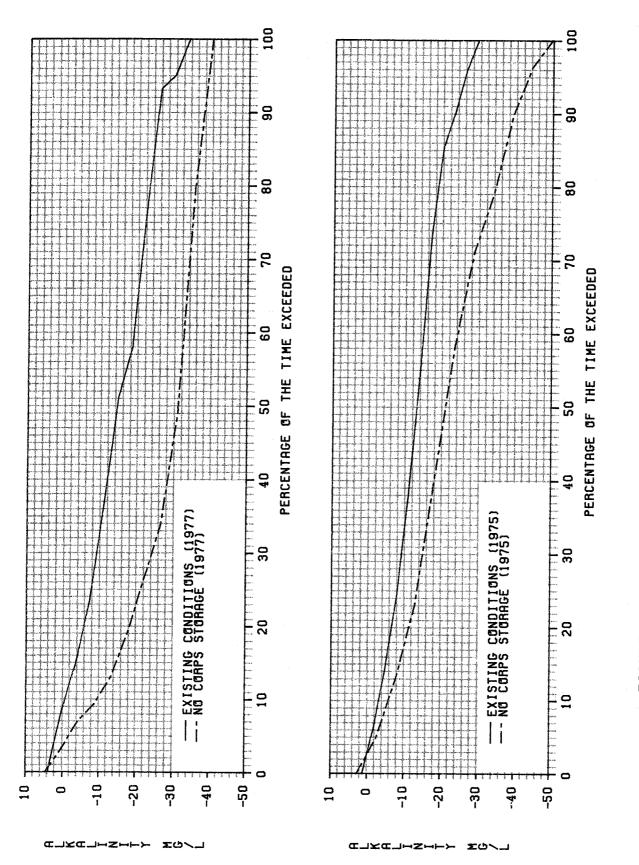
During the 1977 study period, the projects cause significantly higher pH all the time.

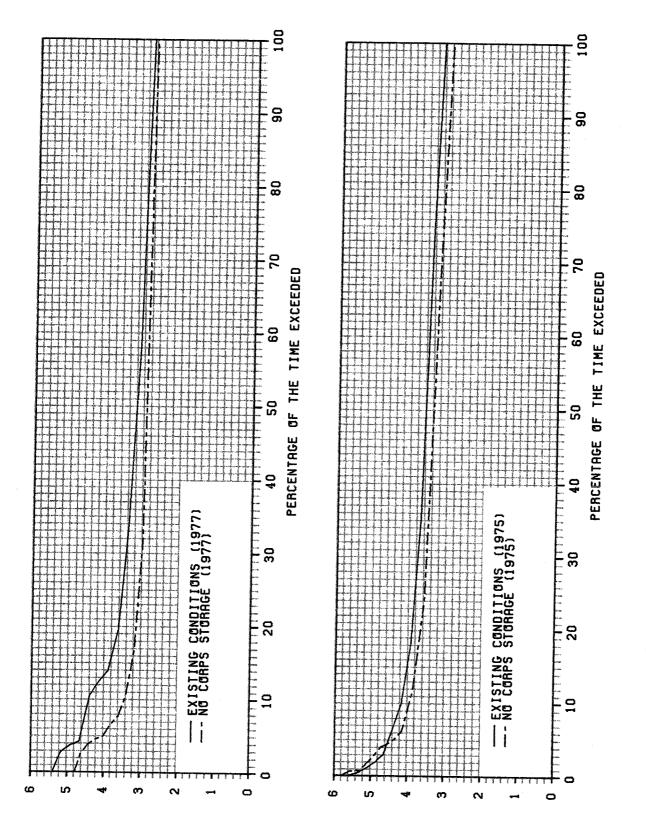

In general, higher pH should be expected most of the time under regulated conditions.

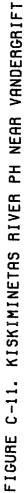
Kiskiminetas River TDS near Vandergrift

During the 1975 study period, Figure C-12 shows that the regulated conditions caused slightly lower TDS over 80% of the time and slightly higher TDS during 10% of the time.

During the 1977 study period, regulated conditions caused significantly lower TDS 99% of the time.


In general, regulated conditions would cause lower TDS.




HERFEREEHDER OFFON

HERFERE

0. II

٩T

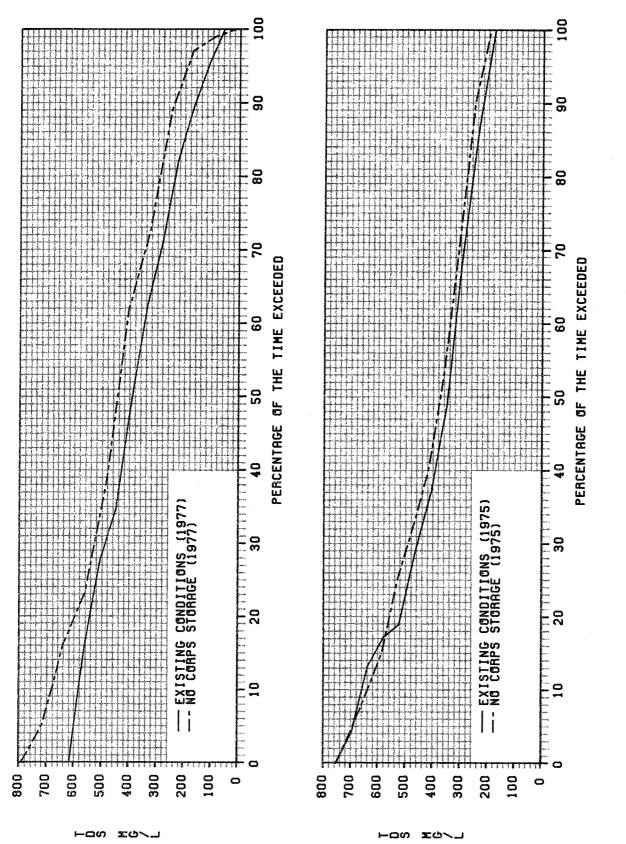


FIGURE C-12. KISKIMINETAS RIVER TDS NEAR VANDERGRIFT

CLARION RIVER WATER QUALITY NEAR ST. PETERSBURG

The impact of the East Branch Clarion Reservoir under present regulation is contrasted to the case without reservoir storage. The results near St. Petersburg are shown in Figures C-13 through C-16. Note that these results do not include any effects of Piney Dam regulation.

Clarion River Temperature near St. Petersburg

During both the 1975 and 1977 study periods (see Figure C-13), no impact is predicted near St. Petersburg for temperature due to regulation.

Clarion River Alkalinity near St. Petersburg

The graph of the 1975 study period (see Figure C-14) shows that the alkalinity from the unregulated case is slightly higher for 20% of the time and slightly lower for 20% of the time.

The graph for the 1977 study period shows that there is no significant impact on alkalinity.

In general, only slight impact on alkalinity may be caused by regulation for a very short period of time.

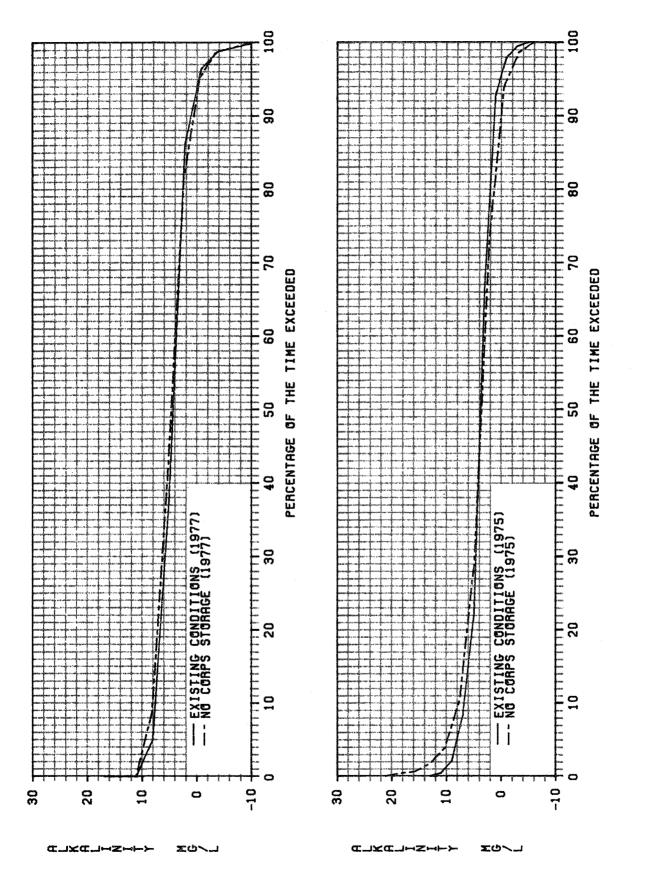
Clarion River pH near St. Petersburg

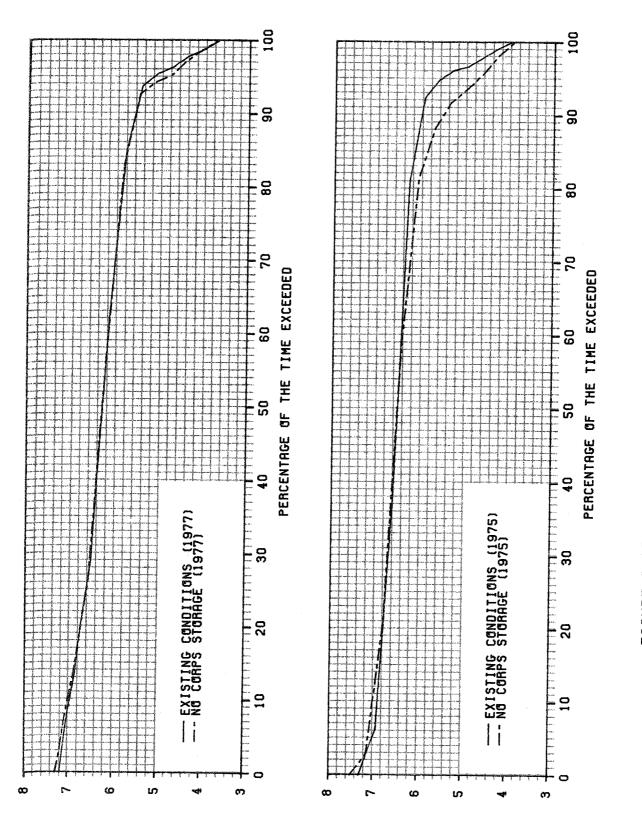

The graph of the 1975 study period (see Figure C-15) shows that the pH from the regulated case is significantly higher during more than 30% of the time. No significant impact exists the remaining time.

The graph of the 1977 study period shows that there is no significant impact on pH.

In general, the regulated case may cause significantly higher pH during high acid runoff events.

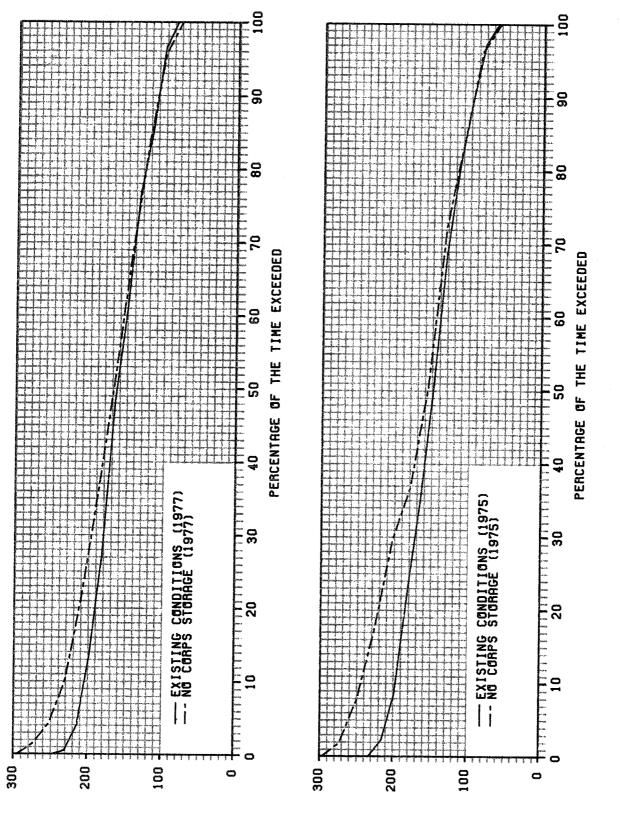
Clarion River TDS near St. Petersburg


During both the 1975 and 1977 study periods (see Figure C-16), the regulated case caused significantly lower TDS about 50% of the time, with no significant impact during the remaining time.



HEXTERCHOCE OFTOHOO

HUXTHCCHDCH CHINHDO



0.X

9. T

HON XON

LOO XON

CONCLUSIONS

The water quality impacts due to the Pattern A regulation and the No COE Storage (unregulated) case are summarized below. These conclusions include generalizations of the results from both study periods and discuss only the significant impacts.

Temperature

Temperature impacts on the Allegheny River are significant at Warren due to Kinzua Dam regulation but are rather difficult to predict. Simulation results show that present regulation will cause higher temperatures sometimes and lower temperatures other times. These impacts are insignificant at Natrona due to the moderating effects of meteorological conditions during the travel time involved. Also, the upstream impact receives no reinforcement from the three major tributaries.

The Clarion River impacts are similar to the Allegheny River with simulation results showing significant impact occurring at Ridgeway but no influence at Piney or St. Petersburg. The Ridgeway impact can cause higher or lower temperature releases at different times.

Alkalinity

Simulation results show that alkalinity impacts on the Allegheny River are significant at Warren due to Kinzua Dam regulation but are difficult to predict. The present regulation will cause higher values sometimes and lower values other times. Pattern A regulation always causes either the same alkalinity as existing regulation or significantly higher values at Warren.

The impacts at Warren are greatly reduced by the time they get to Natrona. The present regulation generally causes higher alkalinity at Natrona due to the influences of the French Creek and the Kiskiminetas River. The Pattern A regulation at Kinzua Dam does not cause any significant impact at Natrona.

C-23

ter de la composition de la composition

Simulation results show that the pH impact on the Allegheny River at Warren is significant but difficult to predict. The present regulation can cause either a higher or lower pH discharge. The Pattern A regulation causes either the same or slightly higher pH than the present regulation.

The pH at Natrona under present regulation is higher due to the influence of the Kiskiminetas and Clarion Rivers. The Pattern A regulation does not cause any significant impact at Natrona.

The Clarion River has significantly lower pH at Ridgeway under regulated conditions, with decreasing impact in the downstream direction. At St. Petersburg, a higher pH occurs under present regulation during 30% of the time.

TDS

At Warren, simulation results show that present regulation causes 75-100 mg/l less TDS, with decreasing impact downstream. Pattern A regulation causes considerably less impact, about 15-30 mg/l, at Warren and downstream.

The TDS impact at Natrona is significantly reduced from that at Warren and usually has lower TDS under present regulation. Pattern A regulation impacts at Natrona are similar. The change between Warren and Natrona is influenced mostly by the Clarion River.

The Clarion River regulation has significant impact and causes decreased TDS. While the impact is greatest (about 200 mg/l) at Ridgeway, it continues to remain significant (about 50 mg/l) downstream.