

Columbia River System Analysis Model - Phase I

October 1991

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188		
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.						
1. REPORT DATE (DD-	MM-YYYY)	2. REPORT TYPE		3. DATES CO	OVERED (From - To)	
October 1991		Project Report	5-			
4. IIILE AND SUBIII	₋⊑ /stem Analysis Mo	odel - Phase I	5a.	CONTRACT NUMBER		
	Sterin Pintary Sib 1010		5b.	5b. GRANT NUMBER		
			5c.	5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)			5d	. PROJECT NUMBER		
CEIWR-HEC						
			5e.	. TASK NUMBER		
			5F.	WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center (HEC) 609 Second Street Davis, CA 95616-4687			8. PERFORMING ORGANIZATION REPORT NUMBER PR-16			
9. SPONSORING/MON	ITORING AGENCY NA	ME(S) AND ADDRESS	S(ES)	10. SPONSOR/ MONITOR'S ACRONYM(S)		
				11. SPONSC	DR/ MONITOR'S REPORT NUMBER(S)	
Approved for public	ic release; distribu	tion is unlimited.				
13. SUPPLEMENTARY	NOTES					
•						
Report documentin operation of the Co programming to all the applicability of the best-currently-a	ng the developmen olumbia River rese locate optimally th the model for the available estimates	t of the HEC-Pres rvoir system. The ne system water. T system, and (2) an s of flow data and	criptive Reservoir M e model represents t Fwo applications are nalysis of the critica penalty functions.	Aodel and its he system as e documente l period. Th	a application of analyzing the a network and uses network-flow d: (1) a validation test to determine e applications are performed using	
15. SUBJECT TERMS						
rescriptive Reservoir Model, network flow, linear programming, penalty functions, depletions, reservoir releases, reservoir storage objective function flood damage navigation recreation hydronower water supply Fish & Wildlife						
a. REPORT	b. ABSTRACT	c. THIS PAGE	OF	OF	13a. NAME OF RESPONSIBLE PERSON	
U	U	U		PAGES	19b. TELEPHONE NUMBER	
			00	1/2		
					Standard Form 298 (Rev. 8/98)	

Prescribed by ANSI Std. Z39-18

Columbia River System Analysis Model - Phase I

October 1991

US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center 609 Second Street Davis, CA 95616

(530) 756-1104 (530) 756-8250 FAX www.hec.usace.army.mil

PR-16

PREFACE

The investigation reported herein is Phase I of a proposed two-phased study involving the application of the Hydrologic Engineering Center's Prescriptive Reservoir Model, designated HEC-PRM, to the Columbia River reservoir system. The model, applies network-flow programming, a special case of linear programming, to reservoir system operation analysis. Phase I, which began 1 January 1991, included preliminary analysis and testing and evaluation of the applicability of HEC-PRM to the Columbia River reservoir system. Phase II, planned for 12 additional months, will expand the model, and using enhanced flow and penalty function data, will apply the model to evaluate the optimal reservoir system operations for a set of alternatives.

The project is undertaken at the request of the North Pacific Division which funded the study. The project is a joint effort among the Hydrologic Engineering Center (HEC), responsible for the model development and application, and the Institute for Water Resources (IWR), responsible for economic aspects and development of penalty functions for the Columbia River system. The IWR report is published separately. Mike Burnham, Chief of Planning Analysis Division, served as project manager. Bob Carl, Planning Analysis Division, oversaw and contributed significantly to the technical aspects and review of the study. Richard Hayes, Training Division, assembled the model input data, participated in the analysis, and assembled the Phase I report material. Marilyn Hurst, Training Division. developed edited penalty functions for the model. Vern Bonner, Chief of Training Division, participated throughout and contributed with his expert reservoir experience to the project. Loshan Law, Planning Analysis Division, typed and assembled the report. David T. Ford. Engineering Consultant, provided expert advice and assistance in model formulation. development, and documentation. Darryl W. Davis, Director, provided general supervision and guidance throughout the project. HQUSACE point of contact for the work is Earl Eiker, Chief of Hydraulics and Hydrology Branch, Engineering Division, Civil Works Directorate.

iv

COLUMBIA RIVER SYSTEM ANALYSIS

PHASE I

Table of Contents

Pag	je
Preface	
Summary and Conclusions	1
Problem Description	2
Proposed Solution	4
Alternatives Considered	4
HEC's Prescriptive Reservoir Model, HEC-PRM	4
Columbia River System Network	4
Penalty Functions	6
Phase I Applications	6
Overview	6
Validation	6
Motivation	6
Validation Procedure	7
Results	7
Conclusion	8
Critical-period Analysis	8
Motivation	8
Results of Critical Period With Best-Currently-Available Penalty Functions 1	5
Results of Critical Period With Fish Migration Enhancement Penalty Functions 16	6
Phase II Activities	6
References	7

COLUMBIA RIVER SYSTEM ANALYSIS

PHASE I

Appendices

Appendix A Proposal for Application of System Analysis to Columbia River System Operation Review Study

Appendix B Assessment of Applicability of HEC-PRM to Columbia River System

Appendix C Requirements for Prescriptive Model of Reservoir System Operation

Appendix D Columbia River Network Model Description

Appendix E Phase I System Penalty Functions

Tables

Page

Table 1	Brownlee and Dworshak Storage - Unit Penalty Relationships	16
Table 2	Brownlee, Dworshak, and Spalding Release - Unit Penalty Relationships	25

Figures

Figure 1	Columbia River System	• • • • • • • • • • • • • • • • • • • •	3
Figure 2	Single-period Link-node Representa	tion of Columbia River System	5
Figure 3	Validation Analysis Results: Storag Dalles,	es for Total System, Libby, Flows at the Corra Linn	9
Figure 4	Validation Analysis Results: Storag Albeni	es for Grand Coulee, Kerr, Hungry Horse, Falls	11
Figure 5	Validation Analysis Results: Storag Brown	es for Dworshak, Flows at Hungry Horse, lee	13
Figure 6	Critical Period Reservoir Storages:	Libby, Grand Coulee, Corra Linn, Hungry Horse	17
Figure 7	Critical Period Reservoir Storages:	Kerr, Dworshak, Albeni Falls, Brownlee .	19
Figure 8	Critical Period Reservoir Storages:	Mica+Arrow, Libby+Corra Linn, Mica, Arrow	21
Figure 9	Critical Period Flows: Rock Island,	Lower Granite, The Dalles	23

COLUMBIA RIVER SYSTEM ANALYSIS

PHASE I

SUMMARY AND CONCLUSIONS

Operation of the Columbia River system reservoirs was analyzed with the Hydrologic Engineering Center's Prescriptive Reservoir Model, HEC-PRM. This model represents the system as a collection of nodes and links and uses network-flow programming to allocate optimally the system water to the links. This network approach was selected because it satisfies institutional, economic, environmental, and engineering criteria.

The network representation of the Columbia system includes major projects on the Columbia, Snake, Clearwater, and Pend Oreille Rivers. Monthly operation for hydropower, flood control, recreation, navigation, water supply, and fish and wildlife protection is modeled. Goals of and constraints on operation for these purposes are represented with penalty functions.

The purpose of the Phase I analysis was to explore application of HEC-PRM to the Columbia River system of reservoirs. Information necessary for the development of penalty functions for the Canadian treaty reservoirs, Mica and Arrow, was not available for Phase I analysis. Since the treaty projects are important components of the Columbia River system they have been included in the HEC-PRM network. The projects are operated within the current treaty storage limits. Phase II of the study will incorporate more detailed information on the treaty projects and the model will provide an additional tool to analyze uses of Columbia Basin resources.

Prior to application of HEC-PRM as a decision-support tool for the system operation review (SOR) study, HEC staff devised and executed a subjective model-validation test, using known system supplies and demands for September 1969 to July 1975. The HEC-PRM results were compared with results of the North Pacific Division's (NPD) HYSSR model. The operation prescribed by HEC-PRM matched well the operation found with HYSSR. Thus HEC-PRM was accepted for further analyses in the SOR study.

To demonstrate applicability of HEC-PRM, HEC staff analyzed system operation for the critical flow period from July 1928 to February 1932. The best-currently-available estimates of system penalty functions were used. These represent current goals of, and constraints on, operation.

Phase II of the Columbia River system study will (1) expand the system analyzed and make needed technical improvements to the HEC-PRM; (2) refine the penalty functions used; (3) analyze additional policy options; (4) refine the model's user interface; (5) upgrade HEC-PRM documentation; and (6) transfer the technology to the Columbia River SOR study team.

PROBLEM DESCRIPTION

The coordinated Columbia River system considered in this study includes major storage and pondage reservoirs on the Columbia, Snake, Clearwater, Kootonai, and Pend Oreille Rivers as shown in Figure 1. The dominant purposes for operation of these reservoirs are power generation, flood control, and protection of anadromous fish. The U.S. Army Corps of Engineers (USACE) and the Bureau of Reclamation (BuRec) operate the federal dams, and the Bonneville Power Administration (BPA) sells the power produced.

According to a public document titled The Columbia River: A System Under Stress (BPA, USACE, BuRec, 1990),

Growth in our region, along with changing priorities, are putting our river system increasingly under stress. There simply is not enough water flowing in the system to meet all the demands. Trade-offs must be considered...The agencies want a system operation review because, in recent years, demands by the various users of the river have increased dramatically, resulting in increasing conflicts among uses. Methods for resolving conflicts are not clearly defined.

USACE-NPD (1990d) formally proposed this system operation review (SOR). According to the SOR plan of study and the accompanying management plan (USACE-NPD, 1990a, 1990b), the SOR will:

1. Identify and consider outstanding and unresolved issues regarding operation and use of the existing system of federal multiple-purpose water resource projects;

2. Identify and evaluate alternative operations plans in response to public identification of water resource issues;

3. Consider implementation of operational changes in response to issues within the existing authorities of the three responsible federal agencies;

4. Consider operation plans and criteria which would improve balance among authorized uses;

5. Evaluate and report on potential operational changes in response to issues which exceed existing authorities of the three agencies;

6. Coordinate power generation operations of federal and non-federal projects to produce maximum power for the system as a whole in a manner consistent with non-power uses; and

7. Prepare an environmental impact statement which will enable the three federal agencies to decide future actions on coordinated operation agreements.

To provide technical information necessary to achieve the objectives of the SOR, a systematic analysis tool is required. This tool must evaluate system operation for all system purposes in terms of hydrologic, economic, and environmental efficiency.

FIGURE 1 Columbia River System

PROPOSED SOLUTION

Alternatives Considered

Analysis techniques appropriate for the Columbia River SOR include (1) enumeration-with-simulation and (2) mathematical programming. Enumeration-withsimulation techniques seek the optimal operation policy by nominating iteratively trial policies and evaluating their efficiency. To evaluate a policy, the analyst simulates system operation. From the results of the simulation, performance criteria are evaluated. The optimal operation policy is the policy with best performance of all those evaluated. This procedure was proposed by NPD staff in the draft SOR plan of study (USACE-NPD, 1990a.) The efficiency of such a solution procedure depends on the ability of analysts to nominate "good" alternative policies for evaluation. In a complex system, this is a difficult task.

Mathematical-programming techniques seek the optimal operation policy via application of the calculus-based tools of operations research. These tools iteratively nominate an alternative policy and evaluate the feasibility and efficiency with an integrated simulation model. Calculus techniques lead from one alternative to another until all alternatives are explicitly evaluated or eliminated. Yeh (1985) provides an extensive review of mathematical reservoir management and operations models.

HEC's Prescriptive Reservoir Model, HEC-PRM

Based on literature review, experience with similar studies, and consultation with system-analysis experts, HEC staff proposed to apply a mathematical-programming model to identify optimal operation policies for the Columbia system. The HEC proposal is included as Appendix A of this report. The model, designated HEC-PRM, was developed initially for a similar study of operation of the Missouri River main-stem reservoirs (USACE-HEC, 1990c.) HEC staff reviewed HEC-PRM critically to evaluate its applicability to the Columbia River study and prepared a memorandum documenting their findings. That memorandum is included as Appendix B of this report.

HEC-PRM represents a multi-period reservoir-system operating problem as a minimum-cost network-flow problem. All water conveyance and storage facilities are represented as arcs in the network. Goals of and constraints on system operation are represented with functions that impose a penalty for storage or flow on the network arcs. The objective is to define the spatial and temporal allocation of water that minimizes the total penalty for the entire network. Additional details of HEC-PRM are presented in Appendix C of this report and in the program user's manual (USACE-HEC, 1991.)

Columbia River System Network

The network representation of the Columbia River system is shown by Figure 2. This network includes major projects on the Columbia, Snake, Clearwater, and Pend Oreille Rivers. For each period of analysis, the network includes 21 nodes and 20 channels. Reservoir inflows or incremental flows are introduced at each of the 21 nodes. Thirty storage or pondage projects are represented by 18 nodes; the three additional nodes represent system control points at which penalty functions are specified. Appendix D describes in detail the network established by HEC staff to represent the Columbia River system operation problem.

FIGURE 2 Single-period Link-node Representation of Columbia River System

Penalty Functions

Columbia River system penalty functions for authorized project purposes were developed by the Institute for Water Resources (IWR). The functions are of two types: cost-based or non-cost-based. The cost-based functions are developed by evaluating economic cost incurred or the value of opportunity foregone. The non-cost-based functions are developed to reflect environmental outputs and concerns, regional priorities on type and location of outputs, and risk management objectives. Details of these functions are presented in a separate report prepared by IWR (1991).

Penalty functions for each system control point were combined and edited to yield piecewise-linear convex functions required for HEC-PRM. These edited Phase I functions are included in Appendix E of this report.

PHASE I APPLICATIONS

Overview

For Phase I of this study, HEC staff made three applications of HEC-PRM. In the first, the model prescribed operation for a validation period, September 1969 to July 1975. This prescribed operation was compared with operation following current policy. In the second and third applications, HEC-PRM prescribed operation for the critical period, July 1928 to February 1932.

For these applications, computations were performed with an 80486 PC. The network-flow programming problem was solved with an algorithm from the Texas Department of Water Resources (1982.)

Validation

Motivation. Unlike a descriptive simulation model, a prescriptive model such as HEC-PRM cannot be validated directly by comparison with an observed data set. No such data set can exist because historical operation is never truly optimal for the objective function used in the model, and the objective function used in the model never reflects exactly all goals of, and constraints on, operation. Moreover, historical operation never represents a static condition, as demands continuously change, project goals evolve and new elements are added to the system.

HEC staff carefully reviewed model logic, input data, and solution algorithms. In addition, HEC staff conducted a subjective test to validate HEC-PRM by comparing the HEC-PRM prescribed operation to the operation with current rules. Such a test is based on an assumption that the system penalty functions reflect expectations of water users throughout the system. These expectations, in turn, are assumed to correlate with existing operation. Thus, the penalty functions, in some sense, represent current operation goals and constraints. If the HEC-PRM results were judged reasonable in this comparison, staff felt HEC-PRM would be accepted as a tool for subsequent analyses in the SOR. Validation Procedure. September 1969 to July 1975 was selected for validation of HEC-PRM. This period was recommended by NPD staff as one which contains considerable variation in flows in a relatively brief period of time. Two very high-flow events and a very low-flow event occur in this time period.

For this validation, the following assumptions were made for application of HEC-PRM:

1. Reservoir evaporative losses are independent of system operation. Thus reservoir inflows are net flows. This simplifies somewhat the mathematical representation of the system operation problem.

2. Hydroelectric-energy penalty is a function of release only, rather than a function of head and release. This, too, simplifies the mathematical representation of the system operation problem.

3. As no penalty functions were provided for the Canadian reservoirs, Mica and Arrow, these reservoirs were assumed to follow current policy. They were represented in the validation operation by a specified release from Arrow reservoir. The Arrow releases for validation were determined by NPD staff using the HYSSR program. For the critical period analysis Mica and Arrow were operated without restriction within the current treaty storage limits.

Hydrologic data for the period were provided by NPD; these data include monthly reservoir inflows and local flows; and initial and final storage values for the system reservoirs. The provided inflow data included adjustments for evaporation and for 1980 level of depletions.

HEC staff compared HEC-PRM results with those of NPD's HYSSR reservoir simulation model. This comparison is intended only to identify obvious shortcomings of HEC-PRM, inexplicable results, or weaknesses that would render HEC-PRM unacceptable for further analyses. A perfect match of results was not expected. Indeed, the results should not be identical, as the models employ different simplifications of the real system and operate for different goals. HYSSR follows existing operation rules, and HEC-PRM operates to minimize total system penalty for the period. On the other hand, HEC-PRM should capture all critical aspects of the system. Furthermore, the penalty functions are related closely to historical operation following existing rules. Therefore, the operation prescribed by HEC-PRM should follow the same general trends as the HYSSR operation.

Results. The results from HEC-PRM and HYSSR compare surprisingly well. Figure 3 show the total system storage and the storage pattern computed with the two models for Libby and Corra Linn Reservoirs. Storages indicated by HEC-PRM are shown in green, and those indicated by HYSSR are shown in red in all figures. The pattern of emptying and filling is identical, and in most months, the magnitude is approximately the same. Figure 3 also shows flow at The Dalles, computed with the two models. Again, the pattern of high and low flows is approximately the same, although HEC-PRM tends to have higher highs and lower lows. Computed reservoir storages for other major Columbia River system projects are shown on Figures 3 through 5. In general, the patterns of storage indicated by the two models match well. The exception is Corra Linn (Figure 3d). There HEC-PRM prescribes less storage. A maximum storage of 817 kaf was specified for HEC-PRM, but the HYSSR results show greater values, with a maximum of approximately 2200 kaf in 1974. This discrepancy occurs because the Corra Linn Dam impoundment and Kootenany Lake, a large natural lake over 20 miles upstream of the Corra Linn Dam, are represented in the model as a single storage node. This is appropriate most of the year when the two bodies have a common elevation and flows are moderate. During high lake stages flood releases from Corra Linn Dam are limited by a natural constriction in the Kootenany River between the dam and Kootenany Lake. Modifications to Corra Linn storage and penalty functions well be considered for Phase II.

Although the storage patterns at Hungry Horse match, HEC-PRM prescribes lower storage several months. Again, this may be due to slight discrepancies in either system data or penalty functions. Figure 5b shows the Hungry Horse releases proposed by the two models. The HEC-PRM releases are much greater for those months in which the storage prescribed is much less than that computed by HYSSR. The penalty function for flow between Hungry Horse and Columbia Falls encourages release of approximately 10,000 cfs (600 kaf), and no penalty is incurred for greater flows. Thus in 1973 and 1975, HEC-PRM prescribes flows that are much greater than those computed by HYSSR in order to minimize total system penalty for the entire validation period.

Conclusion. As a consequence of the validation test, HEC-PRM is accepted for subsequent analyses in the Columbia River system SOR. The validation test demonstrates that the model prescribes reasonable operation with the penalty functions provided. In some cases, the operation differs from that proposed by HYSSR when the current operation rules are followed, but the differences are due to discrepancies in data as indicated in the previous discussion on Corra Linn results.

Critical-period Analysis

Motivation. In addition to the "Validation" application, HEC staff conducted two subjective tests to observe the HEC-PRM prescribed solution for a critical time period of water shortage from July 1928 to February 1932. The goal was to demonstrate the applicability of HEC-PRM as a tool for the SOR. Again, for the Phase I study, evaporative losses were assumed to be independent of system operation, and hydroelectric-energy penalty was assumed to be a function of release only. In the absence of penalty functions for Mica and Arrow reservoirs, functions with zero unit penalty for storage in the normal conservation pool and extreme unit penalties for storage above or below that pool were used.

Two applications were completed: (1) analysis using the best-currently-available estimates of system penalty functions; and (2) analysis of the same critical period using the same penalty functions as in the first analysis except that hypothetical flow constraints for improving fish migration were used at Priest Rapids, The Dalles, and Lower Granite.

NPD is considering several water management actions which may assist the instream migration of juvenile and adult anadromous fish. The proposed actions are intended to improve flow conditions by increasing flow velocities during the April-September migration period. The actions include increasing releases from storage

FIGURE 3 Validation Analysis Results: Storages for Total System, Libby, Flows at the Dalles, Corra Linn

FIGURE 4 Validation Analysis Results: Storages for Grand Coulee, Kerr, Hungry Horse, Albeni Falls

FIGURE 5 Validation Analysis Results: Storage for Dworshak, Flows at Hungry Horse, Brownlee

reservoirs such as Grand Coulee (flow augmentation) or drawing down pondage project pools such as Lower Granite (reservoir drawdown). HEC staff made a hypothetical HEC-PRM application to evaluate the flow augmentation water management action. Minimum levels of discharge (lower bounds or constraints) at specific locations were required on the Columbia River for the period April through July and on the Snake River for the month of May. The following constraints were used: 134,000 cfs (8,107 kaf/month) at Priest Rapids, 200,000 cfs (12,100 kaf/month) at The Dalles, and 100,000 cfs (6,050 kaf/month) at Lower Granite.

Results of Critical Period With Best-Currently-Available Penalty Functions

Figures 6 through 9 show storages and flows in red prescribed by HEC-PRM for the critical period. The storages seem to "switch" back and forth rather suddenly in some cases. This is due to the extreme-point (basic) solution procedure used to find the minimum penalty solution. The procedure can be illustrated with a simple one-month reservoir-operation problem. The reservoir capacity is 10 kaf, and the outlet capacity is 10 kaf/month. The initial storage is 3 kaf, and the net inflow is 7 kaf/month. The governing equation is the continuity equation:

$$S_f + R = S_i + I \tag{1}$$

in which:

 S_i = the initial storage; I = inflow volume; R = release volume; and S_f = final storage.

Substituting known quantities on the right-hand side yields

$$S_c + R = 10$$

Suppose that the unit penalty on storage is \$1000/kaf, and the unit penalty on release is \$1000/kaf. What is the minimum-cost operation? No unique optimal answer exists to that question. Any combination of release and final storage which totals 10 kaf is feasible (satisfies the continuity equation). Furthermore, any feasible combination will have exactly the same total penalty. A knowledgeable reservoir operator might select an operation with minimum variation from the previous month. However, the network solver will pick an extreme-point solution; a solution in which at least one of the decision variables is at its upper or lower bound. In the example, it will select either R = 0 kaf and $S_f = 10$ kaf or R = 10 kaf and $S_f = 0$ kaf.

(1a)

Multiple reservoirs complicate this situation. With multiple reservoirs, the solver has many alternative extreme points to consider. Nevertheless, the solution always has some variables that are at their upper or lower bounds. Exactly which variables are at their bounds may switch from period to period. In fact, if two extreme points yield the same total system penalty, the solver is indifferent in selection of one or the other. That, in turn, accounts for switching in the solution. In practice, a knowledgeable reservoir operator would elect to avoid this switching. However, no such operation criterion is represented explicitly by the penalty functions, so HEC-PRM does not consider it in selecting releases. The storage prescribed for Grand Coulee/Chief Joseph and shown on Figure 6 is surprising at first glance. HEC-PRM indicates maintaining constant storage at approximately 9190 kaf. Perusal of the penalty functions in Appendix E provides the reason. The penalty for storage at Grand Coulee/Chief Joseph is orders of magnitude greater than the penalty for storage at other reservoirs. However, if the storage at Grand Coulee/Chief Joseph reaches 9190 kaf, the penalty drops to zero. Thus HEC-PRM, in considering optimal spatial and temporal allocation of available storage, maintains Grand Coulee/Chief Joseph storage at 9190 kaf, thus eliminating any penalty.

As shown in Figure 4a, the operation pattern at Grand Coulee/Chief Joseph was not maintained successfully in the validation test because of large flood flows in three months. The downstream penalties at The Dalles cause HEC-PRM to prescribe a reduction in storage to store flood waters. This illustrates that penalty functions for flow at system control points do, in fact, have some impact on system operation during the critical period. Most notably, the penalty function at The Dalles tends to keep the flow above a minimum there. This, in turn, affects the operation of all upstream reservoirs to some extent.

Results of Critical Period With Fish Migration Enhancement Penalty Functions

The third application of HEC-PRM analyzed the critical period with additional constraints. Figures 6 through 9 show storages and flows in green prescribed for the critical period for this application. The additional constraints were added to reflect proposed changes in water management which may improve instream migration of juvenile and adult anadromous fish. Several interesting observations can be made.

The constraint on the Snake River at Lower Granite forces Brownlee to draft down to the bottom of usable storage and Dworshak to draft down significantly during May 1930 and May 1931. It is more straightforward to evaluate operations when a constraint is supplied for one month (May in this case). From initial review of Table 1 storage - unit penalty relationships, it would seem that Dworshak should draft first followed by Brownlee because of Dworshak's higher unit cost (storing water in Brownlee reduces the total cost more than storing in Dworshak):

TABLE 1 Brownlee and Dworshak Storage - Unit Penalty Relationships

Brown	nlee	Dworshak		
<u>Storage (kaf)</u>	<u>Unit Penalty</u>	<u>Storage (kaf)</u>	Unit Penalty	
0 - 1464 1464 - 1500	-5.922 0	0 - 2869 2869 - 3195 3195 - 3468	-2.954 -2.890 -2.136	

However, further evaluation of the release - unit penalty relationships shown on Table 2 shows that Brownlee releases reduce the total cost more than Dworshak releases and the flow penalty function at Spalding always has a positive unit cost (the most beneficial flow at Spalding is zero discharge):

FIGURE 6 Critical Period Reservoir Storages: Libby, Grand Coulee, Corra Linn, Hungry Horse

FIGURE 7 Critical Period Reservoir Storages: Kerr, Dworshak, Albeni Falls, Brownlee

FIGURE 8 Critical Period Reservoir Storages: Mica+Arrow, Libby+Corra Linn, Mica, Arrow

FIGURE 9 Critical Period Flows: Rock Island, Lower Granite, The Dalles

 TABLE 2

 Brownlee, Dworshak, and Spalding Release - Unit Penalty Relationships

Brownlee		Dworshak		Spalding	
Release (kaf/mo.)	Unit Penalty	Release (kaf/mo.)	Unit Penalty	Release (kaf/mo.)	Unit Penalty
0 - 302	-15.331	0 - 500	-9.934	0 - 5490	.28051
302 - 2108	-5.365	500 - 650	-6.627	5490 - 5500	65730.0
2108 - 5720	0	650 - 2300	0		

The target flow at Lower Granite is 100,000 cfs (6,050 kaf/month). The uncontrolled local flow is 49,157 cfs (2,974 kaf/month). Therefore, the needed release from reservoirs is 50,843 cfs (3,076 kaf/month). Since both reservoirs are at maximum pool, we know that they both must pass at least inflow. Brownlee has an inflow of 12,610 cfs (763 kaf/month) and Dworshak has an inflow of 10,050 cfs (608 kaf/month) for a total inflow of 22,660 cfs (1,371 kaf/month). Brownlee and Dworshak must be drafted down 1,705 kaf (Lower Granite target minus local inflow minus reservoir inflow or 6,050-2,974-1,371=1,705 kaf). To determine the most optimal release, the solver must consider the cost of drawing down reservoirs against the cost of releasing water.

At Brownlee, after passing inflow (763 kaf/month), the next increment of release from 763 to 799 kaf/month has a unit cost of -5.365 and storage draft unit cost of 0 for a net unit cost of -5.365. At Dworshak, after passing inflow (608 kaf/month), the next increment of release from 608 to 650 kaf/month has a unit cost of -6.627, a storage draft unit cost of +2.136, and a Spalding channel flow unit cost of +.281 for a net unit cost of -4.210. Based on this first increment of storage drawdown, Brownlee would supply the first 36 kaf/month of flow. The unit cost of drawing Brownlee down further is -5.365 (release), and +5.922 (storage drawdown) for a net unit cost of +.557. Thus, the next increment of release would come from Dworshak (unit cost -4.210) rather than Brownlee (unit cost +.557). This process could continue until the lower bound (constraint) at Lower Granite was reached. Simple logic shows that additional flow requirements would be met by Brownlee because releases which draft storage from Dworshak in excess of 650 kaf result in a net unit cost of +3.235 which is greater than Brownlee (unit cost of +.557). Thus, Brownlee is drafted to the top of inactive storage and Dworshak supplies the balance of the required flow for May. Although not trivial, the analyst can verify by hand calculations that HEC-PRM is determining the most optimal solution for this time period assuming that it need not operate to meet constraints or costs on the mainstem Columbia or for future time periods.

The other interesting observation is the operations on the Columbia River. The penalty functions for Mica and Arrow are hypothetical since neither storage nor release penalty functions were available for these reservoirs. A unit cost of 0.0 (zero) was assigned for storage between top of inactive and maximum allowable storage. This allows HEC-PRM to vary storage at these two projects with no consequences to the total cost of the objective function. It is much harder to evaluate the solution for the Columbia River because of the large number of projects having both storage and release penalty functions, the many pondage projects having release penalty functions, and several months (April through July) at two locations having the constraints for fish. It is obvious from Figure 8 that the additional flows for fish migration require the drafting of Mica and Arrow lower than in the base run. It is also obvious that a feasible and optimal solution requires the use of storage from Libby, Corra Linn, Hungry Horse, Kerr, and Albeni Falls reservoirs. It is not obvious why Libby is drawn down lower in the base run than it is in the Fish Enhancement Run. It is logical that it is drawn down during the October through June period when there is a lower storage unit cost than in the July through September period. HEC-PRM determines that this drawdown is an optimal solution that is feasible within the constraints applied.

PHASE II ACTIVITIES

In Phase I of this study, HEC staff proposed to assess the applicability of HEC-PRM and apply it on a trial basis. This has been done, and the results are reported herein.

If the results of the Phase I trial application are acceptable, HEC staff will: (1) expand the system analyzed and make needed technical improvements to the HEC-PRM to better model operation of the Columbia system; (2) refine the penalty functions used; (3) analyze additional policy options; (4) refine the model's user interface; (5) upgrade HEC-PRM documentation; and (6) transfer the technology to the Columbia River SOR study team. These tasks are described in detail in the HEC proposal, which is included as Appendix A of this report.

REFERENCES

Bonneville Power Administration, U.S. Army Corps of Engineers, Bureau of Reclamation (1990). *The Columbia River: A System Under Stress*. Portland, OR.

Texas Department of Water Resources (1982). "SIM-V, Multi-reservoir Simulation and Optimization Model, Program Documentation and User's Manual." UM-38. Austin, TX.

U.S. Army Corps of Engineers (1990a). Columbia River System Operation Review (SOR) Plan of Study (Draft). North Pacific Division, Portland, OR.

U.S. Army Corps of Engineers (1990b). Columbia River System SOR Management Plan. North Pacific Division, Portland, OR.

U.S. Army Corps of Engineers (1990c). *Missouri River System Analysis Model (Draft)*. Hydrologic Engineering Center, Davis, CA.

U.S. Army Corps of Engineers (1990d). Proposal For A Columbia River Basin System Operation Review. North Pacific Division, Portland, OR.

U.S. Army Corps of Engineers (1991). Economic Value Functions for Columbia River System Analysis Model, Phase I, (Draft). Institute for Water Resources, Ft. Belvoir, VA.

U.S. Army Corps of Engineers (1991). Hydrologic Engineering Center's Prescriptive Reservoir Model Program User's Manual. Hydrologic Engineering Center, Davis, CA.

Yeh, W. W-G. (1985). "Reservoir Management and Operations Models: A State-of-the-art Review," *Water Resources Research*, 21(12), 1797-1818.
PROPOSAL FOR APPLICATION OF SYSTEM ANALYSIS TO COLUMBIA RIVER SYSTEM OPERATION REVIEW STUDY

By

Hydrologic Engineering Center

August 29, 1990

PROPOSAL FOR APPLICATION OF SYSTEM ANALYSIS TO COLUMBIA RIVER SYSTEM OPERATION REVIEW STUDY

by Hydrologic Engineering Center August 29, 1990

Table of Contents

Summary	1
Background	2
Proposal	3
Phase I Activities	3
Phase II	5
Responsibilities, Coordination, and Management	6
North Pacific Division Responsibilities	6
References	7

Page

PROPOSAL FOR APPLICATION OF SYSTEM ANALYSIS TO COLUMBIA RIVER SYSTEM OPERATION REVIEW STUDY

by Hydrologic Engineering Center August 29, 1990

Table

Page

Table A-1	Task Summary																													8	\$
10010111	r abir ö ammary	• • •	•••	•••	•••	•••	•••	•••	•	•••	• •	•	•••	•••	•	•••	•••	•	•••	•••	• •	••	•••	•	•••	•	•••	•••	•••	0	, ,

Figures

Figure A-1	Study Schedule	9
Figure A-2	Example Penalty Functions	10
Figure A-3	Simplified Single-period Network	12
Figure A-4	Multiple-period Network	13

Exhibit

Exhibit A-1 Proposed Network-Flow Model for Columbia River SOR Study 11

PROPOSAL FOR APPLICATION OF SYSTEM ANALYSIS TO COLUMBIA RIVER SYSTEM OPERATION REVIEW STUDY

by Hydrologic Engineering Center August 29, 1990

SUMMARY

This proposal presents a plan to apply system analysis methods for the Columbia River System Operation Review (SOR) study. We propose to:

- a. Prepare a document assessing the applicability of network-flow programming system analysis method for the study,
- b. On a trial basis, formulate and apply a network-flow model to the Columbia River System,
- c. Develop and document preliminary project output value functions (penalty functions) for use with the model, and
- d. Present the results in a Phase I summary report.

Following review and analysis of the trial model formulation and application, approval for Phase II would:

- e. Expand the conceptual and geographic scope of the network-flow model to the full Columbia River system and issues,
- f. Refine the value (penalty) functions,
- g. Perform several system analyses for selected policy options and prepare summary report,
- h. Refine input, output reporting, and user interface for the Columbia system model,
- i. Upgrade documentation, and
- j. Conduct workshop for Columbia River SOR study team staff on model application.

Phase I will be completed 6 months after initiation at a cost of \$77,000. Phase II will be completed 12 months following Phase I and is estimated to cost \$110,000 for a total cost of \$187,000. The Phase II cost is preliminary and will be finalized following Phase I. Table A-1 lists the tasks and estimated staff time to accomplish. Figure A-1 presents the proposed project schedule. The proposed start of Phase I is January 1991.

The model proposed for application to the Columbia River SOR study is under development for application to the Missouri River Main Stem Master Water Control Manual Update study. Development was initiated in July 1990 with completion scheduled for January 1992. The model development proposed herein is deliberately scheduled to begin upon completion of Phase I of the Missouri River system model development. The Phase I Columbia River study will be underway concurrently with Phase II Missouri River system efforts. The Missouri River system developmental effort is expected to provide useful insight into development/application considerations to the Columbia River system. The Missouri River system has several very large storage projects with capacity of about 4 times the mean annual flow. Recent droughts have heightened competition for water for recreation, navigation, and instream fish & wildlife use. The Columbia River system has many storage reservoirs, several large ones but the total storage capacity is about onefourth of the mean annual flow. Issues are similar to the Missouri River with hydropower regulation verses instream fisheries as perhaps greater concern.

The proposal presented herein is considered preliminary and will be refined in November - December 1990 to reflect progress and lessons learned in the Missouri River system analysis model project.

BACKGROUND

The Columbia River System Operation Review (SOR) study is described in the Draft Plan of Study dated 5 June 1990, SOR Management Plan dated 6 June 1990, and a flyer (undated) entitled "The Columbia River: A System Under Stress". The existing Columbia River Master Water Control Manual (labeled re-draft) provides detailed information about the system. These documents describe the objectives of the study, identify the significant issues, describe the complex institutional structure involved, and briefly outline the study strategy.

The Columbia River system encompasses a large diverse geographic region and a variety of climate regimes. A number of large main-stem projects within Canada and the US provide significant regulatory storage. A large number of storage projects are located on the major and minor tributary streams. The main-stem projects are owned and operated by the federal government (Corps of Engineers and Bureau of Reclamation), Canada, and public and private utilities. Purposes served by the projects include hydroelectric power, flood control, irrigation, navigation, municipal and industrial water supply, fish and wildlife, and recreation. Project operations are coordinated on a regional basis with power operations coordinated by the Bonneville Power Administration. A system of marketing contracts, international treaties, coordination agreements, and other institutional arrangements result in an extremely complex operating environment for system projects. Operating plans for the main-stem reservoir projects are under investigation for improvement in the SOR study.

The study strategy presented in the Draft Plan of Study is that of identifying alternative operating plans, evaluating the impacts of alternative plans, and based on these impacts and views of others, selecting a plan. The early studies will emphasize, respectively, the several purposes served by system projects. The findings of these studies will provide the basis for formulating and evaluating balanced, integrated plans that would be subject to further study. System analysis methodology poses the problem in a different context: given the system characteristics, system operation purposes, and impact relationships, develop the operating scheme that best accomplishes the system goals. The system hydrologic simulation, impact evaluation, and subsequent storage utilization and releases are formulated such that the computation results are the desired system operation.

System analysis methods develop information in a prescriptive rather than a descriptive manner. The viability of the analysis is contingent on the ability to represent the essence of system performance and impacts such that the system operation is formulated in a tractable structure that can be solved. Our proposal is to develop a tool that can provide information and insight into operation options and trade-offs that are not easily surfaced in the methodology currently being used. Implementing the system analysis model will not resolve the real conflicts that exist - there is not enough water during drought years. It will assist in devising means for sharing negative impacts and developing long term strategies that are equitable among basin water resource system beneficiaries.

PROPOSAL

Our proposal is based on performing the model development and application in two phases. The first phase will test the applicability of the approach. If the first phase is applicable, the detailed analysis, user interfaces, output reports, and documentation will be developed in Phase II. The tasks comprising the proposed work are described in following paragraphs.

Phase I Activities

a. **Network-Flow Model Applicability Assessment.** A number of successful system analysis applications to reservoir system operation problems are reported in the literature. Texts, (see for example Loucks, et. al. 1981) and journal articles (Yeh, 1985) present a wide range of methods and applications examples of system analysis technology. Proposed applications to water resources system operations are many and are reported on a continuing basis in the literature. Few have achieved the status of practical applications.

Based on literature review, experience with similar studies, and consultation with system analysis experts, we propose to develop and apply a network-flow programming model to the Columbia River SOR study. This task will develop a document describing the important determinants in applying network-flow programming to the Columbia River system. The document will be written with Columbia River SOR study participants and managers as the target audience. b. Formulate and Apply Preliminary Model. Examples of successful applications to problems similar to that of the Columbia River system are described in (Sigvaldason, April 1976) and (Chung et al, March 1989). HEC Successfully developed a model for planning dredged-material disposal based on network-flow programming (Corps of Engineers, US Army 1984). A network-flow programming model is presently under development as part of the Missouri River Main stem system operation studies. Documents from that study will become available early in this proposed project. A description of the network-flow model proposed herein is included as an appendix.

The test application will construct a preliminary network-flow model and use a commercially available network solver for the solution. It will likely prove desirable to construct the network for a limited portion of the complete period-of-record and selected physical components. The solution for network flows will be interpreted and recast into tabulations and displays for report presentation.

c. **Develop Preliminary Penalty Functions.** The functions needed for the network-flow model are relationships between flow in the arcs (releases/stream flow, reservoir storage) and a penalty associated with not meeting the most desirable flow targets. The network is solved by routing flow through the arcs of the system to achieve an overall minimum penalty. The penalties are aggregated by stream reach. The logic is applied for river flow for recreation, power generation, fish and wildlife, and navigation, and for reservoir storage for recreation and fisheries purposes. To reflect operations desirable for environmental purposes such as enhancing the habitat of an endangered species, a penalty function can be devised and adjusted to cause operation of the system to occur in the desired manner.

The project purposes described in the Draft Plan of Study are hydropower, flood control, water supply, recreation, irrigation, fish and wildlife, and navigation. For the trial application, we propose to develop preliminary penalty functions for all these purposes for the Columbia River system for which data are readily available. Figure A-2 presents stylized penalty functions for flood control, water supply, navigation, hydropower, and reservoir recreation as examples.

d. **Phase I Summary Report.** The results of Phase I tasks a. - c. will be presented in a brief summary report. A technical appendix will describe the model development and application.

The main report will describe the trial application and the model applicability to the issues assessed for the full Columbia River system. The scopes of the tasks for the accomplishment of Phase II will be refined from those presented in this proposal. The report will be written for the target audience of the Columbia River SOR study participants, and local agency managers and officials.

<u>Phase II</u>

The Phase II tasks described below are contingent upon acceptance of the results of the Phase I effort. To a substantial degree, the efforts needed to successfully accomplish the tasks are dependent on findings of the Phase I studies. The assumption here is that the test application proves successful and that the test adequately demonstrates the usefulness of the model in the Columbia River SOR study.

- e. **Expand Model to Full System and Issues.** This task will expand the Columbia River network-flow model to include additional upstream and tributary reservoirs, intervening and downstream reaches, and system operation purposes as needed. The full-flow record will be analyzed. Methods to account for future diversions and techniques to permit analysis of selected time windows of the historic record will be developed. The construction of the model and data preparation will be documented in a technical report.
- f. **Refine Penalty Functions.** The penalty functions used in the Phase I application are based on available data. In Phase II the functions will be expanded to include all project purposes, stream reaches, and reservoirs. They will be refined to improve their reliability. If needed, additional research will be conducted to develop more reliable penalty functions. It will be undertaken separate from the model development project addressed by this proposal. The full scope of this task is highly dependent on the credibility of the functions adopted for the test application and the performance of the model regarding sensitivity of modelled system operations to changes in penalty functions.
- g. **Perform Selected System Analysis.** In the interest of providing efficient analysis for the on-going Columbia River SOR study, several key system analysis will be performed by HEC. System operation policy sets representing differing views will likely have surfaced by the time the full model capabilities are operational. Several complete analyses will be planned. One will be chosen to emphasize and illustrate operation for fish and wildlife goals such as sustaining anadromous fisheries. The results will be summarized for use in the Columbia River SOR study.
- h. Improve Generalized Network-flow Model Construction Capability and User Interface. Construction of the network-flow model for the Columbia River SOR to this point of the study will be adapted from the Missouri River system model and crafted to the system, data, and issues initially defined. The automated network construction algorithm developed for the Missouri River system will be modified to the needs of the Columbia River system. This will provide the capability for the user to describe the problem and data in understandable terms without knowledge of the technical details of the network-flow model.

- i. **Improved User Documentation.** A draft user's manual is planned as a product for the Missouri River system model project. The manual will be expanded and improved to serve the needs of the Columbia River SOR study. The manual will describe the capabilities and limitations of the model, summarize the technical methodology, provide an input description, output explanation, and include a test example application. The manual will be prepared in the style of existing HEC computer program user's manuals.
- j. Workshop. A two to three day workshop on model application will be formulated and presented to Columbia River SOR study team staff and other interested local staff in NPD. The workshop will include presentations and discussions on data development, data entry, program applications, and output analysis. The model will be used in workshop sessions.

RESPONSIBILITIES, COORDINATION, AND MANAGEMENT

The system analysis model development and application project will be performed by the Hydrologic Engineering Center for the North Pacific Division, Corps of Engineers. HEC will rely on the Institute for Water Resources (IWR) and Columbia River SOR staff for the development of the penalty functions. IWR, and Columbia River SOR staff will assist in the network construction and act as advisors on other aspects of the project. Oversight will be provided by HQUSACE engineering and planning divisions. The project will be coordinated on a continuing basis with check point meetings as shown on the schedule in Figure A-1. Attendance by all project participants will be encouraged. Substantial assistance will be required from the North Pacific Division, and other Columbia River SOR study participants in several areas.

NORTH PACIFIC DIVISION RESPONSIBILITIES

NPD will:

- * Provide detailed definition of the requirements of the system analysis application to the Columbia River SOR study,
- * Furnish Columbia River system hydrologic data of monthly flows,
- * Provide physical data on the reservoirs diversions, target flow requirements, etc. for the Columbia River system and tributaries. Specific needs will be agreed upon in consultation with NPD staff,
- * Provide assistance in the development of the cost data needed to construct the penalty functions, and
- * Provide consultation and guidance on a continuing basis during the performance of the project.

REFERENCES

References cited are listed below.

Chung, Francis I. (1989). "Network Flow Algorithm Applied to California Aqueduct Simulation," *Journal of Water Resources Planning and Management*, ASCE. Vol. 115, No. 2, 131-147.

Jensen, P.A. and Barnes, J.W. (1980). Network Flow Programming. John Wiley & Sons.

Loucks, D.P., Steinger, J.R., and Haith, D.A. (1981). Water Resource Systems Planning and Analysis. Prentice-Hall, Inc.

Sigvaldason, O.T. (1976). "A Simulation Model for Operating a Multipurpose Reservoir System," Water Resources Research. 12(2), 263-278.

U.S. Army Corps of Engineers, (1984). Dredged-Material Disposal Management Model (D2M2) User's Manual. Hydrologic Engineering Center, Davis, CA.

U.S. Army Corps of Engineers, (1990a). Columbia River System Operation Review - Draft Plan of Study. North Pacific Division, Portland, OR.

U.S. Army Corps of Engineers, (1990b). Columbia River System Operation Review - Draft Management Plan. North Pacific Division, Portland, OR.

U.S. Army Corps of Engineers, (Undated). Columbia River Basin Master Water Control Manual - Redraft. North Pacific Division, Portland, OR.

Yeh. W. W-G. (1985). "Reservoir Management and Operations Models: A State-of-the-Art Review," *Water Resources Research.* 21(12), 1797-1818.

TABLE A-1 TASK SUMMARY ***Phase I***

Task

Staff-days

116

- a. Network-flow model applicability assessment
- b. Formulate/apply preliminary model
 - define preliminary system requirements
 - formulate network model
 - compile hydrologic, system data
 - generate network
 - apply test, interpret results
- c. Develop preliminary penalty functions
 - specify functions, define data needs
 - compile data, formulate functions
 - test functions
 - document development, application
- d. Prepare Phase I summary report, Phase II work plan SUBTOTAL PHASE I

Phase II

- e. Expand model to full Columbia River SOR system, issues
 - complete system requirements specification
 - expand network model arcs, nodes, penalties
 - complete data compilation, data entry
 - test expanded model
 - prepare technical report
- f. Refine and finalize penalty functions
 - complete function specification
 - update and incorporate additional data
 - prepare technical, applications documentation
- g. Perform selected system analysis (assume 4)
- h. Improve network generator and user interface
 - adapt Missouri River system network generator
 - re-design user interface, reports
 - improve user interface
- i. Improved user documentation
- j. Workshop

SUBTOTAL PHASE II 174 GRAND TOTAL 290

APPENDIX A

FIGURE A-1 Study Schedule

FIGURE A-2 Example Penalty Functions

EXHIBIT A-1

PROPOSED NETWORK-FLOW MODEL FOR COLUMBIA RIVER SOR STUDY

A network-flow model represents the pertinent characteristics of a reservoir system, the objectives of operation, and limitations on actions with a set of simultaneous linear equations. The variables in the equations represent decisions that must be made by system operators. For example, the reservoir releases and storages are represented by variables in the equations. The equations that describe relationships of these variables are of three types: (1) An objective function equation; (2) continuity equations; and (3) upper and lower bounds on the variables. For convenience, the set of equations and the decision variables can be represented by a graph of nodes connected by directed arcs. Nodes represent river or channel junctions, gage sites, monitoring sites, reservoirs, or water-demand sites. Flow is conserved at these nodes: The total volume of water in the arcs originating at any node must equal the total volume in arcs terminating at that node. Arcs represent river reaches or diversion channels. Water moves from node to node through the arcs. A penalty (cost) is incurred for each unit of water that moves through an arc. Each arc is capacitated. That is, each has a minimum and a maximum flow that it must carry.

The proposed network-flow model of the Columbia River system is a layered model, with each layer representing one time period (one month in the model proposed). To develop this model, the network representation is developed first for a single month. Figure A-3 illustrates a simplified version of this network. Node 3 is a reservoir. Node 4 is a downstream demand point. The arc from node 3 to node 4 represents the total reservoir outflow. Node 1 is a hypothetical node that provides all water for the system. The arc from node 1 to node 3 represents the reservoir inflow. The arc from node 1 to node 4 represents the local runoff downstream of the reservoir. Node 2 is the hypothetical sink for all water from the system. The arc from node 4 to node 2 carries water from the reservoir/demand point network to this sink.

FIGURE A-3 Simplified Single-period Network

For each time period to be analyzed, the arc-node representation of the reservoir system is duplicated. Figure A-4 illustrates this. A single source node (node 1) and a single sink node (node 2) are included. The duplicate networks are connected by arcs that represent reservoir storage. For example, in Figure A-4, the arc connecting node 3 in period 1 to node 3 in period 2 represents the storage. The flow in this arc is the end-ofperiod 1 (beginning-of-period 2) storage. Likewise, the flow in the arc connecting node 3 in period 2 to node 3 in period 3 represents the end-of-period 2 storage. The single source node (node 1) and single sink node (node 2) are excluded from the figure for clarity.

FIGURE A-4 Multiple-period Network

The optimal allocation of water in the layered network is determined with a network solver. The solver finds the flow in each network arc that yields the total minimum-penalty circulation for the entire network, subject to the continuity and capacity constraints. These flows may be translated into reservoir releases, hydropower generation, storage rates, diversions, and channel flows.

APPENDIX B

ASSESSMENT OF APPLICABILITY OF HEC-PRM TO COLUMBIA RIVER SYSTEM

APPENDIX B

ASSESSMENT OF APPLICABILITY OF HEC-PRM TO COLUMBIA RIVER SYSTEM

Table of Contents

Page

Summary	1
Description of HEC-PRM	1
Institutional Issues	2
Economic Issues	3
Environmental/Cultural/Social Issues	3
Engineering Issues	3

APPENDIX B

ASSESSMENT OF APPLICABILITY OF HEC-PRM TO COLUMBIA RIVER SYSTEM

SUMMARY

The Hydrologic Engineering Center Prescriptive Reservoir Model, HEC-PRM, is appropriate for analysis of the Columbia River system. HEC-PRM satisfies institutional, economic, environmental, and engineering requirements for a model of that system. Further, given the complexity of the system, the network-flow programming approach used in HEC-PRM may be the *only* practical prescriptive tool for long-term analysis of monthly operation of that system.

DESCRIPTION OF HEC-PRM

HEC provided a detailed description of HEC-PRM in documents prepared for Phase I of the Missouri River main-stem operation study. The description is summarized here for completeness.

HEC-PRM is a prescriptive model for analysis of monthly reservoir system operation. It represents the reservoir-system operating problem as a minimum-cost dynamic network flow problem. Network arcs and nodes represent the components of the physical system. HEC-PRM represents the dynamic nature of the operation problem by creating a network for each month and interconnecting these networks. The interconnecting arcs represent storage in system reservoirs.

HEC-PRM represents goals of and constraints on system operation with penalties (costs) assigned for flow on the arcs. A network solver finds the allocation of flow to the arcs to minimizes the total penalty for the dynamic network. The allocation maintains continuity throughout the network and is subject to limits on flow on the individual arcs.

HEC-PRM post-processes the results of the solver and stores the results with the HEC data storage system (HEC-DSS). Thus the user may plot conveniently reservoir releases, storage volumes, channel flows, and other pertinent variables, or create reports of these variables.

To the extent possible, HEC-PRM is a general purpose program. It includes the following model-building components:

- a. Inflow link;
- b. Initial-storage link;
- c. Diversion link;
- d. Final-storage link;
- e. Channel-flow link;
- f. Simple reservoir-release link;
- g. Hydropower reservoir-release link;

- h. Reservoir-storage link; and
- i. Node.

An analyst can specify the characteristics of and the configuration of these components to represent any system.

INSTITUTIONAL ISSUES

a. <u>Will HEC-PRM solve the Columbia River reservoir system operation problem?</u> No, but HEC-PRM will provide information that will *help* solve the system-operation problem. For example, HEC-PRM will demonstrate clearly the economic cost of allowing storage at Lower Granite to fluctuate. This cost information will promote rational policy debate.

b. <u>Can HEC-PRM be implemented in time to provide information for decision</u> <u>making in the Columbia River basin SOR?</u> Assuming penalty functions can be developed by NPD and IWR staff in time, HEC-PRM can be implemented in time. The HEC-PRM software took its "maiden voyage" in Phase I of a 1990 study for MRD. Based on the results of that application, HEC staff are eliminating bugs in and improving the software.

c. <u>Will decision makers accept the results of HEC-PRM?</u> HEC cannot guarantee that decision makers will accept the results, but HEC-PRM has characteristics that increase the likelihood of acceptance. The network approach is intuitive, and the solution procedure is relatively straightforward. HEC-PRM will include, in some fashion, all purposes and priorities, thus permitting comparison of alternatives with a common metric. Finally, HEC-PRM is flexible, so it is available for answering, in a timely fashion, any "what-if" questions that may be raised by decision makers.

d. <u>Can the mathematical model results be translated into terms that decision</u> <u>makers understand?</u> Yes, the results can directly be translated to hydrologic terms. Use of the HEC-DSS expedites this. For example, HEC-DSS permits display of commonly-used flow time traces at system control points. Likewise, with HEC-DSS utility programs, the program user generate desired reports and perform additional analyses of results.

e. <u>Can HEC-PRM represent all system operation purposes fairly?</u> Yes, HEC-PRM can represent all operation purposes if system performance for those purposes can be expressed as a function of flow, storage, or both. How fairly the purposes are represented depends on the fairness of the penalty functions.

f. <u>Can HEC-PRM evaluate alternative priorities proposed for system operation?</u> Yes, alternative priorities can be evaluated by altering the penalty functions, modifying the system configuration, or imposing "hard" constraints on flow or storage.

g. <u>Can the network model be modified or expanded easily as more information</u> <u>becomes available, as understanding of the system operation improves, or as the users</u> <u>become more sophisticated?</u> The network structure of the model and the general-purpose software developed by HEC staff make modification easy. Modification of the system configuration or operating goals and constraints requires only identification of new nodes or links and specification of the penalty functions. h. <u>Can HEC-PRM be used on the computer hardware available to users?</u> HEC staff developed HEC-PRM for use on a state-of-the-art PC (80386 with 80387 or 80486 processor, with extended memory). For Phase I of this study, HEC staff will execute the model on PCs in Davis. At the conclusion of Phase II, HEC will provide the software to NPD staff and insure proper installation on available hardware.

ECONOMIC ISSUES

a. <u>Can HEC-PRM evaluate accurately the economic impact of operation decisions?</u> HEC-PRM will evaluate the economic impact of operation decisions to the extent that the penalties assigned to flow in the network arcs are related to economic costs. Otherwise, the evaluation is in terms of relative satisfaction of demands for water.

b. <u>Can the penalty functions required for HEC-PRM be obtained with reasonable effort?</u> The data required for economic analysis with HEC-PRM are the same data that would be required for economic analysis with any model of the reservoir system. Costs and benefits must be related to hydrologic parameters. Further, non-economic penalties must also be related to hydrologic parameters and expressed in commensurate terms. This task is difficult, but MRD and IWR staff successfully developed functions for the Missouri system.

ENVIRONMENTAL/CULTURAL/SOCIAL ISSUES

a. <u>Can HEC-PRM treat operation for anadromous fish protection?</u> The penalty functions required for HEC-PRM need not be direct economic costs. Instead, they may be any commensurate units of relative dissatisfaction related to hydrologic phenomena. The penalty magnitude is assigned by the analyst. Consequently, the analyst can assign a penalty as large as required to achieve desired flows or storages for fish. The model will demonstrate the trade-offs with other purposes as these penalties are adjusted.

Further, the flow in network arcs can be constrained absolutely if required for fish protection. In that case, the network solver will find the optimal allocation of flow, given the absolute constraints (if a solution is possible).

b. <u>Can the model represent cultural or social requirements on operation (such as</u> <u>those at Libby reservoir)?</u> The network model can represent these requirements if they can be expressed in terms of monthly flow or storage. As described above, the requirements can be expressed in terms of penalties or as absolute limitations.

ENGINEERING ISSUES

a. <u>Does HEC-PRM use readily-available engineering data?</u> HEC-PRM requires reservoir characteristics, channel and outlet capacities, diversion requirements, reservoir inflows, and local flows. These same data are required for HYSSR, the existing NPD reservoir system simulation model, so they should be readily available. c. <u>Can alternative future inflow or demand sequences be studied conveniently?</u> Inflows are defined with input time series, and demands are defined with input penalty functions. Both are retrieved from HEC-DSS. Alternative sequences can be studied simply by changing the appropriate HEC-DSS files.

d. <u>Can HEC-PRM account for risk?</u> The network model does not account for risk explicitly. However, it is possible to account for risk implicitly by analyzing the frequency of various network-model results. For example, the network model may be applied to determine the optimal allocation of water for the 50-year historical record, given a set of penalty functions. As a consequence of this application, the monthly-average channel discharge time series is computed. The channel discharge-frequency curve can be computed with this time series. The frequency curve will account for risk of failing to meet discharge demands. Similar frequency analyses can be made for reservoir release, power generation, diversion flow, or other pertinent variables. To increase the reliability of the statistical analyses, alternative inflow and demand sequences can be developed with a stochastic-hydrology model and analyzed with the network model.

f. <u>Is HEC-PRM dependable?</u> Yes, HEC-PRM is dependable because it is uses dependable technology, implemented in supportable software. Representation of watermanagement problems as network-flow problems is well-known. Texas and California water agencies use this approach, as do various engineering consultancies and public utilities. HEC staff have experience with network models for analysis of dredged-material disposal and operation of the Missouri River system. Network solvers have been the subject of research and development since the 1960's. The solution technology is understood well and is reliable.

The implementation of the network model relies heavily on the HEC-DSS and HEC software library routines. HEC staff have tested this software extensively and are expert users.

g. <u>Is the network-solver fast enough?</u> Network solution algorithms are amongst the fastest mathematical-programming algorithms. In the Missouri River system study, HEC employed a generalized network solver to account for reservoir evaporation as a function of surface area. Researchers report that these solvers execute in one-tenth to one-hundredth the time required with a fast linear programming solver. For the Columbia system, NPD staff have accounted for evaporation through adjustments to the inflow data. Consequently, a pure network solver may be used. Researchers report such solvers require one-half to one-quarter the time required by the generalized network solver.

REQUIREMENTS FOR PRESCRIPTIVE MODEL OF RESERVOIR SYSTEM OPERATION

REQUIREMENTS FOR PRESCRIPTIVE MODEL OF RESERVOIR SYSTEM OPERATION

Table of Contents

Page

Summary of Requirements 1
Problem Statement 1
Proposed Solution 2
Represent System as a Network
Formulate the Allocation Problem as a Minimum-cost Network-flow Problem \ldots 4
Minimum-cost Objective Function 4
Piecewise-linear Approximation
Develop Objective Function Representing Desirable Operation
Penalty Functions 8
Flow Penalty Functions 8
Storage Penalty Functions
Storage and Flow Penalty Functions
Solve the Network Problem with an Off-the-shelf Solver
Mathematical Statement of Problem 11
Network Solvers 11
Post-process Network Results
Model-Building Software
Inflow Link
Initial-storage Link
Diversion Link

Final-storage Link	14
Channel-flow Link	14
Simple Reservoir-release Link	15
Hydropower Reservoir-release Link	15
Link Description	15
Hydropower Computation From Link Flow	15
Other Release Penalties	16
Reservoir-storage Link	16
Link Description	16
Evaporation Computation With Link Flow	17
Nodes	18
Typical Penalty Functions	18
Flood-control Penalty Function	18
Navigation Penalty Function	19
Recreation Penalty Functions	20
Water-supply Penalty Function	21
Environmental Penalty Function	22
Hydropower Penalty Function	22
Combined Penalty Functions	23
References	24
Glossary	25

REQUIREMENTS FOR PRESCRIPTIVE MODEL OF RESERVOIR SYSTEM OPERATION

Tables

Page

Table C-1	Example Network Model Arc Characteristics	7
Table C-2	Penalty Function Arc Parameters	9
Table C-3	Diversion Link Arc Characteristics	14

Figures

Figure C-1	Simplified Single-period Network	3
Figure C-2	Multiple-period Network	4
Figure C-3	Simple Linear Cost Function	5
Figure C-4	Nonlinear Penalty Functions	6
Figure C-5	Piecewise Linear Approximation of Nonlinear Penalty Function	7
Figure C-6	Typical Flow Penalty Function	8
Figure C-7	Typical Storage Penalty Function	9
Figure C-8	Typical Hydropower Energy Penalty Function	10
Figure C-9	Typical Flood-control Penalty Function	19
Figure C-10	Typical Navigation Penalty Function	19
Figure C-11	Typical Lake Recreation Penalty Function	20
Figure C-12	Typical River Recreation Penalty Function	21
Figure C-13	Typical Water-supply Penalty Function	21
Figure C-14	Typical Environmental Penalty Function	22
Figure C-15	Typical Hydropower Capacity Penalty Function	23
Figure C-16	Penalty Functions Combined	23

REQUIREMENTS FOR PRESCRIPTIVE MODEL OF RESERVOIR SYSTEM OPERATION

SUMMARY OF REQUIREMENTS

The reservoir system operation problem will be addressed as a problem of optimal long-term allocation of available water. A prescriptive model will be developed to solve this problem. The model will identify the allocation that minimizes poor performance for all defined system purposes. Performance will be measured with analyst-provided penalty functions of flow or storage or both.

To determine the optimal water allocation, the physical system will be represented as a network, and the operating problem will be formulated as a minimum-cost network flow problem. The objective function of this network problem is the sum of convex, piecewise-linear approximations of the penalty functions. An off-the-shelf solver will be used to define the optimal allocation of water within the system. The results of the solver will be processed to report and display reservoir releases, storage volumes, channel flows, and other pertinent variables.

To the extent possible, the software to implement the model will be general purpose. Accordingly, the software will include the following model-building components:

- 1. Inflow link;
- 2. Initial-storage link;
- 3. Diversion link;
- 4. Final-storage link;
- 5. Channel-flow link;
- 6. Simple reservoir-release link;
- 7. Hydropower reservoir-release link;
- 8. Reservoir-storage link; and
- 9. Node.

An analyst can specify the characteristics of and the configuration of these components to represent any system.

PROBLEM STATEMENT

The problem addressed by the proposed system model is identification of the optimal long-term operation plan for the reservoirs of that system. This plan will identify the priorities to be assigned to conflicting objectives of operation. For example, the plan will identify whether water should be released from a system reservoir if a demand exists for downstream flow for wildlife protection and a conflicting demand exists for continued storage of the water for reservoir recreation. The model will quantify system performance for various purposes in multi-objective terms. The economic cost of operation will be considered. Also, the social and environmental cost will be considered. These costs will be expressed in commensurate terms to permit display of trade-offs in operation for various purposes.

Constraints on the physical system will be included. For example, the outlet capacity of the reservoirs will be modeled explicitly. However, inviolable constraints on system operation will used frugally. This will avoid the problem described by Hitch and McKean (1960) when they wrote "...casually selected or arbitrary constraints can easily increase system cost or degrade system performance manyfold, and lead to solutions that would be unacceptable to the person who set the constraints in the first place." Instead, operation limitations will be imposed through value functions. This will permit clear evaluation of the impacts of limitations. For example, instead of specifying maximum flow requirements for flood control, the system model will represent this requirement through high costs of failure to meet the requirement.

PROPOSED SOLUTION

The proposed solution considers the reservoir operation planning problem as a problem of optimal allocation of available water. The proposed solution to this water allocation problem is as follows:

(1) Represent the physical system as a network;

(2) Formulate the allocation problem as a minimum-cost network flow problem;

- (3) Develop an objective function that represents desirable operation;
- (4) Solve the network problem with an off-the-shelf solver; and

(5) Process the network results to define, in convenient terms, system operation.

Represent System as a Network

For solution of the water allocation problem, the reservoir system will be represented as a network. A network is a set of arcs that are connected at nodes. The arcs represent any facilities for transfer of water between two points in space or time. For example, a natural channel transfers water between two points in space and is represented by an arc. A reservoir transfers water between two points in time; this transfer is represented by an arc.

Network arcs intersect at nodes. The nodes may represent actual river or channel junctions, gage sites, monitoring sites, reservoirs, or water-demand sites. Flow is conserved at each node: the total volume of water in arcs originating at any node equals the total volume in arcs terminating at that node. Figure C-1 illustrates a simple network representation. Node 3 represents a reservoir. Node 4 represents a downstream demand point. Two additional nodes with associated arcs are included to account completely for all water entering and leaving the system. Node 1 is the source node, a hypothetical node that provides all water for the system. Node 2 is the sink node, a hypothetical node to which all water from the system returns. The arc from node 1 to node 3 represents the reservoir inflow. The arcs shown as dotted lines represent the beginning-of-period (BOP) and end-of-period (EOP) storage in the reservoir. The BOP storage volume flows into the network from the source node. The EOP volume flows from the network back to the sink node. The arc from node 3 to node 4 represents the total reservoir outflow. The arc from node 1 to node 4 represents the local runoff downstream of the reservoir. The arc from node 4 to node 2 carries water from the reservoir/demand point network to the sink.

FIGURE C-1 Simplified Single-period Network

To analyze multiple-period system operation, a layered network will be developed. Each layer represents one month. To develop such a layered network, the single-period network representation is duplicated for each time period to be analyzed. Figure C-2 illustrates this. A single source node and a single sink node are included. For clarity, these have been omitted from the figure. The duplicate networks are connected by arcs that represent reservoir storage. For example, in Figure C-2, the arc connecting node 3 in period 1 to node 3 in period 2 represents the storage. The flow along this arc is the end-of-period 1 storage. This is equivalent to the beginning-of-period 2 storage. Likewise, the flow along the arc connecting node 3 in period 2 to node 3 in period 3 represents the end-of-period 2 storage. This also is the beginning-of-period 3 storage.

FIGURE C-2 Multiple-period Network

Formulate the Allocation Problem as a Minimum-cost Network-flow Problem

The goals of and constraints on water allocation within the reservoir system can be represented in terms of flows along the arcs of the network. If a unit cost is assigned for flow along each arc, the objective function for the network is the total cost for flow in all arcs. The ideal operation will be that which minimizes this objective function while satisfying any upper and lower bounds on the flow along each arc. The solution also must maintain continuity at all nodes.

Minimum-cost Objective Function. A network solver finds the optimal flows for the entire network simultaneously, based on the unit cost associated with flow along each arc. The functions that specify these costs are defined by the analyst.
The simplest cost function is a linear function, such that shown in Figure C-3. This function represents the cost for flow along one arc of a network. The cost increases steadily as the flow increases in the arc. The unit cost is the slope of the function. Here, it is positive, but it may be negative. The total cost for flow along the arc represented is the product of flow and the unit cost.

FIGURE C-3 Simple Linear Cost Function

The simplest linear function may be too simple to represent adequately many of the goals of reservoir operation. Instead, nonlinear functions, such as those shown in Figures C-4(a-c), may required.

Piecewise-linear Approximation. If the cost functions are convex, as are those in Figures C-4(a-c), they can approximated in a piecewise linear fashion for the proposed network model. Figure C-5 illustrates piecewise approximation of a complex cost function. Linear segments are selected to represent the pertinent characteristics of the function. The analyst controls the accuracy of the approximation. More linear segments yield a more accurate representation. However, the time required for solution of the resulting networkflow programming problem depends on the number of arcs included in the network. Thus, as the approximation improves, the time for solution increases. Jensen and Barnes discuss this approximation in detail (1980, pgs. 355-357).

FIGURE C-4 Nonlinear Penalty Functions

APPENDIX C

FIGURE C-5 Piecewise Linear Approximation of Nonlinear Penalty Function

With a piecewise linear approximation, the physical link for which the function applies is represented in the network by a set of parallel arcs. One arc is included for each linear segment of the piecewise approximation. For example, suppose the cost function in Figure C-5 represents the cost of release from the reservoir represented by node 3 in Figure C-1. In the proposed network model, four parallel arcs will connect node 3 to node 4. Characteristics of the arcs are shown on Table C-1.

TABLE C-1 Example Network Model Arc Characteristics

Arc <u>Number</u> (1)	Lower Bound (2)	Upper <u>Bound</u> (3)	Unit <u>Cost</u> (4)		
1	0	100	(1-4)/100 = -0.03		
2	0	200-100=100	(0-1)/100 = -0.01		
3	0	300-200=100	(1-0)/100 = 0.01		
4	0	400-300=100	(4-1)/100 = 0.03		

Arc 1 has the least marginal cost. Therefore, as flow is increased from node 3 to node 4, flow will pass first through arc 1. When the capacity of this arc is reached, flow begins to pass through arc 2. Arc 3 will have non-zero flow if and only if arc 2 is at its upper bound. Finally, arc 4 will have non-zero flow only when arcs 1, 2, and 3 are flowing full. Because the objective is to minimize cost, if two or more arcs are parallel, the one with the lowest unit cost is used first.

Develop Objective Function Representing Desirable Operation

Penalty Functions. All goals of system operation cannot be represented adequately with economic costs. Some of the goals are socially, environmentally, or politically motivated. Consequently, the objective function for the proposed model is formed from penalty functions, rather than cost functions. These penalty functions are in commensurate units, but those units are not necessarily dollars. The penalty functions represent instead the relative economic, social, environmental, and political penalties associated with failure to meet operation goals. For example, even if failure to meet an environmental operation goal has no measurable economic cost, the penalty may be great.

Flow Penalty Functions. All operation goals related to reservoir-release, channelflow, or diversion flow are expressed with flow penalty functions. These functions may represent operation goals for navigation, water supply, flood control, or environmental protection.

Figure C-6 is an example of a flow penalty function. This function represents the relative penalty for diverting flow when the minimum desired diversion is 100 cfs. Less diversion is undesirable. More diversion is acceptable, but that water does not reduce further the penalty.

FIGURE C-6 Typical Flow Penalty Function

The penalty function of Figure C-6 is represented in the network by two parallel arcs. The characteristics of these arcs are shown on Table C-2.

TABLE C-2Penalty Function Arc Parameters

Arc <u>Number</u> (1)	Lower <u>Bound</u> (2)	Upper <u>Bound</u> (3)	Unit <u>Cost</u> (4)	
1	0	100	(0-100)/100=-1.00	
2	0	1000-100=900	0.00	

The first arc represents flow up to the desired rate. As the flow increases from 0 cfs to 100 cfs, the total penalty decreases. At 100 cfs, the unit penalty is 0.00. As the flow increases beyond 100 cfs, the unit penalty remains 0.00.

Similar penalty functions can be developed for reservoir release and channel flow.

Storage Penalty Functions. All reservoir operation goals uniquely related to storage are expressed through penalty functions for arcs that represent reservoir-storage. These functions may represent operation goals for reservoir recreation, water supply, or flood control.

Figure C-7 is an example of a reservoir storage penalty function. For this example, the top of the permanent pool is 200 kaf, the top of the conservation pool is 800 kaf, and the top of the flood-control pool is 1000 kaf. The function represents penalty for storage when the reservoir operation goal is to keep the inactive and conservation pools full and the flood control pool empty.

FIGURE C-7 Typical Storage Penalty Function

The function of Figure C-7 is represented in the network by three parallel arcs. The flow along one arc represents storage in the permanent pool. Increasing the flow along this arc reduces the penalty rapidly. Flow along the second arc represents storage in the conservation pool. Increasing flow along this arc also decreases the penalty, but not as rapidly as does flow along the inactive-pool arc. The third arc represents storage in the flood-control pool. Increasing flow along the flood-control pool arc increases the penalty. The solver will allocate flow to the arcs to minimize the total system penalty: first to the inactive-pool arc, then to the conservation-pool arc, and finally to the flood-control pool arc.

Storage and Flow Penalty Functions. Certain system operation goals depend on both storage and flow. The most significant is hydroelectric energy generated at a reservoir. This is a function of the product of release and head on the turbine. Head is the difference in reservoir-surface elevation and downstream water-surface elevation. Reservoir-surface elevation is a function of reservoir storage, and downstream water-surface elevation is a function of release. Thus, the energy generated is a complex function of storage and flow.

Figure C-8 illustrates a typical hydropower energy penalty function. Here, penalty is measured in terms of reduction in value of the energy produced, when compared to the firm energy target. Additional energy generated has a value, but that value is less that firm energy. Thus the slope is less.

FIGURE C-8 Typical Hydropower Energy Penalty Function

Solve the Network Problem with an Off-the-shelf Solver

Mathematical Statement of Problem. The optimization problem represented by the network with costs associated with flow can be written as follows (Jensen and Barnes, 1980):

Minimize:
$$\sum_{k}^{m} h_{k} f_{k}$$
 (1)

subject to

$$\sum_{k \in M_{O}} f_{k} - \sum_{k \in M_{T}} a_{k} f_{k} = 0 \text{ (for all nodes)}$$

$$k \in M_{O} \quad k \in M_{T}$$
(2)

$$l_k \le f_k \le u_k \quad \text{(for all arcs)} \tag{3}$$

in which:

Equations 1, 2, and 3 represent a special class of linear-programming (LP) problem: the *generalized minimum-cost network-flow problem*. Solution of the problem will yield an optimal allocation of flow within the system.

Network Solvers. Jensen and Barnes (1980) describe a variety of solutions to the generalized minimum-cost and other network-flow programming problems. One solution is the flow-augmentation algorithm developed by Jensen and Bhaumik (1974). This algorithm determines the minimum-penalty flow in a generalized network by iteratively performing two computations. In the first computation, at the first iteration, the algorithm solves a shortest-path problem. That is, it determines a set of arcs that provide the minimum-penalty path from the source node to the sink node. In each successive iteration, the shortest-path computation deletes an arc with flow at upper bound from the path. It then adds the most promising available arc to create a new path. The second computation determines the maximum flow that can be directed from source to sink through the current shortest path. It increases flows in the arcs to achieve the maximum possible flow at the sink. If this flow equals an analyst-specified flow requirement at the sink, the algorithm terminates. Otherwise, the algorithm continues with the first computation. FORTRAN routines implementing this algorithm were published by Jensen and Bhaumik and used by Martin (1982). These routines are available at HEC.

Post-process Network Results

The optimal allocation of water in the layered network is determined with a network solver. The solver finds the flow along each network arc that yields the total minimumpenalty circulation for the entire network, subject to the continuity and capacity constraints. These flows must be translated into reservoir releases, hydropower generation, storage volumes, diversion rates, and channel flows to be useful to the reservoir system operators.

For convenience, the results after translation will be stored with the HEC data storage system (HECDSS). Then the results can be displayed or processed further as needed to provide information required for decision making.

MODEL-BUILDING SOFTWARE

To the extent possible, the software to implement the network model will be general-purpose software. With this software, an analyst will be able to define the layout of any existing or proposed reservoir system. Further, the analyst will be able to describe the physical features of the system reservoirs and channels and the goals of and constraints on their operation. The operation goals will be defined by penalty functions associated with flow, storage, or both.

To permit representation of any reservoir system as a network, the software will include the following model-building components:

- 1. Inflow link;
- 2. Initial-storage link;
- 3. Diversion link;
- 4. Final-storage link;
- 5. Channel-flow link;
- 6. Simple reservoir-release link;
- 7. Hydropower reservoir-release link;
- 8. Reservoir-storage link; and
- 9. Node.

By selecting the appropriate links and the manner in which they are interconnected, the analyst can describe any system. By describing the characteristics of the links and the penalties associated with flow along the links, the analyst can define operating constraints and goals.

Inflow Link

An inflow link brings flow into the reservoir-system network. It originates at the source node and terminates at any other system node. In Figure C-1, the link from node 1 to node 3 is an inflow link. It originates at the source node, node 1, and carries flow into the system at node 3.

The flow along the arc representing the inflow link is an input to the model. This known inflow may be an observed inflow from the historical record, or it may be an inflow from a sequence generated with a statistical model. To insure that the link carries the specified flow, the arc upper and lower bounds are equal, and the unit penalty is zero.

Initial-storage Link

An initial-storage link is a special case of an inflow link. It originates at the source node and terminates at a node that represents a reservoir in the first period of analysis only. It introduces to the network the volume of water initially stored in the reservoir. In Figure C-2, the storage link terminating at node 3 in period 1 is an initial-storage link; it represents the beginning-of-period 1 storage.

As an initial-storage link carries a specified flow, no decision is represented by this link. To insure that the link carries the specified flow, the arc upper and lower bounds are equal, and the unit penalty is zero.

Diversion Link

A diversion link carries flow out of the system. It originates at any system node and terminates at the sink node. In Figure C-1, the arc from node 4 to node 2 is a diversion link. It originates in the system at the downstream control point, node 4. It carries flow out of the system to the sink, node 2.

The flow along a diversion link is a decision variable, selected to minimize total system penalty. The diversion penalty function is specified by the analyst as a convex piecewise approximation of the true penalty associated with deviating from the diversion desired. This function may vary by month. The software will define appropriate arc bounds and unit costs to represent the function.

The analyst may specify also inviolable minimum and/or maximum flow for a diversion link. If the analyst specifies both minimum and maximum, and if these values are the same, the diversion link will be represented in the network by a single arc. The upper and lower bounds of the arc are equal. In that case, the only feasible solution is one in which flow equals the specified value, regardless of cost. Any penalty function defined by the analyst for the link is ignored in that case, as it has no impact on the solution.

If the analyst specifies only a lower bound or only an upper bound, the software will impose the bound on the appropriate network arcs. If the penalty function is a simple function, like that of Figure C-3, the bound is applied to the single arc representing that function. For example, if the analyst specified a lower bound of 25 cfs and an upper bound of 800 cfs, the network arc will have $l_{\rm k} = 25$ and $u_{\rm k} = 800$ (see Equation 3).

For more complex penalty functions, the software must include an algorithm to determine the proper network arcs on which to impose the bound. For example, the penalty function of Figure C-6 is represented by two parallel arcs, with bounds and cost. If the analyst specifies an inviolable lower bound of 25 cfs and an upper bound of 800 cfs, the network arcs must be adjusted to have parameters shown on Table C-3.

TABLE C-3Diversion Link Arc Characteristics

Arc <u>Number</u>	Lower <u>Bound</u>	Upper <u>Bound</u>	Unit Cost	
(1)	(2)	(3)	(4)	
1	25	100	-1.00	
2	0	800-100=700	0.00	

For the first arc, the lower bound increases from 0 to 25. The upper bound remains 100. The unit cost does not change. For the second arc, the lower bound remains 0, and the upper bound now is 800 - 100 = 700. The unit cost does not change.

Final-storage Link

A final-storage link is a special case of a diversion link. It carries flow out of the system, but only from a reservoir in the last period of analysis. The final storage link thus originates at any system reservoir and terminates at the sink node. In Figure C-2, the storage link originating at node 3 in period 3 is a final-storage link. The final-storage link is included in the system model to permit assignment of a future value for water in system reservoirs. Otherwise, the network solver will be indifferent regarding final storage. The solver may chose any storage state, including empty or full, without regard for future use.

Just as with the diversion link, the flow along a final-storage link is a decision variable, selected to minimize total system penalty. The penalty function is specified by the analyst as a convex piecewise approximation of the true penalty associated with deviating from the an ideal final storage. The software will define appropriate arc bounds and unit costs to represent this function.

As with the diversion link, the analyst may specify also inviolable minimum and/or maximum storage for a final-storage link. The software will impose these constraints on the appropriate network arcs.

Channel-flow Link

A channel-flow link originates at any non-reservoir node, terminates at any other network node, and represents the flow in a channel reach. The flow along the link is a decision variable, selected to minimize total system penalty.

As with the diversion link, the analyst may specify inviolable minimum and/or maximum flow for a channel-flow link. The software will impose these constraints on the appropriate network arcs.

The analyst may specify also a multiplier for flow along a channel-flow link. The multiplier is a_k of Equation 2 for all arcs representing the link. If the multiplier is greater than 1.00, it represents increase of flow in the channel. If the multiplier is less than 1.00, it represents loss of flow.

Simple Reservoir-release Link

The reservoir-release link originates only at a non-hydropower reservoir node, terminates at any other node, and represents the total outflow from a reservoir. This includes release and spill. The flow along a reservoir-outflow link is a decision variable, selected to minimize total system penalty. In Figure C-1, the link from node 3 to node 4 is a simple reservoir-release link. It originates at a node representing a reservoir and terminates, in this case, at a node representing a demand point.

The analyst may specify inviolable minimum and/or maximum flow constraints. The analyst may specify also a multiplier for flow along a reservoir-release link. The software will apply the multiplier and impose the constraints on the appropriate network arcs.

Hydropower Reservoir-release Link

Link Description. A hydropower reservoir-release link (hydro-release link) originates only at a hydropower reservoir node, terminates at any other node, and represents the total outflow from the reservoir. This includes release and spill.

The flow along a hydro-release link is a decision variable, selected to minimize total system penalty. As hydroelectric energy is not a linear function of flow, however, determination of the release that minimizes total penalty requires consideration of storage.

Hydropower Computation From Link Flow. The nonlinear hydro-release problem will be solved via iterative solution of linear approximations. Such successive linear programming techniques are described by Martin (1982), Grygier and Stedinger (1985), and Reznicek and Simonovic (1990). In summary, these techniques convert the energy penalty functions to release penalty functions by assuming a value of reservoir storage. Given the storage, head can be estimated. Given this head, the unit penalty for release is used, and the flow allocation problem is solved. Then the head assumption is checked, using the storage computed for the optimal allocation. If the assumption is not acceptable, the heads corresponding to the computed storages are used, and the process is repeated.

The algorithm proposed by Grygier and Stedinger (1985) will be employed in the proposed model. This algorithm solves the hydro-release problem as follows:

1. Initialize: Set ITER (iteration counter) = 0. Set ITMAX = the maximum number of iterations allowed (must be > 1). Set CANDPEN (candidate optimal objective function value) = a very large number. Set $\Delta R_{max} = 0.50$. Set $R_{j,upper} =$ release corresponding to maximum power generation at maximum head for reservoir j. (ΔR_{max} and $R_{j,upper}$ are used in constraining release in step 3, and are subject to change as we collect information on performance with alternative values.) For each reservoir j, for each period t, estimate $S_{j,v}$, the end-of-period storage. Go to step 2. 2. Set Up the Network: Set ITER = ITER + 1. If ITER > ITMAX, declare the candidate solution the optimal solution and stop. Otherwise, use the elevation-capacity function for reservoir j to determine the end-of-period head. Average the beginning-of-period and end-of-period heads. Select the "closest" user-provided linear approximation of the hydropower penalty function for each period. Set up the system network with arc bounds and costs to represent these hydropower penalty functions, along with flow and storage penalty functions for other purposes. Go to step 3.

3. Limited Variation: If ITER = 1, go to step 4. Otherwise, constrain flow on the reservoir hydropower-release links so the total release does not vary from the candidate solution by more than ΔR_{max} . The link lower bound would be $R_{j,t}(1 + \Delta R_{\text{max}})$. If the candidate release is zero, set the upper bound equal $R_{j,\text{upper}}$. Go to step 4.

4. Solve the Network: Solve the resulting flow-allocation problem to find CURRPEN, the penalty associated with the current approximation. Use the best available network solver at this step. If a previous network solution is available, and if the solver can use it as a starting point, let it. Go to step 5.

5. Check for Solution to Nonlinear Problem: For each reservoir j, for each period t, determine $S_{j,t-1}$ and $S_{j,t}$ from the current solution of the network. Do these values differ from the values used in step 2 to select the approximation? If all are close enough, declare the current solution optimal and stop. Otherwise, go to step 6.

6. Update Candidate Solution: If CURRPEN < CANDPEN, it is an improvement, so save the current solution (storages, releases, etc.) as the candidate optimal solution, set CANDPEN = CURRPEN, and go to step 2. Otherwise, go to step 7.

7. Decrease the Allowable Variation: Set $\Delta R_{\text{max}} = \Delta R_{\text{max}}/2$. If $\Delta R_{\text{max}} < \text{minimum}$ value, declare the candidate solution optimal and stop. Otherwise, go to step 2.

Other Release Penalties. Due to the special nature of the hydro-release link, all other release-related penalties must be defined as a function of flow downstream. This is accomplished by defining a "dummy" node downstream of the hydropower reservoir. The hydro-release link connects the reservoir and this dummy node, and the hydropower penalty function is associated with this link. A channel-flow link connects the dummy node with the next downstream node. All penalty functions normally defined in terms of reservoir release are defined in terms of channel flow instead.

Reservoir-storage Link

Link Description. A reservoir-storage link originates at any reservoir node in a layered, multiple-period network. It represents the volume of water stored in the reservoir at the end of the period. The reservoir-storage link terminates at the node representing the same reservoir in the period following. The flow along a reservoir-storage link is a decision variable, selected to minimize total system penalty.

For example, in Figure C-2, the arc from node 3 in period 1 to node 3 in period 2 is a reservoir-storage link. Flow along the arc leaving the period 1 layer represents reservoir storage at the end of period 1. Flow along the arc entering the period 2 layer represents reservoir storage at the beginning of period 2.

Evaporation Computation With Link Flow. To approximate reservoir evaporation, a fraction of flow entering the reservoir-storage link may be "lost". For the network model, the relationship of storage and evaporation is given by

$$S_{t} = S_{t-1} - EV_{t-1}$$
(4)

in which:

 S_{t} = reservoir storage at beginning of period t; S_{t1} = reservoir storage at end of period t-1; EV_{t1} = volume of reservoir evaporation. The evaporation volume is related to reservoir surface area with the following equation:

$$EV_{t-1} = (ED_{t-1}) (A_{t-1})$$

in which:

 $ED_{t-1} =$ evaporation rate in period t-1; and $A_{t-1} =$ reservoir surface area in period t-1.

The quantity ED_{t-1} is input to the model. It may be an historically observed evaporation rate, or it may be generated with a stochastic model. The relationship of surface area and storage can be approximated with a linear function as

$$A_{t-1} = \beta S_{t-1} \tag{6}$$

in which:

 β = a linear coefficient.

The value of β is found from analysis of specified reservoir characteristics. Substituting Equations 5 and 6 into Equation 4 and simplifying yields

$$S_{t} = (1 - ED_{t-1}\beta) (S_{t-1})$$

The quantity $(1 - ED_{t-1}\beta)$ is an arc multiplier. The flow out of the reservoir-storage arc, S_t , is the flow into the arc, S_{t-1} , multiplied by $(1 - ED_{t-1}\beta)$. This multiplier is the arc multiplier a_k of Equation 2.

If the magnitude of $(1 - ED_{t-1}\beta)$ is approximately 1.00 for all periods of analysis, $S_t = S_{t-1}$. That is, reservoir storage at beginning of period t = reservoir storage at end of period t-1. In that case, the network-flow programming is no longer a generalized network problem. Instead, it is a pure network problem. Faster solvers may be used.

(7)

(5)

If $a_k = 1.00$ for all k in Equation 2, the resulting problem is a *pure network-flow* programming problem. For this class of problem, faster solution algorithms are available. The well-known out-of-kilter (OKA) algorithm (Fulkerson, 1961) solves this pure network problem. A FORTRAN routine implementing the OKA has been available as shareware since 1967 (SHARE). Barr, Glover, and Klingman (1974) presented an improved formulation of the OKA and developed a FORTRAN code to implement their algorithm. They present results showing that the reformulated algorithm is faster than the share routine by a factor of 4 to 15 on large problems. This code, designated SUPERK, is published by the Texas Department of Water Resources (1975) and used by the California Department of Water Resources (Chung, et al., 1989). FORTRAN code for SUPERK is available at HEC.

Nodes

Nodes are included in the model to permit joining the appropriate links. Two or more of the links described may join at a node. The nodes represent system reservoirs, demand points, channel junctions, or diversion points. These may be existing facilities or proposed facilities. Additional nodes may be included in the network for convenience of description.

In addition to the analyst-defined nodes, the software will incorporate in the network a source node and a sink node to satisfy the mathematical requirements for defining a network. All water entering the system flows from the source node. All water leaving the system flows to the sink node. These hypothetical nodes have unlimited capacity.

TYPICAL PENALTY FUNCTIONS

The goals of reservoir system operation are identified by the analyst via penalty functions. The functions define, as a function of flow, storage, or both, the economic, social, and environmental cost for deviating from ideal operation for each of the system operation purposes. These purposes include flood control, navigation, lake and stream recreation, water supply, environmental protection, and hydropower.

Flood-control Penalty Function

A flood-control penalty function defines the cost of deviating from ideal flooddamage-reduction operation. This function typically will relate penalty to channel-link flow or reservoir release link flow.

Figure C-9 is a typical flood-control penalty function. In this example, no penalty is incurred for flows less that 600 cfs, the channel capacity. Between 600 cfs and 1100 cfs, the penalty is slight, increasing to 100 units. The penalty is much greater for flows exceeding 1100 cfs. This represents significant damage incurred as the flow moves out of the 10-25 year floodplain and into surrounding property.

FIGURE C-9 Typical Flood-control Penalty Function

Navigation Penalty Function

A navigation penalty function defines the cost of deviating from flows desired for vessel traffic in a system channel.

Figure C-10 is a typical navigation penalty function. In this example, the penalty is great for flows less than 400 cfs; this represents the minimum desired flow for towing barges in the channel. Between 400 and 600 cfs, the penalty is zero, as this is the desired flow for navigation. Between 600 and 1100 cfs, the penalty increases slightly, representing the increased effort required for navigation. Finally, the penalty increases rapidly if the flow exceeds 1100 cfs. This is the upper limit on desired flow for navigation.

FIGURE C-10 Typical Navigation Penalty Function

Recreation Penalty Functions

A recreation penalty functions may represent the relationship of recreation to reservoir storage or channel flow. Figure C-11 is an example of a typical lake recreation penalty function. In this example, the desired range of active storage for recreation is 40 to 80 kaf. If the reservoir storage is less than 40 kaf, the boat ramps are inaccessible, and recreation is hazardous. If the reservoir storage is more than 80 kaf, the reservoir is in flood operation, and recreation is hazardous. Consequently, the function is shaped as shown.

FIGURE C-11 Typical Lake Recreation Penalty Function

Figure C-12 is a typical river recreation penalty function. In this example, the desired range of flow for boating, swimming, and fishing is 400 to 500 cfs. If the flow rate is less than 400 cfs, boating and swimming are dangerous due to shallow depths and fishing is poor. If the flow rate exceeds 500 cfs, recreation is hazardous.

FIGURE C-12 Typical River Recreation Penalty Function

Water-supply Penalty Function

A water-supply penalty function describes desired operation for supply of water for municipal and industrial use or for irrigation. A water-supply penalty function may relate to channel-link flow, simple reservoir-release flow, or diversion flow. Figure C-13 is a typical water-supply penalty function. In this function, the desired flow for water supply is 100 cfs. If the flow is less, demands are not met, so the penalty is great. If the flow exceeds the desired rate, the water is used, but the benefit is not great, as it is not dependable supply.

FIGURE C-13 Typical Water-supply Penalty Function

Environmental Penalty Function

An environmental penalty function represents the desired operation for environmental protection. The function may define penalty for flow or penalty for storage or penalty or both. A typical case is illustrated by Figure C-14. In this example, an average monthly flow of 100 cfs is required to preserve wildlife habitat. If the flow is less or more, the habitat is destroyed. In that case, only the desired value is assigned zero penalty. For all other flows, the penalty is positive.

FIGURE C-14 Typical Environmental Penalty Function

Hydropower Penalty Function

A hydropower penalty function is assigned to a hydro-release link only and defines the cost of deviation from desired system operation for energy production. For the proposed model, Figure C-15 illustrates the acceptable form of the function. This function defines penalty as a function of release for a specified head (storage). If the head is less than the optimal head for the generator, the penalty is positive. Likewise, if the release is less than optimal for a specified head, the penalty is positive.

FIGURE C-15 Typical Hydropower Capacity Penalty Function

Combined Penalty Functions

If two or more penalty functions apply to a single stream reach or to a single reservoir, the functions are combined to yield a single penalty function. The combined penalty function then is used in the optimization. For example, a reservoir hydropower capacity penalty function, a reservoir recreation penalty function, and a water supply reservoir penalty function may apply for a reservoir. To combine the functions, the various penalties for a given storage are added. The resulting function is then edited or smoothed to yield a convex function. This convex function then is represented in a piecewise linear fashion for the network. Figure C-16 illustrates this.

FIGURE C-16 Penalty Functions Combined

REFERENCES

Barr, R.S., Glover, F., and Klingman, D. (1974). "An Improved Version of the Out-of-kilter Method and a Comparative Study of Computer Codes." *Mathematical Programming* 7, 60-86.

Chung, F.I., Archer, M.C., and DeVries, J.J. (1989). "Network Flow Algorithm Applied to California Aqueduct Simulation." *Journal of Water Resources Planning and Management* 115(2), 131-147.

Fulkerson, D.R. (1961). "An Out-of-kilter Method For Solving Minimal Cost Flow Problems." Journal of the Society for Industrial and Applied Mathematics 9, 18-27.

Grygier, J.C., and Stedinger, J.R. (1985). "Algorithms For Optimizing Hydropower System Operation." Water Resources Research 21(1), 1-10.

Hitch, C.J., and McKean, R. (1960). The Economics of Defense in the Nuclear Age. Harvard University Press, Cambridge, MA.

Jensen, P.A., and Barnes, J.W. (1980). *Network Flow Programming*. John Wiley & Sons, New York, NY.

Jensen, P.A., Bhaumik, G., and Driscoll, W. (1974). "Network Flow Modeling of Multireservoir Distribution Systems," *CRWR-107*, Center for Research in Water Resources, University of Texas, Austin, TX.

Karney, D., and Klingman, D. (1976). "Implementation and Computational Study on an Incore, Out-of-core Primal Network Code." *Operations Research* 24(6), 1056-1077.

Martin, Q.W. (1982). "Multireservoir Simulation and Optimization Model SIM-V," UM-38, Texas Department of Water Resources, Austin, TX.

Reznicek, K.K., and Simonovic, S.P. (1990). "An Improved Algorithm For Hydropower Optimization." Water Resources Research 26(2), 189-198.

SHARE Distribution Agency (1967). "Out-of-kilter Network Routine." SHARE Distribution 3536, Hawthorne, NY.

Texas Department of Water Resources (1975). "Optimal Capacity Expansion Model For Surface Water Resources Systems," Austin, TX.

GLOSSARY

ARC Connects two nodes of a network. In network-flow programming, each arc has three parameters: a lower bound, which is the minimal amount that can flow along the arc; an upper bound, which is the maximum amount that can flow along the arc; and a cost for each unit that flows along the arc. Arcs of a generalized network also have an arc multiplier.

CHANNEL-FLOW LINK Represents the flow in a channel reach. A channel-flow link originates at any non-reservoir node and terminates at any network node.

CONSTRAINT Limit the decision variables to their feasible or permissible values.

CONVEX FUNCTION A function f(X) for which the following is true for any two distinct points X_1 and X_2 and for $0 < \lambda < 1$: $f(\lambda X_1 + (1 - \lambda)X_2) < \lambda f(X_1) + (1 - \lambda)f(X_2)$

DECISION VARIABLE The unknowns which are to be determined from the solution of the model.

DIVERSION LINK Carries flow out of the system. A diversion link originates at any system node and terminates at the sink node.

FINAL-STORAGE LINK Carries flow out of the system, from a reservoir in the last period of analysis. It originates at a reservoir node and terminates at the sink node.

HYDROPOWER RESERVOIR-RELEASE LINK Represents the release from a hydropower reservoir. The penalty function for a hydropower reservoir-release link depends on both the release from the reservoir and the storage in the reservoir.

INFLOW LINK Brings flow into the reservoir-system network. An inflow link originates at the source node and terminates at any system node.

INITIAL-STORAGE LINK Introduces to the network the volume of water initially stored in a system reservoir. The initial-storage link originates at the source node and terminates at a reservoir node in the first period of analysis only.

NETWORK A collection of arcs and nodes.

NETWORK-FLOW PROGRAMMING An optimization procedure for allocating flow along the arcs of a network. Network-flow programming is a special class of linear programming.

NODE The junction of two or more network arcs. The node may represent a system reservoir, demand point, channel junction, diversion point. The sum of flow in arcs originating at a node equals the sum of flow in all arcs terminating at the node.

OBJECTIVE FUNCTION Defines the overall effectiveness of a system as a mathematical function of its decision variables. The optimal solution to the model yields the best value of the objective function, while satisfying all constraints.

PENALTY FUNCTION Defines the penalty for less-than-perfect operation as a function of flow, storage, or both.

PIECEWISE LINEAR APPROXIMATION Is an approximation in which a non-linear function is represented by linear segments, arranged sequentially.

RESERVOIR-STORAGE LINK Represents the volume of water stored in a reservoir at the end of a period. The link originates at any reservoir in a layered, multiple-period network and terminates at the node representing the same reservoir in the period following.

SIMPLE RESERVOIR-RELEASE LINK Represents the total outflow from a nonhydropower reservoir. Flow in the link includes release and spill.

SINK NODE Is the hypothetical absorber of all flow in the network. All diversion links and final-storage links terminate at the sink node.

SOLVER Finds the minimum-cost allocation of flow to the network arcs, subject to the upper and lower bounds on arc flows and to continuity at the network nodes.

SOURCE NODE Is the hypothetical provider of all flow in the network. All inflow links and initial-storage links originate at the source node. No user-defined links terminate at the source node.

COLUMBIA RIVER NETWORK MODEL DESCRIPTION

COLUMBIA RIVER NETWORK MODEL DESCRIPTION

Table of Contents

System Description				
Network Representation				
Summary	2			
Network Nodes	2			
Libby	2			
Bonners Ferry	2			
Corra Linn	4			
Hungry Horse	4			
Columbia Falls	4			
Kerr	4			
Thompson Falls/Noxon/Cabinet	4			
Albeni Falls/Box Canyon/Boundary	4			
Dworshak	5			
Spalding	5			
Brownlee/Oxbow/Hells Canyon	5			
Lower Granite/Little Goose/Lower Monumental/Ice Harbor	5			
Mica	6			
Arrow	6			
Grand Coulee/Chief Joseph	6			
Wells	3			
Rocky Reach	3			

Rock Island/Wanapum/Priest Rapids	6
McNary	7
John Day	7
The Dalles/Bonneville	7
Network Links	7
Inflow links	7
Initial-storage links	7
Diversion links	7
Final-storage links	8
Channel-flow links	8
Simple reservoir-release links	8
Reservoir-storage links	8
System Data	8
Reservoir-inflow and Local-flow Data	8
Inflow and Local Flow Depletions	10
Reservoir Evaporation Data	10
Hydraulic Capacities	10
Initial Storage	10
Penalty Functions	10
References	13

COLUMBIA RIVER NETWORK MODEL DESCRIPTION

Tables

Page

Table D-1	Columbia System Flow Data Description	9
Table D-2	Storage Capacities	11
Table D-3	Initial Storage	12

Figures

Figure D-1	Coordinated Columbia River System	1
Figure D-2	Single-period Link-node Representation of Columbia River System	3

Exhibit

Exhibit D-1	System Inflows	• • • • •		•••••	• • • • • • • • • • •		••••	14
-------------	----------------	-----------	--	-------	-----------------------	--	------	----

COLUMBIA RIVER NETWORK MODEL DESCRIPTION

SYSTEM DESCRIPTION (adapted from EM 1110-2-1701)

The Columbia River is primarily a snowmelt stream, with greatest runoff in late spring and early summer. Runoff is less during the remainder of the year. The coordinated system includes approximately 75 projects to control the temporal and spatial distribution of water in the basin. Figure D-1 shows the system and the location of these projects.

FIGURE D-1 Coordinated Columbia River System

Key system projects were constructed by the Corps of Engineers and the Bureau of Reclamation. Three major headwater reservoirs are in Canada and are operated by the British Columbia Hydro and Power Authority. System reservoirs have 42 million acre ft of storage. This storage represents 30 percent of the average annual runoff of the Columbia River upstream from The Dalles.

Historically, the dominant operation purposes are power generation and flood control. More recently, preservation of anadromous fish runs are equally important. The Bonneville Power Administration markets power generated from Corps and Bureau projects. The seasonal power demand is out of phase with the runoff supply. Consequently, storage is drafted from late summer through early spring to generate power. The releases also provide flood-control space for the subsequent runoff. Other operation purposes include navigation, irrigation, recreation, and fish and wildlife protection.

NETWORK REPRESENTATION

Summary

To analyze operation of the Columbia River system with HEC-PRM, Hydrologic Engineering Center's prescriptive reservoir model (USACE, 1990), the spatial configuration of the system is represented with a network. For multiple-period operating studies, the network is replicated. The replicates are interconnected to model the time variance of system storage.

Figure D-2 shows the network representation for Phase I studies. This network includes major projects on the Columbia, Snake, Clearwater, and Pend Oreille Rivers. For a single period, the network consists of 21 nodes and 20 links. Thirty storage or pondage projects are represented by 18 nodes. Three nodes represent non-reservoir system control points at which penalty functions are specified. Reservoir inflows or incremental local flows are introduced into the system at each of the 21 nodes.

Network Nodes

For the Phase I analysis, the network representation includes the following nodes:

Libby. This node represents Libby reservoir. An initial-storage link terminates at the node in the first period of analysis. An inflow link terminates at the node in each period; the link flow equals inflow to Libby. Reservoir storage links originate and terminate at the node each period. The upper bound of these links equals the capacity of Libby reservoir. For the Phase I analysis, a simple reservoir-release link originates at the node each period. The hydropower penalty function, simplified by assuming constant head for Phase I, is associated with flow in the arcs representing this link.

Bonners Ferry. This node is included to impose flood control penalties for operation downstream from Libby reservoir. The penalties cannot be combined with those at Libby due to the local runoff downstream from the reservoir. An inflow link terminates at the Bonners Ferry node in each period; the link flow equals incremental local flow upstream of Bonners Ferry, but downstream of Libby reservoir.

FIGURE D-2 Single-period Link-node Representation of Columbia River System

Corra Linn. This node represents Corra Linn reservoir (Kootenay Lake). An initial-storage link terminates at the node in the first period of analysis. An inflow link terminates at the node in each period; the link flow equals incremental local flow upstream of Corra Linn but downstream of Bonners Ferry. Reservoir storage links originate and terminate at the node each period and represent hydropower capacity and flooding. The upper bound of these links equals the capacity of Corra Linn. For the Phase I analysis, a simple reservoir-release link originates at the node each period. The hydropower penalty function for Corra Linn, simplified by assuming constant head, is associated with flow on the arcs representing this link. The penalty functions for Upper Bonnington, Lower Bonnington, South Slocan, and Brilliant reservoirs are associated with the flow in the Corra Linn release link.

Hungry Horse. This node represents Hungry Horse reservoir. An initial-storage link terminates at the node in the first period of analysis. An inflow link terminates at the node in each period; the link flow equals inflow to Hungry Horse. Reservoir storage links originate and terminate at the node each period. The upper bound of these links equals the capacity of Hungry Horse reservoir. For the Phase I analysis, a simple reservoir-release link originates at the node each period. The Hungry Horse hydropower penalty function, simplified by assuming constant head, is associated with flow on the arcs representing this link.

Columbia Falls. This node is included to impose penalties for operation downstream of Hungry Horse reservoir. The penalties cannot be combined with those of Hungry Horse due to the local runoff downstream from the reservoir. An inflow link terminates at the Columbia Falls node in each period; the link flow equals incremental local flow upstream of Columbia Falls but downstream of Hungry Horse reservoir.

Kerr. This node represents Kerr reservoir (Flathead Lake). An initial-storage link terminates at the node in the first period of analysis. An inflow link terminates at the node in each period; the link flow equals incremental local flow upstream of Kerr but downstream of Columbia Falls. Reservoir storage links originate and terminate at the node each period. The upper bound of these links equals the capacity of Kerr reservoir. For the Phase I analysis, a simple reservoir-release link originates at the node each period. The Kerr hydropower penalty function, simplified by assuming constant head, is associated with flow on the arcs representing this link.

Thompson Falls/Noxon/Cabinet. This node represents combined operation of the Thompson Falls, Noxon, and Cabinet Gorge pondage projects. Penalties for operation of these cannot be combined with those of Kerr because of the impact of Clark fork flows and additional inflow downstream from Kerr. An inflow link terminates at the node in each period; the link flow equals incremental local flow upstream from Cabinet Gorge but downstream of Kerr reservoir including Clark Fork flows. Because these projects do not have monthly carry-over storage, no initial-storage link or reservoir storage links are included. The reservoir release is assumed equal to inflow and is modeled with a channel-flow link.

Albeni Falls/Box Canyon/Boundary. This node represents combined operation of Albeni Falls, Box Canyon, and Boundary reservoirs. Box Canyon and Boundary are considered pondage projects, with no monthly carry-over storage. Therefore, the capacity of the combined project equals the capacity of Albeni Falls. This is represented with reservoir storage links which originate and terminate at the node each period. The upper bound of these links equals the capacity of Albeni Falls, Box Canyon and Boundary. An initialstorage link terminates at the node in the first period of analysis; the flow in this link equals initial storage of Albeni Falls. The incremental flow between the projects is minor, so it is ignored for this analysis. Therefore, an inflow link with flow equal to the incremental flow upstream of Boundary reservoir but below Cabinet Gorge terminates at the node in each period. For the Phase I analysis, a simple reservoir-release link originates at the node each period. The hydropower penalty function, simplified by assuming constant head, is associated with flow on the arcs representing this link. This penalty function represents power generated at all three projects.

Dworshak. This node represents Dworshak reservoir. An initial-storage link terminates at the node in the first period of analysis. An inflow link terminates at the node in each period; the link flow equals inflow to Dworshak. Reservoir storage links originate and terminate at the node each period. The upper bound of these links equals the capacity of Dworshak reservoir. For the Phase I analysis, a simple reservoir-release link originates at the node each period. The Dworshak hydropower penalty function, simplified by assuming constant head, is associated with flow on the arcs representing this link.

Spalding. This node is included to impose penalties for operation downstream of Dworshak reservoir. The penalties cannot be combined with those of Dworshak due to the local runoff downstream of the reservoir. An inflow link terminates at the Spalding node in each period; the link flow equals incremental local flow upstream of Spalding but downstream of Dworshak reservoir.

Brownlee/Oxbow/Hells Canyon. This node represents combined operation of Brownlee, Oxbox, and Hells Canyon reservoirs. Of these, only Brownlee is a storage project. Therefore, the capacity of the combined project equals the capacity of Brownlee. This is represented with reservoir storage links which originate and terminate at the node each period; the upper bound of these links equals the capacity of Brownlee, Oxbow, and Hells Canyon. An initial-storage link terminates at the node in the first period of analysis; the flow in this link equals initial storage of Brownlee. The incremental flow between the projects is minor, so it is ignored for this analysis. Therefore, an inflow link with flow equal the Hells Canyon inflow terminates at the node in each period. For the Phase I analysis, a simple reservoir-release link originates at the node each period. The hydropower penalty function, simplified by assuming constant head, is associated with flow on the arcs representing this link. This penalty function represents power generated at all three projects.

Lower Granite/Little Goose/Lower Monumental/Ice Harbor. This node represents combined operation of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor projects. An inflow link terminates at the node in each period; the link flow equals incremental local flow upstream of Ice Harbor but downstream of Spalding and Hells Canyon. This includes Salmon and Grande Ronde River flows. Because the projects do not have monthly carry-over storage, no initial-storage link or reservoir storage links are included. The reservoir release is assumed equal to inflow and is modeled with a channelflow link. Mica. This node represents Mica reservoir. An initial-storage link terminates at the node in the first period of analysis. An inflow link terminates at the node in each period; the link flow equals inflow to Mica. Reservoir storage links originate and terminate at the node each period. The upper bound of these links equals the capacity of Mica reservoir. For the Phase I analysis, a simple reservoir-release link originates at the node each period. The system will not optimize storage or release from MICA. For Phase I, storage and release penalty functions have zero unit cost.

Arrow. This node represents Arrow reservoir. An initial-storage link terminates at the node in the first period of analysis. An inflow link terminates at the node in each period; the link flow equals incremental local flow upstream of Arrow but below Mica. Reservoir storage links originate and terminate at the node each period. The capacity of these links equals the capacity of Arrow reservoir. For the Phase I analysis, a simple reservoir-release link originates at the node each period. The system will not optimize storage or release Arrow. For Phase I, storage and release penalty functions have zero unit cost.

Grand Coulee/Chief Joseph. This node represents combined operation of Grand Coulee and Chief Joseph reservoirs. Grand Coulee is a storage project, and Chief Joseph is a pondage project. Therefore, the capacity of the combined project equals the capacity of Grand Coulee. The storage is represented with reservoir storage links which originate and terminate at the node each period; the upper bound of these links equals the capacity of Grand Coulee. An initial-storage link terminates at the node in the first period of analysis; the flow in this link equals initial storage of Grand Coulee. An inflow link terminates at the node in each period; the link flow equal the incremental local flow above Chief Joseph but downstream from Arrow, Corra Linn and Boundary reservoirs. For the Phase I analysis, a simple reservoir-release link originates at the node each period. The hydropower penalty function, simplified by assuming constant head, is associated with flow on the arcs representing this link. This penalty function represents power generated at both projects.

Wells. This node is included to impose penalties for operation of Wells reservoir. The penalties cannot be combined with those of Grand Coulee/Chief Joseph due to the impact of local runoff downstream from the reservoirs and the Methow and Okanogan River flows. An inflow link terminates at the Wells node in each period; the link flow equals incremental local flow upstream of Wells but downstream of Chief Joseph reservoir including Methow and Okanogan River flows. Because this project does not have monthly carry-over storage, no initial-storage link or reservoir storage links are included. The reservoir release is assumed equal to inflow and is modeled with a channel-flow link.

Rocky Reach. This node is included to impose penalties for operation of Rocky Reach reservoir. The penalties cannot be combined with those of Wells reservoir due to the impact of local runoff downstream of Wells. An inflow link terminates at the Rocky Reach node in each period; the link flow equals incremental local flow upstream of Rocky Reach but downstream of Wells reservoir. Because this project does not have monthly carry-over storage, no initial-storage link or reservoir storage links are included. The reservoir release is assumed equal to inflow and is modeled with a channel-flow link.

Rock Island/Wanapum/Priest Rapids. This node represents combined operation of the Rock Island, Wanapum, and Priest Rapids pondage projects. Penalties for operation of these cannot be combined with those of Rocky Reach reservoirs due to the impact of Wenatchee River flows and additional inflow downstream of Rocky Reach. An inflow link terminates at the Rock Island/Wanapum/Priest Rapids node in each period; the link flow equals incremental local flow upstream of Priest Rapids but downstream of Rocky Reach reservoir. Because these projects do not have monthly carry-over storage, no initial-storage link or reservoir storage links are included. The reservoir release is considered equal inflow and is modeled with a channel-flow link.

McNary. This node is included to impose penalties for operation downstream of McNary reservoir. An inflow link terminates at the McNary node in each period; the link flow equals incremental local flow upstream of McNary but downstream of Priest Rapids and Ice Harbor reservoirs, including Yakima and Naches River flows. Because this project does not have monthly carry-over storage, no initial-storage link or reservoir storage links are included. The reservoir release is assumed equal to inflow and is modeled with a channel-flow link.

John Day. This node is included to impose penalties for operation downstream of John Day reservoir. These penalties cannot be combined with those of McNary due to the impact of local runoff downstream of McNary and to the Umatilla and John Day River and Willow creek flows. An inflow link terminates at the John Day node in each period; the link flow equals incremental local runoff downstream of McNary including Umatilla and John Day River and Willow creek flows. Because this project does not have monthly carryover storage, no initial-storage link or reservoir storage links are included. The reservoir release is assumed equal to inflow and is modeled with a channel-flow link.

The Dalles/Bonneville. This node is represents the combined operation of The Dalles and Bonneville pondage projects. An inflow link terminates at The Dalles/Bonneville node in each period; the link flow equals incremental local flow upstream of Bonneville but downstream from John Day reservoir. Because these projects do not have monthly carry-over storage, no initial-storage link or reservoir storage links are included. The reservoir release is assumed equal to inflow and is modeled with a channel-flow link.

Network Links

For the Phase I analysis, the network representation includes the following links:

Inflow links. Inflow links introduce reservoir inflow and incremental local flow at all 21 network nodes. For those nodes that represent combined storage or pondage projects, the flow in these inflow links equals the sum of the inflow for the component projects as described above. For each period of analysis, the network has 21 inflow links.

Initial-storage links. An initial-storage link carries flow equal the initial storage for each of the storage projects. The links terminate at the nodes representing Libby, Corra Linn, Hungry Horse, Kerr, Albeni Falls/Box Canyon/Boundary, Mica, Arrow, Grand Coulee/Chief Joseph, Dworshak, and Brownlee/Oxbow/Hells Canyon.

Diversion links. The network ends with a diversion link at The Dalles/Bonneville node. This link carries flow out of the network at its downstream end. For the Columbia system, the penalty associated with this link is the penalty assigned to The Dalles/Bonneville release. Irrigation diversions are not optimized but are included within the adjusted inflow data. **Final-storage links.** A final storage link originates at each reservoir node in the last period of analysis. Final storage links are included from nodes representing Libby, Corra Linn, Hungry Horse, Kerr, Albeni Falls/Box Canyon/Boundary, Mica, Arrow, Grand Coulee/Chief Joseph, Dworshak, and Brownlee/Oxbow/Hells Canyon reservoirs.

Channel-flow links. The network includes the following channel-flow links:

- 1. Bonners Ferry to Corra Linn;
- 2. Columbia Falls to Kerr;
- 3. Thompson Falls/Noxon/Cabinet to Albeni Falls/Box Canyon/Boundary;
- 4. Wells to Rocky Reach;
- 5. Rocky Reach to Rock Island/Wanapum/Priest Rapids;
- 6. Rock Island/Wanapum/Priest Rapids to McNary;
- 7. Spalding to Lower Granite/Little Goose/Lower Monumental/Ice Harbor;
- 8. Lower Granite/Little Goose/Lower Monumental/Ice Harbor to McNary;
- 9. McNary to John Day;
- 10. John Day to The Dalles/Bonneville.

Here, the reservoir release links for the pondage projects are represented as channel-flow links.

Simple reservoir-release links. A reservoir-release link connects the node representing each storage reservoir with the next downstream node. Thus simple reservoirrelease links originate at each of the nodes representing Libby, Corra Linn, Hungry Horse, Kerr, Albeni Falls/Box Canyon/Boundary, Mica, Arrow, Grand Coulee/Chief Joseph, Dworshak, and Brownlee/Oxbow/Hells Canyon. For Phase I analysis, the hydropower penalty function for each storage project is associated with flow in the reservoir-release link, as head is assumed constant.

Reservoir-storage links. Reservoir-storage links model the dynamic effects of system operation: they represent the carry over of water from one period to the next. A reservoir-storage link originates each period at each of the nodes representing Libby, Corra Linn, Hungry Horse, Kerr, Albeni Falls/Box Canyon/Boundary, Mica, Arrow, Grand Coulee/Chief Joseph, Dworshak, and Brownlee/Oxbow/Hells Canyon and terminates the following period at the corresponding node in the replicate network.

SYSTEM DATA

Reservoir-inflow and Local-flow Data

Reservoir-inflow and local-flow data are developed by NPD staff for the NPD HYSSR model. These were provided to HEC in computer-readable form. The data provided are "natural" flows (in CFS), from which "local-incremental" flows (in kaf/month) required for HEC-PRM were developed as shown in Table D-1. The flow data are shown in Appendix I.
TABLE D-1Columbia System Flow Data Description

Node	Flow Data Description
Libby	Inflow to Libby Res. (Corps ID 003)
Bonners Ferry	Local flow between Libby and Bonners Ferry (Corps IDs 003 and 400)
Corra Linn	Local flow between Bonners Ferry and Corra Linn (Corps IDs 400 and 006)
Hungry Horse	Inflow to Hungry Horse Res. (Corps ID 010)
Columbia Falls	Local flow between Hungry Horse and Columbia Falls (Corps IDs 010 and 401)
Kerr	Local flow between Columbia Falls and Kerr Res. (Corps IDs 401 and 011)
Thompson Falls/Noxon/Cabinet	Local flow between Kerr Res. and Cabinet Res. (Corps IDs 011 and 056)
Albeni Falls/Box Canyon/Boundary	Local flow between Cabinet Res. and Boundary Res. (Corps IDs 056 and 058)
Dworshak	Inflow to Dworshak Res. (Corps ID 031)
Spalding	Local inflow between Dworshak Res and Spalding (Corps IDs 031 and 402)
Brownlee/Oxbow/Hells Canyon	Inflow to Hells Canyon Res. (Corps ID 084)
Lower Granite/Little Goose/ Lower Monumental/Ice Harbor	Local inflow between Hells Canyon, Spalding, and Ice Harbor (Corps IDs 084, 402 and 079)
Mica	Inflow to Mica Res. (Corps ID 001)
Arrow	Local flow between Mica and Arrow (Corps IDs 001 and 002)
Grand Coulee/Chief Joseph	Local flow between Arrow, Corra Linn, Boundary and Chief Joseph (Corps IDs 002, 006, 058 and 066)
Wells	Local flow between Chief Joseph and Wells (Corps IDs 066 and 067)
Rocky Reach	Local flow between Wells and Rocky Reach (Corps IDs 067 and 068)
Rock Island/Wanapum/Priest Rapids	Local flow between Rocky Reach and Priest Rapids (Corps IDs 068 and 071)
McNary	Local flow between Priest Rapids, Ice Harbor and Mc Nary (Corps IDs 071, 079 and 080)
John Day	Local flow between Mc Nary and John Day (Corps IDs 080 and 081)
The Dalles/Bonneville	Local flow between John Day and Bonneville (Corps IDs 081 and 083)

Inflow and Local Flow Depletions

According to NPD staff, the provided natural reservoir inflow and local flow data have been adjusted for 1980 level depletions. Thus, no further adjustments are required for use with HEC-PRM.

Reservoir Evaporation Data

According to NPD staff, flow data are adjusted to account for river and lake evaporation. Therefore, for analysis with HEC-PRM, no further adjustment or accounting is required.

With adjustments prior to analysis, lake evaporation is assumed constant with respect to lake area. The impact of assuming constant evaporation in the network optimization problem reduces to a pure minimum-cost network flow problem. Typically such problems can be solved in one-half to one-quarter the time required to solve the generalized minimum-cost network flow problem.

Hydraulic Capacities

For HEC-PRM, physical limits on reservoir storage must be defined explicitly. For the storage reservoirs of the Columbia system, the minimum and maximum capacities are shown in columns 2 and 4 of Table D-2.

For analysis of monthly operation of reservoirs with flood-control storage allocation, operation may be limited to the conservation pool. This forces the model to keep the flood-control pool empty on a monthly basis. The conservation pool capacities of the Columbia system reservoirs are shown in column 3 of Table D-2.

Initial Storage

Initial storage must be defined for each system reservoir. These values depend on the flow sequence to be analyzed. For analysis of the critical period, July 1928 to February 1932, the initial storages were set at full pool, they are shown in column 2 of Table D-3. For Phase I model validation the period of September 1969 through July 1975 was selected. Initial storages for the validation period are shown in column 3 of Table D-3. These data were derived by NPD staff with the HYSSR model run in a continuous mode.

PENALTY FUNCTIONS

Goals of and constraints on Columbia River reservoir system operation are represented with penalty functions. These functions represent the economic, social, and environmental costs associated with failure to meet operation goals. The costs are related to flow or storage or both at selected system locations. For the Phase I study, functions are developed by the Institute for Water Resources (IWR). These functions are presented in a separate document distributed by IWR.

TABLE D-2Storage Capacities

<u>Reservoir</u> (1)	Top Inactive Storage <u>1000 acre-ft</u> (2)	Top Conservation Storage <u>1000 acre-ft</u> (3)	Maximum Storage <u>1000 acre-ft</u> (4)
Libby	889.9	5,869.4	5,869.4
Corra Linn	144.0	817.0	817.0
Hungry Horse	486.0	3,647.1	3,771.8
Kerr	572.3	1,791.0	1,791.0
Albeni Falls	384.0	1,539.2	1,539.2
Box Canyon	9.8	17.0	17.0
+ Boundary	68.3	96.3	96.3
Sub Total	462.1	1,652.5	1,652.5
Mica	13,075.5	20,075.5	20,075.5
Arrow	219.3	7,327.3	7,327.3
Grand Coulee	3,921.9	9,107.4	9,107.4
Chief Joseph	400.8	593.1	593.1
Sub Total	4,322.7	9,700.5	9,700.5
Dworshak	1,452.2	3,468.0	3,468.0
Brownlee +	444.8	1,420.1	1,464.7
Oxbow	48.8	59.8	59.8
+ Hells Canyon	155.0	178.0	178.0
Sub Total	648.6	1657.9	1,702.5

TABLE D-3 Initial Storage

<u>Reservoir</u> (1)	Critical Period Analysis July 1928 <u>1000 acre-ft</u> (2)	Validation Analysis August 1969 <u>1000 acre-ft</u> (3)
Libby	5,869.4	5,869.4
Corra Linn	570.0	570.0
Hungry Horse	3,647.1	3,647.9
Kerr	1,791.0	1,789.7
Albeni Falls	1,539.2	1,539.2
Box Canyon	17.0	17.0
+ Boundary	96.3	96.3
Sub Total	1,652.5	1,652.5
Mica	20,075.5	20,075.5
Arrow	7,327.3	7,327.3
Grand Coulee	9,107.4	9,107.4
Chief Joseph	593.1	593.1
Sub Total	9,700.5	9,700.5
Dworshak	3,468.0	3,468.0
Brownlee	1,420.1	1,420.1
Oxbow	59.8	59.8
+ Hells Canyon	178.0	178.0
Sub Total	1,657.9	1,657.9

APPENDIX D

REFERENCES

U.S. Army Corps of Engineers (1990). *Missouri River System Analysis Model: Phase I.* Hydrologic Engineering Center, Davis, CA.

APPENDIX D

EXHIBIT D-1 System Inflows

LO	Ca	iti	Ľ٥	n:	L	i١	bl	b	٧

Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1928	271	221	278	460	2651	1866	1509	542	301	371	215	81
1929	135	134	156	210	1201	2165	858	455	279	217	138	78
1930	133	151	154	624	1197	2013	1118	506	307	239	182	73
1932	121	160	239	204 507 454	1896	2709	1053	516 653	333	273	270	104
1934	380 196	266 213	377	1648	2671 1488	1809	874 1490	443 621	281	238 236	313 185	98
1936	129	95	165	647 225	1789	1402	597	336	230	185	135	66
1938	194	142	195	666 572	2061	2608	1097	415	298	268	200	78
1940	153	148	200	485	1668	1387	618	352	329	319	216	91
1941	217	163	172	498 567	1816	2210	1732	704	407	484 327	250	103
1943 1944	140	170	139	1157 237	1369	1963 1237	1812 536	625 361	324 280	289 263	215 188	79 65
1945 1946	134 165	119	136	180 659	1162 2347	1913 2425	1072	419 557	330 451	277 341	248 222	93 108
1947	159	186	275	712	2464	2101	1129	514	409	778	468	140
1948	201	167	189	561	2750	3266	1165	717	375	304	229	79
1949	154	151	213	605	1984	1368	663	425	295	263	265	112
1950	161	160	236	437	1469	2989	1829	661	362	441	393	189
1951	266	337	254	711	2705	2272	2081	754	582	665	380	134
1952	260	215	205	877	1889	1842	1166	550	344	264	181	82
1953	217	197	183	333	1398	2642	1589	619	346	294	253	100
1954	152	183	208	376	2345	2921	2569	916	590	392	341	130
1955	192	153	164	259	1082	2860	1765	642	354	432	392	137
1956	232	167	238	803	2758	3048	1507	604	341	328	240	100
1957	139	144	205	348	2540	1879	811	436	280	268	218	87
1958	151	149	192	367	2284	1702	930	442	329	317	252	113
1959	214	147	195	570	1785	3297	1757	708	891	686	478	180
1960	237	225	327	772	1311	2364	1399	586	373	288	248	88
1961	173	210	227	412	2303	3534	1020	574	389	444	281	103
1962	181	220	173	685	1445	2176	1089	565	335	318	294	125
1963	157	237	209	379	1520	2346	1569	621	386	307	268	95
1964	170	138	148	308	1492	3055	1476	602	415	484	321	109
1965	198	188	215	581	1587	2706	1410	676	453	419	328	119
1966	214	187	214	599	1945	2565	1479	592	353	282	242	114
1967	195	190	176	285	1566	3831	1819	657	355	300	251	90
1968	191	190	236	239	1464	2517	1413	605	440	410	330	110
1969	197	152	204	903	2420	2821	1545	557	351	348	251	92
1970	142	155	168	212	1247	1959	821	414	305	278	203	89
1971	175	253	184	478	2414	2825	1545	724	381	291	237	85
1972	155	176	385	401	2105	3690	1801	877	442	511	385	111
1973	188	168	207	312	1362	1905	993	455	343	287	320	122
1974	334	267	285	694	1738	4066	1942	785	413	290	268	104
1975	168	196	206	262	1231	2413	1431	640	459	361	392	213
1976	206	218	244	572	2285	1776	1661	1118	591	348	248	104
1977 1978	167 210	147 165	167 244	329 482	964 1557	1214 2276	518 1424	465 550	407 489	274	188	95

Location: Bonners Ferry

Year 1928	Jan	Feb	Mar	Apr	Мау	Jun	Jul 245	Aug 247	Sep	0ct 77	Nov	Dec
1929	52	48	100	211	584	310	66	15	220	46	55	100
1020	13	58	100	449	400	242	115	25	20	40	50	21
1021	41	52	102	202	40 9 516	100	115	30	34	55	53	20
1022	51	07	102	202	1040	190		42	40	49	57	18
1932	51	87	193	324	1042	630	201	83	55	50	118	81
1933	93	60	101	450	938	1076	386	109	12	105	219	197
1934	387	245	342	1030	801	338	123	63	41	60	216	49
1935	147	147	144	337	918	610	201	79	58	57	50	21
1936	57	26	83	525	748	308	85	54	50	38	34	27
1937	22	31	46	220	706	530	152	61	46	38	118	50
1938	117	68	140	652	950	609	206	61	38	45	45	24
1939	63	42	96	394	624	304	129	62	41	33	46	36
1940	42	55	128	329	516	215	53	32	22	24	40	21
1941	41	36	89	230	352	188	73	33	65	138	137	183
1942	98	69	88	414	636	580	293	87	41	45	75	37
1943	52	55	96	975	790	696	325	106	39	34	37	22
1944	44	35	34	97	255	163	68	33	29	33	40	16
1945	53	53	55	116	681	397	116	42	37	51	85	38
1946	73	48	145	556	1012	602	213	66	51	69	75	63
1947	118	147	251	637	1066	456	138	65	52	261	105	64
1948	118	96	122	521	1202	878	246	127	65	61	50	26
1949	50	59	89	613	1099	342	01	42	20	52	111	20
1950	67	89	213	482	1106	1072	408	105	23	120	102	120
1951	197	362	169	543	1115	403	201	100	77	172	1100	71
1952	81	86	95	760	936	433	223	30	52	42	110	17
1953	120	167	111	333	000 002	599	177	70	11	-45	40	20
1954	41	64	120	436	1351	017	477	127	44 95	35	100	30
1055	50	46	52	170	774	956	200	137	50	100	100	44
1956	187	Q1	171	964	1464	710	200	100	52	133	213	90
1057	31	40	145	225	1151	270	100	102	03	00	40	30
1058	47	72	120	355	925	370	122	24	30	44	42	21
1050	165	75	120	500	020	214	00	32	31	49	106	01
1959	103	109	30	600	943	112 576	248	50	120	187	201	100
1061	00	100	220	034	1017	576	100	/1	37	53	89	36
1901	90	181	190	390	1287	827	152	27	25	25	50	31
1902	112	32	10	208	725	418	116	67	45	61	120	81
1903	113	159	100	302	690	411	142	70	32	32	69	46
1904	00	104	100	203	906	618	1/1	12	47	40	67	46
1905	90	104	130	591	959	670	161	47	36	-38	-6	34
1900	223	23	14	317	8/9	483	42	-34	-44	9	38	36
1967	103	43	14	174	1046	913	104	-25	-33	<u>14</u>	57	
1968	188	112	164	153	121	385	112	38	43	77	131	128
1969	362	283	129	926	1169	447	287	62	-8	26	31	38
1970	161	56	39	110	849	396	60	-16	-19	13	43	97
19/1	328	319	17	468	1320	577	181	25	-3	30	158	108
1972	274	308	629	384	1242	789	245	92	- 8	36	85	147
1973	287	141	88	212	624	276	34	-44	4	3	109	74
1974	506	159	257	741	1153	1349	357	98	10	63	116	26
1975	54	111	111	206	1123	935	192	42	12	8	109	190
1976	210	140	99	540	1195	472	116	67	45	3	56	19
1977	41	12	- 8	154	244	46	- 13	-37	-48	22	46	44
1978	- 34	-23	177	395	917	457	92	17	17			

Location: Corra Linn

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1928	100	70	474	007	4474	0004	1591	524	196	361	196	-36
1929	100	70	1/4	227	11/1	2034	994	620	305	183	97	70
1930	39	143	131	/16	1227	1627	1246	697	374	213	150	56
1931	133	118	1/9	317	1538	1620	1009	552	415	187	192	88
1932	151	150	391	636	1994	2753	1529	/24	306	267	331	159
1933	240	140	217	414	1578	3396	2585	999	405	510	475	232
1934	384	243	311	1287	2810	2317	11//	614	338	231	389	132
1935	247	244	236	339	1511	2585	1925	793	401	232	168	78
1936	156	100	164	763	2277	1929	1033	538	280	177	120	80
1937	89	131	114	264	1205	1899	1135	537	331	377	467	143
1938	258	163	295	/13	1910	2479	1383	513	424	293	207	98
1939	204	119	208	/24	2085	1597	1323	613	341	530	349	180
1940	21/	202	333	640	1894	1710	969	557	476	414	229	111
1941	181	152	317	748	1485	1467	901	566	694	656	438	271
1942	248	193	199	532	1611	2012	1633	707	336	249	208	99
1943	146	142	204	1030	1333	2110	1959	713	305	289	192	87
1944	149	11/	125	338	1213	1407	688	556	370	320	227	79
1945	167	149	1/9	233	1607	2185	1163	491	310	221	233	96
1946	187	1/1	261	693	2618	2781	1651	709	429	246	206	121
1947	184	224	316	/28	2407	2331	1454	595	387	747	426	131
1948	196	186	200	507	1654	3658	1312	773	373	310	230	. 84
1949	118	141	205	591	2411	1559	836	537	326	240	296	153
1950	203	192	303	461	1358	3111	2262	809	399	541	443	221
1951	352	3/9	285	641	2462	2293	2171	756	421	525	311	136
1952	190	193	239	/6/	2226	2175	1292	598	303	186	111	
1953	239	210	206	340	1697	2673	1856	789	379	358	337	134
1954	258	231	200	403	2231	2865	3044	1163	620	357	428	162
1955	218	103	104	300	1033	3399	2415	852	416	4/6	427	150
1950	240	109	2/4	699	2449	3315	1/9/	721	362	389	225	131
1957	173	160	204	404	3066	2131	965	550	320	317	201	103
1950	100	210	201	433	2719	2033	862	545	352	360	252	100
1959	230	170	219	033	1500	3269	2094	859	951	/13	468	164
1960	205	1/2	320	842	1522	2/34	1/84	686	4/5	359	303	86
1901	211	290	310	767	2283	3953	1247	689	317	361	198	190
1902	133	193	194	542	1424	2314	1431	793	3/8	406	384	165
1963	229	151	170	205	1/09	2490	1409	0/0	401	511	309	110
1965	213	109	244	663	1500	2407	1200	002	209	541	300	120
1966	57	167	377	653	2005	2497	1710	755	370	441	433	124
1967	230	289	353	410	1519	4005	2144	901	433	200	200	141
1968	78	267	501	302	1754	3030	1959	866	400 641	399	320	00
1969	-53	-43	217	838	2677	2194	1205	500	476	423	300	09
1970	98	153	220	377	1463	2550	1040	583	257	255	167	90
1971	-6	102	361	602	2449	2000	1990	000	200	200	107	21
1972	- 33	-41	466	467	22773	3608	2172	1101	390	299	120	11
1072	- 11	108	216	366	1506	1900	1170	607	233	200	130	160
1974	371	233	250	641	1708	1022	2275	1001	205	102	3/0	102
1975	147	113	152	325	1360	2570	1740	702	477	100	204	20
1976	185	188	186	553	2265	2146	2357	1490	767	721	120	241
1977	141	175	159	502	1240	1707	010	720	474	203	261	107
1978	291	202	327	679	1617	2440	1698	736	733	204	201	100
						_ · · · •		,				

Location: Hungry Horse

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1020	20	24	27	105	671	622	344	112	04	40	44	32
1929	10	24	20	120	565	400	104	47	20	21	23	
1930	19	30	29	303	305	408	110	40	29	57	60	23
1931	43	42	14	197	726	338	68	35	37	38	49	24
1932	34	83	131	326	889	/31	215	67	39	51	136	59
1933	/2	51	54	238	686	1489	333	85	48	178	246	108
1934	168	113	181	700	937	413	118	45	28	54	123	31
1935	57	57	79	182	785	715	199	57	30	28	24	10
1936	21	20	29	430	1074	426	97	39	25	27	21	13
1937	16	17	25	120	699	524	142	51	26	34	49	30
1938	59	53	58	316	715	624	162	52	30	35	33	25
1939	46	29	80	453	980	455	169	48	28	29	28	21
1940	34	33	85	271	650	344	83	34	26	31	29	15
1941	29	28	59	194	407	237	72	31	43	94	71	72
1942	59	34	38	325	570	546	218	60	37	32	65	34
1943	46	41	57	583	684	956	502	100	45	46	38	19
1944	28	22	28	154	546	323	104	43	36	39	36	18
1945	50	40	46	109	735	644	204	53	36	57	114	35
1946	54	40	82	427	867	647	217	67	38	95	103	60
1947	91	97	115	388	1091	696	230	73	54	153	85	29
1948	57	40	39	236	1116	907	187	74	34	30	28	13
1949	22	20	36	334	981	472	115	44	33	43	83	45
1950	59	48	67	208	764	1188	599	138	52	120	141	82
1951	100	123	68	321	938	659	384	93	63	143	99	34
1952	49	40	38	439	871	516	156	51	30	25	23	18
1953	66	58	53	212	646	991	326	68	32	27	43	22
1954	44	51	61	196	1104	880	515	100	60	88	88	37
1955	60	46	46	104	580	946	347	70	38	97	106	54
1956	80	62	83	356	1044	878	210	66	40	57	59	42
1957	62	40	49	172	1061	545	121	43	36	38	46	21
1958	32	39	49	1/8	1048	500	123	44	48	93	169	77
1959	133	83	84	367	740	1408	441	96	112	282	209	60
1960	69	53	119	342	568	882	246	71	38	42	57	20
1961	41	108	110	240	905	879	137	42	46	80	55	31
1962	56	61	53	462	845	805	215	66	37	82	95	51
1963	70	110	86	198	623	545	185	51	39	32	35	23
1964	20	32	42	127	738	1247	319	/4	89	88	83	69
1965	90	84	109	361	840	1055	320	101	139	90	75	32
1900	55	39	74	284	///	648	201	58	37	43	52	38
1967	69	59	53	131	856	1186	319	65	36	65	100	32
1968	67	86	142	129	646	793	222	88	179	174	126	41
1969	104	55	61	437	795	549	235	63	52	60	44	22
1970	40	43	49	92	854	990	191	65	53	54	66	35
1971	102	221	86	291	1125	941	325	86	44	44	49	23
1972	51	49	209	231	916	1188	351	109	56	60	53	34
1973	03	28	20	137	586	526	127	43	32	40	132	51
19/4	10/	80	99	342	090 570	1450	44/	95	52	38	48	21
19/0	40	30	50	10	5/8	1205	485	108	/6	96	134	85
1077	24	22	29	307	1030	090	310	101	45	34	35	19
1079	51	33	42	239	482	323	CG	51	58	81	70	50
19/0	34	39	128	302	100	803	341	91	80			

Location: Columbia Falls

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1944 1945 1944 1945	78 63 63 48 69 279 157 48 41 95 85 61 145 99 52 67 93 93 93	61 63 74 54 54 170 129 47 39 44 59 44 59 44 59 44 59 23 99	маг 81 71 90 207 75 231 94 71 425 118 102 77 105 68 123 142 508 123 142 508 123 142 508 123 123 105 105 105 105 105 105 105 105	Apr 199 693 282 527 375 1216 248 563 179 589 358 451 876 188 617 626 381	May 1111 930 1141 1716 1188 1729 1308 1578 1578 1444 1417 1068 704 1001 1015 751 1110 1566 1768 1763	1091 818 596 1505 2196 781 1364 730 1106 1317 735 623 434 955 1335 534 1057 1143 1156 1435	817 337 302 484 703 298 223 360 4357 196 411 458 395	Aug 261 144 133 104 187 214 133 178 135 135 135 135 135 138 209 113 138 1205 254	Sep 166 82 93 117 139 82 97 79 105 88 142 106 94 109 114 52 115 109 115 109 115 109 115 109 115 109 115 109 115 109 109 109 109 109 109 109 109	155 71 102 80 111 321 85 74 90 100 93 205 96 100 112 159 23 83	NOV 127 54 91 86 175 412 277 62 491 826 70 144 112 804 140 266 144 266	Dec 91 299 322 83 170 585 254 454 453 153 321 587 589 578 59
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957	94 56 98 182 102 115 67 96 125 73	53 53 84 208 82 119 69 71 73 66	74 68 125 133 79 91 89 71 84 92	381 448 291 469 724 313 209 136 462 259	1703 1480 1251 1759 1419 1180 1871 847 1683 1894	1435 862 1888 1197 836 1704 1665 1596 1535 1031	395 302 948 839 403 706 1122 713 552 328	254 154 284 267 182 229 324 221 214 146	112 104 135 258 103 114 224 113 126 82	83 104 272 423 72 74 202 267 155 78	66 177 263 200 56 87 183 244 105 70	29 86 131 77 25 44 68 79 48 31
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967	61 170 120 70 72 106 57 106 95 109	61 104 105 85 159 53 93 65 109	91 106 186 132 73 130 52 73 90 91	296 508 592 318 593 333 163 471 434 178	1606 1178 924 1484 1180 1007 1252 1342 1222 1322	733 1967 1387 1551 1103 1110 2343 1703 1238 1907	242 715 523 368 387 564 658 635 482 697	127 237 199 152 182 174 217 262 173 202	109 285 117 112 105 109 171 187 118 100	169 408 95 170 146 88 216 161 101 98	177 278 106 108 167 81 140 117 114 149	89 104 42 38 85 33 62 54 64 43
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978	75 112 63 95 67 93 302 62 130 59 73	104 77 58 246 62 77 145 54 93 52 57	186 82 64 111 324 74 138 61 80 55 113	187 702 116 413 379 221 562 98 443 286 420	1077 1322 1283 1738 1567 1016 1242 996 1584 720 1116	1236 1036 1538 1922 978 2385 2076 1023 483 1262	468 487 401 701 325 963 876 679 189 607	199 156 154 265 293 138 300 269 355 136 250	262 92 102 118 144 98 151 188 160 137 216	286 122 91 98 132 89 89 153 97 117	223 87 77 93 96 217 88 210 73 93	64 32 41 36 42 83 38 150 33 54

Location:	Kerr
-----------	------

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Year 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944	Jan 44 44 50 78 161 34 53 43 27 40 18 44 59 67 42	Feb 607520 462480333249935	Mar 84 72 71 69 133 71 61 64 62 54 78 53 48 31 44	Apr 70 87 58 182 263 127 142 67 65 125 72 143 307 78	May 233 169 210 152 230 398 264 320 150 116 357 185 119 246 295 151	Jun 404 208 207 448 291 368 267 219 249 214 155 342 422 161	Jul 291 63 29 92 144 93 120 24 53 42 53 42 53 48 727 272 0	Aug 58 13 - 13 - 30 58 12 - 15 - 20 - 23 - 27 - 20 31 - 25	Sep -7 -4 36 31 -4 35 11 5 -17 6 7 -12 9 1 16 11 -14	Oct 120 34 10 366 524 265 359 10 183 355 29	Nov 67 256 270 1260 299 361 268 384 562 384 562 384 562 384 562 384 562 384 562 384 562 384 562 384 562 384 562 384 562 384 562 385 563 563 563 563 563 563 563 563 563 56	Dec -34 44 18 24 33 26 16 23 13 19 18 356 321 21
1945 1946 1947 1948 1949 1950	49 68 80 96 53 67	35 65 46 87 75 74	55 82 120 91 101	73 187 166 178 183	197 343 452 461 323	310 358 386 561 232	115 128 116 191 50	-20 11 58 95 5	-7 31 55 27 6	46 61 94 47 23	45 61 101 65 63	41 50 41 28 22
1950 1951 1952 1953 1954 1955	126 94 79 63 48	136 114 51 71 71	93 94 69 90 11	100 224 244 103 126 90	250 563 494 265 415 206	483 393 368 457 408 344	415 279 110 155 352 181	122 47 7 19 84 18	21 59 17 -2 46 9	121 31 24 35 41	89 97 18 48 67 67	66 36 16 25 18 44
1956 1957 1958 1959 1960 1961	45 77 129 102 52	60 79 79 123 66 68	94 57 67 131 91	262 119 156 258 299 156	431 359 364 489 362 465	477 266 278 605 479 558	170 64 79 293 213 93	37 -11 -11 63 74 27	28 -23 1 88 39 14	30 42 39 162 41 42	52 56 75 158 57 73	36 29 67 56 25 18
1962 1963 1964 1965 1966 1967	39 69 51 93 65 84	92 69 80 76 94	93 75 138 61 92	224 123 106 258 176 133	408 181 276 481 262 289	325 273 478 568 502 550	107 125 261 230 195 158	19 18 61 107 21 4	26 41 82 84 36 8	66 23 37 76 45 43	70 31 63 76 82 48	26 21 46 29 46 30
1969 1970 1971 1972 1973	103 72 83 47 46	71 62 139 109 48	106 85 83 175 65	252 82 127 179 81	350 301 437 329 133	334 314 397 419 499 178	135 171 145 194 188 30	91 15 30 55 57 -21	41 7 2 26 -3	94 38 47 38 36 -8	95 37 68 42 55 62	41 23 25 26 38
1974 1975 1976 1977 1978	106 61 145 53 60	80 64 73 47 58	87 58 69 48 102	221 78 181 77 261	325 205 374 179 312	529 345 252 110 308	232 157 164 24 218	46 61 84 -9 82	21 49 43 46 65	27 84 17 23	22 68 35 33	18 50 15 53

Location: Thompson Falls, Noxon, and Ca	binet
---	-------

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1928 1929	176	151	287	434	1186	1210	989 513	597 203	523	243	270	313
1930	179	296	316	1033	1194	888	372	100	170	220	252	121
1931	211	199	270	402	898	552	206	124	120	19/	179	04
1932	192	237	427	827	2065	1623	704	266	107	202	290	101
1933	268	181	297	690	1486	3005	897	200	248	223	200	500
1934	984	683	967	2194	1701	877	340	186	163	263	3/9	152
1935	294	289	339	618	1433	1235	546	267	164	190	100	9/
1936	173	134	315	1110	1815	1115	365	180	171	107	190	04
1937	113	140	204	340	1049	819	366	176	126	173	179	111
1938	227	175	325	898	1706	1773	845	243	177	251	246	120
1939	214	185	361	824	1604	953	421	195	160	209	207	113
1940	191	225	391	677	1124	711	242	144	134	229	204	104
1941	184	170	223	325	635	640	295	155	232	289	319	230
1942	325	235	325	781	1149	1476	675	237	210	232	287	146
1943	249	329	430	1817	1891	2620	1399	437	285	304	300	127
1944	204	195	218	328	741	913	473	226	189	219	222	79
1945	243	226	255	364	1274	1328	577	234	203	249	270	133
1946	287	222	371	853	1510	1220	588	235	263	385	442	335
1947	404	425	656	1036	2582	1764	748	319	297	438	411	195
1948	395	351	399	1021	3061	3418	929	479	294	321	308	102
1949	215	305	415	1043	2528	1556	511	260	237	277	284	160
1950	231	350	591	921	1679	2743	1449	521	317	385	524	243
1951	423	638	524	1162	2543	1931	1006	417	350	392	340	155
1952	282	200	348	1086	2156	1256	586	428	205	221	218	104
1953	315	337	320	000	1266	2283	870	364	215	235	225	149
1954	200	207	479	020 100	1472	1/83	1050	421	340	332	338	14/
1955	440	200	200	1770	2120	2124	1200	410	200	301	3/0	300
1957	181	339	468	720	2566	1745	047 540	422	290	323	291	1/2
1958	243	259	364	690	2220	1615	652	311	203	200	200	252
1959	449	421	519	761	1827	2533	875	371	412	700	600	200
1960	342	287	563	1160	1572	1617	551	335	289	247	275	121
1961	249	429	489	732	1799	1885	489	260	229	306	255	123
1962	229	355	420	1248	1879	1774	677	389	246	348	371	208
1963	260	621	559	750	1461	1322	655	301	247	244	258	100
1964	224	218	296	585	1641	2836	998	408	361	330	336	267
1965	488	482	595	1453	2297	2485	987	490	516	451	368	172
1966	328	282	489	1065	1410	1098	547	265	247	251	319	158
1967	308	387	461	614	1825	2851	897	343	218	344	421	168
1968	342	560	674	697	1394	1799	733	320	395	449	438	159
1969	356	297	4/6	1594	2346	1482	924	320	294	346	298	138
1970	253	283	380	516	1875	2393	850	349	294	343	306	155
19/1	404	/92	5/4	1008	2955	2492	918	361	292	279	262	128
1972	268	432	1322	1121	2618	3476	1134	514	290	333	267	127
1973	330	200	430	454	815	/95	343	172	165	220	367	170
19/4	040	440	520	1199	1958	3127	1102	446	308	273	227	122
1076	200	243	309	400	1008	2997	1586	529	411	464	466	391
1077	234	44 3 222	217	1239	3022	2008	1014	170	370	322	281	126
1978	335	315	657	1185	1830	1030	1111	170	189	234	2/3	254
	000		007	1100	1000	1300	1117	300	302			

Location:	Albeni	Falls,	Box	Canyon,	and	Boundary	
-----------	--------	--------	-----	---------	-----	----------	--

Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Year 1928 1929 1930 1931 1932 1933 1933 1935 1936 1937 1938 1939 1940 1941 1943 1944 1945 1944 1945 1946 1947 1948 1949 1950 1950 1952	Jan 19 372 75 222 644 250 125 123 123 123 124 222 123 194 222 155 192 257 222 123	Feb 71 105 123 145 223 71 196 192 152 194 145 146 267 186 213 236 259	Mar 148 225 407 220 458 304 138 436 197 235 403 2369 575 403 2369 575 407	Apr 246 278 352 791 557 632 5421 632 421 621 395 400 2320 323 543 542 542 542 542 542 542 542 542 542 542	May 367 224 427 917 715 718 785 668 503 837 539 544 570 579 724 396 579 724 396 1060 785 1053 991 946 755	Jun 426 155 226 741 676 256 406 498 6336 499 559 559 559 559 559 559 559 666 3642 660 713	Jul 185 196 108 133 257 568 260 1243 325 127 130 383 1283 275 1283 275 1283 275 1283 275 1283 275 1283 275 249 2651 249 265	Aug - 116 84 35 26 84 157 73 104 77 104 100 39 67 105 282 105 282 105 282 105 285 285 105 285 295 105 285 295 255 255 255 255 255 255 25	Sep - 178 - 4 24 34 94 27 97 57 41 66 45 320 85 105 861 113 4	Oct 130 22 23 28 79 128 91 63 110 57 91 210 79 45 210 79 45 213 313 109 81 313 109 81 313 109 81 313 109 118 83 10 21 21 21 21 21 21 21 21 21 21 21 21 21	Nov 9952360 210283291563159991483 126315563159991483 11756873 1316879963	Dec -156 47 10 33 140 307 106 59 143 57 95 73 266 70 624 89 153 124 235 161
1952 1953 1954 1955	192 382 256	259 377 218	307 310 346 85	850 453 503	1048 797 944 666	713 829 970	265 284 536	-35 117 73	4 - 14 104 25	16 171 58	133 170 186 240	101 106 69
1955 1956 1957 1958	351 143 179	190 188 423	332 330 477	972 529 646	1152 1064 890	887 899 606 441	269 169 167	85 67 46 81	35 45 48 64	200 83 121 23	132 118 213	195 103 109 94
1959 1960 1961 1962	325 246 233 150	212 288 571 208	275 384 439 280	623 726 561 607	896 927 1171 721	824 728 1043 630	327 284 230 114	78 175 24 78	109 76 3 50	190 134 139 178	308 298 104 259	189 109 113 147
1963 1964 1965 1966 1967	157 146 117 308	225 86 176 57 235	205 186 209 295 291	462 461 656 481 287	648 776 827 602	413 724 538 356	138 212 138 142	40 78 35 0	43 75 -5 -10	62 29 36 22	228 167 109 115	123 57 160
1968 1969 1970	95 204 172	200 247 192 201	410 259 272	244 920 393	506 1205 684	224 513 561	77 202 142	-20 44 -4 34	97 52 21	202 95 124	336 143 138	43 164 59 78
1972 1973 1974	133 160 792	205 90 383	567 222 462	448 188 835	752 523 1116	619 223 1168	243 193 43 613	50 7 12 14	35 15 58 8	60 59 63	151 350 233	79 102 250 92
1975 1976 1977 1978	122 194 74 129	159 177 67 118	218 139 95 283	429 461 245 513	923 851 241 719	758 426 109 423	308 183 0 168	67 130 65 80	69 66 93 60	103 89 68	228 94 154	149 27 130

Location: Dworshak

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1928 1929	59	56	176	342	876	560	193 162	97 76	78 57	79 68	82 49	68 55
1930	56	172	263	865	608	304	121	63	60	88	102	36
1931	98	103	303	580	815	245	96	55	57	62	76	40
1932	80	95	387	948	1647	764	212	91	63	77	184	69
1933	145	80	214	683	1050	1425	278	102	88	207	317	563
1934	853	426	898	1250	691	247	105	61	56	98	167	69
1935	135	127	250	625	1106	578	177	78	54	60	58	31
1936	94	63	218	1134	1392	430	134	65	57	52	48	34
1937	42	50	124	419	943	490	148	74	51	56	111	77
1938	155	121	357	901	10/2	560	169	82	60	76	87	58
1939	100	0/0	280	108	957	331	135	63	54	64	61	72
1940	155	134	240	344	701	289	104	5/ 74	59 107	107	102	89
1942	182	142	193	618	520	304	102	23 23	63	137	102	10/
1943	175	133	300	1188	1128	1016	401	115	70	83	103	50 50
1944	69	90	118	423	603	313	125	69	59	64	70	38
1945	197	179	208	411	1132	546	171	77	79	78	169	98
1946	214	128	377	809	1107	562	239	98	81	146	214	306
1947	246	318	451	732	1245	551	189	94	88	198	228	113
1948	322	234	264	782	1750	1115	276	150	90	93	125	50
1949	85	129	395	997	1682	624	193	88	72	94	133	67
1950	136	184	424	852	1281	1409	497	152	93	181	277	189
1901	2/4	423	102	921	1107	5/0	219	95	75	191	159	99
1952	260	276	252	514	940	207	210	102	00	00	00	32
1954	125	232	296	796	1401	003 003	407	140	101	102	126	68
1955	100	94	100	387	1106	1087	413	128	90	140	245	234
1956	298	163	328	1139	1660	828	287	121	85	100	123	- 96
1957	110	162	381	744	1530	700	196	96	65	81	81	55
1958	109	306	262	730	1346	535	167	84	80	122	367	226
1959	490	248	330	827	1117	951	258	104	171	356	405	135
1960	170	205	424	810	936	765	203	107	74	89	151	55
1961	128	504	448	690	1208	827	175	78	78	100	87	55
1902	165	190	217	1026	706	694	205	94	/6	170	223	137
1964	80	79	124	530	1103	1328	356	1/1	100	100	104	40
1965	394	370	380	1089	1187	793	241	130	104	03	130	303
1966	141	91	298	700	825	459	166	78	54	73	124	102
1967	293	245	289	427	1050	968	250	87	64	123	155	68
1968	147	522	496	416	762	614	184	103	142	214	283	113
1969	386	176	308	992	1179	527	180	85	70	93	77	57
1970	256	276	292	360	1055	978	231	100	92	94	184	93
1971	307	489	335	723	1823	1120	386	135	98	93	100	46
1972	190	258	1011	/5/	1962	1539	431	164	92	85	86	85
107/	241	302	221	290	1205	316	94	36	37	69	278	164
1975	139	100	260	418	1323	1300	470	160		150	/1	32
1976	368	260	301	822	1569	827	306	160	77	100	222	308
1977	62	85	133	373	521	256	80	70	88	112	182	300
1978	244	262	523	656	824	648	229	115	61	112	102	009

Location: Spalding

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1928 1929 1930	90 73	72 260	270 411	564 1176	1586 1271	1399 823	425 342 209	164 98 89	111 63 82	132 70 147	112 72 131	98 79 52
1931	136	139	439	921	1487	528	131	61	68	77	94	52
1932	109	155	879	1330	2751	1533	363	112	83	106	247	87
1933	172	108	475	973	1584	2950	445	116	95	237	374	460
1934	898	409	10/5	1826	1208	395	134	62	54	102	184	86
1936	130	190	508	1864	2546	800	202	92 78	56 66	74 64	73	3/
1937	55	65	239	561	1640	938	214	87	56	68	94	96
1938	221	208	583	1269	1941	1283	285	101	66	94	120	77
1939	140	123	607	1137	1846	645	241	77	60	75	75	71
1940	187	406	638	1116	1526	627	140	60	73	145	160	124
1941	220	182	2/9	1100	1001	/98	262	107	193	287	392	246
1942	283	313	584	1988	2030	2186	392	172	84 97	70	208	144
1944	89	112	210	664	1310	882	271	110	78	77	95	46
1945	208	238	331	610	2078	1397	347	93	98	108	241	140
1946	326	230	688	1303	1885	1015	359	121	124	257	316	418
1947	364	477	586	1109	2607	1274	403	127	108	218	317	202
1948	492	41/	485	1265	3534	2/13	489	211	105	118	176	81
1949	221	452	836	1226	1886	2538	320 844	228	108	232	210	118
1951	380	619	437	1264	2164	1278	449	122	80	185	164	231 94
1952	138	239	394	1478	2525	1258	349	114	73	58	60	34
1953	279	337	350	719	1497	2027	551	127	65	67	96	76
1954	153	304	321	934	2139	1518	665	173	108	105	115	51
1900	453	245	750	1721	1811	2318	826 294	172	97	143	316	302
1957	137	243	702	981	2929	1532	330	111	93 77	104	105	80
1958	153	441	315	1002	2257	992	284	108	97	154	435	351
1959	686	451	594	1193	1909	2082	457	130	208	697	588	187
1960	234	379	703	1282	1612	1626	317	125	82	92	158	68
1961	154	569	557	1060	1949	1588	226	82	104	169	131	86
1963	197	554	504	790	1731	1258	320	123	80	230	327	212
1964	122	124	228	766	2055	3056	754	219	200	160	207	354
1965	729	672	500	1544	2098	1941	485	191	193	162	182	74
1966	166	136	488	925	1519	881	235	91	83	111	135	96
1967	339	256	392	596	1938	2105	445	109	67	198	314	141
1900	203 747	301	630	1550	1525	1527	365	168	284	322	463	179
1970	494	441	449	545	1901	2120	492	134	154	172	226	111
1971	501	738	496	974	2668	2186	581	142	104	99	120	66
1972	280	614	1606	1076	2622	2726	705	147	101	96	107	121
1973	233	125	272	397	1152	783	219	69	83	79	256	206
1974	770	503	818	1430	1958	3352	704	166	91	71	97	52
1975	203 500	101	4/9 101	1206	1936	3025	11/1	255	163	283	349	460
1977	98	114	164	635	1034	601	174	223	144	124	265	52 429
1978	456	460	851	1231	1756	1759	701	190	156	100	200	700

Location: Brownlee, Oxbow and Hells Canyo	on
---	----

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1928							670	655	633	800	979	910
1929	895	710	1165	1107	869	825	543	545	602	728	769	468
1930	743	894	1024	795	763	611	483	507	604	769	690	405
1931	765	639	837	751	593	478	406	464	556	644	688	352
1932	710	629	1220	1275	1395	1118	574	541	671	793	781	430
1933	796	664	869	1005	1028	1297	550	579	669	757	740	394
1934	900	728	845	781	621	541	444	496	562	725	703	353
1935	735	645	744	977	828	742	466	490	558	740	693	352
1936	727	695	904	1512	1451	877	533	571	654	771	749	421
1937	769	653	809	871	868	682	490	501	588	786	771	530
1938	871	853	1252	1801	2115	1611	749	593	693	838	947	491
1939	809	835	1393	1151	1002	642	533	577	666	786	775	424
1940	837	956	1385	1463	1018	698	516	534	705	808	836	464
1941	913	933	1199	1021	1001	985	554	611	701	819	845	567
1942	909	908	978	1428	1219	1237	609	57 9	724	834	912	539
1943	1233	1315	2814	3963	2111	1651	1094	665	795	969	1066	575
1944	1060	897	1015	1076	839	850	563	587	703	794	855	473
1945	840	947	1139	1127	1500	1253	599	603	770	952	1007	612
1946	1196	1262	2083	2771	1781	1235	625	632	769	936	1117	590
1947	981	1271	1469	1353	1629	1194	595	591	728	840	970	494
1948	1048	1175	1182	1319	1759	1779	660	627	741	880	988	464
1949	814	1007	1865	1515	2004	929	553	562	679	810	855	483
1950	839	1260	1574	2258	1299	1311	898	651	786	1013	1233	706
1951	1362	1959	2002	2291	1985	1195	641	669	741	1007	1074	609
1952	1482	1886	2024	4250	3200	1641	783	651	765	860	949	469
1953	1114	1251	1319	1356	1362	2226	842	633	767	865	906	491
1954	941	1231	1411	1781	1534	1174	650	628	739	832	816	455
1955	825	678	789	1052	1017	910	591	564	694	829	839	692
1956	1411	1854	2434	2342	2271	1696	673	673	774	889	1073	529
1957	1112	16/6	2006	2291	2757	1629	632	646	775	857	945	499
1958	1028	1468	1503	2136	3102	1628	651	663	780	853	844	503
1959	1007	830	921	990	1025	1086	583	627	828	927	836	501
1900	840	9/3	1547	1419	1127	1124	5/1	650	738	813	829	430
1060	700	913	940	1010	907	822	491	529	660	765	//6	434
1062	/00 070	1055	1073	1012	1304	1074	288	621	723	947	899	562
1903	072	1200	1104	1213	1201	1800	628	605	769	823	834	491
1065	2257	2502	2204	2705	1391	2112	639	001	784	841	950	800
1965	1224	2002	1000	2700	23/0	704	922	510	901	997	1244	690
1900	034	804	991	927	1200	1702	228	289	090	812	835	486
1069	1077	1205	1211	947	1300	1793	715	032	700	/94	980	480
1960	1526	1020	2051	2665	019	1061	002	700	804	977	1071	539
1070	1460	1564	1/02	1177	1006	1201	000	699	/98	904	803	513
1071	2051	2622	2700	2220	2006	2234	1200	669	888	980	1170	645
1072	2376	2020	2006	2107	2126	2301	1320	090	002	1016	1484	783
1073	1360	006	1306	112/	12//	2130	130	000	000	1010	1097	/0/
1974	1842	1690	2570	3250	2105	2615	1100	710	103	000	1047	5/2
1975	1381	1365	1824	2209	2190	2010	1264	707	013	1000	11047	039
1976	1663	1575	2072	2613	2455	1172	602	771	042	1023	066	120
1977	967	792	785	557	545	470	301	114	562	949 705	300	400
1978	957	934	1240	1814	2103	1310	816	623	820	120	120	520
	~~.	~~ .						060				

Location:	Lower	Granit	te, L.	Goose,	L. Mon	umental	and I-ce	H Data:	Local	Inflow	(kaf/n	nonth)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1928	017	200	600	707	1770	0407	928	394	314	263	333	283
1929	200	309	574	1202	1//0	2421	609	270	197	320	202	202
1930	200	404	374	1323	1693	1/15	047 075	288	210	290	230	112
1022	243	262	1124	1240	2674	340	1100	34	210	211	210	170
1022	264	202	575	1004	1620	2003	1017	320	219	300	370	170
103/	690	500	717	1560	1670	3042	266	340	155	200	209	1/0
1035	212	121	151	1309	1722	2070	642	220	160	303	220	102
1936	356	273	770	1653	2702	1803	545	230	216	200	270	125
1937	186	326	525	776	1025	1493	508	100	135	262	200	105
1938	389	510	826	1294	2767	3200	1257	380	252	202	200	211
1939	384	436	905	1352	2262	1186	528	220	170	300	270	192
1940	395	667	1085	1632	2591	1646	493	203	205	396	350	220
1941	373	453	617	832	1975	1947	781	364	331	397	536	473
1942	527	618	625	1708	2272	2667	1175	354	240	301	377	241
1943	526	677	895	2555	2636	3506	2359	613	324	349	368	172
1944	291	427	518	866	1701	1955	823	345	243	313	330	146
1945	352	557	567	849	2052	2662	1005	360	244	311	338	211
1946	510	461	870	1659	2825	2311	869	359	361	487	565	567
1947	519	837	991	1447	3762	2550	971	405	325	502	570	314
1948	699	730	720	1671	3978	4732	1418	538	316	418	428	211
1949	415	739	1368	1898	3884	2304	704	312	248	399	425	224
1950	446	829	1210	1616	2407	3753	1974	567	351	492	639	344
1951	595	964	874	1873	3169	2664	1337	504	288	490	464	293
1952	478	683	709	2120	4022	3179	1327	479	317	353	341	182
1953	791	864	776	1272	2321	4079	1996	550	339	379	387	232
1954	444	725	736	1231	2961	2430	1394	479	324	356	360	161
1955	319	391	405	891	2098	3191	1272	379	244	318	379	458
1956	746	549	1066	2264	4466	3980	1208	527	361	407	427	255
1957	358	591	1067	1282	4457	3538	1005	406	307	397	368	235
1958	420	828	708	1270	3991	2926	928	455	277	392	554	396
1959	800	/14	/13	1338	2176	3223	1028	419	464	727	619	255
1960	376	536	967	1514	2069	2599	759	395	318	376	438	191
1961	335	824	830	960	21/5	2627	585	300	311	380	379	218
1962	482	1107	6/1	1646	2318	2814	1023	455	1/4	655	612	373
1903	441	1121	560	903	2040	2910	1204	466	387	406	462	196
1904	449	4/0	1000	1750	2000	4184	1627	546	437	397	357	484
1066	4 4 4	1134	1092	1750	3032	3032	2120	803	082	489	438	220
1900	444	40 I 571	605	1302	1809	1009	642	308	2//	321	381	211
1069	457	701	020	790	1020	4144	1034	439	281	464	462	200
1060	747	191	702	2026	2576	2094	/00	413	380	450	098 067	254
1909	675	662	644	2020	0540	2403	1/21	213	210	309	207	147
1970	768	850	728	1200	2040	3793	1900	510	307	391	430	210
1972	558	792	1033	1083	2001	4407	1179	476	224	34Z 171	270	104
1973	621	367	599	508	1588	1390	492	244	224	335	762	502
1974 1	530	871	1117	1904	3133	5738	2115	587	308	326	340	165
1975	477	463	802	747	2046	4095	2376	652	446	512	516	477
1976	799	558	801	2004	4075	3069	1363	575	392	428	357	205
1977	259	314	315	588	874	1018	259	159	257	382	390	433
1978	610	554	1021	1614	2485	3087	1592	553	408			

Location:	Mica							Data	Local	Inflow	(kaf/mo	onth)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1928							3886	3181	1934	837	292	271
1929	233	177	193	176	1099	3448	2771	2444	1357	510	239	110
1930	157	151	246	794	1476	3453	3905	2819	1375	538	308	109
1931	174	144	198	354	1727	3583	3473	2417	1517	682	482	145
1932	197	155	206	494	1982	4104	3431	2771	1159	658	421	161
1933	263	189	202	328	1584	3726	4463	3005	1340	762	544	165
1934	303	173	244	1293	3224	3700	3478	2518	1211	741	520	156
1935	224	216	239	270	1385	3514	4362	2453	1347	641	341	122
1936	232	191	201	638	2562	3626	3211	2551	1225	631	308	115
1937	191	147	172	327	1194	2819	3271	2140	1261	7/1	551	160
1938	224	157	210	117	1702	26/9	3520	1092	1500	720	251	109
1030	314	171	252	500	2601	2622	2401	2617	1067	720	402	100
1040	246	205	242	574	2151	2002	2600	2017	150/	1100	493	204
10/1	216	105	243	004	1670	0076	2090	2204	1024	1129	410	100
1040	210	160	475	004	10/9	20/0	3200	2397	1208	847	482	184
1942	176	100	1/0	390	1008	2806	3749	2009	1107	665	312	122
1943	1/0	104	103	100	1182	2329	3884	2546	1083	679	309	100
1944	100	1/0	1//	3/3	1484	2906	2628	2283	1455	//9	468	140
1945	234	204	211	212	1342	2841	3017	2162	1079	559	287	113
1940	100	149	186	403	2/18	3922	3635	2429	1246	524	280	145
1947	273	209	226	613	2338	3615	3659	2023	1242	970	466	151
1948	238	178	175	331	2400	4835	2897	2568	1284	700	409	126
1949	172	133	174	410	2055	2330	2306	2006	1016	489	370	124
1950	150	131	180	282	1090	3966	4520	2442	1361	593	369	143
1951	247	197	215	400	2240	2836	4200	2306	980	644	316	100
1952	164	147	162	499	2099	3139	3309	2332	1004	626	266	98
1903	193	168	184	237	15/6	3163	3420	2348	1230	773	521	150
1954	223	212	212	240	1/42	3562	5037	3035	1706	718	547	189
1955	252	200	214	287	906	3503	4317	2378	1254	552	328	136
1956	225	155	186	504	2154	3883	3494	2328	1147	675	341	129
1957	203	186	209	339	3261	3342	2713	1729	1141	632	329	124
1958	230	198	222	367	2566	4068	2934	2343	1147	724	353	143
1959	249	192	196	371	1650	3657	4262	2296	1564	822	478	185
1960	260	222	240	537	1108	2868	4213	2360	1253	755	468	140
1961	265	216	239	373	2191	5020	3094	2523	1046	779	369	142
1962	223	229	192	564	1508	3146	3371	2596	1111	669	508	168
1963	270	275	285	524	1552	3491	3371	2471	1605	767	391	142
1964	244	193	183	312	1133	3658	4097	2192	1129	921	520	148
1965	252	218	218	504	1465	3324	3685	3032	879	767	557	180
1966	265	234	277	641	1988	3313	3851	2588	1367	785	453	165
1967	273	221	218	318	1453	5229	4687	2959	1748	822	483	126
1968	242	233	280	284	1521	3563	4325	2426	1439	705	444	141
1969	172	171	210	663	2259	4194	2898	2127	1201	712	427	129
1970	209	189	185	245	1158	3587	3089	2247	879	488	245	94
1971	193	183	174	373	2154	3557	3102	2945	1219	656	345	94
1972	170	156	231	359	2210	5384	3772	2952	1141	644	354	132
1973	217	177	218	335	1573	2915	3063	2232	1087	705	565	130
1974	226	192	194	478	1256	4108	3913	2751	1662	662	353	152
1975	220	197	140	390	1179	2670	3757	2162	1090	676	691	165
1976	257	212	188	487	2164	2693	4404	3555	1924	721	361	138
1977	270	187	269	493	1400	2935	2459	2449	964	441	306	132
1978	226	167	221	454	1173	3097	3714	2223	1690			

Location:	Arrow							Data	: Local	Inflow	(kaf/	month)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1928	826	644	883	1606	6854	6966	2859	1051	228	376	450	-1
1929	171	101	225	488	1912	3182	2030	1665	745	513	352	139
1930	312	294	251	1293	2217	2756	2176	1635	990	367	258	98
1931	224	182	275	574	2458	3250	1986	1280	1014	747	510	201
1932	308	363	668	1294	3181	4366	2551	1775	878	616	552	233
1933	329	221	281	729	2472	3970	3185	1890	1090	937	846	269
1934	441	372	574	2074	3463	3056	2019	1383	885	631	736	232
1935	388	429	340	626	2228	3468	3078	1537	1006	571	301	136
1936	200	108	219	1086	3425	3415	1990	1253	740	458	200	84
1937	104	131	162	361	1730	2902	2011	1014	831	656	589	167
1938	329	242	350	853	2504	3572	2186	752	959	560	333	103
1939	198	171	219	971	2869	2481	2129	1154	728	804	498	276
1940	305	282	452	1021	2668	2856	2002	1292	1185	962	420	152
1941	281	221	467	1166	1959	2316	1607	1051	948	1109	592	265
1942	288	230	235	650	2060	2522	2191	1224	585	492	268	123
1943	189	177	185	849	1559	2303	2388	1071	532	509	268	138
1944	249	151	173	577	1822	2376	1232	1043	832	698	499	125
1945	257	191	246	379	2175	2838	1636	886	597	385	325	116
1946	259	201	289	863	3429	3751	2440	1153	744	337	225	112
1947	160	202	324	1022	2772	3414	2405	1157	737	881	510	160
1948	242	207	214	599	3225	4408	1805	1496	957	742	430	138
1949	239	255	261	1025	3249	2645	1853	1407	769	472	480	231
1950	255	256	286	515	1878	4319	3402	1642	945	678	540	254
1951	346	274	213	798	3173	2839	2631	1036	632	668	343	151
1952	261	238	228	995	2868	3161	2413	1363	712	493	261	124
1953	264	240	252	532	2443	3177	2453	1369	816	828	694	240
1954	330	316	323	458	2708	3617	4138	1918	1286	734	856	278
1955	387	291	245	495	1587	4194	3585	1445	680	702	590	173
1956	315	229	282	1115	3218	3724	2521	1214	907	764	451	181
1957	267	216	260	679	4313	3471	2105	1245	757	557	428	175
1958	292	304	421	845	3710	4147	1919	1300	984	1014	529	210
1959	363	254	344	912	2713	4355	3542	1628	1568	1181	783	247
1960	351	328	427	1058	2109	3883	3405	1476	965	956	627	197
1961	327	338	359	716	3108	3927	2287	1508	795	765	396	135
1962	232	263	262	998	2265	3718	2927	1934	950	808	650	250
1963	319	369	379	859	2265	3433	2724	1616	1045	624	463	178
1964	298	225	253	504	2118	4873	4169	2151	1182	1251	680	187
1965	336	252	284	977	2364	3599	2675	2004	825	691	666	177
1966	316	219	256	708	2806	4087	3431	1806	1003	722	467	222
1967	355	295	299	495	2271	5444	3333	1613	1045	826	568	190
1968	377	360	568	566	2800	4730	3898	2044	1434	854	591	197
1969	399	260	291	1196	3198	4042	2159	1265	889	857	713	269
1970	393	220	244	415	1897	3249	1922	1190	713	548	457	185
1971	327	382	302	748	3304	3853	2809	1864	748	637	592	283
1972	406	259	527	661	3185	5711	3959	2157	880	569	464	184
1973	445	274	400	607	2327	2945	2267	1170	692	688	512	233
1974	406	335	384	1004	2354	4630	3628	1857	936	499	352	233
1975	424	334	281	544	2147	3613	3110	1418	934	918	990	378
1976	542	354	496	888	3155	3029	3964	3189	2041	860	579	212
1977	548	330	323	980	2202	3039	1964	1555	959	478	502	167
1978	379	367	581	1113	2324	3201	2747	1561	2067			

Location: Grand Co	ulee and	Chief	Joseph
--------------------	----------	-------	--------

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1928	774	552	1385	1643	3925	1859	1102	213	127	189	258	127
1929	242	206	469	688	1346	1135	235	28	96	174	138	93
1930	-56	267	319	838	934	1050	833	289	284	304	280	126
1931	277	297	679	1275	1781	1160	779	323	268	85	141	84
1932	267	369	1179	2673	2943	1096	576	162	247	279	492	287
1933	498	251	811	1900	2756	2774	1775	698	419	387	730	1098
1934	1953	1061	1354	2467	1933	1625	604	365	240	269	470	270
1935	655	658	915	1729	2843	2335	1298	518	284	274	265	126
1936	333	256	611	2110	2502	1958	805	366	208	216	221	120
1937	155	161	452	1179	2291	1907	1180	628	265	263	413	281
1938	781	507	1342	2650	3212	2612	1232	552	181	332	294	147
1939	334	296	788	1918	2462	1726	1215	582	236	116	355	211
1940	309	623	1272	2063	2046	14/6	646	279	1/5	211	355	235
1941	517	444	960	1404	2069	1290	502	178	608	647	634	658
1942	200	251	690	1003	2319	2384	1249	533	237	223	420	221
1943	300	201	201	2043	2492	2039	1008	514	215	2/5	231	148
1045	200	406	767	940	2506	14//	1027	330	224	300	354	136
1946	666	467	1042	2586	4170	2000	1037	330	242	220	399	2/0
1940	531	689	969	1630	2280	1097	750	400	307	202	490	4/8
1948	785	641	676	2006	5036	4011	1002	704	204	214	250	170
1949	320	531	1216	2619	3359	1044	403	134	142	227	342	104
1950	454	733	1486	1899	2971	3448	1727	178	73	212	501	194
1951	897	1373	925	2531	3824	2389	1431	708	292	619	498	203
1952	587	678	931	3256	3947	2232	1279	474	315	197	249	181
1953	825	912	855	1532	2737	3407	1734	785	524	381	384	275
1954	588	842	939	1628	3537	3171	1953	1146	707	536	519	278
1955	416	491	596	1260	2451	2985	1819	605	399	489	691	591
1956	853	517	1101	3511	4512	2495	1251	487	300	360	314	244
1957	384	619	991	1642	4373	1694	487	308	200	278	287	175
1958	553	1194	1070	1968	3230	1562	476	128	159	243	531	334
1959	1250	553	934	1983	3007	2528	1016	326	444	634	828	291
1960	424	661	1029	2236	2522	2133	744	170	256	232	375	176
1961	512	1693	1389	1846	3756	3328	380	121	172	225	244	182
1962	455	645	699	2229	2350	1987	346	97	187	297	453	374
1963	649	1060	887	1548	2044	1449	392	79	150	194	292	182
1964	387	475	581	1373	2817	2996	1148	251	391	351	478	648
1965	897	920	1055	2554	2787	2012	523	79	307	283	359	219
1966	364	448	1016	1592	2047	1406	568	154	172	181	340	327
1907	918	802	1011	1311	2867	2812	1261	377	125	216	350	237
1900	1106	1100	1029	1237	2039	1933	790	466	452	540	/1/	391
1909	569	093	1430	1066	30/0	1/03	892	378	376	240	203	157
1071	674	090	900	2245	2493	1007	439	248	120	101	198	140
1972	539	970	2434	1024	3860	2020	1190	040 476	419	348	101	119
1973	494	370	Q15	1154	1003	131/	574	270	109	430	240	239
1974	2480	1505	1637	3388	3788	3040	1544	574	254	194	376	0/9
1975	274	464	1305	1643	3952	3018	1101	185	150	32	120	305
1976	692	1015	770	1902	3254	2356	1537	420	198	116	52	79
1977	246	168	220	627	1369	884	32	-31	-97	172	207	514
1978	687	730	1251	2429	3091	2345	1025	245	312		207	0.1

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Νον	Dec
1928 1929 1930 1931 1932 1933	290 117 106 61 60 108	233 86 56 48 69 99	141 61 71 26 133 76	157 30 124 46 120 53	396 129 291 307 371 186	897 517 350 265 467 831	523 297 223 128 203 667	239 111 114 123 64 150	152 124 128 104 89 97	136 142 73 69 72 181	132 124 69 71 148 290	59 47 32 29 88 114
1934 1935 1936 1937	212 157 79 83	206 254 62 58	236 156 43 63	630 96 28 59	766 329 285 164	483 656 376 562	109 269 34 151	60 180 26 47	91 108 91 93	109 113 96 105	155 106 88 110	63 50 43 58
1938 1939 1940 1941	94 85 105 70	72 51 39 61	83 53 75	108 86 137 242	430 139 272	384 178 136 222	145 71 44	85 44 68	61 86 61	114 90 102	99 137 130	53 72 41
1942 1943 1944	145 147 99	111 121 95	77 136 101	191 274 114	382 464 289	345 784 429	75 651 243	110 320 151	101 160 128	142 149 148 137	137 135 136	70 74 68
1945 1946 1947 1948	130 125 118	103 119 132	97 113 164 97	125 134 269 75	317 591 624 393	559 508 1383	234 389 236 620	141 176 140 333	132 158 129 274	143 164 99 222	156 119 176 189	53 70 70 82
1949 1950 1951 1952	146 131 256 184	136 118 294 139	144 155 261 159	264 205 390 191	961 636 833 307	862 964 725 290	382 668 363 159	204 404 262 85	158 186 182 51	149 160 132 45	212 222 192 48	107 112 80 20
1953 1954 1955 1956	81 92 121 110	87 91 112 112	87 93 141 121	128 119 145 285	413 413 277 837	403 571 760 1021	360 553 700 492	120 241 340 192	78 184 141 118	104 144 124 134	112 188 212 138	61 90 63 89
1957 1958 1959 1960	109 83 155 140	115 73 155 147	96 126 186 127	138 170 265 310	685 573 562 420	528 462 778 604	205 186 533 358	102 78 208 165	76 78 140 94	83 115 257 232	87 135 263 227	46 84 147 106
1961 1962 1963 1964	106 178 150 260	88 274 214 8	96 113 193 80	402 219 184 123	708 340 692 378	1904 642 752 1397	452 339 480 752	93 82 310	130 31 67	115 265 238	182 260 248	92 191 147
1965 1966 1967 1968	246 90 207 163	88 105 148 174	- 12 40 245 246	239 262 281	638 665 815 839	942 445 1820	368 434 242	260 338 76	69 321 158	107 321 47	123 255 151	16 98 67
1969 1970 1971 1972	123 66 204	128 26 272	86 84 609	390 39 263	1245 637 1701	767 1065 1339	309 310 -9 189	80 -106 52	99 60 -38 -197	39 172 44	97 40 -24 166	48 7 51 146
1973 1974 1975	105 314 110	104 433 300	84 234 326	107 432 197	475 1062 614	421 1937 1283	934 197 831 475	291 23 458 116	35 65 106	- 184 76 - 44 133	-92 47 58 142	125 104 107
1977 1978	86 86 8	142 0	84 73	43 158	2194 322 627	1384 93 1013	- 176 300	-118 -34	475 123 30	184 15	193 52	61 7

Location: Rocky Reach

Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1928 1929 1930 1931	227 -45 -11 -18	153 -54 56 30	127 23 92 42	162 42 247 100	502 306 375 485	704 604 403 235	371 240 178 104	153 30 30 16	40 -20 23 -14	68 -25 -21 -58	19 -40 -29 -2	-3 -15 -31 -6
1932 1933	46 50	92 - 18	152 - 33	176 110	318 268	390 618	174 486	49 121	10 49	-26 92	170 130	23 65
1934	60 101	38	245	594	505	366	96	12	-14	-9	161	46
1936	-25	-35	36	162	538	355	32	-45	-37	-50	-36 -63	-24
1937	-25	-10	30	50	324	801	126	-32	-24	-18	8	16
1939	29 51	16	20	158	336	278	81	-0	-39	-29	-44	-13
1940	- 13	3	51	188	485	228	22	-28	-38	12	-9	'2
1941	3	11	86	343	305	203	57	-16	12	123	83	43
1942	35	21	13	199	376 511	298	58	192	-6	-8	23	34
1944	-11	69	83	164	417	456	178	60	12	-4	-24 -4	-2
1945	72	112	84	93	465	569	162	45	-7	13	52	13
1946	28	-11	30	125	772	484	274	79	11	17	-5	20
1948	- 18	17	5	200	699 560	983	450	190	-1 107	86	110	29
1949	- 30	18	71	264	1007	682	270	95	28	6	183	77
1950	-6	28	70	158	474	888	469	275	94	127	154	70
1951	133	23 Q	90 47	303	660 537	593 453	259	173	67	109	51	9
1953	24	32	-6	109	605	665	383	112	-40	-49	-76	-20
1954	-5	16	-4	129	606	730	532	224	124	34	141	40
1955	30	10	16	94	438	1027	654	278	52	94	255	26
1957	-5	11	9	174	1055	499	191	95	-15	40 -23	-23	-8
1958	-28	31	45	176	978	506	176	79	-23	36	87	77
1959	81	-18	78	334	682	868	501	192	115	226	227	110
1961	- 77	-37	-47	101	422	602 483	338	153	-9	-67	-58	-43
1962	- 59	-11	-66	167	233	286	65	4	-27	-22	-10	-8
1963	-73	37	-26	55	333	178	71	40	10	-61	-49	-25
1965	-60	- 95 - 33	-79	115	300	209	121	48	-12	-36	-901	-33
1966	-91	-86	- 80	89	348	320	78	41	-27	-47	-901	-24
1967	-54	-56	-55	-10	387	590	48	13	-42	112	134	19
1968	-116	- 83	-196	-1/6	202	419	197	-2	-139	-134	-60	-1
1970	49	26	76	198	136	449	128	- 161	-90	29	141	38 54
1971	75	107	-105	71	361	880	864	87	193	258	20	-67
1972	-175	197	636	303	1198	1773	1016	443	255	321	284	45
1974	-191	-134	-100	- 154	201	43	-145	-233	-83	-13	-24	-46
1975	-50	-278	-295	-202	384	432	257	222	-38	-59	243	-50 252
1976	94	-397	-429	-233	- 64	149	337	425	-12	233	73	3
1977	-27	-103	300	432	426	582	519	203	114	-21	-50	57
1310	2	- 1	191	13/	292	111	111	-38	-1/1			

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1929 239 149 168 411 910 554 270 174 154 143 65 54 1930 178 66 81 136 309 378 261 148 150 92 83 39 1931 73 80 142 132 387 490 241 99 113 91 159 93 1933 19 106 66 67 207 845 662 182 120 197 298 119 1935 167 259 164 109 346 674 303 401 74 61 114 115 101 50 1936 92 73 54 43 303 401 74 113 132 119 180	Location:	Rock	Island,	Wanapum	, and	Priest	Rapids		Data:	Local	Inflow	(kaf/m	onth)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec
	1928	297	239	149	168	411	910	554	270	174	154	143	65
	1929	128	96	71	45	152	540	334	145	146	159	136	54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1930	118	66	81	136	309	378	261	148	150	92	83	39
1932 73 80 142 132 387 490 241 99 113 91 159 161 159 161 159 161 127 167 259 164 109 346 674 304 629 772 506 149 95 114 117 167 659 164 109 346 674 304 212 131 132 119 56 58 74 73 185 581 188 82 116 124 122 64 1937 95 68 74 73 185 581 188 82 113 59 133 59 166 122 144 116 122 64 199 166 82 101 86 122 143 48 1941 127 26 64 99 160 250 132 90 114 160 132 72 743 146 144 141 152 148 149 76 1943 156 122<	1931	73	58	38	60	325	294	168	157	127	89	85	36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1932	73	80	142	132	387	490	241	99	113	91	159	93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1933	119	108	86	67	207	845	692	182	120	197	298	119
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1934	220	213	243	629	772	506	149	95	114	127	167	69
	1935	167	259	164	109	346	674	304	212	131	132	119	56
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1936	92	73	54	43	303	401	74	61	114	115	101	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1937	95	68	74	73	185	581	188	82	116	124	122	64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1938	106	82	93	121	445	408	182	118	85	132	113	59
	1939	97	62	64	99	160	208	109	78	109	109	149	78
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1940	117	51	86	149	290	166	82	101	86	122	143	48
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1941	82	72	110	251	163	250	132	90	114	160	132	72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1942	155	120	88	201	397	369	113	142	124	167	149	76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1943	158	130	145	283	477	796	673	346	182	167	148	80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1944	111	105	110	127	307	451	275	182	151	156	148	74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1945	163	123	107	137	334	691	266	171	155	162	168	60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1946	141	112	123	146	600	577	417	206	180	182	132	77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1947	136	128	172	277	632	526	267	170	152	119	188	76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1948	129	141	107	88	407	1379	640	358	293	239	200	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1949	157	145	153	2/3	960	870	408	232	180	168	223	112
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1950	142	127	163	216	644	969	686	426	207	1/9	232	117
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1951	203	299	207	390	830	730	388	287	203	152	203	85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1952	193	148	107	204	410	397	240	142	102	80	76	32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1955	100	122	121	162	043 541	746	490	180	123	150	104	83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1055	164	151	120	105	371	092	012	450	200	176	249	120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1956	148	150	161	370	1070	1307	651	439	170	107	105	110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1957	149	153	129	187	879	690	201	150	110	122	100	64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1958	114	100	167	226	740	608	268	129	121	165	182	110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1959	204	202	241	345	724	1002	700	290	198	371	340	196
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1960	136	217	99	408	517	813	556	212	93	31	11	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1961	172	245	389	39	185	291	379	243	-32	-14	- 103	-44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1962	- 94	-129	35	77	190	493	237	263	30	-6	43	- 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1963	172	91	170	30	133	480	296	-139	12	-6	-48	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1964	-78	230	56	177	371	687	670	272	281	229	- 89	27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1965	29	194	439	393	522	922	587	104	166	40	211	148
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1966	-8	201	240	184	356	564	297	66 -	216	-262	-17	64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1967	88	16	136	13	299	915	747	191	-22	78	214	153
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1968	269	347	169	271	434	504	464	-60	196	258	139	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1969	138	176	79	586	913	765	524	60	3	152	-19	115
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1970		131	120	159	289	459	331	163	24	-76	62	-2
1972 14 38 72 223 259 643 379 9 -102 60 -9 6 1973 63 218 232 63 314 350 183 166 -75 304 183 118 1974 150 124 168 311 451 398 346 456 21 253 152 72 1975 219 167 68 146 397 707 450 154 175 336 253 186 1976 205 218 264 293 258 277 143 -2 152 -98 167 87 1977 88 289 99 64 -7 126 -162 35 13 64 219 140 1978 34 87 94 253 422 429 424 274 304	19/1 -	110	133	9	-21	4/9	617	488	260	-1	-203	86	16
1973 03 218 232 63 314 350 183 166 -75 304 183 118 1974 150 124 168 311 451 398 346 456 21 253 152 72 1975 219 167 68 146 397 707 450 154 175 336 253 186 1976 205 218 264 293 258 277 143 -2 152 -98 167 87 1977 88 289 99 64 -7 126 -162 35 13 64 219 140 1978 34 87 94 253 422 429 424 274 304	19/2	14	38	/2	223	259	643	3/9	9 -	102	60	-9	6
1974 100 124 108 311 451 398 346 456 21 253 152 72 1975 219 167 68 146 397 707 450 154 175 336 253 186 1976 205 218 264 293 258 277 143 -2 152 -98 167 87 1977 88 289 99 64 -7 126 -162 35 13 64 219 140 1978 34 87 94 253 422 429 424 274 304	19/3	150	218	232	03	314	350	183	166	- /5	304	183	118
1976 205 218 264 293 258 277 143 -2 152 -98 167 87 1976 88 289 99 64 -7 126 -162 35 13 64 219 140 1977 88 289 99 64 -7 126 -162 35 13 64 219 140 1978 34 87 94 253 422 429 424 274 304	19/4	100	124	601	311	401	398	340	456	21	253	152	12
1977 88 289 99 64 -7 126 -162 35 13 64 219 140 1978 34 87 94 253 422 429 424 274 304	1076	205	210	264	140	397 250	277	400	104	1/0	330	203	186
1978 34 87 94 253 422 429 424 274 304	1977	88	280	204	293 64	200	126	- 162	-2	102	-98	210	140
	1978	34	87	94	253	422	429	424	274	304	04	213	140

Location: Mc Nary

Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1928 1929 1930	295 248	482 886	601 195	91 - 777	-435 -516	- 1053 - 933	-933 -74 -400	- 441 - 84 - 184	-184 -72 -167	106 - 63 226	170 26 157	-563 117 193
1931 1932	419 666	235 280	195 953	598 715	-764 262	-559	-144 891	-20 530	-26	258 335	356 500	228
1933	769	490	600	435	356	194	349	886	634	385	726	367
1934 1935	384	560 462	152 317	-691 285	- 648 - 362	-31 -456	552 292	549 882	417 460	139 208	393 251	255 189
1936	561	459	599 527	-356	-179	204	519 755	467	386	161	228	172
1938	630	519	778	462	69	685	749	677	380	410	302	142
1939 1940	250 343	194 110	240 467	-17	-485 -454	128	506 478	580 555	408 383	106 356	345 659	83 256
1941	579	395	348	165	30	419	351	304	467	466	562	116
1942	504 927	739 854	560 376	434 178	-282	219 -774	439 -16	652 699	582 343	1/4 117	361 280	420 118
1944	199	172	192	-95	-540	-700	68	-19	3	72	161	87
1945	739	193	429	256	-182	-532 354	396 447	253 447	369	274	214	164
1947 1948	342 403	243 371	83 481	-181 124	-885 -564	-170 2352	289 785	501 244	209 392	70 292	518 266	190
1949	104	682	724	-49	-92	666	71	286	226	162	69	162
1950	293 775	662 551	668 678	500 238	-526 -449	108	977 -2	472 318	301 378	155 206	526 252	298 114
1952	211	422	168	9	-691	-57	148	286	195	92	185	70
1953	494	439 528	501	240 520	-218	-127	-112	303	362	195	412	101
1955 1956	283 835	97 413	121 788	98 783	191 499	-873 1608	-251	110 239	165 279	257 361	567 454	381
1957	131	137	623	526	254	551	194	32	236	241	279	155
1958 1959	357 737	425 397	349 384	522 314	-264 -87	315 79	35 208	154 216	141 73	179 299	384 568	294 263
1960	218	319	121	370	169	-155	-135	119	210	167	295	125
1961	252 407	541 348	652 358	596 322	8 -107	820 93	4 32	91 324	252 485	241 205	347 248	204 220
1963	310	489	359	274	4	-72	154	412	178	167	177	93
1965	736	800	387	328	46	-73	-339	-47	86	245	103	89
1966 1967	279 411	104 352	207 132	69 222	-126 67	-225 -662	-8 42	135 190	133 129	220 223	232 138	178 141
1968	463	628	350	270	-52	97	282	106	298	262	348	111
1969	367 441	345 405	369 281	541 218	538 277	393	199 102	50 90	176 187	202 215	268 196	88 145
1971	377	528	272	489	318	96	141	165	237	248	229	153
1972	479 514	209	217	58	132	39 36	429 115	103	115	48	228 245	233
1974 1975	732 506	634 495	460 201	834 355	860 674	682	374	178	140	167	174	151
1976	561	300	239	469	553	598	287	360	300	108	209	60
1977 1978	89 542	178 623	54 811	141 743	58 533	232 295	62 241	147 251	283 199	248	376	471

Location: John Day

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1928	624	258	477	242	514	458	213	63	51	32	42	-35
1929	-139	-61	108	107	62	384	157	83	82	56	66	-34
1930	-209	60	47	349	123	357	193	90	/8	6/	69	-38
1931	-82	-0	120	130	104	320	178	101	93	78	90	-23
1932	-0/	20	105	384	330	480	203	82	/1	62	65	/5
102/	1126	10	640	200	202	270	102	00	30 70	50	110	402
1035	148	220	180	170	157	421	217	75	60	50	02 50	3/
1036	-126	-115	95	316	314	365	150	67	62	59	60	-49
1937	-254	-76	- 10	22	53	316	165	76	65	49	56	-05
1938	117	3	196	170	216	484	201	65	43	29	35	-23
1939	-23	- 39	226	349	286	328	195	84	73	62	98	46
1940	-19	88	354	317	253	354	181	94	63	62	93	41
1941	67	70	227	298	135	342	181	94	47	67	117	288
1942	240	127	115	312	205	434	235	93	76	70	38	-20
1943	-9	0	164	397	97	419	218	43	33	6	5	-31
1944	-147	-61	-34	149	90	335	166	96	79	68	94	-39
1945	51	78	139	101	167	441	197	82	74	54	85	19
1946	155	42	292	325	355	443	191	63	20	- 1	38	198
1947	180	243	339	369	456	448	200	71	50	5	79	120
1948	269	156	138	252	409	612	1/8	48	8	-3	67	-14
1949	- 33	171	337	268	291	303	111	43	3/	26	1/	80
1950	43 219	2/1	427	21/	120	470	239	197	-4	-8	100	50
1952	-25	162	160	443	232	418	223	107	52 60	-0	00 / Q	40
1953	198	206	194	203	226	618	313	-52	77	77	-3	19
1954	-38	142	117	82	-225	105	54	115	24	34	44	28
1955	40	-2	-7	144	110	-73	400	196	136	101	115	184
1956	557	196	234	163	247	436	125	75	106	-65	-16	85
1957	68	-32	615	401	37	993	61	95	27	52	65	76
1958	123	459	336	510	601	939	169	5	-19	4	-19	75
1959	194	177	193	199	494	405	752	81	-91	16	44	49
1960	12	161	144	306	99	128	115	0	- 53	5	72	41
1961	18	194	343	91	308	770	305	15	-1	-27	69	20
1902	03	120	198	247	753	1136	285	46	5	1/	20	84
1903	- 80	204	100	294	303	212	220	20	-9	0	29	18
1965	392	667	326	252	284	203	229	44	-43	25	- 26	313
1966	74	24	151	190	-141	700	56	44	4	20	-30	75
1967	128	206	124	172	-29	399	230	44	-32	-5	-19	35
1968	32	43	-248	150	- 422	-857	-602	-208	-168	-102	1	26
1969	279	28	127	852	893	529	164	-57	-110	22	-49	-45
1970	526	360	460	203	383	267	48	59	56	52	91	52
1971	673	163	282	304	1071	812	-3	-28	88	92	137	62
1972	246	311	1032	236	227	968	-247	-349	-11	-32	-34	-97
1973	-150	-59	140	_84	100	25	-63	49	131	176	205	227
1974	497	165	370	503	-61	263	-207	-210	-202	-208	-113	-54
19/5	6/	- 66	152	168	144	-115	-301	-305	-209	-190	-154	-46
19/0	/1	110	148	16/	1//	-346	-388	-466	-353	-199	-157	-122
1079	-200	-242	-241	-144	- 160	-240	-301	-336	-309	-265	-292	-30
1910	-92	- 140	- 101	-291	-492	-340	- 3/ 3	-202	- 521			

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
1928							631	1941
1929	469	448	688	644	882	677	517	409
1930	407	896	628	636	592	377	435	345
1931	446	404	603	886	720	491	496	342
1932	605	633	1144	929	986	730	530	427
1933	689	505	758	861	1005	1156	717	504
1934	1501	770	886	770	611	526	454	421
1935	835	700	726	754	920	728	524	436
1026	OFF	500	000	000	076	600	407	440

Location: The Dalles and Bonneville

Data: Local Inflow (kaf/month) 0ct

Sep

Dec

Nov

1928							631	1941	1992	655	463	2191
1929	469	448	688	644	882	677	517	409	363	368	340	200
1030	407	896	628	636	502	377	435	345	353	360	360	190
1031	446	404	603	886	720	101	406	340	300	363	407	205
1022	605	622	1144	000	120	720	F 20	407	322	303	407	205
1022	600	505	750	929	1005	1156	717	421	400	390	020	303
1933	1501	305	700	770	1005	1150	454	504	400	489	518	958
1934	1501	770	880	770	011	526	404	421	394	488	705	419
1935	835	700	/26	/54	920	728	524	436	399	385	399	224
1936	955	530	828	939	976	696	487	416	399	372	347	236
1937	403	449	769	1013	955	836	536	404	386	396	696	552
1938	1158	758	1305	1297	1106	740	533	438	408	416	462	288
1939	582	583	728	668	640	464	411	367	360	361	339	284
1940	517	962	1087	810	685	443	403	381	368	379	430	271
1941	623	554	631	545	573	416	367	335	375	399	464	451
1942	537	812	636	724	675	542	407	348	335	356	731	564
1943	1067	1139	1093	1673	1078	861	650	475	407	460	494	272
1944	516	544	556	546	550	441	380	337	332	344	387	198
1945	581	695	594	627	857	512	397	338	337	320	468	426
1946	1041	695	933	848	923	687	545	404	373	424	640	609
1947	714	843	794	664	592	494	406	362	349	610	641	306
1948	990	828	761	774	1009	889	504	416	371	442	565	392
1949	480	943	1163	1095	1251	759	539	436	413	438	567	324
1950	644	944	1279	1090	1057	1039	666	499	440	616	927	671
1951	1302	1486	1043	1171	1063	682	525	468	437	666	673	434
1952	595	1024	821	1136	930	693	542	453	416	308	401	237
1953	1671	1184	807	777	918	754	560	465	420	444	502	530
1954	986	1103	1039	1031	930	793	616	483	440	474	558	200
1955	616	583	574	666	812	878	601	451	423	577	941	769
1956	1408	769	1153	1321	1415	070	663	532	423	529	550	100
1957	559	681	1104	1024	012	556	464	407	404	460	401	401
1058	963	1387	867	021	010	669	404	424	405	220	491	412
1050	1074	601	914	604	21	102	434	424	405	539	530	412
1060	1074	1003	060	1017	620	-103	-133	275	410	510	011	351
1061	1055	1909	1229	752	000	20	409	575	400	510	934	3/2
1062	1000	740	1320	755	29	12	704	029	400	402	011	526
1062	607	1002	923	904	33	-20	304	321	352	389	790	443
1903	1007	760	039	750	340	323	202	314	337	275	665	311
1904	1200	1040	661	400	439	3/5	995	300	412	3//	560	1048
1965	1204	1040	001	030	400	33	415	484	608	506	542	2/2
1900	000	302 777	992	920	222	429	227	381	435	414	5//	446
1967	930	111	389	420	309	-107	122	140	412	515	524	322
1968	788	1453	917	663	564	952	656	365	389	485	809	355
1969	795	676	828	528	123	-38	-17	388	412	371	467	351
1970	1538	904	694	484	157	82	19	109	211	290	422	341
1971	1368	860	583	590	1/9	124	203	79	209	235	606	401
1972	1387	1228	1152	350	-178	-1276	192	669	416	494	662	582
1973	1004	576	585	483	413	328	238	156	285	315	965	753
1974	1626	866	839	525	602	-345	500	634	598	691	747	445
1975	1389	1016	1050	808	536	359	859	691	613	677	1005	761
1976	1459	835	1032	695	13	377	624	600	715	703	653	425
1977	840	555	711	716	559	664	591	624	584	700	1075	1066
1978	1198	1106	1073	1007	942	743	1096	871	1035			

PENALTY FUNCTIONS USED IN PHASE I ANALYSIS

PENALTY FUNCTIONS USED IN PHASE I ANALYSIS

Table of Contents

Figures

Figure E-1	Mica Storage	2
Figure E-2	Arrow Storage	3
Figure E-3	Libby Storage	4
Figure E-4	Corra Linn Storage	5
Figure E-5	Hungry Horse Storage	6
Figure E-6	Kerr Storage	7
Figure E-7	Albeni Falls/Box Canyon/Boundary Storage	8
Figure E-8	Grand Coulee/Chief Joseph Storage	9
Figure E-9	Dworshak Storage	10
Figure E-10	Brownlee/Oxbow/Hells Canyon Storage	11
Figure E-11	Libby Release	12
Figure E-12	Corra Linn Release	13
Figure E-13	Hungry Horse Release	14
Figure E-14	Columbia Falls Channel	15
Figure E-15	Kerr Release	16
Figure E-16	Thompson Falls/Noxon/Cabinet Channel	17
Figure E-17	Albeni Falls/Box Canyon/Boundary Release	18
Figure E-18	Grand Coulee/Chief Joseph Release	19

Page

Figure E-19	Wells Channel	20
Figure E-20	Rocky Reach Channel	21
Figure E-21	Rock Island/Wanapum/Priest Rapids Channel	22
Figure E-22	Dworshak Release	23
Figure E-23	Spalding Channel	24
Figure E-24	Brownlee/Oxbow/Hells Canyon Release	25
Figure E-25	Lower Granite/Little Goose/Lower Monumental/Ice Harbor Channel	26
Figure E-26	McNary Channel	27
Figure E-27	John Day Channel	28
Figure E-28	The Dalles/Bonneville Channel	29

PENALTY FUNCTIONS USED IN PHASE I ANALYSIS

INTRODUCTION

The following plots depict the edited penalty functions used in Phase I of the study. The penalties are in thousands of dollars, the storage in 1,000 acre-feet per month, and flow in cubic feet per second (cfs). These edited composite penalty functions were derived by manually editing the computed function developed by IWR. Appendix E contains the convex, composite functions used as input to HEC-PRM.

From the standpoint of network flow programming, the reservoir storage arcs contain flow volume per month. The beginning-of-period storage comes into a node through arcs connected to the same node in the previous time period and the end-of-period storage leaves the node through arcs connected to the same node in the next time period.

The graphs are plotted on 2 scales: (1) reservoir storage, penalty from 0 to \$90 million, storage from 0 to 10 million acre-feet per month; (2) reservoir release and channel flow, penalty from 0 to \$50 million, release from 0 to 800,000 cfs.

FIGURE E-1 Mica Storage

FIGURE E-2 Arrow Storage

FIGURE E-3 Libby Storage

FIGURE E-4 Corra Linn Storage

FIGURE E-5 Hungry Horse Storage

FIGURE E-6 Kerr Storage

FIGURE E-7 Albeni Falls/Box Canyon/Boundary Storage

FIGURE E-8 Grand Coulee/Chief Joseph Storage

FIGURE E-9 Dworshak Storage

FIGURE E-10 Brownlee/Oxbow/Hells Canyon Storage

FIGURE E-11 Libby Release

FIGURE E-12 Corra Linn Release

FIGURE E-13 Hungry Horse Release

FIGURE E-14 Columbia Falls Channel

FIGURE E-15 Kerr Release

FIGURE E-16 Thompson Falls Noxon Cabinet Channel

FIGURE E-17 Albeni Falls Box Canyon/Boundary Release

FIGURE E-18 Grand Coulee/Chief Joseph Release

FIGURE E-19 Wells Channel

FIGURE E-20 Rocky Reach Channel

FIGURE E-21 Rock Island/Wanapum/Priest Rapids Channel

FIGURE E-22 Dworshak Release

FIGURE E-23 Spalding Channel

FIGURE E-24 Brownlee/Oxbow/Hells Canyon Release

FIGURE E-25 Lower Granite/Little Goose/Lower Monumental/Ice Harbor Channel

FIGURE E-26 McNary Channel

FIGURE E-27 John Day Channel

APPENDIX E

FIGURE E-28 The Dalles/Bonneville Channel

FIGURE E-28 The Dalles/Bonneville Channel (continued)