

Water Supply and Use Dalton Lake, Georgia

May 1986

F			N PAGE		Form Approved OMB No. 0704-0188
The public reporting burc existing data sources, ga burden estimate or any c Services and Communic subject to any penalty fo PLEASE DO NOT RETU	len for this collection of thering and maintaining ther aspect of this colle ations Directorate (070 r failing to comply with IRN YOUR FORM TO	information is estimate g the data needed, and action of information, ind 4-0188). Respondents a collection of informatio THE ABOVE ORGANIZ	d to average 1 hour per m completing and reviewing cluding suggestions for re should be aware that not on if it does not display a CATION.	esponse, includi the collection o ducing this burd vithstanding any currently valid O	ng the time for reviewing instructions, searching f information. Send comments regarding this en, to the Department of Defense, Executive other provision of law, no person shall be MB control number.
1. REPORT DATE (DD-N May 1986	ΛΜ-ΥΥΥΥ)	2. REPORT TYPE Project Report		3. DATES CO	OVERED (From - To)
4. TITLE AND SUBTITL Water Supply and	E Use Dalton Lake,	Georgia	5a.	CONTRACT N	UMBER
		U	5b.	GRANT NUMB	ER
			5c.	PROGRAM EL	EMENT NUMBER
6. AUTHOR(S) William K. Johnson	n		5d.	PROJECT NUI	MBER
			5e.		
			эг.	WORK UNIT N	UMBER
7. PERFORMING ORG. US Army Corps of Institute for Water Hydrologic Engine 609 Second Street Davis, CA 95616-	ANIZATION NAME(S) Engineers Resources ering Center (HE(4687	and address(es)		8. PERFORM PR-12	IING ORGANIZATION REPORT NUMBER
9. SPONSORING/MON	TORING AGENCY NA	ME(S) AND ADDRESS	i(ES)	10. SPONSO	R/ MONITOR'S ACRONYM(S)
US Army Corps of	Engineers			11. SPONSO	R/ MONITOR'S REPORT NUMBER(S)
Mobile District					
Mobile AL 36628	-0001				
		ENT			
Approved for publi	c release; distribu	tion is unlimited.			
13. SUPPLEMENTARY	NOTES				
14. ABSTRACT This study investig proposed Dalton La data; also, the surfa	ates water supply ake reservoir proje ace water supply in	and use in the Coc ect in the state of C n the basin is analy	osa River basin, and Georgia. The study yzed in several ways	the availabi uses current and the rest	lity of alternative supplies to the ly available water supply and use ults presented.
water supply. Dalto	on Lake. Georgia	Coosa River Basi	n, alternative. reserv	oir project.	streamflow, gage locations, surface
water, withdrawal,	discharge, relation	nship, hydrologic,	water balance, anal	ysis, impact,	Coosawatte River, Carters
Reservoir, downstr	eam, releases, low	-flow frequency,	duration-probability	, flow-durat	ion, drought duration, magnitude,
severity, stochastic	analysis, daily flo	ow, instream, wate	r quality, drought, r	nean annual	flows
16. SECURITY CLASSI	FICATION OF:		17. LIMITATION OF	18. NUMBER OF	19a. NAME OF RESPONSIBLE PERSON
a. REPORT U	U U	U U	ABSTRACT UU	PAGES 236	19b. TELEPHONE NUMBER

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39-18

Water Supply and Use Dalton Lake, Georgia

May 1986

Prepared for: US Army Corps of Engineers Mobile District PO Box 2288 Mobile, AL 36628-0001

Prepared by: US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center 609 Second Street Davis, CA 95616

(530) 756-1104 (530) 756-8250 FAX www.hec.usace.army.mil

CONTENTS

Executive Summary
Introduction
Low Streamflow in the Coosa Basin
Drought in the Coosa Basin
Water Use in the Coosa Basin
Water Supply/Use Balance
Alternative Supply: Withdrawal at Carters
Appendices A Coosa Basin Maps B Microcomputer Software Development and Application C Low-Flow Frequency Curves D Duration-Probability Curves E Flow-Duration Curves F Wet and Dry Year Graphs G Water Use Data H Analysis of Alternative Supply

EXECUTIVE SUMMARY

Study Overview

Water supply and use in the Coosa River Basin, Georgia are examined to assess the availability of alternative supplies to the proposed Dalton Lake reservoir project. Streamflow records at 21 gage locations are analyzed to assess the availability of surface water. Withdrawal and discharge records at 364 locations throughout the basin are analyzed to determine water use. То show the relationship between supply and use, the basin is divided into ten hydrologic sub-units and data presented in a water balance. A detailed analysis is presented of the impact of withdrawing 51 MGD from the Coosawattee River near Carters and the role of Carters Reservoir on downstream releases. The above analyses were done using microcomputer hardware and software which greatly facilitated the computations and graphics, and which makes available, on diskettes, the supply and use data for future analyses.

Annual Water Supply

Surface water supply is examined in this study in several different ways: low-flow frequency, duration-probability, flowduration analyses; drought duration, magnitude and severity; stochastic analysis; daily flows of record. Each analysis presents in a different way information on the availability of surface water supply. The 7Q10 streamflow was used as a reference flow because of its regulatory role in maintaining instream water quality. The 7Q10 is an average flow for seven consecutive days which has a probability of 0.10 of not being

exceeded during any one year. It was found that the Coosa Basin streams are both a plentiful supply and susceptible to drought. Wet seasons and years provide a good supply source, however, storage is not available to store this supply so the region is also vulnerable to dry periods. An analysis of the principal droughts of record shows mean annual flows below the period of record mean annual flow for up to nine consecutive years at some stations.

Low-Flow Months Supply

The low-flow period in the Coosa Basin are the months of June through November. The June through November flow at several representative stations have below annual mean streamflow for the period of record, as expected. Low-flow frequency analyses indicate the probability of different magnitudes not being exceeded for different durations. At some gaging stations there is little difference in the magnitude of flow for seven consecutive dry days or thirty consecutive dry days. At other stations the difference is significant. Lower flows for longer durations mean more difficulty in meeting demand or more storage to supplement available supply.

Water Use

Withdrawal and discharge data are analyzed for the past five years, 1980-1984. This analysis shows that over 90 percent of the withdrawals in the basin are by six users (excluding Hammond Power Plant). Similarly, 80 percent of the discharge in the basin is by ten users. Consumptive use varies from zero to 86 percent depending upon the user. Withdrawal and discharge data

vary from month to month and year to year. The monthly variation for 1984 is relatively small. The variation from year to year shows no consistent trend for most users. Some years are higher, others lower.

Water Balance

A comparison, by hydrologic sub-unit, of 1984 consumptive use shows that it is less than 6 percent of the minimum mean annual streamflow and less than 25 percent of the minimum mean September flow. The minimum annual and minimum September streamflows are the minimum of record. These minimum streamflows were also compared with the 7Q10 plus cumulative withdrawals for each hydrologic sub-unit. This showed that on an annual basis that 7Q10 plus withdrawals were less than 50 percent of the minimum annual flow for all sub-units except one where it was 66.6 percent. Examining September data the analysis showed that in seven sub-units the 7Q10 plus withdrawals exceeded the minimum September flow of record. Under this worse case situation withdrawals upstream may have to be reduced to provide for instream flow requirements.

Withdrawal at Carters

An alternative supply to Dalton Lake is withdrawal of surface water at Carters downstream from Carters Reservoir. An analysis of the 36-year historical record shows that there have been approximately 723 days when the streamflow in the Coosawattee River near Carters has fallen below 319 cfs which is the 7Q10 flow plus 79 cfs (51 MGD) estimated withdrawal. The

probability of a low flow of 319 cfs or less lasting for a 7-day duration is approximately 0.38 when the water available in the stream is less than that needed for withdrawal. Both the magnitude and frequency of such an occurrence must be borne by the user. This is done in the selection of an appropriate backup strategy. In addition to magnitude and frequency, cost and desired level of reliability must be investigated.

INTRODUCTION

Study Purpose and Scope

This study investigates water supply and use in the Coosa River Basin, Georgia and the potential of withdrawal near Carters, Georgia as an alternative supply source to Dalton Lake. The study uses currently available water supply and use data from the U.S. Geological Survey as the principal source of data. The surface water supply in the basin is analyzed in several ways and the results presented. Municipal and industrial water use is analyzed for the past five years (1980-1984). A comparison of water supply and use is presented in a water balance for the basin. This balance provides an assessment of the relationship between minimum streamflow of record and 1984 water use. Given the analyses of supply and usage described above, an alternative supply to the Corps of Engineers proposed Dalton Lake project is investigated. This alternative is necessary to compute water supply benefits for Dalton Lake as defined by the "most likely alternative" method. This report covers an assessment of the hydrologic availability of supply for possible withdrawal near Carters. An estimate of the cost of this alternative, including location and size of required facilities, is being made by the Mobile District, Corps of Engineers.

The text of the report discusses the analyses and principal findings of each major topic covered. Appendices A through H contain more detailed information. The figures in Appendices C through F show analyses of surface water supply at each of the stream gages in the basin. These are included to make available

a complete, current (1984) presentation of supply information as well as support the discussion in the text. Appendix G contains water withdrawal and discharge data for the basin and is included for similar reasons.

Figure A-1 (Appendix A) shows a map of the basin. The principal river systems are: the Chattooga River in the west of the basin, the Etowah, the Coosawattee, the Conasauga, the Oostanaula, and the Coosa River at the basin outlet. To properly manage and analyze the supply and use data it was necessary to consider the basin by hydrologic sub-units. These are shown in Figure A-2 (Appendix A). This division into sub-units and the related figures are from the Georgia Department of Natural Resources report, <u>Water Availability & Use Coosa River</u> <u>Basin, 1982</u>. Figures A-3 through A-12 (Appendix A) show the major rivers and creeks which are within each sub-unit. The numbers assigned to each sub-unit are for database management only and have no other significance.

Related Studies

In recent years a number of studies have been completed which contain useful data and analyses concerning water supply and use in the Coosa Basin. Some studies cover the entire state of Georgia, the Coosa Basin being only a part. Others cover only part of the basin. They are identified here as useful references for both data and analysis.

* Georgia Department of Natural Resources, <u>Water</u> <u>Availability and Use, Coosa River Basin, 1982.</u>

- * Pierce, Robert R. et al., Georgia Department of Natural Resources, <u>Water Use in Georgia by County for 1980</u>. Information Circular 59, 1980.
- * U.S. Geological Survey, <u>Georgia Irrigation, 1970-80: A</u> <u>Decade of Growth</u>. Water Resources Investigations Report 83-4177, 1984.
- * Rogers, Herbert H., <u>Municipal and Industrial Water Use</u>, <u>Dalton Lake, Georgia</u>. U.S. Army Engineer District, Mobile, September, 1981.
- * U.S. Geological Survey, <u>Estimated Use of Water in the</u> <u>United States in 1980</u>, Geological Survey Circular 1001, 1983.
- * U.S. Army Corps of Engineers, Mobile, <u>Carters Reservoir</u>, Reservoir Regulation Manual, <u>Appendix H</u>, July 1979.
- * Georgia Department of Natural Resources, <u>Coosa River</u> Basin, Water <u>Quality Management Plan</u>, 1978.
- * U.S. Geological Survey, <u>Storage Requirements for Georgia</u> Streams, 1983.
- * U.S. Geological Survey, <u>Low-Flow Frequency of Georgia</u> Streams, 1978.
- * U.S. Geological Survey, Water Resources Data, 1983.

In addition, various maps are available for the basin.

Those found to be most useful include,

- * U.S. Geological Survey, 7.5 Minute Topographic Maps.
- * LANDSAT Color Imagery Map, Northwest Georgia.
- * U.S. Geological Survey, 1:100,000 Scale Metric Topographic Map, Dalton, Cartersville, Chickamauga, Rome, Anniston and Atlanta, Georgia, 1981.

Software Development and Application

A principal objective of this study, in addition to an analysis of the water resources of the Coosa Basin, is to conduct the analyses by using currently available microcomputer software. With the rapid increase in speed and storage in microcomputer hardware and with the development and conversion of generalized

software programs for engineering applications, the use of such technology on this study is timely and appropriate. Such use demonstrates the potential for microcomputer technology in water supply planning and serves to bring engineers who could use this technology up to speed in a quick manner. Thus, the selection of the technology, especially the software, testing and applying it to the Coosa Basin became a major task in this investigation. A brief description of the software is presented in Appendix B.

One benefit of using the microcomputer on this study is the availability of all U.S. Geological Survey water supply and water use data for the basin on diskettes. Because such data is historical and will not change, it can be used for other studies of the basin. As new records become available they can be added to the existing files. Also, because all analyses are available on diskettes they can be easily revised as new data becomes available. Such accessibility to basic supply and use data makes future analyses easier.

Authority

This study was conducted by the Hydrologic Engineering Center, Corps of Engineers, 609 Second Street, Davis, California at the request of the Mobile District, Corps of Engineers. Contractural authorization was by DA Form 2544, Order Number FC850051, 29 April 1985.

Acknowledgements

A number of persons contributed to this study through their generous cooperation by providing data and information: Clay

Burdette and David Ashley with the Georgia Department of Natural Resources; Bob Pierce in the Doraville office of the U.S. Geological Survey; Ricky Hartley, Mobile District, Corps of Engineers. At the Hydrologic Engineering Center, Margaret Schroeder and Clay Willis placed much of the data on the microcomputer, Lynne Fornasero prepared the many figures and tables, and Kimberly Powell did the word processing. Shelle Barkin provided valuable counsel and assistance on the use of the microcomputer hardware and software. David Goldman did the stochastic analysis of streamflow on the Coosawatee River. Bill Johnson was project engineer under the supervision of Darryl Davis, Chief, Planning Division. During the course of this study the Director of the Hydrologic Engineering Center was Bill S. Eichert.

LOW STREAMFLOW IN THE COOSA BASIN

USGS Water Supply Data

Analyses of surface water supplies used gage records at twenty-one locations in the Coosa watershed (Table 1). These data are stored in the U.S. Geological Survey's WATSTORE (National Water Data Storage and Retrieval System) database located in Reston, Virginia. Statistical and mean value data for the twenty-one stations were transferred via phone lines to a microcomputer at the Hydrologic Engineering Center in Davis, California. No adjustments for changing watershed conditions over time were made. Except for the construction of Carter and Alltoona Reservoirs it was felt the effects would be small and not alter the conclusions developed from the analyses. Once transferred, the data were available for analysis purposes. The principal analyses were daily value low-flow frequency and flowduration relationships. The mean monthly data were used to examine the monthly variation in supply which led to the identification of June through November as low-flow months (Appendix G). The Mobile District, Corps of Engineers has reconsituted daily flow values at the Carters gage (02382500) on the Coosawattee River for a number of years for which there are no recorded flows. This was done by correlating recorded flows at nearby gages with recorded flows at Carters gage and using those correlations to fill in missing daily values at Carters. These reconstituted flows, while appropriate for use in hydrologic analyses, were not used in this study because it was felt that the hydrologic availability of supply could be

	ND RECORD
TABLE 1	JSGS STREAM GAGE LOCATION A

CLIMATIC YEARS IN RECORD

AREA VEARS OF (SQ MI) RECORD

auan map

NEAR

RIVER

HYDROLOGIC SUB-UNIT LATITUDE LONGITUDE

STATION

			63-72; 1976-84															338-58; 1964-84		
9; 1965-84	4	4	0; 1920-23; 19	4	4	4	4	*	14	¥	34	76	35; 1938-84	34	31; 1938-84	94	21; 1940-85	03; 1930-31; 15	73	84
1940-4	1976-8	1975-8	0-8681	1940-8	1983-8	1962-8	1939-8	1894-8	1970-8	1983-6	1941-6	1-1461	1898-6	1940-6	1930-	1982-(1906-1	1898-(1944-	1938-1
30	σ'n	10	34	£	a	ສ	46	16	5	പ	44	36	22	45	49	m	62	000	20	48
236.0	10.0	119.0	521.0	631.0	252.0	64.0	687.0	1602.0	14.7	16.6	2115.0	107.0	613.0	1119.0	1634.0	33.1	1819.0	4040.0	115.0	192.0
WEBB	DYKE	TALKING ROCK	DAKMAN	REDBUD	CHATSWORTH	CALHOUN NE	DALTON SOUTH	CALHDUN NORTH	ROCK MOUNTAIN	ROCK MUUNTAIN	ROME NORTH	DAWSDNVILLE	CANTON	ALLATOONA DAM	KINGSTON	KINGSTON	ROME NORTH	LIVINGSTON	CEDARTOWN W	SUMMERVILLE
ELLIJAY	TALKING ROCK	HINTON	CARTERS	PINE CHAPEL	ETON	CHATSWORTH	TILTON	RESACA	ROME	ARMUCHEE	ROME	DAWSONVILLE	CANTON	CARTERSVILLE	KINGSTON	KINGSTON	ROME	ROME	CEDARTOWN	SUMMERVILLE
CODSAMATTEE RIVER	FAUSETT CREEK	TALKING ROCK CREEK	CODSAMATTEE RIVER	COOSAWATTEE RIVER	CONASAUGA RIVER	HOLLY CREEK	CONASAUGA RIVER	ODSTANAULA RIVER	HEATH CREEK	HEATH CREEK	DOSTANAULA RIVER	ETOWAH	ETDUAH RIVER	ETOUGH RIVER	ETOWAH RIVER	TWO RUN CREEK	ETDUAH RIVER	COOSA RIVER	CEDAR CREEK	CHRTTODGA
843031	842755	843640	844144	845137	845103	844612	845542	845629	851617	A51550	850830	A40321	R42947	R444PR	845844	845323	950930	851524	R51 A4 1	852019
344018	343417	343122	343613	343435	344940	344300	344000	343442	342157	342218	341802	120072	241423	240947	341224	341434	741526	341201	340338	342803
	• N	10	i cu	i cu	1 M	· M	- 1 13		• •	. 4	r -1	ម	, , ,	- 1-	- a) a	3 0	• Ø	191
00200200	BESRI FAR	002022000	02382500	02383500	02384500	02385800	0.233700.0	02387500	02288300	0000000	02288500	a0.200000	002020000 002020000	00000000000000000000000000000000000000	00205000	02745120		000000000000000000000000000000000000000	0037075AA	02398000

adequately and more consistently described using the measured records alone.

Low-Flow Frequency Analysis

Appendix C contains low-flow frequency curves for stations in the Basin. Three stations with short records were omitted. The curves were developed from WATSTORE low-flow statistics which included records through 1984, except for two stations where records were discontinued at an earlier date. The statistics are plotted using the equation m/(n + 1).

One use of low-flow frequency data is in estimating the 7Q10 flow. (The 7Q10 is an average flow for seven consecutive days which has a probability of 0.10 of not being exceeded during any one year). The magnitude of the 7Q10 flow will change as additional data become available at a gage. Table 2 shows the 7Q10 flows using the current data. Also, shown is the ratio of the 7Q10 flow to the watershed area above the gage. The highest ratio comes from watersheds which drain mountainous areas such as above Ellijay (0.51) and Dawsonville (0.59).

Low-flow frequency analysis uses a single low-flow value each year. If only the low-flow months, June through November, were used, only the daily values for those months would be considered, however, the results would be essentially the same as if the entire year were used. Consider, for example, the 7Q10 flow. The lowest flow for seven consecutive days occurs during the low-flow months, so whether it is selected from June-November or from the entire year, the value selected is the same and its probability is the same. As the number of consecutive days

TABLE 2 7010 FLOW AT GAGE LOCATIONS

STATION	RIVER	NEAR	AREA (SQ MI)	7010 ¹ (CFS)	RATIO (CFS/SQ MI)
		an sana anga akin sala sala anga muja na sa man kina masa anga kina dala dala dala kina dala kina da	n mara antas taki inin inin inin inin taki mama anin ini		
02380500	COOSAWATTEE RIVER	ELLIJAY	236.0	120	0.51
02381600	FAUSETT CREEK	TALKING ROCK	10.0	3	0.30
02382200	TALKING ROCK CREEK	HINTON	119.0	28	0.24
02382500	CODSAWATTEE RIVER	CARTERS	521.0	248	0.48
02383500	CODSAWATTEE RIVER	PINE CHAPEL	831.0	278	0.33
02384500	CONASAUGA RIVER	ETON	252.0	NA	
02385800	HOLLY CREEK	CHATSWORTH	64.0	3.2	0.05
02387000	CONASAUGA RIVER	TILTON	687.0	83	0.12
02387500	ODSTANAULA RIVER	RESACA	1602.0	325	0.20
02388300	HEATH CREEK	ROME	14.7	1.2	0.08
02388320	HEATH CREEK	ARMUCHEE	16.6	NA	
02388500	OOSTANAULA RIVER	ROME	2115.0	492	0.23
02389000	ETOWAH	DAWSONVILLE	107	63	0.59
02392000	ETOWAH RIVER	CANTON	613.0	224	0.37
02394000	ETOWAH RIVER	CARTERSVILLE	1119.0	263	0.24
02395000	ETOWAH RIVER	KINGSTON	1634.0	514	0.31
02395120	TWO RUN CREEK	KINGSTON	33.1	NA	
02396000	ETOWAH RIVER	ROME	1819.0	606	0.33
02397000	COOSA RIVER	ROME	4040.0	1210	0.30
02397500	CEDAR CREEK	CEDARTOWN	115.0	32	0.28
02398000	CHATTOOGA	SUMMERVILLE	192.0	66	0.34

1 INTERPOLATED FROM U.S. GEOLOGICAL SURVEY LOW-FLOW FREQUENCY DATA.

anita (1913) press munit 2010 (1999) datit anita cara cara state yara dany

increases to 90, 120 or 183 the likelihood of there being some days in the year which are not in the low-flow months increases, however, the effect is small.

Duration-Probability Analysis

Duration-probability curves as shown in Appendix D are developed from low-flow frequency curves by plotting duration on the horizontal axis and probability as a curve. Each probability curve is a section through the family of low-flow frequency curves at the selected probability. Duration-probability curves are useful for examining the change in streamflow with duration for a selected probability. Consider, for example, station 02382500 at Carters (Figure D-4, Appendix D). The flatness of the curve in the range 7 to 30 days for the 0.10 probability shows little change in streamflow as the duration increases. The flow for the 7Q10 event is nearly the same as for the 30Q10 event. Many of the stations in the basin exhibit this same characteristic. Station 02394000 at Cartersville (Figure D-13, Appendix D) shows a significant increase in flow as the duration changes from 7 days to 30 days. Thus, to provide storage for the 30-day duration event would be a significant increase over that for the 7-day duration event. It should be noted that both stations used in this comparison are regulated upstream.

Daily Flow-Duration Analysis

Appendix E contains flow-duration curves for the twenty-one stations in the basin. These curves were developed from WATSTORE flow-duration statistics. Records included daily flows through

1984, except for two discontinued stations. The flow-duration curves show the percent time during the period-of-record that different magnitudes of flow were exceeded. Such information is useful in determining, quantitatively, how selected flows are related to all daily flows in the record. As an example, Table 3 shows at each station how the 7Q10 flows determined from the lowflow frequency analysis are related to all daily flows in the record. An average flow of 120 cfs for seven consecutive days (Station 02380500) has a probability of 0.10 of not being exceeded in any given year, however, during the period of record 99.8 percent of the time the daily flow exceeded 120 cfs. The 7Q10 flow is exceeded 98 percent of the time at all but one station.

Use of daily values for the low-flow months, June through November, instead of for the entire year will alter the flowduration curves. Examples of these curves for seven selected stations in the basin are also shown in Appendix E, Figures E-22 to E-28. They show a comparison between the flow-duration curves based upon annual and low-flow months daily values. What is significant is that the percent time exceeded remains about the same in the lower range of flows - flows of the magnitude of the 7Q10. Such flows can be expected to be exceeded 96 to 98 percent of the time during the low-flow months.

TABLE 3 7010 PERCENT TIME EXCEEDED

STATION	RIVER	NEAR	PI 7010 ¹ E (CFS)	ERCENT TIME XCEEDED 2 (%)
agua tatas mana ana atau tata tata data atau	مناف الالتان والمان المانية الم	nga nangan perang mangan nangan penang penang nangan penang manan penang menang ke	ana alian dalah tuko dilah kata kata taku pana dika taku	
02380500	COOSAWATTEE RIVER	ELLIJAY	120	99.8
02381600	FAUSETT CREEK	TALKING ROCK	3	99.9
02382200	TALKING ROCK CREEK	HINTON	28	99.8
02382500	CODSAWATTEE RIVER	CARTERS	248	98.4
02383500	COOSAWATTEE RIVER	PINE CHAPEL	278	99.2
02384500	CONASAUGA RIVER	ETON	NA	
02385800	HOLLY CREEK	CHATSWORTH	3.2	99.6
02387000	CONASAUGA RIVER	TILTON	83	99.4
02387500	OOSTANAULA RIVER	RESACA	325	99.4
Ø2388300	HEATH CREEK	ROME	1.2	100
02348320	HEATH CREEK	ARMUCHEE	NA	
02388500	OOSTANAULA RIVER	ROME	492	99.5
02389000	ETOWAH	DAWSONVILLE	63	99.3
02392000	ETOWAH RIVER	CANTON	224	99.5
02394000	ETOWAH RIVER	CARTERSVILLE	263	92.3
02395000	ETOWAH RIVER	KINGSTON	514	98.4
02395120	TWO RUN CREEK	KINGSTON	NA	
02396000	ETOWAH RIVER	ROME	606	98.1
02397000	COOSA RIVER	ROME	1210	98.8
02397500	CEDAR CREEK	CEDARTOWN	32	99.1
02398000	CHATTOOGA	SUMMERVILLE	66	98.1

1 INTERPOLATED FROM U.S. GEOLOGICAL SURVEY LOW-FLOW FREQUENCY DATA.

2 INTERPOLATED FROM U.S. GEOLOGICAL SURVEY FLOW-DURATION DATA.

DROUGHT IN THE COOSA BASIN

Drought Definition

Drought, as it is used in this study, is a period of below normal streamflow. The period of time used in the analysis is a year. Mean annual streamflow is used to distinguish between wet years and dry years. This convention is common in water supply studies although shorter time periods could be used e.g. a season Three parameters help to define drought: duration, or month. magnitude and severity. Duration is the period of time, the number of consecutive years in this study, where the mean annual streamflow at a gage location is below the mean for the period of gage record. Magnitude is the average water deficiency (measured in cfs) below the period-of-record mean value. Severity is defined as the cumulative water deficiency (measured in year-cfs) computed as the product of the duration and the magnitude. These three parameters are used to describe the droughts of record at the twenty-one gages in the basin.

Drought Analysis Using Annual Flow

Figures in Appendix F show for the period-of-record at each gage location, how the yearly mean flow varies from the mean for the period-of-record. Years with means above the record mean are termed wet years and are shown above the base line. Years with means below the record mean are termed dry years and are shown below the base line. Years with no data are shown on the figures to make them consistent with the years of record in Table 1. Of particular interest in this study are the years with annual flows below the record average, the consecutive number of these years,

their magnitude and severity.

Table 4 summarizes quantitatively the severest dry years represented by the figures. Those stations listed as NA (not applicable) either had too short a record or too small a severity. The duration of below average streamflow varies from two years to nine years. The magnitude of deficit flow (average for the duration) varies from 6.6 cfs on Heath Creek to 1708 cfs on the Coosa River near Rome. At these same gages the severity (cumulative deficit) ranges from 26.4 year-cfs (19,053 ac-ft) to 10,248 year-cfs (7,424,800 ac-ft). Across each row (Table 4) a profile of the three severest droughts of record may be obtained.

Analysis Using Low-Flow Months

Figures are also presented in Appendix F (Figures F-22 through F-28) which show wet and dry periods for the low-flow months of record for seven selected stations. The period-ofrecord mean for the months June through November is compared with each year's mean. Years where the annual value is less than the record mean are termed dry periods and are plotted below the line. Table 5 shows the duration, magnitude and severity of the principal dry periods. The duration is the number of consecutive years with the June through November mean below the record mean for June through November. The magnitude is the mean June through November streamflow for those years. Severity is the product of duration times magnitude. These parameters are useful in describing the low-flow season streamflow, however, it should be noted that each year's low-flow or dry season is bounded by a

PRINCIPAL DROUGHTS OF RECORD FABLE 4

RECORD

DURATION MAGNITUDE SEVERITY (VR-CFS) 168 570 690 984 2324 2596 1983 4429 54 234 1188 ភ័ 190 230 230 84 246 581 649 27 396 661 1107 1107 58 (CFS) Q, ro ro ¢u) m (YRS) m 1981-83 1969-71 1 1944-45 1 1969-72 1 1969-72 (VR-CFS) | YEARS 1903-06 1 1966-67 1369-71 1936 | 1914-16 7489 | 1969-72 68 | 1969-71 DURATION MAGNITUDE SEVERITY 1 186 888 0691 1035 3573 2955 585 636 2664 3976 88 PRINCIPAL DROUGHTS 8 220 218 (CFS) 44 703 1191 591 318 444 823 1248 497 23 68 ¢u < vo **N 10 m** *ы*т ഗവ ပတ (YRS) 0 0 M 10 1969-72 1953-57 1969-70 1953-57 1938-45 YEARS 1966-67 1 1953-57 1940-42 1941-45 1904-05 1940-45 1940-45 1953-58 1 1959-61 1 1953-57 2320 | 1724 DURATION MAGNITUDE SEVERITY 3625 (VR-CFS) 996 1791 140 624 3296 424 3735 7065 210 588 4752 **0248** 208 249 1649 53 290 725 6.6 785 42 42 98 (CFS) 3 431 415 528 m 177 -00 00 ch ch m ഗന ഗ (YRS) ¥ ¥ ¥ ¥ ž 1903-06 1940-42 1969-73 1940-42 1854-98 22-0261 540-43 1953-60 1938-45 VEARS 1941-42 1923-61 1353-61 1923-61 1340-45 1953-57 340-45 MEAN (CFS) 533 30 215 1217 1514 3699 1255 268 1934 2610 3034 5805 157 362 ភ័ *<i><i>(EARS OF* 38 9 *3 0 2 4 4 5 0 v RECORD TALKING ROCK RTERSVILLE JAWSONVILLE **JINE CHAPEL** NUMMERVILLE CHATSWORTH NEAR EDARTOWN ARMUCHEE (INGSTON CARTERS **INGSTON** ELLIJAY HINTON CANTON LILTON RESACA ETON ROME Å UW W W RLKING ROCK CREEK CDOSAWATTEE RIVER DOSAWATTEE RIVER COOSAMATTEE RIVER DOSTANAULA RIVER DOSTANAULA RIVER CONASAUGA RIVER CONASAUGA RIVER FAUSETT CREEK ETOWAH RIVER ETOWAH RIVER ETOWAH RIVER HOLLY CREEK HEATH CREEK ETOWAH RIVER HEATH CREEK WO RUN CREEK COOSA RIVER CEDAR CREEK ETOWAH CHATTOOGA RIVER 02380500 00301600 02384500 12382200 02392000 02382500 02383500 02385800 02387000 02387500 02388320 STATION 02388300 02388500 02335000 02395120 02397000 02397500 0006823 0004600 02396000 02398000 19

340 | 1969-72

TABLE 5 PRINCIPAL DRY PERIODS OF RECORD LOW-FLOW MONTHS, JUNE THROUGH NOVEMBER

	SEVERITY (YR-CFS)	616 435 648 2105 2105 3214 3214
	MAGNITUDE (CFS)	154 145 216 421 356 740 1607
	DURATION (YRS)	។ សសលាល ស
	1 VEARS	1980-83 1968-70 1963-45 1893-97 1968-72 1913-14 193031
SQ	SEVERITY (YR-CFS)	620 624 705 705 2389 4884 4884 6576
DRV PERIO	MAGNI TUDE (CFS)	310 235 427 398 407 1096
DRINCIPAL)URATION (YRS)	e to e J w w b
d	I YEARS	1 1904-05 1 1939-41 1 1958-70 1 1939-45 1 1939-45 1 1951-62 1 1951-62
	SEVERITY (YR-CFS)	724 1512 3576 3576 35598 9216
	MAGNITUDE (CFS)	181 252 296 596 529 1024
	NURATION (YRS)	ቀ የኦ ስ ሲ ሲ ሲ ሲ
	YEARS	1968-71 1952-56 1951-56 1951-56 1951-56 1939-47
record Mean (CFS)		808 854 539 1528 1528 1725 2053 3848
Vears of Record	ng tang min pan min ng min ng ma	9 4 4 3 9 4 4 3 9 5 4 4 3 9 5 5 4 4 5 9
NEAR		Carters Pine Chapel Tilton Resaca Rome Rome Rome
RIVER		COOSAMATTEE RIVER COOSAMATTEE RIVER CONGSAUGA RIVER OOSTANAULA RIVER OOSTANAULA RIVER ETOMAH RIVER COOSA RIVER
STATION		02382500 02382500 02387500 02387500 02385500 0239500 0239500 0239500

six month high-flow or wet season. In other words, each year's June through November low-flow season is interrupted with a higher flow season December through May. Thus, duration for a low-flow month analysis has a different meaning than for an annual analysis where dry years are back-to-back.

Figures F-29 through F-34 (Appendix F) show the mean monthly flows for several stations in the basin. They confirm the identification of the months June through November as the lowflow or months below annual mean flow.

WATER USE IN THE COOSA BASIN

Water Use Data

A database of water withdrawal and discharge within the state of Georgia is maintained by the U.S. Geological Survey at Doraville, Georgia. Sixty-one different types of information are included, where available, for each withdrawal and discharge location (entity) for the years 1980 through 1984. The information includes: name of the user, address, contact person, type of withdrawal (surface or ground water), latitude and longitude, well data, stream name, monthly and annual amounts and an identification or entity number. Referred to as the "W&D" database (site specific withdrawals and discharges), a computer tape of these data was provided to the Hydrologic Engineering Center by the U.S. Geological Survey in September 1985 for the counties which are a part of the Coosa Basin. This database became the basis for the analysis of withdrawal and discharge within the basin. While the database is incomplete in many respects, as will be discussed in what follows, it was found to be sufficient for the purposes of this study.

Table 6 shows a profile of the entities in the database. A total of 366 entities were included each year. For the five year period, 1980-1984 there were 1830 entities. Each entity represented a site specific location of withdrawal (surface or groundwater) or discharge. Because many users have more than one withdrawal or discharge location the number of users in the database is less than the number of entities. There are 155 different users identified in the database. Of particular note

TABLE 6 ENTITIES IN W&D DATABASE

			YEAR			TOTAL
	1980	1981	1982	1983	1984	
WITHDRAWAL DATA						
NUMBER OF ENTITIES	156	156	156	156	156	780
NUMBER WITH DATA	17	13	43	45	40	158
PERCENT WITH DATA (%)	10.9	8.3	27.6	28.8	25.6	20.24
DISCHARGE DATA						
NUMBER OF ENTITIES	210	210	210	210	210	1050
NUMBER WITH DATA	97	117	50	74	94	432
PERCENT WITH DATA (%)	46.2	55.7	23.8	35.2	44.8	41.14
TOTAL						
NUMBER OF ENTITIES	366	366	366	366	366	1830
NUMBER WITH DATA	114	130	93	119	134	590
PERCENT WITH DATA (%)	31.1	35.5	25.4	32.5	36.6	32.22

is the fact that of the 1830 row entries for the five year period, 1980-1984, only 590 or 32.2 percent had annual withdrawal or discharge data. These data varied by year as shown in Table 6. For 1980 there were 17 entities with withdrawal data or 10.9 percent of all entities for that year. For 1984 this had increased to 40 entities or 25.6 percent of all entities for that year. Discharge data is more complete. For 1980, 46.2 percent of the entities have data. For 1984 this figure is 44.8 percent.

For use in this study three principal modifications to the original database were made. First, only those entities with annual data were analyzed thus creating a non-zero database. Second, those entities which are outside the boundaries of the Coosa Basin were removed from the database. They had originally been included because they were in the county, part of which was in the watershed. Third, entities whose withdrawal source was groundwater were removed because groundwater is not a principal purpose of this study. A profile of the resulting database is shown in Table 7. It is referred to in this study as the "USGS" database.

The USGS database was compared with the data developed and presented in the study, <u>Water Availability and Use - Coosa River</u> <u>Basin</u>, 1982. Most of the users in the <u>Water Availability and Use</u> study were in the USGS database. Those which were not were small users such as elementary schools and small commercial organizations. A list of these users and their September 1980 discharge from the <u>Water Availability and Use</u> study is shown in Table 8.

TABLE 7 ENTITIES IN USGS DATABASE

			YEAR			TOTAL
	1980	1981	1982	1983	1984	
WITHDRAWAL DATA NUMBER OF ENTITIES	9	8	23	23	21	84
DISCHARGE DATA NUMBER OF ENTITIES	60	79	33	45	63	280
TOTAL NUMBER OF ENTITIES	69	87	56	68	84	364

TABLE 8 USERS NOT IN USGS DATABASE BUT IN WATER AVAILABILITY AND USE^1

HYDROL	DGIC IT USER	SE STREAM FLO	PT 80 W (CFS)
3	VARNELL ELEMENTARY SCHOOL ROLLING HILLS MOBILE HOME PARK	TRIB-TRIB COAHULLA CR TRIB-TRIB COAHULLA CR	0.02 0.06
3	DAWNYILLE ELEMENTARY SCHOOL	TRIB-COAHULLA-CONASAUGA	0.02
3	DUG GAP ELEMENTARY SCHOOL	DROWNING BEAR CR	0.02
- 3	EASTBROOK MIDDLE SCHOOL	LITTLE CR-DROWNING BEAR C	0.03
7		TRIB TO CONASAUGA R	0.05
3	SAFARI LES '2' ACRES CAMPGROUND	SWAMP CR-CONASAUGA R	0.09
3	DALTON AMACO TRUCK PLAZA	SWAMP CR-CONASAUGA R	0.01
3	VALLEY POINT ELEMENTARY SCHOOL	TRIB-SWAMP CR-CONASAUGA R	0.03
3	DAVIS BROTHERS MOTOR LODGE AND CAFE	TRIB-LITTLE SWAMP CR	0.04
ž	TEXTILE RUBBER AND CHEMICAL CO	TRIB-LITTLE SWAMP CR	0.05
3	VALLEY POINT MIDDLE SCHOOL	TRIB-LITTLE SWAMP CR	0.02
4	SHELL SERVICE STATION	TRIB TO OOTHKALOOGA CR	0.02
4	PATTYS TRUCK STOP	TRIB TO OOTHKALOOGA CR	0.02
4	GA DOT SAFETY REST AREA #34	TRIB TO OOTHKALOOGA CR	0.05
4	RAMADA INN	TRIB-BLACKWOOD CR-OOTHKAL	0.04
4	WELLCO CARPET CO	BLACKWOOD CR-OOTHALOOGA	0.00
4	GEORGIA CUMBERLAND ACADEMY	OOSTANAULA R	0.02
4	ARMUCHEE ELEMENTARY SCHOOL	ARMUCHEE CR-OOSTANAULA R	0.01
4	BURLINGTON AND KLOPMAN HILLS	WARD CR-OOSTANAULA R	0.08
6	FREE HOME ELEMENTARY	TRB-SITTINGDOWN CR-ETOWAH	0.06
6	TATE LOW RENT HOUSING	TRIB-LONG SWAMP-ETOWAH	0.11
6	JASPER WEST POND	TRIB-SHARP MTN CR	0.15
7	RM MOORE SCHOOL	SHOAL CK-ETOWAH R	0.01
7	REINHARDT COLLEGE	SHOAL CR-ETOWAH R	0.04
7	CANTON NURSING HOME	TRIB TO ETOWAH R	0.01
7	LITTLE RIVER WPCP	ROCKY-LITTLE-ETOWAH	0.18
7	LITTLE RIVER ELEMENTARY SCHOOL	TRIB-LITTLE R	0.01
7	KENNESAW HILL MHP	NOONDAY CR-LITTLE R	0.07
7	BELLS FERRY PLAZA	TRIB-NOONDAY CR	0.01
7	BELLS FERRY MHP	TRIB-NOONDAY CR-LITTLE R	0.06
7	CHAPMAN ELEMENTARY		0.03
	EASICATE MHP		0.02
/		KELLUG UK-LAKE HLLHIUUNH	0.01
/	SHADUWUUD MHP	TRIB-UWL CK-CHKE HLLHIUUN	0.07
	ALLATUUNA ENTERPRISES (BARTUW CU)	IKIB IU EIUWHH K	0.03
8	NEW HUPE SCHUUL		0.02
8	INKEE LEDHKS MAP	PILKEIIS MILL LK	0.0C 0.00
0	WHILE ELEMENTHRY BUHUUL	TOTO TOTO DETTIL C. ETOLOU	0.0C
В Д	CROWN TWN	DETTIT CR-ETOLOH R	0.05 0.00
D D		STMDSON CR-FILLARI FF DR	0.56
0 0	BENEDICT EORI V CHILINHOOD CENTER	CEDOR CR	0.01
10	LYERLY ELEMENTARY SCHOOL	TRIB TO CHATTOOGA R	0.01
10	CAMP AQUILLA (YWCA)	CLARKS CR-CHATTOOGA R	0.04

1 GEORGIA DEPARTMENT OF NATURAL RESOURCES, WATER AVAILABILITY AND USE, CODSA RIVER BASIN, 1982. The monthly and annual withdrawal and discharge data contained in the USGS database are tabulated in Appendix G. These data are the data used in the analysis of water use and are the non-zero surface water data from the USGS W&D database, September 1985.

Major Withdrawals and Discharges

The major surface water withdrawals for which the USGS database contains data are shown in Table 9. Georgia Power's, Hammond Thermal Power Plant on the Coosa River at the outlet of the Coosa Basin withdraws the greatest amount. However, because it is at the outlet of the watershed and because virtually all of it is returned to the river (See <u>Water Availability and Use</u> study) the withdrawal is of little consequence in this investigation. Of the remaining users, 93 percent of the amount withdrawn is withdrawn by the next six users listed. This illustrates that relatively few users account for most of the withdrawal.

Major discharges are shown in Table 10. Georgia Power's Hammond and Bowen plants and Georgia Kraft Company's Krannert Division are not shown because data on discharge was not available in the USGS database. From the <u>Water Availability and</u> <u>Use</u> study using September 1980 data the discharge at Hammond is 99.9 percent of withdrawal, at Bowen 21.8 percent, and at Georgia Kraft 69.6 percent. Of the discharges shown in Table 10 the first ten account for 80 percent of the water discharged. Again indicating most discharge is concentrated in relatively few users.

TABLE 9 SURFACE WATER WITHDRAWAL, 1984

				HYDROLOGI	C		ANNUAL AVERAGE
ENTITY1	ENTITY2	ENTITY3	YEAR	SUB-UNIT	STREAM NAME	USER	(MGD)
057	TØ1	01	84	9	COOSA RIVER	ga power-hammond therm pl	454.09
008	TØ1	01	84	8	ETOWAH RIVER	GA POWER-PLANT BOWEN	52.900
933	Moi	01	84	7	lake Allatoona	COBB CO MARIETTA WAT AUTH	28.774
155	M01	01	84	3	CONASAUGA RIVER	CITY OF DALTON	27.046
057	104	01	84	9	COOSA RIVER	GA KRAFT CO KRANNERT DIV.	15.861
064	M01	0 2	84	4	COOSAWATTEE RIVER	CITY OF CALHOUN	10.007
057	MØ4	01	84	4	oostanaula river	CITY OF ROME	7.8180
155	MØ1	03	84	3	MILL CREEK	CITY OF DALTON	5.6320
Ø57	105	01	84	9	SILVER CREEK	WEST POINT PEPPERELL INC	3.2000
0 28	M05	01	84	6	ETOWAH RIVER	CITY OF CANTON	2.3120
105	M01	0 2	84	3	ETON SPRINGS	CITY OF CHATSWORTH	1.2960
115	MØ3	01	84	8	EUHARLEE CREEK	CITY OF ROCKMART	0.8900
146	M03	02	84	10	DRY CREEK	CITY OF LAFAYETTE	0.8290
105	MØ1	01	84	3	HOLLY CREEK	CITY OF CHATSWORTH	0.4770
061	MØ1	01	84	1	ELLIJAY RIVER	CITY OF ELLIJAY	0.4490
8 61	MØ1	92	84	1	CARTECAY RIVER	CITY OF ELLIJAY	0.3660
057	103	01	84	4	Woodward Creek	BURLINGTON IND-BRIGHTON	0.3420
057	M03	01	84	9	POSSUM TROT RES	BERRY SCHOOLS	0.3030
064	MØ2	01	84	5	Salacda Creek	CITY OF FAIRMONT	0.1800
093	NØ7	01	84	5	UPPER ETOWAH RIVER	CAMP F D MERRILL	0.0260
061	NØ7	01	84	2	CARTERS LAKE	USCE CARTERS LAKE-DOLL MT	0.0010

TABLE 10 SURFACE WATER DISCHARGE, 1984

ENTITYI	ENTITY2	ENTITY3	YEAR	HYDROLOGIC SUB-UNIT	STREAM NAME	USER	annual Average (MgD)
ان داد هه جه به بن بن بن ه	a ang ang mini kin 183 dan 400 dan Mat 407	. an ar in in the set	- 20 CO 10 CO 10	til en en an ek dy en ke ak dy til fa	제출 1월 4월		। এনে ব্যাপ বস্থা আৰু প্ৰথম থাকে প্ৰথম প্ৰথম গোৱে কটা কটা ব্যাপ বস বয়
155	MØ1	D1	84	3	DROWNING BEAR CREEK	CITY OF DALTON	18.548
057	M04	D1	84	9	CODSA RIVER	CITY OF ROME	8.7380
057	105	D2	84	9	SILVER CREEK	WEST POINT PEPPERELL INC	7.2000
064	MØ1	D1	84	4	OOSTANAULA RIVER	CITY OF CALHOUN	6.2000
155	M01	D2	84	3	DROWNING BEAR CREEK	CITY OF DALTON	5.1010
008	M02	D1	84	8	ETOWAH RIVER	CITY OF CARTERSVILLE	4.3220
033	MØ2	D6	84	7	NOONDAY CREEK	COBB CD MARIETTA WAI AUTH	3.7330
027	M05	Di	84	10	CHATTOOGA RIVER TRIB	TOWN OF TRION	3.0010
146	M03	D1	84	10	CHATTOOGA CREEK	CITY OF LAFAYEIIE	2.9170
027	M04	D1	84	10	CHATTOOGA RIVER TRIB	CITY OF SUMMERVILLE	2.0430
008	105	D1	84	8	ETOWAH RIVER	NEW KIVERSIDE ULARE LU	1.000
061	MØ1	Di	84	2	COOSAWATTEE RIVER	CITY OF ELLIGHY	1.1000
115	MØ3	D1	84	8	EUHARLEE CREEK	CITY OF RUCKMERT	1.0000
115	M@1	D1	84	3	CEDAR CREEK	CUENTCOL DEODUCTS CORD	1.0000
008	106	Di	84	8	EIUWHH KIVEK	CTEMICHE PRODUCTO COMP.	1.0040
105	MØ1	Di	84	- ১	HULLY CR-LUNHSHUDH R		n. 8280
008	101	D2	84	8	EIUWHH KIVEK	SI OVD COUNTY WATER SYSTEM	0.6770
057	MM2	50	84 04	4	BILVER OR INTEDIANT	CENTROL SOVA OF ATHENS	0.5976
028	101	D1	84	1	DLHNREID URCCH CTANAU DIUCD TDID	CITY OF CONTON	0.5050
028	X02	D1	84	6	COUCH BIVER INTD	FLOYD COUNTY WATER SYSTEM	0.4760
057	MUZ	D1 	04	4	TONVODD CREEK	CITY OF ACWORTH	0.4640
033 257	Mas	D1 D1	04 DA	7 Q	CEDAR CREEK TRIB.	CITY OF CAVE SPRING	0.4560
037 257	101 705	נע נע	94	9	GILVER CREEK	WEST POINT PEPPERELL INC	0.4510
037	C01	D1 114	97 97	- -	B CENOS CIR SD CR	DIAMOND SHAMROCK CO	0.3510
110	101 112	D1 D1	04 84	9	PRENTISS CREEK	ALCAN BUILDING PRODUCTS	0.2760
907 007	104	ni	94	101	CHATTOOGA RIVER	BIGELOW SANFORD IN-LYERLY	0.2720
10⊂7	107 Mõi	נת הו	84	A	WEAVER CREEK	CITY OF DALLAS	0.2720
957	T11	DI	84	9	TRIB-LITTLE CRY CR	FLORIDA ROCK INDUSTRIES	0.2590
957	M02	D3	84	4	WARD C-DOSTANAULA R	FLOYD COUNTY WATER SYSTEM	0.2070
008	MØ1	D1	84	4	oothkalooga creek	CITY OF ADAIRSVILLE	0.1860
145	NØ5	D1	84	10	CRAWFISH CREEK	DOR-WALKER COUNTY PRISON	0.1710
060	M05	D4	84	7	LITTLE RIVER	FULTON COUNTY	0.1570
027	104	D2	84	10	CHATTOOGA RIVER	BIGELOW SANFORD IN-LYERLY	/ 0.1540
115	107	Di	84	8	TRIB-EUHARLEE CR	GOODYEAR TIRE AND RUBBER	0.1450
008	107	Di	84	8	PETTIT CREEK	GOODYEAR TIRE AND RUBBER	0.1330
145	I 12	Di	84	10	TRIB-CHATTOOGA CR	ROPER CORP	0.1010
028	103	D1	84	6	ETOWAH RIVER	GOLDKIST INC	0.1010
064	104	Di	84	4	Dothkalooga Cr	GOODYEAR TIRE AND RUBBER	0.1000
115	MØ2	Di	84	8	EUHARLEE CREEK	POLK CO WATER AUTHORITY	0.0810
112	M01	D2	84	6	Town CR (Polecat CR)	CITY OF JASPEN	0.0/30
155	104	D1	84	3	CONASAUGA RIVER	DOW CHEMICAL-USA	0.0/30 0.0200
008	M06	DS	84	8	TWO RUN CREEK	BAKIUW LU WHIEK SYSIEM	U. UD 70 0 0600
Ø28	M03	Di	84	7	NUBES CREEK	CITT OF WOODDIDLA	0.0000 0.0550
112	MØ1	D1	84	6	HHMMUNDS UKEEK	GILL OF SHOPER	0. UUUU

				HYDROLOGIC			ANNUAL
ENTITYI	ENTITY2	ENTITY3	YEAR	SUB-UNIT	STREAM NAME	USER	AVERAGE (MGD)
dia 101 dia dia 414 Met dia 414 dia 414	nga aga man nga kut agan nga kut kut kut	1 - 11 - 12 - 12 - 12 - 12 - 12 - 12 -	نت نتاب بنیه جمد ندرد برو م	6 (11) 20 (17) 201 (19) 90 (19) 90 (19) 10) 10)	. Ba dia dia dia 40.400 400 400 400 400 400 400 400 400		ny ny dia dia dia manjara any amin'ny dia dia dia dia mpi muu dia dia mpi
033	MØ2	E4	83	7	BUTLER CREEK	COBB CO MARIETTA WAT AUTH	0.0500
110	MØ1	D2	84	8	LAWRENCE CREEK	CITY OF DALLAS	0.0480
042	MØ1	Di	84	6	FLAT CREEK	CITY OF DAWSONVILLE	0.0420
808	MØ6	D1	84	8	PETTIT CREEK	BARTOW CD WATER SYSTEM	0.0390
033	M@2	D3	84	7	NOONDAY CREEK	COBB CO MARIETTA WAT AUTH	0.0370
064	103	D1	84	2	Salacoa Creek	ED LACY MILLS	0.0280
155	108	Di	84	3	Coahulla creek	DALTON ROCK PRODUCTS CO.	0.0260
033	M02	D9	84	7	BUTLER CREEK	COBB CO MARIETTA WAT AUTH	0.0240
105	105	D1	84	3	Town Branch	DIXIE YARNS INC.	0.0210
064	NØ3	D1	84	4	TRIB DOTHKALDOGA CR	DOT-SAFETY REST AREA #34	0.0200
033	MØ2	E4	84	7	BUTLER CREEK	COBB CO MARIETTA WAT AUTH	0.0170
064	105	D1	84	2	LEWIS BR-SALACOA CR	DALTON ROCK PRODUCTS CO.	0.0160
033	M02	E4	81	7	BUTLER CREEK	COBB CO MARIETTA WAT AUTH	0.0100
033	M02	E4	80	7	BUTLER CREEK	COBB CO MARIETTA WAT AUTH	0.0090
008	MØ5	Di	84	8	PUMKINVINE CREEK	CITY OF EMERSON	0.0060
155	I12	D2	84	3	SWAMP CREEK	C&J LEASING COMPANY	0.0036
115	104	D1	84	9	BIG SP BR-CEDAR CR	ALTON BOX BOARD CO	0.0020
105	105	D2	84	3	TOWN BRANCH	DIXIE YARNS INC.	0.0010
Table 11 shows the estimated surface water consumption in 1984 for users for which both withdrawal and discharge data were available or were estimated. The Cobb County Marietta Water Authority consumption is largely a transfer out of the basin. The net loss to the basin is approximately 86.7 MGD. Using the totals for withdrawal (excluding Hammond Thermal Plant) and discharge (including estimates of Bowen Power Plant and Georgia Kraft) in Tables 9 and 10, the total amount consumed is 59.0 MGD. An accurate estimate for the Basin is difficult to make because of incomplete data for both withdrawal and discharge. However, an amount within this range seems probable.

Monthly Variation in Withdrawal and Discharge

Using average values in analysis - annual, seasonal or monthly - can sometimes mask the variation which exists in water use. It is of concern that by using average values the peak needs of a month or period may be "reduced" or missed. The withdrawal and discharge data in the USGS database was examined to determine this variation.

Using 1984 withdrawal and discharge data the sample standard deviation (the root-mean-square deviation) was computed for the twelve monthly values for each year and for the six values for the low-flow months June through November for each user. For the withdrawal data the standard deviation varied from a low of near 0 MGD to a high of 4.9 MGD for all months, to a range of 0 MGD to 2.9 MGD for the low-flow months (excluding the Hammond and Bowen power plants). These statistics show that variation in

TABLE 11 SURFACE WATER CONSUMPTION, 1984

ENTITYI	ENTITY2	ENTITY3	HYU	USER	total Withdrawal (MGD)	Total Discharge (MgD)	CONSUMPTION (MGD)	PERCENT CONSUMPTION (%)
ېې هک یې دې دې ده وې دی وي	6 470 484 (an in in in in in in in in	ر الشريخ بيني المريخ بيني المريخ بيني المريخ المريخ المريخ المريخ المريخ المريخ المريخ المريخ المريخ ا						
033 008	M01 T01	01 01	7 8	Cobb co marietta wat auth Ga power-plant bowen	1 28.8 52.9	4.0 11.5 ¹	24.8 41.4	86.1 78.3
028 105 064	M02 M01 M01	01 01 02	5 3 4	CITY OF CANTON CITY OF CHATSWORTH CITY OF CALHOUN	2.3 1.8 10.0	0.5 1.0 6.2	1.8 0.8 3.8	76.E 43.4 38.0 70.2
057 155	104 M01	01 01	9 3	GA KRAFT CO KRANNERT DIV. CITY OF DALTON	15.9 32.7	11.1 ⁻¹ 23.5	4.8 9.1	27.8

1 ESTIMATED FROM SEPTEMBER 1980 DATA, WATER AVAILABILITY AND USE STUDY, 1982.

withdrawal from month to month is relatively small. It is less for the low-flow months than for the entire year. The Hammond and Bowen power plants had standard deviations of 42.5 MGD and 14.4 MGD respectively. These represented 8.8 and 22.5 percent of the average monthly flow.

Similar variation exists in monthly discharge data. The standard deviation ranges from 0 MGD to 2.7 MGD for all months to 0 MGD to 2.1 MGD for the six low-flow months. The greatest variation occurs at the City of Rome and City of Dalton discharge locations. The standard deviation for other discharges was considerably less - in all cases less than 1.0 MGD.

Annual Variation in Withdrawal and Discharge

An analysis of annual withdrawal and discharge data for the period 1980-84 shows no consistent pattern of change (Appendix G). The change from year to year varies with user. For some users there is relatively little change, for others some years are higher, other years lower. Withdrawals from the Conasauga River by the City of Dalton increased from 23.6 MGD in 1980 to 27.0 MGD in 1984. For the City of Calhoun, withdrawal went from 8.3 MGD in 1980 to 10.0 in 1984. Other major withdrawals, Georgia Kraft, Bowen Power Plant, Hammond Thermal Plant had a variable change during the period for which data was available. Discharges have followed a pattern consistent with withdrawal.

WATER SUPPLY/USE BALANCE

Water Balance Definition

A water balance is the systematic presentation of water supply and use data within a geographic region for a specific period of time. A water balance may be developed for a state, river basin, river reach or specific site. For the Coosa River Basin a water balance was developed for the basin and hydrologic sub-units within the basin. Surface water supply is compared with 1984 water withdrawal and discharge. A principal purpose of such a comparison is to assess the adequacy of supply relative to use.

Coosa River Basin

Table 12 presents a comparison of supply and use for the Coosa Basin by hydrologic sub-unit (See maps in Appendix A). Data for the table were developed from mean flow records from the USGS WATSTORE database and from 1984 withdrawal and discharge data from the USGS water use database. The hydrologic sub-unit is a convenient basin division for comparing supply and use because of the availability of a stream gage to describe the supply and it is small enough to describe withdrawal and discharge which occurs on both main streams and tributaries. The purpose of balancing supply and use in this way is to show the availability of supply relative to current use.

Table 12 shows the hydrologic sub-unit number, its name and the stream gage at its outlet. For each gage, the lowest mean annual flow and lowest mean September flow were determined. These flows were used to describe supply under the lowest flow

BASIN WATER BALANCE MINIMUM STREAMFLOW OF RECORD AND 1984 WITHDRAWAL AND DISCHARGE TABLE 12

												CUMUL	ATIVE	CONSUM	NOITO
	GAGE	MINIM	UM MEAN	IN-8ns	NIT	SUB-UN	11	CUMULI	ATIVE	CUMULA	TIVE	WITHDRAW	AL MINUS	AS PERCI	ENTRGE
DRULUGIC	AIT CT	STREAL	MFLOW	WITHDR.	RUR	DISCHAR	GE Arr	MITHD	RAMAL	DISCH	RGE	DISC	HRGE	OF MIN	
	UUILE I	2	ברטגט	HBUVE	DHDC	HBUVE C	HOC	HBUVE	DHDC	HBUVE	DHDC	ารการา	PI LUN)	SI KEH	
		ANNUAL	SEPTEMBERI	ANNUAL	SEPTEMBER	ANNUAL 5	EPTEMBERI	ANNUAL	SEPTEMBER	ANNUAL 5	EPTEMBERI	ANNUAL	SEPTEMBER A	NNUAL SI	EPTEMBER
		(CFS)	(CFS)	(MGD)	(MGD)	(NGD)	(100)	(MGD)	(MGD)	(MGD)	(NGD)	(MGD)	(MGD)	(%)	(%)
			GAIGH												
1 ELLIJAY	02380500	256	142	0.82	0.78	0.00	0.00	0.82	0.78	0.00	0.00	+ 82	+. 78	ۍ. ۲	76.
2 CARTERS LAKE	02383500	717	276	0.18	0.21	1.10	1.00 1	1.00	8. 99	1.10	1.00 1	10	- 01	A	N.
3 DAL TON-CHATSWORTH	02387000	505	84.31	34.40	36. 40	24.80	23.20	34.40	36.40	24.80	23.20	+9.60	+13.20	సి గ్ న	24.2%
4 CALHDUN-ROME NORTH	02388500	1626	230 1	18.20	19.40	7.90	6.801	53.60	56.80	33.80	31.00	+19.80	+25.80	1.9%	7.5%
5 DAWSONVILLE	02389000	135	59.2	0.03	0, 02	0.00	0.00 1	0.03	0.02	0.00	0.00 1	+. 03	+.02	.03%	.05%
6 CANTON	02392000	622	230	2.30	2.40	0.78	0.60	2, 30	2.40	0.78	0.60	+1.50	+1.80	, 4%	%
7 ALLATOONA LAKE	00334000	1072	420 1	28.80	34.50	87 :r	4.40 J	31.10	36.90	6.10	5.00	+25,00	+31.90	3.6%	11.8%
8 CARTERSVILLE-ROME EAST	02396000	1533	586	53.80	60. 88	20, 80 3	20.60 3	84.90	97.70	26. 30	25.60	+58.00	+72.10	6.5	19.0%
9 ROME-CEDARTOWN	02337000 2	3236	1106 1	473.40	530.70	483.30 4	537.204	611.90	685.20	544, 00	593.80	+67.90	+91.40	3. 2%	12.8%
B SUMMERVILLE-LAFAVETTE	02398000 ²	188	63.2	0.83	0.72	9.20	8.50	0.83	0.72	9,20	8.50	-8.40	-7.80	NA	¥

¹ BASED UPON WATER YEAR, OCTOBER THROUGH SEPTEMBER

² THESE GABES ARE NOT AT THE OUTLET OF THE SUB-UNIT
3 INCLUDES AN ESTIMATE OF DISCHARGE FOR BOMEN POMER PLANT
4 INCLUDES AN ESTIMATE OF DISCHARGE FOR HAMMOND POWER PLANT AND GEORGIA KRAFT
5 PERCENTAGES ARE COMPUTED AS CUMULATIVE DISCHARGE MINUS WITHDRAMAL
5 TIMES 1.547 CFS/MGD DIVIDED BY MINIMUM STREAMFLOW TIMES 1.00

conditions of record. It is assumed that these minimum flows do not reflect consumption upstream. This is reasonable because many minimum streamflows occurred prior to major development in the watershed. Sub-unit and cumulative sub-unit (sub-units above and tributary) withdrawal and discharge data describe representative use of surface water. Also, presented is the consumptive use of water cumulative to the gage at the outlet. This represents the estimated consumption in the sub-unit or subunits tributary to the gage. These data are also presented as a percentage of the minimum streamflow at the gage. Sub-unit 9 gives an indication of consumptive use in the sub-units and basin overall.

What do these data tell about the relation between supply, withdrawal and discharge? First, it should be noted that the supply to which 1984 use is being compared is the lowest of record, and therefore has a low probability of occurring. Second, for all sub-units, the annual consumption is small relative to supply (less that 6 percent of minimum mean streamflow). Thus, on an annual basis, wet and dry season, supply is clearly adequate. For the month of September consumptive use may still be regarded as small relative to supply - less than 13 percent for all sub-units except sub-unit 8 (19.0%) and sub-unit 3 (24.2%). In sub-unit 3 the higher consumption is from Dalton and in sub-unit 8 from Bowen Power Plant.

Consideration is given in Table 13 to the in-stream 7Q10 requirement for water quality. Withdrawal (converted from mgd to

BASIN WATER BALANCE TABLE 13

MINIMUM STREAMFLOW OF RECORD, 1984 WITHDRAWAL, AND 7010 REQUIREMENTS

CUMULATIVE WITHDRAWAL

CUMULATIVE

HYDROLOGIC SUB-UNIT	NAME	GAGE AT OUTLET	MINIM STREA OF F	um mean Inflow Record ¹	CUMUL	AT I VE RAMAL	7010	CUMU MITHE PLUS	ATIVE C DRAMAL A 7010 0	umulative ND 7010 F F minimur	: Withdrawal 15 percentage 16 streamflow
바 때 우리 엄마 안 다 가 봐 가지		10 m 10 m	ANNURL (CFS)	SEPTEMBERI (CFS) I	(MGD)	SEPTEMBER (MGD)	(CFS)	ANNUAL (CFS)	september (CFS)	(x) ANNUAL	SEPTEMBER (%)
•	C: 1 1 AV	00700500	250	1 421	0. 82	8 . 78	120.00	121.27	121.21	47.37	85.36
1 1 1 1 1	ELLIUNI TTERS I DKF	02303580	717	276	1.00	0.99	325.00	326.55	326.53	45.54	118.31
2 DOI 70	N-LHOTSUNATH	82.387.000	202	84.3	34.40	36.40	83. 00	136.22	139.31	26.97	165.26
	N-DOME NORTH	02200500	1626	530	53.60	56.80	492.00	574.92	579.87	35.36	109.41
	M-RUPE NUMBER	02389000	135	59.2	0.03	0.05	63. 00	63.05	63. 03	46.70	106.47
5 7 4	PONTON	023329880	622	230	5 N	2.40	224.00	227.56	227.71	36.58	99.01
Dilo	VTOND DKF	05394088	1072	420 1	31.10	36.98	263.00	311.11	320.08	29.02	76.21
A CONTERSU	1111 F-RIME EAST	02396000	1533	588 1	84.90	97.70	606.00	737.34	757.14	48.10	128.77
	CENARTNUN	05.397090	2 3236	1106	611.90	685.20	1210.00	2156.61	2270.00	66.64	205.24
10 SUMMERN	/ILLE-LAFAYETTE	02398000	2 188	63.2	0.83	0.72	66.00	67.28	67.11	35. 79	106.19

I BASED UPON WATER YEAR, OCTOBER THROUGH SEPTEMBER 2 THESE BABES ARE NOT AT THE OUTLET OF THE SUB-UNIT

ļ

cfs) is added to the 7Q10 requirements and compared with the minimum annual and September streamflows of record. Using annual data the 7Q10 plus withdrawal is less than 50 percent of the minimum streamflow at the gage except for sub-unit 9 where it is 66.6 percent. For the month of September this flow exceeds the minimum mean monthly flow at seven gage sites. This is to say that should a flow as low as the lowest September flow occur, withdrawals upstream may have to be cut back to insure that instream requirements are met. It should be noted that this analysis considers the hydrologic sub-unit as a whole and is not specific to each withdrawal point along the river. Therefore, it is only approximate and may be considered as a worse case indication of the supply/in-stream use balance for the sub-unit and not specific withdrawal points.

ALTERNATIVE SUPPLY: WITHDRAWAL AT CARTERS

Withdrawal of water from the Coosawattee River below Carters Lake or withdrawal directly from Carters Lake are considered two likely alternative supply sources to the Dalton Lake project. Because withdrawal from the Coosawattee River below Carters Reservoir is considered the most likely alternative it is the alternative presented in detail here. The analyses which follow examine the operation of Carters Reservoir; the historical streamflow records downstream; stochastic analyses of streamflow at Carters; and the impact downstream of withdrawing water from the Coosawattee River near Carters. Figure H-1 (Appendix H) shows the stream gages and downstream locations involved in the analyses. These analyses provide a hydrologic assessment of the availability of supply near Carters. The sizing of necessary withdrawal facilities, their location and estimated cost will be made by the Mobile District, Corps of Engineers as part of their Dalton Lake investigation.

Operation of Carters Reservoir

Since its completion in November 1974, Carters Dam has regulated inflow from the Coosawattee River below Ellijay, Talking Rock Creek and local drainage around the reservoir. Flood control and hydroelectric power are the authorized purposes of the Reservoir. The generation schedule is established on a weekly basis by the Georgia Power Company and releases are made by the Corps of Engineers in accordance with arrangements with the Southeastern Power Administration.

Filling of the reservoir occurred from closure in November 1974 until top of power pool was reached in July 1975 (Figure H-2, Appendix H). During the first 6 years of the project's operation the hydropower schedule and pumpback use of the re-reg reservoir had a major effect on the re-reg discharge regime. Flows from day-to-day could vary from the channel capacity of 4500 cfs to the minimum required release of 240 cfs. This variability occurred during both the wet and dry periods of the year. In general through, the project discharged inflows over a one to two week period. However, in response to bank sloughing and environmental objections to this mode of operating, the operation of the re-regulation dam was changed. The project still discharges inflow over a one to two week period (unless flow is controlled by the minimum 240 discharge) but discharges are steady over 7 days when discharging less than 600 cfs and vary only slightly when discharges are higher. In general, hydropower release patterns are completely re-regulated by the re-regulation dam.

Operation records show a wide variation in reservoir storage during the low-flow period June through November (Tables 14 and 15 and Figures H-3 and H-4). Over the period of record (August 1975 through September 1984) the difference between minimum and maximum end-of-month storage in the main reservoir was 42,000 acft. In the re-regulation reservoir the difference was 16,000 acft (August 1975 through September 1983). To simulate the reservoir operation over the historical period, or any representative stochastic sequence, the actual operating criteria

TABLE 14 END-OF-MONTH STORAGE CARTERS RESERVOIR (MAIN)

1975 AUG 376400 1980 JUN 369900 0CT 374600 AUG 373700 0CT 374600 AUG 373700 NOV 377300 SEP 378500 1976 JUN 368300 OCT 376600 JUL 368300 NOV 379700 AUG 358100 1981 JUN 379700 AUG 358100 1981 JUN 366300 OCT 359200 AUG 366300 SEP NOV 362100 SEP 366300 SEP JUN 378100 SEP 366800 SEP JUN 378100 NOV 366400 AUG 368200 1982 JUN 376300 JUL 377800 AUG 378400 AUG SEP 381700 JUL 378400 SEP JUL 377800 AUG SEP 362000 JUL 382000 JUL 380200 JUL 380200 JUL 3820	YEAR	MONTH	STORAGE (AC-FT)	YEAR	MONTH	STORAGE (AC-FT)
SEP 375100 JUL 370200 OCT 374600 AUG 373700 NOV 377300 SEP 378500 1976 JUN 368300 SEP 378500 JUL 368300 NOV 377400 AUG 358100 1981 JUN 379700 SEP 360100 JUL 363700 OCT 379700 AUG 366400 SEP 360100 JUL 367700 OCT 373700 AUG 366400 NOV 362100 JUL 367700 NOV 362100 OCT 375500 NOV 368100 JUL 378400 SEP 381700 JUL 378400 SEP 381700 JUL 378400 NOV 377800 SEP 362000 I978 JUL 382000 IUL 379500 SEP 381500 JUL 384700	1975	AUG	376400	1980	JUN	369900
NOV374600AUG3737001976NOV377300SEP3785001976JUN383600OCT376600AUG3581001981JUN379700AUG3591001981JUN379700SEP360100JUL369700NOV362100SEP3638001977JUN373700CT3555001977JUN373700OCT3555001977JUN373700CT3555001978JUL378100OCT378400AUG3682001982JUN3763001978JUN377300CT3784001978JUN368500OCT3784001978JUN377800SEP3620001978JUN377800OCT3795001978JUN368500OCT3795001978JUN368500JUN3800001979JUN379700AUG3847001979JUN375600CT3732001979JUN375600SEP3740001979JUN375600OCT3732001979JUN382300JUN3847001979JUN382300JUN3847001979JUN375600CT3732001979JUN382300JUN3847001979JUN382300JUN3847001979JUN<		SEP	375100		JUL	370200
NOV377300SEP3785001976JUN383600OCT376600JUL3683001981JUN379700AUG3581001981JUN379700SEP360100JUL367700OCT359200AUG3683001977JUN373700SEP363800JUL378100NOV362100SEPJUN37700NOV3662001982JUL378100JUN376300JUL378100JUN376300SEP381700JUN376300SEP381700JUN376300SEP381700SEP362000SEP381700SEP362000SEP381700SEP362000SEP361500NOV382300JUL3820001983JUN380000SEP361500JUL384700SEP37400SEP374000SEPJUN375600SEPJUL3840001984SEPJUL3800001984SEPJUL3800001984SEPJUL3800001984JUNSEP362300NOV374200SEP382300JUL397700SEP382300JUL397700SEP382300SEPJUNSEP382300SEP37500SEP382300SEP37500SEP </td <td></td> <td>OCT</td> <td>374600</td> <td></td> <td>AUG</td> <td>373700</td>		OCT	374600		AUG	373700
1976JUN383600OCT376600JUL3683001981IOV378400AUG3581001981JUN379700AUG359200JUL369600NOV362100SEP3638001977JUN373700OCT355500JUL378100NOV366400AUG3682001982JUN376300AUG3682001982JUN376300OCT377500AUG378400OCT377800OCT3795001978JUN368500OCT3795001978JUN368500OCT379500JUL3820001983JUN3800001979JUN37500AUG3805001979JUN37500OCT3732001979JUN37500NOV3823001979JUN37500NOV3742001979JUN37500NOV3742001979JUN38100NOV3742001979JUN382300NOV3742001979JUN382300NOV3742001979JUN382300NOV3742001979JUN382300NOV3742001979JUN382300NOV3742001979JUN382300NOV3742001979JUN382300SEP3735001979JUN382300SEP<		NOV	377300		SEP	378500
JUL368300NOV378400AUG3581001981JUN379700AUG358100JUL369700SEP360100JUL369700OCT359200AUG369600NOV362100SEP363800JUL373700SEP363800JUL378100NOV366400AUG3682001982JUN376300AUG3682001982JUN376300OCT377800SEP362000JUL3738001978JUN368500SEP3620001978JUN368500NOV3823001978JUN368500JUN3800001978JUN379700NOV3823001979JUN379400SEP3740001979JUN379400SEP3740001979JUN375600NOV3742001979JUN388100NOV3742001979JUL3800001984JUN3847001979JUL3800001984JUN3847001979JUL382300NOV3742001979JUN382300NOV3742001979JUN382300NOV3742001979JUN382300NOV3742001979JUN382300NOV3742001979JUN382300SEP3735001979JUN3823	1976	JUN	383600		OCT	376600
AUG 358100 1981 JUN 379700 SEP 360100 JUL 367700 OCT 359200 AUG 369600 NOV 362100 SEP 363800 1977 JUN 373700 SEP 363800 JUL 378700 OCT 355500 JUL 378100 NOV 366400 AUG 368200 1982 JUN 373800 OCT 377500 JUL 373800 OCT 377500 JUL 373800 NOV 368500 SEP 362000 1978 JUN 368500 SEP 362000 1978 JUL 382000 NOV 382300 1979 GCT 379700 AUG 380000 1979 JUN 375600 SEP 374200 1979 JUN 37500 OCT 373200 1979 JUN 388100 NOV 374200		JUL	368300		NOV	378400
SEP 360100 JUL 367700 0CT 359200 AUG 369600 NDV 362100 SEP 363800 1977 JUN 373700 OCT 355500 JUL 378100 OCT 355500 JUL 378100 NOV 366400 AUG 368200 1982 JUL 373800 OCT 377500 JUL 373800 OCT 377500 JUL 378400 OCT 377800 OCT 379500 1978 JUN 368500 OCT 379500 JUL 382000 1983 JUN 380000 1978 JUN 368500 OCT 37400 OCT 379700 SEP 384700 NOV 375600 SEP 374000 JUN 368100 NOV 374200 JUN 388100 NOV 374200 JUN 388100 JUL		AUG	358100	1981	JUN	379700
NCT 359200 AUG 369600 NOV 362100 SEP 363800 1977 JUN 373700 OCT 355500 JUL 378100 NOV 366400 AUG 368200 1982 JUN 376300 SEP 381700 JUL 378400 376300 OCT 377500 JUL 378400 OCT 377800 SEP 362000 1978 JUN 368500 OCT 379500 1978 JUN 368500 OCT 379500 1978 JUN 368200 OCT 379500 1978 JUN 368200 NOV 382300 1978 JUN 379700 1983 JUN 380000 1979 JUN 375600 OCT 373200 1979 JUN 375600 OCT 373200 1979 JUN 388100 OCT 373200 1979		SEP	360100		JUL	367700
1977 NOV 362100 SEP 363800 1977 JUN 373700 OCT 355500 JUL 378100 NOV 366400 AUG 368200 1982 JUN 376300 AUG 368200 1982 JUN 376300 SEP 381700 JUL 378400 OCT 377500 AUG 378400 1978 JUN 368500 OCT 379500 1978 JUN 368500 OCT 379500 JUL 382000 1983 JUN 380000 SEP 381500 JUL 384700 OCT 379700 AUG 380000 JUL 384700 1979 JUN 375600 OCT 373200 1979 JUN 388100 NOV 374200 1979 JUL 388100 NOV 374200 SEP 382300 JUL 397700 AUG 380000 1984 JUN 384700 SEP 382300		OCT	359200		AUG	369600
1977 JUN 373700 OCT 355500 JUL 378100 NOV 366400 AUG 368200 1982 JUN 376300 SEP 381700 JUL 373800 OCT 377500 JUL 373800 NOV 377800 AUG 378400 1978 JUN 368500 OCT 379500 JUL 382000 1983 JUN 380000 AUG 379700 1983 JUN 380000 SEP 381500 JUL 384700 OCT 379700 AUG 380000 SEP 37400 1979 JUN 375600 OCT 373200 1979 JUN 375600 OCT 373200 1979 JUN 388100 NOV 374200 1979 JUL 388100 NOV 384700 SEP 382300 JUN 384700 GCT 378200 NOV 397700 OCT 378200 SEP 374200 </td <td></td> <td>NOV</td> <td>362100</td> <td></td> <td>SEP</td> <td>363800</td>		NOV	362100		SEP	363800
JUL 378100 NOV 366400 AUG 368200 1982 JUN 376300 SEP 381700 JUL 373800 OCT 377500 AUG 378400 NOV 377800 SEP 362000 1978 JUN 368500 OCT 379500 JUL 382000 1983 JUN 380000 AUG 379700 1983 JUN 380000 OCT 379700 AUG 380500 I979 JUN 375600 I983 JUN 380500 1979 JUN 375600 SEP 374000 1979 JUN 375600 OCT 373200 1979 JUN 388100 NOV 374200 AUG 380000 1984 JUN 384700 SEP 382300 JUL 397700 JUL 397700 AUG 382300 JUL 397700 AUG 371500	1977	JUN	373700		OCT	355500
AUG 368200 1982 JUN 376300 SEP 381700 JUL 373800 OCT 377500 AUG 378400 NOV 377800 SEP 362000 JUL 368500 OCT 379500 JUL 382000 OCT 379500 AUG 370900 1983 JUN 380000 SEP 381500 JUL 384700 OCT 379700 AUG 380500 NOV 379400 SEP 374000 1979 JUN 375600 OCT 373200 1979 JUN 375600 NOV 374200 1979 JUN 375600 NOV 374200 JUL 388100 NOV 374200 AUG 380000 1984 JUN 384700 SEP 382300 JUL 397700 OCT 378200 AUG 371500 NOV 382100		JUL	378100		NOV	366400
SEP 381700 JUL 373800 0CT 377500 AUG 378400 NOV 377800 SEP 362000 JUL 368500 OCT 379500 JUL 382000 1983 JUN 382000 AUG 379700 1983 JUN 380000 SEP 381500 JUL 384700 OCT 379700 AUG 380500 NOV 379400 SEP 374000 1979 JUN 375600 OCT 373200 1979 JUN 388100 NOV 374200 1979 JUL 388100 NOV 374200 AUG 380000 1984 JUN 384700 AUG 380000 1984 JUN 384700 GCT 378200 JUL 397700 371500 NOV 382100 SEP 373500 SEP 373500		AUG	368200	1982	JUN	376300
1978 OCT 377500 AUG 378400 1978 JUN 368500 OCT 379500 JUL 382000 OCT 379500 AUG 379500 OCT 379500 JUL 382000 1983 JUN 380000 AUG 379700 1983 JUN 380000 OCT 379700 AUG 380500 NOV 379400 AUG 380500 NOV 379400 SEP 374000 1979 JUN 375600 OCT 373200 1979 JUN 375600 OCT 374200 1979 JUN 375600 NOV 374200 JUL 388100 1984 JUN 384700 AUG 380000 1984 JUN 384700 SEP 382300 JUL 397700 JUL 397700 OCT 378200 HOG 371500 JUL 373500		SEP	381700		JUL	373800
1978 NOV 377800 SEP 362000 1978 JUN 368500 OCT 379500 JUL 382000 1983 JUN 380000 AUG 370900 1983 JUN 380000 SEP 381500 JUL 384700 OCT 379400 AUG 380500 NOV 379400 SEP 374000 1979 JUN 375600 OCT 373200 JUL 388100 NOV 374200 AUG 380000 1984 JUN 384700 SEP 382300 JUL 397700 OCT 378200 AUG 371500 NOV 382100 SEP 373500		ост	377500		AUG	378400
1978 JUN 368500 OCT 379500 JUL 382000 NOV 382300 AUG 370900 1983 JUN 380200 SEP 381500 JUL 384700 OCT 379700 AUG 380500 NOV 379400 SEP 374200 1979 JUN 375600 OCT 373200 JUL 388100 NOV 374200 AUG 380000 1984 JUN 384700 SEP 382300 1984 JUN 384700 OCT 378200 AUG 371500 371500 NOV 382100 SEP 373500 373500		NOV	377800		SEP	362000
JUL 382000 NOV 382300 AUG 370900 1983 JUN 380000 SEP 381500 JUL 384700 OCT 379700 AUG 380500 NOV 379400 SEP 374000 1979 JUN 375600 OCT 373200 JUL 388100 NOV 374200 AUG 380000 1984 JUN 384700 GCT 378200 JUL 397700 OCT 378200 JUL 397700 NOV 382300 SEP 371500 NOV 382100 SEP 373500	1978	JUN	368500		OCT	379500
AUG 370900 1983 JUN 380000 SEP 381500 JUL 384700 OCT 379700 AUG 380500 NOV 379400 SEP 374000 1979 JUN 375600 OCT 373200 JUL 388100 NOV 374200 AUG 380000 1984 JUN 384700 SEP 382300 1984 JUN 384700 OCT 378200 AUG 397700 AUG 397700 NOV 382100 SEP 373500 AUG 373500		JUL	382000		NOV	382300
SEP 381500 JUL 384700 OCT 379700 AUG 380500 NOV 379400 SEP 374000 1979 JUN 375600 OCT 373200 JUL 388100 NOV 374200 AUG 380000 1984 JUN 384700 SEP 382300 1984 JUN 384700 OCT 378200 AUG 397700 NOV 382100 SEP 373500		AUG	370900	1983	JUN	380000
OCT 379700 AUG 380500 NOV 379400 SEP 374000 1979 JUN 375600 OCT 373200 JUL 388100 NOV 374200 AUG 380000 1984 JUN 384700 SEP 382300 JUL 397700 OCT 378200 AUG 371500 NOV 382100 SEP 373500		SEP	381500		JUL	384700
NOV 379400 SEP 374000 1979 JUN 375600 OCT 373200 JUL 388100 NOV 374200 AUG 380000 1984 JUN 384700 SEP 382300 JUL 397700 OCT 378200 AUG 371500 NOV 382100 SEP 373500		OCT	379700		AUG	380500
1979 JUN 375600 OCT 373200 JUL 388100 NOV 374200 AUG 380000 1984 JUN 384700 SEP 382300 JUL 397700 OCT 378200 AUG 371500 NOV 382100 SEP 373500		NOV	379400		SEP	374000
JUL 388100 NOV 374200 AUG 380000 1984 JUN 384700 SEP 382300 JUL 397700 OCT 378200 AUG 371500 NOV 382100 SEP 373500	1979	JUN	375600		OCT	373200
AUG 380000 1984 JUN 384700 SEP 382300 JUL 397700 OCT 378200 AUG 371500 NOV 382100 SEP 373500		JUL	388100		NOV	374200
SEP 382300 JUL 397700 OCT 378200 AUG 371500 NOV 382100 SEP 373500		AUG	380000	1984	JUN	384700
OCT 378200 AUG 371500 NOV 382100 SEP 373500		SEP	382300		JUL	397700
NOV 382100 SEP 373500		OCT	378200		AUG	371500
		NOV	382100		SEP	373500

TABLE 15 END-OF-MONTH STORAGE CARTERS RESERVOIR (RE-REGULATION)

1975 AUG SEP 3500 1980 JUN JUL 13900 JUL 0CT 2800 AUG 10600 NOV 900 SEP 6700 1976 JUN 7000 SEP 6700 JUL 36000 0CT 8200 JUL 36000 0CT 8200 JUL 36000 1981 JUN 8700 OCT 2900 AUG 16900 NOV 5800 SEP 13600 0CT 2900 AUG 16900 1977 JUN 9900 SEP 13600 1977 JUN 81000 SEP 13600 OCT 93000 1982 JUN 9900 SEP 3800 JUL 11970 NOV 63000 1982 JUN 11970 NOV 6300 JUL 11900 JUL 11900 AUG 13200 JUL 5300 JUL 5300 SEP 3300 JUL 5300 SEP 98	YEAR	MONTH	STORAGE (AC-FT)	YEAR	MONTH	STORAGE	(AC-FT)
SEP 3900 JUL 13900 OCT 2800 AUG 10600 NOV 900 SEP 6700 1976 JUN 7000 SEP 6700 JUL 3600 NOV 7100 AUG 3700 1981 JUN 8700 AUG 3700 1981 JUN 8700 SEP 4400 JUL 16900 OCT 2900 AUG 16100 NOV 5800 SEP 13600 1977 JUN 9900 OCT 13700 JUL 8100 SEP 13600 1982 1977 JUN 9900 OCT 1700 SEP 3800 JUL 11920 OCT 9300 OCT 7800 NOV 6300 SEP 15400 OCT 9300 OCT 7800 JUL 5200 NOV 9200	1975	AUG	3500	1980	JUN	15000	
0CT 2800 AUG 10600 NOV 900 SEP 6700 JUL 3600 OCT 8200 AUG 3700 1981 JUN 8700 AUG 3700 1981 JUN 8700 SEP 4400 JUL 16900 NOV 5800 SEP 13600 NOV 5800 SEP 13600 NOV 5800 SEP 13600 JUL 8100 SEP 3200 SEP 3800 1982 JUN 1900 SEP 3800 1982 JUN 1900 SEP 3800 SEP 11900 9900 SEP 3800 SEP 11900 9000 SEP 3800 SEP 15400 9000 JUL 5200 SEP 9800 100 5300 SEP 3300 SEP 9800 100 5300		SEP	3900		JUL	13900	
NOV 900 SEP 6700 JUN 7000 OCT 8200 JUL 3600 NOV 7100 AUG 3700 1981 JUN 8700 SEP 4400 1981 JUN 8700 OCT 2900 JUL 16900 8200 NOV 5800 JUL 16100 NOV 5800 OCT 13600 JUL 8100 SEP 13600 JUL 8100 NOV 12400 AUG 15900 1982 JUN 9900 SEP 3800 1982 JUN 1900 OCT 9300 SEP 15400 0000 SEP 3300 OCT 7800 0000 SEP 3300 JUN 1500 1500 JUL 5200 SEP 9800 000 1500 SEP 3300 GCT 5300 000 6400		OCT	2800		AUG	10600	
1976 JUN 7000 OCT 8200 JUL 3600 NOV 7100 AUG 3700 1981 JUN 8700 SEP 4400 JUL 16900 OCT 2900 AUG 16100 NOV 5800 SEP 13600 NOV 5800 OCT 13700 JUL 8100 SEP 13600 JUL 8100 NOV 12400 AUG 15900 1982 JUN 9900 SEP 3800 NOV 12400 OCT 9300 SEP 11900 OCT 9300 SEP 11900 1978 JUN 12600 OCT 7800 JUL 5200 NOV 9000 11500 SEP 3300 JUL 5300 SEP NOV 6500 SEP 9800 SEP 1979 JUN 9300 SEP		NOV	900		SEP	6700	
JUL 3600 NOV 7100 AUG 3700 1981 JUN 8700 SEP 4400 JUL 16900 OCT 2900 AUG 16100 NOV 5800 SEP 13600 NOV 5800 SEP 13600 JUL 8100 OCT 13700 JUL 8100 OCT 1982 AUG 15900 1982 JUN 9900 SEP 3800 DUL 11900 OCT 9300 SEP 100 9900 SEP 3800 SEP 100 9900 1978 JUN 12600 SEP 11900 JUL 5200 NOV 9000 OCT 7800 1978 JUN 12600 SEP 3300 OCT 5300 1979 JUN 9300 OCT 5300 NOV 1000 1979 JUN 9300	1976	JUN	7000		OCT	8200	
AUG 3700 1981 JUN 8700 SEP 4400 JUL 16900 OCT 2900 AUG 1600 NOV 5800 SEP 13600 1977 JUN 9900 SEP 13600 JUL 8100 OCT 13700 JUL 8100 OCT 13700 JUL 8100 OCT 11970 JUL 8100 OCT 9300 GCT 9300 JUL 11900 GCT 9300 JUL 11900 MOV 6300 OCT 7800 JUL 5200 OCT 7800 JUL 5200 NOV 9000 SEP 3300 JUL 5300 OCT 5400 OCT 8200 I979 JUN 9300 OCT 8500 JUL 4500 SEP 9800 I979 JUN 9300		JUL	3600		NOV	7100	
SEP 4400 JUL 16900 0CT 2900 AUG 16900 NOV 5800 SEP 13600 1977 JUN 9900 OCT 13700 JUL 8100 OCT 13700 JUL 8100 OCT 13700 JUL 8100 JUL 11900 GCT 9300 JUL 11900 OCT 9300 JUL 11900 OCT 9300 SEP 15400 ISP 300 SEP 15400 ISP JUN 12600 SEP 15400 JUL 5200 OCT 7800 JUL 5200 JUN 11500 GCT 5400 JUL 5300 OCT 5400 OCT 8500 ISP JUN 9300 OCT 8500 ISP JUN 9300 OCT 8500 ISP JUL		AUG	3700	1981	JUN	8700	
1977 00CT 2900 AUG 16100 1977 JUN 9900 SEP 13600 JUL 8100 NOV 12400 AUG 15900 1982 JUN 9900 SEP 3800 1982 JUN 9900 GCT 9300 1982 JUN 1900 OCT 9300 AUG 7100 NOV 6300 SEP 15400 1978 JUN 12600 OCT 7800 JUL 5200 NOV 9000 1978 JUN 12600 NOV 9000 1978 JUN 5200 NOV 9000 SEP 3300 JUL 5300 JUL 5300 1979 JUN 9300 SEP 9800 OCT 8500 1979 JUL 4500 NOV 10600 10600 10600 10600 1979 JUL 4500 INOV 10600 INOV 10600 1010000 100000 100000 10		SEP	4400		JUL	16900	
1977 NOV 5800 SEP 13600 1977 JUN 9900 OCT 13700 JUL 8100 NOV 12400 AUG 15900 1982 JUN 9900 GEP 3800 JUL 11900 OCT 9300 JUL 11900 NOV 6300 SEP 15400 1978 JUN 12600 OCT 7800 JUL 5200 OCT 7800 AUG 13200 1983 JUN 11500 JUL 5200 JUL 5300 JUL 5300 ISEP 3300 ISEP 9800 JUL 5300 ISEP 3300 SEP 9800 JUL 5300 ISEP JUN 9300 OCT 8500 NOV 10600 ISEP JUL 4500 NOV 10600 IUL 4500 IUL 6400 IUL ISEP 3800 ISEP JUL 8500 IUL 406 6200		OCT	2900		AUG	16100	
1977 JUN 9900 OCT 13700 JUL 8100 NOV 12400 AUG 15900 1982 JUN 9900 SEP 3800 JUL 11900 OCT 9300 JUL 11900 NOV 6300 JUL 11900 1978 JUN 12600 OCT 7800 JUL 5200 NOV 9000 JUL 5200 NOV 9000 AUG 13200 1983 JUN 11500 SEP 3300 JUL 5300 AUG 7600 NOV 6500 SEP 9800 OCT 8500 1979 JUN 9300 OCT 8500 OCT 8500 1979 JUL 4500 NOV 106000 106000 106000<		NOV	5800		SEP	13600	
JUL8100NOV12400AUG159001982JUN9900SEP3800JUL11900OCT9300AUG7100NOV6300SEP15400JUL5200OCT7800AUG132001983JUNAUG13200JUL5300OCT5400JUL5300OCT5400SEP98001979JUN9300OCT85001979JUN9300OCT8500JUL45001984JUN6400SEP38001984JUL8500OCT65001984JUL8500OCT65001984JUL8500OCT65001984JUL8500OCT6500AUG8200AUGSEP3800SEP5900	1977	JUN	9900		OCT	13700	
AUG159001982JUN9900SEP3800JUL11900OCT9300AUG7100NOV6300SEP15400JUL5200OCT7800JUL5200NOV9000AUG132001983JUNSEP3300JUL5300OCT5400AUG7600I979JUN9300SEPJUL4500OCT8500JUL4500NOV10600JUL4500JUL8500AUG57001984JUNSEP3800JUL8500OCT6500AUG8200NOV7000SEP5900		JUL	8100		NOV	12400	
SEP 3800 JUL 11900 OCT 9300 AUG 7100 NOV 6300 SEP 15400 1978 JUN 12600 OCT 7800 JUL 5200 OCT 7800 AUG 13200 1983 JUN 11500 SEP 3300 JUL 5300 AUG 7600 SEP 3300 AUG 7600 SEP 9800 OCT 5400 OCT 8500 SEP 9800 1979 JUN 9300 OCT 8500 JUL 4500 NOV 10600 100 AUG 5700 1984 JUN 6400 SEP 3800 JUL 8500 101 OCT 6500 AUG 8200 101 OCT 6500 AUG 8200 101 OCT 6500 SEP 5900 100		AUG	15900	1982	JUN	9900	
OCT9300AUG7100NOV6300SEP15400JUN12600OCT7800JUL5200NOV9000AUG132001983JUN11500SEP3300JUL5300AUG7600OCT5400SEP9800OCT85001979JUN9300OCT8500NOV106001979JUL45001984JUN6400SEP38001984JUN6400JUL8500OCT6500AUGAUG8200AUG8200NOV7000SEP5900300300300		SEP	3800		JUL	11900	
NOV 6300 SEP 15400 1978 JUN 12600 OCT 7800 JUL 5200 NOV 9000 AUG 13200 1983 JUN 11500 SEP 3300 JUL 5300 AUG 7600 OCT 5400 JUL 5300 AUG 7600 OCT 5400 AUG 7600 9800 NOV 6500 SEP 9800 1979 JUN 9300 OCT 8500 JUL 4500 NOV 10600 AUG 5700 1984 JUN 6400 SEP 3800 JUL 8500 AUG OCT 6500 AUG 8200 AUG 8200 NOV 7000 SEP 5900 SEP 5900		OCT	9300		AUG	7100	
1978 JUN 12600 OCT 7800 JUL 5200 NOV 9000 AUG 13200 1983 JUN 11500 SEP 3300 JUL 5300 OCT 5400 AUG 7600 NOV 6500 SEP 9800 1979 JUN 9300 OCT 8500 JUL 4500 NOV 10600 AUG 5700 1984 JUN 6400 GEP 3800 JUL 8500 AUG 4500 NOV 7000 SEP 5900 5900 1984 JUN 500		NOV	6300		SEP	15400	
JUL 5200 NOV 9000 AUG 13200 1983 JUN 11500 SEP 3300 JUL 5300 OCT 5400 AUG 7600 NOV 6500 SEP 9800 NOV 6500 OCT 8500 JUL 4500 NOV 10600 JUL 4500 NOV 10600 AUG 5700 1984 JUN 6400 SEP 3800 JUL 8500 AUG OCT 6500 AUG 8200 AUG NOV 7000 SEP 5900 SEP	1978	JUN	12600		OCT	7800	
AUG 13200 1983 JUN 11500 SEP 3300 JUL 5300 OCT 5400 AUG 7600 NOV 6500 SEP 9800 1979 JUN 9300 OCT 8500 JUL 4500 NOV 10600 AUG 5700 1984 JUN 6400 SEP 3800 JUL 8500 AUG 8200 OCT 6500 AUG 8200 AUG 8200 NOV 7000 SEP 5900 5900 5900		JUL	5200		NOV	9000	
SEP 3300 JUL 5300 OCT 5400 AUG 7600 NOV 6500 SEP 9800 1979 JUN 9300 OCT 8500 JUL 4500 NOV 10600 AUG 5700 1984 JUN 6400 SEP 3800 JUL 8500 100 OCT 6500 AUG 8200 100 NOV 7000 SEP 5900 100		AUG	13200	1983	JUN	11500	
OCT 5400 AUG 7600 NOV 6500 SEP 9800 1979 JUN 9300 OCT 8500 JUL 4500 NOV 10600 AUG 5700 1984 JUN 6400 SEP 3800 JUL 8500 OCT 6500 AUG 8200 NOV 7000 SEP 5900		SEP	3300		JUL	5300	
NOV 6500 SEP 9800 1979 JUN 9300 OCT 8500 JUL 4500 NOV 10600 AUG 5700 1984 JUN 6400 SEP 3800 JUL 8500 OCT 6500 AUG 8200 NOV 7000 SEP 5900		OCT	5400		AUG	7600	
1979 JUN 9300 OCT 8500 JUL 4500 NOV 10600 AUG 5700 1984 JUN 6400 SEP 3800 JUL 8500 OCT 6500 AUG 8200 NOV 7000 SEP 5900		NOV	6500		SEP	9800	
JUL 4500 NOV 10600 AUG 5700 1984 JUN 6400 SEP 3800 JUL 8500 OCT 6500 AUG 8200 NOV 7000 SEP 5900	1979	JUN	9300		OCT	8500	
AUG 5700 1984 JUN 6400 SEP 3800 JUL 8500 OCT 6500 AUG 8200 NOV 7000 SEP 5900		JUL	4500		NOV	10600	
SEP 3800 JUL 8500 OCT 6500 AUG 8200 NOV 7000 SEP 5900		AUG	5700	1984	JUN	6400	
OCT 6500 AUG 8200 NOV 7000 SEP 5900		SEP	3800		JUL	8500	:
NOV 7000 SEP 5900		OCT	6500		AUG	8200	
		NOV	7000		SEP	5900	

must be specified together with storage levels in the reservoirs. Because releases are made based upon power demand it is difficult to establish criteria for reservoir simulation. Although conventional generation of Carters Dam (and drawdown of Carters and augmentation of flow downstream of the re-regulation dam) is possible, under present hydropower marketing arrangements, the power customer has elected to defer receiving such power because to accept it would adversely impact the pumpback efficiency and generating capacity of the project. Thus, in water-short periods when hydropower generation is determining the release at most other projects, the Carters release has been controlled by the minimum (240 cfs) release requirement.

There are several approaches which may be taken to account for the operation of Carters Reservoir and its effect downstream. The purpose of any approach is to find a way to account for the presence of the reservoir and its effect on the reliability of supply for withdrawal at Carters. Several approaches are briefly described below.

One approach to understanding releases from Carters is to use a somewhat "idealized" release criterion which bases the release from the re-regulation dam upon the total inflow to the reservoir. When the total inflow to both the main and reregulation reservoirs is greater than 240 cfs, and the reservoir is at the top of the power pool, the total inflow is released. When less than 240 cfs, then a minimum of 240 cfs is released. The minimum quantity, 240 cfs, is the 7Q10 flow presently required by the State of Georgia at Carters (See Water

<u>Availability and Use</u> Study). The 7Q10 is an average flow for seven consecutive days which has a probability of .10 of not being exceeded during any one year. An examination of the gage records at Carters (02382500) since August 1975 indicates average monthly releases have never been below 260 cfs.

A monthly simulation of re-regulation dam releases based upon total inflow to the main and re-regulation reservoirs was undertaken using spreadsheet calculations. Inflow to the main reservoir was obtained from the Corps of Engineers, Mobile District and is computed from changes in daily main reservoir levels. Inflow to the re-regulation reservoir is estimated to be 1.4 times the gage reading at Talking Rock (02382200). The multiplier 1.4 is the estimated drainage area ratio between the gage location and re-regulation reservoir. Releases were simulated using the "idealized" criterion described above.

The simulated monthly average release and the actual monthly average gage record at Carters were correlated. The statistical correlation can be represented by the correlation coefficient, R. A correlation coefficient of 0.95 was calculated. Using only the low-flow months June through November, the R value is about the same. These analyses indicate that the "idealized" <u>monthly</u> release criterion is reasonably representative of actual reservoir releases.

Another approach to characterizing monthly release as a function of total monthly inflow is through regression analysis. If the release from the re-regulation dam is selected as the dependent variable (Y) and the total reservoir inflow as the

independent variable (X), a linear equation can be computed which relates the one variable to the other. Using microcomputer spreadsheet calculations a regression equation Y = 0 + 1.029X was computed. This is only slightly different from the assumption of outflow equally inflow. The determination coefficient, R^2 , is useful to indicate the portion of the variance in the streamflow (Y) which is determined by the total inflow (X). For the regression equation the determination coefficient is 0.90. Only approximately 0.10 or 10 percent of the variance is not explained.

The two approaches described above used monthly average flows. If daily flows are used the correlation between streamflow at Carters gage and total reservoir inflow is not as high. A correlation coefficient of 0.27 was computed for a simulation similar to that described above. Observed daily flows at Carters were correlated with simulated releases equal to total daily reservoir inflow. The lower correlation can be explained by the higher variability in daily values.

The operation of Carters Reservoir can also be analyzed indirectly by examining the results of that operation over the past ten years. To do this the gage record at Carters is split into two periods. The first is the period prior to construction of the reservoir (unregulated streamflow), 1898 to 1971. The second period begins after the reservoir is filled. This regulated period is 1975 to 1984. A statistical analysis of these records, together with the combined record, is presented in the following section.

Analysis of Stream Gage Records at Carters

An examination of the 36 years of daily streamflow at Carters (USGS records), with 240 cfs used as a minimum, shows there were approximately 183 days when the daily streamflow fell below 240 cfs. This is shown in Tables 16 and 17. Table 16 shows the number of days each year in different class intervals. The range of streamflow represented by each class interval is shown in Table 17. To illustrate the interpretation of Table 17: during the period of record there were 97 days in class 4 which represents a range of flow from 190 cfs to 230 cfs. The total number of days of record less than 230 cfs is the sum of the totals for each class, or 144. Interpolating linearly for 240 cfs the number of days is approximately 183. These counts are also represented in Table 16. Table 16 also shows which years had streamflows below a selected class interval and the number of those days.

A withdrawal of 79 cfs (51 MGD) from the Coosawattee at Carters (suggested for use in analysis by the Mobile District) would not be permitted if it reduced the flow below 240 cfs. That is to say, 319 cfs is needed in the Coosawattee River at Carters to prevent a shortage in the withdrawal. An analysis of the historical record shows there have been approximately 723 days where the streamflow fell below 319 cfs (Tables 16 and 17). The specific years during the historical record and the number of days each year are shown in Table 16.

The historical record represented by Tables 16 and 17 includes both unregulated and regulated streamflow. The

DISCHARG	E-(C	(FS																					~											
MEAN																												٠						
COOSAWATTI	EE R	IVEF	t AT	CA	RTE	RS,	GA	•																										
CLASS	8	1 2	2 3	4	5	i 6	57	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	38	31	32	33.7	24
YEAR												N	umbe	r of	DAY	S IN	CLA	SS						•••				20	2.5		U 1			14
1897			2	19	13	16	34	13	28	45	20	25	41	32	3	7	23	5	17	5	4	3	1	1	4		1	1	1			1		
1898				50	22	11	- 30	31	39	45	27	29	47	21	2	17	8		4	1	2	1	3	1		1	1	2						
1899					-	16	13	13	9	26	27	41	60	42	3	19	26	3	15	12	15	7	3	3	1	1	3	2	2		2	1		
1900					3	16	51	27	33	21	19	45	16	34	14	32	20	9	9	15	6	1	2	2	1						1			
1901								7	5	41	15	21	17	77	19	35	34	22	19	17	2	10	8	3	3	1	2		3	1	3			
1902						16	37	7	9	20	28	60	11	40	16	31	37	20	3	6	2	3	2	2	5	1	2	2	2	1	-	2		
1903					7	18	21	19	25	17	16	26	25	47	8	19	27	19	24	10	7	8	6	4	6	3					1	2		
1904			3	18	6	17	55	45	59	38	44	26	11	14	6	10	4	4	2	3	1	_	_		_	-					-	-		
1905			37	55	1	11	5	13	20	29	28	52	50	36	5	17	12	9	3	2	2	3	2	1		2		1	2					
1986							17	25		ŗ		7		6 4	70	E 0		~~	10		,		F	~	~	-			,					
1927							10	10	11	0 7	10	د ۲0	22	50	33	70	31	17	10	13	4	2	3	۲ ۲	2	3	ć	1	1.		۲			
1900						7	12	10	10	، ەد	26	10	17	70	75	23	40	11	10	10	4	ວ =	3	1	<u>د</u>	ა	2	1					1	
1928						'	15	11	3C 2	- 15	12	13	10	40	2J 10	40	41	24	21	22	- 3 72		5 10	Q	2	7	2	2	5		1		1	
1720							5	11	0	10	10	16	20	ΤĽ	13	55	JT	10	C.1		36	11	10	0	-	5	5	۴.	ŭ		1		1	
1921										24	36	41	38	32	16	30	49	27	30	11	14			5	5	2	2		1	1			i	
1922							7	18	26	23	23	14	28	28	10	16	21	32	48	24	23	6	2	3	3	1	4	1	1		1	1	1	
1923							11	31	11	16	20	13	28	41	24	30	42	28	22	15	16	4	3	5	2	2				1				
1962						2	45	37	19	17	11	15	16	22	17	30	26	26	37	11	8	7	3	5	1		5	2			1	1	1	
1963						3	21	19	15	31	29	18	27	62	2 9	34	35	12	12	8	5	3	3	2	3	1						2		
1964						2	18	46	22	18	29	26	28	37	15	23	19	10	18	17	15	11	2	7	3	1		2	2		1		1	1
1965							5	19	20	18	35	37	37	57	18	37	39	9	12	5	7	1	2	1	2		2		1		1			
1966							32	62	34	42	19	15	26	30	13	26	19	7	10	9	4	4		3	1	1	1	4	2			1		
1967							6	4	11	29	35	39	66	64	25	26	20	9	11	5	2	3	6	2			1	1						
1968							3	19	15	15	16	46	27	36	30	46	43	14	23	9	8	4	4	2	1	3	2							
1969							8	43	50	41	23	31	30	53	19	22	18	7	8	4	4	1			1				2					
1970							18	53	54	26	50	48	33	33	14	10	9	3	3		3	6	1	í										
1971						8	8	i	23	45	30	48	36	34	13	26	27	16	22	7	11	3	3	2	1	1								
1975	1	4		8	13 i	26	54	38	19	25	12	17	24	58	17	36	14	2	2	3	•••	-	-	-	•	•								
1976				2	1	ß	10	n.	٩E	<u></u>	20			05	10	~		40			<u>.</u>		,											
1977				c	1	0 • 7 •	20 16	75	12	20	60 60	1/	13	20 00	12	20	41	12	49	14	28	16	6	11	1									
1277					2	13 :	<0 4 C	JJ	10	30	40	10	17	C10	10	18	10	10	17		10	8	13	14	1									
1970					ა ი.	8	16	21	19	15	19	15	12	28	25	21	51	17	28	13	28	8	3	1										
1979				4 4		28	10	10	18	5	16	1/	27	31	20	28	22	18	29	12	Ч	11	8	14										
1980				1		6	20	19	23	21	19	58	23	35	11	25	32	17	20	14	16	14	7	15										
1981				1	12 (65	75	27	30	24	23	15	21	21	10	15	6	8	10		2													
1982				2 1	12 3	32	8	20	20	27	25	34	28	27	12	18	31	16	14	8	9	9	3	9	1									
1983						8	6	5	13	26	18	2 0	39	53	17	43	44	17	28	6	18	3	1											
1984						1	16	20	13	7	8	20	35	42	12	46	42	22	34	22	13	9	3	1										

TABLE 16 STATION NUMBER 02302500 DURATION TABLE OF DAILY VALUES FOR YEAR ENDING SEPTEMBER 30

.

TABLE 17 DAILY FLOW-DURATION DATA STATION 02382500 CARTERS

CLASS	VALUE	TOTAL	ACCUM	PERCT
0	Ø	Ø	13148	100.00
1	122	1	13148	100.00
2	140	4	13147	99.99
3	170	42	13143	99.96
4	190	97	13101	99.64
5	230	117	13004	98.90
6	260	338	12887	98.01
7	310	690	12549	95.44
8	360	790	11859	90.20
9	420	790	11069	84.19
10	490	888	10279	78.18
11	570	843	9391	71.43
12	660	973	8548	65.01
13	770	1020	7575	57.61
14	900	1454	6555	49.86
15	1100	599	5101	38.80
16	1200	999	4502	34.24
17	1400	1003	3503	26.64
18	1700	520	2500	19.01
19	1900	642	1980	15.06
20	2300	352	1338	10.18
21	2600	343	986	7.50
22	3100	189	643	4.89
23	3600	121	454	3.45
24	4200	131	333	2.53
25	4900	53	202	1.54
26	5700	30	149	1.13
27	6600	33	119	0.91
28	7800	23	86	0.65
29	9000	27	63	0.48
30	11000	4	36	0.27
31	12000	14	32	0.24
32	14000	11	18	0.14
33	17000	6	7	0.05
34	20000	1	1	0.01

NOTE: CLASS LIMITS IN THE ABOVE TABLE ARE DEFINED AS NUMBER OF DAYS FOR CLASS (I) EQUAL TO OR GREATER THAN VALUE (I) AND LESS THAN VALUE (I+1) FOR CLASS (I+1). unregulated period extends from 1897 to 1971. The regulated period from 1976 to 1984. Year 1975 is not included in the regulated period because the reservoir was being filled (Figure H-2). The number of days the streamflow was within each class interval is shown in Table 16. For statistical analyses such as flow-duration and low-flow frequency it is appropriate to split the record into the unregulated and regulated periods. These analyses are presented below. For purposes of comparison the entire historical record is also shown.

Flow-duration analysis uses all daily records - both wet and dry seasons. As a consequence flow-duration curves provide statistical information concerning the total streamflow available. Figures H-5 and H-6 show flow duration curves for the unregulated and regulated periods of the historical record. These are compared with each other and with a curve for the entire record in Figure H-7. As can be seen there is relatively little difference in the three curves in the range of 240 cfs to 319 cfs which is of particular interest in this study.

Another useful analysis is low-flow frequency. In this analysis a single low-flow event is selected each year and the probability (frequency) of that event occurring is calculated. This is similar to flood-frequency analysis. The event selected is defined by its duration (number of consecutive days) and average streamflow during the duration. Figure H-8 and H-9 show a family of low-flow frequency curves for the gaging station 02382500 at Carters for unregulated and regulated conditions. As the duration of the low-flow event increases from 7-days to 90-

days the magnitude of the average flow increases.

A duration of 7-days (Figure H-10) and average flow of 240 cfs has a 0.10 probability of not being exceeded. This is the 7Q10 criteria. If 319 cfs were required at Carters, the probability, under regulated conditions, of a low-flow event of 7-day duration and average flow of 319 cfs or less is 0.70. Thus, the probability of such an event occurring in any given year is increased from 0.10 to 0.70. The probability is greatly influenced by the number of years used. If the entire historical record is used, the probability of a low-flow event of 7-day duration and average flow of 319 cfs or less is 0.38. The nine year record of regulated flows is too short for statistical analysis. A better estimate is made using the entire record.

Stochastic Analysis

The preceding analyses utilized historical records of streamflow and reservoir inflow. Based upon these records several probabilities of non-exceedance were estimated. It is not likely, however, that these exact sequences of historical flows will be repeated in the future. To complement the analysis of historical records, stochastic analysis is used. Stochastic analysis is based upon the concept that the historic records are observations of a random (stochastic) process in which the future occurrences of streamflow are governed by probability laws. If the probability laws governing the uncertainty of future streamflows can be assumed, then a probabilistic model of the streamflow can be developed. The development and application of such a model of streamflow is commonly referred to as stochastic

analysis, stochastic hydrology or synthetic hydrology. The streamflows generated from such a model are referred to as stochastic or synthetic sequences or flows. The principal advantage of using stochastic sequences is that they are not identical to the historical flow sequences, but consider the randomness of future streamflows as reflected by the probability laws adopted for the stream and used in the stochastic model.

For the Coosawattee River below Carters a stochastic model of the mean monthly streamflow was developed using computer program <u>HEC-4, Monthly Streamflow Simulation</u>. Historical data at three stream gage stations (Carters, Pine Chapel and Resaca) were used to develop the model. Because Carters Reservoir regulated the Coosawattee River after its completion, the inflow to the reservoir as measured by the change in storage in the main reservoir plus the inflow to the re-regulation reservoir was substituted for the observed flows for the period August 1975 to August 1985. The long record stations at Pine Chapel (02383500) and Resaca (02387500) were used to extend and fill-in the record at Carters (02382500).

Using the HEC-4 stochastic model of streamflow at Carters, a sample record of 1000 years of monthly synthetic streamflow data were generated. A statistical analysis of these data resulted in the probability estimates summarized in Table 18. These data give the probabilities that streamflow at Carters will be less than the indicated values for the indicated months. The months, October and September are the most at risk. There is a .047 probability (or 4.7 percent chance) that the mean monthly flow at

TABLE 18 NON-EXCEEDANCE PROBABILITIES 1000 YEARS, MEAN MONTHLY FLOW

MONTH

MEAN MONTHLY FLOWS (CFS)

	200	240	300	400	500	600	700
OCT	0.0140	0.0470	0.1500	0.3680	0.5480	0.6820	0.7760
NOV	0.0030	0.0080	0.0590	0.1830	0.3270	0.4810	0.5970
DEC	0.0000	0.0000	0.0050	0.0370	0.1060	0.1900	0.2880
TAN	0.0000	0.0010	0.0030	0.0120	0.0430	0.0770	0.1250
FFR	0.0000	0.0000	0.0000	0.0000	0.0040	0.0090	0.0180
MAR	0.0000	0.0000	0.0020	0.0050	0.0120	0.0190	0.0320
APR	0.0000	0.0000	0.0000	0.0000	0.0020	0.0050	0.0130
MAY	0.0000	0.0000	0.0010	0.0040	0.0090	0.0340	0.0690
JUN	0.0000	0.0010	0,0050	0.0200	0.0650	0.1440	0.2440
JUL	0.0010	0.0010	0.0160	0.0440	0.1280	0.2320	0.3830
AUG	0.0000	0.0000	0.0000	0.1230	0.3440	0.5260	0.6610
SEP	0.0090	0.0360	0.1170	0.3040	0.5000	0.6500	0.7530

Carters will not exceed 240 cfs during October. There is a .150 probability (or 15.0 percent chance) that the mean monthly flow at Carters will not exceed 300 cfs during October. The nonexceedance probabilities for these months are plotted for a range of flows in Figure H-11.

The probabilities discussed above provide an estimate of future flows dropping below certain levels. These estimates are based upon the underlying probability laws assumed for the streamflow and the stochastic model used to generate the 1000 years of monthly synthetic data. As such, they are only estimates which are useful together with historical data to attempt to quantify the risk of the unknown future.

Impact Downstream at Resaca and Rome

At Resaca gage (near Calhoun) (02387500) and Rome (02388500) on the Oostanaula River, the State of Georgia 7Q10 streamflow requirements are 340 cfs and 510 cfs respectively (See <u>Water Availability and Use</u> study). An examination of statistics from the entire historical record of daily flows provides an estimate of the number of days of the streamflow being lower than these values. At Resaca the daily flow-duration data indicates approximately 250 days in the 91 year historical record the daily flow fell below 340 cfs (Tables 19 and 20). At Rome a similar analysis shows that 510 cfs has not been exceeded approximately 131 days during the record (Tables 21 and 22).

If an additional 79 cfs were to be withdrawn upstream at Carters the threshold level for the 7Q10 flow would be 419 cfs and 589 cfs at Resaca and Rome respectively. From Tables 20 and

TABLE 19

•;

۰.

•

STATION NUMBER 02307500 DURATION TABLE OF DAILY VALUES FOR YEAR ENDING SEPTEMBER 30

Discharge Mean	-((CFS)																																	
DOSTANAUL CLASS	A 1 0	RIV 1	ER 2	at 2	Ri 3	ESA 4	ica 5		6A. 6	7	8	9	10	11	12 NU	13 MBER	14 0f 1	15 Days	16 In (17 1.ASS	18 1	19	28	21	22	23	24	25	26	27 2	28 2	93	0 3	1 32	2 33	34
1894 1895					8	2 16	2 11	2	0 (7	51 3	44 3	45 15	18 13	13 10	25 27	27 24	24 25	13 19	20 35	14 26	18 23	13 17	6 21	3 13	5 4	3	13	1	1	3	1	3				
1896 1897 1898 1899 1990					1	7 1 3	0, 0, 0,	13	4 1 : 7 :	9 14 17 11	19 8 15 34	41 16 23 14 18	28 43 22 9 9	4 21 21 5 7	18 34 50 29 42	60 33 39 41 41	48 12 27 27 28	35 19 17 41 15	18 24 22 34 22	18 15 26 35 29	6 13 12 26 18	9 13 11 18 22	5 9 6 19 16	3 11 6 17 14	4 5 5 11 10	6 9 5 8 13	1 6 3 5 6	2 5 3 3 5	1 3 3 5 2	5 2 3 1	3 1 5 2	3 6	4			
1981 1982 1983 1984 1985				5	4	5 6	14	1 2 3 1	9	8 21 37 18	11 19 52 9	7 23 18 44 14	13 31 8 24 6	11 16 8 17 15	18 41 15 28 29	38 51 39 25 27	42 31 41 26 52	25 20 17 9 28	44 18 30 14 27	24 27 17 5 11	22 19 12 10 16	25 17 22 3 9	19 11 16 4 6	17 9 14 4 12	11 6 15 4 5	11 4 5 3 3	14 2 7 2	7 2 8 3	1 4 2 2	4 6 4 4	6 3 3	6 5 3	1			
1986 1907 1908 1909 1910						7		3122	7 07	4 11 19 24	20 10 7 10 11	21 11 25 7 26	5 5 11 9 7	7 13 12 14 16	7 11 18 13 27	14 27 32 15 41	37 47 18 31 41	26 43 24 17 22	58 65 43 20 29	30 30 43 30 26	35 22 24 32 21	24 16 19 24 17	19 11 14 25 9	12 12 6 18 14	9 11 11 12 12	13 8 8 11 5	5 7 5 5 4	8 6 3 10 3	7 5 3 7 2	3 1 2 5 1	1 5	2	1	2	2	
1911 1912 1913 1914 1915						7	1	¥ 1 ¥ 7 2 ¥ 1	7 3 9 7 3	23 5 25 55 40	5 13 19 54 12	11 23 42 36 20	39 19 14 20 11	27 4 10 19 18	40 11 22 26 28	40 15 24 32 36	45 39 24 25 38	21 31 22 15 22	27 32 29 15 28	22 24 30 8 23	11 23 18 12 18	4 26 18 4 14	4 18 13 2 13	3 21 10 3 8	3 14 10 3 4	6 8 10 8	5 11 3 1 5	1 7 4 1 3	4 4 1 2	2 1 4 3	1 1 2 1	2 2				
1916 1917 1918 1919 1920						8	2:	31	53	8 51 6 7	3 12 32 3 6	8 13 32 15 8	39 24 26 5 5	3 16 22 4 12	36 20 14 14 9	51 13 16 47 29	39 74 26 3 8 28	30 12 14 18 20	38 50 26 32 27	15 4 14 27 19	33 20 10 36 41	13 12 7 22 41	9 21 12 10 24	8 14 4 16 19	10 9 4 10 12	10 10 4 11 13	4 11 4 15 6	2 3 3 11 16	5 4 2 5 7	3 2 1 5 6	3 5 3 2 5	2 3 3	2 3	2	2	
1921 1922 1923 1924 1925			4 2	27	7	15	5 1	4	12	5 32 द3	21 20 21 17	13 27 9 59 27	12 19 13 20 13	9 11 8 7 7	40 8 15 14	67 31 26 12 25	24 29 30 28 25	16 18 18 23 21	40 20 30 32 18	34 20 26 37 14	35 32 38 23 8	19 31 27 25 8	12 19 25 11 5	10 16 13 9 2	3 14 11 12 4	5 7 14 10 3	8 11 13 7 5	5 9 9 6 4	2 6 2 1 1	1 3 1 4 1	2 2 2 1	3 3 2	1		2	1
1926 1927 1928 1929 1930					1	2	2	5	4	11 22 14 23	8 15 6 4	32 20 19 27	39 16 2 11 15	21 17 4 18 21	20 16 7 64 26	32 41 11 38 26	25 39 40 29 26	24 17 27 22 16	33 35 58 25 34	34 21 36 21 36	18 28 29 19 29	18 17 33 28 17	10 13 22 20 16	12 10 13 10 10	11 13 9 13 7	5 3 8 10 3	3 5 9 8 4	5 8 7 1	1 5 2 7 3	3 5 10 1	2 5 2	2 2	4		4	
1931 1932 1933						1 28	1	6 5	8 8	35 9 2	21 8 8	36 7 14	30 18 20	26 5 16	39 13 31	37 36 29	23 18 21	24 32 20	15 33 18	13 31 48	14 20 22	8 16 28	6 14 15	4 12 10	4 5 8	6 14 14	4 8 11	3 6 8	2 7 8	2 6 5 2	5 3	7	1	- 1	2	

TABLE 19 (continued)

•, `

1934 1935	4	7	' 4	; 8 1:	3 55 5 11	34 11	22 29	39 36	29 20	33 33	32 33	33 20	19 13	18 25	8 29	5 8	10 7	2 9	3 14	4 10	3 7	3 7	3 4	2 4	2	1	2	1				
1936 1937 1938 1939 1940	20	14	4	9 9 9 64) 14 38 5 29 128	28 28 21 24 28	39 22 42 34 39	21 27 14 29 26	13 24 18 17 21	26 25 37 28 24	21 25 39 28 19	12 15 33 33 16	13 25 27 23 20	23 26 26 17 21	18 24 28 32 18	17 18 13 12 10	17 15 13 15 6	8 12 11 8 6	6 9 7 6 8	4 7 4 8 5	5 7 3 7	2 7 11 6 1	4 8 3 6 2	10 8 1 5	3 5 1 5	7 2 5 1	7 3	3 1 1		4 2		
1941 1942 1943 1944 1945		11	2 12) 28 2 10 2 11 20	35 8 7 23 33	39 7 14 66 23	22 28 28 25 38	36 32 32 36 27	38 38 22 15 28	38 47 27 28 29	30 39 29 23 20	21 27 27 16 27	11 13 31 18 19	11 20 35 8 25	6 19 23 9 22	3 14 17 9 17	4 8 11 13 14	5 19 12 14 12	2 8 7 12 4	4 8 6 4 5	1 4 5 9 5	2 9 6 3	1 6 8 2	3 3 6 4	1 5 5 4	2 1 5	4 3	1	1 1	1		
1946 1947 1948 1949 1950			1	14 5 10 4	7 11 38 28	19 25 19 1	36 43 26	15 28 49 2 6	16 18 42 16 14	16 23 30 24 47	16 32 22 37 42	19 22 24 31 32	19 27 11 17 41	17 29 18 29 28	27 19 17 32 31	34 16 9 23 24	27 14 9 31 23	18 7 12 25 18	22 8 4 9 15	11 3 8 13 12	8 5 6 9 7	9 4 3 10 9	5 6 2 10 4	6 4 2	4 1 5 1 4	5 1 1 2 2	1 3 2 2 2 2	3 1 2 3	2 1 2	2 1 2	1	1
1951 1952 1953 1954 1955		4 24	20	10 31 25	14 10 57 37 20	14 34 29 27 6	16 26 19 22 14	45 32 32 14 21	32 12 20 12 19	33 19 24 21 29	36 29 15 28 43	30 21 28 18 18	22 18 23 20 17	20 18 20 24 24	21 34 16 21 21	15 22 16 14 12	19 27 12 12 8	13 12 18 6 18	11 9 10 6 2	4 6 5 6	6 10 7 5 6	5 7 5 4 5	2 8 6 2 3	2 5 3 1	1 3 4 1 3	1 7 2	1 2 3	1	1	1	1	1
1956 1957 1958 1959 1968			8	28 22	42 57 7 17	25 21 7 21 24	24 13 14 64 23	38 15 36 42 22	29 13 23 27 34	31 26 28 26 28	27 28 26 36 27	13 21 19 33 23	10 15 14 29 25	15 22 39 24 29	17 32 42 20 15	12 19 27 11 15	14 17 19 6 31	6 8 15 5 17	7 7 10 5 8	4 9 15 2 9	3 2 7 6 8	4 3 6 5 2	8 2 5 3	5 4 2 2	5 2 3	7 2 4 2	4 2	2	3			
1961 1962 1963 1964 1965				2	24 8 48 2	18 37 26 28 13	39 32 18 12 19	37 27 28 21 36	13 11 17 24 33	27 21 28 32 28	41 31 34 27 34	37 19 29 15 27	32 8 32 12 26	35 15 34 18 26	18 17 26 9 30	13 29 21 17 19	19 20 21 25 24	9 16 9 15 12	7 8 10 12 8	6 3 7 5 7	2 6 2 9 5	2 2 7 1	5 6 4 10 5	4 4 2 6 3	1 5 4 4 1	4 6 3 8 3	1 7 6 5 2	3 4 2 3 1	2 3 2	1		
1966 1967 1968 1969 1970					29 1 18 5	51 2 15 36 50	33 4 19 29 49	33 2 17 39 33	21 17 10 29 12	38 50 23 34 32	31 59 45 30 36	22 45 30 33 35	18 35 24 18 33	13 45 29 21 20	28 28 31 28 28	8 13 23 9 8	10 11 25 10 9	4 14 14 18 2	6 7 15 7 2	4 10 5 6 2	2 2 9 5 4	1 6 8 2 4	5 9 6 2 4	3 4 6 2 5	4 2 5 1	4 4 1	4 2 3	1				
1971 1972 1973 1974 1975			1	6 7	8	2 18 6 13 14	11 40 3 8 12	28 35 14 42 26	27 23 14 39 19	53 24 18 27 25	48 22 38 25 40	32 17 23 18 33	17 15 31 14 23	22 24 21 34 25	13 24 28 22 18	16 34 31 13 13	23 32 40 15 16	18 18 23 17 5	9 8 19 10 7	6 8 8 8 4	5 6 10 10 5	7 5 8 11 11	11 2 11 15 4	9 4 7 15 10	2 4 3 4	5 2 6 2	3	2	1			-
1976 1977				11	3 10	13 24	15 28	7 38	9 22	17 29	19 36	42 22	22 14	27 18	37 14	28 19	24 21	26 18	23 18	14 9	9 4	8	10 1	4 3	6 2	3 4	6	2				

TABLE 19 (continued)

,

1978 1979 1980	3 7 19 37 12 4 4 20	22 6 11	14 6 5	14 2 22	12 12 10	13 19 15	21 33 34	30 21 27	37 31 22	28 29 34	36 24 32	17 18 22	19 17 17	18 18 18	14 16 16	6 16 10	8 12 10	5 12 9	12 10	7 5 7	3 5 8	7	4 3	4 3
1981 1982 1983 1984	9 2 3 7 12	37 22 18 9	69 30 13 29	45 22 17 2	25 16 20 5	41 33 25 8	40 34 17 33	22 39 23 24	19 17 25 24	10 17 33 22	10 26 34 38	9 16 34 18	5 14 25 33	4 12 18 19	4 8 15 18	5 14 11 21	3 8 6 10	3 10 6 11	5 10 9 12	2 11 11	2 5 7	3 1	3	2

	Т	ABLE	20		
DAILY	FLOW	I-DUR	ATI	JN	DATA
STATIC	ON ØS	23875	00	RE	SACA

CLASS	VALUE	TOTAL	ACCUM	PERCT
0	Ø	0	33237	100.00
1	180	4	33237	100.00
2	210	38	33233	99.99
3	250	81	33195	99.87
4	300	159	33114	99.63
5	350	321	32955	99.15
6	410	703	32634	98.19
7	490	1571	31931	96.07
8	580	1633	30360	91.34
9	680	2095	28727	86.43
10	810	1998	26632	80.13
11	960	1541	24634	74.12
12	1100	2377	23093	69.48
13	1300	2862	20716	62.33
14	1600	2579	17854	53.72
15	1900	1953	15275	45.96
16	2200	2430	13322	40.08
17	2600	2139	10892	32.77
18	3100	1710	8753	26.34
19	3600	1592	7043	21.19
20	4300	1159	5451	16.40
21	5100	908	4292	12.91
55	6000	708	3384	10.18
23	7100	602	2676	8.05
24	8400	525	2074	6.24
25	9900	472	1549	4.66
26	12000	343	1077	3.24
27	14000	257	734	2.21
28	16000	204	477	1.44
29	19000	150	273	0.82
30	23000	68	123	0.37
31	27000	25	55	0.17
32	32000	24	30	0.09
33	38000	4	6	0.02
34	44000	2	5	0.01

NOTE: CLASS LIMITS IN THE ABOVE TABLE ARE DEFINED AS NUMBER OF DAYS FOR CLASS (I) EQUAL TO OR GREATER THAN VALUE (I) AND LESS THAN VALUE (I+1) FOR CLASS (I+1).

TABLE 21 STATION NUMBER 02388500 DURATION TABLE OF DAILY VALUES FOR YEAR ENDING SEPTEMBER 30

•;

•

DISCHARGE MEAN	-(Ci	FS)	.	ידו	RUM	F. 6	.																							vo =	10. 7	. .	ют		7.4
CLASS	а к 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14 ar. r	15	16 1N 1	17 7 050 r	18	19	20	21	22	23	24	25	26 1	27 2	28 2	33	90 3	54 -2	ж.	ນເ) "
YEAR		。	26	64	67	21	29	24	27	16	11	17	NUF 8	лыск 12	11	21	10 10	8	9	1	9	4	4	1	1	1	1								
1940		c	20	7,7	73	μ.											F	r	7	4	2	7	1	5											
1941			26	38	31	26	26	18 25	49	25	25 19	26 21	15 16	12	15 10	9 14	5 18	ь 16	3 9	18	10	5	5	3	4	2	4	2	1						
1942		16	Э	18	10	11	10	23 79	24	21	17	24	24	25	29	20	15	11	10	10	6	5	4	5	7	4	11	4	3	3	3				
1943				10	20	36	34	36	28	26	17	16	9	12	7	9	5	8	5	15	10	4	5	5	5	3	i6	5	6	7	2				
1944		1	4	41	20	27	51	18	31	16	19	13	16	17	21	21	15	12	10	9	5	7	4	3	2	1	9	5							
						~~	71	13	10	15	12	15	17	12	13	21	21	18	21	18	11	23	10	7	6	3	6	4	4	4	2	5	2	1	1
1946			۲ ۲	4	11	20	22	10	24	13	16	28	22	16	22	18	14	12	13	13	6	i	4	7	5	3	3		1	3	3		2	2	1
1947			10	11	70	28	7%	22	38	24	18	14	15	19	9	13	13	8	9	6	9	4	6	4	10	1	5	1	4	3	2		~		
1948			10	U	- 30 - 70	3		7	7	25	24	17	22	22	17	34	19	19	16	20	10	14	8	11	9	6	8	4	3	6	1	1	Ċ		
1945						Ū	6	1	18	28	26	39	27	22	25	27	21	24	15	18	16	11	10	6	8	4	1	1	۲	4	J				
1051					13	15	12	18	58	28	37	22	17	17	22	17	12	11	14	9	16	5	5	6	6	2	2	1	1	7	1	1	2	3	
1952					14	28	26	16	24	12	13	31	17	16	15	18	24	18	18	15	7	5	5	9	9	2	2	ว ร	11	3					
1953			1	18	47	28	20	14	35	22	9	13	17	17	16	17	9	11	15	13	7	3	4	0 4	3	1	2	1	1	6	5				
1954		4	14	43	1 28	27	18	14	13	11	17	17	15	16	22	22	15	11	1 5	5	، ۲	3	7	6	7	4	5	1	1	2					
1955		6	23	44	1 21	12	10	17	23	24	17	23	17	13	12	21	21	11	U	5	,	Ū	•	-					~						
1956			1	8	38	39	32	21	41	33	20	19	8	5	7	13	13	9	10	8	5	3	6 4	5 4	4	3	10	11	2	8	1	3			
1957		5	9	38	34	32	12	- 9	- 16	15	15	22	14	12	17	18	21	14	10	21	17	- -	12	9	5	4	6	5	2						
1958						8	3 16	15	38	25	18	17	15	12	10	28	3C	14	5	8	4	3	5	5	7	2	2								
1959			_	1		3 36	2 47	31	43	20	210	19	- 16	14	21	21	17	13	18	19	14	11	10	5	3	1	1	4							
1960			ĉ	2 14	0 2	1 14	23	14	33	21	2	10	10				-				_		-			^	2	4	2	1	۵	3			
1961						ź	2 26	32	33	22	22	37	34	26	24	28	10	12	12	8	- 3	4 5	4	3 7	4 5	4 4	 8	1	1	12	9	1			
1962			2		3 23	37	26	21	18	18	19	22	13	6	8	16	23	10 26	15	11	4	4	4	2	5	1	1	2	4	14	1				
1963					í	2 18	3 26	16	23	21	26	23	24	18 0	30	11	20 A	17	12	19	6	2	5	11	8	1	8	5	13	6	11				
1964				č	2 20	48	21	17	28	24	19	20	21	20	19	23	19	17	18	11	18	4	6	5	5	1	3		2	6	1				
1965					t	5 14	1 60	C (10	21	24	20			••						_		-	,		7		7	5	A	1				
1966					3 26	5 68	33	28	17	28	28	23	17	8	12	11	8	7	Б д	4 10	ک ٦	6	3	ъ 5	10	3	8	1	Ű	J	•				
1967					1	13	4	- 6	37	36	- 50	- 38 - 20	3C 70	410	- C0 - 20	25	25	19	15	13	5	9	11	3	6	3	18	2	4	7					
1968					1 1.	3 16	19	6	14	23	- 29 - 14	26	- 30	18	19	24	18	9	10	7	8	4	6	4	1		5		3	4					
1969					1.	5 33 7 28	55	36	44	14	17	31	26	22	22	17	9	18	5	2	2	i	3		7	1	5	3							
1370										•					_		_				•	r	7	7	E	7	14	. 7							
1971				;	5 1	8 8	2 16	19	33	51	55	29	23	19	18	16	9	- 17	14 22	22 18	8 7	0 5	د ۲	د A	1	2	5	4	3						
1972					1	4 27	32	26	26	28	15	18	15	13	13	210	11	20	22	17	22	15	7	10	9	6	5 11	4	9	3					
1973						1	4 (3 18	14	21	19	23	19	25	12	23	14	11	cs q	17	<u>م</u>	13	7	6	14	6	i9	2	9						
1974						12	2 16	2 35	29	23	33	16	13	14	34 10	73 73	12	12	11	4	6	8	5	5	- 8	3	3 9	7	6						
1975					13	5 1	5 17	13	۵	51	<i>с</i> 2	64	<i>c1</i>	10	13	13	10	16	•1	,	ų	5	-		-	_									
1976					3	5 3	5 9	39	18	8	7	12	29	24	37	40	17	19	18	25	18	14	4	13	7		1 i	: 3	C (A	: 2 . 5	7	3	1		
1977					4 1	3 3	1 23	3 26	40	24	19	19	19	7	12	19	14	15	14	13	13	9	6	, j	1		1 2	, 1 7 6		. J	. J		•		
1978				1	91	3 1	9 1	36	17	13	12	14	24	20	25	30	27	25	16	15) 15 . c) 8 19	11	7 8 18	1 0 1 6		1 1	44	5	i a	2 7	2	2		
1979		1	21	3 2	1	4	3 3	56	12	19	8	22	12	17	сь	23	13	13	11	14		, 10							_						

TABLE 21 (continued)

.

1980 16 15 9 14 10 16 15 19 8 20 22 19 24 23 17 23 18 5 9 8 10 1 3 7 9 8 4 1981 9 40 37 51 30 28 32 24 18 5 9 8 10 1 3 7 9 8 4 1981 9 40 37 51 30 28 32 24 18 21 5 13 10 7 7 8 2 1 10 1 2 4 2 3 1982 2 5 18 13 21 25 24 27 15 13 17 11 16 18 14 10 1 2 4 2 3 4 4 1 16 16 16 16 13 1 4 2 3 4 4 1 1

	TABLE 22	
DAILY	FLOW-DURATION	DATA
STATI	ON 02388500	ROME

VALUE	TOTAL	ACCUM	PERCT
0	0	16437	100.00
408	32	16437	100.00
470	173	16405	99.81
540	443	16232	98.75
630	731	15789	96.06
720	952	15058	91.61
830	960	14106	85.82
960	859	13146	79.98
1100	1215	12287	74.75
1300	990	11072	67.36
1500	847	10082	61.34
1700	961	9235	56.18
2000	827	8274	50.34
2300	737	7447	45.31
2600	835	6710	40.82
3000	898	5875	35.74
3500	706	4977	30.28
4000	705	4271	25.98
4600	584	3566	21.69
5300	544	2982	18.14
6200	403	2438	14.83
7100	315	2035	12.38
8200	254	1720	10.46
9400	270	1466	8.92
11000	276	1196	7.28
13000	124	920	5.60
14000	277	796	4.84
17000	137	519	3.16
19000	143	382	2.32
22000	132	239	1.45
26000	70	107	0.65
30000	20	37	0.23
34000	9	17	0.10
39000	6	8	0.05
45000	5	5	0.01
	VALUE 0 408 470 540 630 720 830 960 1100 1300 1300 2000 2300 2600 3000 3500 4000 3500 4000 3500 4000 3500 4000 11000 13000 14000 13000 14000 22000 26000 34000 34000 35000	VALUE TOTAL 0 0 408 32 470 173 540 443 630 731 720 952 830 960 960 859 1100 1215 1300 990 1500 847 1700 961 2000 827 2300 737 2600 835 3000 898 3500 706 4000 705 4600 584 5300 544 6200 403 7100 315 8200 254 9400 270 11000 276 13000 124 14000 277 17000 137 19000 143 22000 132 26000 70 30000 20	VALUE TOTAL ACCUM 0 0 16437 408 32 16437 470 173 16405 540 443 16232 630 731 15789 720 952 15058 830 960 14106 960 859 13146 1100 1215 12287 1300 990 11072 1500 847 10082 1700 961 9235 2000 827 8274 2300 737 7447 2600 835 6710 3000 898 5875 3500 706 4977 4000 705 4271 4600 584 3566 5300 544 2982 6200 403 2438 7100 315 2035 8200 254 1720 9400

NOTE: CLASS LIMITS IN THE ABOVE TABLE ARE DEFINED AS NUMBER OF DAYS FOR CLASS (I) EQUAL TO OR GREATER THAN VALUE (I) AND LESS THAN VALUE (I+1) FOR CLASS (I+1). 22, the number of days these flows have been exceeded during the historical record is 678 (Resaca) and 446 (Rome). The years during which the flows were exceeded are shown in Tables 19 and 21.

Using low-flow frequency analysis Figures H-12 and H-13 show the probability of low-flow events of seven consecutive days being equal to or less than the average flow indicated. A flow of 340 cfs at Resaca has a probability of approximately 0.12 of being equal to or less. A flow of 419 cfs has a probability of 0.24. At Rome (Figure H-13) the 7-day low-flow probabilities are 0.16 and 0.30 for 510 and 589 cfs respectively. It should be noted that in the above analyses the probabilities for 340 cfs and 510 cfs are slightly different from the 7Q10 criterion of 0.10. This is probably due to the additional daily records at the gages which have become available since the 7Q10 flow was computed. See Table 2 for more current estimates.

Assessment of Water Supply Availability

The foregoing analyses describe the hydrologic impact of withdrawing 51 MGD from the Coosawattee river near Carters. It is clear from these analyses that 51 MGD will not be available at all times. If withdrawals had been made during the 36 years of the historical record there would have been an estimated 723 days where the streamflow would not have been adequate. In recent times with the regulation of flow by Carters Dam the USGS data show there have been approximately 265 days when the streamflow was less than that required for full withdrawal. Another way to assess supply is by examining the change in probability of

shortage. To accomodate a withdrawal of 51 MGD the probability of the 7-day duration low-flow event would increase from 0.10 to 0.38. Stochastic analyses of monthly flows shows a similar increase in probability.

For those times when withdrawals cannot be made from the Coosawattee River, a secondary supply source must be found. The preceding analysis shows that such times will be infrequent, therefore, the selection of a secondary source should reflect its expected infrequent use. Some alternatives are: groundwater pumping, storage, interbasin transfer, purchase from other suppliers, conservation, curtailment of operation, or combination of these. Several factors govern the selection of the secondary source. One is availability of the alternative supply. Groundwater, for example, is in limited supply in the region. A second factor is reliability. A greater capacity system will be required to insure that 51 MGD is always available than if some shortages are tolerated when the Coosawattee is low. Because withdrawal from the Coosawattee River is being examined as an alternative to Dalton Lake, the reliability should be the same in both projects. A third factor is cost. The minimum cost alternative which is available and which provides the necessary reliability should be selected.

The selection of a secondary supply source will be included in the work related to the location, size and cost of the facilities necessary for withdrawal and transport of water from the Coosawattee River. This work is being done by the Mobile District, Corps of Engineers.

APPENDIX A

COOSA BASIN MAPS

APPENDIX A

COOSA BASIN MAPS

Contents

FIGURE	DESCRIPTION	PAGE
A-1	Coosa River Basin	A-1
A-2	Hydrologic Unit Location Map	A-2
A-3	Ellijay l	A-3
A-4	Carters Lake 2	A-4
A-5	Dalton-Chatsworth 3	A-5
A-6	Calhoun-Rome North 4	A-6
A-7	Dawsonville 5	A-7
A-8	Canton 6	A-8
A-9	Allatoona Lake 7	A-9
A-10	Cartersville-Rome East 8	A-10
A-11	Rome-Cedartown 9	A-11
A-12	Summerville-Lafayette 10	A-12

Acknowledgement: All figures in this Appendix were adapted from <u>Water</u> <u>Availability and Use</u>, Georgia Department of Natural Resources, 1982. _

FIGURE A-1 COOSA RIVER BASIN

FIGURE A-2 HYDROLOGIC UNIT LOCATION MAP

FIGURE A-3 ELLIJAY 1 HYDROLOGIC UNIT

A-4

FIGURE A-5 DALTON-CHATSWORTH 3 HYDROLOGIC UNIT

ROME EAST

FIGURE A-7 DAWSONVILLE 5 HYDROLOGIC UNIT

6

FIGURE A-8 CANTON 6 HYDROLOGIC UNIT

FIGURE A-10 CARTERSVILLE-ROME EAST 8 HYDROLOGIC UNIT

A-10

ROME-CEDARTOWN 9 HYDROLOGIC UNIT

FIGURE A-12 SUMMERVILLE-LAFAYETTE 10 HYDROLOGIC UNIT

A-12

APPENDIX B

MICROCOMPUTER SOFTWARE DEVELOPMENT AND APPLICATION

APPENDIX B

MICROCOMPUTER SOFTWARE DEVELOPMENT AND APPLICATION

Disk Operating System

The disk operating system (MSDOS) manages data and software files used for analysis. Some of the principal operations include: storing files in designated directories, copying files, deleting files, running files, renaming files and serving as the overall management system. Organizing and moving files is an essential element of effective analysis of engineering data.

Project Data

Data used in the Coosa study was placed on microcomputer files in three ways: direct from the keyboard, through transfer (down load) from a minicomputer, and through transmittal via dial-up telephone lines. Some data, the lesser amount by volume, was entered from available reports and other sources directly through the keyboard. A summary of USGS stream gages in the basin is an example. Water use data was available from the USGS database in Doraville, Georgia however it was not compatible with the microcomputer. The USGS made a tape of the desired data which could be read by the Harris 1000 minicomputer at the Hydrologic Engineering Center (HEC) which in turn could communicate to the personal computer. This transfer and down loading process brought the water use data directly to the PC disk operating system where files and directories were developed. The third source of data was the USGS WATSTORE database in Reston, Virginia. This database contains water supply data at

stream gage locations throughout the United States. There is also water quality and groundwater data available. To retrieve water supply data for the stream gages in the Coosa Basin a software program CROSSTALK was used together with the necessary hardware accessories. The data retrieved, daily flow statistics and mean monthly flows, were brought directly to the microcomputer where files were established. Bringing project data into the microcomputer with a minimum amount of effort is an important capability which facilitates the engineering analyses needed in the study. Once in the disk operating system the project data was edited and sent to software programs for database management, calculations, graphics and a variety of other analyses.

Database Management

Two large sets of data were used in the study. One for water supply the other for water use. Because the water supply data were summary statistics and monthly means they were transferred directly to a software program for additional calculations and graphical presentation. Water use data, because of the amount and wide variety of information, required sorting and selection prior to analysis. This is an important function of database management software. A commercially available database management program, R:Base 5000, was selected for use with the water use data. Subsequent use of the program demonstrated its great potential and ease of use. Its principal task was to sort through the large water use database, select data which was useful for analysis, print needed summaries, and

transfer selected data to another software program for calculation of statistics and graphics. The water use database is available on diskettes for use in future studies in the Basin.

Calculations, Graphics and Statistics

A commercially available software program, LOTUS 1-2-3, was used for calculations, graphics, statistics and as a template for data input to a reservoir simulation program. The program was used: to compute the standard deviation of water use data and to plot that data; to simulate releases from Carters Reservoir; to do regression analysis of simulated and actual release data; to analyze and plot water supply data at stream gages; and as a template for input data for a reservoir simulation program. All graphs in the report (except basin maps) were developed with LOTUS 1-2-3 and an HP7475A Plotter. USGS water use and supply data files were transferred into LOTUS using LOTUS file capability.

Water Balance

A special menu driven spreadsheet was developed using LOTUS 1-2-3 to speed the development of water supply and use balances for the basin. A balance can be developed for a user, a river reach, or sub-basin or basin. The basic use of supply data is developed and the water balance presents the results in a summary form.

Single Reservoir Simulation

HEC computer program "Reservoir Yield" was converted to run on the microcomputer and was used in this study to simulate the operation of Carters Reservoir. This program simulates the operation of a single reservoir for multiple purposes: water supply, hydroelectric power, and water quality. A template for preparing input data was developed using LOTUS 1-2-3 and the resulting file transferred to the simulation program for execution. The results were compared with the reservoir simulation run directly using LOTUS as a spreadsheet calculator.

Frequency Analysis

The USGS WATSTORE database contains frequency analyses of streamflow data at all gage locations. A Log Pearson Type III distribution is available (if desired) for low-flow frequency analysis and percent time exceeded values are available for flowduration analysis. Where such data is not available at a gage site, or where it is desired to do a separate analysis, HEC computer program "STATS" is available for use on the microcomputer. In addition to the normal frequency analyses, the STATS program does expected probability adjustment for flood flows.

Stochastic Analysis

HEC computer program "Monthly Streamflow Simulation" was used to develop synthetic streamflow sequences for the Coosawattee River at Carters. At present this program is not available for use on a microcomputer. It is hoped that in the

near future this program or a comparable stochastic streamflow analysis program will be operable on a microcomputer to round out the analysis capability which already exists.

Other Software

Three other computer programs were obtained for use on the study, but for various reasons were not used.

<u>Groundwater Simulation</u>. The USGS groundwater simulation programs, in either 2 or 3-dimensions, are available for use on the microcomputer. These programs simulate the flow of groundwater in unconfined and confined aquifers and are frequently used to determine water table levels or piezometric heads where the aquifer is being heavily pumped. In the Coosa Basin groundwater is not presently a major source of supply.

Optimization. Finding the minimum cost for water supply, water treatment, or site locations is a common need in water supply analysis. VINO/PC is a commercially available microcomputer software program which does linear programming optimization for minimum and maximum type analyses. Input to the program uses LOTUS 1-2-3 as a template. The program was not used in this study because it was not a purpose of the study to analyze cost. It may be an appropriate next step once alternative supplies and costs are defined.

Forecasting. Forecasting of future water needs was not included as a purpose of this investigation, however, an HEC computer program "A Model for Estimating Water Demand" is available for

such use. This program can be used for making water use forecasts - municipal, industrial, agricultural. In the Coosa Basin, during the past five years, there has been no growth in water use which cannot be forecast by simply using trend extrapolation. Should a more in-depth analysis be desired the DEMAND model would be appropriate.

Hardware

IBM PC-XT, 512 Bytes RAM, 10 MB Internal Hard Disk IBM Color Monitor Okidata 84 Step 2 Printer HP 7475A Plotter DSDD, 360K Bytes Diskettes

Hayes Smartmodem 1200 B

Commercial Software

MSDOS (Release 2.1) Microsoft Corp. CROSSTALK XVI (Release 3.5) Microstuf, Inc. R:BASE 5000 (Release 1.01) Microrim LOTUS 1-2-3 (Release 2.0) LOTUS Development Corporation APPENDIX C

LOW-FLOW FREQUENCY CURVES

APPENDIX C

LOW-FLOW FREQUENCY CURVES

Contents

FIGURE	STATION		PAGE
C-l	02380500	Ellijay	C-1
C-2	02381600	Talking Rock	C-2
C-3	02382200	Hinton	C-3
C-4	02382500	Carters	C-4
C-5	02383500	Pine Chapel	C-5
C-6	02385800	Chatsworth	C-6
C-7	02387000	Tilton	C-7
C-8	02387500	Resaca	C-8
C-9	02388300	Rome	C-9
C-10	02388500	Rome	C-10
C-11	02389000	Dawsonville	C-11
C-12	02392000	Canton	C-12
C-13	02394000	Cartersville	C-13
C-14	02395000	Kingston	C-14
C-15	02396000	Rome	C- 15
C-16	02397000	Rome	C- 16
C-17	02397500	Cedartown	C-17
C-18	02398000	Summerville	C-18

Note: Three stations with short records are not included: Station 02384500, Eton; Station 02388320, Armuchee; Station 02395120, Kingston.

ï

STREAMFLOW (CFS)

STREAMFLOW (CFS) (Thousands)

0.4 120 DAYS 90 DAYS 60 DAYS 430 DAYS 14 DAYS 7 DAYS ф 巾 巾 0.3 山 И LOW-FLOW FREQUENCY PROBABILITY EQUAL TO OR LESS THAN n ROME 0.2 STATION 02388500 0.1 拘 30 0 T ļ 0.2 0 0.4 0.3 0.1 0.9 0.8 0.7 0.6 0.5 1.2

STREAMFLOW (CFS) (Thousands)

(Thousands) (Thousands)

FIGURE C-14

C-14

STREAMFLOW (CFS) (Thoussnds)

\$

APPENDIX D

DURATION-PROBABILITY CURVES

APPENDIX D

DURATION-PROBABILITY CURVES

Contents

FIGURE	STATION		PAGE
D-1	02380500	Ellijay	D-1
D-2	02381600	Talking Rock	D-2
D-3	02382200	Hinton	D-3
D-4	02382500	Carters	D-4
D-5	02383500	Pine Chapel	D-5
D-6	02385800	Chatsworth	D-6
D-7	02387000	Tilton	D-7
D-8	02387500	Resaca	D-8
D-9	02388300	Rome	D-9
D-10	02388500	Rome	D-10
D-11	02389000	Dawsonville	D-11
D-12	02392000	Canton	D-12
D-13	02394000	Cartersville	D-13
D-14	02395000	Kingston	D-14
D - 15	02396000	Rome	D-15
D-16	02397000	Rome	D-16
D-17	02397500	Cedartown	D-17
D-18	02398000	Summerville	D-18

Note: Three stations with short records are not included: Station 02384500, Eton; Station 02388320, Armuchee; Station 02395120, Kingston.

120 .30 06 <u>s</u> † f =60 山 DURATION (DAYS) 30 向 ধ 14 巾 2 120 🖶 160 -100 1 0 80 220 -180 -140 60 20 40 200

P=.40

DURATION-PROBABILITY

ELLIJAY

STATION 02380500

240]

FIGURE D-3

120 P=.40 34 90 影 ¢0; DURATION-PROBABILITY CARTERS 60 巾 DURATION (DAYS) **STATION 02382500** 30 巾 14 2 + 100 -400 -500 Т 300 200 600

FIGURE D-4

STREAMFLOW (CFS)

120 06 60 凶 DURATION (DAYS) 30 囟 14 即

FIGURE D-15

D-15

P=.40 464 <u>3</u>4 .20 ROME ወ STATION 02397000 面 14 ф r Ħ Т Ι T I ł I 0.2 2.6 1.6 0.8 0.6 0.4 0 2.4 02. 10 10 1.8 1.4 1.2 **N** H STREAMFLOW (CFS) (Thousands)

DURATION-PROBABILITY

D-16

STREAMPLOW (CFS)

APPENDIX E

FLOW-DURATION CURVES

APPENDIX E

FLOW-DURATION CURVES

Contents

FIGURE	STA	STATION				
ANNUAL DATA						
E-1	02380500	Ellijay	E-1			
E-2	02381600	Talking Rock	E-2			
E-3	02382200	Hinton	E-3			
E-4	02382500	Carters	E-4			
E-5	02383500	Pine Chapel	E-5			
E-6	02384500	Eton	E-6			
E-7	02385800	Chatsworth	E-7			
E-8	02387000	Tilton	E-8			
E-9	02387500	Resaca	E-9			
E-10	02388300	Rome	E-10			
E-11	02388320	Armuchee	E-11			
E-12	02388500	Rome	E-12			
E-13	02389000	Dawsonville	E-13			
E-14	02392000	Canton	E-14			
E-15	02394000	Cartersville	E-15			
E-16	02395000	Kingston	E-16			
E-17	02395120	Kingston	E-17			
E-18	02396000	Rome	E-18			
E-19	02397000	Rome	E-19			
E-20	02397500	Cedartown	E-20			
E-21	02398000	Summerville	E-21			

COMPARISON: ANNUAL VS. JUNE-NOVEMBER DATA

E-22	02382500	Carters	E-22
E-23	02383500	Pine Chapel	E-23
E-24	02387000	Tilton	E-24
E-25	02387500	Resaca	E-25
E-26	02388500	Rome	E-26
E-27	02386000	Rome	E-27
E-28	02397000	Rome	E-28

STREAMFLOW (CFS) (Thousands)

STREAMFLOW (CFS) (Thousands)

STREAMFLOW (CFS) (Thousands)

STREAMFLOW (CFS) (Thousands)

STREAMFLOW (CFS) (Thoussnds)

STREAMFLOW (CFS) (Thousands)

(Thoussnds) (Thoussnds)

(Thousends) (Thousends)

(Thousands) (Thousands)

APPENDIX F

1

WET AND DRY YEAR GRAPHS

APPENDIX F

WET AND DRY YEAR GRAPHS

Contents

FIGURE	STA	TION	PAGE
	ANNUA	L DATA	
F-1	02380500	Ellijay	F-1
F-2	02381600	Talking Rock	F-2
F-3	02382200	Hinton	F-3
F-4	02382500	Carters	F-4
F-5	02383500	Pine Chapel	F-5
F-6	02384500	Eton	F-6
F-7	02385800	Chatsworth	F-7
F-8	02387000	Tilton	F-8
F-9	02387500	Resaca	F-9
F-10	02388300	Rome	F-10
F-11	02388320	Armuchee	F-11
F-12	02388500	Rome	F-12
F-13	02389000	Dawsonville	F-13
F-14	02392000	Canton	F-14
F - 15	02394000	Cartersville	F-15
F-16	02395000	Kingston	F-16
F-17	02395120	Kingston	F-17
F-18	02396000	Rome	F-18
F-19	02397000	Rome	F-19
F-20	02397500	Cedartown	F-20
F-21	02398000	Summerville	F-21

LOW-FLOW MONTHS, JUNE - NOVEMBER

F-22	02382500	Carters	F-22
F-23	02383500	Pine Chapel	F-23
F-24	02387000	Tilton	F-24
F-25	02387500	Resaca	F-25
F-26	02388500	Rome	F-26
F-27	02386000	Rome	F-27
F-28	02397000	Rome	F-28
	AVERAGE MO	ONTHLY FLOWS	
F-29	02382500	Carters	F-29
F-30	02383500	Pine Chapel	F-30
F-31	02387000	Tilton	F-31
F-32	02387500	Resaca	F-32
F-33	02388500	Rome	F-33

VANUEL MEAN MINUS RECORD MEAN (CFS)

F-1

FIGURE F-1

I 1982 1983 1984 FIGURE F-2

VINUAL MEAN MINUS RECORD MEAN (CFS)

FIGURE F-3

VNNOT WEVN WINDS BECORD WEVN (CES)

F-3

ANNUAL MEAN MINUS RECORD MEAN (CFS)

F-4

VNNOVE MEAN MINUS RECORD MEAN (CFS)

FIGURE F-5

VNNOVT MEAN MINUS RECLED MEAN (CFS)

VNNNT WEVN WINNE HECORD WEVN (CES)

FIGURE F-7

(Thousands) ANNUAL MEAN MINUS RECORD MEAN (CFS) FIGURE F-8

(Thousands) ANNUAL MEAN MINUS RECORD MEAN (CFS)

F-9

VINNAL MEAN MINUS RECORD MEAN (CFS)

FIGURE F-10

F - 10

VANUEL MEAN MINUS RECORD MEAN (CFS)

(Thousands) (Thousands) (CFS)

FIGURE F-12

VANUAL MEAN MINUS RECORD MEAN (CFS)

VNNNAL MEAN MINUS RECORD MEAN (CFS)

(LIPOTESUGE) VANUAL MEAN MINUS RECORD MEAN (CFS) FIGURE F-15

VANUE MEAN MINUS RECORD MEAN (CFS)

(Thousands) Annual mean minus record mean (CFS)

(LFOUSSAGE) ANNUAL MEAN MINUS RECORD MEAN (CFS)

VNNUEL MEAN MINUS RECORD MEAN (CFS)

VNNORT MEAN MINUS RECORD MEAN (CFS)

FIGURE F-21

YEARS

VNNNAL MEAN MINUS RECORD MEAN (CFS)

Δ $\overline{)}$ LOW-FLOW MONTHS, JUNE-NOVEMBER 1978 $\overline{77}$ Σ $\overline{\Sigma}$ \Box 1968 $\overline{}$ TILTON STATION 02387000 YEARS 1958 \Box \Box $\overline{\Sigma}$ 1948 Δ 1938 l 0.9 0.8 0.7 0.6 0.5 0.5 0.5 0.3 0.3 0.3 0.2 10.2 10.3 10.4 10.5 10.6 10.8 -0.9 ÷ 0.1 0 -0.1 ī

FIGURE F-24

ANNUAL MEAN MINUS RECORD MEAN (CFS)

(Thousands) ANNUAL MEAN MINUS RECORD MEAN (CFS)

SEP AUG Mean JUL AVERAGE MONTHLY FLOWS NUL 1896-1984 STATION 02382500 CARTERS MAY APR MONTHS MAR FEB JAN DEC νον OCT 0.9 0.8 0.7 0.5 0.5 0.4 0.3 0.3 1.31.2 0 1.9 1.8 1.7 1.6 1.5 1.4 1.1 2.1 ຸ

> STREAMFLOW (CFS) (Thousands)

STREAMFLOW (CFS) (Thousands)

SEP AUG JUL Mean AVERAGE MONTHLY FLOWS NDL 1937-1985 STATION 02387000 TILTON MAY APR MONTHS MAR FEB JAN DEC νον ocT Γ Т Т T I 1 0.8 0.6 0.2 2.6 2.2 1.8 1.6 1.4 1.2 0.4 0 2.4 Q H

STREAMFLOW (CFS) (Thousands)

STREAMFLOW (CFS) (Thousands)

SEP AUG JUL Mean AVERAGE MONTHLY FLOWS NUL 1940-1984 STATION 02388500 ROME MAY APR MONTHS MAR FEB JAN DEC νον OCT Τ Т Τ Т Т Τ æ ~ 9 ß 4 က N 0 ----

> STREAMFLOW (CFS) (Thousands)

ocT

0

H

AVERAGE MONTHLY FLOWS

1904-21,1939-85 STATION 02396000 ROME

ß

F-34

APPENDIX G

WATER USE DATA

ANNUAL JEC AVG		3. 41 0. 443	3.44 8.476	3. 34 0. 429	3.46 0.430	3.35 8.449	3.47 0.511	a. 52 0. 452	0.48 0.523	0.37 0.446	8.32 8.366	0.73 0.650	0.90 0.879	1.30 0.860	1.24 1.074	0.92 1.102	0- 0.001	0.01 0.628	0.01 8.016	e. e3 e. e33	0.03 0.031	0- 0.026 5 5 5 5 5 5	0.58 0.312	0 - 0.016	0.17 0.15	0.18 6.17	0.15 0.186	0.06 0.05	0.11 0.066	0.02 0.02	0.02 0.02	0.00 0.00
NON		0.40	0.38	0,38 (0.46	0,35 (0.47 (0.48	0.47	0°.39	0.39	0.70	0.85	1.20	1.04	0.88	T Ş	0.02	÷	0.03	0.03	0.03-	6. 19	4	0.17	0,18	0.18	0.07	0.04	8.04	0.02	0.00
OCT		0,40	0.42	0.34	0.44	0.37	0.42	0, 52	0.48	0.39	0.37	4	0.84	1.11	8 .38	1.04	\$	0.02	0.04-	0.03	0.03	0.03	6.	. 0 . 85	0.17	0.17	8 .22	6.63	2 0. 15	9.05	20.05	0.00
ß		0.42	2 0.49	8.45	0.44	9.44	0.57	8 0.43	6.56	0.51	3 0. 34	0.48	9 0.83	2 0. 75	91.19	e 1. 03	0 0.00	3 0, 03	1 0.01	3 0.03	3 0.03	30.03	ເບີ່ ເອົ	8 8 8	6 9.16	8 9.16	1 6.2	6	7 0.10	8 8 8	50°0 10°0	ତ ତ ତ
AUG		4 0.46	0 0.52	9 0.45	6 0.51	9 0.46	3 0.5	3 0.43	5 0 2	80.5	ອີກ	0	4 0.7	7 0.6	51.1	5 1 1 3 3	0.0.0	50.0	1 0.0	3.0.0	0.0	3.0.0	ດ ອີ ຄູ	50 0.0	4 0.1	4 0.1	4 0°.2	\$	01 0.0	8 8 8	33 0.0	0.0
Jul -		4 0.4	3 0.5	8 8.3	4 0.3	80.4	54 9.5	17 0.4	58 0.5	15 0.4	38 0.3	ę	33 0.8	52 0.5	5.0 6E	1.1	00 0°6	33 0. 0	01 0.6	83 0. 0	03 0.0	63 0.6	53 53	02 0. C	13 0.1	15 0.1	21 Ø. 1	\$	12 0.6	65 8. 65	03 0.0	00 0.6
V JUN		57 0.4	48 0.5	50 0.4	45 0.4	51 0.4	41 0.5	42 0.4	50 0.	35 0.4	8 22 8	68-0-	88 0.0	70 0.(79 0.	26 1.	00 0. 1	63 0.(01 0.	05 0.1	03 0.	03 0.	s S3	05 0°	14 0.	19 8.	16 0.	03-0-	03 03	85 0°	01 0.	00 0.
R MA		63 0.	51 0.	47 8.	47 0.	50 0.	57 8.	44 0.	51 8.	36.0.	.35 0.	73 0.	-30 0°	.79 0.	08 G.	17 1.	00 0.	03 0.	01 0.	.06 0.	.03 0.	. 03 0.	ຄື	05 0.	14 0.	. 9 5	17 0	040	ເຈັ່າ ເ	05 0°	. 02 0	. 60 9.
AR AF		42 0.	.47 0.	.48 0.	.45 0.	.48 0.	20 20 8	43 0	. 52 0	. 45 0.	.36 8	64 0	61.9	.88 0.	13 1	.16 1.	69 1	0.04 0	0.01 0	. 06 0	0.03 0	0. 03 Ø	8 53 Ø	9.02 0	ð. 14 Ø	3.19 0	a. 17 0	0.07 0	a. 10-0	8. 83 8	8. 05 9	0.00 0
EB V		a. 39 @	ð. 48 Ø	3.47 0	a.35 a	0.48 0	a. 54 @	0.42 0	0.54 0	a. 52 @	8.38 g	a. 70 0	1.01	-6	1.02	1.06 1	7	0.04 0	0. 05 0	0.04 0	0.03 (6.03	62.0	0.62	0.14	0.19 0.19	0.19 (0.06	0.08	0.05	0.05	0.00
JAN		0.40	6.51	0.45	6. 35	0.49 (6. 49	0.45 (0.57	0.53	65.9	0.69	0.72	6 , 93–	1.30	1.13	4	0.04	Ø. Ø2	0.02	0.03	0.03	6 , 23	0.02	8 . 20	0.16	6.17	0° 02	9. 96	0,02	0.02	9.99
ONGITUDE		842832	842832	842832	842832	842832	842832	842832	842832	842832	842832	842832	842832	842832	842832	842832	843706	844212	844212	844212	844212	844212	844800	844800	844212	844212	844212	844858	844858	844902	844902	844855
LATITUDE I		344122	344122	344122	344122	344122	344122	344122	344122	344122	344122	344122	344122	344122	344122	344122	343643	342609	342609	342609	342609	342609	343200	343200	342609	342609	342609	344359	344359	344648	344648	344652
STREAM NAME	X	ELLIJAY RIVER	CARTECAY RIVER	CARTECAY RIVER	CARTECAY RIVER	CARTECAY RIVER	CARTECAY RIVER	CODSAMATTEE RIVER	COOSAMATTEE RIVER	CODSAMATTEE RIVER	COOSAWATTEE RIVER	COOSAMATTEE RIVER	CARTERS LAKE	SALACOA CREEK	SALACDA CREEK	SALACOA CREEK	SALACOA CREEK	SALACOA CREEK	LEWIS BK-SALACOA CR	LEWIS BR-SALACOA CR	SALACOA CREEK	SALACDA CREEK	SALACOA CREEK	TRIB-TOWN BRANCH	TRIB-TOWN BRANCH	TOWN BRANCH	TOWN BRANCH	TOWN BRANCH				
USER		ITY OF ELLIJAY	ITY DF ELLIJAY	ITY OF ELLIJAY	ITY OF ELLIJAY	ITY OF ELLIJAY	ITY OF ELLIJAY	ITY OF ELLIJAY	ITY OF ELLIJAY	ITY OF ELLIJAY	SCE CARTERS LAKE-DOLL MT	D LACY MILLS	D LACY MILLS	D LACY MILLS	D LACY MILLS	D LACY WILLS	ALTON ROCK PRODUCTS CO.	ALTON ROCK PRODUCTS CO.	ITY OF FAIRMONT	ITY OF FAIRMONT	ITY OF FAIRMONT	IAJESTIC CARPETS	RJESTIC CARPETS	JIXIE YARNS INC.	JIXIE YARNS INC.	JIXIE YARNS INC.						
нузи		1				ບ ••	പ പ	చ 	-			ເມ ເພ	വ പ	C) CL	ມ ເ	c) ru	сц сц	പ	ເພ	പ	ณ	പ	പ	ស	ຸດ	ບ _ເ ນ	e N	ŝ	m	3	m	ŝ
3 YEAR		1 80	1 81	1. 82	1 83	1 84	88 ප	ମ ଅକ୍ଟ	ୟ ର ଧ	വ സ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ	ک 18	1 80	1 81	85 T	1 83	1 84	1 84	1 80	1 61	1 8	1 83	1 84	1 81	1 84	11 82	11 83	11 84	1 80	11 81	M 81)1 84	N2 84
E1 E2 E3		061 M01 01	061 M01 04	061 M01 06	061 M01 06	061 M01 00	061 M01 0	061 M01 D	061 N07 0	064 I03 D.	064 I03 D	064 103 D	064 I03 D	064 103 D	064 I05 D	064 105 D	064 M02 0	064 M02 0	064 M02 0	105 102 D	105 102 0	105 105 D	105 105 D	105 105 D								

APPENDIX 6 USGS WATER USE DATA (MGD)

E1 E2 E3 YEAR	HYSU USER	STREAM NAME	LATITUDE LONGITUD	JAN	FEB MA	R APR	МАУ	Nnr	UL P	ទា	8	DN L	2 E C	UNU AU	र्द् छ
105 M01 01 80	3 CITY OF CHATSWORTH	HOLLY CREEK	344637 844538	3 0.48	0.50 8.	52 0.5	00.68	0.68	8.91 0	.81 6.	70 0.	66 0.	50 0.4	9.9	319
105 M01 01 81	3 CITY OF CHATSWORTH	HOLLY CREEK	344637 844538	8 0.62	0.48 0.	35 0.3	0 0.40	0.44	0.74 0	.78 0.	70 8.	58 0.	46.0.3	8° 8'	514
105 M01 01 82	3 CITY OF CHATSWORTH	HOLLY CREEK	344637 84453(9 0.35	0.33 0.	32 0.3	4 0.33	6 45	0.43 Q	.67 0.	66 Ø.	72 8.	43.0.3	1 8.4	£1
105 M01 01 83	3 CITY DF CHATSWORTH	HOLLY CREEK	344637 844530	8 8.35	0.40 0.	32 0.3	1 0.37	0.39	0.72 0	.97 0.	84 0.	77 0.	63 0.3	3 0.5	320
102 M01 01 84	3 CITY OF CHATSWORTH	HOLLY CREEK	344637 844530	B 0.37	0.31 0.	33 0.3	5 0.37	0.55	a.54 g	.55 0.	80 0.	71 0.	25 0°	4 8 2	11
105 M01 02 84	3 CITY OF CHATSWORTH	ETON SPRINGS	344623 84460	5 1.23	1.24 1.	30 1.2	9 1.42	1.35	1.35 1	47 1.	08 1.	09 1.	28 1.3	7 1.6	8
105 M01 D1 80	3 CITY OF CHATSWORTH	HOLLY CR-CONASAUGA	8 343532 844521	8 1.31	1.23 1.	35 1.1	9 0.97	0.69	a.71 e	.60 0.	60 0.	58 0.	61 8.4	1 0.5	354
105 M01 D1 B1	3 CITY OF CHATSWORTH	HOLLY CR-CONASAUGA	343532 844521	8 0.56	0.73 0.	41 0.7	6 0.65	0.62	0.39 @	.54 0.	53 0.	54 0.	47 0.	7 0.5	580
105 M01 D1 82	3 CITY OF CHATSWORTH	HOLLY CR-CONASAUGA	R 343532 844521	8 0.32	1.60 0.	90 0.8	3 8.51	0.63	0.52 (.66 8.	59 8.	70 0.	87 8.	3 8.7	754
105 M01 D1 83	3 CITY OF CHATSWORTH	HOLLY CR-CONASAUGA	R 343532 844521	8 0.73	0.83 0.	89 8.8	6 0.91	0,82	0.83	. 75 0.	80 0.	68 1.	05 1.2	5.0°.0	878
105 M01 D1 84	3 CITY OF CHATSWORTH	HOLLY CR-CONASAUGA	R 343532 84452	8 0.96	1.03 1.	11 1.1	3 0.92	0.68	1.04 1	.07 8.	33 1.	82 1.		1 1.6	3 64
155 104 D1 81	3 DOW CHEMICAL-USA	CONASAUGA RIVER	343738 84551	5 8.02	0.03 0	03 0.6	3 0.03	0.02	0.02 9	. 64 8.	03 0.	03 0.	02 0.(20.6	024
155 I04 D1 84	3 DOW CHEMICAL-USA	CONASAUGA RIVER	343738 84551	5 0.05	0.04 0.	03 0.0	3 0.05	0.05	0.05 (.35 8.	05 0	.0 20	04-0-		973
155 104 D2 81	3 DOW CHENICAL-USA	CONASAUGA RIVER	343738 84551	5 0.00	0.02 0.	03 8.6	6 0.03	0.06	0.05 (0.07 0.	.07 0.	03 0.	01 0.(5 0.6	839
155 105 D1 81	3 WEST POINT PEPPERELL INC	LITTLE SWAMP CREEK	-0-	0.00	0.00 0.	60 0.0	0 0.00	0.00	0.00 0	1.00 0.	.00 0.	01 0.	00 0.(0.0	901
155 108 D1 81	3 DALTON ROCK PRODUCTS CO.	COAHULLA CREEK	-0-	2.88	2. 88 2	.88 2.6	8 2.88	2. 8 8	2.88	c. 88 p	88 2.	88 2.	8 8 2.(8 2.8	999
155 108 D1 84	3 DALTON ROCK PRODUCTS CO.	COAHULLA CREEK	-0-	0.03	0.03 0.	03 0.0	3 0.03	0.03	6. 03 (0.03 0.	.03 0.	03-0-	÷	9.9	326
155 112 D2 81	3 C&J LEASING COMPANY	SWAMP CREEK	344107 84590	9 0.00	0.00 0	00 0.0	0 0.00	0.00	0.00	0.00 0.	.00 0.	00 0.	00 0.	0.0	004
155 112 02 84	3 C&J LEASING COMPANY	SWAMP CREEK	344107 84590	9 0.00	0.00 0.	.00 0.0	0 0.00	0.00	0.00	0.00 0.	00 0	00 0.	00 0.(0 0.0	004
155 M01 01 80	3 CITY OF DALTON	CONASAUGA RIVER	344715 84523	6 22.2	23.4 23	2.6 24.	7 23.4	24. I	23.8	ະ ດີ ທີ	ເຊັ ເຊິ່ມ ເຊິ່ມ	2.6.21	.9 23	5 23	5
155 M01 01 81	3 CITY OF DALTON	CONASAUGA RIVER	344715 84523	B 23.1	23. 3 2	3.7 24.	3 25.2	24.8	25.9 i	16.4 P	លី ហេ ម	3.0 26	.1 22 23	1 24.	. 00
155 M01 01 82	3 CITY OF DALTON	CONASAUGA RIVER	344715 84523	8 21.1	21.8 2	ដ ភូមិ ភូមិ	9 23.7	26.5	23, 3 2	26.7 2	ະ •	3.92	.9 23	6 23	8
155 M01 01 83	3 CITY OF DALTON	CONASAUGA RIVER	344715 84523	10 23.5	24.4 2	5.0 24.	9 26.4	29.3	25. 4	11.4 EI	B. J. 20	5.6 26	2.24	9 26.	38
155 M01 01 -84	3 CITY OF DALTON	CONASAUGA RIVER	344715 84523	10 26.3	22°-0 2	7.1 27	0 29.1	30. 2	52° 8	63 63 63	7.7 2	9.0 20	.7 23	8 27	8
155 M01 03 80	3 CITY OF DALTON	MILL CREEK	344733 81583	19 0.31	0.32 0	.26 0.2	1 0.18	0.18	0.22 (3.30 0	31.0	35 6.	27 8.	24 6.	261
155 M01 03 81	3 CITY OF DALTON	MILL CREEK	344733 81583	33 B. 58	9.021	3.2.7.6	1.96	5.67	10.7	3.50 9	53.8	ι β	51 1.	3. 7.	926
155 M01 03 82	3 CITY OF DALTON	MILL CREEK	344733 81583	39 2.28	5.10 5	.63 4.6	8 5,53	5, 18	6.17	3.96 5	.48 6	. 10 J.	47 6.	88 5. I	969
155 M01 03 83	3 CITY OF DALTON	MILL CREEK	344733 81583	18.4 61	5.303	84 5.	27 5.59	3.11	5.25	3.52 6	.75 6	.08 6.	20 S.	39 5.	SS
155 M01 03 84	3 CITY OF DALTON	MILL CREEK	344733 81583	39 3.33	5.91 3	.404.	00 4.52	5.68	6.58	5.67 6	.88 5	.05 9.	03 5.	76 5.1	632
155 M01 D1 80	3 CITY OP-DALTON	DROWNING BEAR CREEP	344326 84568	11 22.3	19.01	5.016	0 16.0	17.7	16.5	19.71	1.0.1	7.5 15	6.7 18	.1 17	ų.
155 M01 D1 81	3 CITY OF DALTON	DROWNING BEAR CREEP	344326 84568	bi 16.4	21.02	1.8 22	9 20.0	23.0	21.1	23.8 2	1.4.1	8° 2	.3 28	55	51
155 M01 D1 82	3 CITY OF DALTON	DROWNING BEAR CREET	344326 84560	31 24.3	3 23.3 2	0.9 21.	4 21.8	21.4	13.2	19.01	8°3	ର ଚ ଚ	.5 25	.3 20	1, 76
155 M01 D1 83	3 CITY OF DALTON	DROWNING BEAR CREET	(344326 84566	M 23.5	33.52	1.7 22	6 19.8	18.2	14.5	20.01	∃•¢	2 2 2	. 7 15	4.19	
155 M01 D1 84	3 CITY OF DALTON	DROWNING BEAR CREET	(344326 84566	01 14.5	5 17.8 1	6.3 20	9 22.6	17.4	20.1	22.3	7.01	6.8 1	3.7 18	.1 18	្លះ
155 M01 D2 80	3 CITY OF DALTON	DROWNING BEAR CREET	(344451 8457;	31 7.36	0 7.30 6 7 :0 5	2 92	6 0.00 	6.00	89	3.60 7	4 93	89 97	ທີ່ ອີງ	8	660
155 M01 D2 81	3 CITY OF DALTON	DROWNING BEAR CREET	(344451 84573	31 6.34	5 40 C	10 5	CG 5, 80	6.50	6.30	5.10 5	. 50 5	60 4	20 3.	30 5. 30	308

E1 E2 E3 YE	GR H	YSU USER	STREAM NAME	LATITUDE	LONGITUDE	JAN FEB	MAR	APR	MAY	ICN D	nr u	ខា	8	NO.	DEC	ANNUR AVE	a
							-										ł
155 M01 D2 8 155 M01 D2 8	ងដ	3 CITY OF DALTON 3 CITY OF DALTON	DROWNING BEAR CREEK DROWNING BEAR CREEK	344451 344451	845731 845731	5.70 4.6 3.70 6.1	6 2 6 2 7 6	4.60 4.60	989 30 30 30	2007 2007 2007	- 70 4 + 60 4	56 4 30 5	.4 ມີ ອີດີ	10 3. 10 4.	ະ ນ ຍ ໃນ ເຊຍ	4 6	<u> </u>
B SU TOW AGE	<u></u>	3 CITY OF DALION A FITY DE DADIREUTLIF	DRUWNING BEAR CREEK AATHKOLAAGA CREEK	344451	845731 845630	5.80 5.3	10 10 10 10 10 10 10 10 10 10 10 10 10 1	ອ ອີ ເອີ	- 	4 70 1 0	5,10 5 2,00 5 2,00 5	9 6 9 6 9 6	20 20 20 20 20 20 20 20 20 20 20 20 20 2	88 19 19 19 19 19 19 19 19 19 19 19 19 19	6 4 6 7 6	ച് പ് പ് പ്	
668 M01 D1 8	82	4 CITY OF ADAIRSVILLE	OTHKALOOGA CREEK	342225	845630	0.22 0.2	1 2 9 9	0.15	6. 22 6. 25	a. 17	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50 6. 50	19 19 19	19 61	າ ດີ ດີ ດີ	່ .	38
008 M01 D1 8	33	4 CITY OF ADAIRSVILLE	OOTHKALOOGA CREEK	342225	845630	0.19 0.1	9 0.19	0.21	0.19	0.18	0.18 0	.17 0	19 8.	17 0.	5 0.1	8 0.11	ä
008 M01 D1 8	*	4 CITY OF ADAIRSVILLE	DOTHKALDOGA CREEK	342225	845630	0.18 0.2	0 0.20	0.18	0.17	ð. 19 (9.20 Ø	.17 0	.19 0.	19 8.	0.0.1	8 6.11	ജ
057 103 01 B	ល្អ	4 BURLINGTON IND-BRIGHTON	WOODWARD CREEK	342052	850555	0.35 0.4	1 9.3	6.43	8. 39	0.34 (0.34 0	.43 8	.33 0.	38 6.	36 8.3	1 0.3	33
057 103 01 E	ខ្លះ	4 BURLINGTON IND-BRIGHTON	WOODWARD CREEK	342052	850555	0.32 0.2	5 0.25	0.29	0.35	a. 33 (9.36 0	.38 0	.39 0.	38 0 .	86 0. 3	6 6 1	3
057 103 01 E	*	4 BURLINGTON IND-BRIGHTON	WOODWARD CREEK	342052	850555	0.23 0.2	6. 10 10 10 10 10 10 10 10 10 10 10 10 10	0.44	6.43	8.46	0°33 0	.31 0	.31 0.	31 8.	3.0.2	8 0°.3	ę.
057 NG2 UI 2 057 NG2 UI 2	36	4 FLUYD CUUNIY WHIER SYSIEM 4 FLUYD COUNTY WOTFP SYSTEM	CONSO RIVER	341301	851842 851842	0.48 0.5	9 9 9 9 9 9) 0.66	0.45 2,45	9 . 31	9.28 28 9	86.95	31 0. 31 0.	40 00 00 00 00	4 U 6 0 7	547 69 0 69 1	33
057 M02 D1 8	, 0,) 0	A FLOVE COUNTY WOLFR SYSTEM	CODSA RIVER	341301	851842	8. JC 8.		9 4 4 6 9 4 4 4	10.01 0.01 0.01	0.01	9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0	9 92 ° 6	57 6°.	ຊີ່ອີ່ອ ນີ້ຄ	200	ອັຍ ອີຍ ດັບ	\$ ¥
057 MG2 D1 B	: ;;	4 FLOVD COUNTY WOLFR SYSTEM	CODSA RIVER	341301	851.842	8.61 0.7		P. 0. 75	9.57	0.49 10 10 10 10		ອ 6 ບ ທີ	9 6 9 7	3 6 7 6		10 10 10 10	្ទទួ
057 M02 D1 8	33	4 FLOYD COUNTY WATER SYSTEM	COOSA RIVER	341301	851842	0.77 0.5	5 6 2	0.63	0.56	33.33	9.44 B		32.0				8 12
057 MO2 D2 8	98	4 FLOYD COUNTY WATER SYSTEM	SILVER CR TRIBUTARY	341904	850625	0.39 0.4	1 0.5(3 0.45	0.33	0.48	0.56 0	62.	31 6.	30 0.	36 0.2 36	4 0 4	ដ
057 M02 D2 E	81	4 FLOYD COUNTY WATER SYSTEM	SILVER CR TRIBUTARY	341904	850625	0.24 0.4	4 0.3	6.53	0.25	8.33 (3.32 0	. 25 0	8 8.	22 0.	1.8.2	9 9 3	ត
057 M02 D2 E	싫	4 FLOYD COUNTY WATER SYSTEM	SILVER CR TRIBUTARY	341904	850625	0.39 0.4	14 G. 5	8 0.53	0.25	0.33	ð. 33 g	. 25 0	27 0.	22 0 .	26 0.8	3 0.3	ħ
057 MO2 D2 E	83	4 FLOYD COUNTY WATER SYSTEM	SILVER CR TRIBUTARY	341904	850625	0.44 0.5	28 0° 4′	3 0.64	0.64	0.49	a. 60 0	.57 0	.49 0.	43 0.	50 0.7	න ම බ	ដ
057 M02 D2 6	84	4 FLOYD COUNTY WATER SYSTEM	SILVER CR TRIBUTARY	341904	850625	8.78 0.7	6 0.7	9 0.77	0.83	0.60	a.59 @	.80 0	54 0.	56 0.	56 0.6	3.0.5	11
057 M02 D3 E	88	4 FLOYD COUNTY WATER SYSTEM	I WARD C-DOSTANAULA R	342000	850500	0.28 0.6	8.9.3	i 0.23	0 .22	0.17	a.11 @	. 10 0	.12 0.	23 0.	3 0.1	9 0.2	ц
057 M02 D3 E	81	4 FLOYD COUNTY WATER SYSTEM	I WARD C-OOSTANAULA R	342000	850500	0.13 Q. 3	34 0.21	5 0.26	0.18	0.22	0.14 0	.15 0	.13-0-	.	12 0. 8	4 0.1	37
057 M02 D3 6	പ്പും	4 FLOYD COUNTY WATER SYSTEM	I WARD C-DOSTANAULA R	342000	850500	0.35 0.3	20.3	3 0.33	0.19	0.14	0.13 0	.13.0	10 0.	07 0.	09 6.1	8 8.1	8
1 50 200 /CD	20	4 FLUYU UUUNIY WHIEK SYSIEM A CLOVD PONNY NATED CVETEN	HHAD C-UUSTANAULA R	242000	0000000	0.1/0.5	ດີ ເ ອີ ເ ດູ	ດ ເຊິ່ງ ເຊິ່ງ	51 52 52 52	2 2 2 2 3 3	0.15 0		i L L L L L	ខ្មុំ	0 2	ີ ເອື້ອ ເອົາ	88
DOT MONE DI F	5 8	A CTU COURT WHILE JUSTER	DIGTONDII D RIVER	341605	851026	0.50 G.0	មើម ទើម ៩ន	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 F 2 F	010	0° 10 6	2 4	9 7 7 7 7 7	130 G		9 0 9 0 7 0	à d
057 M04 81 8	ន	4 CITY OF ROME	DOSTANAULA RIVER	341605	851026	6.40 6.1	86.1 1	5 6.19	7.23	7.41	7.98.8	82 7	, 26 7 8	46 6. 46 6.		2 2 2	8
021 W04 01 X	84	4 CITY OF ROME	DOSTANAULA RIVER	341605	851026	7.38 7.3	33 7.6	3 7.45	7.66	85	908	.33 8	53 53	23 7.	3 7 3	7 7.8	19
064 I04 D1 8	80	4 GOODYEAR TIRE AND RUBBER	OOTHKALOOGA CR	342742	845628	0.11 0.1	1 0.2	9 0.16	0.17	0.05	0.07 0	1.14 0	.11.0.	07 0.	34 8.6	4 8.1	9
064 104 D1 8	81	4 GOODYEAR TIRE AND RUBBER	оотнкагообя ск	342742	845628	0.04 0.	13 0.1	2 0.10	0.12	0.12	0.11 0	0.12 0	0 60	14 8.	11 0.5	1 0.1	17
064 I04 D1 1	85 B2	4 GOODYEAR TIRE AND RUBBER	оотнкацоова ся	342742	845628	0.03 0.2	23 6.1	3 0.10	0.07	0.10	0.07 0	0.09 0	.06 0.	07 0.	14 0.6	9.9.9	g
064 104 D1 8	83	4 GOODYEAR TIRE AND RUBBER	DOTHKALOOGA CR	342742	845628	0.11 0.	12 0.0	7 0.13	0,10	0.05	0.03 (0.05 0	.0 60 .	84 8.	06 0. 1	40.0	82
064 104 D1	84	4 GODYEAR TIRE AND RUBBER	DOTHKALDOGA CR	342742	845628	0.15 0.	-i - 	4 0.08	0.63	0.00	0. 11 (0. 17 Q	. 08 0.	13 0.	-0-60		8
064 M01 01 0 064 M01 01 0	98 98	4 CITY OF CALHOUN	CONTRANCIA RIVER	343056	845716 845709	7.32 7.1	36 7 3	4 7.32	7.23	7.18	7.50	9.67 E	6 52 d	6 12 21 21	80 8° 8°	2 B. B	13
064 M01 02	8 8	4 CITY OF CALHOUN	COOSAWATTEE RIVER	343109	845708	8. 23 9. 6	1999 1997	4 8.65 4 8.65	1 19 1 19 10	6.73 8.73	ງ 1 2 2 3 3 5 3 5 5	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	9 6 9 69 9 69	9 66 9 66	9 - 4 4 - 4	വേഷം മീമ് കേഡം	2 3
									,							1	ļ

G**-**3

NNUAL RVG		8.054	8.845	10.01	5.008	4.938	5.580	5.937	6.205	0.014	0.017	0.020	0.045	0. 627	0.026	0.009	0.003	0.001	0.193	0, 020	0.002	0.003	0.118	0.118	0.101	0.167	0.186	c, 359	2.359	2.312	0.246	0.343	0.379	e. 395	0.505	0.276	0.176
DECA		7.32	8.94	9.28	4.74	4.61	7.24	7.19	5.88	0.01	0.01	0.02	0.03	0.02	0.02	0.00	0.06	0.00	8.00	0.03	¢	0.00	ę	0.14	ģ	0.16	0.19	ររ ក	2.27	2. 17	0.41	0.37	0.49	0.65	0.50	0.18	6 .22
NDN		8.13	9.20	10.1	4.83	3, 90	6.55	6.67	5.03	0.01	0.01	0.02	0.03	0.01	0.02	0.00	0.00	0.00	ę,	0.02	4	0.00	0.07	0.13	0.07	0.20	9 .21	22 23	2.17	2.28	0.46	0, 29	8. 39	0.36	0.46	0.28	22 8
CT		8.31	9.85	11.2	4.91	4.22	4.65	5.63	5.68	0.02	0.02	0.02	0.04	0.03	0.02	0.00	0.01	0.00	0.00-	0.02	¢	8.00	0.10	0.03	0.04	0.17	8 8	ы С	2 . 23	2.55	0.50	0.32	0.33	0.28	0. 39	0.27	8.25
6D		8.70	9.82	10.6	4.20	4.75	4.47	6.05	5.47	0.01	0.02	0.00	0.04	0.03	0.02	ė	0.00	6.60	0.61	÷	0.00-	0.01	0.08	0.05	0.01	0.16	ເລ ອ	2. 41	2.27	2.41	0.23	0. 32	0.26	0.30	0.42	0,26	0.19
BUF		8.86	10.8	11.0	4.52	4.82	4.73	6.10	6.01	0.02	0.02	0.03	0.04	0.01	0.03		0.00	0.00	0.61	e I	0.00	0.01	0.17	6. 21	0.11	-	8. 21	2° 42	2.70	2.2 2	0.24	0.35	0.28	0.26	0.55	0.27	0.15
30		7.60	8.25	9.17	3.43	4.48	3.46	3.97	5.06	0.02	0.03	0.03	0.04	0.04	0.03	י چ	0.00	0.00	0.61	0.00-	0.00	0.01	0.14	0.03	0.13	0.17	0.19	2.40	2.56	2. 33	0.26	0, 33	0.28	0.28	0.81	0.28	0.06
NUC		8.45	9.17	10.5	4.09	5.40	4.68	5.69	6.11	0.02	÷	0.03	0.04	0.03	0.03	0.01-	0.00	0.00	0.06	0.00	0.00	0.01	4	0.06	0.03	0.17	0.18	e. 53	2.46	2. 52	0, 02	0.36	0. 29	0.30	0.40	0,28	0.05
МАУ		7.38	8.53	10.0	5.73	4.96	4.95	5.46	7.32	0.02	, ė	0.02	0.04	0.03	0.03	0.01	0.00	0.00	0.06	4	0.00	0.60	ę	0.03	0.08	0.16	0.18	2.36	5° 33	2. 32	0.03	0, 35	0.36	0, 38	0.63	0.30	0.05
ЯрR		7.59	7.88	9.78	6.77	5.79	6.06	6.33	7.63	0.02	0.02-	0.02	0.04	0.01	0.02	0.01	0.00	0.00	0.06		0.00	0.00	ģ	0.03	0.12	0.16	0.16	22 23 24	88 73	2. 13	ę	0.34	0.53	0.48	0.57	0.25	0.15
MAR		8.07	8. <u>2</u> 2	9.44	7.35	5. 75	6.18	6.58	11-1	0.02	0, 02	0.02	0.05	0.04	0.03	÷	0.00	0,00	0.04	0.00-	4	0.60	0.17	0.13	e. 14	0.15	a. 17	P. 34	S S	r. 22	0.29	0.40	0.34	0.41	0.42	6. 33	9.25
EB		8.10	7.93	9.61	5, 22	6.39	7.50	6.20	6.56	0.01	0.01	0.02	0.06	0.04	0.03	ę	0.00	0.00	0.04	0.05	4	0.00	0.09	0.21	0.18	0.14	0.16	3	2.37	2.24	0.03	÷	0.44	0.62	0.43	6. 32	6 , 28
JAN		7.57	7.51	9.36	4.27	4.20	6.41	5.33	6. J	0.01	0.01	0.02	0.05	0.03	0.04	\$	0.00	0.00	9.04	0.03	4	0.00	0.07	0.13	0. 50 50	0.19	0.16	2. 38	2. 37 2.	P. 30	0.19	ę	0.58	0.46	0.47	0.32	0, 24
ONGITUDE		845708	845708	845708	845805	845805	845805	845805	845805	845522	845522	845522	- -	-9-	ę	4	-0-	-0-	-0-	-0-	-0-	-9-	842349	842349	842349	842830	842830	842921	842921	842921	842933	842933	842933	842933	842933	843008	843008
LATITUDE L		343109	343109	343109	343036	343036	343036	343036	343036	342444	342444	342444	-0-	-9-	- 9-	ę	-9-	4	÷	-0-	-8-	-0-	341809	341809	341809	341606	341606	341428	341428	341428	341429	341429	341429	341429	341429	341354	341354
STREAM NAME		COOSAWATTEE RIVER	COOSAWATTEE RIVER	CODSAWATTEE RIVER	DOSTANAULA RIVER	DOSTANAULA RIVER	DOSTANAULA RIVER	DOSTANAULA RIVER	OOSTANAULA RIVER	TRIB DOTHKALOOGA CK	TRIB OUTHKALOOGA CR	TRIB OOTHKALOOGA CR	UPPER ETOWAH RIVER	UPPER ETOWAH RIVER	UPPER ETOWAH RIVER	ETOWAH RIVER	ETOWAH RIVER	ETOWAH RIVER	ETOWAH RIVER	ETOWAH RIVER	ETOWAH RIVER	ETDWAH RIVER	ETOWAH RIVER	ETOWAH RIVER	ETOWAH RIVER	HICKORY LOG CREEK	HICKORY LOG CREEK	ETOWAH RIVER	ETOWAH RIVER	ETOWAH RIVER	ETOWAH RIVER TRIB						
U USER		+ CITY OF CALHOUN	DOT-SAFETY REST AREA #34	+ DOT-SAFETY REST AREA #34	+ DOT-SAFETY REST AREA #34	GAMP F D MERRILL	S CAMP F D MERRILL	CAMP F D MERRILL	CAMP F D MERRILL	CAMP F D MERRILL	5 CAMP F D MERRILL	CAMP F D MERRILL	5 CAMP F D MERRILL	COMP F D MERRILL	CAMP F D MERRILL	GOLDKIST INC	S GOLDKIST INC	GOLDKIST INC	S CANTON TEXTILE MILLS	S CANTON TEXTILE MILLS	S CITY OF CANTON	5 CITY OF CANTON	S CITY OF CANTON	S CITYS OF CANTON	S CITY OF CANTON	5 CITY OF CANTON	5 CITY OF CANTON	S CITY OF CANTON	5 CITY OF CANTON	S CITY OF CANTON							
AR HYS		ັ ດ	m M	4	69	-	้ณ	m	4		-	4	ŝ	m	4	8		ເບ		n.	8	ณ	8		4	ณ	ŝ	n,	~	4	8	-	Q	5	4	9	
E3 YEI		8 2 8	ය ස	8 80 80	D1 8	D1 8	D1: 8	D1 8	D1 8	D1 8	D1 8	D1 8	6 1 8	01 8	61 8	D1 8	D1 8	D1 -8	р 20 8	05 8	D3 B	D3 8	D1 8	D1 8	91 8	8 1 B	01 8	6 1 8	01 8	0 1 B	D1 8	D1 8	D1 8	Di E	D1 6	50	D2 D2
11 21	·	064 M01	964 M01	064 M01	064 M01	064 N03	964 N03	064 N03	1 20N 268	20N 260	003 N07	79N 569	1 79N 566	293 N07	20N 260	093 N07	093 N07	093 N07	028 103	028 103	028 I03	028 104	028 104	028 M02	628 M92	028 M02	028 M02	028 M02	628 M02	028 M02	028 M02	028 M02	028 M02				

G-4

Y JUN JUL RUG SEP OCT NOV DEC AVG	34 8.04 8.83 8.88 9.88 8.83 8.81 8.88 8.81	03 0.04 0.01 0.04 0.03 0.01 0.03 0.04 0.032	04 0.04 0.07 0.04 0.02 0.04 0.04-0- 0.036	01 0.02 0.04 0.05 0.05 0.04 0.04 0.07 0.042	31 0.62 0.11 0.22 0.18 0.00 0.31 0.51 0.249	84 0.52 0.40 0.40 0.31 0.40 0.84 0.84 0.615	06 0.15 0.06 0.07 0.00 0.00 0.06 0.13 0.052	41 0.41 0.09 0.15 0.15 0.00 0.07 0.49 0.195	71 0.74 0.74 0.79 0.79 0.71 0.73 0.77 0.747	71 0.69 0.76 0.73 0.66 0.77 0.85 0.91 0.717	08-6- 0.08 0.08 0.02 0.13 0.01 0.10 0.058	09 0.10 0.10 0.08 0.13 0.11 0.10 0.11 0.102	11 0.11 0.12 0.10 0.08 0.08 0.08 0.07 0.07	04 0.05 0.06 0.07 0.05 0.05 0.07 0.05 0.055	20-0- 0.20 0.03 0.10 0.13 0.01 0.13 0.113	01 0.00 0.01 0.00 0.01 0.13 0.11 0.11 0.	11 8.12 8.18 8.89 8.87 8.87-8- 8.88 8.897	07 0.07 0.07 0.09 0.06 0.09 0.09 0.07 0.075	67 5.72 5.46 6.43 6.25 5.75 5.57 4.55 5.383	24 6.11 6.38 6.84 6.01 5.83 5.64 5.47 5.701	71 0.71 0.70 0.77 0.71 0.65 0.60 0.57 0.698	73 0.75 0.63 0.61 0.45 0.54-00- 0.598	03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0	03 0.03 0.02 0.03 0.03-0- 0.02 0.03 0.028	03 0.07 0.03 0.05 0.02 0.11 0.09 0.12 0.070	06 0.05 0.05 0.00-0- 0.05 0.06 0.10 0.060	63 0,00 0,00 0,00 1,99 0,00 0,00 0,00 0,393	10 0.03 0.00 0.00 0.05 0.01 0.00 1.63 0.476	1, 1 31.5 34.8 31.8 30.5 25.8 21.1 22.2 26.98	1.8 32.0 34.2 27.3 26.6 27.7 22.0 19.3 25.64	1,6 23.6 24.2 22.6 21.7 20.2 20.6 19.4 20.36	1, 5 30, 2 33, 0 32, 7 28, 7 27, 8 22, 8 23, 9 25, 59		4 8 35.6 29.7 31.8 34.5 33.5 30.9 26.6 28.77
	10.040.0	5 0.04 0.0	3 0.64 0.6	9 0.02 0.0	2 0.31 0.3	1 0.84 0.8	6 0.06 0.0	5 0.41 0.4	-0- 0.7	4 0.54 0.7	-0- 0.0	3 0.11 0.0	1 0.11 0.1	7 0.06 0.0	-0- 0.2	1 0.00 0.0	10.110.1	6 0.08 0.0	6 5.23 5.6	7 5.56 5.2	1 0.69 0.7	5 0.60 0.7	3 0.03 0.0	13 0.03 0.0	8 0.63 0.6	2 0.05 0.0	0 0.00 1.6	10 0.30 0.1	4 25.1 30.	4 27.3 25.	6 15.4 20.	2 21.2 23.	2 25.2 28.	
JAN FEB MAR	0.01 0.01 0.0	0.04 0.03 0.0	0.05 0.02 0.0	-0- 0.03 8.0	0.22 0.00 0.2	0.84 0.00 1.0	0.00 0.00 0.0	0.00 0.00 0.1	-000-	0.71 0.65 0.6	-000-	-0- 0.08 0.1	-0- 0.11 0.1	0.05 0.05 0.0	-000-	0.16 0.00 0.0	0.10 0.12 0.1	0.07 0.09 0.0	5.14 5.09 5.1	4.53 5.34 5.4	0.69 0.89 0.7	0.58 0.55 0.5	0.03 0.03 0.0	0.03 0.03 0.0	-00- 0.1	0.07 0.12 0.1	0.00 0.00 1.1	0.00 3.60 0.0	23.0 23.5 24.	21.5 21.3 22.	18.1 19.3 18.	20.8 20.7 21.	23.4 22.8 22.	
LONGITUDE	840741	840741	840741	840741 -	842013	842013	842201	842341	842353 -	842353	842600 -	842600	842600 -	842600	842600 -	842600	842600	842600	844344	844344	843008	843008	843045	843045	843045	843045	-9-	\$	844234	844234	844234	844234	844234	
	342443	342443	342443	342443	342539	342539	342434	(342248	342803	342803	342700	342700	342700	342700	342700	342700	342700	342700	340953	340953	341131	341131	340554	340554	340554	340554	-9-	ġ	340546	340546	340546	340546	340546	
STREAM NAME	FLAT CREEK	FLAT CREEK	FLAT CREEK	FLAT CREEK	EAST BR LONG SWAMP (EAST BR LONG SWAMP (LONG SWAMP CREEK	SHARP MOUNTAIN CREET	LONG SWAMP CREEK	LONG SWAMP CREEK	HAMMONDS CREEK	HAMMONDS CREEK	HAMMONDS CREEK	HAMMONDS CREEK	TOWN CR (POLECAT CR	TOWN CR (POLECAT CR	TOWN CR (POLECAT CR	TOWN CR (POLECAT CR	LAKE ALLATOONNA	LAKE ALLATOONNA	BLANKETS CREEK	BLANKETS CREEK	RUBES CREEK	RUBES CREEK	RUBES CREEK	RUBES CREEK	NUUNDHY CR	NOONDAY CR	TH LAKE ALLATOONA	TH LAKE ALLATOONA	TH LAKE ALLATOONA	TH LAKE ALLATOONA	TH LAKE ALLATOONA	
	ITY OF DAWSONVILLE	ITY OF DAWSONVILLE	ITY OF DAWSONVILLE	ITY OF DAWSONVILLE	EDRGIA MARBLE COMPANY	EORGIA MARBLE COMPANY	EDRGIA MARBLE COMPANY	EORGIA MARBLE COMPANY	ITY OF JASPER	ITY OF JASPER	ITY OF JASPER	ITY OF JASPER	ITY OF JASPER	ITY OF JASPER	ITY OF JASPER	ITY OF JASPER	ITY OF JASPER	ITY OF JASPER	ITY DF CARTERSVILLE	ITY OF CARTERSVILLE	ENTRAL SOYA OF ATHENS	ENTRAL SOYA OF ATHENS	ITY OF MODDSTOCK	ITY OF WOODSTOCK	ITY OF WOODSTOCK	ITY OF WOODSTOCK	ULCHN AHIEKIHLS UU	JLCAN MATERIALS CO	DBB CO MARIETTA WAT AU	DBB CO MARIETTA WAT AU	OBB CO MARIETTA WAT AU	JBB CO MARIETTA WAT AU	JBB CO MARIETTA WAT AU	
	ن ہ	6 0	2 9 8	ິ ອ	6 6	90	1 6 6	66	ن ص	3	0 9 9	9	0 9 8	4 6 0	0 9	1 0	0 9 8	19	~ ~	20	3 ~ 3	4 70	0 ~~	1 40	3 7 0		~		2	1 7 0	0 ~	3 7 0	0 ~-	
ו בכ בי לבו וייי	142 m01 D1 86	042 M01 D1 81	842 M01 D1 85	042 M01 D1 84	112 IØ1 D1 B1	112 IØ1 D1 8ć	112 101 D2 81	112 101 D3 81	112 M01 01 86	112 M01 01 80	112 M01 D1 B(112 M01 D1 8	112 M01 D1 8.	112 M01 D1 84	112 M01 D2 B(112 M01 D2 81	112 M01 D2' B.	112 M01 D2 84	008 M02 01 82	008 M02 01 8.	028 101 D1 8	028 101 D1 84	028 M03 D1 BI	028 M03-D1 8.	028 M03 D1 8.	028 M03 D1 8	633 101 DI BI	033 101 D1 8	033 M01 01 81	033 M01 01 8	033 M01 01 8	033 M01 01 8.	033 M01 01 8-	

AVG	0.037 0.410	8. 323	1.572	1.619	2.032	3, 152	0.015	0.014	0. 038	0.024	0.009	0.010	0.050	0.017	0. 423	0.405	8. 442	0.440	8.464	0.133	0, 102	0.149	6,140 0,140	9.341 9.341	007 0	e. 4 30 6. 669	0.828	1.159	1.535	1.500	1.360	1.268 0.973
ы Б С	0. 04 0. 32	de de	1.53	.	3.80	3.80	0.0	4	0. 03	0.03	0.01	ę	0. 16	0.09	9 33	0.44	e, 51	0.58	0.46	0.18	0.12		6.23	9.30		6 8 9 9	0.90	1.20	2.35	1.03	м. 7	-6-
AD	0.0 2 0.36	Ļ	1.57	- 	2.80	2°20 2°20	9.91	; ;	0, 03	0 .02	0.01	4	0.01	0.01	6 .35	8 .39	0.43	0.54	0.43	0.11	0.13	6. 17	6. L1 0	9 4 6	i S e	-0- 0.60	0.92	1.20	1.73	1.14	2 2 2	0.95
IJ	0.03 0.37	-	1.51	- -	1.75	5.30		} ; .	0.03	0.02	0.01	ę	0.02	0.01	0.41 2.22	6. 39	0,42	0.36	0.46	0.12	0.11	\$	8 8 1 8			0.83	0.97	1.04	1.81	1.26	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	86
E1	0. 03 0. 33	4	1.36	Ļ	1.60	3.4 6 3.46		; ; ;	0.03	0.04	0.01	ģ	0.01	0.01	0.41	0.43	0. 39	0.30	0.44	0.11	6. 6 9	9.14	0.16 1.15	1 2 6		0.83 0.83	0.89	1.28	1.46	8 .88		0.53 0.98
BUG	0. 03 0. 31	-0	2.18	-	1.90	2.90		; ; ; ;	0.01	0.03	÷	0.01	0.01	0.01	0.38	0.41	0.43	e. 39	0.51	0.08	0.09	0.14	0,13	3 8 8		5 ¢	1.00	1.11	1.93	1.05	1.1	20.0
Ę	0. 03 0. 32	0.29-	1.04	1.40-	1.87	3.00		6. 65. 65.	0.01	0.02	0.01-	0.01	0.01	0.01	0 .35	0.36	0.42	0.37	0,48	0.10	0.09	0.15	8 2 2 2 2 2 3	34.0	5 6	9 8 8	0.90	0.72	1.19	1.23		1.73 0.98
N	0. 63 0. 38	0.31	1.48	1.74	2.00	3.22		0.03	0.06	0.01	0.01	0.01	0.00	0.01	0.41	0.42	0.40	0.42	0.43	0.16	0.12	0.14	0,16 0,15	6 13 9 9		\$ \$	1.80	1.37	1.62	8 8	1.07	0.95
MAY	0.84 0.51	0.34	1.39	1.53	2. 11 2. 11	3.30		0.01	0.05	0.04	0.01	0.01	0.00	0.02	0.44	0,42	0.41	0.47	0.48	0.16	0.13	0.16	ې م	น น	2 4 5 6	8 8 8 8	1.10	1.45	1.97	1.62	0.75	0.97
HDH	0.66 0.52	0.32	1.58	1.78	2. Ø1	3.56		9. 01 0. 01	0.05	0.01	÷	0.02	0.16	0.01	0.49	0.42	0.50	0.50	0.44	0.20	0.10	0. 12		61 -0-	, ,	6.82 .82	1.10	1.19	1.20	ۍ.38 ۱	11	6.33 6.33
MAR	0.03 0.54	0.34	1.32	1.69	2.09	3.40		e. 01	0.05	0.03	0, 02	0.01	0.16	0.04	0.61	0.43	0.43	0.48	0.45	0.22	0.07	0.08	; 	-0-	- - -	9 82 8 82	1.10	1.20	1.20	0.85	1.1	1 - 40 1 - 40
Ē	0.06 0.48	0.35	1.54	1.73	8	3.40		0.01	0.07	0. 03	0.01	÷	0.05	0.01	0.39	0.44	0.49	0.45	0.46	0.12	0.03	0,26	; ¢	-9-17 -9-17		8 8 8 8 9 9 9 9 9 9	0.00	2.11	21.20	8 n. 07	ະ 	51.46 1.60
JAN	0.06 0.47	0.32	1.76	1.46	1.88	3.14		0.01	0.05	0.02	0.60	0.01	0.01	0.01	0.48	9 .33	0.47	ð. 44	0.54	8. 13	0.03	0.15	: • •	71 °0 0	5	-9- -9- -9-	0.0	1.10	0.76	ini m	М -1	200 H
DNGTTUDE	843210 843210	843210	843213	843213	843213	843213 643213	843839	843839	843839	843839	843929	843929	843929	843929	844119	844119	844119	844119	844119	842528	842528	842528	846368	846368	001110	844700	844700	844540	844540	844540	844540	844540 844707
LATITUDE L	340405 340405	340405	340419	340419	340419	340419 240419	540042	340229	340229	340229	340218	340218	340218	340218	340500	340500	340500	340500	340500	340624	340624	340624	540624	340624 26.0000	000010	340800	340800	340941	340941	340941	340941	340941 340828
STREAM NAME	Nodnday Creek Nodnday Creek	NOONDAY CREEK	NOONDAY CREEK	NOONDAY CREEK	NDONDAY CREEK	NOONDAY CREEK	RUTHER CREEK	BUTLER CREEK	BUTLER CREEK	BUTLER CREEK	BUTLER CREEK	BUTLER CREEK	BUTLER CREEK	BUTLER CREEK	TANYARD CREEK	TANYARD CREEK	TANVARD CREEK	TANYARD CREEK	TANVARD CREEK	LITTLE RIVER	LITTLE RIVER			LIHLE KIVER STOUAD DIVED		ETOWAH KIVER ETOWAH RIVER	ETOWAH RIVER	ETOWAH RIVER	ETOWAH RIVER	ETOWAH RIVER	ETOWAH RIVER	ETOWAH RIVER ETOWAH RIVER
	TA WAT AUTH TA WAT AUTH	TA WAT RUTH	TA WAT AUTH	TA WAT AUTH	TA WAT AUTH	TR WAT AUTH	TO LOT OTTO	TA WAT AUTH	TA WAT AUTH	TA WAT AUTH	TH WAT RUTH	TA WAT AUTH	TH WAT AUTH	TR WAT RUTH	æ	F	E	H	E							MAN COMPANY	MAN COMPANY	OCHRE CO	OCHRE CO	OCHRE CO	OCHRE CO	OCHRE CO UCTS CORP.
USER	BB CO MARIET BB CO MARIET	BB CO MARIET	BB CO MARIET	BB CO MARIET	IBB CO MARIET	IBB CO MARIET	THE CU MORIE	IBB CO MARIET	DBB CO MARIEI	IBB CO MARIET	IBB CO MARIEI	IBB CO MARIET	IBB CO MARIEI	IBB CO MARIEI	TY OF ACWOR	ITY OF ACWORI	ITY OF ACWOR	ITY OF ACMORI	ITY OF ACWOR	JLTON COUNTY	JLTON COUNTY	JLTON COUNTY	JLIUN CUUNIY	JLTON COUNTY	NUTA NOCANOL	HUMPSON WIEN	HOMPSON WIEN	EW RIVERSIDE	EW RIVERSIDE	EW RIVERSIDE	EW RIVERSIDE	EW RIVERSIDE HEMICAL PROD
VSU	7 22	5	7 00	7 55	и Ч	25	5 E	5 B	7 С	7 5	հ Մ	ч С	7 01	7 0	7 C.	5	С ~	70	10	7	1		і I ~ I	ш F г. с	- F 0 4		0	8 8	8 8	8	8 8	ຂບ ∞ စ
ЕАК Н	84 80	81	80	81	റ്റ	83 83	5 2	3 2	83	84	98	81	83	84	80	81	പ്ല	83	84	98	81	<u>ଧ</u> ୍ୟ :	2 2	4 4 6	8 3	83	48	80	81	പ്പ	83	84 81
E3 Y	2 M	4	9C	8	g	88	g 2	38	60 2	50	а 14 14	5 E4	а Та С	а Т	3 D1	3 D1	3 D1	3 D1	3 D1	5 04	2 DF	5 D4	ສີ. ກ	2 2 2 2 2	4	2 2	1 2	5 01	5 D1	5 D1	5 D1	5 D1 6 D1
E	033 M02 033 M02	033 M02	033 M02	033 M05	033 M05	033 M06	0011 000 012 M012	033 M02	033 M05	033 M05	033 M06	033 M05	033 M05	033 M06	033 MO.	033 M03	033 M0.	033 M0.	033 M0.	060 MO!	060 M0.	060 M01	666 MG	060 M0	01 000	008 10 008 10	008 10	101 800	008 I 0	008 10	908 IQ	008 I0 008 I0

G**-6**

AVG		6. 154	2. 125	2.083	2.000	1.776	2.043	2.865	2.691	3.588	3.478	3.521	0.065	8.068	0.113	0.247	0.101	0.500	0.371	0.419	0.537	8.829	2.268	1. 925	2.208	2.4 77	2.917	0.041	0.038	0.171
н С Ц		0.17	1.80	2. 10	2.30	P. 80	1.90	2°50	2.40	3.80	3.70	2.49	0.06	0.06	0.20	0.25	0.05	-	8. 39	0.25	0.75	8. 83	1.23	25 25	3.10	4.11	1.55	0.04	ę,	0.04
NON		6.14	1.80	1.50	1.80	2.00	1.80	c. 38	2.40	3.98	4.00	2, 92	0.07	0.07	0.25	0.25	0.05	8. 52-	0.49	0.27	0.81	0.79	1.51	2. 03	2.37	2, 60	1.87	0.04	0.04-	6° 30
130		0.17	1.90	2.00	1.60	1.60	1.90	2.60	8°.50	3, 30	3.30	3. 23	0.06	6.07	0.13	0.27	0.05	-9	0.32	-0-	0.88	0.96	1.34	1.79	1.63	1.88	2.77	0.04	0.04	6. 38
멼		0.17	1.80	2, 00	1.70	1.70	1.90	2. 70	5, 90	3, 30	3.20	3, 70	0.06	0.07	0.13	0.24	0.05	0.51-	0.27	6. 43-	0.81	e. 72	2.00	1.82	1.56	I. 91	e. 39	¢	0.04	ģ
BUG		0.14	1.60	1.90	1.80	1.80	2.40	3.20	2.80	3.40	3.18	4.14	0.97	0.07	0.18	0.23	0.05	0.48	0.48	0.27	0.74	0.83	1.76	2.07	1.72	1.95	3, 38	0.04-	0.04	9 9 9
19		0.14	1.60	1.70	1.50	1.60	2. 10	2 . 50	1.80	3.60	2.0 8	3.34	0.08	0.07	0.07	0.25	0.05	0.47	0.50	0.26	0.53	0.81	1.50	ę	1.67	1.84	3.82	0.04	0.04	0.04
NDC		0.14	1.70	කි ද	1.80	1.80	2.10	2,60	2.60	5.50	3.48	3.38	0.06	0.08	0.07	0.25	0.05	0.51	0.35	0.45	0.41	0.71	2.12	1.88-	1.71	2. H	2.57	0.06	0.04	0.40
MAY		0.14	2.60	2. 10	2.30	1.70	2. 20 20	3, 20	2.68	3,90	3, 30	4.03	0.06	0.03	6.07	0.25	0.05	0.51	0.32	0.51	0.38	0.88	2. 93	1.47	1.81	2. 67	3.78	\$	0.04	0.05
ВРЯ		0.14	3, 30	3.20	2,68	1.80	2.30	3.20	3.00	4.00	3.50	4.10	0.06	0.06	0.06	4	0.10	0 , 52	0.00	0.46	0.36	0.78	3.06	1.83	5°5	2.84	3.37	0.05	0.04	0.65
MAR		0.17	5, 9 0	2.00	2. 10	1.70	5. 00 1	3.40	2, 60	4.20	4.12	3.94	0.07	0.06	0.07	0.25-	0.24	0.50	0.00	0.60	0. 25	0.86	3, 93	1.90	ა. წ	2, 45	3.27	0. 65	0.04	ę
EB		0.21	ь. 3 9	2.70	2.50	1.50	1.90	3.30	3 3 3	3. 30	4.56	3.69	0.07	0.06	0.06	0.26	0.24	0.50	e. 50	0.51	e. 26	0.91	3, 03	2, 60	3.18	2.89	3, 36	0.06	0.04	0.64
NBL		0.14	2. 20	1.80	5. 20 2	1.90	с, 00 г.	3.10	2°-20	3.10	3.44	З. Ж	0.07	0.06	8.07	0.22	e. 25	0.49	e. 51	0.51	e. 25	0. 86	ĉ. 83	1.26	3. 12	5° 5'	3.67	0,00	0.04	0. 45
DNGITUDE		852333	852033	852033	852033	852033	852033	851824	851824	851824	851824	851824	851759	851759	851759	851759	851759	851843	851843	851843	851843	851843	851709	851709	851709	851709	851709	851543	851543	851543
ברט בתסיב רכ		455	749	749	749	542	749	209	503	503	503	209	022	1022	1022	1022	1022	1204	204	1204	1204	1204	4149	4149	149	4149	4149	4826	4826	4826
LATI		345	RIB 342	[RIB 346	RIB 348	[RIB 346	RIB 346	FRIB 343	RIB 343	FRIB 343	FRIB 343	IRIB 343	4 341	R 341	146 H	R 341	R 341	341	1 E	34	₩.	34	Э¥Р.	Ŧ.	ħ	З¥.	ħ	₩.	Ř	₩.
AM NRME		A RIVER	RIVER 1	A RIVER 1	A RIVER 1	R RIVER 1	A RIVER 1	A RIVER	A RIVER 7	A RIVER	A RIVER	A RIVER	TT006A CI	TTODEA CI	TT006A CI	TTODEA CI	TT006A CI	×	×	X	×	Х	A CREEK	A CREEK	A CREEK	A CREEK	A CREEK	I CREEK	CREEK	ł creek
STREF		CHATT006	CHATT006/	CHATTOOG(CHATT006(CHATT006	CHATT006(CHATT006	CHATT006(CHATT006	CHATTOOG	CHATTOOG	TRIB-CH9	TRIB-CHA	TRIB-CHA	TRIB-CHA	TRIB-CH9	DRY CREE	DRY CREE	DRY CREE	DRV CREE	DRY CREE	CHATT006	CHATT006	CHATT006	CHATTODE	CHATT006	CRAWFISH	CRAWFISH	CRAWFISH
		א-ראבארא ו	ш	щ	ш	щ	w																					PRISON	/ prison	/ PRISON
USER		ANFOXD II	UMMERVILI	UMMERVILI	UMMERVILI	UMMERVIL	UMMERVIL	RION	RION	RION	RION	RION	o,	a.	Q.	d.	Q,	AFAVETTE	RFRYETTE	AFAYETTE	AFAYETTE	AFAVETTE	AFAYETTE	AFAYETTE	AFAYETTE	AFAVETTE	. RFAYETTE	ER COUNTY	ER COUNTY	ER COUNTY
		ELOW S	OF S	(OF S	/ OF S	V OF S	<pre>CLD ></pre>	N OF 1	1 1 1	L L L	N OF 1	L L N	ER COF	Y OF L	V OF L	γ OF J	Υ OF L	Y 0F 1	Y OF L	Ч ОF	Y OF L	Y DF	Y OF	-HALKI	-HALK	-MALKI				
ເຮ		9 BIG	0 CIT	CIT 9	0 CIT	0 CIT	0 CIT	8 TOW	IND 10M	IND 10MI	IMOT 0	NO1 01	ROP 80	10 ROP	(0 ROP	10 ROP	10 ROP	(0 CIT	IO CIT	10 CIT	10 CIT	10 CIT	to CIT	10 CIT	10 011	10 CIT	10 CIT	10 DOR	10 DOR	10 DOF
AR HV		1 2	10	1 1	ч М	33 1		8	11 1	ы М	1	34	30	31	្ត្ត	33	34	30.	31	ි දු	33	94	88	81	8	83	8 4	88	81	84
E3 YE	-	ne Be	Di	D1 E	D1 6	D1 6	D1 6	Di 6	3 10	E E	10 1	Di la	DI I	10	D 10	Di	D1	65	ଥ୍ୟ	65 65	20	R	10	5	D1 '-	5	1 1 1	D1	10	10
ង		. 1 8 4	M04	M04	M04	7 M04	M04	7 105	7 MOS	7 M05	7 M05	7 MOS	5 112	5 112	5 112	5 112	5 112	5 M03	5 M03	5 M03	2 M03	5 M03	5 M03	5 M03	5 M03	5 M03	5 M03	6 N05	6 N05	6 N05
.		027	027	027	027	027	027	027	027	827	027	80)	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	14(14(14

G-10

ANUAL		8. 299	0.345	8.370	0.456	0.314	0.340	0.303	18.24	8. 776	10.20	8. 774	8. 738	415.0	314.5	454.1	0.682	0.351	0.004	0.002	0.002	1.640	1.019	1.440	1.357	1.060	0.116	0.212	0.004	8. 804	0.908	0.866	0.792	6.43b	0.369	0.448
EC BI		9.21	0.41	0.43	0.43	8. 25. 9	0.30	6.14	8.07	8. 14	14.7	14.1	7.22	313.	329.	290.	0.58	0.28	0.00	0.00	-	1.60	¢	1.78	1.60	1.30	0.00	0.00	0.00	0.00	e. 81	1.01	0.72	0, 20	0.36	0.74
I ADA		8°52	a .33	a. 30 -	9.35	8.34	0.38	0,31	8. 36	5.91	10.4	7.52	6.52	425.	344.	412.	0.63	0.26	0.00	0.00	ę.	1.35	- -	1.44	0.90	1.00	0.70	0.00	0.00	0.00	0.81	6 .94	0.80	0.20	0.36	0.63
CT V		3.27	a. 36 (a.25 (ð. 44 (0.37	0.39	8.31 (3.88	8.8	6.39	4.89	6. 02	493.	340.	447.	0.65	6. 32	0.01	0.00	0.00-	1.40	0.75-	1.25	0.90	1.00	0.70	0.00	6.00	0.00	0.78	6 .32	0.95 2020	8. CC 9. 2 9. 2 9. 2 9. 2 9. 2 9. 2 9. 2 9. 2	0.36	0.55
С С		9.26	0.34	3.30 (0.47	a. 35	3.44	0.37	7.14	5, 98	5. 27	4.94	5.08	462.	368.	510.	0.71	e. 35	0.01	0.00	Q. QU	1.30	0.81	1.24	1.10	1.02	0.00	0.00	0.00	÷	0.80	0.84	0.97	9. G 9. G	9.36	0.54 0
9 9		3.30	0.37	0.28	9.70	34 (0.40 (9.26 (33.0	4	5.72	f . 23	8 .53	527.	434.	503.	0.70	6.43	0.01	0.00	ę.	1.40	0.78	1.18	1.30	ę	0.00	0.66	0.00	-	1.05	0.87	6. 82	82 8 82 8 9 8	0.36 0.36	6 .36
а Н		9.52	4	9.30	0.47 (a. 29	a. 33 (a. 27 (5.36	7.04-1	7.96	f. 12	7.48	524.	418.	514.	0. 69	0.46	0.01	0,00	0.00-	1.60	0.84	1.33	1.10	- -	0.00	0, 60	0.00	ę	1.08	1.10	0.77	6. 32 9 4 6	0.36	0.00
N		a. 30	۲ ا	a.43 (0.52	0.31 (a. 31 -	a. 30 -	7.38	23.9	7.90	5.76	5.86	435.	310.	508.	0.71	0.36	0.00	0.60	0.00	1.70	1.10	1.39	1.20	1.30	0.06	0.46	0.00	00.00	1. 03	0.95	0.72	6.33	9 S	0.43
IAY J		8.23 (-	8.47 (0.62	0.29	0.33	0.33	11.1	9.34	12.8	8.72	12.5	314.	250.	506.	0.68	0.32	0.01	0.00	0.00	1.64	1.60	4	1.70	1.40	0.00	0.46	0.00	0.00	1.00	0.83	0.76	6.21 9	32.0	0.43
A Hqt		8.43	т 6	0.49	0.58 -	ð. 28 -	0.38	0.30	14.8	12.4	13.3	10.5	11.6	158.	198.	402.	0.56	0.33	0.00	0.00	0.00	1.34	1.50	1.76-	1.50	1.50	0.00	0.00	0.00	0.00	0.89	0.63	0.78	0.64	9 % 9 %	0.43
AAR 6		8 .39	-	0.42	4	6. 29	0.30	0.33	18.1	11.9	9.63	13.8	11.1	369.	270.	474.	0.71	0.32	0.00	0.00	0.00	1.86	1.33	1.57	1.75	1.40	0.00	0.43	0.00	0.00	0. 77	0.68	0. 78	ය. මේ මේ	3 4	0.46 0.46
Ę.		0.34	0.35-	0.43	0.44-	6. 32	6. 32	0.35	12.4	13.0	13.7	13.3	10.7	448.	262.	448.	0.77	0.37	0.00	0.00	0.00	2.00	1.60	1.48	1.65	1.60	0,00	0.49	0.00	0.00	1.00	0.67	0.68	6 88 98 98		0.46 0.46
JAN		0.33	0.25	0.36	0.47	0.34	0.31	0.37	13.7	7.66	12.1	13.6	12.3	449.	245.	435.	0.79	0.43	0.00	0.00	0.00	1.90	1.20	-0-	1.60	1.10	0.00	0.70	00.0	0.00	0, 86	-0-	0.77	0.77	3 2	9 .36
461 TUDE		852006	852006	852006	852006	851612	851612	851612	851148	851148	851148	851148	851148	852055	852055	852055	850302	850302	851600	851600	851600	851604	851604	851604	851604	851604	851812	851812	852309	852309	852239	852239	852333	600000 852333	852333	852333
JE LON		~	a	80	æ	8	-00	8					=	ល	Ŋ	ស្ត	ŝ	រះ្ន	7	41	11	6 4	6	6 <u>1</u> :	64	64	8	8	61	61	69	60	55 55		22	ស្ត
ATITU		34070	34070	34070	34070	34192	34192	34198	34135	34135	34135	34135	34135	34145	34145	3414	3400	3400	3406	3400	3400	3401	3401	3401	3401	3401	3432	3432	3427	3427	3426	3426	3424	240	342	3451
		<i></i> *	~	<i></i>	~ *												ž	ž	ដ	ĸ	ដ						DGA RI	ISA RI					<i>c</i> c (* 0	: 04	: 02
NEWE		(TRII	<pre>< TRIE</pre>	K TRU	< TRII	T RES	T RES	T RES	6 %	œ	œ	æ	œ	æ	æ	œ	ds 8	3 8	CEDAR	CEDAR	ĊEDAF	×	ž	Ж	×	ň	1110(Å110	REK	REEK	reek	REEK	RIVE		RIVE	RIVE
REAM		CREE	CREE	CREE	CREE	M TRO	M TRO	M TRO	RIVE	RIVE	RIVE	RIVE	RIVE	RIVE	RIVE	RIVE	AR Ca	AR CO	ч В	PBR-	чя Н	CRE	CREE	2.KE	CHE CHE	R CRE	20	10	DON C	CON CO	00N C	CON C	T006A	TDDEA	TODRA	T006A
5		CEDAR	CEDAR	CEDAR	CEDAR	DSSO	INSS0d	DSS04	COOSA	COOSA	COOSA	COOSA	COOSA	COOSA	CODSA	C005A	B CED	B CEI	BIG	B16 9	B16 9	CEDH	CEDAI	CEDA	CEDAI	CEDAI	TRIB	TRIB	RACCI	RACC	RACC	RACC	CHAT			CHAT
				-										님	Ч Б	Ч Б													TMIL	TAIL	YERLY	YERLY	YERLY	ידבון א עבםו ע		YERLY
	*	ING	ING	ING	ING									THE) THEF	EHEI (8	8	8	8	8	Ą	¥	N	N	N	CORP.	CORP.	ON CO	ON CO	IN-L					
Ë	: : : :	E SPR	E Spa	T SPR	E SPR	ຽງເ	LS LS	รา	w	ų	ш	щ	ų	INOWWC	INDAME	NOWW	AMRDCI	AMROCI	BOARD	BOARD	BOARD	DARTO	DARTO	DARTO	DARTO	DARTO	TLE	TILE	INDERS	ENDERG	NFOR	INFOR	NFOR	INFOR INFOR		NFOR
SU		F CRV	F CAV	F CA	F CA	SCHOO	SCHOC	SCHOC	F RO	DF ROY	Я В	н Б	E RO	H-H-H	H-H-H	HER-H	HS Q	HS QN	BOX	BOX	BOX	ы Б	Б	ы Ч	ы Ч	ы Ч	E E	9 T	ET&HE	ET&H6	ON SK	is mo	No No	ය සීට්	50	
	*	1TY 0			11Y C	JERRY	ERRY	BERRY	ITY C	VTI:	VII:	VII:	YTIC (DO HE	DO HE	EA PO	DIAMO	DIAMO	AL TON	ALTON	AL TON	CITY	CITY	CITY	CITY	CITY	RIEGE	RIEGE	HARRI	HARRI	BIGEL	BIGEL	BIGEL			BIGEI
NSYH		0 ტ	0 0	5	С 6	ст С	т т	6	ე თ	er.	ე თ	6	с б	6	6	6	đ	on	σ	σ	σ	ማ	თ	m	ማ	ማ	10	10	10	10	10	10	10	69 0	9 6	101
YEAR	1	88	81	ង	84	82	83	84	88	81	85 85	83	84	су В	3	84	81	*	81	83	84	88	81	85	.83	78	88	3 81	88	1.81	ر 28	1 83	1 80	. B		8 8 9 9 9
ß		11 D1	11. D1	N DI	11 D1	13 01	13 01	33 01	14 D1	34 D1	04 D1	04 D1	04 D1	01 01	01 01	01 01	01 D1	01 D1	04 D1	04 D1	04 D1	01 D1	10 D1	101 D1	10 I D1	101 D1	61 D3	01 02	02 D1	105 01	104 01	104 01	104 Di	104 D	1 401 n	5 10 I
E 1		N57 M8	157 MG	157 M	157 MG	357 MC	157 MG	N57 M	357 M	112 M	357 M	057 M	857 M	057 Ti	027 T	057 T	115 I	115 1	115 I	115 1	115 1	115 M	115 A	115 #	115 M	115 #	027 1	027	027 1	027	027	027	827	027	100	027
u	1	C	ŝ								-		_																							
E1 E2 E3 YE	AR HYSU	USER	STREAM NAME	LATITUDE L	ONGITUDE	JAN FEB	MAR AF	A MAY	NUC	ากก	9NG	60	CT ND	c DEC	ANNUA																					
---------------	---------------	--------------------------	------------------	------------	----------	------------	---------	----------	--	--------------	-------------------------	---------------	------------------	--------------	---																					
												7																								
MAR TAS DI R	4	CHEMITON DRADUCTS CARA.	FTOLIDH RIVER	340828	844707	0 0 0 0 0	0 20 0	0 1 70	e + + 0	ā	e e	, 00	0	e	-																					
008 107 D1 81		GODYEAR TIRE AND RUBBER	PETTIT CREEK	341025	844858	0.13 0.13	0.14.0		9 F 9 F 9 F 9 F 9 F 9 F 9 F 9 F 9 F 9 F	0.12	9 - 6 1 - 6 1 - 6	1 0 0 1		2	0 - 1 0 0 - 1 0																					
008 107 D1 8	1 8	GOODYEAR TIRE AND RUBBER	PETTIT CREEK	341025	844858	0.13 0.11	0.10 6.	13 0.1	3 0.12	8.13 8.13	0.12	a 12 0		10 0.	7 0.11																					
008 107 D1 8	89 54	GOODYEAR TIRE AND RUBBER	PETTIT CREEK	341025	844858	0.13 0.13	0.13 0.	13 0.1	3 0.07	0.05	0.05	0.07 0	. 09 Q.	13 0.	0 0.09																					
008 107. D1 8	38	GOODYEAR TIRE AND RUBBER	PETTIT CREEK	341025	844858	0.11 0.10	0.13 0.	13 0.1	3 0.13	0.13	0.13 (a.13 0	.13 0.	13 0.	3 6.12																					
008 107 D1 8	4 8	GOODYEAR TIRE AND RUBBER	PETTIT CREEK	341025	844858	0.13 0.13	0.13 0.	13 0.1	4 0.13	0.13	0.13 (8.13 8	.16-0-	4	0.13																					
008 109 D1 8	9 8	CRITERION MILLS INC.	ETOWAH RIVER	340907	844615	0.00 0.00-	-0-	01 0.0	0 0.00	0.00	0.01	0.01 0	. 01 0.	61 6.	0 8.90																					
808 109 D1 8	1 8	CRITERION MILLS INC.	ETOWAH RIVER	340907	844615	0.01 0.01	0.01 6.	01 0.0	6-	0.01	0.00	0.01 0	. 61 8.	01 0.	11 0.00																					
008 M02 D1 8	6 8	CITY OF CARTERSVILLE	ETOWAH RIVER	340831	846348	3.80 3.90	5.70 4	50 4.1	03.80	3, 30	3.70	3.80 4	. 10 3	80 3.	6 3,96																					
008 M02 D1 8	1 8	CITY OF CARTERSVILLE	ETOWAH RIVER	340831	844948	2.90 4.20	3.68 3	46 3.0	03.20	3.10	3.30	5.90	.00 3	10 3.	88 3.25																					
008 M02 D1 B	8 2	CITY OF CARTERSVILLE	ETOWAH RIVER	340831	844348	3.90 5.00	4.20 4	90 4.4	0 3.60	3.20	3.50	3.30 3	1, 2 8 3,	20 4.	96 3, 96																					
008 M02 D1 8	38	CITY OF CARTERSVILLE	ETOWAH RIVER	340831	844948	3.80 4.60	4.50.5	20 4.1	03.90	3.30	4.00	4.00	. 70 4	30 5.	50 4.23																					
008 M02 D1 8	14 8	CITY OF CARTERSVILLE	ETOWAH RIVER	340831	844948	5,20 5,20	5.30 5	.00 5.4	0 4.00	4.20	4.10	3, 30	.503	40 3.	30 4°.32																					
008 M05 D1 8	11 8	CITY OF EMERSON	PUMKINVINE CREEK	340655	844531	0.00 0.00	0.00 0	.11 0.0	18 0.06	0.80	0.00	0.00	0.00 0.	80 8.	90 9.90																					
008 M05 D1 8	14 B	CITY OF EMERSON	PUMKINVINE CREEK	340655	844531	0.00 0.00	0.00 0	.00 6.0	0 0.05	0.00	0.03	0.00-0	69 1	60 0.	99.90																					
008 M06 D1 8	10 8	BARTOW CO WATER SYSTEM	PETTIT CREEK	341532	844657	0.05 0.05	0.05 0	.05 0.0	5 0.05	0.05	0.05	0.05 (0.05 0.	05 0.	05 0.04																					
008-M06 D1 8	11 8	BARTOW CO WATER SYSTEM	PETTIT CREEK	341532	844657	0.05-0-	0.05 0	.05 0.0	5 0.05	de	т ф	5	. 05 0.	02-0-	0.04																					
008 M06 D1 8	8	BARTOW CO WATER SYSTEM	PETTIT CREEK	341532	844657	0.10 0.05-	-0-	.05 0.0	5 0.05	0.05	0.07	0.07 (.05 0.	07 0.	0.0.00																					
008 M06 D1 8	34 8	BARTOW CO WATER SYSTEM	PETTIT CREEK	341532	844657	0.05 0.05	0.05 0	.05 0.0	5 0.05	0.00	0.05	0.05-0	\$ -	4	0.0																					
008 M06 D2 8	36 8	BARTOW CO WATER SYSTEM	THO RUN CREEK	341657	844930	0.04 0.04-	0-	- -	0.0	0.04	0.04	0.04	0,04 0	04 0.	04 0.07																					
008 M06 D2 8	31 8	BARTOW CO WATER SYSTEM	TWD RUN CHEEK	341657	844930	0.64-0-	0.04 0	04 0.0	14 0.04	-0-	-	-0	0.05 0.	02-0-	8.04																					
008 M06 D2 8	33 8	BARTOW CO WATER SYSTEM	THO RUN CREEK	341657	844930	0.05-0-	-0-	.05 0.0	5 0.05	0.05	0.07	0.07	0.07 0	05 0.	87 0.05																					
008 M06 D2, 8	34 B	BARTOW CO WATER SYSTEM	TWO RUN CREEK	341657	844930	0.07 0.07	0.07 0	.07 0.0	17 0.07	0.07	0.07	0.07-(\$ +	\$	8. 9																					
008 701 01 8	88	GA POWER-PLANT BOWEN	ETOWAH RIVER	340808	845527	43.0 30.0	42.0 5	7.0 50.	0 61.6	79.0	49.0	25.0	4.0.4	7.0 46	0 49.6																					
008 T01 01 E	33 8	GA POWER-PLANT BOWEN	ETOWAH RIVER	340608	845527	58.0 54.0	54.03	7.0 45.	0 62.0	68.0	92 . 0	27.0	57.0 5	c. 0 48	0 41.6																					
008 701 01 8	34 8	GA POWER-PLANT BOWEN	ETOWAH RIVER	340808	845527	23.0 43.0	39.04	2.0 45.	0 65.6	80.0	81.0	60.0	55.0 4	4.0 51	8 52																					
110 M01 D1 E	3 0 8	CITY OF DALLAS	WEAVER CREEK	335559	845009	0.33 0.30	0.43 0	.35 0.3	30 0.21	0.23	ę	8. 28	a.27 0	23 8.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																					
110 M01 D1 6	31 2.8	CITY OF DALLAS	WEAVER CREEK	335559	845009	0.23 0.32	0.29 0	. 25 0.8	22 0. 2(4	0.23	0.24	0.19 Ø	20-0-	6 .2																					
110 M01 D1 E	93 B	CITY OF DALLAS	WEAVER CREEK	335559	845009	0.28 0.31	0.30-0	- 0.1	33 0.27	0.22	0.24	0.25	a. 24 0	20 0.	33 0.26																					
110 M01 D1 E	34 8	CITY OF DALLAS	WEAVER CREEK	335559	845009	0.32 0.32	0.33 0	.30 0.5	27 0.25	0.25	0.28	0.25	a. 22 @	23 0.	25 0.2																					
110 M01 D2 8	84 B	CITY OF DALLAS	LAWRENCE CREEK	335500	845000	0.05 0.04	0.04 0	. 06 0.1	1 0.0	0.02	0.08	0.00	a. 03 0	03 0.	85 8. 9/																					
115 I02 D1 £	36 8	MARQUETTE CEMENT CO	TRIB-EUHARLEE CR	340047	850257	0.10 0.10	0.10 0	.10 0.1	0.10	0.10	0.10	0.10	0.10 0	.10 0.	10 0.1(
115 I02 D1 6	91 8	MARQUETTE CEMENT CO	TRIB-EUHARLEE CR	340047	850257	0.10 0.10	0.10 0	.10 0.1	0 0.10	6	0,10	0.10	a. 10-0	\$	8 . 1(
115 102 D2 6	90 9	MARQUETTE CEMENT CO	TRIB-EUHARLEE CR	340047	850257	0.08 0.08	0.08 0	.08 0.6	08 0.00	0.08	0.08	0.08	0.09 0	.08 8.	08 0.0																					
115 102 D2 6	91 8	MARQUETTE CEMENT CO	TRIB-EUHARLEE CR	340047	850257	0.08 0.08	0.08 0	.08 0.0	38 8.06	6	0.08	0.08	a. 08-0	¢	9.9																					
115 107 D1 6	3 0 8	GOODYEAR TIRE AND RUBBER	TRIB-EUHARLEE CR	335956	850302	0.23 0.14	0.15 0	1.17 0.5	24 0.11	0.18	0.25	0.18	8.14 0	.11 0.	08 0.1 [°]																					

G**-**7

NNUAL AVG	0.179	8.14 2	8. 155	0. 145	8. 859	0.0/4	0.076	8. 0 81	200	8.898	1.099	0, 820	1.100	1.060	1.080	21.17	21,51	15.86	2. 800	3. 200	3.200	8.264	8 .35	101 0	0, 187	2.200	0.110	0.213	0.211	8.169	8 . 259	0.016	8. 209 8. 276
DEC	0.27	0.15	6.18	¢.	6.62	6.0	6 . 10	0.67	. T	0.83	0.66	0.79	1.50	1.60	0.80	19.5	22.1	4	2.80	3.20	3.20	0.24	6. 39 6	0 7 9 9	9.19	7.20	0.09	0.10	0.14	0.17	0.00	0.0 5	200
NON	0, 23	0.18 2.18	0.67	9. 19-	0.04 0.04	19	0.08	8.06 9.05	1.04	0. 92	0.76	0.66	0.81	0.78	0.63	19.2	21.8	17.4-	2.80	3.20	3.20	0.25	8. 1 2 2	0 0 0 0 0 0	0.19 0.19	7.29	0.01	0.01	8.82	0.01	9. 90 1	9.01	6.00 6.00
001	0.11	0.14	6. 16	0.06	0.61	6° 6/	6.0 7	6. 60 9 60 9 60		0. 92 0	0.93	0.77	0.72	0.63	0.74	2 0. 2	22 . 1	17.3	2.80	3.20	3.20	0.30	6. 30 6. 30		6.19	7.20	0,10	0.06	0.12	0.14	0.00	0.02 .02	6.11 0.00
SEP	0. 16	0.13 1 1		0.17	8.08	80 S	0, 16	/0.0/ 0.00	98.98	0.84	0.80	0.95	0.64	0.73	0.87	20.3	21.7	17.2	2.80	3.28	3.20	0.30	ດ ເມີຍ ເມືອ	9 9 9	6.19	7.20	0.20	0.27	0.48	0.17	0.86 2	0.05	0.33 0.33
AUG	0.24	0.10	6. C1	0.13	8°80	6. 62 70	0.07	0.67 9 70		0.91 0.91	0.74	0.78	0.67	0.71	1.00	21.5	22.4	18.1	2.80	3.20	3.20	0.28	0°.30		0.19	7.20	0.38	0.60	0.43	0.66		0.05 0.05	2 8 2 8 2 8
าก	0.13	0.15	6. 18 5	8. 33	6. 63 6	10.0	de la	9 9 9 9	1.15	0.89	0.80	0.66	0.76	0.75	0.90	22.3	22.5	17.6	2.80	3.20	3.20	0.23	0.37		0.19 0.19	7.20	0.08	0.25	0.19	0.30 .30	0. 43-	ର ଚୁଚ୍ଚ ଚୁଚ୍ଚ	0. 28 0. 46
NUL	0.19	0.14 0.24	19.0	6 .12	0.04 0.0	10.0	99 99 9	0. 60 0. 60	191	0.93	1.40	0.77	1.00	0.97	0. 98	22 . 6	53. †	15.3	2.80	3.20	3.20	0.27	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.19	7.20	0.14	0.10	0.29	0.15 2		20 0 0 0	98 198
МАУ	0.26	6.1 3	6. jb	6.11	6. I.I	/13*0	63 °0	0,03 0,73	1.01	0.80	1.30	0.78	1.30	i.10	1.50	21.8	e. 9	15.2	2.80	3.20	3.20	0.28	9 30 9 30	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.19	7.20	8.05	0.06	0.09	0. 03 0. 03	6. 43- 5 2 5 5 5 5	යු ද ම ම	0.38 0.38
ЯРЯ	0. 13	0,16 2,2	17.9	0.17	6. 60 61 61 61 61 61 61 61 61 61 61 61 61 61		6, 68	6. 16 0 4	e. 89	0.75	1.50	0.99	1.30	1.40	1.56	20.9	21.u	14.7	2.80	3,20	3, 20	0.27	52 ×	0 7 9 9	0.19	7.20	0.08	0.38	e. 35	9. 12 9. 12	6.96 20	ය ම ම ම	6. 27 6. 27
MAR	0.17	0.18	4	6.13 2	-9-	0.00	63 63 69 63	0 6 6 7 0 7	9 .83	0.78	1.98	0.94	1.20	1.40	1.30	22 . 7	20.5	14.7	2.80	3, 20	3, 20	0.26	ب جه و	0 1 1 0 1 0 1 0 1 0	- -	7.20	0.10	e. 13	0.14	0.09 0	6,43	8 8 8 8 8	0.10 0.10
뗦	0,15	0.17	6 T 6	0.11		97 • 70	60 0G	0. 94 0	0.87	1.08	1.40	1.10	1.59	1.50	1.30	22.8	19.6	13.8	2.80	3.20	3, 28	0.25	9.19 2.19		919	7.20	0.10	0.58	0.24	0 0 0 0 0 0 0	0.00	20.0	0.20 0.20
JAN	0.09	8. 00 9. 0	51.0	6.11	9 9 9 9		60 . 0	0. AA	0.78	1.04	1.00	0.67	1.30	1.20	1.40	2 0. 2	19.8	13.0	2, 80	3.20	3.20	0.24	11 9 12 9		0.19	7.20	0.00	8.01	0.01	0.01	00.00	9. 65 9. 65	មី ស៊ ទ ឆ
ONGITUDE	850302	850302	850302	850302	222028	850333	850333	830333 850735	850336	850336	850306	850306	850306	850306	858306	852016	852016	852016	851046	851046	851046	851136	851136 051136	001100	851035	851035	851331	851312	851330	851303	851153	851121	851121 851121
LATITUDE L	335956	335956	335956	335956	240200	340233	340255	75922	335934	335934	340054	340054	340054	340054	340054	341458	341458	341458	341116	341116	341116	341142	341142	241146	341114	341114	341636	341705	341645	341645	341744	341052	341052 341052
stream Name	TRIB-EUHARLEE CR	TRIB-EUHARLEE CR	INTB-EUHHRLEE CR	TRIB-EUHARLEE CR	EUMHALER LAEEA	EUHHKLEE CKEEK	EUHARLEE CREEK	EUNHALEE UREEN	EUHARLEE CREEK	COOSA RIVER	COOSA RIVER	COOSA RIVER	SILVER CREEK	SILVER CREEK	SILVER CREEK	SILVER CREEK	SILVER UREEK ett ver rocry	STI VED POERV	SILVER CREEK	SILVER CREEK	HORSELEY CR-COOSA R	L DRY CR-DDSTANAULA	HORSELEY CR-COOSA R	TRIB-OOSTANAULA R	TRIB-LITTLE CRY CR	PRENTISS CREEK	PRENTISS CREEK						
ku USER	8 GODYEAR TIRE AND RUBBER	8 GOODYEAR TIRE AND RUBBER	8 GUUDYEHK IIKE HND KUBBEK	8 GOODYEAR TIRE AND RUBBER	a PULK GU WHIEK HUIHUKIIY	S PULK LU WHIEK HUIHUKIIY	B POLK CO WATER AUTHORITY	8 CITY OF ROCKMART	8 CITY OF ROCKMART	8 CITY OF ROCKMART	B CITY OF ROCKMART	8 CITY OF ROCKMART	9 BA KRAFT CO KRANNERT DIV.	9 GA KRAFT CO KRANNERT DIV.	9 GA KRAFT CO KRANNERT DIV.	9 WEST POINT PEPPERELL INC	9 WEST PUINT PEPPEKELL INC	9 LEGT DUTNT DEDDEDEL I TNC	9 WEST POINT PEPPERELL INC	- 9 WEST POINT PEPPERELL INC	9 BE COMPANY	9 GE COMPRNY	9 GE COMPANY	9 GE COMPANY	9 FLORIDA ROCK INDUSTRIES	9 ALCAN BUILDING PRODUCTS	3 ALCAN BUILDING PRODUCTS						
Ş. I		-																															
YEAR HYS	81	ខ្លួន	2	4 8	8	5	28 3	5 8	83	84	88	81	85	83	84	ପ୍ର	83	84	റ്റ	83	84	88	19	5 8	8 8	84	81	81	81	18	5 8	81	2 5
E3 YEAR HYS	17 D1 81	7 DI 85	1/ UL 83	17 D1 84			2 D1 83	3.81.82	13 01 83	13 01 84	13 D1 80	13 D1 81	13 D1 82	13 D1 B3	3 D1 84	14 01 82	4 01 83	14 01 84	5 01 82	15 01 83	15 81 84		70 U1 61	5 12 50 50	12 D2 B1	15 D2 84	17 D1 81	17 D2 81	17 03 81	17 D4 81		2 D1 81	2 D1 84

G**-**8

APPENDIX H

ANALYSIS OF ALTERNATIVE SUPPLY

APPENDIX H

ANALYSIS OF ALTERNATIVE SUPPLY

FIGURE	DESCRIPTION	PAGE
	FIGURES	
H - 1	Location Map	H-1
H - 2	Carters Reservoir Filling Schedule	H-2
H-3	Main Reservoir Storage	H - 3
H - 4	Re-Regulation Reservoir Storage	H-3
H-5	Daily Flow-Duration, 1898-1972	H - 5
H - 6	Daily Flow-Duration, 1976-1984	H - 6
H - 7	Daily Flow-Duration	H-7
H-8	Low-Flow Frequency, 1898-1972	H - 8
H-9	Low-Flow Frequency, 1976-1984	H - 9
H-10	7-Day Low-Flow Frequency, Station 02382500	H-10
H-11	Stochastic Analysis, Station 02382500	H-11
H-12	7-Day Low-Flow Frequency, Station 02387500	H - 12
H - 13	7-Day Low-Flow Frequency, Station 02388500	H-13

LOCATION MAP

STORAGE, AC-FT (Thoussnds)

STREAMFLOW (CFS) (Thousands)

(Thousands) (Thousands)

STREAMFLOW (CFS) (Thousands)

STREAMFLOW (CFS)

STREAMFLOW (CFS)

(Thousands) (Thousands)

NON-EXCEEDANCE PROBABILITY

STREAMFLOW (CFS) (Thousands)

STREAMFLOW (CFS) (Thousands)

FIGURE H-13