

Hydrologic Engineering Methods For Water Resources Development

Volume 2 Hydrologic Data Management

April 1972

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this coll reviewing instructions, searching e the collection of information. Send including suggestions for reducing Reports, 1215 Jefferson Davis Hig Paperwork Reduction Project (070	xisting data sources, gathering ar comments regarding this burden this burden, to Washington Head hway, Suite 1204, Arlington, VA 2	nd maintainin estimate or quarters Ser 22202-4302,	ng the date needed, an any other aspect of thi vices, Directorate for I	d completing and reviewing s collection of information, nformation Operations and
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE April 1972		3. REPORT TYPE AND IHD Volume 2	DATES COVERED
4. TITLE AND SUBTITLE Hydrologic Data Manage	ment		5. FUND	ING NUMBERS
6. AUTHOR(S) Leo R. Beard				
7. PERFORMING ORGANIZATION N/ US Army Corps of Engine Institute for Water Resou Hydrologic Engineering C 609 Second Street Davis, CA 95616-4687	eers rces Center			FORMING ORGANIZATION ORT NUMBER
9. SPONSORING / MONITORING AGI N/A	ENCY NAME(S) AND ADDRESS(ES)			INSORING / MONITORING INCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			I	
12a. DISTRIBUTION / AVAILABILITY Approved for Public Rele- unlimited.	-	documen		TRIBUTION CODE
13. ABSTRACT (Maximum 200 words, This is Volume 2 of the 12 U.S. Army Corps of Engin Volume 2 describes meth manner, techniques for e- generating synthetic hydr Streamflow Simulation", i hydrologic data at a numl hydrologic data, and reco observed at other location	2 volume report prepare neers as a contribution to ods and procedures for stimating missing portion ologic data. A generaliz s included as part of the per of interrelated station onstitute missing hydrolo	the Inte managing s of hydr ed comp volume. ns, genera	rnational Hydrolo g hydrologic data ologic records, a uter program des This program w ate sequences o	ogical Decade. a in a systematic and techniques for scription, "Monthly ill analyze monthly f hypothetical oncurrent data
14. SUBJECT TERMS International Hydrologica	-	ces Deve	lopment,	15. NUMBER OF PAGES 238 16. PRICE CODE
Regional Correlation, Sto	Chastic Hydrology	10 950115		
OF REPORT	OF THIS PAGE UNCLASSIFIED		RITY CLASSIFICATION STRACT SSIFIED	20. LIMITATION OF ABSTRACT UNLIMITED
NSN 7540-01-280-5500			Sta	ndard Form 298 (Rev. 2-89)

Hydrologic Engineering Methods for Water Resources Development

Volume 2 Requirements and General Procedures

April 1972

US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center 609 Second Street Davis, CA 95616

(530) 756-1104 (530) 756-8250 FAX www.hec.usace.army.mil

IHD-2

FOREWORD

This volume is part of the 12-volume report entitled "Hydrologic Engineering Methods for Water Resources Development," prepared by The Hydrologic Engineering Center as part of the U. S. Army Corps of Engineers' participation in the International Hydrological Decade. Volume 2 describes methods and procedures for managing hydrologic data in a systematic manner, techniques for estimating missing portions of hydrologic records, and techniques for generating synthetic hydrologic data. Although many of the methods and procedures described herein have been used successfully in Corps of Engineers' studies, the volume should not be construed to represent the official policy or criteria for the Corps.

The author wishes to acknowledge contributions by Mr. Robert G. Willey and Mr. Harold E. Kubik to the material contained in Chapters 4 and 5.

CONTENTS

									Page
FOREWORD			••	.	••	• •	••	• •	iii
CHAPTER 1. PROC	ESSING OF BASIC DAT	ľA	• •		•••	•••	• •	• •	1-01
	roduction · · · ·								1-01
1.02. Met	eorological Data .		• •		• •	• •		• •	1-02
1.03. Bas	ic Runoff Data	• • •	• •			• •	• •		1-07
1.04. Nat	ural Topography .					• •			1-12
1.05. Exi	sting Improvements	• • •	•••	• • •	• •	• •	• •	• •	1–15
CHAPTER 2. DATA	STORAGE AND PUBLIC	CATION	• •	• • •		•••	••	• •	2-01
2.01. Int	roduction · · · ·								2-01
2.02. Ori	ginal Records ••		• •		• •	• •	• •	• •	2-01
2.03. Pro	cessed Records ••	• • •	• •		• •			• •	2-02
2.04. Sel	ection of Material	for Pu	blica	tion	•••	••	••	• •	2-04
CHAPTER 3. ADJU	STMENT OF RUNOFF DA	ATA ·	* *	•••	•••	•••	••	• •	3.01
	roduction · · · ·								3-01
3.02. Nee	d for Adjusted Runc	off Dat	a.		• •	• •	• •	• •	3-01
	imates of Stream De								3-02
CHAPTER 4. REGI	ONAL ANALYSIS · · ·	•••	•••		• •	••	••	••	4.01
	roduction · · · ·								4-01
	rdination of Static								4-01
	ices of Hyrologic H								4-03
4.04. Cor	relation Analysis .		• •	• • •		• •	• •	• •	4-06
4.05. Reg	ional Correlation		• •		• •		• •	• •	4-21
4.06. Gen	eral Procedure		• •		• •	• •		• •	4-23
4.07. Exa	mple	•••	• •	• * •	• •	• •	• •	• •	4-23
CHAPTER 5. HYDR	OLOGIC SIMULATION .	• • •	••		••	• •	••	• •	5-01
5.01. Int	roduction							• •	5-01
5.02. App	lication		• •	• • •				• •	5-01
5.03. Bas	ic Procedure		• •		•••		• •	• •	5-02

CONTENTS

		Page
	5.04. Monthly Streamflow Model5.05. Data Fill-In5.06. Application in Areas of Limited Data5.07. Daily Streamflow Model5.08. Reliability	5-04 5-07 5-07 5-08 5-08
SELECT	ED BIBLIOGRAPHY	SB-1
	IX 1, MONTHLY STREAMFLOW SIMULATION IX 2, DAILY STREAMFLOW SIMULATION LIST OF TABLES	SB-1
3.01. 3.02.	Estimated municipal and industrial demand	3-03
3.03.	demand	3-04
3.04. 3.05.	various irrigation efficiency ranges	3-05 3-05
4.01.	flow	3-06 4-25
	LIST OF FIGURES	1 23
1.01. 1.02.	General form for recording weather station data Standard form for stream measurement and computation	1-03 1-08
1.03. 1.04.	Standard form for rating a stream gage Standard form for computing mean daily streamflows	1-09 1-10
1.05. 1.06.	Standard form for tabulating mean daily streamflows Standard form for tabulating hourly streamflows	1-11 1-13
4.01. 4.02.	Computation of simple linear correlation	4-12 4-13
4.03. 4.04.	Computation of multiple linear correlation	4-17 4-27
5.01.	Data reconstitution technique	5-03

1 HR. -

vi

Processing of Basic Data

CHAPTER 1. PROCESSING OF BASIC DATA

Section 1.01. Introduction

Processing of basic data includes the assembly of basic observational data and the preparation of such data for use in engineering analyses.

In many developing countries, existing basic data are retained only at the headquarters location for the area where the data are observed. Often there is no central agency that collects and prepares the data for easy use and dissemination. Use of existing data would be greatly facilitated if a system for collecting and organizing the field data was created. This would include regular (at least annual) visits to each station, at which time the methods of observation and recording could be reviewed.

The next most important requirement for processing basic data is that the observations be obtained in a systematic manner and tabulated at an acceptable regular interval. Accuracy of observation is, of course, of paramount importance. Observers must be impressed with the importance of stating exact times of manual observations, as well as exact amounts, and must be given basic instruction in observational procedures.

The processing and the analysis of basic data will be greatly facilitated when one or more long, consistent records of related phenomena are available. Accordingly, emphasis should be placed on obtaining and preserving the longest records of consistent observations that are available in any region.

The types of hydrologic data that are of most interest and that are commonly used in the development of design criteria are discussed in the following paragraphs. In hydrologic engineering, runoff data is of primary importance, followed by topography and precipitation data. These, together with temperature and evaporation data, constitute basic data that can be supplemented by other data and used for many purposes.

Section 1.02. Meteorological Data

General

The extent of meteorological observations made at any location is determined by the use to which the data will be put and the availability of personnel and equipment. Data usually recorded at weather stations are illustrated in fig. 1.01. As indicated below, more extensive recording of various types of data is often made for special purposes.

Storm Meteorology

The determination of runoff potential, particularly flood potential, in areas where hydrologic data are scarce can be based on a knowledge of storm meteorology. This includes sources of moisture in the paths over which the storm has traveled, as well as a knowledge of the mechanics of storm activity. Derivation of hydrologic quantities associated with various storms must take into consideration the type of storm, its path, potential moisture capacity and stability of the atmosphere, isobar, wind and isotherm patterns, and the nature and intensity of fronts separating air masses. These are usually described adequately in the synoptic charts that are prepared at regular (usually 6-hour) intervals for weather forecasting purposes, and associated upper-air soundings. Where such charts are available, it is important that they be retained as a permanent record of meteorological activity for use in supplementing information contained in the regularly prepared hemispheric charts. These latter charts summarize the daily synoptic situation throughout the hemisphere, but do not contain all of the data that are of interest or that would have direct bearing on the derivation of design criteria.

Precipitation

The art of measuring precipitation has not yet progressed to the point that the nature and amount can be consistently and accurately

RECORD OF STATION	RD	1 1	EV/	EVAPORAT	RATI	O N 0BSEF	A N VER_	D		I A T C	LO(3 I CD ERVAT		ION AND CLIMATOLOGICAL OBSERVATIONS OBSERVERTIME OF OBSERVATIONMONTH19
v	AID TEMDEDATHDE		0			0-0-		1						
DATGASCOCS		ALUNE		r 7	MAILK PRE(<u>.</u>	VP PKECIPIIATION	I AT I UN		QN I		പ	N	ADDITIONAL DATA - REMARKS
MALEPRECEDING	24 HRS MIN	AT OBSE	AT OBSERVATION DRV WFT	AT OBSN	24 HC	1	AMUUNI SEASONAL AT OBSN TOTAL	TOTAL A	ANE- MOMETER	MOMETER MOVEMENT	AMOUNT ADDED	AMOUNT REMOVED	AMOUNT OF	
					1		INCRED	I NCHEN	KEAUING	MILES	+	-	EVAP	
2														
3														
7														
5														
6											-			
7													-+	
8								+						
6														
01								-					-	
1								1		1				
12													-	
13										+				
±														
15													-	
16							}						-	
17														
18							<u>}</u>							
61													-	
20														
21														
22														
23														
24														
25							+							
26							+							
27														
28									1					
29												-		
30														
31														
SUM		X	X	X					\mathbb{X}		M	X	and the second	a na manana na manana manana manana na manana na manana na manana manana na manana manana na manana na manana m
AVG		X	X	\mathbb{N}			X	X	\mathbb{X}		X			

Fig. 1.01. General form for recording weather station data

recorded at unattended locations, particularly where snow and hail frequently occur. For this reason, records obtained at unattended locations must be interpreted with care. When an observer is available regularly at a site, the times of occurrence of snowfall and hail should be noted so that accurate use of the data can be made. The exact location and elevation of the gage are important considerations in precipitation measurement and evaluation. For uniform use, this is best expressed in terms of latitude and longitude and in meters or feet of elevation above sea level. Of primary importance in processing the data is the tabulation of precipitation for regular intervals. This should be done daily for nonrecording gages with the time of observation stated. In the case of continuously recording gages, the most convenient interval of tabulation is hourly. However, the original recording charts must be preserved in order to permit study of high-intensity precipitation during short intervals for certain applications.

Snowpack

Where snowmelt contributes materially to runoff, observations of the snowpack characteristics can be of considerable value in the development of hydrologic design criteria. Of primary importance is the observation of water equivalent (weight) of a vertical column sampled from the snowpack at specified locations and observation times. The elevation and exposure of the location must be known, inasmuch as the observations will ordinarily be used as an index for surrounding regions. The depth of snowpack is of secondary importance, but some observations of the areal extent of the snowpack are often useful. An important element in the processing of snowpack observation data is the adjustment of observations at all locations to a common date, such as the first of each month during the snowpack accumulation season. Since these observations are often made by traveling survey teams, they are not made simultaneously. Also, they cannot always be made at a specified time because it is impossible to obtain accurate or representative measurements during snowstorms.

Where continuous recordings of snowpack water equivalent by means of radioactive gages or snow pillows is available, these can be used as a basis for adjusting manual observations at nearby locations. Otherwise, some judgment or correlation technique based on precipitation measurements is required in order to adjust the observation data to a uniform date at all locations. It is important to preserve the original records whenever such adjustments are made. However, data that are disseminated for use in design should be the adjusted systematic quantities.

Temperatures

In most hydrologic applications of temperature data, maximum and minimum temperatures for each day at the ground level are very useful. Continuous records of diurnal temperature variations at selected locations can be used to determine the daily pattern fairly accurately at nearby locations where only the maximum and minimum temperatures are known. In applying temperature data to large areas, it must be recognized that temperatures normally decrease with increasing elevation and latitude. It is therefore particularly important that the exact elevation and location of each station be known when using and applying data from that station. It is also important to preserve all of the original temperature records. Summaries of daily maximum and minimum temperatures should be maintained and, where feasible, published.

Moisture

Moisture in the atmosphere is a major factor influencing the occurrence of precipitation. This moisture can be measured by atmospheric soundings which record temperature, pressure, relative humidity, and some other items. The total moisture in the atmosphere can be integrated and expressed as a depth of water. During storms, the vertical distribution of moisture in the atmosphere ordinarily follows a rather definite pattern, and the total moisture can therefore be related to the moisture at the

1--05

surface, which is a function of the dewpoint at the surface. Accordingly, a record of daily dewpoints is of considerable value. Here, again, the elevation, latitude and longitude of the measuring station must be known.

Winds

Probably the most difficult meteorological element to evaluate is windspeed and direction. Quite commonly, the direction of surface winds reverses diurnally, and the windspeeds fluctuate greatly from hour to hour and minute to minute. There is also a radical change of windspeed and direction with altitude. The speed and direction at lower levels is greatly influenced by obstructions such as mountains, and locally by small obstructions such as buildings and trees. Accordingly, it is important that great care is exercised in selecting a location and altitude for wind measurement. For most hydrologic applications, wind measurements at elevations of 5 to 15 meters above the ground surface are satisfactory. It is important to preserve all basic records of winds, including data on the location, ground elevation, and the height of the anemometer above the ground. Where continuous records are available, hourly tabulations of speed and direction are highly desirable. Total wind movement and the prevailing direction for each day are also useful data.

Evaporation

Evaporation is usually measured by use of a pan about 4 feet (1 meter) in diameter filled with water to a depth of about 8 inches (20 centimeters). The evaporation can be measured each day by first removing from the pan an amount of water equal to precipitation that has occurred since the last measurement, and then adding a measured amount of water until the standard depth is attained. This volume of added water, divided by the area of the pan, is equal to the daily evaporation amount expressed in inches or millimeters. A tabulation of daily evaporation amounts should

be maintained and, if possible, published. It is essential that a rain gauge be maintained at the evaporation pan site, and it is usually desirable that temperature, dewpoint (or wet-bulb temperature) and low-level wind measurements also be made at the site for future study purposes.

Section 1.03. Basic Runoff Data

Streamflow data are usually best obtained by means of a continuous record of river stage supplemented by frequent meter measurements of flows that can be related to corresponding river stages. It is important that stage measurements be made at a good control section, even if a weir or other control must be constructed. Each meter measurement should consist of average velocity measurements within each of several (6 to 20, where practicable) subdivisions within the channel cross section. Average velocity for a subdivision is usually taken as the velocity at a depth of .6 of the distance from the surface to the streambed or as the average of velocities taken at .2 and .8 of the depth at the middle of the subdivision. Readings of river stage should be made immediately before and after the cross section is metered. The average of these two stages is the stage to be associated with the measurement. The measurement is computed by integrating the rates of flow (cubic meters per second) in all subdivisions of the cross section.

A standard form for recording measurements and computing streamflow is shown in fig. 1.02. When measurements have been made for a sufficient range of flows, the rating curve of flow vs. stage can be used to convert the continuous record of stage into a continuous record of flow. A rating table form is illustrated in fig. 1.03. The flows should be averaged for each day in order to construct a tabulation of mean daily flows. A form for this purpose is illustrated in fig. 1.04. This constitutes the most common permanent or published record of runoff. A standard form for documenting mean daily flows is shown in fig. 1.05.

Area Discharge	49		5 8 9 5	5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	56°	56° 90° 1	8. 8. 8. 8. 90 ¹		8. 00, 8. 00, 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	1 1							
Adjusted for hor. angle or	-																	
At Mean	onds point in ver-																	
	O tio 0	-																
													20 					
han A						⊙		○		0	O			0r	9.	0. 0.	9.	9.
		ONS FLOW		OTHER	0THER SUSPEMSION	OTHER SUSPENSION	OTHER SUSPENSION 5 TO 5 TO	OTHER DTHER LE SUSPENSION LE SUSPENSION ANGED TO AT AT AT AT AT AT AT AT AT AT	OTHER SUSPENSION SUSPENSION D TO D TO MENT MENT FAIDATION FAIDATION FAIDATION FAIDATION FAIDATION FAIDATION FAIDATION FAIDATION	01HER TO TO TO TEALER TEAHENT TEALER TO OR (over	01468 USPENS T0 T0 D1 FAIR AUAT11 AUAT11 2008 (000 000 (000	US PENS 1 T T T T T T T T T T T T T T T T T T T	01468 USPENS TO TO CARE CARE CARE CARE CARE CARE CARE CARE	014ER 1025ENS 1021ENT 25 0010000000000000000000000000000000000	011ER 1000000000000000000000000000000000	014ER 102 103 PENS 102 112 112 112 112 112 112 112 112 112	014ER ENT 70 000 Coversion 2000 000 000 Coversion 2000 0000 000 000 000 000 000 000	0114ER 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3. OBSERVER (Name)		CONDITI 055 SECTION		WEATHER 0TH	ENTS L ANGLE	ATHER REFFICIENTS ATZONTAL ANGLE RIT LEVEL CHEC RIT LEVEL CHEC	AL ANGLE AL ANGLE AL ANGLE CHANGE CHANGE ADJUST	AL ANG										
. ON						AR FOUN	COE COE COE AND AND CHECK BAR FOUND CHECK BAR FOUND LEVELS OBTAINED	AR FOUN OBTAIN OBTAIN	COEFFIC COEFFIC 9. SPIRIT LE 9. SPIRIT LE CHECK BAR FOUND LEVELS OBTAINED LEVELS OBTAINED CE GAGE (*) LES GAGE (*) LES 05 ELOW	COE THOD COE 9. SPIRI CHECK BAR FOUND LEVELS OBTAINED LEVELS OBTAINED COE GAGE (* LES CABOVE LES CA	COE COE CHOD 9. SPIRI CHECK BAR FOUND CHECK BAR FOUND LEVELS OBTAINED LES CAGE (*) DINGS RECORDER	COE THOD 9. SPIRI 9. SPIRI CHECK BAR FOUND LEVELS OBTAINED LEVELS OBTAINED LEVELS OBTAINED CHECK BAR FOUND LES CHECK BAR FOUND CHECK BAR FOUND LES CHECK BAR FOUND CHECK BAR FOUND LES CHECK BAR FOUND CHECK BAR FOUND	COE THOD CHECK BAR FOUND CHECK BAR FOUND LEVELS OBTAINED LEVELS OBTAINED CHECK BAR FOUND LES CHECK BAR FOUND CHECK BAR FOUND LES CHECK BAR FOUND CHECK BAR FOUND	COE THOD CHECK BAR FOUND CHECK BAR FOUND LEVELS OBTAINED LEVELS OBTAINED CRECORDER RECORDER	COE THOD CHECK BAR FOUND CHECK BAR FOUND LEVELS OBTAINED LEVELS OBTAINED CHECK BAR FOUND CHECK BAR FOUND CHECK BAR FOUND CHECK BAR FOUND CHECK BAR FOUND CHECK BAR FOUND	CHECK BAR FOUND CHECK BAR FOUND CHECK BAR FOUND LEVELS OBTAINED CHECK BAR FOUND LEVELS OBTAINED CHECK BAR FOUND CHECK BAR FOUND CHECK BAR FOUND	CDE CHECK BAR FOUND CHECK BAR FOUND LEVELS OBTAINED LEVELS OBTAINED CHECK BAR FOUND CHECK FOUND CHECK FOUND CHECK FOUND CHECK FOUND CHECK FOUND CHEC	COE THOD CHECK BAR FOUND LEVELS OBTAINED LEVELS OBTAINED CHECK BAR FOUND LEVELS OBTAINED CHECK BAR FOUND CHECK BAR FOUND CHECK BAR FOUND CHECK BAR FOUND CHECK BAR FOUND CHECK BAR FOUND
(TB 5-550-3)	2. MEASUREMENT NO	OMPUTATIONS OMPUTATIONS VELOCITY MEAN MAX 1	RGE		METER SUS- PENSION	FLER SUS- ENSION MET ENSION MET ENSION CHECK (Sec)	1. METER SUS-METH PENSION METER SUS-METH METER SPIN CHECK (Sec) EFORE AFTER FT.	MUTER SUS- METER SUS- PENSION METER SUS- METER SUS- METER SUS CHECK (Soc) EFOR METER ATTER FT. DISTANCE	METER SUS- 7. METER SUS- METHO PENSION 9 METER SUS- 9 METER SUS- 9 METER SUS- 9 METER SUS- 10 STREAM AND LOCATION 0 STREAM AND LOCATION 0 FEET MILES	METER SUS- METER SUS- NI WETER SUN NI WETER SPIN CHECK (See) CHECK (See) EFORE AFTER BEFORE AFTER DISTANCE DISTANCE MILLES M CAGE RADINGS CAGE RADINGS	METER SUS- METER SUS- NEERSION NEERSION NEERSION DISTANCE FET NILLER NILLER NILLER NILLER NILLER NILLER NILLER NILLER NILLER NILLER NILLER NILLER FEET NILLER FINISH	Nutter Sus- 1. Nutter Sus- Netter Pension Netter Nin Utter	METER SUS- METER SUS- METER SUS- METER SUS- METER SUB MEFORE AFTER ET- FT- FT- FT- FEET MULCCATION BEFORE AFTER MULCE FT- FT- FT- FT- FT- FT- FT- FT- FT- FT-	METER SUS- METER SUS- METER SUS- METER SPIN AN UETER SPIN CHECK (Soe) EFORE AFTER DI STANCE FEET FINI SH FINI SH	A 7 WETER SUS- WETER SUS- N BEFORE ATTER STREAM AND LOCATION STREAM AND LOCATION FFET M FEET N	METER SUS- METER SUS- METER SIS- METER SIN METER SIN METER SIN CHECK (Soe) BEFORE AFTER MILLOCATION FT. BEFORE AFTER MILLE	METER SUS- Netter SUS- METER SUS- Netter SUS- NM METER SUS- NM METER SUS- NM METER SUS- NM DISTANCE FEET MILLE FEET MILLE FEET MILLE GAGE READIN GAGE GAGE FLOW GAGE	METER SUS- N. METER SUS- WETER SUS- METER SUS- WETER SUB MI UTER SUS- MI UTER SUS- MI UTER SUS- BEFORE ATTER R DI STANCE FEET MILLES FEET MILLES GAGE REDIT GAGE FLOHT GAGE FLOHT GAGE FLOHT
	(78.5-55) 1. STREAM AND STATION	RESULTS OF COMPUTATIONS	GAGE HEIGHT % [_	ASUREMENT GAGE HEIGHT CHANGE	ASUREMENT ASUREMENT GAGE HEIGHT CHANGE CHANGE CHANGE RRENT METER THOD OF SUSPENSI	MEASUREMENT MS GAGE HEIGHT MET CHANGE HEIGHT PEN CHANGE TANGE CHANGE SUSPENSION METHOD OF SUSPENSION SUSPENSION (Above bottom of weight) (Above bottom	ASUREMENT ASUREMENT GGAGE HE IGHT W CHANGE CHANGE CHANGE CHANGE THOD OF SUSPENSION THOD OF SUSPENSION THOD OF CROSSING SI	EASUREMENT GAGE HEIGHT W CHANGE CHA	ASUREMENT ASUREMENT GGAGE HEIGHT W CHANGE CHANGE CHANGE THOD OF SUSPENSION HOD OF CROSSING SI HOD OF CROSSIN	ASUREMENT ASUREMENT GAGE HEIGHT W CHANGE C	ASUREMENT ASUREMENT GGAGE HE IGHT M CHANGE CHANGE CHANGE CHANGE THOD OF SUSPENSION CHOW OF SUSPENSION CHOW OF CROSSING SI COMMONSTREAM COMMONSTREAM START START	ASUREMENT ASUREMENT GGAGE HEIGHT W CHANGE CHANGE CHANGE CHANGE THOD OF SUSPENSION THOD OF CROSSING SI HOD OF CROSSING SI HOD OF CROSSING SI COMNSTREAM COMNSTREAM START START	ASUREMENT ASUREMENT GGAGE HEIGHT W CHANGE CHANGE CHANGE CHANGE THOD OF SUSPENSION CHON OF SUSPENSION COCATION (SUDE) (/) LOCATION (SUDE) (/) LOCATION (SUDE) (/) COMNSTREAM START START	ASUREMENT ASUREMENT GGAGE HE IGHT W CHANGE CHANGE THOD OF SUSPENSION THOD OF SUSPENSION THOD OF CROSSING SI WOD OF CROSSING SI THOD OF CROSSING SI	ASUREMENT ASUREMENT GGAGE HE IGHT W CHANGE CHANGE SUSPENSION THOD OF SUSPENSION THOD OF CROSSING SI WOD OF CROSSING SI WOD OF CROSSING SI THOD OF C	EASUREMENT GGAGE HE IGHT M GGAGE HE IGHT M GRANGE NETER THOD OF SUSPENSION F WOLGN() (Above bott F F	ASUREMENT ASUREMENT GGAGE HE IGHT M CHANGE GRANG THEER THOD OF SUSPENSION THOD OF SUSPENSION THOD OF CROSSING SI WOD OF CROSSING SI WOD OF CROSSING SI THOD OF CROSSING SI WOD OF CROSSING SI THOD OF CROSSING
L L	STA	AR	8 0		MEAS	SECTIONS CUR CUR	SECTI	6611	S ECTI	S S S S S S S S S S S S S S S S S S S						SECTION SECTIO		

Fig. 1.02. Standard form for stream measurement and computation

Gage Disch height Disch 81	ble	Rating table for													Begin		
	ļ		to				mo"		<i>t</i>	9				t6		2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	se	Gage height	Discharge	Gage beight	Discharge	Gage height	Discharge	Gage beight		Gage beight		Gage beight	Gage	Gage		Gage	
		Feet .20	Cfs	Feet .40	Cfs	Feet .60	Cfs	Feet .80		Feet		Feet	Feet	Feet	Cfs	Feet	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2		4		19.		8		2	4 8 8 8 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 6	? : 	9.		<u>8</u> .	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		23						2		<u>,</u>		i.	4	<u>ه</u> .			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$; ;		47 7 7				.82		.02	*	.22	.42	.62		.82	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.23		.43		.63		.83		.03		.23	.43	.63		.83	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		- 24		44.		.64		.84		.04	3	. 24	44	.64			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.25		.45		.65		.85		.05		.25	-45	.65		.85	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		26		.46		.66		.86		.06		.26	- 46	\$ 6		.86	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.27	1 1 1 1 1 1 1	.47		.67		.87		.07		.27	.47	.67		.87	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	28		.48	F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 89		88.		.08		.28	.48	.68		88.	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.29		.49		69.	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	89		6 <u>.</u>		.29	.49	69.		89	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				50 -		.70		<u>.</u>		.10		.30	.50	02.		06.	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.31		- 15.		۲. ۲		<u>ه</u> .		Ę		.31	 .51	Ŕ		- <u>5</u>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.32		.52 -		.72		.92		.12		.32	.52	 .72		.92	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				53 -		- 23		.93		.13		33	-53	.73		.93	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.34		.54 -		.74		.94		.14		.34	 .54	.74		94	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.35 .		.55		.75		.95		.15		.35	 .55	.75		.95	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
57		.36		- 56 -		.76	****	.96		16		.36		.76		96.	
.58 .78 .78 .59 .79 .79 .79		.37		.57				- 26.		17		.37	 .57	Ľ.		. 97	
	ŀ	.38		- 58 -		.78		86.		.18		.38	- 58	.78		86.	
	1					- 62.		66:		.19		.39	.59	.79		66.	
							and is			, llaw	defined betw	veen	cfs and	cfs.	Comb		date
															* 	i	

		Flow n cfs	in the same																-	Contraction 1	nio e fogra	annaine Annaiceannaine		19:56(9:447				mentai		nentration	alan atalah mangga
	Contraction of the second second second	·											Contraction of the second seco		And the second se			a defension of the second second second													
YEAR .		Correct Shift Gage Ht Cor													TOTAL	MEAN		and a second	Vo.												
		5	Y														an surger of the state of the second	S	Curve												
	DATE	Pen Pen ReadingCor			-							der ver den men er die net en en der	Strangtone and a state of the		o energe dan kina da			REMARKS	Rating Curve No.												
MONTH	Ő	1 x		3	2O	2	6	11	13	15	17	19	21	23					∝ T											-	1 1
N		Flow in cfs															and the second	Flow in cfs													
		Shift Cor		_													A STATE OF THE S	t Shift t Cor													
		Pen Correct Shift Cor Gage Ht Cor													TOTAL	MEAN	narovenske metropale	Correct Shift Gage Ht Cor													TOTAL MEAN
		Pen Cor						·										Pen Cor													
PROJECT	DATE	Pen Reading															DATE	Pen Reading													
Ъ.	DA	H		6	ŝ	7	6	11	13	15	17	19	21	23			M	- <u>1</u>	-	æ	2	7	6	11	13	1 1 2	17	19	57	23	
		Flow in cfs																Flow in cfs													
		Shift Cor																t Shift Cor													
A STATUS CONTRACTOR CONTRACT		Correct Gage Ht		Canada and a second											TOTAL	MEAN		Correct Gage Ht													TOTAL
/ AT		Pen (Cor (Pen Cor													
DAILY FLOW	DATE	Pen Pen Reading Cor															DATE	Pen Reading												Shie Marriel Marriel and State	
	DA	ž		3	2	~	6	11	13	15	11	19	21	23			DA	L X		ε	S	~	6	11	13	15	17	19	5	23	
	of the second	Flow in cfs																Flow in cfs													
MEAN		Shift Cor				-+												Shift Cor													
AND		Correct Shift Gage Mt Cor													TOTAL	MEAN		CorrectShift Gage Ht Cor												_	TOTAL MEAN
1 1		Pen Co Cor Ge			-+									-				Pen C Cor G				<u> </u>									
BI-HOURLY	μ	Pen Pen Correct Reading Cor Gage Mt				+										And a second	Щ	Pen Reading													
8-	DATE	Hr Re		3	2	7	6	11	13	15	17	19	21	23	terint de sons		DATE	<u>م</u> ۲	T.	3	20	~	6	11	13	15	17	10	21	EZ	

Fig. 1.04. Standard form for computing mean daily streamflows

Fig. 1.05. Standard form for tabulating mean daily streamflows \mathcal{R}_{i}

For flood studies, it is particularly important to obtain accurate records of short-period variations during high river stages and to obtain meter measurements at or near the maximum stage during as many floods as possible. Where the river profile is very flat, as in major rivers, it is advisable to obtain meter measurements frequently on the rising stage and on the falling stage. The reason for this is that the hydraulic slope can change greatly, resulting in different rating curves for rising and falling stages.

It is of considerable value in flood control studies to obtain a complete hydrograph of flows for each flood event. Consequently, permanent records should include frequent tabulations of flows, preferably at hourly intervals or shorter. A standard form for documenting these flows is shown in fig. 1.06. Such tabulations should be maintained for easy access or should be published.

Section 1.04. Natural Topography

Mapping

For most hydrologic studies, it is essential that good topographic maps be used. It is important that the maps contain contours of groundsurface elevation, so that drainage basins can be delineated and important features such as slopes, exposure and stream patterns can be measured. United States Operational Navigation Charts, with a scale of 1 to 1,000,000 and contour interval of 1,000 feet, are available for most parts of the world. However, mapping to a much larger scale (1 to 25,000) and smaller contour intervals (5 to 20 feet) are usually necessary for satisfactory hydrologic studies.

Stream Patterns and Profiles

Where detailed studies of overflow areas are required, computation of water-surface profiles is necessary. Basic data needed for this computation includes frequent, detailed cross sections of the river and overbank areas. These are usually obtained by special field surveys and

UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY--WATER RESOURCES DIVISION File No.

10vr	oade Neight	DISCHARGE	HOUR	OAGE HEIGHT	DISCHARGE	HOUR	-GAGE HE IGHT	DISCHAROZ	HOUR	oace Neicht	DISCHAROI
		an a		Contractor of the local division of the loca	Contractive and the second						
				Contraction of the second second	an a			and the set of the second s			anastraninska i Statisticki Statista († 1935)
		and a second	1		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩			n an			manda managangan ang kana kana kana kana kana k
a an		and the second			an a su a		naidain Corialan - Corianna .			and the second secon	anggaaliten alking op the second s
			1	and the product of the same of	an a		- RAMINE	Sy asiya ang managang		angen maniperanthrows	hain-minin ign officialize party scene and ign of a
		n andre and the state of the st		North State of Street, or other	ana na mana na	a an	1997 - 1997 - 1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	anna an Salah an			avalustassion taning tanah manganga
		ander in the state of the state	1				a nan arristan taken a	anter Anielan manananan antakatan pengentari sek			
								angan ayan ayan ayan ayan ayan ayan ayan			inania italia italia za taking managarata
		and the second secon			and a second	i – i		an da da Balanda yang da Bangar (k. 1986) katan katan yang da seba			nanggan gan kana sin ng mangan pangan sa
-		and a second			and a substantial sector and a substance of the substance of the substance of the substance of the substance of		n Balar William Angle (pagatak dan palam	erangen felen in de sen de			an a
					anna an ann ann ann ann ann ann ann ann		Disising and the second second	AN A CONTRACTOR OF THE CARD OF THE ADDRESS OF THE		******	an y shek di matala ka sa ma ma sa
					**************************************				-	-Della a Maltane et Jereine (Jeps av 19.	
					alogia pangara (ap aga apa atra bang langa araw	{}		an a			analisi Carangi ang mga sa
										. 	na an a
					an and the state of the state o				$ \longrightarrow $		alanististis etteksesta suurajaanistaanistaanistaanistaa
					and a subsective size any collow on the sector of	+			\vdash		and and a second second second second
								and a second constraint and a second constraint of the second second second second second second second second			an vederad manufasin finensingin jen gen
								anne a state to act of the later of the second s			n an the state of the
											-ayana wanta manaka matangan kata kata kata kata kata kata kata ka
											angangangangan angangangangan san
										and the second second second second	ali matang atan dalam kang ang sa
								a da fan de la constante de la		and the second	and an ann an Anna an A
Tinger konges dens											an ngayari nganga ngangan ng Katara si k
										and the second	and a state of the
								n - Carolina and and a state of the Carolina and a state of the Carolina and			www.ehuceconter weeksneedichtistenter.cohuek
											nagar na ga laya an mangangana agong mangas da
			ļ.					and the second secon			na sanakatan katalan k
								TOPATTONICO DE DE COMPANSAMON NOMENO			e an an de la company and an
		-		*********************				n nien onensister (st. 1921 mei seiten seiten seiten son ander			ana amin'ny tanàna amin'ny tanàna mandritry tanàna mandritry tanàna mandritry tanàna mandritry tanàna mandritry
								na ser an			-KANADARINANANANAN MANANAN
					and the second se			alay into the gly specific form of the growth providence of the		and design of the state of the	
				Martin and a standard and a standard							
								Nervidens alfred digitants com via da recebusary.			
					CALTER BY STORY THE ALL OF A SUBJECT OF A SUBJECT OF						
								n			
			I				Ì	an a			an a sa manananan kata da kata na
Τ						ľ		and the second			n on the manufacture of the second state of the second state of the
-1-											ĸĸĸĸĸĸĸĸĔĊĬĊŎĿŧġĸĬĊĿĬĸŢĊĿĸŢĹŔŢĸĸĸŢĿ

Fig. 1.06. Standard form for tabulating hourly streamflows

are, therefore, costly. When these surveys are made, it is important to document the results permanently so that it will not be necessary to repeat them for a later study. Some work has been done to obtain relatively accurate cross section data by aerial photography, but published information on this work is not readily available. Observations of actual water-surface elevations during maximum flood stages are invaluable for calibrating backwater computations.

Lakes and Swamps

The rate of runoff from any watershed is greatly influenced by the existence of lakes, swamps and other flat storage areas. It is therefore important to indicate these areas on available maps. Data on the outlet characteristics of lakes is important because in the absence of outflow measurements the outflow can often be computed through the development of a relationship between amount of water stored in the lake and the outlet characteristics.

Soils and Geology

Certain maps of soils and geology can be very useful in surfacewater studies if they show characteristics that relate to perviousness of the basin. These can then be used for estimating loss rates during storms. Of particular interest are areas of extensive sandy soils that do not contribute to runoff and areas of limestone and volcanic formations that are highly pervious and can store large amounts of water beneath the surface in a short time.

Vegetal Cover

Often the type of vegetation more accurately reflects variation in hydrologic phenomena than does the type of soil or the geology. In

transposing information to areas of little or no hydrologic data, generalized maps of vegetal cover are very helpful.

Section 1.05. Existing Improvements

Streamflow at any particular location can be greatly affected by hydraulic structures located upstream. It is important, therefore, that essential data be obtained on all significant hydraulic structures located in and upstream from a study area. In the case of diversion structures, detailed data are required on the size of the diversion dam, capacity of the diversion canal, and the probable size of flood required to wash out the diversion dam. In the case of storage reservoirs, detailed data on the relation of storage capacity to elevation, location and size of outlets and spillways, types, sizes and operation of control gates, and sizes of power plant and penstocks should be known.

Data Storage and Publication

CHAPTER 2. DATA STORAGE AND PUBLICATION

Section 2.01. Introduction

As a system of data collection is developed within a political subdivision, the problems of storing and retrieving information become increasingly complex and burdensome. During the early phases of a data collection program, the most expensive item is data acquisition. However, later in the program, storage and retrieval become the more expensive operations.

In order to keep costs at a minimum and permit the efficient retrieval and publication of data, it becomes necessary to use modern storage facilities, such as magnetic tape or disk storage.

Section 2.02. Original Records

The extent to which the original observation records are stored will depend on the importance of such documents, their age, and the total volume of such storage. The original documents must be stored at least until such time as the primary processing of the data is completed, totally checked and stored for systematic retrieval. Beyond this, the basic information should be stored, if possible, in order to support legal actions and provide a basis for refining the data processing as new needs develop.

Original hydrologic records are ordinarily maintained at the location where they were observed or at the field office responsible for the collection of those records. However, where such records must be maintained for long periods of time, it may be desirable to store them at central archives especially designed to preserve and protect such records.

Before storing hydrologic records, it is essential that the original documents be totally identified with information on the estimated accuracy of the records, the physical conditions under which the data were collected, the location and description of the collection site, the date and time of

observations, the nature of the measurement or observation, the techniques and equipment used to obtain the data, and other information which might be useful in future evaluations or interpretation of the records.

Section 2.03. Processed Records

As discussed in Chapter 1, records are most useful when they are processed to form systematic tabulations such as mean daily flow or maximum and minimum daily temperatures. For such records to be useful, they must be made available to the user through systematic publication. Regardless of the retrieval process, it is usually advantageous to store the tabulations on computer cards or in one of various types of magnetic storage.

With the increasing use of the electronic computer in hydrologic analyses, many organizations are independently storing their hydrologic data on punched cards and magnetic tape. Generally, funds and time are not adequate to do this in a manner that permits these data to be satisfactorily used in other studies and, as a result, there is considerable duplication of effort. For this reason, substantial savings can be realized if a central agency is assigned the responsibility of performing this task. In order for such an operation to be successful, it is essential that the data be tabulated in a sufficiently short interval and with sufficient accuracy to permit its use for other purposes to the extent that the detail and accuracy exist in the basic observational data. It is essential that all tabulated data are completely and fully checked. Also, it is important that the data on cards or tape be easily and quickly accessible to potential users. A delay of a week can discourage some use of the data. A delay of a month will probably result in little or no use of the data. It is highly desirable to update the punched data at least annually. This can be done economically if the data are also published in tabular form, since the tables can be constructed inexpensively and accurately from the cards or magnetic tapes.

While it is important to identify the data as to location, time of observation, type of information, and unit of measurement when storing it electronically, it is not necessary to repeat detailed identification for every item of data. To do so would require too much space in the storage area. The advantage of formulating systematic tabulations of every type of data, from the standpoint of magnetic storage techniques, is that large groups of individual items can be identified by the order in which they are stored. It is then simply necessary to maintain a key to this identification in order to retrieve and utilize the information effectively.

Tabulations of the processed data should first be placed on computer cards because this is the most efficient method of accomplishing the expensive process of transferring data to electronic storage (although direct keypunching to magnetic tape is possible at some installations). As long as the number of cards is not too great, data can be stored indefinitely in this manner, provided that the cards are maintained properly. If they are used frequently, however, it may be necessary to duplicate them occasionally, because of damage that occurs in the cardreading process.

As the bulk of stored information increases it will be far more economical to store the data on magnetic tape, disks, or other types of magnetic storage, depending on the frequency of retrieval. However, the danger of losing information in magnetic storage is far greater than is the case for punched cards. It is very difficult to reconstitute a value in magnetic storage if it is defaced beyond recognition. Therefore, it is important to frequently clean the tapes or other storage media. It is also important to provide duplicate storage or some other means of reconstituting values that might be defaced.

Storage of every item in at least two locations is desirable if the tabulation process is different in the two locations and is designed for more efficient retrieval. The combinations of information needed for solving various problems are usually different, and the optimum sequence of tabulating the data are different for each retrieval needed. Consequently, tabulations of basic data in two or more different sequences

should be designed so that the user can select the stored sequence that best suits his need. If these independently stored sets of common data are maintained at different locations to prevent simultaneous destruction by a single disaster, the need to preserve the basic information is satisfied, and the retrieval process is made more efficient.

Once the data are tabulated systematically for electronic storage, they can be processed for publication with very little effort and expense. Accordingly, it is usually undesirable to process the data entirely for publication and later to process the same information for electronic storage. For example, daily streamflow records for all of the coastal streams in Peru were obtained from systematic tabulations and punched directly on computer cards. These cards were then used in conjunction with a simple computer program to provide printouts that could be reproduced directly for publication, without requiring any significant amount of special typing or printing.

Section 2.04. Selection of Material for Publication

The amount of hydrologic information that needs to be published will depend on what alternative means exist for distributing the information. Presently, most of the basic information that is used frequently by large numbers of users should be published. However, if a good network of electronic retrieval and transmission facilities exists, a user provided with a good index of data availability might obtain the necessary information more efficiently by electronic means. This would greatly increase the efficiency of use, because it would provide the material in a form directly usable for electronic computations.

At the present state of development of electronic networks, it is almost universally necessary to publish essential basic information. This should consist of systematic summaries of data in the form that is most frequently used, but should be restricted to basic information to allow adaptability to the greatest variety of problem solutions. Mean daily observed streamflow is an excellent example of highly usable basic information. Such streamflows adjusted for upstream regulation or diversions might

not be so useful, because the adjustment process used might not be acceptable for certain applications. It is essential to identify the published data and to supply information on the measurement process and the reliability. It is also desirable to have information on known conditions that have affected the observations, such as upstream regulations and diversions.

Published information should be indexed for ready identification and retrieval. In the case of hydrologic data, this ordinarily requires location on a map of suitable scale and construction.

Adjustment of Runoff Data

CHAPTER 3. ADJUSTMENT OF RUNOFF DATA

Section 3.01. Introduction

Adjustment of recorded streamflows is often required before the data can be used in water resources development studies. This is because flow information usually is required at locations other than gaging stations and for conditions of upstream development other than those under which flows occurred historically.

Section 3.02. Need for Adjusted Runoff Data

In correlating flows between locations, it is desirable to use "natural" flows (unaffected by artificial storage and diversion) in order that correlation procedures will apply logically and efficiently. In generating flows as discussed in Chapter 5, it is even more desirable that natural flows be used, because general frequency functions characteristic of natural flows are employed in this process. It is not always feasible to convert flows to natural conditions, because required data might not be available or the flow modification might be so complex as to require an unreasonable amount of computation. When feasible, however, conversion is made by adding historical storage changes (plus net evaporation) and upstream diversions (less return flows) to historical flows at the gaging stations for each interval in turn. Under some conditions, it is necessary to account for differences in channel and overbank percolation losses, distributary flow diversions, travel times and other factors. Methods of determining evaporation and other losses are described in Volume 8. When it is not feasible to convert flows completely to natural conditions, they should be adjusted, if only approximately, to a uniform condition, such as present conditions. In such cases, every reasonable effort should be made to remove special influences (such as the influence of one major reservoir) that would cause unnatural variations of flow.

When it is necessary to adjust flows to a condition of higher regulation or depletion, the reverse process is used. Water that would be stored or depleted each period should be subtracted from observed flows.

Section 3.03. Estimates of Stream Depletions

Estimation of historical depletions should be based on measurements of actual river diversions and return flows, but these are not always available. Estimation of channel and evaporation losses is important in many regions and should be based generally on observed depletions between gages where other losses or gains are not significant. Some estimates of stream depletions due to diversions for water use can be made by using tables 3-01 to 3-05.

Table 3.01. Estimated municipal and industrial demand (based on experience in the United States)

Population	Low	Average	High
(thousands)	gpcpd*	gpcpd*	gpcpd*
1	60	80	100
5	70	120	150
10	80	140	180
50	90	150	210
100 or more	100	160	230

* Multiply by .003785 to obtain cubic meters per capita per day.

Notes:

- Average demand based on use as follows: 40% domestic, 35% industrial, 10% public, and 15% waste and miscellaneous.
- (2) Industrial requirements vary widely among industries and, therefore, if it appears that industrial requirements will be relatively large, specific information concerning the industry and its needs should be obtained.
- (3) It has been estimated that between 75% and 90% of the total demand is returned to streamflow via sanitary sewers and industrial waste outlets.

Month		Small Variation	Average <u>Variation</u> (Percent of Annual Total)	Large Variation
January		7	6	4
February		7	6	4
March		7	6	4
April		7	7	6
May		8	8	7
June		9	10	9
July		10	11	14
August		10	12	16
September		10	11	14
October		9	9	12
November		9	8	6
December		7	6	4
			· ····································	-
	TOTAL	100	100	100

Table 3.02. Seasonal variation in municipal and industrial water supply demand

Note: Seasonal variation in demand is highly dependent upon climatic variations. Large climatic variations cause large demand variations particularly in arid or semiarid regions. Shift 6 months for Southern Hemisphere.

	Low efficiency 30% - 35%	Avg efficiency 35% - 45%	High efficiency 45% - 50%
	meters	meters	meters
Pasture, alfalfa and other			
forage crops	2.0	1.5	0.8
Potatoes, sugar beets, cotto	n 1.5	1.0	0.5
Cereals (excluding rice)	1.0	0.8	0.3
Rice	3.0	2.5	2.0
Deciduous fruits	1.5	1.0	0.8
Small fruits, grapes	1.0	0.8	0.5
Citrus fruits	1.5	1.0	0.8
Vegetables	1.5	1.0	0.3

Table 3.03. Estimated annual water requirements for various crops at various irrigation efficiency ranges

Notes:

- (1) Total water requirement. Precipitation immediately prior to and during growing season should be deducted to obtain irrigation requirements.
- (2) Conveyance losses and wastes are not included.

Table 3.04. Typical monthly variations in irrigation requirements

Month		Small Variation	Average Variation	Large Variation
			(Percent of annual total)	
January		5	0	0
February		6	0	0.0
March		10	2	0
April		10	13	0
May		10	20	1
June		11	19	11
July		11	19	23
August		10	13	30
September		19	10	27
October		7	3	8
November		6	1	0
December		5	0	0
	TOTAL	100	100	100

Note: Variation in time of growing season could require shifting forward or backward the tabulated monthly schedules. Shift 6 months for Southern Hemisphere.

Table 3.05. Losses and wastes expressed as percentage of total diverted flow

		Low	Average	High
Conveyance	loss	15	30	50
Conveyance	waste	5	15	30

Regional Analysis

CHAPTER 4. REGIONAL ANALYSIS

Section 4.01. Introduction

It is very important in the development of hydrologic criteria for regions of sparse data to formulate generalized hydrologic relationships through which all pertinent available data can be used for estimating hydrologic quantities at any particular location. Even in regions where data are more plentiful, regional studies are helpful and, in fact, necessary in order to make the most effective use of available information. Such studies are useful for transferring information both to ungaged and gaged locations to improve the quality of estimates based on gaged data for that location. Once a basic generalized study is completed, relatively dependable estimates of hydrologic quantities can be made rapidly and inexpensively, thus greatly expanding the capability of assessing the nature and magnitude of hydrologic problems and of devising remedial measures.

In formulating generalized criteria for a region, care must be exercised in selecting the hydrologic variables to be studied. These should be effective and efficient indices that are directly pertinent to the types of hydrologic problems expected to occur. There are several very general indices that are commonly used and are useful in almost any region. These consist of maps of normal or average seasonal precipitation, maps of average annual runoff, envelope curves of maximum observed flows in relation to the size of drainage basin, and others.

Section 4.02. Coordination of Station Data

A regional study is best accomplished by first establishing the most dependable form of an index expressing the variation of a pertinent hydrologic variable for each gaged location, and then correlating that index with pertinent characteristics of the various locations. In many cases, the reliability of an index for any gaged location can be increased by

4-01

Sec. 2.

correlating data at that location with any related data that extend over a longer period at other locations. This would apply, for example, to monthly streamflows or maximum or minimum annual events. The incremental amount of information obtainable in this manner is a direct function of the additional length of time that data are available at the other locations and of the degree of correlation with the other locations. While it is most common to correlate only identical phenomena, such as runoff at one location vs. runoff at another location, it can also be helpful to relate different phenomena that would reasonably correlate, such as runoff with precipitation.

While it is not necessary to estimate each item of missing data in order to improve the quality of an index of those data, it is usually desirable to do so. However, there are some difficulties that should be recognized, and the estimated quantities should be used with appropriate care. In estimating missing values for a short record, it is important that pertinent characteristics of the short-record data be preserved and, in most cases, that pertinent interrelationships between the sets of data at the various locations also be preserved. For example, if streamflow stations on two tributaries are to be used for design of projects that will serve a common need, then it is important to consider whether extreme events occur simultaneously or at different times on the two tributaries. If some data are estimated in such a manner that the resulting intercorrelation between data on the two tributaries is changed, this can greatly affect the design of such projects.

In estimating individual data values for a short-record location by correlation with longer-record locations, the only feasible means of preserving the variance at the short-record location and the intercorrelation among locations requires that a random component be introduced into each estimate. This represents that portion of the quantity that is not related to events at other locations. Since this portion of the estimate is random, it must be recognized that quantities estimated by different individuals in the same manner would ordinarily not agree item by item.

Ordinarily, the best estimate of missing data is obtained by relating data to several other locations, rather than only one. This is feasible through multiple correlation analysis, and will ordinarily improve the reliability of estimates considerably over those obtainable through simple correlation analysis. Furthermore, the interrelationships among several locations, which may be of primary concern in system development, are best preserved through multiple correlation analysis. A computer program for estimating missing values of average monthly streamflow (or other hydrologic phenomena) has been developed in The Hydrologic Engineering Center of the Corps of Engineers and is described in Appendix 1. The techniques used in this program, which include multiple correlation analysis and use of random components, can be adapted in estimating hydrologic phenomena for time intervals other than 1 month.

It is not necessary, and sometimes not desirable, to estimate missing data in order to transfer information from one location to another. Certain statistics or indices that are computed from short records can be adjusted to account for additional data at other locations by use of a relationship between the short-period and long-period statistics at the long-record location. An example of such estimation of frequency statistics is given in Volume 3.

Section 4.03. Indices of Hydrologic Phenomena

For various reasons, regional studies of hydrologic phenomena should be limited to the minimum number of indices that are needed for application in planning and design studies. The principal reasons are that generalized studies require substantial effort and time, and that application of generalized criteria can be seriously handicapped if the indices used duplicate each other in any substantial degree. Accordingly, indices to be used in regionalized studies should be those representing the most influential hydrologic elements and should be as independent of each other as possible. Some commonly used indices are described in the following paragraphs.

A study of storm precipitation must include analysis of variations in precipitation with respect to duration and area. It is possible to represent storm depth-area-duration data by a set of figures for specific sizes of area and specific durations. However, adequate representation would require numerous items in each set, and these items would be highly interrelated. Consequently, they do not constitute good indices for regional studies. On the other hand, observation of many relationships between depth and duration in actual storms indicates that the following equation, involving two independent constants, can be used to closely represent the relationship between depth and duration in any particular storm.

$$\overline{P} = aT^{-b} \tag{4-1}$$

where:

- \overline{P} = average rate of precipitation
- T = duration
- a = constant coefficient
- b = constant exponent

Similarly, relationships exist between depth and size of area, but these are not so uniform in observed storms. In general, however, the following relationship can be used as a basis for regional studies, and can be supplemented by refinements in the descriptive function of precipitation vs. duration and area as necessary.

$$\overline{P} = aT^{-b}A^{-c}$$
(4-2)

where:

A = area covered by precipitation

c = constant exponent

The most commonly used indices of frequency or probability of hydrologic events are functions of moments of statistical distributions, which are discussed in Volume 3. Probably the best standard approach to regional analysis of the frequency of flood events involves using the mean logarithm and the standard deviation of logarithms of annual maximum events, each in multiple correlation with physical characteristics pertinent to the location.

The skew coefficient, which is related to the third moment of the observations at a particular location, is ordinarily highly erratic and undependable. Consequently, it is usually advisable to adopt an average skew coefficient for an entire region, rather than to correlate this index with physical characteristics. Indices of higher moments are increasingly erratic, and are usually ignored in regional analysis. It might be found in some cases that a parameter representing an event larger than that represented by the mean logarithm would represent a more stable phenomenon and would correlate better than the mean logarithm with physical characteristics. Such a less-common event might be desirable as an index if it more nearly approximates the magnitudes of interest in the study. Occasionally, the magnitude that is exceeded on the average of once in 10 years is used, because it represents a magnitude of more direct interest than the mean magnitude and yet can be estimated with an acceptable degree of reliability. Some generalized studies of hydrologic frequencies include separate correlation of a number of magnitudes corresponding to various exceedence probabilities. This is probably unnecessary, and introduces the problem of coordinating the various magnitudes that are estimated for ungaged locations.

There is considerable merit in some systematic approach or uniformity in the selection of indices, because this would permit ready comparisons of relationships developed for different regions. Some common recommended indices are as follows:

a. Precipitation.

(1) Normal or average annual precipitation.

(2) Normal or average seasonal precipitation (where two or more rainy seasons with different characteristics exist).

(3) Average depth of maximum storm precipitation for 24 hours over 200 square miles (or 500 square kilometers).

(4) Average depth of maximum thunderstorm precipitation for3 hours over 50 square miles (or 100 square kilometers).

b. Runoff.

(1) Mean annual runoff.

(2) Maximum rate of flow for each storm or each year or for a specified probability.

(3) Maximum rate of flow per unit of area expressed as a coefficient, c, in the formula, $Q = cA^{1/2}$.

(4) Maximum or minimum volume of runoff expressed as average rate of flow for a specified duration.

c. Rainfall-runoff relations.

- (1) Infiltration index.
- (2) Clark's (TC + R) and (R/(TC + R)) (see Volume 4).

d. Temperatures.

(1) Sea level temperatures computed from observed surface temperatures, assuming that a normal lapse rate extends from the surface elevation to sea level.

- (2) Average daily maximum temperature for a specified period.
- (3) Average daily minimum temperature for a specified period.
- (4) Average temperature for a specified period.

e. Snowpack.

(1) Water equivalent of snowpack at a particular location.

Section 4.04. Correlation Analysis

Nature and Application

Correlation is the process of determining the manner in which the changes in one or more independent variables affect another (dependent) variable. The dependent variable is the value sought and it is known to be physically related to various independent variables. For example, the runoff volume during the spring months at a given point on a river (dependent variable) might be correlated with the depth of snow cover above that point (independent variable). Recorded values of such variables over a period of years might be plotted, and the apparent relation sketched in by eye. However, correlation methods will generally permit a more dependable determination of the relation and have the additional advantage of providing means for evaluating the dependability of the relation or of estimates based on the relation. Correlations can be linear or curvilinear, but linear regression suffices for most applications. For this reason, curvilinear regression is not discussed in this volume.

Calculation of Regression Equations

In a simple correlation (only one independent variable), the linear regression equation is written:

$$Y = a + bX \tag{4-3}$$

where:

Y = the dependent variable
X = the independent variable
a = the regression constant
b = the regression coefficient

The coefficient b is evaluated from the tabulated data by use of equations 4-13 and 4-14 and the following equation:

$$b = \Sigma(yx)/\Sigma(x)^2 \qquad (4-4)$$

where:

y = the deviation of each single value Y from \overline{Y} , the mean of its series $\overline{Y} = \Sigma Y / N$

N = the number of observations of Y

The value, x, is defined similarly as the deviations of X from its mean. The regression constant, a, is obtained from the tabulated data by use of the following equation:

$$a = \overline{Y} - b\overline{X}$$
 (4-5)

In a multiple correlation (more than one independent variable) the linear regression equation is written:

$$Y = a + b_1 X_1 + b_2 X_2 \cdot \cdot \cdot + b_n X_n$$
(4-6)

where n is the total number of independent variables, and a, b, Y and X are defined as in equation 4-3.

In the case of two independent variables, the b coefficients are evaluated from the tabulated data by solution of the following simultaneous equations:

$$\Sigma(x_1)^{2}b_1 + \Sigma(x_1x_2)b_2 = \Sigma(yx_1)$$
 (4-7)

$$\Sigma(\mathbf{x}_{1}\mathbf{x}_{2})\mathbf{b}_{1} + \Sigma(\mathbf{x}_{2})^{2}\mathbf{b}_{2} = \Sigma(\mathbf{y}\mathbf{x}_{2})$$
(4-8)

where x, y, and b are defined as in equation 4-4.

In the case of three independent variables, the b coefficients can be evaluated from the tabulated data by solution of the following simultaneous equations:

$$\Sigma(x_1)^{2}b_1 + \Sigma(x_1x_2)b_2 + \Sigma(x_1x_3)b_3 = \Sigma(yx_1)$$
(4-9)

$$\Sigma(\mathbf{x}_{1}\mathbf{x}_{2})\mathbf{b}_{1} + \Sigma(\mathbf{x}_{2})^{2}\mathbf{b}_{2} + \Sigma(\mathbf{x}_{2}\mathbf{x}_{3})\mathbf{b}_{3} = \Sigma(\mathbf{y}\mathbf{x}_{2})$$
(4-10)

$$\Sigma(x_1 x_3) b_1 + \Sigma(x_2 x_3) b_2 + \Sigma(x_3)^2 b_3 = \Sigma(y x_3)$$
(4-11)

For cases of more than three independent variables, the appropriate set of simultaneous equations can be easily constructed after studying the patterns of the above two sets of equations. Computer programs are available for solution of simple or multiple linear regression problems on practically any type of electronic computer.

For multiple regression equations, the regression constant, a, should be determined as follows:

$$a = \bar{Y}_{1} - b_{1}\bar{X}_{1} - b_{2}\bar{X}_{2} + \cdots - b_{n}\bar{X}_{n}$$
 (4-12)

143

where \bar{Y} , b, and n are defined as in equations 4-5 and 4-6, and \bar{X}_1 , \bar{X}_2 and are the means of the respective independent variables.

In equation 4-4 and equations 4-7 to 4-11, the quantities $\Sigma(y)^2$, $\Sigma(x)^2$, and $\Sigma(yx_1)$ are obtainable rapidly by use of the following equations:

$$\Sigma(\mathbf{y})^{2} = \Sigma(\mathbf{Y})^{2} - (\Sigma\mathbf{Y})^{2}/\mathbf{N}$$

$$\Sigma(\mathbf{x})^{2} = \Sigma(\mathbf{X})^{2} - (\Sigma\mathbf{X})^{2}/\mathbf{N}$$

$$\Sigma(\mathbf{y}\mathbf{x}_{1}) = \Sigma(\mathbf{Y}\mathbf{x}_{1}) - \Sigma\mathbf{Y}\Sigma\mathbf{x}_{1}/\mathbf{N}$$
(4-14)

where x, X, y, Y, and N are defined as in equations 4-3 and 4-6.

The Correlation Coefficient and Standard Error

The coefficient of determination is defined as the proportion of the variance of the dependent variable that is explained by the regression equation. The correlation coefficient is defined as the square root of the coefficient of determination. A correlation coefficient of 1.00 would correspond to a coefficient of determination of 1.00, and is the highest coefficient theoretically possible. This indicates that whenever the values of the independent variables are known exactly, the corresponding value of the dependent variable can be calculated exactly. On the other hand, a correlation coefficient of 0.5 would correspond to a coefficient of determination of 0.25, which would indicate that 25 percent of the variance is explained and 75 percent is unexplained.

The correlation coefficient (\overline{R}) is determined by first computing the unadjusted determination coefficient (R^2) as follows:

$$R^{2} = \frac{b_{1}\Sigma(yx_{1}) + b_{2}\Sigma(yx_{2}) + \cdots + b_{n}\Sigma(yx_{n})}{\Sigma(y)^{2}}$$
(4-15)

where n is the number of independent variables, and b, y, and x are defined as in previous equations.

 R^2 is the determination coefficient of the given sample and must, therefore, be adjusted to the universe by applying the following equation to determine the adjusted determination coefficient, \bar{R}^2 :

$$\bar{R}^2 = 1 - (1 - R^2)(N - 1)/df$$
 (4-16)

where:

N = total number of observations used in the correlation analysis

df = the number of degrees of freedom

The number of degrees of freedom is obtained by subtracting the total number of dependent and independent variables from the number of observations used in the correlation analysis. Therefore, df would equal N - (n + 1).

As was previously noted, the correlation coefficient is then simply the square root of \bar{R}^2 .

In the case of simple correlation, equation 4-15 resolves to:

$$R^{2} = \frac{(\Sigma y x)^{2}}{\Sigma y^{2} \Sigma x^{2}}$$
(4-17)

The standard error (S_e) of a set of estimates is the root-mean-square error of those estimates. On the average, about one out of three estimates will have errors greater than the standard error and about one out of 20 will have errors greater than twice the standard error. The error variance (S_e^2) is the square of the standard error. The standard error or error variance of estimates based on a regression equation is calculated from the data used to derive the equation by use of either of the following equations:

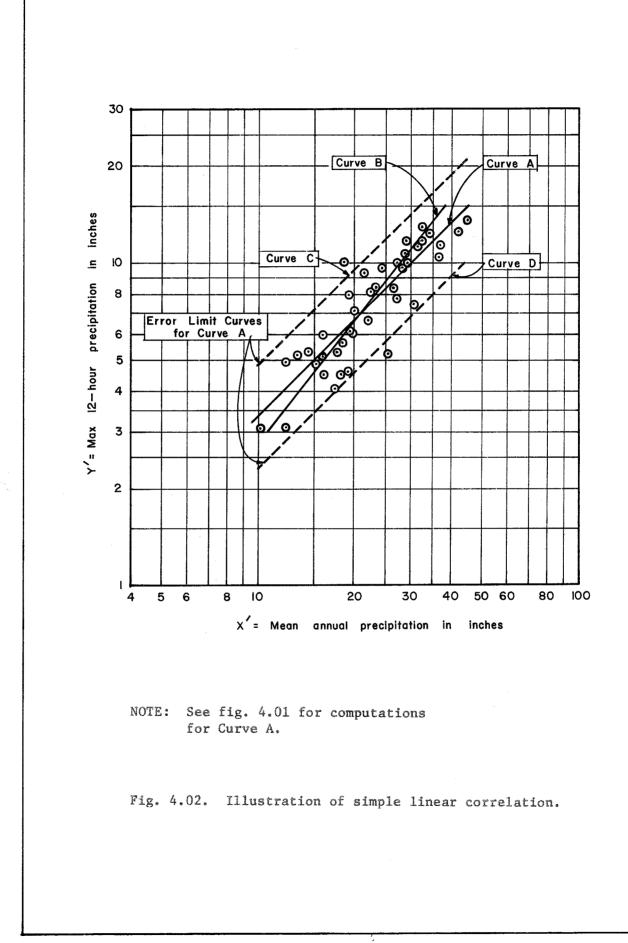
$$S_{e}^{2} = \frac{\sum(y)^{2} - b_{1}\Sigma(yx_{1}) - b_{2}\Sigma(yx_{2}) \cdot \cdot \cdot - b_{n}\Sigma(yx_{n})}{df}$$
(4-18)

$$S_e^2 = (1 - \bar{R}^2) \Sigma(y)^2 / (N - 1)$$
 (4-19)

where x, y, b, df, n, \overline{R}^2 and N are defined as in the previous equations.

In addition to considering the amount of variance that is indicated by the correlation coefficient and standard error to be solved by the regression equation, it is important to consider the reliability of these indications. There is some chance that any correlation is accidental, but the higher the correlation and the larger the sample upon which it is based, the less is the chance that it would occur by accident. Also, the reliability of a regression equation decreases as the number of independent variables increases. For example, an unadjusted correlation coefficient (R) of 0.8 based on a simple linear correlation with 12 degrees of freedom corresponds to a true value as low as 0.53 in one case out of 20. On the other hand, R based on a multiple linear correlation with 12 degrees of freedom, 1 dependent variable, and 7 independent variables corresponds to a true value as low as 0 in one case out of 20. With only 4 degrees of freedom, a value of R of 0.97 would one time in 20 correspond to a true value as low as 0.8 in the case of simple correlation and as low as zero in a 7-variable multiple correlation. Accordingly, extreme care must be exercised in the use of multiple correlation in cases based on small samples. Reference 5 (pp. 506-509) gives a set of charts illustrating the above examples.

Simple Linear Correlation Example


An example of a simple linear correlation analysis is illustrated in figs. 4.01 and 4.02. The study from which this example was taken involved the determination of the areal distribution of short-duration precipitation in a mountainous region. Since short-duration measurements were available at a relatively small number of locations, it was decided to investigate the relationship of short-duration precipitation to longduration precipitation measurements that were available at many locations.

Since the long-duration precipitation is made up of the sum of short-duration precipitation amounts, there is no question as to the existence of a physical relationship, and it is obvious that the first requirement of a correlation analysis (logical physical relationship) is

3

Fig. 4.01. Computation of simple linear correlation

Sta. In. Log. In. Log. Sta. In. Log. In. Lo	29	<u></u>	Alexandra and an and an an							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					Annual		Max.	12 hr	Mean	Annual
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				(X')	(X)		(Y')	(Y)		(X)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								Log.	In.	Log
7-0-15 7.5 .86 30.8 1.99 7-0-22 12.6 1.10 42.2 1.63 7-0-25 3.1 .49 12.2 1.7 7-0-23 10.4 1.02 56.2 1.56 7-0-36 4.9 .69 15.4 1.19 8-0-8 5.2 .72 25.2 1.1 7-0-36 4.9 .69 15.4 1.19 8-0-8 5.2 .72 25.2 1.1 7-0-39 7.1 .85 20.0 1.30 8-0-18 4.6 .66 18.5 1.7 7-0-39 7.1 .85 20.0 1.30 8-0-21 1.8 1.07 32.3 1.1 7-0-89 15.3 .72 14.2 1.15 8-0-29 11.8 1.07 32.3 1.1 7-0-89 10.0 1.00 18.8 1.27 8-0-45 6.0 .78 19.7 1.1 7-0-93 6.0 .78 16.2 1.21 8-0-60 8.2 .91 22.5 1.7 7-0-93 6.0 .78 16.2 1.22 8-0-67 9.8 .99 28.7 1.1 7-0-99 4.5 .65 15.8 1.20 8-0-75 11.7 1.07 36.9 1.1 7-0-102 5.3 .72 17.3 1.24 8-0-61 9.8 .99 28.7 1.1 7-0-102 5.3 .72 17.3 1.24 8-0-62 9.8 .99 28.7 1.1 7-0-102 5.3 .72 17.3 1.24 8-0-62 9.8 .99 28.7 1.1 7-0-102 5.3 .72 17.3 1.24 8-0-219 10.0 1.00 27.8 1.4 7-0-120 11.6 1.06 29.0 1.46 $\overline{Y} = 36.68 \Sigma = 56.61 \overline{X} = 52.7 2 1.5 1.7 -0-130 1.3.4 1.33 44.6 1.65 \overline{Y} = 36.68 \Sigma = 56.61 \overline{X} = 5.2 .72 1.6.1 3.65 \Sigma Y^2 = 33.2134 \overline{X}^2 = 77.8041 \overline{X} = 1.553 \overline{Y}^2 = 37.3 \overline{X} = 1.553 \overline{Y}^2 = 37.1 3.5 \overline{X}^2 = .9618 \overline{Y} = .9460/.9618 = 0.98 (eq. 4-4)' 4 = .87398 (1.353) =453 (eq. 4-5) \Sigma Y^2 = 39.600 \overline{Y} = .9618 \overline{Y} = .9616 \overline{Y} = .98160 \overline{Y} = .991$	(1)	(2)	(3)	(4)	(5)	(6)	(7)		(9)	(10
7-0-15 7.5 .88 90.8 1.99 7-0-22 12.6 1.10 42.2 1.63 7-0-25 3.1 .49 12.2 1. 7-0-23 0.4 1.02 56.2 1.56 7-0-25 3.1 .49 12.2 1. 7-0-26 4.9 .69 15.4 1.19 8-0-8 5.2 .72 25.2 1.1 7-0-39 7.1 .85 20.0 1.30 8-0-18 4.6 .66 18.5 1.7 7-0-39 7.1 .85 20.0 1.30 8-0-18 4.6 .66 18.5 1.7 7-0-39 7.1 .85 20.0 1.30 8-0-18 4.6 .66 18.5 1.7 7-0-39 7.1 .85 20.0 1.30 8-0-21 1.8 1.07 32.3 1.1 7-0-84 6.2 .79 19.3 1.29 8-0-34 12.4 1.09 33.8 1.1 7-0-84 6.2 .79 19.3 1.29 8-0-35 10.1 1.00 29.8 1.1 7-0-89 10.0 1.00 18.8 1.27 8-0-45 6.0 .78 19.7 1.7 7-0-93 6.0 .78 16.2 1.24 8-0-66 8.2 .91 22.5 1.7 7-0-93 6.0 .76 16.2 1.24 8-0-66 8.2 .91 22.5 1.7 7-0-93 4.5 .65 15.8 1.20 8-0-75 11.7 1.07 36.9 1.2 7-0-102 5.3 .72 17.3 1.24 8-0-219 10.0 1.00 27.8 1.45 7-0-120 11.6 1.06 29.0 1.46 7-0-122 11.6 1.06 29.0 1.46 7-0-122 11.6 1.06 29.1 1.46 7-0-123 13.4 1.13 44.6 1.65 7-0-124 11.6 1.06 29.1 1.46 7-0-124 11.6 1.06 31.1 1.49 7-0-130 13.4 1.13 44.6 1.65 7-0-130 3.4 1.13 44.6 1.65 7-0-130 6.9 .90 27.2 1.43 7-0-149 8.0 .90 19.2 1.28 5.72 1.1795 $\Sigma^2 = .9618$ $\Sigma(YZ)^2/_N = 32.0399$ $(\SigmaX)^2/_N = 76.8423$ $\Sigma(YX) = 50.5601$ $\SigmaYX/N = 50.5601$ $\SigmaYX = .98 10g X' - 0.45 = 10g (.36 X'-98)$ Y = .98X - 0.45 (regression eq., eq. 4-6) Y = .98X - 0.45 (regression eq., eq. 4-6) Y = .98X - 0.45 (regression eq., eq. 4-6)	7-0-12 1		uо	10.0	1 00	7 0 000	ini Anglasi Anglasi			
7-0-22 12.6 1.10 42.2 1.69 7-P-25 3.1 .49 12.2 1.4 7-0-23 10.4 1.02 36.2 1.56 7-P-61 4.9 .69 15.4 1.19 8-0-6 5.2 72 25.2 1.1 7-0-39 7.1 .65 20.0 1.30 8-0-18 4.6 .66 18.5 1.1 7-0-43 5.3 .72 14.2 1.15 8-0-29 11.8 1.07 32.3 1.1 7-0-73 5.3 .72 14.2 1.15 8-0-29 11.8 1.07 32.3 1.1 7-0-84 6.2 .79 19.3 1.29 8-0-35 10.1 1.00 29.8 1.1 7-0-89 10.0 1.00 18.6 1.27 8-0-45 6.0 .78 19.7 1.1 7-0-95 5.8 .76 18.2 1.26 8-0-57 9.8 .99 28.7 1.1 7-0-95 5.8 .76 18.2 1.26 8-0-67 9.8 .99 28.7 1.1 7-0-102 5.3 .72 11.3 1.24 8-0-66 8.2 .91 22.5 1.2 7-0-120 1.6 1.06 29.0 1.86 7-0-122 10.5 1.02 28.8 1.46 7-0-123 9.9 1.00 27.9 1.45 7-0-124 1.6 1.06 31.1 1.49 7-0-125 9.9 1.00 27.9 1.45 7-0-125 9.9 1.00 27.9 1.45 7-0-126 13.4 1.13 44.6 1.65 7-0-133 8.4 .92 23.8 1.98 7-0-136 7.9 .90 27.2 1.43 7-0-140 9.3 .97 7.21 1.51 7-0-137 8.4 .92 23.8 1.98 7-0-138 8.4 .92 23.8 1.98 7-0-139 8.4 .92 23.8 1.98 7-0-139 8.0 30 19.2 1.28 7-0-139 8.4 .92 23.8 1.98 7-0-139 8.4 .92 23.8 1.98 72 = 1.1795 $\Sigma^2 = .9618$ $\Sigma Y^2 = 33.2134 \Sigma^2 2 = .9618$ $\Sigma Y^2 = 1.1795 \Sigma^2 = .9618$ $\Sigma YZ/M = 9.6141$ $\Sigma $			en de la companya de							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$7-0-36 4.9 .69 15.4 1.19 \\ 7-0-39 7.1 .65 20.0 1.30 \\ 8-0-18 4.6 .66 18.5 1.7 \\ 7-0-39 7.1 .65 20.0 1.30 \\ 8-0-29 11.8 1.07 32.3 1.4 \\ 8-0-29 11.8 1.07 32.3 1.4 \\ 8-0-29 11.8 1.07 32.3 1.4 \\ 8-0-29 11.8 1.07 32.3 1.4 \\ 8-0-35 10.1 1.00 29.8 1.4 \\ 7-0-89 6.2 .79 19.3 1.29 8-0-35 6.0 .78 19.7 1.1 \\ 7-0-93 6.0 .78 16.2 1.21 \\ 8-0-60 8.2 .91 22.5 1.2 \\ 7-0-95 5.8 .76 18.2 1.26 8-0-67 5.8 .99 28.7 1.1 \\ 7-0-93 6.0 .78 16.2 1.26 8-0-67 5.8 .99 28.7 1.1 \\ 7-0-93 5.6 .76 18.2 1.20 8-0-75 11.7 1.07 36.9 1.4 \\ 7-0-102 5.3 .72 17.3 1.24 8-0-60 8.2 .91 22.5 1.2 \\ 7-0-93 .65 15.8 1.20 8-0-75 11.7 1.07 36.9 1.4 \\ 8-0-219 10.0 1.00 27.8 1.4 \\ 8-0-219 10.0 1.00 27.8 1.4 \\ 7-0-120 11.6 1.06 29.0 1.46 \\ 2Y 956.68 1X 8-0219 10.0 1.00 27.8 1.4 \\ 7-0-122 10.5 1.02 28.6 1.49 \\ Y 7 .87 X 7 .83 23.1 1.5 \\ 7-0-123 1.6 1.06 29.1 1.46 \\ 1.70 Y Y 92.656.1 \\ Y Y 92.66.8 1X Y Y 92.66.8 \\ Y 90 27.2 1.49 \\ Y Y 92.656.1 \\ Y Y 92.66.8 1X Y Y Y 1.56.61 \\ Y 7 90 27.2 1.49 \\ Y Y 92.656.1 \\ Y Y 92.656.1 \\ Y Y Y Y 92.656.1 \\ Y Y Y Y Y Y Y Y Y Y$					· ·					
7-0-39 7-185 20.0 1.90 8-0-18 4.6 .66 18.5 1.1 7-0-43 5.3 .72 14.2 1.15 8-0-29 11.6 1.07 32.3 1.1 8-0-29 11.6 1.07 32.3 1.1 8-0-29 11.6 1.07 32.3 1.1 7-0-84 6.2 .79 19.3 1.29 8-0-35 10.1 1.00 29.6 1.1 7-0-84 6.2 .79 19.3 1.29 8-0-35 10.1 1.00 29.6 1.1 7-0-93 6.0 .78 16.2 1.21 8-0-60 8.2 .91 22.5 1.5 7-0-95 5.8 .76 18.2 1.26 8-0-67 9.8 .99 28.7 1.1 7-0-99 4.5 .65 15.8 1.20 8-0-75 11.7 1.07 36.9 1.1 7-0-102 5.3 .72 17.3 1.24 8-0-219 10.0 1.00 27.8 1.1 7-0-102 5.3 .72 17.3 1.24 8-0-219 10.0 1.00 27.8 1.1 7-0-122 10.5 1.02 20.8 1.46 $\Sigma Y = 36.68 \Sigma X = 56.81 \Sigma X = 56.81 \Sigma Y^2 = 39.2134 \Sigma X^2 = 77.8041 \Sigma Y Z = 1.1795 \Sigma X^2 = .9618 \Sigma Y^2 = 1.1795 \Sigma X^2 = .9618 \Sigma Y^2 = 1.1795 \Sigma X^2 = .9618 \Sigma Y Z = 1.1795 \Sigma X^2 = .9618 \Sigma Y Z = 1.1795 \Sigma X^2 = .9618 \Sigma Y Z = 1.1795 \Sigma X^2 = .9618 \Sigma Y X = .9460/.9618 = 0.98 (eq. 4-4) 4 = .87398 (1.353) =453 (eq. 4-5) R^2 = (.9460)^2 (.9618) = 0.98 (eq. 4-4) 4 = .87398 (1.353) =453 (eq. 4-15) R^2 = 1 - (0.211) 41/40 = 0.78 (eq. 4-16) R = 0.88 Y = .98X - 0.45 (regression eq., eq. 4-6) 10g Y' = .98 log X' - 0.45 (regression eq., eq. 4-6)$	•							1 A 1		
7-0-43 5.3 .72 14.2 1.15 7-0-43 5.3 .72 14.2 1.15 7-0-77 9.7 99 24.5 1.39 8-0-34 12.4 1.09 33.8 1.1 7-0-89 10.0 1.00 18.8 1.27 8-0-35 10.1 1.00 29.8 1.1 8-0-35 10.1 1.00 29.8 1.1 8-0-45 6.0 .78 19.7 1.1 7-0-93 6.0 .78 16.2 1.21 8-0-67 9.8 .99 28.7 1.1 7-0-99 4.5 .65 15.8 1.20 8-0-67 9.8 .99 28.7 1.1 7-0-102 5.3 .72 17.3 1.24 8-0-219 10.0 1.00 27.8 1.1 7-0-114 8.5 .93 26.8 1.46 7-0-122 10.5 1.02 28.8 1.46 7-0-122 10.5 1.02 28.8 1.46 7-0-122 10.5 1.02 29.8 1.46 7-0-122 10.5 1.02 29.8 1.46 7-0-122 10.5 1.02 29.8 1.46 7-0-123 13.4 1.13 44.6 1.65 7-0-130 13.4 1.13 44.6 1.65 7-0-139 8.4 .92 23.8 1.38 7-0-149 8.0 .90 19.2 1.28 7-0-149 8.0 .90 19.2 1.28 7-0-152 5.2 .72 16.1 1.21 8-0-156 5.2 .72 16.1 1.21 8-0-157 5.2 2.72 1.43 7-0-162 5.2 .72 16.1 1.21 $\sum Y^2 = 33.2134 \sum X^2 = 77.8041$ $(\sum Y)^2/_{N} = 32.0339 (\sum X)^2/_{N} = 76.8423$ $\sum (YX) = 50.5601$ $\sum XX / N = 49.6141$ $\sum (YX) = 9.460$ k = .9460/.9618 = 0.98 (eq. 4-4) k = .87398 (1.353) =453 (eq. 4-17) $R^2 = 1 - (0.211) 41/40 = 0.78 (eq. 4-16)$ $R^2 = 1 - (0.211) 41/40 = 0.78 (eq. 4-16)$ $R^2 = 98X - 0.45 (regression eq., eq. 4-6)$ Y = .96X - 0.45 (regression eq., eq. 4-6)						1.				
7-0-77						1				
$7-0-84 6.2 .79 19.5 1.29 8-0-35 10.1 1.00 29.8 1.4 \\ 7-0-89 10.0 1.00 10.8 1.27 8-0-45 6.0 .76 19.7 1.7 \\ 7-0-93 6.0 .78 16.2 1.21 8-0-60 8.2 .91 22.5 1.5 \\ 7-0-95 5.8 .76 16.2 1.26 8-0-67 9.8 .99 28.7 1.4 \\ 7-0-99 4.5 .655 15.8 1.20 8-0-75 11.7 1.07 36.9 1.4 \\ 7-0-102 5.3 .77 21.3 1.33 7-0-434 6.7 .63 23.1 1.5 \\ 7-0-120 11.6 1.06 29.0 1.46 \Sigma^{Y} = 36.68 \Sigma^{X} = 56.61 \\ 7-0-124 11.6 1.06 31.1 1.49 Y^{Z} = .873 \overline{X} = 1.953 \\ 7-0-125 9.9 1.00 27.9 1.46 \Sigma^{Y} = 36.68 \overline{X} = 56.61 \\ \overline{Y} = -0.125 9.9 1.00 27.9 1.45 (\Sigma^{Y})^{2}_{H} = 32.0399 (\Sigma^{Y})^{2}_{H} = 76.0842 \\ 7-0-123 13.4 1.13 44.6 1.65 1.21 \Sigma^{Y} = 33.2134 \Sigma^{Y} = 76.0842 \\ 7-0-130 13.4 1.33 44.6 1.65 (\Sigma^{Y})^{2}_{H} = 50.5601 \\ \Sigma^{Y} \Sigma^{Y}_{H} = 39.0399 (\Sigma^{Y})^{2}_{H} = 76.0842 \\ \Sigma^{Y} = .9618 .99 0.99 1.92 1.28 \Sigma^{Y} = .9460 \\ F = .9460/.9618 = 0.98 (eq. 4-4) \\ a = .87398 (1.353) =453 (eq. 4-5) \\ R^{2} = \frac{(.9460)^{2}}{(1.1795)(.9618)} = 0.789 (eq. 4-17) \\ \overline{R}^{2} = 1 - (0.211) 41/40 = 0.78 (eq. 4-16) \overline{R} = 0.88 \\ Y = .98X = 0.45 (regression eq., eq. 4-6) \\ F = .9460 .96 .94 .98 (ransformed regression eq.) \\ S^{2}_{q} = 0.22 (1.18)/41 = .0063 (eq. 4-19) \\ F^{2}_{q} = .922 .21 .18)/41 = .0063 (eq. 4-19) \\ F^{2}_{q} = 0.22 (1.18)/41 = .0063 (eq. 4-19) \\ F^{2}_{q} = 0.22 (1.18)/41 = .0063 (eq. 4-19) \\ F^{2}_{q} = 0.22 .21 .18)/41 = .0063 (eq. 4-19) \\ F^{2}_{q} = 0.22 .21 .18)/41 = .0063 (eq. 4-19) \\ F^{2}_{q} = 0.22 .21 .18)/41 = .0063 (eq. 4-19) \\ F^{2}_{q} = 0.22 .21 .18)/41 = .0063 (eq. 4-19) \\ F^{2}_{q} = 0.22 .21 .18)/41 = .0063 (eq. 4-19) \\ F^{2}_{q} = 0.22 .21 .18)/41 = .0063 (eq. 4-19) \\ F^{2}_{q} = 0.22 .21 $	-					1				
7-0-89 10.0 1.00 18.8 1.27 8-0-45 6.0 .78 19.7 1.3 7-0-93 6.0 .78 15.2 1.21 8-0-60 8.2 .91 22.5 1.3 7-0-99 4.5 .65 15.6 1.20 8-0-75 11.7 1.07 36.9 1.1 7-0-102 5.3 .72 17.3 1.24 8-0-75 11.7 1.07 36.9 1.1 7-0-112 5.3 .72 17.3 1.24 8-0-75 11.7 1.00 27.8 1.1 7-0-112 5.3 .72 17.3 1.24 8-0-75 11.7 1.00 27.8 1.1 7-0-120 11.6 1.06 29.0 1.46 $Y = 36.68 \qquad \Sigma x = 56.61$ $Y = -0.122$ 10.5 1.02 28.8 1.46 $Y = 36.68 \qquad \Sigma x = 56.61$ $Y = -0.123$ 11.6 1.06 31.1 1.49 $Y =877 \qquad \Xi = 1.353$ $Y = -0.127$ 12.9 1.11 32.2 1.51 $\Sigma Y^2 = 33.2134 \qquad \Sigma X^2 = 77.8041$ $Y = -0.133 8.4 \qquad .92 23.8 1.38 \qquad \Sigma Y = 36.661 \qquad \Sigma Y = 23.2194 \qquad \Sigma X^2 = 77.8041$ $Y = .9610 .90 19.2 1.28 \qquad \Sigma Y^2 = 33.2134 \qquad \Sigma X^2 = 77.8041$ $\Sigma Y = 30.5601 \qquad \Sigma Y^2 = 39.2134 \qquad \Sigma X^2 = -9618$ $\Sigma Y = 1.1795 \qquad \Sigma X^2 = .9618 \qquad \Sigma Y = .9618$ $\Sigma Y = 1.1795 \qquad \Sigma X^2 = .9618 \qquad \Sigma Y = .9460 \qquad Y = .988 - 0.45 (regression eq., eq. 4-6) \qquad \qquad$										
$7-0-93 6.0 .78 16.2 1.21 \\ 8-0-60 8.2 .91 22.5 1.2 \\ 8-0-67 9.8 .99 22.7 1.1 \\ 8-0-75 11.7 1.07 36.9 1.2 \\ 8-0-75 11.7 1.07 36.9 1.2 \\ 8-0-10 9.3 .97 21.3 1.24 \\ 8-0-219 10.0 1.00 27.6 1.1 \\ 7-0-110 9.3 .97 21.3 1.33 \\ 7-0-114 8.5 .93 26.8 1.43 \\ 7-0-122 10.5 1.02 28.8 1.46 \\ 7-0-122 10.5 1.02 28.8 1.46 \\ 7-0-122 10.5 1.02 28.8 1.46 \\ 7-0-122 10.5 1.02 28.8 1.46 \\ 7-0-122 10.5 1.00 27.9 1.45 \\ 7-0-125 9.9 1.00 27.9 1.45 \\ 7-0-130 13.4 1.13 44.6 1.65 \\ 7-0-133 6.4 .92 23.8 1.38 \\ 7-0-149 8.0 .90 19.2 1.28 \\ 7-0-162 5.2 .77 16.1 1.21 \\ 1-0-190 6.9 .84 20.9 1.32 \\ 7-0-182 5.2 .77 16.1 1.21 \\ 1-0-190 6.9 .84 20.9 1.32 \\ 7-0-182 5.2 .77 16.1 1.21 \\ 2Y 2X/N = 49.6141 \\ \Sigma Y X X = 50.5601 \\ 2Y X X = 9460 \\ Y = .9460 \\ Y = .9460 \\ Y = .9460 \\ Y = .96X - 0.45 (eq. 4-4) \\ R^2 = 1 - (0.211) 41/40 = 0.78 (eq. 4-16) R^2 = 0.88 \\ Y = .96X - 0.45 (regression eq.) \\ Y' = .36 X' \cdot 98 (transformed regression eq.) \\ S_e^2 = 0.22 (1.18)/41 = .0063 (eq. 4-19) \\ \end{array}$						-				
$7-0-95 5.8 .76 18.2 1.26 8-0-67 9.8 .99 28.7 1.1 \\ 7-0-99 4.5 .65 15.8 1.20 \\ 8-0-75 11.7 1.07 36.9 1.4 \\ 8-0-219 10.0 1.00 27.8 1.2 \\ 8-0-219 10.0 1.00 27.8 1.2 \\ 8-0-219 10.0 1.00 27.8 1.2 \\ 7-0-114 8.5 .93 26.8 1.43 \\ 7-0-122 10.5 1.02 28.8 1.46 \\ 7-0-122 10.5 1.02 28.8 1.46 \\ 7-0-122 10.5 1.02 28.8 1.46 \\ 7-0-124 11.6 1.06 31.1 1.49 \\ 7-0-125 9.9 1.00 27.9 1.45 \\ 7-0-125 9.9 1.00 27.9 1.45 \\ 7-0-133 8.4 .92 23.8 1.38 \\ 7-0-139 8.4 .92 23.8 1.38 \\ 7-0-139 8.4 .92 23.8 1.38 \\ 7-0-139 8.4 .92 23.8 1.38 \\ 7-0-139 8.4 .92 23.8 1.38 \\ 7-0-139 8.4 .92 23.8 1.38 \\ 7-0-139 8.4 .92 23.8 1.38 \\ 7-0-139 8.4 .92 23.8 1.38 \\ 7-0-139 8.4 .92 23.8 1.38 \\ 7-0-139 8.4 .92 23.8 1.38 \\ 7-0-139 8.4 .92 23.8 1.38 \\ 7-0-139 8.4 .92 23.8 1.38 \\ 7-0-139 8.4 .92 23.8 1.38 \\ 7-0-139 8.4 .92 23.8 1.38 \\ 7-0-139 8.4 .92 23.8 1.38 \\ 7-0-139 8.4 .92 23.8 1.38 \\ 7-0-139 8.4 .92 23.8 1.38 \\ 2(YX) = 50.5601 \\ \SigmaYX/N = 49.6141 \\ \Sigma(YX) = 50.5601 \\ \SigmaYX/N = 49.6141 \\ \Sigma(YX) = .9460 \\ F^2 = 1 - (0.211) 41/40 = 0.78 (eq. 4-5) \\ R^2 = (.9460)^2 \\ R^2 = (.9460)^2 \\ R^2 = 1 - (0.211) 41/40 = 0.78 (eq. 4-17) \\ \overline{R^2} = 1 - (0.211) 41/40 = 0.78 (eq. 4-16) \overline{R} = 0.88 \\ Y = .96X - 0.45 (regression eq., eq. 4-6) \\ \hline 10g Y' = .96 \log X' - 0.45 = \log (.36 \times98) \\ Y' = .36 \times98 (transformed regression eq.) \\ S^2_{e} = 0.22 (1.18)/41 = .0063 (eq. 4-19) \\ \hline \end{array}$										
$7-0-99 4.5 .65 15.8 1.20 \\ 7-0-102 5.3 .72 17.5 1.24 \\ 7-0-110 9.3 .97 21.3 1.33 \\ 7-0-114 8.5 .93 26.8 1.43 \\ 7-0-120 11.6 1.06 29.0 1.46 \\ 7-0-122 10.5 1.02 28.8 1.46 \\ 7-0-122 10.5 1.02 28.8 1.46 \\ 7-0-123 11.6 1.06 31.1 1.49 \\ 7-0-124 11.6 1.06 31.1 1.49 \\ 7-0-127 12.9 1.11 32.2 1.51 \\ (-0-130 13.4 1.13 44.6 1.65 \\ 7-0-136 7.9 .90 27.2 1.43 \\ 7-0-136 7.9 .90 27.2 1.43 \\ 7-0-136 7.9 .90 27.2 1.43 \\ 7-0-136 6.9 .84 20.9 1.322 \\ \hline \Sigma \gamma^2 = 1.1795 \Sigma^2 = .9618 \\ \Sigma \gamma^2 = .9460 \\ \hline b = .9460/.9618 = 0.98 (eq. 4-4) \\ a = .87998 (1.353) =453 (eq. 4-5) \\ R^2 = \frac{(.9460)^2}{(1.1795)(.9618)} = 0.789 (eq. 4-17) \\ \overline{R}^2 = 1 - (0.211) 41/40 = 0.78 (eq. 4-16) \overline{R} = 0.88 \\ Y = .98X - 0.45 (regression eq., eq. 4-6) \\ \hline b = .9467 - 98 (x_1.8/4) (x_1.9/8) (x_2.9/8) \\ Y' = .36 X' \cdot 98 (transformed regression eq.) \\ S^2 = 0.22 (1.18)/41 = .0063 (eq. 4-19) \\ \hline \end{array}$						_				
$7-0-102 5.3 .72 17.3 1.24 \\ 7-0-110 9.3 .97 21.3 1.33 \\ 7-0-114 8.5 .93 26.8 1.43 \\ 7-0-122 10.5 1.02 28.8 1.46 \\ 7-0-122 10.5 1.02 28.8 1.46 \\ 7-0-124 11.6 1.06 31.1 1.49 \\ 7-0-125 9.9 1.00 27.9 1.45 \\ 7-0-125 9.9 1.00 27.9 1.45 \\ 7-0-127 12.9 1.11 32.2 1.51 \\ 7-0-130 13.4 1.13 44.6 1.65 \\ 7-0-133 8.4 .92 23.8 1.36 \\ 7-0-136 7.9 .90 27.2 1.43 \\ 7-0-148 8.0 .90 19.2 1.28 \\ 7-0-162 5.2 .72 16.1 1.21 \\ 7-0-182 5.2 .72 16.1 1.21 \\ 7-0-190 6.9 .84 20.9 1.32 \\ 7 = .873 .98 0.84 20.9 1.32 \\ R^2 = \frac{(.9460)^2}{(1.1795)(.9618)} = 0.98 \ (eq. 4-4) \\ a = .87398 \ (1.353) =453 \ (eq. 4-5) \\ R^2 = 1 - (0.211) \ 41/40 = 0.78 \ (eq. 4-17) \\ \overline{R^2} = 1 - (0.211) \ 41/40 = 0.78 \ (eq. 4-16) \overline{R} = 0.88 \\ Y = .98X - 0.45 \ (regression eq., eq. 4-6) \\ \hline \ y = .98X - 0.45 \ (regression eq., eq. 4-6) \\ \hline \ y = .922 \ (1.18)/41 = .0063 \ (eq. 4-19) \\ \hline \ y = .923 \ (eq. 4-19) \\ \hline \ y = .923 \ (eq. 4-19) \\ \hline \ y = .924 \ (eq. 4$						·				
7-0-110 9.3 .97 21.3 1.33 7-0-114 8.5 .93 26.8 1.43 7-0-120 11.6 1.06 29.0 1.46 7-0-122 10.5 1.02 28.8 1.46 7-0-122 10.5 1.02 28.8 1.46 7-0-125 9.9 1.00 27.9 1.45 7-0-130 13.4 1.13 44.6 1.65 7-0-130 13.4 1.13 44.6 1.65 7-0-130 13.4 1.13 44.6 1.65 7-0-130 5.2 .72 16.1 1.21 F-0-149 8.0 .90 19.2 1.28 F-0-162 5.2 .72 16.1 1.21 F-0-182 5.2 .72 16.1 1.21 F-0-190 6.9 .84 20.9 1.32 $\sum_{X} \sum_{Y=0}^{X} \sum_{$									-	
7-0-114 8.5 7-0-120 11.6 1.06 29.0 1.46 7-0-122 10.5 1.02 28.8 1.46 Y = 36.68 Y = 36.68 Y = 36.68 Y = 36.68 X = 56.81 Y = 36.73 X = 1.353 X = 2.339 $(\Sigma Y)^2/_N = 32.0339$ $(\Sigma X)^2/_N = 76.8423$ Y = 76.8423 Y = -138 X = 2.339 $(\Sigma X)^2/_N = 76.8423$ Y = -149 S = .9460/.9618 = 0.98 (eq. 4-4) S = .9460/.9618 = 0.98 (eq. 4-4) = .87398 (1.353) =453 (eq. 4-5) $R^2 = (.9460)^2$ $R^2 = 1 - (0.211)$ 41/40 = 0.78 (eq. 4-17) $R^2 = 1 - (0.211)$ 41/40 = 0.78 (eq. 4-16) Y = .98X - 0.45 (regression eq., eq. 4-6) Y = .98X - 0.45 (regression eq., eq. 4-19) $S_e^2 = 0.22$ (1.18)/41 = .0063 (eq. 4-19)										
$7-0-120 11.6 1.06 29.0 1.46 \\ 7-0-122 10.5 1.02 28.8 1.46 \\ 7-0-124 11.6 1.06 31.1 1.49 \\ 7-0-125 9.9 1.00 27.9 1.45 \\ 7-0-127 12.9 1.11 32.2 1.51 \\ 7-0-130 13.4 1.13 44.6 1.65 \\ 7-0-133 8.4 .92 23.8 1.38 \\ 7-0-136 7.9 .90 27.2 1.43 \\ 7-0-148 5.2 .72 16.1 1.21 \\ 7-0-148 5.2 .72 16.1 1.21 \\ 7-0-162 5.2 .72 16.1 1.21 \\ 7-0-190 6.9 .84 20.9 1.32 \\ 7-0-190 6.9 .84 20.9 1.32 \\ 8 20.9 1.32 \\ 1 20.9 1.32 \\ 1 20.9 1.32 \\ 1 1.1795 \\ 1 20.9 1.32 \\ 1 $										<u>.</u> .,
$7-0-122 10.5 1.02 28.8 1.46 \\ 7-0-124 11.6 1.06 31.1 1.49 \\ 7-0-125 9.9 1.00 27.9 1.45 \\ 7-0-127 12.9 1.11 32.2 1.51 \\ 7-0-133 13.4 1.13 44.6 1.65 \\ 7-0-136 7.9 .90 27.2 1.43 \\ 7-0-149 8.0 .90 19.2 1.28 \\ 7-0-162 5.2 .72 16.1 1.21 \\ 8-0-190 6.9 .84 20.9 1.32 \\ \hline b = .9460/.9618 = 0.98 (eq. 4-4) \\ a = .87396 (1.353) =453 (eq. 4-5) \\ R^2 = \frac{(.9460)^2}{(1.1795)(.9618)} = 0.789 (eq. 4-17) \\ \overline{R^2} = 1 - (0.211) 41/40 = 0.78 (eq. 4-16) \overline{R}^2 = 0.88 \\ Y = .98X - 0.45 (regression eq., eq. 4-6) \\ \hline b = .946 X^{-98} (transformed regression eq.) \\ Y = .96 X^{-98} (transformed regression eq.) \\ S_{\phi}^2 = 0.22 (1.18)/41 = .0063 (eq. 4-19) \\ \hline \end{array}$					-	N	= 42		N = 42	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0-122					Σγ	= 36.68			31
$\frac{7-0-125}{-0-127} \begin{array}{c} 9.9 \\ 1.00 \\ 27.9 \\ 1.11 \\ 32.2 \\ 1.11 \\ 32.2 \\ 1.51 \\ 7-0-130 \\ 13.4 \\ 1.13 \\ 44.6 \\ 1.65 \\ 7-0-133 \\ 8.4 \\ 92 \\ 23.8 \\ 1.38 \\ 7-0-149 \\ 8.0 \\ 92 \\ 23.8 \\ 1.38 \\ 7-0-149 \\ 8.0 \\ 90 \\ 19.2 \\ 1.28 \\ 7-0-149 \\ 8.0 \\ 90 \\ 19.2 \\ 1.28 \\ 7-0-149 \\ 8.0 \\ 90 \\ 19.2 \\ 1.28 \\ 7-0-149 \\ 8.0 \\ 90 \\ 19.2 \\ 1.28 \\ 7-0-149 \\ 8.0 \\ 90 \\ 19.2 \\ 1.28 \\ 1.21 \\ 22 \\ 1.1795 \\ \Sigma x \\ 2 \\ 2 \\ 1.1795 \\ \Sigma x \\ 2 \\ 2 \\ 1.1795 \\ \Sigma x \\ 2 \\ 2 \\ 2 \\ 1.1795 \\ \Sigma x \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	-0-124									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0-125									
$\frac{7-0-130}{13.4} 1.13 44.6 1.65 \\ \frac{7-0-133}{12.4} 8.4 .92 23.8 1.38 \\ \frac{7-0-136}{12.4} .90 27.2 1.43 \\ \frac{7-0-149}{12.4} 8.0 .90 19.2 1.28 \\ \frac{7}{12.4} .21 .21 \\ \frac{7}{12.4} .21 .22 .23 .$	7-0-127					ΣΥ ²	= 33.2134	Σ	$x^2 = 77.8$	3041
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-0-130	13.4				$(\Sigma Y)^2/N$	= 32.0339	(Z X) ²	²/" = 76.8	3423
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7-0-133	8.4	.92	23.8						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0-136	7.9	.90	27.2	1.43	Σy	- 1.1795	Σ	x 9	618
$\begin{array}{rcl} & \Sigma Y \Sigma X/N &= 49.6141 \\ \Sigma (yx) &= .9460/.9618 &= 0.98 & (eq. 4-4) \\ a &= .87398 & (1.353) &=453 & (eq. 4-5) \\ \hline R^2 &= \frac{(.9460)^2}{(1.1795)(.9618)} &= 0.789 & (eq. 4-17) \\ \hline R^2 &= 1 - (0.211) & 41/40 &= 0.78 & (eq. 4-16) \\ \hline R^2 &= .98X - 0.45 & (regression eq., eq. 4-6) \\ \hline & Y &= .98X - 0.45 & (regression eq., eq. 4-6) \\ \hline & Y^2 &= .36 & X^2 \cdot .98 & (transformed regression eq.) \\ & S_e^2 &= 0.22 & (1.18)/41 &= .0063 & (eq. 4-19) \\ \hline \end{array}$	7-0-149	8.0	.90	19.2	1.28					
$\Sigma(yx) = .9460$ $E = .9460/.9618 = 0.98 (eq. 4-4)$ $a = .87398 (1.353) =453 (eq. 4-5)$ $R^{2} = \frac{(.9460)^{2}}{(1.1795)(.9618)} = 0.789 (eq. 4-17)$ $R^{2} = 1 - (0.211) 41/40 = 0.78 (eq. 4-16) R = 0.88$ $Y = .98X - 0.45 (regression eq., eq. 4-6)$ $\log Y' = .98 \log X' - 0.45 = \log (.36 X^{-98})$ $Y' = .36 X^{-98} (transformed regression eq.)$ $S^{2}_{e} = 0.22 (1.18)/41 = .0063 (eq. 4-19)$	7-0-182	5.2	.72	16.1	1.21					
b = .9460/.9618 = 0.98 (eq. 4-4) a = .87398 (1.353) =453 (eq. 4-5) $R^{2} = \frac{(.9460)^{2}}{(1.1795)(.9618)} = 0.789 (eq. 4-17)$ $\overline{R}^{2} = 1 - (0.211) 41/40 = 0.78 (eq. 4-16) \overline{R} = 0.88$ $Y = .98X - 0.45 (regression eq., eq. 4-6)$ $\log Y' = .98 \log X' - 0.45 = \log (.36 X' \cdot ^{98})$ $Y' = .36 X' \cdot ^{98} (transformed regression eq.)$ $S^{2}_{e} = 0.22 (1.18)/41 = .0063 (eq. 4-19)$	7+0-190	6.9	.84	20.9	1.32		二 医痛狂法			
$R^{2} = \frac{(.9460)^{2}}{(1.1795)(.9618)} = 0.789 (eq. 4-17)$ $\overline{R}^{2} = 1 - (0.211) 41/40 = 0.78 (eq. 4-16) \overline{R} = 0.88$ $Y = .98X - 0.45 (regression eq., eq. 4-6)$ $\log Y' = .98 \log X' - 0.45 = \log (.36 \times98)$ $Y' = .36 \times98 (transformed regression eq.)$ $S^{2}_{e} = 0.22 (1.18)/41 = .0063 (eq. 4-19)$		영화 소설을 하는				(eq. 4-4)				
$\overline{R}^{2} = 1 - (0.211) \ 41/40 = 0.78 \ (eq. 4-16) \ \overline{R} = 0.88$ $Y = .98X - 0.45 \ (regression eq., eq. 4-6)$ $\log Y' = .98 \ \log X' - 0.45 = \log (.36 \ X' \cdot ^{98})$ $Y' = .36 \ X' \cdot ^{98} \ (transformed regression eq.)$ $S_{e}^{2} = 0.22 \ (1.18)/41 = .0063 \ (eq. 4-19)$						453 (eq.	4-5)			
Y = .98X - 0.45 (regression eq., eq. 4-6) log Y' = .98 log X' - 0.45 = log (.36 X' \cdot 98) Y' = .36 X' \cdot 98 (transformed regression eq.) S ² = 0.22 (1.18)/41 = .0063 (eq. 4-19)		영상 (14)								
log Y' = .98 log X' - 0.45 = log (.36 X' \cdot 98) Y' = .36 X' \cdot 98 (transformed regression eq.) S ² = 0.22 (1.18)/41 = .0063 (eq. 4-19)			the second second					• 0.88		
Y' = .36 X'.98 (transformed regression eq.) S $_{e}^{2}$ = 0.22 (1.18)/41 = .0063 (eq. 4-19)		Y	= .98)	(- 0.45 (regressio	n eq., eq. 4-	-6)			da esta
$S_{e}^{2} = 0.22 (1.18)/41 = .0063 (eq. 4-19)$			•				· · · · · ·			<u>a Aiqueine</u>
			5					9 • <i>1</i> .		
			°.				** 44			

4-13

Same

satisfied. Values of maximum recorded 12-hour precipitation and of mean annual precipitation were tabulated as shown in fig. 4.01 and plotted as shown in fig. 4.02. It was determined that the relation on logarithmic paper would logically approximate a straight line. Accordingly, the logarithms of the values were tabulated, and a linear correlation study performed, as illustrated in fig. 4.01, using equations given previously. As the item to be calculated is the short-duration precipitation, the logarithm of that item is selected as the dependent variable (Y).

The regression equation is plotted as Curve A in fig. 4.02. This curve represents the best estimate of the maximum 12-hour precipitation based on the linear correlation study.

In addition to the curve of best fit, approximate reliability-limit curves are established at a distance of 2 standard errors from Curve A. As logarithms are used in the regression analysis, the effect of adding (or subtracting) twice the standard error to the estimate is equivalent to multiplying (or dividing) the precipitation values by the antilogarithm of twice the standard error. In this case, the standard error is 0.079, and the antilogarithm of twice this quantity is 1.44. Hence, values of 12-hour precipitation represented by the limit curves are those of Curve A multiplied and divided respectively by 1.44. In about 95 percent of all cases, the true value of the dependent variable will lie between these limit curves.

Factors Responsible for Nondetermination

1. A.

Factors responsible for correlations being less than 1.0 (perfect correlation) consist of pertinent factors not considered in the analysis and of errors in the measurement of those factors considered. If the effect of measurement errors is appreciable, it is possible in some cases to evaluate the standard error of measurement of each variable and to adjust the correlation results for such effects.

If an appreciable portion of the variance of X₁ (dependent variable) is attributable to measurement errors, then the regression equation would be more reliable than is indicated by the standard error of estimate computed from equations 4-18 or 4-19. This is because the departure of some of the points from the regression line in fig. 4.02 is artifically increased by measurement errors and therefore exaggerates the unreliability of the regression function. In such a case, the curve is generally closer to the true values than to the erroneous observed values. Where there are large measurement errors in the dependent variable, the error of regression estimates should be obtained by subtracting the measurement error variance from the error variance of the points from the best-fit line is attributable to measurement error in the dependent variable, then the regression line would actually yield a better estimate of a value than the original measurement.

If appreciable errors exist in the values of the independent variable, the regression coefficient and constant will be affected, and fallacious estimates will result. Hence, it is important that values of the independent variable be determined as accurately as possible.

In the previous example, there may well be factors responsible for high short-time intensities that do not contribute appreciably to annual precipitation. Consequently, some locations with extremely high mean annual precipitation may have maximum short-time intensities that are not correspondingly high, and vice versa. Therefore, the station having the highest mean annual precipitation would not automatically have the highest short-time intensity. For the same example, if mean annual precipitation were made the dependent variable, the station having the highest short-time intensity would not automatically have the highest value of mean annual precipitation. Thus, by interchanging the variables, a change in the regression line is effected. Curve B in fig. 4.02 is the regression curve obtained by interchanging the variables Y and X. As there is a considerable difference in the two regression curves (since errors are being minimized in different directions), it is important to

use the variable whose value is to be calculated from the regression equation as the dependent variable. If it is obvious that all of the pertinent variables are included in the analysis, then the variance of the points about the regression line and differences in the slopes of the regression lines are due entirely to measurement errors. An average slope of the regression line can be obtained by use of the following equation:

$$b = \left[\frac{\Sigma y^2}{\Sigma x_1^2}\right]^{1/2} = \left[\frac{\Sigma y^2 - (\Sigma y)^2 / N}{\Sigma x_1^2 - (\Sigma x_1)^2 / N}\right]^{1/2}$$
(4-20)

where all the terms are defined as in previous equations.

Multiple Linear Correlation Example

An example of a multiple linear correlation is illustrated in fig. 4.03. In this case, the volume of spring runoff is correlated with the water equivalent of the snow cover measured on April 1, the winter low-water flow (index of ground water) and the precipitation falling on the area during April. Here again, it was determined that logarithms of the values would be used in the regression equation. The number of degrees of freedom (8) is the number of observations (12) minus the number of independent and dependent variables (4). Although use of 4 degrees of freedom of the 12 available is not ordinarily desirable, the correlation attained (0.96) is particularly high, and the equation is consequently fairly reliable. Note that the column arrangement with dependent variable last results in an arrangement of the crossproduct sums identical to their arrangement in the simultaneous equations.

In determining whether logarithms should be used for the dependent variable as above, questions such as the following should be considered: "Would an increase in snow cover contribute a greater increment to runoff under conditions of high ground water (wet ground conditions) than under

	X ₁	X ₂	×3	Y
Water	Log.	∠ Log.	ر Log	Log
Year	Snow Cove	r Ground Wate	r April Precip	
(1)	(2)	(3)	(4)	(5)
1936 1937	. 399	. 325 . 385	.710 .634	.939 .945
1938	. 343 . 369	. 408	.886	1.052
1939 1940	.246 .181	. 428 . 316	.581 1.027	.744
1941	. 297	- 460	1.315	1.081
1942 1943	. 299 . 354	.511 .379	1.097	1.060
1944 1945	. 295 . 321	. 395 . 376	1.240 1.091	1.021 .920
1946	.168	. 413 . 410	1.038 .979	.755
1947	. 280	. 410	.979	. 960
	∑x _{1 =} 3.552	∑x ₂ =4.806	∑x ₃ =11.305	∑Y =11.035
-	$X_{1}^{-} = .296$	$X_2^{=}.400$	X ₃ = .942	<u>Y</u> = .920
<u></u>	$\sum (\mathbf{x}_{1})^2 = 1 - 1059$	∑(x ₁ x ₂) =1.4197	∑(x ₁ x ₃)= 3.2898	∑(X ₁ Y)= 3.3365
			$(\Sigma x_1 \Sigma x_3) / N^{=} 3.3463$	
	,			
	$\Sigma(x_1^2) = .0545$	∑(x ₁ × ₂) =0029	∑(×1×3) =0565	∑(× ₁ y)≕ .0701
		$\Sigma(X_2)^{2}=1.9558$	$\Sigma(x_2x_3) = 4.5730$	∑(X ₂ Y)= 4.4587
	-		$(\Sigma x_2 x_3)/N = 4.5277$	_
	$\Sigma(x_1x_2) = .0029$	$\Sigma(x_2^2) = .0310$	•	$\Sigma(x_{2}y) = .0392$
			∑(x ₃) ² =11.2796	∑(X ₃ Y)=10.5224
			(∑X ₃) ² / _N =10.6502	$(\Sigma x_3 \Sigma Y) / N^{=10.3959}$
	∑(×3×1) =0565	∑(× ₃ × ₂) = .0453		$\Sigma(x_3y) = .1265$
				∑(Y) ² =10.3468
				(∑Y) ² / _N =10.1476
				$\Sigma(y^2) = .1992$
<u> </u>	.0545 b ₁ 002	9 $b_20565 b_3 = .0$	0701 (eq. 4-9)	b ₁ = 1.623
	0029 b, + .031	$0 b_2 + .0453 b_3 = .0$	0392 (eq. 4-10) 👌	$b_2 = 1.012$
		$3 b_2 + .6294 b_3 = .3$		
a =	-	96) - 1.012 (.400) -	•	-
		$x_2 + 0.274 x_3 - 0.3$		
	······································	.012 (.0392) + 0.27	u (1265)	
		.1992		(eq. 4-15)
	1 - (.056)11/8 =		.96	(eq. 4-16)
	.077 (.1992)/11 =			(eq. 4-19)

Fig. 4.03. Computation of multiple linear correlation

conditions of low ground water?" If the answer is yes, then a logarithmic dependent variable (by which the effects are multiplied together) would be superior to an arithmetic dependent variable (by which the effects are added together). Logarithms should be used for the independent variables when they would increase the linearity of the relationship. Whenever logarithms are used, the logarithms should be taken of values that have a natural lower limit of zero and a natural upper limit that is large compared to the values used in the study.

Multiple correlation performs a function that is ordinarily difficult to perform graphically. Reliability of the results, however, is highly dependent on the availability of a large sampling of all important factors that influence the dependent variable. In this case, the standard error of an estimate shown in fig. 4.03 is approximately 0.037, which, when added to a logarithm of a value, is equivalent to multiplying that value by 1.09. Thus, the standard error is about 9 percent, and the 1-in-20 error is roughly 18 percent. As previously discussed, however, the calculated correlation coefficient may be accidentally high.

Partial Correlation

The value gained by using any single variable (such as April precipitation) in a regression equation can be measured by making a second correlation study using all of the variables of the regression equation except that one. The loss in correlation is expressed in terms of the partial correlation coefficient, which is a measure of the decrement in error attributable to adding one variable to the correlation. The square of the partial correlation coefficient is obtained as follows:

$$r_{3.12}^{2} = \frac{(1 - \bar{R}_{.12}^{2}) - (1 - \bar{R}_{.123}^{2})}{1 - \bar{R}_{.12}^{2}}$$
(4-21)

where:

- r = the partial correlation coefficient
- \overline{R} = the adjusted correlation coefficient defined in equation 4-16

and where the subscript ahead of the decimal indicates the variable whose partial correlation coefficient is being computed, and the subscripts after the decimal indicate the independent variables. This procedure is fairly laborious except where electronic computers are used. However, an approximation of the partial correlation can be made by use of beta coefficients, which are very easy to obtain by use of the following equation after the regression equation has been calculated:

$$\beta_{n} = b_{n} \frac{S_{n}}{S_{Y}} = b_{n} \left[\frac{\Sigma x_{n}^{2}}{\Sigma y^{2}} \right]^{1/2}$$
(4-22)

where:

 β_n = the beta coefficient for the nth independent variable b = the regression coefficient of the nth independent variable as defined in equation 4-4

S = the standard deviation of the variable, calculated as $\frac{\Sigma(x_n)^2}{N-1} \text{ or } \frac{\Sigma y^2}{N-1}$

y = the deviation of the individual observation of a variable from their mean as defined for equation 4-4

The beta coefficients of the variables are proportional to the influence of each variable on the result. While the partial correlation coefficient measures the increase in correlation that is obtained by addition of one more dependent variable to the correlation study, the beta coefficient is a measure of the proportional influence of a given independent variable on the dependent variable. These two coefficients are related closely only when there is no interdependence among the various "independent" variables. However, some "independent" variables naturally correlate with each other, and when one is removed from the equation, the other will take over some of its weight in the equation. For this reason, it must be kept in mind that beta coefficients indicate partial correlation only approximately.

Verification of Correlation Results

Acquisition of basic data after a correlation study has been completed will provide an opportunity for making a check of the correlation results. This is done simply by comparing the values of the dependent variable observed with corresponding values calculated from the regression equation. The differences are the errors of estimate, and their root-mean-square is an estimate of the standard error of the regression-equation estimates. This standard error can be compared to that already established in equation 4-18 or 4-19. If the difference is not significant, there is no reason to suspect the regression equation of being invalid, but if the difference is large, the regression equation and standard error should be recalculated using the additional data acquired.

Graphical Correlation

Where the relationships among variables used in a correlation study are expected to be curvilinear and where a simple transformation cannot be employed to make these relationships linear, graphical regression methods will prove useful. A satisfactory graphical analysis, however, requires a relatively large number of observations. The general theory employed is similar to that discussed above for linear correlation. Methods used will not be discussed herein, but can be found in references 5 and 9.

Practical Guide Lines

The most important thing to remember in making correlation studies is that accidental correlations occur frequently, particularly when the number of observations is small. For this reason, variables should be correlated only when there is reason to believe that there is a physical relationship. It is helpful to make a preliminary examination of

relationships between two or more variables by graphical plotting. This is particularly helpful for determining whether a relationship is linear and in selecting a transformation for converting curvilinear relationships to linear relationships. It should also be remembered that the chance of accidentally high correlation increases with the number of correlations tried. If a variable being studied is tested against a dozen other variables at random, there is a good chance that one of these will produce a good correlation, even though there may be no physical relation between the two. In general, the results of correlation analyses should be examined to assure that the derived relationship is reasonable. For example, if streamflow is correlated with precipitation and drainage area size, and the regression equation relates streamflow to some power of the drainage area greater than one, a maximum exponent value of one should be used, because the flow per square mile cannot increase with drainage area when other factors remain constant.

Section 4.05. Regional Correlation

After the indices that best represent pertinent hydrologic phenomena are selected, it is necessary to relate each index to physical phenomena that reasonably have a causative relationship and that can be feasibly obtained for estimating hydrologic quantities at ungaged locations. To the extent that the physical characteristics selected can be expressed numerically, it is possible to incorporate them in a multiple regression analysis, as discussed in Section 4.04.

Ordinarily, the process of stepwise multiple linear regression is used so that variables which do not add to the correlation can be eliminated from the analysis. The determination of whether to eliminate a variable from the analysis should ordinarily be made on the basis of partial correlation, which indicates the portion of the remaining unknown variance that is explained by the particular variable, after all information obtained from the other variables is used. If the partial correlation coefficient

is small, such as 0.2 or 0.3, it is probably wise to eliminate the variable, because addition of one variable increases the work required for estimating unknown quantities and may decrease the reliability of the relationship among the variables.

Although it is desirable to relate all pertinent variables through multiple regression analysis, it is not ordinarily feasible to do so because many pertinent variables cannot be expressed satisfactorily numerically. This includes such items as soil types and vegetation. After the regression analysis based on variables that can be expressed numerically is completed, it is usually possible to greatly increase the reliability of estimates using mapping techniques. This consists of solving for the regression constant for each location where data are available by substituting known data for all variables in equation 4-3 and solving for "a", using derived regression coefficients, "b". The "a" coefficients thus derived can then be plotted on a map, and lines of equal map coefficients drawn, guided by maps of pertinent physical characteristics such as topography, soils, vegetation, and geology. Where hydrologic quantities relate to runoff and consequently to a drainage basin rather than to a point location, the values plotted on the map represent quantities for the entire drainage basin, and the map must be constructed and used accordingly.

The variation of coefficients shown on the map can be due partly to errors in estimating the hydrologic index from the observed data. If the standard error of such an estimate can be computed, as illustrated in Section 4.04, then it can be used as a guide in permitting the lines of equal magnitude to depart from the plotted values in the interest of obtaining a smoother geographic pattern and increased reliability. Since the standard error of estimate is exceeded by actual errors about one time in three, and twice its magnitude is exceeded about one time in twenty, differences as large as one standard error can be tolerated freely in drawing the lines, whereas differences larger than twice the standard error should occur only rarely.

Section 4.06. General Procedure

The general procedure for making a regional analysis is as follows:

<u>a</u>. Compute each required hydrologic index for locations where data are available.

<u>b</u>. Select and measure basin parameters for these locations. Parameters should be selected as those that have a reasonable relation to the hydrologic index and that are obtainable for ungaged locations.

<u>c</u>. Perform a multiple linear regression study as described in Section 4.04.

d. Select the best regression equation obtainable and round the regression coefficients, b, as desired.

e. Using these coefficients and the data available at each gaged location, solve for the regression constant, a, required to relate the dependent and independent variables exactly. This value or its antilogarithm can be used as a map coefficient.

<u>f.</u> Plot the map coefficient for each location on a map and draw lines of equal values.

Section 4.07. Example

The use of multiple linear regression in a regional correlation analysis is illustrated for several drainage basins in the area shown in fig. 4.04. A function is derived to express the mean logarithm of annual peak flow in terms of easily measured basin characteristics. The following independent variables were chosen:

 X_1 = Log of the drainage area in square miles X_2 = Log of the mean annual rainfall in inches X_3 = Elevation above snowline in hundred feet In this example, the dependent variable is expressed as:

Y = Mean log of annual peak flow in cubic feet per second (cfs)

The data to be used for development of the regression equation follows:

Station	X	<u>x</u>	x <u>3</u>	Y
15	2.27	1.62	55	3.40
17	2.76	1.58	17	4.41
62	2.87	1.81	55	4.20
74	2.15	1.51	36	3.50
131	2.36	1.75	42	3.79
132	2,98	1.65	22	4.60
144	2.30	1.61	35	3.76
145	2.05	1.73	18	3.96
146	1.91	1.61	16	3.64
147	1.94	1.74	16	3.85
148	3.49	1.76	36	5.16
1.49	2.73	1.85	21	4.62
150	2.30	1.86	42	4.00
151	3.45	1.76	52	4.70

From the basic data, the following results are obtained:

÷.

$\sum_{1}^{\Sigma X} = 35.56$	$\Sigma X_2 = 23.84$	$\Sigma X_3 = 463$	$\Sigma Y = 57.59$
$\Sigma(X_1)^2 = 93.810$	$\Sigma(X_2)^2 = 40.744$	$\Sigma(X_3)^2 = 18.149$	$\Sigma(Y)^2 = 240.373$
$\Sigma(YX_1) = 149.344$	$\Sigma(YX_2) = 98.390$	$\Sigma(YX_3) = 1897.250$	
$\Sigma(X_1X_2) = 60.769$	$\Sigma(X_1X_3) = 120.670$	$\Sigma(X_2X_3) = 792.610$	

Using the above results and equations 4-13 and 4-14, the following results are obtained:

$$\Sigma(x_1)^2 = 93.810 - (35.56)^2/14 = 3.487$$

 $\Sigma(yx_1) = 149.344 - (57.59)(35.56)/14 = 3.066$

Similarly $\Sigma(x_2)^2$, $\Sigma(x_3)^2$, $\Sigma(x_1x_2)$, $\Sigma(x_1x_3)$, $\Sigma(x_2x_3)$, $\Sigma(yx_1)$, $\Sigma(yx_2)$, and $\Sigma(yx_3)$ are calculated and substituted into equations 4-9, 4-10, and 4-11 to give the following results:

$$3.487 b_1 + .216 b_2 + 33.650 b_3 = 3.066$$
$$.216 b_1 + .148 b_2 + 4.187 b_3 = .322$$
$$33.650 b_1 + 4.187 b_2 + 2836.929 b_3 = 7.334$$

Solving the above equations simultaneously, the following regression coefficients are obtained:

$$b_1 = .955$$
 $b_2 = 1.230$ $b_3 = -.016$

The regression constant is calculated from equation 4-12 as follows:

$$a = \overline{Y} - b_1 \overline{X}_1 - b_2 \overline{X}_2 - b_3 \overline{X}_3 = \frac{\Sigma Y}{N} - b_1 \frac{\Sigma X}{N} - b_2 \frac{\Sigma X}{N} - b_3 \frac{\Sigma X}{N}$$
$$a = (\frac{57.59}{14}) - .955 (\frac{35.56}{14}) - 1.230 (\frac{23.84}{14}) + .016 (\frac{463}{14}) = .114$$

The regression equation becomes:

$$Y = .114 + .955 X_1 + 1.230 X_2 - .016 X_3$$

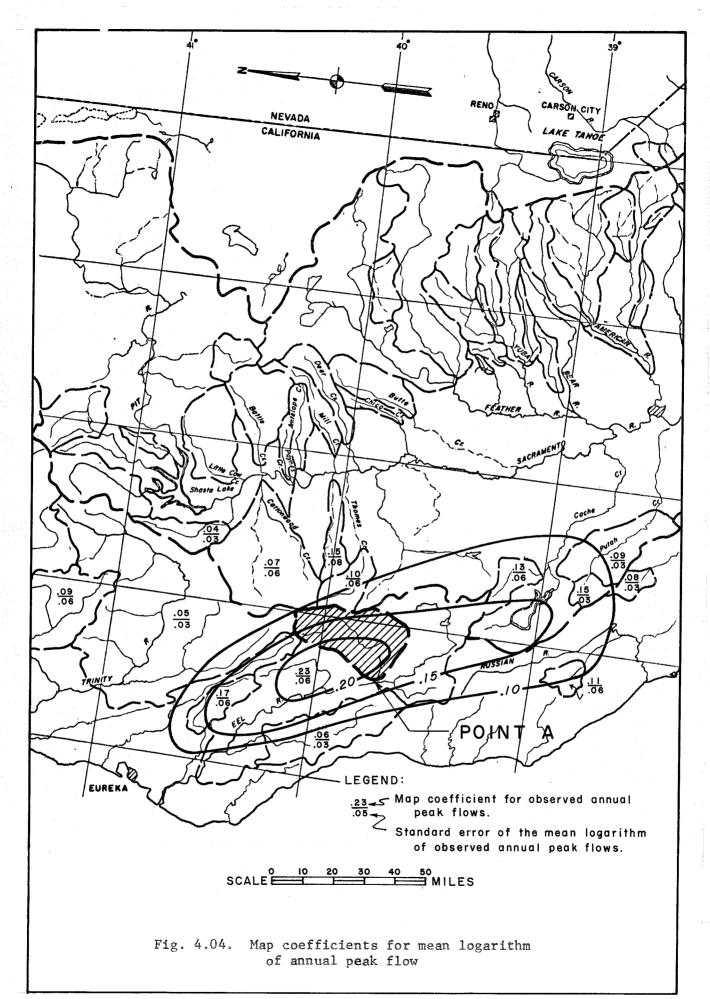
Using the regression equation and the observed X_1 , X_2 , and X_3 values for each station, values of Y are calculated and shown in table 4.01. The map coefficients, shown in table 4.01, are computed by subtracting the calculated value of Y from the observed value of Y and adding the regression constant, "a", to the difference. This is equivalent to substituting all values of X that are known in the regression equation and solving for a new regression constant which may be called the map coefficient, "c".

Table 4.01. Observed and calculated values of Y and resulting map coefficient

Station	Observed	Calculated	Map Coefficient
15	3.40	3.41	.10
17	4.41	4.43	.09
62	4.20	4.22	.09
74	3.50	3.46	.15
131	3.79	3.86	.04
132	4.60	4.64	.07
144	3.76	3.74	.13
145	3.96	3.92	.15
146	3.64	3.67	.08
147	3.85	3.85	.11
148	5.16	5.04	.23
149	4.62	4.67	.06
150	4.00	3.94	.17
151	4.70	4.76	.05

In fig. 4.04, the map coefficient and the standard error of the mean for each station have been plotted at the centroid of the contributing basin, and lines of equal coefficients have been constructed. The standard error of the mean for each station can be computed, as illustrated in Section 4.04. It can then be used as a guide in permitting the lines of equal magnitude to depart from the plotted values in the interest of obtaining a smoother geographic pattern and increased reliability. The lines should be constructed in such a way that their average value over each gaged area approximately equals the coefficient for that area, considering the standard error of the mean as discussed in Section 4.05. If the mean logarithm of annual peak flow is desired at point A for the shaded ungaged basin, the necessary map coefficient can be obtained from fig. 4.04 by averaging map values for that area. The use of the map coefficient instead of the originally calculated regression constant in the regression equation will be more reliable. The use of the map allows inclusion of data that could not be quantified such as geomorphic features and natural vegetative cover. The drainage basin above point A has the following characteristics:

> map coefficient (c) = .20 drainage area (X_1) = 600 sq. mi. mean annual rainfall (X_2) = 60 inches elevation above snowline (X_3) = 2,500 feet


The mean peak flow can now be calculated as follows:

111

 $Y = c + b_1 X_1 + b_2 X_2 + b_3 X_3$ = .20 + .955 (log 600) + 1.230 (log 60) - .016 (25) = 4.64

since $Y = mean \log of peak flow (to the base 10),$

peak flow = antilog Y = antilog 4.64 = 43,700 cfs

Hydrologic Simulation

CHAPTER 5. HYDROLOGIC SIMULATION

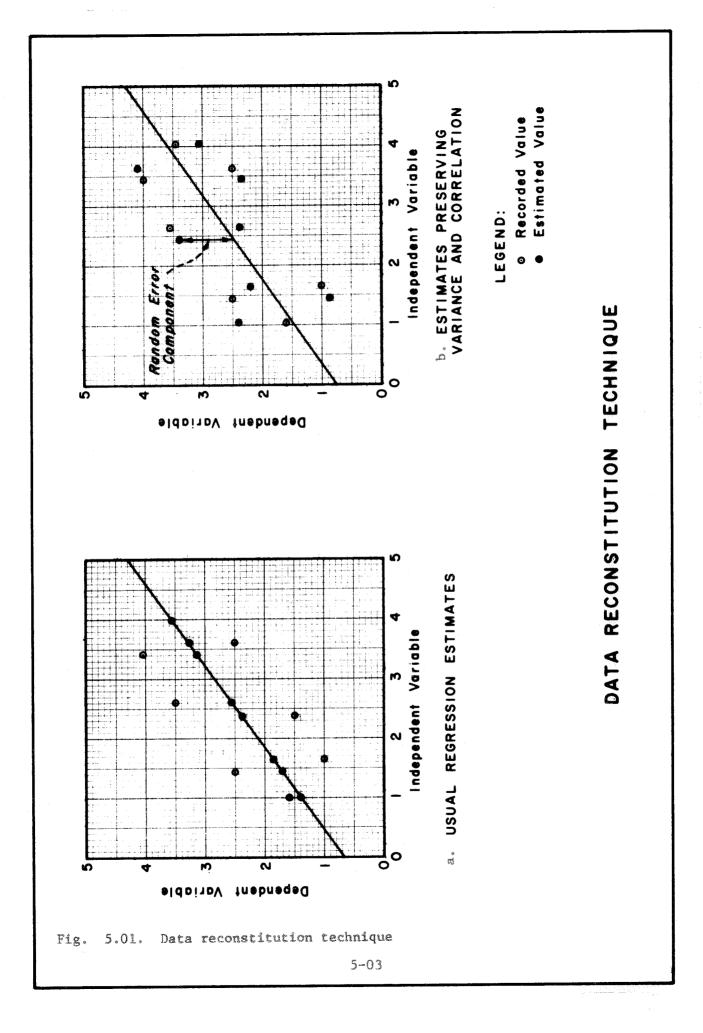
Section 5.01. Introduction

The term "simulation" is applied to the mathematical or physical modeling of a phenomenon or process. In this section, it is used to denote only the mathematical modeling of a stochastic process. A stochastic process is one in which there is a chance component in each successive event and ordinarily some degree of correlation between successive events. Modeling of a stochastic process involves the use of the "Monte Carlo" method of adding a random (chance) component to a correlated component in order to construct each new event. The correlated component can be related, not only to preceding events of the same series, but also to concurrent and preceding events of series of related phenomena.

Work in stochastic hydrology has related primarily to annual and monthly streamflows, but the results often apply to other hydrologic quantities such as precipitation and temperatures. Some work on daily streamflow simulation has been done.

Section 5.02. Application

Hydrologic records are usually shorter than 100 years in length, and most of them are shorter than 25 years. Even in the case of the longest records, the most extreme drought or flood event can be far different from the next most extreme event. There is often serious question as to whether the extreme event is representative of the period of record. The severity of a long drought can be changed drastically by adding or subtracting 1 year of its duration. In order that some estimate of the likelihood of more severe sequences can be made, the stochastic process can be simulated, and long sequences of events can be generated. If the generation is done correctly, the hypothetical sequences would be as likely to occur in the future as would a repetition of the past recorded events.


The design of water resource projects is commonly based on assumed recurrence of past hydrologic events. By generating a number of hydrologic sequences, each of a specified desired length, it is possible to create a

much broader base for hydrologic design. While it is not possible to create information that is not already in the record, it is possible to use the information more systematically and more effectively. In selecting the number and length of hydrologic sequences to be generated, it is usually considered that 10 to 20 sequences would be adequate and that their length should correspond to the period of project amortization.

It must be recognized that the more hydrologic events that are generated, the more chance there is that an extreme event or combination of events will be exceeded. Consequently, it is not logical that a design be based on the most extreme generated event, but rather on some consideration of the total consequences that would prevail for a given design if all generated events should occur. The more events that are generated, the less proportional weight each event is given. If a design is tested on 10 sequences of hydrologic events, for example, the benefits and costs associated with each sequence would be divided by 10 and added in order to obtain the "expected" net benefits.

Section 5.03. Basic Procedure

Successful simulation of stochastic processes in hydrology has been based generally on the concept of multiple linear regression, where the regression equation determines the correlated component, and the standard error of estimate determines the random component. Fig. 5.01 illustrates the general nature of the process. In this case, a low degree of correlation is illustrated, in order to emphasize important aspects of the process. It can be seen that, if every estimate of the dependent variable is determined by the regression line, the estimated points would be perfectly correlated with the independent variable and would have a much smaller range of magnitude than the actual observed values of the dependent variable. In order to avoid such unreasonable results, it is necessary to add a random component to each estimate, and this random component should conform to the scatter of the observed data about the regression line.

In accordance with the above basic procedure, a simulation model for generating values of a variable which can be defined only partially by a deterministic relation is:

deterministic
component

$$Y = (a + b_1 X_1 + b_2 X_2) + Z S \sqrt{1 - R^2}$$
(5-1)

where:

- Y = dependent variable
- a = regression constant

 b_1, b_2 = regression coefficients

- X_1, X_2 = independent variables
 - Z = random number from normal standard population with zero mean and unit variance
 - S = standard deviation of dependent variable
 - R = multiple correlation coefficient

This type of simulation model can be used to generate related monthly streamflow values at one or more stations. Multiple linear regression theory is based on the assumed distribution of all variables in accordance with the Gaussian normal distribution. Therefore, mathematical integrity requires that each variable be transformed to a normal distribution, if it is not already normal. It has been found that the logarithms of streamflows are approximately normally distributed in most cases. For computational efficiency it is convenient to work with deviations from the mean which have been normalized by dividing by the standard deviation. This deviate is sometimes called the Pearson Type III deviate and can be computed as follows:

$$t_{i} = \frac{X_{i,j} - M_{i}}{S_{i}}$$
 (5-2)

where:

- t = Pearson Type III deviate
- i = month number
- i = year number
- X = logarithm of flow
- M = mean of flow logarithms
- S = standard deviation of flow logarithms

If these deviates exhibit a skewness, they can be further transformed, if necessary, to a distribution very close to normal by use of the following approximate Pearson Type III transform equation:

$$K_{i} = 6/g_{i} [((g_{i}t_{i}/2) + 1)^{1/3} - 1] - g_{i}/6$$
(5-3)

where:

K = normal standard deviate

- i = month number
- g = skew coefficient
- t = Pearson Type III deviate as defined in equation 5-2

An equation for generating monthly streamflow is:

$$K'_{i,k} = \beta_1 K'_{i,1} + \beta_2 K'_{i,2} + \dots + \beta_{k-1} K'_{i,k-1} + \beta_k K'_{i-1,k} + \beta_{k+1} K'_{i-1,k+1} + \dots + \beta_n K'_{i-1,n} + Z_{i,k} \sqrt{1-R_{i,k}^2}$$
(5-4)

where:

К'	8	monthly flow logarithm, expressed as a normal standard deviate
β	=	beta coefficient as defined in equation 4-22
i	=	month number for value being generated
k	=	station number for value being generated
n	-	number of interrelated stations

- n
- = multiple correlation coefficient R
- = random number from normal standard population Ζ

For the case of a single station, this resolves to:

$$K'_{i} = R_{i}K'_{i-1} + Z_{i}\sqrt{1-R_{i}^{2}}$$
(5-5)

Note that equation 5-4 is very similar to equation 5-1. The differences result from using normal standard deviates. When this in done, the regression constant, a, equals zero, the regression coefficients, b, become beta coefficients, β , and the standard deviation, S, does not appear in the random component since it equals 1. Note also that one of the independent variables is the flow for the preceding month in order to preserve the inherent serial correlation. The flow value in the original units is computed by reversing the transformation process; i.e., from normal standard deviate to Pearson Type III deviate, to logatithm of flow and finally flow value.

A step-by-step procedure for generating monthly streamflows for a number of interrelated locations having simultaneous records is as follows:

<u>a.</u> Compute the logarithm of each streamflow quantity. If a value of zero streamflow is possible, it is necessary to add a small increment, such as 0.1 percent of the mean annual flow, to each monthly quantity before taking the logarithm.

b. Compute the mean, standard deviation and skew coefficient of the values for each location and each month, using equaitons given in Volume 3.

<u>c</u>. For each month and location, subtract the mean from each event and divide by the standard deviation (equation 5-2).

d. Transform these "standardized" quantities to a normal distribution by use of equation 5-3.

e. Arrange the locations in any sequence, and compute a regression equation for each location in turn for each month. In each case, the independent variables will consist of concurrent monthly values at preceding stations and preceding monthly values at the current and subsequent stations.

<u>f</u>. Generate standardized variates for each location in turn for each month, starting with the earliest month of generated data. This is accomplished by computing a regression value and adding a random component.

The random component, according to equation 5-1, is a random selection from a normal distribution with zero mean and unit standard deviation, multiplied by the alienation coefficient which is $(1 - R^2)^{1/2}$.

g. Transform each generated value by reversing the transform of equation 5-3 with the appropriate skew coefficient, multiplying by the standard deviation and adding the mean in order to obtain the logarithm of streamflow.

<u>h</u>. Find the antilogarithm of the value determined in step <u>g</u> and subtract the small increment added in step <u>a</u>. If a negative value results, set it to zero.

It is obviously not feasible to accomplish the above computations without the use of an electronic computer. A computer program, HEC-4 Monthly Streamflow Simulation, number 723-X6-L2340, that can be used for this purpose is described in Appendix 1.

Section 5.05. Data Fill-In

Ordinarily, periods of recorded data at different locations do not cover the same time span, and therefore, it is necessary to estimate missing values in order to obtain a complete set of data for analysis as described above. In estimating the missing values, it is important to preserve all statistical characteristics of the data, including frequency and correlation characteristics. To preserve these characteristics, it is necessary to estimate each individual value on the basis of multiple correlation with the preceding value at that location and with the concurrent or preceding values in all other locations. A random component is also required, as indicated in equation 5-1. There are many mathematical problems involved in this process, and the details involved are discussed in the computer program description contained in Appendix 1.

Section 5.06. Application in Areas of Limited Data

The streamflow generation models discussed so far have assumed that sufficient records were available to derive the appropriate statistics. For instance, the monthly streamflow model requires four frequency and correlation coefficients for each of the 12 months, or 48 values for one station simulation. A model has been developed (reference 6) that combines the coefficients into a few generalized coefficients for the purpose of generating monthly streamflow at ungaged locations. (Procedures for determining generalized statistics for use in generating daily flows have not yet been developed.) The generalized model considers the following:

- a. Season of maximum runoff.
- b. Lag to season of minimum runoff.
- c. Average runoff.
- d. Variation between maximum and minimum runoff.
- e. Standard deviation of flows.
- f. Interstation and serial correlations of flows.

The application of the generalized model to the generation process is described in Appendix 1.

Section 5.07. Daily Streamflow Model

Generation of daily streamflows can be accomplished in a manner very similar to the generation of monthly streamflow quantities. A computer program, 723-G2-L2190, described in Appendix 2, has been prepared for this purpose. It is capable only of generating flows at a single location. Flows for any particular day are correlated with flows for the preceding day and for the second antecedent day. Since it is desired in many operation studies to use a monthly interval most of the time, and to perform daily operation computations for only a few critical periods, the program has been designed to generate daily flows after the monthly total runoff has been generated by another program.

Section 5.08. Reliability

While the simulation of stochastic processes can add considerable dependability in hydrologic design, the techniques have not yet developed to the stage that they are completely dependable. All mathematical models involve

5⊶08

some simplification of the physical phenomena represented. In most applications, simplifying assumptions do not cause serious discrepancies. It is important at this state of the art, however, to examine carefully the results of hydrologic simulation to assure that they are reasonable in each case.

Selected Bibliography

SELECTED BIBLIOGRAPHY

- 1. Beard, L. R., "Use of Interrelated Records to Simulate Streamflow," Journal of the Hydraulics Division, ASCE, September 1965.
- 2. Beard, L. R., "Hydrologic Simulation in Water-Yield Analysis," Journal Irrigation and Drainage, ASCE, March 1967.
- 3. Beard, L. R., "Simulation of Daily Streamflow," Proceedings International Hydrology Symposium, Fort Collins, Colorado, September 1967.
- 4. Beard, L. R., "Streamflow Synthesis for Ungaged Rivers," presented at the XIV General Assembly of the International Union of Geodosy and Geophysics, Bern, Switzerland, September - October 1967.
- 5. Ezekiel, Mordecai, "Methods of Correlation Analysis," Wiley, New York, 1941.
- 6. Fiering, M. B., "Streamflow Synthesis," Harvard University Press, Cambridge, Mass., 1967.
- Garcia, L. E., "Estimation of Monthly Streamflow in Regions with Limited Data," International Conference on Water for Peace, vol. 4, 1967.
- Maas, Arthur, et al., Design of Water Resource Systems, Chapter 12, "Mathematical Synthesis of Streamflow Sequences for the Analysis of River Basins by Simulation," by H. A. Thomas, Jr., and M. B. Fiering, Harvard University Press, Cambridge, Mass., 1962.
- 9. Snedecor, G. W., "Statistical Methods," Collegiate Press, Ames, Iowa, 1937.
- 10. U. S. Army Corps of Engineers, The Hydrologic Engineering Center, "Simulation of Monthly Runoff," Technical Bulletin No. 1, November 1964.
- U. S. Army Corps of Engineers, The Hydrologic Engineering Center Computer Program 723-X6-L2340, HEC-4, "Monthly Streamflow Simulation," February 1971.
- U. S. Army Corps of Engineers, The Hydrologic Engineering Center Computer Program 723-G2-L2190, "Daily Streamflow Simulation," April 1968

SB-1

Monthly Streamflow Simulation

This program is furnished by the Government and is accepted and used by the recipient upon the express understanding that the United States Government makes no warranties, express or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the information and data contained in this program or furnished in connection therewith, and the United States shall be under no liability whatsoever to any person by reason of any use made thereof.

The program herein belongs to the Government. Therefore, the recipient further agrees not to assert any proprietary rights therein or to represent this program to anyone as other than a Government program.

HEC-4

MONTHLY STREAMFLOW SIMULATION

HYDROLOGIC ENGINEERING CENTER COMPUTER PROGRAM 723-X6-L2340

CONTENTS

Paragraph

123456789

ORIGIN OF PROGRAM PURPOSE OF PROGRAM	1
DESCRIPTION OF EQUIPMENT	L 3
METHODS OF COMPUTATION	± 1
INPUT	1 7
OUTPUT	8
OPERATING INSTRUCTIONS	8
DEFINITIONS OF TERMS	ě
PROPOSED FUTURE DEVELOPMEN	

EXHIBITS

1 2	DETAILED EXPLANATION OF COMPUTER PROGRAM DESCRIPTION OF CROUT'S METHOD
3 4	INPUT EXAMPLE OUTPUT EXAMPLE
5	DEFINITIONS SOURCE PROGRAM
7 8	INPUT DATA
0	SUMMARY OF REQUIRED CARDS

HEC-4

MONTHLY STREAMFLOW SIMULATION

HYDROLOGIC ENGINEERING CENTER COMPUTER PROGRAM 723-X6-L2340

1. ORIGIN OF PROGRAM

This program was prepared in The Hydrologic Engineering Center, Corps of Engineers. Up-to-date information and copies of source statement cards for various types of computers can be obtained from the Center upon request by Government and cooperating agencies. Programs are furnished by the Government and are accepted and used by the recipient upon the express understanding that the United States Government makes no warranties, express or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the information and data contained in the programs or furnished in connection therewith, and the United States shall be under no liability whatsoever to any person by reason of any use made thereof.

The programs belong to the Government. Therefore, the recipient further agrees not to assert any proprietary rights therein or to represent the programs to anyone as other than a Government program.

2. PURPOSE OF PROGRAM

This program will analyze monthly streamflows at a number of interrelated stations to determine their statistical characteristics and will generate a sequence of hypothetical streamflows of any desired length having those characteristics. It will reconstitute missing streamflows on the basis of concurrent flows observed at other locations and will obtain maximum and minimum quantities for each month and for specified durations in the recorded, reconstituted and generated flows. It will also use the generalized simulation model for generating monthly streamflows at ungaged locations based on regional studies. There are many options of using the program for various related purposes, and it can be used for other variables such as rainfall, evaporation, and water requirements, alone or in combination.

3. DESCRIPTION OF EQUIPMENT

This program requires a FORTRAN IV compiler, a random number generator (function RNGEN included, see exhibit 2), and a fairly large memory (64K on the CDC 6600). Provision is made for use of three scratch tapes, 7 (for punched output), 8 and 9.

4. METHODS OF COMPUTATION

a. In the statistical analysis portion of this program, the flows for each calendar month at each station are first incremented by 1 percent of their calendar-month average in order to prevent infinite negative logarithms. This increment is later subtracted. The mean, standard deviation and skew coefficients for each station and calendar month are then computed. This involves the following equations:

$$X_{i,m} = \log \left(Q_{i,m} + q_{i} \right)$$
(1)

$$\overline{X}_{i} = \sum_{m=1}^{n} X_{i,m} / N$$
(2)

$$S_{i} = \sqrt{\sum_{m=1}^{N} (X_{i,m} - \overline{X}_{i})^{2} / (N-1)}$$
 (3)

$$g_{i} = N \sum_{m=1}^{N} (X_{i,m} - \overline{X}_{i})^{3} / ((N-1)(N-2)S_{i}^{3})$$
(4)

in which:

Х	=	Logarithm of incremented monthly flow
ୟ	= .	Monthly recorded streamflow
q	=	Small increment of flow used to prevent infinite logarithms
		± 07 months of zero that
Χ	I	Mean logarithm of incremented monthly flows
11		iotal years of record
S	-	Unbiased estimate of population standard deviation
g		Unblased estimate of population skew coefficient
i.	=	Month number
m	=	Year number

b. For each station and month with incomplete record, a search is made for longer records among the stations used, to find that which will contribute most toward increasing the reliability of the statistics computed from the incomplete record. The mean and standard deviation are then adjusted. Equation 5 is used to compute the equivalent record required to obtain statistics equally reliable to these adjusted statistics and is the basis for selecting the best record to be used in the adjustment. Equations 6 and 7 are the adjustment equations.

$$N_{1} = \frac{N_{1}}{1 - \frac{N_{2} - N_{1}}{N_{2}} R^{2}}$$
(5)

$$\overline{x}_{1} - \overline{x}_{1} = (\overline{x}_{2} - \overline{x}_{2}) \operatorname{RS}_{1}/\operatorname{S}_{2}$$
(6)

$$s'_{1} - s_{1} = (s'_{2} - s_{2}) R^{2} s_{1} / s_{2}$$
 (7)

The primes indicate the long-period values and those without primes are based on the same short period for both stations 1 and 2, and:

$$N =$$
 Length of record
R = Linear correlation coefficient

c. Each individual flow is then converted to a normalized standard variate, using the following approximation of the Pearson Type III distribution:

$$t_{i,m} = (X_{i,m} - \overline{X}_i) / S_i$$
(8)

$$K_{i,m} = 6/g_{i} \left[\left((g_{i}t_{i,m}/2) + 1 \right)^{1/3} - 1 \right] + g_{i}/6$$
(9)

K = Normal standard deviate

d. After transforming the flows for all months and stations to normal, the gross (simple) correlation coefficients R between all pairs of stations for each current and preceding calendar month are computed by use of the following formula:

$$R_{i,i-1} = \left\{ 1 - \left[1 - \left(\sum_{m=1}^{N} x_{i,m} x_{i-1,m} \right)^{2} / \left(\sum_{m=1}^{N} x_{i,m}^{2} \sum_{m=1}^{N} x_{i-1,m}^{2} \right) \right] \\ (N-1)/(N-2) \right\}^{\frac{1}{2}}$$
(10)

in which:

$$\mathbf{x} = \mathbf{X} - \overline{\mathbf{X}}$$

e. If there are insufficient simultaneous observations of any pair of variables to compute a required correlation coefficient, that value must be estimated. Each missing value is estimated by examining its relationship to related pairs of values in the current and preceding month by use of the following formula using i, j, and k subscripts to indicate variables used in the gross correlation.

$$R_{ij} = R_{ki}R_{kj} + \sqrt{(1 - R_{ki}^{2})(1 - R_{kj}^{2})}$$
(11)

Since, in order to be consistent with the two related correlation coefficients, the correlation coefficient must lie between the limits given by equation 11, the lowest upper limit and highest lower limit are established for all related pairs, and the average of these two limits is taken as the estimated correlation coefficient.

f. Monthly streamflows missing from the records of the various stations are estimated for all stations for each month in turn. Accordingly, whenever a missing flow is being reconstituted, there always exists a valid value for all stations already examined that month and for all remaining stations in either the current or preceding month. For these remaining stations, the current value is selected where available; otherwise the preceding value is used. In order to reconstitute the missing value, a regression equation in terms of normal standard variates is computed by selecting required coefficients from the complete correlation matrix for that month and solving by the Crout method (See exhibit 1). The missing value is computed from this regression equation, introducing a random component equal to the nondetermination of the equation, as discussed in the streamflow generation procedure.

g. It has been found that valid use of the regression technique requires that all correlation coefficients agree with the data that will be substituted into the equations and that the correlation coefficients be mutually consistent. Inconsistency in the correlation coefficients causes the dependent variable to be over-defined and is evidenced by a determination coefficient greater than 1.0. If this occurs (because of incomplete data), the independent variable contributing least to the correlation is dropped, and a new regression equation is computed. This process is repeated as necessary until consistency is reached (which must occur by the time that only one independent variable remains). In order to make the correlation matrix consistent with the data matrix, all affected correlation coefficients are recomputed after each estimate of missing data.

h. Normal standard deviates are then converted to flows by use of the following equations:

4

$$t_{i,m} = \left\{ \left[(g_i/6)(K_{i,m}' - g_i/6) + 1 \right]^3 - 1 \right\} 2/g_i$$
 (12)

$$X_{i,m} = \overline{X} + t_{i,m} S_{i,m}$$
(13)

$$Q_{i,m} = Antilog X_{i,m} - q_i$$
 (14)

imposing the constraint:

$$Q_{i,m} \ge 0 \tag{15}$$

i. When the set of flows is complete, all correlation matrices should be consistent except for truncation errors in the computer, since the data arrays are complete. Any consistency of matrices obtained in this manner or of matrices read into the computer will result in determination coefficients greater than 1.0. If this occurs, consistency of each correlation matrix is assured by first testing all combinations of triads of correlation coefficients in the current and preceding month for all calendar months using equation 11 and raising the lowest of the three coefficients to obtain a consistent triad. The test of consistency of each complete matrix is made by recomputing the multiple correlation coefficient. If this value is greater than 1.0, further adjustment is required. Such further adjustment is obtained by introducing a coefficient, successively smaller by 0.2, on the radical in equation 11 and repeating all triad consistency tests until all matrices are consistent. If consistency is not reached, coefficients in each inconsistent matrix are moved toward the average value of all coefficients in that matrix until consistency is reached.

j. Generation of hypothetical streamflows is accomplished by computing a regression equation, by the Crout method (described in exhibit 1) for each station and month and then computing streamflows for each station in turn for one month at a time using the following equation. This process is started with average values (zero deviation) for all stations in the first month and discarding the first 2 years of generated flows.

$$K_{i,j}^{'} = \beta_{1}K_{i,1}^{'} + \beta_{2}K_{i,2}^{'} + \dots + \beta_{j-1}K_{i,j-1}^{'} + \beta_{j}K_{i-1,j}^{'} + \beta_{j+1}K_{i-1,j+1}^{'} + \dots + \beta_{n}K_{i-1,n}^{'} + \sqrt{1-R_{i,j}^{2}} Z_{i,j}^{'}$$
(16)

in which:

- K = Monthly flow logarithm, expressed as a normal standard deviate
- β = Beta coefficient computed from correlation matrix
- i = Month number
- j = Station number
- n = Number of interrelated stations
- R = Multiple correlation coefficient
- Z = Random number from normal standard population

k. Maximum, minimum and average flows are obtained for the entire period of flows as recorded and for specified periods of reconstituted and generated flows by routine search technique.

1. Provision is also included in this program for use of the generalized model requiring only 4 generalized coefficients for each station (in place of 48) and one generalized correlation coefficient (in place of 12) for each pair of stations, in addition to identification of wet and dry seasons for each station. These are defined as follows:

(1) The average value of mean logarithms of flows for the wet season (3 months). This value plus 0.2 is applied to the middle month and the average minus 0.1 is applied to the other 2 months.

(2) The average value of mean logarithms of flows for the dry season (3 months). This is applied to all 3 dry months. Mean logarithms for months between dry and wet seasons are interpolated linearly.

(3) The average standard deviation for all 12 months. This is applied to each of the 12 months.

(4) The average serial correlation coefficient for all 12 months. This value minus .15 (but not less than zero) is applied to each wet-season month, and the value plus .15 (but not more than .98) is applied to each dry-season month. The average value is applied to all intermediate months.

(5) The average interstation correlation coefficient for all 12 months is applied to each month for that pair of stations.

m. Because of limitations in computer memory size and because of increasing change of computational instability with larger matrices, the number of stations usable simultaneously in this program has been limited to 10. However, the program can reconstitute and generate streamflows for any number of stations in groups of 10 or less. It will ordinarily be desirable to include one or more stations from earlier groups in each successive group in order to preserve important correlations. In addition to providing flow data for all stations, it is necessary to designate NPASS and to follow each group of flow data with a standardformat card with NSTX (number of stations in next pass that were also used in preceding passes) and station identification numbers for those stations. These numbers must be listed in the same sequence as their data were arranged in earlier passes. Data for the new stations for the new pass should then be read. None of these flows can occur in a year later than the latest year for which flow data occurred in the first pass.

n. As soon as flows are reconstituted for any pass, they are read onto the flow tape. After statistics are computed from transformed reconstituted flows, they are read onto the statistics tape (after identification of stations in the pass for future reference). Final regression equation data for each pass are read onto the same tape at the same time (for use in generation later). For each new pass, the flow and statistics tapes are searched separately for data for those stations already used that also occur in the new pass. In order to read and write intermittently and alternatively on the same tapes, it is necessary to keep track of tape records so as to assure that any read statement does not read beyond the record mark and so that new write statements occur at the end of all previous write statements that are to be saved.

o. Once that statistics are put on tape, they are retained throughout the reconstitution and generation processes. Flows, however, are saved only for the set of data in which they were reconstituted or generated, until the last pass for that set is completed. In the generation process, it is necessary to save the last flow generated for each station in one set for use as the antecedent flow in starting generation in the next set. These are saved in the QSTAP array with subscript ISTAP.

5. INPUT

Input is summarized in exhibits 7 and 8. Data are entered consecutively on each card using a simple variety of formats to simplify punching and handling cards. Computed and generated flows cannot be 1,000,000 units or larger, and consequently must be expressed in units that cannot exceed this magnitude. Units should be indicated on one of the 3 header cards. Column 1 of each card is reserved for card identification. These are ignored by the computer except for the A in column 1 of the first header card, which is used to identify the first data card. An example of input is given in exhibit 3. Certain inadequacies of data will abort the job and waste input cards until the next card with A in column 1 is reached. A card with A in column 1 followed by 4 blank cards causes the computer to stop.

7

5. OUTPUT

Printed output includes key input information for job identification and all results of computations. Generated flows are put on magnetic tape, and computed statistics are punched on cards in the format usable later by the program. An example of printed output is given in exhibit 4.

7. OPERATING INSTRUCTIONS

Standard FORTRAN IV instructions and random number generator are required. No sense switches are used.

8. DEFINITIONS OF TERMS

Terms used in the program are defined in exhibit 5.

9. PROPOSED FUTURE DEVELOPMENT

There are cases where the model used herein does not reproduce historical droughts with reasonable frequency. Consequently, the model is under continuous study and development. It is requested that any user who finds an inadequacy or desirable addition or modification notify The Hydrologic Engineering Center.

EXHIBIT 1

DETAILED EXPLANATION OF COMPUTER PROGRAM

GENERAL

Much of the program is explained by comment cards and definitions of variables. Supplementary explanation follows, referring to sections identified with the indicated letter in column 2 of a comment card.

SECTION A

Correlation coefficients, R, and beta coefficients, B, are in double precision for matrix inversion computation, in order to minimize computational instability. Correlation coefficient, RA, as originally computed and stored, may be defined in single precision. For computers with word length smaller than 32 bits, many other variables in this program should be in double precision.

When dimensions are changed, the corresponding variable (starting with K) should be changed accordingly, as these are used to prevent exceedence of dimensions. If an excessive subscript is used, the job will be dumped until a card with A in column 1 is encountered, at which time a new job is automatically started. If 5 blank cards (with an A in column 1 of the first) are encountered, the run will be terminated. Job specification cards are read in this section.

SECTION B

NSTAX is number of columns in correlation matrix. These consist of NSTA columns for the current-month values and a similar number for antecedent-month values. NSTAA is initial column number for antecedent-month coefficients. These are computed from NSTA, which is read in if statistics are to be provided, rather than computed from raw data. If raw data are to be used, NSTA is defined in the program later and NSTAA and NSTA must be also. Data for each new pass are processed after transferring back to statement 42. In the multipass operation, NSTX is the number of stations used from previous passes and NSTXX is the subscript of the first new station for the current pass. Station identification for the NSTX stations must be in the order in which data for those stations were originally used, because search of data and statistics on tape is made in this order. Flows for these stations are read from tape IQTAP, and corresponding statistics from tape ISTAT. Variables LQTAP and LSTAT are used to keep track of tape position for subsequent writing.

*Provided through the cooperation of the Texas Water Development Board.

Months are identified consecutively by the variable M starting with the month preceeding the first year of data. Some quantities to be accumulated are initialized. Station combination data are stored for the purpose of obtaining maximums and minimums (section D) of weighted flow values later. Tandem stations are identified for cases where a check on consistency of generated quantities is deemed appropriate. Station identification numbers are set to a large number so they will not be undefined. The flow array is filled with -l values to indicate missing values. For each station and calendar month, the total flow and number of recorded values are computed for computing a flow increment and other statistics later. The minimum flow for each station month is also computed in order to avoid negative logarithms later.

SECTION C

Station data can be read in random order. Stations are identified by subscript in the order in which data for each station are first read. The year subscript is computed. Negative subscripts will occur if data are for years earlier than the starting year indicated on B card, and data for these are rejected, with diagnostic printout. The stations are counted and the flows for each month at each station are counted for the purpose of computing frequency statistics later. If the number of stations or years exceeds its dimension limit, the job is aborted. The number of stations is permanently stored in the NSTNP array for later identification in multipass operations. The remainder of this section is self explanatory, except to state that permanent identification station numbers are given for stations in combination, for tandem stations, and for consistency-test stations, and subscripts are identified for rapid computation later.

SECTION D

In this section, maximum and minimum recorded flows for each calendar month , the water year and for durations of 1, 6, and 54 months, and average flows are computed for each station and combination. Durations do not span a break in any record. Quantities are rounded off and printed in fixed-point format.

SECTION E

The logarithm transform of flows is accomplished here. Missing values are indicated by an impossibly large number (the -l used for missing flows is a reasonable logarithm and therefore cannot be used for missing logarithms). Before the log transform, the average flow for each calendar month at each station is computed and one (constrained to a minimum of 0.1 flow unit) is added to each flow. If the minimum observed flow for that station month is negative, that absolute value

EXHIBIT 1

is also added before the transform. After the logarithm transform, frequency statistics for each calendar month and station are computed. An increment needed to convert the logarithms to an approximately normal distribution is also computed as an alternative future transform. Logarithms to the base 10 are used so that statistics are comparable to other commonly used statistics. A variable IRCON is set to 1 if any missing values are encountered, so that the flow reconstitution routine will be called later. A variable INDC is set to 1 if the first approximation of increments causes any one of the skew coefficients to be smaller than 0.1 or larger than 0.1. In an optional routine that follows, the increment for each station and calendar month is adjusted individually and iteratively (up to 14 trials) until skew is within 0.1 of zero.

Stations with less than three years of data for any calendar month are deleted, since skew and correlation computations require at least three items of data.

SECTION F

Correlation matrices are computed here for the purpose of adjusting frequency statistics for short-record stations. All correlation coefficients are first set to -4.0 in order to identify those not computed later for lack of sufficient observed data. Then accumulations of the various quantities required are computed for all items above the main diagonal in the correlation matrix for each month, using all data common to the two stations involved. If more than two items of data are available, the correlation coefficients are computed. Coefficients for the main diagonal are set to 1.0, and those below the main diagonal are set equal to their symmetrical element. Coefficients between the current and preceding month's values are similarly computed. These items constitute an extension of the matrix to the right, which doubles its size, and the new portion is not necessarily symmetrical. Similar complete arrays of average values and root-mean-square values for only those logarithms common to each pair of stations are found for later use in adjusting statistics.

A search is then made to determine the station that would be most useful in adjusting statistics for station months with incomplete record, and the means and standard deviations are adjusted in accordance with the following equations:

$$\vec{x}_{1} = \vec{x}_{1} + (\vec{x}_{2} - \vec{x}_{2}) R^{2} s_{1} / s_{2}$$

 $\vec{x}_{1} = \vec{x}_{1} + (\vec{x}_{2} - \vec{x}_{2}) R s_{1} / s_{2}$

where primes indicate long-period values, subscripts are 1 for the shortrecord station and 2 for the long-record station and,

EXHIBIT 1

- \overline{X} = mean logarithm
- S = standard deviation of the logarithms
- R = correlation coefficient.

An optional check of consistency of standard deviations between adjacent stations for the same month is next made. This is to assure that frequency curves do not cross within three standard deviations from the mean. If there is a conflict, the standard deviation of that station designated in the input data as the dependent variable is modified accordingly. All frequency statistics are then printed out.

SECTION G

All flows are next standardized by subtracting the mean and dividing by the standard deviation for the month and station. An approximate Pearson Type III transform is then applied as follows:

$$K = 6 \left[(.5 gt + 1)^{1/3} - 1 \right] / g + g / 6$$

where:

K = normal standard deviate
t = Pearson Type III standard deviate
g = skew coefficient

New correlation matrices are then computed, based on the normalized variates and using the same standard procedures previously employed for correlating logarithms. The sign of the correlation coefficient is preserved, since the coefficient will be used to establish regression equations. Correlation coefficients are set to zero if the variance of either variable approximates zero, since the computation of the coefficient is highly unstable and since its use would be of little value.

SECTION H

For jobs where correlation data are given, the portion of the correlation matrix above the main diagonal for all months and the entire correlation matrix relating current and preceding month's values are read, with a different card for each pair of stations. Values for all 12 months are contained on one card, and the two stations involved are identified on the same card. An automatic check is made to assure that cards are in the required order of columns and rows in the correlation matrix. When generalized statistics are used, only one correlation coefficient for the entire year is read, but card order is the same. Symmetrical elements below the main diagonal are then filled in and values af 1.0 are placed in the main diagonal.

EXHIBIT 1

4

Frequency statistics are then read, 4 cards per station, with 12 monthly values and station identifications on each card. A check is made of the station order, to assure proper subscripting. When generalized statistics are used, only one card per station is read, and this contains the maximum and minimum mean logarithms and the average standard deviation for the year. The months of maximum and minimum mean logarithms are also read and converted to corresponding subscripts. These subscripts will differ from the calendar month number if the year used in the study does not begin with January.

SECTION I

This section searches for each calendar month the entire correlation matrix to be the right of the main diagonal for misiing correlation coefficients due to the nonexistence of at least three years of simultaneous data for the month. As soon as a coefficient between two variables is identified as missing, a search of the correlation matrix is made to find established correlation coefficients between each of these variables (i and j) and any other variable (k). The range within which correlation between the two variables must lie in order to be mathematically consistent with the correlation with the third variable is established by use of the following equation:

$$R_{ij} = R_{ki} R_{kj} + \sqrt{(1-R_{ki}^2)(1-R_{kj})^2}$$

As each successive third variable with established correlation coefficients is found, the upper limit of R_{ij} is constrained to the lowest of all upper limits computed, and the lower limit is constrained to the highest of all such lower limits computed. When the entire matrix has been searched the correlation coefficient is estimated as the average of these two constrained limits. If this element is above the main diagonal, the value is also entered for the element symmetrically across the main diagonal. The search for further missing correlation coefficients is then continued.

SECTION J

Where a correlation matrix is not to be used for reconstituting data but might be inconsistent, a triad consistency test can be made in this section. This is done by examining all groups of three related correlation coefficients, and testing the lowest one to determine whether it is above minimum constraint established by the equation in the preceding station. If not, it is raised to that minimum. When this is done, it is possible that the adjusted coefficient had already been used in another triad test, and consequently that previous test would need to be repeated. In order to do this properly, the entire matrix is searched up to 12 NSTA times, where NSTA is the number of stations, until a complete search reveals no inconsistent triad (INDC = 0).

EXHIBIT 1

5

A coefficient FAC of the radical in the equation is used in order to obtain complete matrix consistency in difficult cases, whenever possible by this means. A test for overall consistency is made in section K, and if this fails, FAC is successively reduced by 0.2 until overall consistency is reached.

SECTION K

The test for overall consistency of the correlation matrix for each month is made by constructing for each station the correlation matrix that would be used in flow generation for that station and computing the multiple determination coefficient. If the determination coefficient of the matrix for any station and any month exceeds 1.0, all correlation matrices must be reexamined, since some coefficients are common to two or more matrices. This is done by reducing FAC in the triad test (section J) by 0.2 and repeating all triad tests. If FAC is reduced to zero and consistency is not obtained, an index of NCB is set to 1 and an averaging routine is used for each inconsistent matrix. A quantity SUM is computed as the average of all correlation coefficients in that matrix, and each element is modified by multiplying SUM by the excess of determination coefficient and adding this product to the product of the complement of this multiplier and the value of the element in the inconsistent matrix. The averaged or smoothed values are replaced in the complete matrix for the month, and this requires some careful manipulation of subscripts. A new computation of determination coefficient is made and the smoothing process is repeated up to nine times until consistency prevails. If this does not occur, the job is terminated. When consistency is established all complete matrices are printed out and essential elements are punched if desired.

SECTION L

In reconstituting missing data, a search is made for each month of record starting with the first for stations that have no record during that month (Q=T). When one is found, a search of all other stations is made to determine whether recorded or previously reconstituted flows exist for the current month or, if not, for the preceding month. If one is found, it will constitute an independent variable for estimating the missing value, and its value and pertinent correlation coefficients are stored in new arrays for computation purposes. The correlation coefficients with the dependent variable is temporarily stored in the NVAR (NSTA+1) column to assure that coefficients relating independent variables which have sufficient array space (they cannot exceed NSTA in number). A variable ITEMP counts the number of independent variables (stations for which recorded or reconstituted data are available). It is incremented after its set of correlation coefficients are stored in the R array, and is finally used to relocate the correlation coefficients involving the dependent variable. If no independent variables with data

EXHIBIT 1

are found, as can happen in the first month of record, a correlation is made with the preceding value for the same station and that preceding value is arbitrarily set at the average for the month. The regression equation and determination coefficient are then computed using subroutine CROUT. The variable having the lowest absolute value of correlation with the dependent variable is identified, and beta coefficients are searched in order to eliminate all unreasonable coefficients. In the usual case where the simple correlation coefficient between any variable and the dependent variable is positive, unreasonable coefficients are assumed to be those larger than 1.5 or smaller than -.5. In the case where the variable correlates negatively with the dependent variable, the reasonable range is +1.5 to 0.5. If an unacceptable coefficient is found, INDC is set to 1. If this happens or if the determination coefficient does not lie between 0 and 1.0, the variable with the smallest correlation coefficient is eliminated, the correlation array reconstructed accordingly, and the regression equation recomputed. This process is repeated until all required conditions exist. The missing value is then computed by use of the regression equation and adding a random component normally distributed with zero mean and with variance equal to the error variance of the regression equation.

As soon as the missing value is estimated a search is made for all established values in the current and preceding month with which it is to be correlated, and sums of logarithms, squares, and cross products are incremented in preparation for recomputing all affected correlation coefficients. After checking for sufficient (three years) record and nonzero variance, the correlation coefficient is recomputed. If the standard deviation of either variable is very small, the correlation coefficient is set to zero. If the coefficient is above the main diagonal of the correlation matrix, its value is also assigned to symmetrical element. Since estimation of a missing value affects correlation coefficients are stored in a different matrix, this process of adjusting the correlation coefficient is applied to those values next.

SECTION M

After all flows are reconstituted, the flow tape is read until the proper position for writing the newly computed flow data on that tape is reached, and headings are printed for writing flows on the printer later. Then the standard deviates are converted to flows by reversing the Pearson type III transform, multiplying by the standard deviation, adding to the mean and taking the antilogarithm. The increment is then subtracted and if the resulting value is negative for a variable with zero lower limit, it is set to zero. In the case of reconstituted flows, the Pearson Type III transform is constrained so that the excess of the standard deviate over and above 2.0 is multiplied by a maximum of 0.3 (if the standard

EXHIBIT 1

diviation exceeds 0.3). This simply prevents obtaining unreasonably extreme values due to sampling errors. It is a moderation of the extrapolation rather than an abrupt truncation.

The test for tandem station consistency is next made. and inconsistent flows are identified for printout and changed to the limit of consistency. The downstream flow is made consistent with the sum of upstream flows. Flows are punched on cards, if desired, printed out, and written on the flow tape for use in future passes. NQTAP is incremented and represents the total number of records on the tape.

SECTION N

After converting deviates to flows, the frequency statistics are recomputed in order to agree accurately with observed and reconstituted data. If a consistency test is called for, the variable ITRNS is set to 2 and computation is transferred to near the end of section F, where the test is made and the transfer index causes a return to this portion of the program. Adjusted statistics are printed, and the consistent correlation matrix is printed (and, if desired. also punched) by transfer to section K, using ITRNS as a return indicator again. The statistics are then punched, if desired. Flows for the specified station combinations are then computed.

SECTION O

Maximum and minimum recorded flows are computed by transfer to section S, using ITRNS=1 as a return indicator. The variable ITMP keeps a record of the remaining years whose maximum and minimum flows have not been searched yet.

Next, generalized statistics are computed, if desired, (if IGNRL equals two). As indicated, straight averages of all 12 monthly correlation coefficients in every category are taken. Means are averaged for the three wettest consecutive months and the three driest consecutive months and the seasonal timing noted. Standard deviations for all 12 months are averaged. Generalized statistics are then printed out.

Next, generalized statistics read in section H are used to compute required arrays of statistics. Skew and increments are set to zero. The mean for the middle month of the wet season is .2 higher than the wet season average and means for the other two months are .1 lower. Means for the dry seasons are uniform, and means for the transition seasons are interpolated linearly. Correlation coefficients for the dry season are .15 higher (constrained below .98) than the annual average, and those for the wet season are .15 low (constrained above zero). All of these operations are in accord with the generalized model developed in HEC.

SECTION P

After obtaining monthly statistics and correlation matrices, regression equations for each station and calendar month are computed. Flows are generated in the station order in which data or statistics are read and are generated for each month at all stations before proceeding to the next month. Flows at each station are correlated with flows of the antecedent month at that station and at all stations for which the current month's flows have not yet been generated. For other stations, flows for the current month are used.

Regression equations are computed in subroutine CROUT. If any correlation matrix formed is inconsistent (which should not occur at this stage, except for truncation of computated intermediate variables), a transfer to section J is effected, and consistency operations performed on all correlation matrices. After such a transfer, all regression equations must be recomputed, since any correlation coefficient might have changed. After this, only the beta and alienation coefficients need be retained, in addition to the frequency statistics. In the multipass operation, these are all written on tape ISTST at this point.

SECTION Q

A routine for projecting historical sequences into the future is employed here. Values of QPREV (previous month's deviate) for each station is determined as the transform of the flow for the month preceding the first month specified (by input data) to be generated. The variable MA is computed for the subscript of Q that conforms to the first month of projected flows. If the projected flow routine is not to be used, the computer is next set up to generate two years of flows, at the end of which synthetic sequences will have a virtually random start.

In the multipass operation, stations are identified and all necessary statistics are contained in the order needed on tape ISTAT. In any pass after the first, flows generated in earlier passes for the same period (the same sequence of data) must be read from tape IQTAP, and this tape must be rewound before each pass in order to permit a complete search. In any sequence after the first, the preceding flow for the first month to be generated is the last flow in the preceding sequence for that station, and these are saved in the QSTAP array for multipass operation. If the multipass feature is not used, all necessary statistics and flows for generating are in memory.

SECTION R

In starting to generate flows, a variable JXTMP is used to identify the year number of the first year of each sequence in the multipass

operation. Variables AVG and SDV are used to compute the mean and standard deviation of the deviates for each flow sequence. These are later used to adjust all deviates so that the means and standard deviations in every generated sequence will be the same as those of the historical sequence.

Variables JA and NJ are set up to correspond to the first and last year of generation in each successive sequence, depending on the type of operation. MA has already been set up as the subscript of Q corresponding to the first month of flows to be generated (for use in projecting historical flows recorded to the current time). QPREV for each station has been identified as the previous month's flow for that station. Flows are then generated for each station, using stored regression equations and a random component. Each generated flow is immediately entered into the QPREV array, because its preceding flow will never again be used in that pass.

In the multipass routine, flows (as deviates) are written on tape at the end of each pass, and the last flow for each station is stored in the QSTAP array for use in the next sequence.

If more than 19 years (an arbitrarily selected length) of flow are being generated in any sequence, deviates are adjusted so that their mean is zero and variance 1.0. Their unadjusted mean and standard deviation are printed. Then they are transformed to flows, and, if called for, consistency tests between stations are made. For variables with zero natural limit, a check for negative values is then made. Flows are then printed and, if desired, punched. Flow combinations are then computed.

SECTION S

Before computing maximum and minimum values of generated flows. a positive value of JX is looked for to assure that flows generated are not to be discarded (the first two years generated for a random start). Also, at least NYMXG years must have been generated before maximum and minimum values are computed (this applies only when the number of years remaining for generation in the last sequence does not equal NYMXG). Maximum sums are initiated at an extremely large negative number and minimum sums as an extremely large positive number (T). Then a routine search of flow sums for the specified durations at each station is made for the sequence, and results are printed out. Since this routine is used for reconstituted flows as well as for generated flows, a transfer indicator is used to determine whether the next step is back to the reconstitution routine or the generation routine. If the latter, a check is made for the multipass routine. If all passes are not completed, a transfer to section Q is made. If all passes are completed for this sequence or if the multipass routine is not being

used, a check is made of remaining years to be generated. If greater than zero, a transfer to section Q is made after adjusting years yet to be generated. Otherwise the job is ended and a new job, if any, is started.

RANDOM NUMBER FUNCTION RNGEN

This random number function is for a binary machine and the constants must be computed according to the number of bits in an integer word. The numbers generated are uniformly distributed in the interval 0 to 1.

The function is called from the main program by a statement similar to the following:

A = RNGEN (IX)

Where A is some floating point variable name and IX is some integer variable name. The argument name IX need not be the same in the main program and the function. The argument must be initialized to zero in the main program. The location of the initializing statement is important and depends on the results desired. If it is desired to have different sets of random numbers for each of several different sets of computations (jobs) that are run sequentially on the same program, then the argument must be initialized at the very beginning of the program and never reinitialized. If it is permissible to use the same sequence of random numbers for each job, the argument must be initialized at the beginning of each job. The advantage of this latter option occurs when one of the jobs must be re-run for some minor reason as the same random numbers will be used and the results will be comparable.

Three constants must be computed by the following equations:

Constant one (C1) = $2^{(B+1)/2} + 3$

Constant two (C2) = 2^{B} -1

Constant three (C3) = 1./2.^B

Where: B = number of bits in an integer word

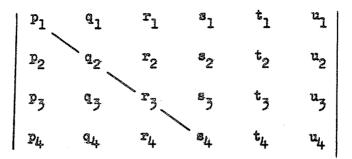
The constants for some of the common computers are listed in the following table:

-	_		<mark>에는 가가 그 가</mark> 가 있는 것에서 이렇게 있는 것이 있다. 이렇게 있는 것이 있는 것이 있는 것이 있는 것이 가지 않는 것이 있다. 것이 있는 것이 가지 않는 것이 있는 것이 있
WORD	C1	C2	C3
19	1027	524287	0.190734863E-05
23	4099	8388607	0.119209290E-06
31	65539	2147483647	0.465661287E-09
35	262147	34359738367	0.2910383046E-10
11	\$1	13	73
48	16777219	281474976710655	0.3552713678E-14
	INTEGE WORD 19 23 31 35	19 1027 23 4099 31 65539 35 262147	INTEGER CONSTANTS WORD C1 C2 19 1027 524287 23 4099 8388607 31 65539 2147483647 35 262147 34359738367

EXHIBIT 2

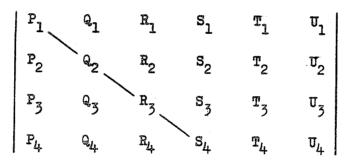
Crout's Method

One of the best methods for solving systems of linear equations on desk calculating machines was developed by P. D. Crout in 1941. This method is based on the elimination method, with the calculations arranged in systematic order so as to facilitate their accomplishment on a desk calculator. In this method the coefficients and constant terms of the equations are written in the form of a "matrix," which is a rectangular array of quantities arranged in rows and columns.


The method is best explained by an example. Suppose that in a multiple correlation analysis it is required to solve the following system of linear equations to obtain the unknown values of b_2 , b_3 , b_4 and b_5 .

 $\sum_{2}^{2} b_{2} + \sum_{2}^{2} b_{3} + \sum_{2}^{2} b_{3} + \sum_{2}^{2} b_{4} + \sum_{2}^{2} b_{5} = \sum_{1}^{2} b_{1}^{2}$ $\sum_{2}^{2} b_{2} + \sum_{3}^{2} b_{3} + \sum_{3}^{2} b_{4} + \sum_{3}^{2} b_{5} = \sum_{1}^{2} b_{1}^{2}$ $\sum_{2}^{2} b_{2} + \sum_{3}^{2} b_{3} + \sum_{4}^{2} b_{4} + \sum_{4}^{2} b_{5} = \sum_{1}^{2} b_{1}^{2}$ $\sum_{2}^{2} b_{2} + \sum_{3}^{2} b_{3} + \sum_{4}^{2} b_{4} + \sum_{4}^{2} b_{5} = \sum_{4}^{2} b_{1}^{2}$ $\sum_{2}^{2} b_{2} + \sum_{3}^{2} b_{3} + \sum_{4}^{2} b_{4} + \sum_{4}^{2} b_{5} = \sum_{4}^{2} b_{1}^{2}$

For simplicity let us replace the coefficients of the b's by the letters p, q, r and s, and the constant terms by the letter t, using subscripts 1, 2, 3 and 4 to denote the respective equations:


^p 1 ^b 2	+	^q 1 ^b 3	+	r1 ^b 4	÷	^s 1 ^b 5	题	tı	
		^q 2 ^b 3							
p ₃ b ₂	+	q ₃ b ₃	+	r3 b4	÷	s ₃ b ₅	22	t ₃	
^p 4 ^b 2	+	^q 4 ^b 3	+.	r4 94	+	^s 4 ^b 5	25	t_4	

A continuous check on the computations as they progress may be obtained by adding to the matrix of the above system a column of u's, such that u = p + q + r + s + t. The matrix and check column are written as follows:

The elements p_1 , q_2 , r_3 and s_4 form the "principal diagonal" of the matrix. Examination of the original equations shows that the coefficients are symmetrical about the principal diagonal, i.e., $q_1 = p_2$, $r_1 = p_3$, $r_2 = q_3$, $s_1 = p_4$, $s_2 = q_4$, and $s_3 = r_4$. This is characteristic of the system of equations to be solved in any multiple correlation analysis. Because of this symmetry, the computations are considerably simplified. While the Crout method may be used to solve any system of linear equations, the computational steps given here are applicable only to those with symmetrical coefficients,

The solution consists of two parts, viz., the computation of a "derived matrix" and the "back solution." Let the derived matrix be denoted as follows:

The elements of the derived matrix are computed as follows:

$$P_{1} = P_{1} \qquad P_{2} = P_{2} \qquad P_{3} = P_{3} \qquad P_{4} = P_{4}$$

$$Q_{1} = \frac{Q_{1}}{P_{1}} \qquad R_{1} = \frac{R_{1}}{P_{1}} \qquad S_{1} = \frac{S_{1}}{P_{1}} \qquad T_{1} = \frac{t_{1}}{P_{1}} \qquad U_{1} = \frac{u_{1}}{P_{1}}$$

$$Q_{2} = Q_{2} = P_{2}Q_{1} \qquad Q_{3} = Q_{3} = P_{3}Q_{1} \qquad R_{2} = \frac{Q_{3}}{Q_{2}}$$

$$Q_{4} = Q_{4} = P_{4}Q_{1} \qquad S_{2} = \frac{Q_{4}}{Q_{2}} \qquad T_{2} = \frac{t_{2}-T_{1}P_{2}}{Q_{2}} \qquad U_{2} = \frac{u_{2}-U_{1}P_{2}}{Q_{2}}$$

$$R_{3} = R_{3} = Q_{3}R_{2} = P_{3}R_{1} \qquad R_{4} = R_{4} = Q_{4}R_{2} = P_{4}R_{1} \qquad S_{3} = \frac{R_{4}}{R_{3}}$$

$$T_{3} = \frac{t_{3}-T_{2}Q_{3}-T_{1}P_{3}}{R_{3}} \qquad U_{3} = \frac{u_{3}-U_{2}Q_{3}-U_{1}P_{3}}{R_{3}}$$

$$S_{4} = S_{4} - R_{4}S_{3} = Q_{4}S_{2} - P_{4}S_{1}$$

$$T_{4} = \frac{t_{4}-T_{3}R_{4}-T_{2}Q_{4}-T_{1}P_{4}}{S_{4}} \qquad U_{4} = \frac{u_{4}-U_{3}R_{4}-U_{2}Q_{4}-U_{1}P_{4}}{S_{4}}$$

The general pattern of the above computations, which may be applied to a system containing any number of equations, is as follows:

(1) The first column of the derived matrix is copied from the first column of the given matrix.

(2) The remaining elements in the first row of the derived matrix are computed by dividing the corresponding elements in the first row of the given matrix by the first element in that row.

(3) After completing the $n^{\frac{th}{2}}$ row, the remaining elements in the $(n+1)^{\frac{th}{2}}$ column are computed. Such an element (X) equals the corresponding element of the given matrix minus the product of the element immediately to the left of (X) by the element immediately above the principal diagonal in the same column as (X), minus the product of the second element to the left of (X) by the second element above the principal diagonal in the same column as (X), etc. After each element below the principal diagonal is recorded, and while that element is still in the calculator, it is divided by the element of the principal diagonal which is in the same column. The quotient is the element whose location is symmetrical to (X) with respect to the principal diagonal.

(4) When the elements in the $(n+1)\frac{th}{t}$ column and their symmetrical counterparts have been recorded, the $(n+1)\frac{th}{t}$ row will be complete except for the last two elements, which are next computed. Such an element (X) equals the corresponding element of the given matrix minus the product of the element immediately above (X) by the element immediately to the left of the principal diagonal in the same row as (X), minus the product of the second element above (X) by the second element to the left of the principal diagonal in the same row as (X).

The check column (U) of the derived matrix serves as a continuous check on the computations in that each element in the column equals one plus the sum of the elements in the same row to the right of the principal diagonal. That is,

 $U_{1} = 1 + Q_{1} + R_{1} + S_{1} + T_{1}$ $U_{2} = 1 + R_{2} + S_{2} + T_{2}$ $U_{3} = 1 + S_{3} + T_{3}$ $U_{4} = 1 + T_{4}$

This check should be made after completing each row.

The elements of the derived matrix to the right of the principal diagonal form a system of equations which may now be used to compute the unknown values of b_2 , b_3 , b_4 and b_5 by successive substitution. This is known as the "back solution." The computations are as follows:

$$b_{5} = T_{4}$$

$$b_{4} = T_{3} - S_{3}b_{5}$$

$$b_{3} = T_{2} - S_{2}b_{5} - R_{2}b_{4}$$

$$b_{2} = T_{1} - S_{1}b_{5} - R_{1}b_{4} - Q_{1}b_{3}$$

It is very important that the computations be carried to a sufficient number of digits, both in computing the coefficients and constant terms of the original equations, and in computing the elements of the derived matrix. It is possible for relatively small errors in the coefficients and constant terms of the original equations to result in relatively large errors in the computed solutions of the unknowns. The

greatest source of error in computing the elements of the derived matrix arises from the loss of leading significant digits by subtraction. This must be guarded against and can be done by carrying the computations to more figures than the data. As a general rule, it is recommended that the coefficients and constant terms of the original equations be carried to a sufficient number of decimals to produce at least five significant digits in the smallest quantity, and that the elements of the derived matrix be carried to one more decimal than this, but to not less than six significant digits.

	L 200 L	.553 1.09 1.19 5.76 16.1 5.44 5.62	65.2 28.3 270. 121.
	N N N N N N N N N N N N N N	2 2 2 2 2 2 2 2 2 2 2 2 2 2	123。 116。 1166
1 O	10000 1000 1000 1000 1000 1000 1000 10	NN 10.10 10.	431. 386. 1010. 625.
197 NOI	10000000000000000000000000000000000000	ERATION ERATION ERATION ERATION ERATION ERATION ERATION ERATION ERATION ERATION	569 567 567 567 567 567 567 567 567 567 567
LL2340 ION - N GENERAT 5	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CC2340 ND240 333.0 110.0 110.0 110.0 10.0 10.0 10.0	212。 165。 287。 403。
23-X6- MULATI ANU G 10	00000000000000000000000000000000000000	3 X6 10 10 10 10 35 5 35 5 12 5 15 6 37 1	134 116. 330. 248.
A 7 OW SI LYSIS	10000000000000000000000000000000000000	08 51 150 150 132 132 132 132 132 132 132 132 132 132	37°4 50°8 68°3 101°
ST D REAM RD A	20°20 20°20	READAT READAT REAFFI RE	12°5 28°1 146° 87°9
TE HLY ST STANDA 1 110	31,00 31,000 31	HH H H H H H H H H H H H H	13°1 28°5 43°0
MONTHL ST 07 1	**************************************	MON MULT MULT MULT MULT MULT MULT MULT MULT	0 13.9 12.1 23.4
-	4 9 9 9 9 9 9 9 9 9 9 9 9 9	4 • 9 • 9 • 9 • 9 • 9 • 9 • 9 • 9	119° 119° 31°¢
1904 1 3	71905 71905 71905 01904 01906 01906 11906 11906 11906	1904 71905 71905 71905 71905 01905 01905 01905 01905	1 11904 11905 11906 11907
4 4 8 0 C L			

EXHIBIT ہم

ლ

42.4 12.6 92.5 92.5

•085 •400 •400 7•14 7•14 12•61 12•61 5•61 5•60

PAGE

	•	o n í	,				ີ ພູດ ເ	80 90 90 90 90 90 90 90 90 90 90 90 90 90		• 897 • 754 • 769 • 729	რ
	e	N 0 0 -	e e e e e	28°3 270° 121°			\$~~\$ 4	28.3 28.3 270.		988990 98899 9889 9889 9899 9899 9899 9	XHIBIT
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0	5 0 0 7 -	116. 000. 454.		I I I	16. 64.6 11.4	123		947 936 955 965 983	2 E)
	00	s s s s s s s s s s s s s s s s s s s	36°	386. 1010. 1 625.			88° 36°	431. 386. 010. 1 625.		000 00 00 00 00 00 00 00 00 00 00 00 00	PAGE
191	141. 141.		55°5 590°5	366. 682. J 563.	V 1970 STICS 1	\$ 30	ວຸ່າທີ່	590. 366. 682.] 563.	1970	• 000 • 000 • 833	
L2340 0N - NOV IS	0 ~ ~	- C @	48°0 212°	165. 287. 403.	2340 N - NOV STATIS	62 . 5 47.5	0 • • • • • 0	212。 165。 287。 403。	2340 4 - NOV 5D - 10	.916 .9467 .946 .946 .923	
723-X6-L IMULATIO JECTIONS		• • •	7.	116° 330° 248°	3-X6-L ULATIO ALIZED 10	46°7 34°4	2°.0 7°.1	134. 116. 330. 248.	3-X6-L2 ULATION URNISHE	000 • 000 • 000 • 000 • 000 • 000 • 000 • 00000 • 00000 • 0000 • 0000 •	
A M N N N N N N N N N N N N N N N N N N	13.		8°8 37°	50.8 68.3 101.	A 72. Ow SIM	3.2		37.4 50.8 68.3 101.	W SIM ICS F	666 000 000 000	
ST DAT REAMFLOW FLOW	\$ \$	00	12.	28.1 146. 87.9	ST DAT REAMFL(ND USE	0°0°0		12.5 28.1 146. 87.9	ST DATA REAMFLO STATIST	402 407 392 .793 .793 .793	
HLY ST		0	2°3	22°6 43°0 43°0	HLY STR PUTE AN		0 0	13°1 22°6 16°3 43°0	TES HLY STR S	.521 .532 .510 .510 .988	
MONT	4 0 • • • •	е С	<u>ຕ</u> ຸ	37°7 12°1 23°4	MONTH COMF	04	$m \circ m$	13.9 37.7 12.1 23.4	MONTH	.949 .951 .956 .956	
	° . 5		12.0	114° 31°2		~ · · ·		119°4 119°4 31°4	ſ	864 390 990 868 866	
1904	0190	06100	0610	111905 111906 111907	1904	0190	0190	111904 111905 111906 111907		7 107 7 107 77 111 70 107 10 107	
4441					44420				-44400		

	ریم ۲
959 974 958 958 959 959 1079 1079 1079 1079 1079 1079 1079 107	
2 2 2 2 2 2 2 2 2 2 2 2 2 2	
6915 60000 6000 6000 6000 6000 6000 6000 6000 6000 6000 60000	
8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0
	2340 URNISHE 10
2 2 2 2 2 2 2 2 2 2 2 2 2 2	- X6-L LATIO 0 0
- 200 - 200	- 723 FATISTU 10. 11.
	T DATA EAMFLO IZED S 6 • 6 •
1 1 1 1 1 1 1 1 1 1 1 1 1 1	1ES HLY STR GENERAL • 290 • 269
0000 000 000 000 000 00 00 00 00 00 00	MONT - 189 - 756 1.427
	D C C C C C C C C C C C C C C C C C C C

EXHIBIT 3 3

PAGE

			N R	AA			
	L YRPJ -0		-MU 54-MU 302-9999998 265099998 579-9999988 738-9999998	MO 54-MU 0 99999999 36 99999999 39 99999999	9 312 122 .10	• 770 • 240 • 121 • 10	1。524 。302 。39 。39
	1 LAHTM		5 mm C	1 → 0 2	8 •000 •162 •162 •1541	1.020 .400 1.085 .15	1.953 .408 019 1.21
	L 487 I - 0		1-M0 121 288 1010 1309	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 •395 •173 •10	1.536 .530 .65 .65	2.462 .449 .472 4.23 4
	NPR0J -0		9 61 80 80	1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 51 (1) 20 m	N 20 10 10	
	NCSTY IGNRL -0 -0		8 2 4 3 3 1 4 3 1 4	69 10 10 10 19 10 10 10 10		1.98 .32 1.20 1.20	2.760 .187 .892 6.13
	M NCSTY		7 216 1200 1219	1 1 1 1 3 6 1 1 3 6	5 1,177 ,C87 ,144	2.051 .208 .208 1.21	2°734 °115 -1°429 5°50 ¢
	NCUMB NTNDM 1 -0		6 11 288 1010 1309	4 0 9 0 4 1 9 0 4 1 9 0 4 1 9 0 4 1 9 0 4 1 9 0 4	4 1.395 .214 .20 3	1.858 .190 .371 .77	2.407 .166 .278 2.67
	NSTA NC		18 18 682 900 900	466 466 466 466 460 460 460 460 460 460	3 1,862 1,663 -1,073 3	1.758 .259 1.454 .67 5	2.281 .213 .208 2.07
723-X6-L2340 IMULATION - NOV 1970 S AND GENERATIUN	0- SHD41		54 M 34 4 54 0 3 5 0 0 3 5 0 10 10 10 10 10 10 10 100 10	4 14 165 226	2 1.410 -1.653 -1.26 3	1, 290 , 164 , 626 , 20 5	L。784 。182 。253 。64
G-L2340 TIDN - NDV GENERATIUN	I PCHU	111 00C	3 121 152 330 566	337 344 116	1 • 465 • 433 • 39 3	1.130 .439 .671 .20	L。673 - 473 - 243 - 69 - 69
VS IS AND	NXG NPAS	1.000 1.	S 33 101 161	95 117 2 213 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 .820 .597 1.491 .12 3	.849 .262 .10 .10 55	1,335 ,223 ,223 1,004 ,24
TEST DATA - HLY STREAMFLUW S Standard analysi	NYKG NYMXG 10 5	107 1.000 1.	KDED FLOWS 12 1 31 73 14 49 43 146 49 228	12 24 24 24 24 24 24 24 24 24 24 24 24 24	11 .283 .168 -1.308 .10 3	•715 •130 •15 •15 55	1.298 .223 .620 .22
MUNTHLY S	АL МХЯСS 1 5	3	JF RECORDED 11 12 2 31 6 14 38 43 46 89		9 1 95	.815 .444 1.211 .10 5	1.439 .463 .463 .43 .43
~	IMNTH IANAL 10 1	L STA Ratio		M VOLUMES	FREQUENCY STATISTICS STA ITEM 13 107 MEAN .11 STD DEV .51 SKEW 1.04 INCRMT .10	MEAN STD DEV SKEW INCRMT YEAAS	MEAN STU DEV Skëw Incrmt Years
	14 FA 1964	COMB 1	MAXIMUM 574 107 110 111 996	MINIMUM STA 107 110 111 111 296	FREQUE STA 107 S	0 0 1 1	111

ŵ

V M0 204 204 299 OM AN

> PAGE 1 EXHIBIT 4

FREQUENCY STATISTICS AFTER ADJUSTMENTS

σ	312 .415 - 122 .10	.770 .24U -121 .10	1.507	• 265 • 939 • 34
80	033 .133 -1.641 .1C	1.020 .400 1.085 .15	1.890	.380 019 1.21
7	.316 .156 -1.489 .10	1,536 .530 1.041	2.368	.441 .472 4.23
Q	.710 .22d .348	1.982 328 485 1.20	2°693	。220 。892 6.13
5	1.177 .(:87 .144 .15	2.051 .208 453 1.21	2.081	-153 -1.429 5.50
4	1.321 .147 -1.728 .26	1.858 .196 .371 .77	2.372	.163 .278 2.67
m	1.826 .227 -1.373 .81	1.758 .259 1.454 .67	2°250	•198 •208 2.07
~1	1.410 .157 -1.653 -26	1.29U .164 .626 .20	1.782	• 158 • 254 • 64
rat	1.473 1.627 .39	1.130 .439 .671 .20	1 • 669	403 ••243 ••59
12	• 769 • • 57 1 • 491 • 12	.349 .262 .220	1•385	. 224 1.0064 .24
11	- 283 - 389 - 1.508 - 10	.715 .136 .135 .10	1.334	.209 .620 .22
C 1	。 、 ・ 、 ・ イ・ リ し 。 1 0	. 315 . 444 1.211 .10	1.443	.407 1.117 .43
ITam	MEAN STU DEV Sken INCRMT	MEAN STU DEV SKEW INCRMT	MEAN	STD DEV SKEW INCRMT
STA	107	011	111	

RAW CORRELATION CJEFFICIENTS FJR MUNTH 10

		ABUVE	
		АT	
лат н		HIND	
JM TN'I		EUING	
111 WITH CURRENT MONTH	- 687 - 997	1.CUP MITH PRECEVING MONTH AT ABOVE .526	. 578 .65¢
110		.534	. 588 . 663
101	1. 303 . 998 . 298	000.4-	• 905 - 4• 000
STA	107	111	111 111

STATIUN

RAW CORRELATION COCFFICIENTS FOR MONTH 11

					STATION			
					ABUVE			
					ÅΤ			
	NTH				MGNTH			
	WITH CURRENT MONTH				WITH PRECEDING MONTH AT ABUVE STATION			
111	VITH CL	10. I 126°	• 774	1.000	ALTH PR	*66°	• 644	÷66°
110		.971	1.00	• 774 °		• 9 A · ·	.881	°985
101		1.050	.97Ċ	1.000		.964	. 370	• 90 •
STA		107	11C	111		107	110	111

PAGE 2 EXHIBIT 4

NOTE: Remaining months not shown.

	T0TAL 128 122 203 315	TOTAL 375 343 1104 600	TOTAL 1686 1449 2899 2732 1175				
	9 1 0 0 1 9 9 1 0 1 0 9 1 0 1 0	5 5 7 m 1 2 5	6 4 4 9 6 7 3 3 3 7 3 6 7 7 3 6 7 7 3 6 7 7 3 6 7 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(294 294	-121 -121 -10	1 .512 .263 671
	. Ш. Ш. Ф. н. н. н. н. Ф. н. н. н. н. н.	3 T N M O N	8 65 28 23 121 48E	c	。 。009 。116 。106	040-	5 9 5 1
	199122 199157	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 123 116 116 454 70E	٦	. 172 . 172 . 335 . 10	1 .536 .530 1 .041	2.344 470 722 4.23
	261460 11460 11460	12883 830 9483 964	431 431 3366 1010 625 269E 269E	ي. د	.712 .233 .135	1.982 .328 .465 1.20	J N N
	131 131 132 132 132 132 132 132 132 132	147 147 157 157 157 157	999 999 999 9690 29690 29690 2960 2960 2	۲	1.141 .082 1.018	2.051 .208 453 1.21	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	233 55 55 55 55 55 55 55 55 55 55 55 55 5	62 62 11 118 118	101 101 101 102 103 103 109 109	4	1.336 .176 .192 .26	1.858 .190 .371 .77	2.361 .176 .580 2.67
	3 488 844 121 566	34 34 152 34 37	134 116 330 248 1078	Ś	1.807 .202 .445 .81	1.758 .259 1.454	2.232 .215 .677 2.07
	2 24E 30 32E 32E	13334 3334 1935 1937 1937 1937 1937 1937 1937 1937 1937	337 591 648 64E	~1	1.424 .122 -1.298 .26	1.290 .164 .626 .20	1.789 .158 .094 .04
	11 151 443 46	1004 104 104	1 1 2 2 8 1 4 6 6 1 1 4 6 6 1 1 4 6 6 5 1 E 5 1	4	1。451 • 350 • 351	1.13C .439 .071 .20	1.682 .410 .335 .69
Ún S	122 122 133 133 125 125 125 125 125 125 125 125 125 125	ጟ ພ ທ ທ 4 ປ	н м С м м м С м м С м м С м м С м С м М С м С м С м С м С м С м С м С м С м С м	12	.761 .575 .399	.849 .262 .220 .10	1.388 .227 .070 .24
TUTED FL	4 4 2 2 4 2 4 4 4 4 4 4 2 4 4 4 4 4 4 4		111 232 24 24	T I ST I CS 1 1	.278 .086 .585 .1(.115 .13C .835 .10	1.314 1.97 1.188 1.28
AND RECONSTITUTED FLORS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 m : n a b b	10 119 31 30 6	FREQUENCY STATI Item 1c	.019 .412 1.185 .10	。815 。444 1。211 。10	1 • 4 4 7 • 4 0 7 • 9 6 4 • 4 3
	۲۲.۵۶ 1934 1935 1936 1936 1968	YEAR 1904 1905 1906 1906 1907	Y EAR 1905 1905 1905 1903 1908	i C	MEAN STD DEV SKEW INCRMT	MEAN STD DEV SKEW INCRMT	MEAN STD DEV SKE
RECORDED	57A 107 107 107 107	574 110 110 110	577 111 111 111 111 111 111	ADJUST STA	107	LII	111

PAGE 3 EXHIBIT 4

CGNSISTENT COMMELATION MATEIX FCR MONTH IN

		ABOVE STATION	
		AT	
ļ	HIN	HINDM	
	9 - 997 или соккем мылтн 7 1000 - 998 9 - 497 1.000	иГН Р⊼ЕСЕИІМС • 516 • 578 • 651	
011	266。 350°T 256°	. 526 . 588	
107	1.000 .997 .989	. 45d . 45d . 431	
STA	111 111 111	107 110 111	

CONSISTENT CORFELATION MATRIX FOR MONTH 11

EXHIBIT 4

			ABOVE STATION		
			AT		
	NTH		MONTH		
111	#11H CURRENT MGNTH .999 .955	1.000	#1.1 P* LCEUING - 985	•904	366 °
110	.960 1.000	.954	.975	• 881	, 9 ở Ŋ
10.7	1.000 .960	666 •	• 96 •	。 667	。969
STA	107 110	111	101	110	111

NOTE: Remaining months not shown.

AV MO 16 182 263 263	AV MO	
54-M0 954 10826 10826	54-MD 869 2564 10220 13726	
6-MU 302 3579 4738	6MC 6 36 196 239	
1-MU 121 288 1cic 1369	I-MO 0 11 14	
80 4 2 1 0 8 0 4 7 1 0 8 0 4 7 1 0	0.0 n n n 1 1	
45 8 43 270 314	w œ v ⊨ œ w N	
RECONSTITUTED FLOWS 5 6 7. 18 11 3 0C 288 216 82 1010 100C 2 00 1339 1219 2	8 3 3 3 3 3 3	
0NSTITU 6 11 288 1010 1309	3 C C C C C C C C C C C C C C C C C C C	
0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 55 294. 1	1.000
0F RECORVED 4 3 4 121 33 152 118 33C 403 566 553	3 4 36 14 34 47 167 149 187 212 187 212	~1
S	36 36 167 167 2 0TRM	-1
5 YEAR 22 32 33 101 167	1 235120 735120 7	U O
C PERIUD 1 OF 5 12 12 31 73 14 49 43 146 1 88 224 1	100 100 100 100 100 100 100 100 100 100	MATRIX ADJUSTED G
PERIUD 12 31 43 43 88		MATRIX
VOLUMËS FOK P 10 11 5 2 33 6 119 38 157 40	ES 11 11 12 12 12 CORPEL	CURREL
M VOLUP 5 33 119 157	4 VULUM 10 0 11 11 11 STENT	NCONSISTENT CURREL
MAXIMUM VOLUMËS FOR STA IO II 107 5 2 110 33 6 111 119 38 996 157 46	NL MUR STA 107 110 110 995 1NC UNS 1	INCONSI

PAGE 4

0TAL 107 111 207 207	11 1 195 195 817 288 288	TUTAL 92C 2469 3003 2703 1269	AV MO 12 173 228	2
	F		54-80 724 16255 16255	54-MO 648 2427 2427 9506 12648
000000	, o n o n o - -	9994 9999 9999 9999 9999 9999 9999 999	6MQ 192 731 2691 3545	6-MO 6 31 149 207
20 ml ml ml ml ml m l	9045694 1045694	32 109 109 22	68284 642 645 645 645 645 645 645 645 645 645 645	007798 1
でまろうま	125-L07 122-L07 122-L07 9	2 5 5 5 5 7 7 7 7 7 7 7 7	96 10 96 10 96 10	
୦ ୦ ୦ ୦ ୦ ୩	6 36 226 228 228 50	6 237 836 741 781 308	8 8 2455 2455	с 17 4 m 8 7 17
		20 69 69 69 69 69 69 69 69 69 69 69 69 69	1 5 5 7 7 5 8 7 2 8 7	46 19 19 19 19 19
6211 - 1 8 4 1 2 2 1 - 1 8 4 1 2 2 1 - 1 - 1 8 4	1000 1000 1000 1000 1000 1000 1000 100	124 190 290 213 213	6 9 228 336 1046	6 36 237 237 237
5 6 6 6 N	40000W	287 132 163 163 109	FL045 15 184 693 895	0.04 50 m 5 70 6 50 m 5 70 6 70 m 5 70 6 70 m 5 70 m 7 70 m 700 m 7000 m 700000000
18452 28452 28452	12 15 14 14 14 14	40 120 0 40 120 0 40 120 0	SYNTHET IC 4 31 103 295 424	4 8 124 160
6699 3692	1 m 0 C m 1 1 m 0 C m 4	1000 1000 1910 1910	4RS DF 3 644 287 447	28 25 60 113
11 6 9 4 6 7	N 9 9 9 9 8	12 28 28 13 46 13	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	401 112 740 117
1 (3 N 13 N N		11 221 144 19 19	0 1 0F 1 2 2 4 9 1 0 0 1 7 8	2 1 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2
			3 PEKIUD 12 11 9 34 54	1991 1
0- <i>(</i>)	0 F W W & Ø	5999960 2999960	JMES FUR 11 2 2 8 36 36	MES 11 2 144 20 20
ア 日 よしこうから	Υ П В В В В В В В В В В В В В В В В В В	▼ E K = 2 ろ 4 ら		UM VOLUMES 10 13 13 16
STA 107 107 107 107 107	57A 110 110 110	4 9	MAXIMUM STA 107 110 111 996	MINIMUM Sta 107 111 111 996

GENERATED FLUMS FOR PERIUD I

PAGE 5 EXHIBIT 4

	07AL 174 473 185 145 280	01AL 655 374 404 829	1 AL 364 37	AV MO 21 46 189 256	AV MO
	013110	H D 2 0 0 4 4 8	T0TAL 2680 2134 1581 1587 3274	54-MU 1254 2767 11121 15054	54-MD 1150 2216 8936 12386
	0-0000	11000011 1100001	0 8 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6-M0 454 748 2987 3908	6-НО 8 163 223
	10 m m m m m	26 1 60 26 1 60 26 1 60	218 218 50 50 199	1-M0 160 197 784 990	1-M0 0 2 2 1 1
	7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	722 322 146 146	7 4 4 3 8 1 1 9 8 1 1 6 4 1 7 4 6 7 5	8 1 1 3 8 8 8 8 1 8	00400 90
	のてられるは	6 151 90 63 55 197	6 641 470 336 337	8 27 218 246	v v v v v v v
		125 1126 1146 1146 169	542 542 508 308 672	4 0 J 4 4 3 J 4 4 5 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	7 1 12 104 118
	ちょううちょう しょうしょう	113 66 71 122	325 189 243 373 373	6 197 784 990	6 337 397 397
	L 5 6 7 7 8 D 1 5 6 7 7 8	1 1 4 2 4 4 2 4 4 2 3 4 4 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	292 146 149 211 284	801	11 11 11 11 11 11 11 11 11 11 11 11 11
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	225 218 218	6 4 8 8 6 7 8 6 2 8 8 6	SYNTHETIC SYNTHETIC 34 34 373 373 528 528	4 20 66 189 275
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19 28 19 19 21 21 21 21 21	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RS UF 111 200 290 485 485	3 51 42 146
		12 33 13 13 12	12 9 9 25 39	5 7 6 2 3 5 2 1 4 5 1 4 5	2 16 18 57 57
2	1 1 4 1 4 1 4 1 2 3 3 8 2 3 3 8 2 3 8 8 2 3 8 8 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2			2 UF 1 160 160 28 289 289	94 95 F
PE41JD	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ц ц (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	11 48 11 23 23 23	PčŘIUD 12 33 92 270 270	12 9 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
45 FUR	COV044		10 207 17 23	F0R 11 24 59 59	17873
GENERATED FLOAS	Y EAR 6 8 1 C	YEAR 6 8 10 10	Y EAR 6 7 8 10	VOLUME 1C 9 64 237 280 VOLUME	01 ⁶ 7 0
GENERI	STA 167 107 167 107 107	514 110 110 110 110	57A 111 111 111 111 111	MAXIMUM STA 107 110 996 MINIMUM	STA 107 110 111 996

EXHIBIT 4

PAGE 6

23-X6-L2340	YUNTHLY STREAMFLOW SIMULATION - NGV 1970 MJLTI-PASS RECONSTITUTION AND GENERATION	
TEST DATA - 723-X6-L2340	STREAMFLOW SIM ASS RECONSTITUT	
	40NTHLY MJLTI-PA	

	4	A													
L Y R P J -0	54-MU	54-M 54-M 999999		6	312 .415	12		.770	.240	121 10	5.		6	312 .415 122	- 121 - 121 - 10
MTHP.J LY	6 - MU 3 02-	• •	-	ß	.000 .162	.		1.020	• 40	1.085	5		8	1 -	1.020 .400 1.685
IYRPJ -0	1-M0 121 288			2	•395 •173	•489 -	, M	• 53	ŝ	40.4	5		7	.316 .166 .489 -	
NPROJ -0	6 J C	i bum				1								7	-
IGNRL NI -0	4 1 8 3			\$.834 .192	• 348	•	1.982	.328	• 485 1 - 20	1		Q	- 710 - 228 - 348	1.982 .328 .485
NCSTY -0	7 3 216	-		in	1.177 .087	• 144	n	2.051	.208	5 ~			5	1.177 .087 .144 .15	N 1 1 0 1 1
NC OMB NT NDM -0 -0	6 11 288	9 4 6		4	-21.	-1.728 .26	'n	1,858	.190	. 77	5		4	1.321 .187 -1.728 .26	1.458 .190 .371
NSTA NCC	5 18 200	56 56	•	A)	1.862 .263	-1.073 .81	ŝ	1.758	٠	1.454	ŝ		'n	1.862 .263 -1.073	1.758 .259 1.454 .07
IPCHS -0	4 33 118	448 448	· ·			-1.653 .26	ŝ	1.290	• 164	• 20	5		2	1.410 .157 -1.653 .26	1.290 .164 .626 .20
S IPCHQ	3 121 152	9 9 4			• •	627 .39	ŝ	1.130	664.	.20	ŝ			1.403 .363 627 .39	1.130 .439 .071 .20
KG NPASS 5 2	3 9 0 9 9 0	17 13	, -	71	220	491 12	ŝ	• 949	N 6	•10	ŝ	HENTS	12	69 37 2	8 N N H
(W A N	FLUWS 1 73 49	- 0 4			••.			•	•	• •		USTN		 	• • • •
S NYRG NYMX	RECURDED FL 12 31 14	1 2 3			.108	-1.308	ũ	.715	130	.10	ŝ	TER ADJ	11	•283 •089 •1.308 •10	-715 -130 -835 -16
AL MXRCS	11 2 6 8		STICS		513	140-1	۰ ۳	.815	• • • •	101.	ŝ	STATISTICS AFTER ADJUSTME	CT.	•012 •409 •1041	.815 .444 1.211 .10
IMNTH IANAL MXRCS 10 1 155	VOLUMES 10 34	VOLUMES 10 3	FREQUENCY STATISTICS		STD DEV	INCRMT	YEARS	MEAN		INCEMT	YEARS	Y STATI.	ITEM	Mean STD DEV SKEW INCRMT	MEAN STD DEV SKEW INCRMT
IYRA I' 1904	MAXIMUM STA 107 110	MINIMUM Sta 107 11c	FREQUENC			194		110	-	-		FREQUENCY	STA	107 51	110 5T 1

PAGE 7 EXHIBIT 4

N 4 4 0 8 4 0 8 4 QW AV

٨

RAW CORRELATION COEFFICIENTS FUR MONTH 10

ALTH CURKENT MONTH 110 101 STA

°00℃°1 1.000 .998 107

"ITH PRECSUING MONTH AT ABOVE STATION

• 534 107 -4.C35 110 .905 RAW CORRELATION COEFFICIENTS FUR MUNTH 11

- 107 STA
- 1.500 .970 1.07
- WITH PRECEDING MONTH AT ABOVE STATION
 - ,980 ,481 .964 .870 1107

NOTE: Remaining months not shown.

RECURDED AND RECONSTITUTED FLUWS PASS 1

	TOTAL	148	122	203	315	213	TOTAL	375	343	1104	600	254
	¢۰	о П	0	0	7	CE	6	7	m	12	ç	n
-	30	ш Т	-4	, rul	-1	lE	80	٢	ŝ	64	16	ŝ
	••	2Ë	-4	ŝ	m	lE	7	14	18	216	65	11
	ġ.	4 FL	4	11	9	ЭE	6	70	83	288	124	36
	ŝ	11 Ë	15	18	12	17E	ŝ	141	55	200	122	55
	4	20E	14	33	32	1, 6 E	t	62	47	110	118	48
	'n	6 8 E	36	84	121	84E	ŝ	47	34	152	64	37
	2	27E	30	17	32	24E	2	13	14	23	33	19
	-1	12E	10	33	73	44E	1	4	~	49	20	13
	12	1 5	ŧ	~	31	20E	12	ŝ	'n	ŝ	14	2
	11	25	2	-	2	7 1	11	4	¢	ŕ	6	9
	10	о С	ŝ	ن	-	41	10	Ś	33	'n	٥	2
1	YEAR	1904	1 905	1 906	1 907	1 90 8	YEAR	1 904	1905	1906	1 96 7	1968
	STA	107	107	107	107	101	STA	110	110	110	110	011

ADJUSTED FREQUENCY STATISTICS

6	- 453 424 - 071	- 770 - 240 - 121 - 10
8	037 144 327	1.020 .400 1.085 .15
7	.318 .166 .436	1.536 .530 1.041 .65
¢	.707 .230 .453 .10	1.982 .328 .485 1.20
ŝ	1.167 .091 143 .15	2.051 .208 453 1.21
4	1.342 .172 .140 .26	1.858 .190 .371 .77
.n	1.870 .189 994 .31	1.758 .259 1.454 .07
2	1.408 .113 -1.182 .26	1.290 .164 .625 .25
	1.427 .365 .144 .39	1.130 .439 .172 .21
12	.788 .546 .383 .12	. 449 . 262 . 221 . 10
11	- 285 - 685 - 825 - 822	
61	.619 .412 1.145 .15	.315 .444 1.211 .10
ITEM	MEAN STO DEV SKEW INCRMT	MEAN STD DEV SKER INCRMT
STA	107 S	110 S

10
MONTH
FCR
MATRIX
ATION 1
CURKeLA
NT
CONSTSTE

11)	
107	
STA	

WITH CURRENT MUNTH

COL . I 1.000 1C7 11C

WITH PRECEDING MONTH AT ABOVE STATION

.526 .588 .481 .475 107 CONSISTENT CURRELATION MATRIX FUR MUNTH 11

WITH CURRENT MONTH 110 107 STA

.972 1.20C .972 110

WITH PRECEDING MONTH AT ABOVE STATION

.950 .881 。941 。867 107 NOTE: Remaining months not shown.

8 - 1 S	AV MO
AV	AV
54-MU 1000 2656	54-NO 894 2564
6-M0 302 1009	6-МО 6 36
1-M0 121 286	1-M0 0 3
6 7 7	9 O 19
S 4 1 8 8	0 m D
0 AND RECONSTITUTED FLOWS 5 6 7 18 11 3 200 288 216	
DNSTITL 6 11 2.88	o n o n
AND REC 5 18 200	5 4 5
08060 / 4 118	3 4 36 14 36 14 34 47 DTKMC= 1.000
0F RE(3 121 152	36 36 DTFMC
5 YEARS OF RECORDED 2 3 32 121 33 33 152 118	17 13 1 K= 2
1 (F 73 49	1 10 4 4 1=
PERIUD 12 31 14	12 1 3 Matrix
F0X 11 2 6	11 1 3 3 8 6 1
VULUMES 10 5 33	VOLUMES 10 0 3 TENT COR
MAKI MUM Sta 107 110	MINIMUM VOLUMES STA 10 11 12 1 107 0 1 1 1 10 110 3 3 3 4 INCONSISTENT CORREL MATRIX FOR I= 1

EXHIBIT 4

1

	AV MO	AV MO							
	6-МО 54-МО 3573-99999968	54-MD		6	1。52 4 。302 。939 。39	r	5	.770 .240 121 .10	1.507 .265
				30	1°953 •408 -019 1.21	۲	æ	1,020 •400 1.085 •15	1.690 .380
	1-MU 1016	1-MU		2	2.462 .449 .472 4.23	•	2	1.536 .530 1.041 .65	2.368 .441 .472 4.23
	59	6 FT							
	27C	2 & 8		Ð	2.760 .187 .892 6.13	•	¢	1.982 .328 .485 1.20	2.693 .220 .892 6.13
	1000	7 116		Ś	2.734 .115 -1.429 5.50		ŝ	2.051 .208 453 1.21	2.681 .153 -1.429 5.50
	1010 1	386 386		4	2.407 .160 .278 2.67		4	1.858 .190 .371 .77	2.372 .163 .278 2.67
·	6 42	5 360		m	2,281 213 207 2,07		5	1.758 .253 1.454 .67	2.259 .198 .208 2.07
	4 5 5	105		د ر	1.784 .182 .258 .64		2	1.291 .164 .626 .20	1.782 .158 .253 .64
	33. 33.	3 116		1	1.673 .473 -243 .69		"	1.130 .439 .071 .26	1.669 .409 243 .69
ę.,	s 101	978		12	1.335 .223 1.704 .24	TMENT S	12	.849 .262 .220 .10	1.385 .224 1.604 .24
S 110	0 ELUWS 1 146			11	1.298 .223 .622 .222 .223 .222 .222 .222	A D J US 1	11	.715 .130 835	1.334 1 .209 .620 1 .22
- C C A	0RDc 12 43	12			••••	FT ER		• • • •	
q SULIV:	111 KEC 11 38	11	57165	1 C	1.439 .403 1.117 .4117 .431 .432	STICS A	10	。815 。444 1.211 .10	1.448 .407 1.117 .43
PASS 2 STA(S) Früm Phevijus Passis	MAXIMUM VOLUMES UF RECORDED STA 10 11 12 111 119 58 43	MENIMUM VGLUMES STA 10 111 11	FREQUENCY STATISTICS	ITEM	MEAN STD DEV Skew INCRMT YEARS	FREQUENCY STATISTICS AFTER ADJUSTMENTS	ITEM	MEAN STO UEV SKEW INCRMT	MEAN STD DEV Skew Incrmt
PASS 2 STA(S)	MAXIMUM STA 111	MINI MUM STA III	FRèQUEN	STA	111	FREQUEN	STA	110 S1	111 51 1

PAGE 10

0
-
MONTH
FUR
TS
EN
С
CUEFFICI
VIION
ĒLA
CORR
3
RAW
α

- 111 110 STA
- WITH CURRENT MONTH
 - 000°1 1.000 110
- WITH PRECEDING MONTH AT ABCVE STATION
 - .573 .656 •583 •663 111

RAM CORPELATION CUEFFICIENTS FUR MONTH 11

- 111 11ú STA
- WITH CURRENT MONTH
 - •74 •700 1.000 .974 111 011
- WITH PRECEDING MONTH AT ABOVE STATION
 - 446° **.**881 111

NOTE: Remaining months not shown.

RECURDED AND RECONSTITUTED FLUMS PASS 2

9 92 92 292 292
8 65 22 22 1270 33E 33E
123 123 116 126 454 95E
431 431 386 1010 625 313E
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
212 212 287 403 180E
133 116 330 248 137E
37 31 51 52 52 E
12 12 28 146 88 47E
12 13 16 35 35 8 5 8 5 8 16
1112 123 233 233 233 233
10 119 11 34 11 34
Y E A R 1 904 1 905 1 906 1 906 1 908
STA 111 111 111 111 111 111

ADJUSTED FREQUENCY STATISTICS

PAGE 11

EXHIBIT 4

1.512 .203 .674

1.870 .399 .578 1.21

2.369 .441 .895 4.23

2.709 .198 .894 6.13

2.671 .173 -.878 5.50

2.378 .158 .811 2.67

2.254 .195 .737 2.07

1.771 .163 .615 .619

1.674 .409 -.243

1.378 .216 .089 .24

1.312 .146 .239 .22

1.458 .409 .420 .43

MEAN STD DEV Sken Incrmt

σ

ω

2

\$

ഹ

4

m

Ń

12

11

5

ITEM

STA 111

TUTAL 1686 1449 3899 2732 1234

CONSISTENT CORRELATION MATAIX FUR MUNTH 10

		WITH PRECEDING MONTH AT ABUVE STATION
NT L		MUNTH
ATTA CURRENT MONTH		PRECED ING
AT TH		HTIW
111	•996 1.000	.578 .642
110	1.050 .996	.588 .653
STA	111	110

CONSISTENT CORRELATION MATRIX FUR MONTH 11

EXHIBIT 4

110 STA

) .949 1.000 1.000 .949 111

AITH PRECEDING MONTH AT ABOVE STATION .92C .994 111

.881 .981

NOTE: Remaining months not shown.

AV MU 182	AV MO		
54-MU 10890			T07AL 229 225 225 225 204 204 210 210 510 814 814 814 814 531
			ちょうりつ りらうきょう
6-M0 3579	6-M0 196		6 4 6 10 4 6 10 10 10 10 10 10 10 10 10 10 10 10 10
1-MO 1010	11-MO		646748 111111111111111111111111111111111111
9 67	9 13		201082 20108 20008 2010000 2010000 2010000 2010000 20100000000
45 8 270	2 8 2		56411966 20166 201666 201666 201666 201666 2017 2017 2017 2017 2017 2017 2017 2017
AND RECONSTITUTED FLOWS 5 6 7 682 1010 1000 2	7		1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ONSTITU 6 1010	313		■■○星54 86204 454224 21月4224 ■■
AND REC 5 682	5 256		1115 1115 1115 1115 1115 1115 1115 111
EARS OF RECORDED / 2 3 4 1 330 403	165 165		449000 8544950 674900
5 0F RI 3 330	3 116		4211991 281174411 4211991 881174471
5 YEAR 2 101	37		100000 1000000
1 0F 1 146	12	7	98225 9966812
PERI00 12 43	12	PERIOD	
	11	S FOR F	500000 0400000 2000000
MAXIMUM VOLUMES FOR STA IC II 111 119 38	VOLUMES 10 11	GENERATED FLOWS FOR P PASS 1	マ と と と と し ろ ち ち ち ち ち ち ち ち ち ち ち ち ち
MAXIMUM Sta 111	MINI NUM STA 111	GENERAT PASS 1	STA Y 107 107 107 107 107 110 110 110 110

PAGE 12

AV MO 22 54	AV MO		1 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AV M() 218	AV MO
54-MU 13180 3180	54-MU 1156 2955		T07AL 2753 3021 3753 1524 2061	54-MG 12738	11751 11751
6-MG 352 931	6-M0 8 34		9235 9235 9235	6-MC 3558	6-M0 131
1-M0 133 267	1-M0 0 2		2 8 3 2 8 1 3 9 1 3 9 1 8 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	1-M0 1182	04-1 9
13 2 9	0 U N		4 5 5 1 1 3 8 6 1 1 3 6 6 1 1 3 6 6 1 1 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 73	۲ ۲
4 L G	3 - 1 - 8		565 757 1182 373 397	8 433	5 3
7	202		538 6938 3317 5317	7 586	135
6 11 267	\$ \$\$\$		257 257 257 257 257	6 1182	373
C FLUWS 5 19 237			1 88 302 262 239 239	C FLUWS 837	331
0F. SYNTHETIC 3 4 133 42 143 140	5 T 6 5 I 6		2 4 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SYNTHET IC 4 453	4 181
S S	81		1 103 107 40 124 127	30 CF 302	115
5 YEA 2 32 32	54 S 19			5 YEAI 84	52
101 101 401	171	ч	12 94 26 26 26 26 26 20 20 20 20 20 20 20 20 20 20 20 20 20	1 UF 1 127	* 0 *
- PERJOU 12 93 23	2 C C	PERLUD	11 29 29 29 29 29 29 29 29 29 29 29 29 29	PERIOU 12 60	12 9
104 1105 127	110	FOR	40 9 2 0 0 € 9 2 9 2 0 €	FUR. 11	11
MAXIAUM VCLUMES STA IC 107 2 110 14 MINIMUM VDLUMES		GENERATED FLUMS PASS 2	ୟ ጆ ጆ ያ ወ ላ ይ ሻ ጠ እ	1 VOLUMES 10 56	10 10
MAXIAUM Sta 107 110 Minimum	57A 107 110	GENERAT PASS 2	57A Y 111 111 111 8111 8111	MAXIMUM Sta 111 Mim	STA LLL

PAGE 13 EXHIBIT 4

			2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	MO MO			230 230	0 W
	400000	88488	AV	AV		 	AV	AV
	T07/ 173 223 150 144	107AL 322 337 337 352 306	54-MD 778 3281	54-MO 650 3149		TOTAL 1538 8124 1538 1144 1144	54-M0 13594	54-MU 12818
	ବ ଧ କ ଧ ପ ପ ପ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6-MD 208 2027	6-НО 27		であるの ですど した した	6-M0 7819	6-M0 152
	ちょう (J) m) m) m) m)	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1-MO 89 783	1-MU 2		8 60 72 2337 22 26	1-MU 29162	9 1-MO
	てこうこま	783 783 28 19	6 1 7	5 U U M		7 108 2916 182 182 72	9 100	6 4 1
	ያማወፋለጣ ተ	ን ት ት ት ት ርሳ መጣጣ ወ ርሳ	22 5 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00 M		8 392 1339 400 281 379	8 2337	8 2 7
	11411 803070	1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7 6 783	5 - 4 5		888 898 910 956 956 956 956 956 956 956 956 956 956	7 2916	72
	3094005	1 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 34 534	9 7 7 7 7		208 339 157 164	6 1339	6 2 d 1
		4 5 0 0 1 M 4 5 0 6 1 M	IC FLUWS 5 18 164	5 65 65		135 115 115 136 131	C FLOWS 5 635	316
	185224 192224 19222	14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SYNTHETIC 4 36 115	4 4 2 2 2 4 4 5 2 4 5 2 5 2 5 2 5 2 5 2 5 5 5 5		55 55 52 52 52 52 52 52 52 52 52 52 52 5	SYNTHETI 4 339	4 157
	31453391 31453392	21 18 15 30 30	ARS DF 3 89 96	4 12 M M 13		67 67 52 52 52	κS DF 3 252	3 115
	こてらこう	21-0449	9 YEA 2 2 1 8	84 V 1			5 YEAF 65	31 31
2		4	2 9 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1		8	848405 1955 1957 1957 1957 1957 1957 1957 195	2 UF 1 99	¢ 1
Pcf I UD	 	2 4 0 0 0 L	PERI00 12 7 7	4 9 1 9 T	FUK PERIOD	11 22 11 14 11 19 19 19 19 19 19 19 19 19 19 19 19	PER100 12 26	12
WS FOR	0 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	с. 9 9 6 м П 6 6 м	ES FUR 11 2 6	ЕS 11 4		н 8686 1866 1986	55 FOR 11 34	I1 11
red Flows	YEAR 6 1 9 1	х 9 г в б с Ч Ш Х	M VOLUMES 1C 2 19	M VULUMES 10 2 2	ED FLOW	YEAR 6 8 10	1 VOLJMES 10 96	1 VOLUME 10 8
GENERATED Pass 1	514 107 107 107 107	110 110 110 110 110	MAX I MUM STA 107 11 C	MINIMUÁ Sta 107 11 c	GENERATED FLOWS Pass 2	57A YI	MAXIMUM Sta 111	MINIMUM Sta 111

PAGE 14 EXHIBIT 4

		OM AQ Av	207 Av Mo						
			99999998 54-MU 2519	c	•770 •240 •121	• • • • • • • • • • • • • • • • • • •	o	.770 .240 .121	• • • • • • • • • • • • • • • • • • •
	MTHPJ LYRP		1	ā	ہ م		œ		
	LYRPJ MT	1-80 288	1-MO 1-MO 11	~	~~ ~	22 1, 955 7 2 1, 955 7 1 - 010 7 1 - 1 - 21 7 1 - 21		0 0 0 0 Dra Dra	0000 and 5 and
	A LCAGN 2		5 6 M M		د ب م م م	4 50 5446 5446 53476 73476 73	2	1.536 .530 1.041 .65	4 10
	I GNRL	2 4 3 2 4 3 2 4 3	- ~	¢	1.982 .328 1.20 1.20	2.765 187 .892 6.13	Ģ	1.982 .328 .485 1.20	2.693 .220 .892 6.13
	N NCSTV	7 216 1000	11	5	2.051 .208 .453 1.21	2.734 2.734 .115 -1.429 5.50	ŭ	2°051 °208 - 453 1°21	2.681 .153 -1.429 5.50
	NCUM8 NTND∜ -0 -0	6 288 1610		t	1.858 .190 .371 .77 5	2.407 .166 .278 2.67 2.67	4	1.858 .190 .371 .77	2.372 .163 .218 2.67
0	NSTA NC -0	200 200 682	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	لار	1.758 .259 1.454 .67 5	2°281 °213 °213 °208 2°07 4	. m	1.758 .259 1.454 .67	2.250 .198 .2.07
40 - NUV 1970	IPCHS	4 118 403	1 66 57 57	2	1。290 • 164 • 20 • 20 • 20 5	1。784 • 182 • 238 • 64 • 64	2	1.290 .164 .620 .20	1.782 .158 .258 .64
6-L23 T1CN UNS	I -0	33C 33C	34 34 116	p-1	1.130 .439 .71 .20 5	1.673 .473 -243 .69	ŗ	1.135 .439 .671 .20	1.669 .409 .243 .69
DATA - 723-X6-L AMFLOM SIMULATIG FLOW PRUJECTIONS	NYRG HYMXG NPAS	s 2 33 101	8 1 3 7	72	.849 .262 .10 55	1.335 .223 1.004 .24 .24 .24	12	.849 .262 .220 .10	1.385 1 .224 .24
TEST DATA – 723–X Streamelon Simula Fluw Prujecti		RÉCURUED FLUWS 12 14 49 43 146	12 1 3 4 13 13 13	11	•715 •130 •.835 •.16	0 1.298 1.335 0.223 0.223 0.22 1.004 0.22 0.24 0.22 0.24 0.44 0.115TMENTE		• 715 • 713 • 135 • 135	1.334 • 2354 • 220 • 22
AUNTHLY	JARC	0F 11 36 38	5 11 12	ISTICS 10	•815 •444 •211 •10 5	1.∔39 .469 1.117 .43 .43 .43 .511CS ∆F	10	.815 .444 1.211 .17	1 • 4 4 8 • 4 6 7 1 • 1 1 7 • 4 3 • 4 3
	IMNTH IANAL IG I	MAXIMUM VOLUMES STA IC 110 34 111 119	4 VOLUMES 10 11 11	FREQUENCY STATISTICS ·STA ITÉM 10	MEAN STD DEV Skew Incrat Years	111 MEAN 1.433 STD DEV 1.455 SKEW 1.111 INCRMT .43 YEARS .43	ITEM	MEAN STO DEV Skew Incrmt	MEAN STD DEV Skew Iàcrmt
	178A 1 1904	MAX I MUP Sta 110 111	MINIMUM Sta 11C 111	r REQUEN	11C S	111 S	STA	110	111 51 1

EXHIBIT 4

PAGE 15

MUNTH
FUN
CUEFFICIENTS
CUPRELATION.
R AW

C

- STA 11C 111
- 110 1 000 aug alth Cukkent MUNTH
- 11. SAR 52. MITH PRECEDING MONTH AT ABUVE STATION
 - 117 .588 .538 111 .663 .013

RAW CORRELATION COEFFICIENTS FOR MUNTH 11

EXHIBIT 4

- STA 110 111
- NITH CURRENT MUNTH
- 110 1. JCC . 974 111 .974 1. JCO
- IIC
 •881
 •944

 III
 •982
 •994
- NOTE: Remaining months not shown.

RECORDED. AND RECONSTITUTED FLOWS

101A 37 34 110 25	101A 168 168 144 273 273	•		
タ ア き こ ら ら イ	9 43 67 30E 30E	¢	.770 .240 121 .10	1.518 .262 785 .41
56953 16953	8 65 28 270 121 43E	80	1.020 .466 1.085 .15	1.892 .379 .581 1.21
21144 2118 11	7 123 116 11000 454 98E	٢	1.536 .536 1.041	2.371 .439 .908 4.23
	6 431 386 1010 625 315E	ç	1.982 .328 .485 1.20	2.709 .199 . 406
	5 590 366 563 263 279E	5	2.051 .208 453 1.21	2.678 .160 725 5.50
111 488 1110 488	4 212 165 287 403 136E	4	1.858 .190 .371 .77	2.354 .186 .399 2.67
1 1 1 1 1 1 2 2 4 1 2 2 4 1 2 2 4 1 2 2 4 1 2 2 4 1 2 2 4 2 2 2 4 2 3 2 4 1 2 3 4 1 2 3 4 1 2 1 2	1134 1134 1166 1166 1166	C	1.758 .259 1.454 .67	2.240 2.207 .741 2.07 2.07
19 1	2 37 51 68 101 59E	2	1.290 .164 .526	1.783 .158 .297 .64
809452	1 12 122 146 488 488		1.130 .439 .C71 .20	1.674 .409 239 .69
	12 13 15 43 43	12	.849 .262 .220	1.336 .224 .968 .268
1 1 1 1 1 1 1	11 14 38 12 23 25 25 71 25 71 25	11	.715 .130 835 .10	1.321 .200 .043 .22
40 F F F S	10 12 119 11 31 6 NCY STA	10	•815 •444 1•211 •10	1 °459 •409 •806 •43
Y EAK 1904 1905 1906 1906 1907 1908	YEAR 10 11 1964 12 14 1965 119 38 1906 11 12 1907 31 23 STED FREQUENCY STATISTICS	ITEM	MEAN STD DEV SKEW INCRMT	MEAN STD DËV SKEW INCRMT
1110 1110 1110 1110 1110	STA STA 111 111 111 111 111 111 111 111	STA	110	111

0141 375 343 1104 104 254 254 10741 1686 1449 3899 2733 1222

PAGE 16

CONSISTENT CORRELATION MATRIX FOR MONTH 10

- 111 110 STA
- ALTH CURRENT MONTH .995 1.00 1.000 .995 111
- WITH PRECEDING MONTH AT ABOVE STATION
 - .531 .396 •588 •652 111 111

CONSISTENT CURRELATION MATRIX FUR MUNTH 11

WITH CURRENT MONTH 111 119 STA

- .967 1.300 1.00C .967 111
- WITH PRÉCEDING MONTH AT ABOVE STATION
 - .922 .990 .881 .972 1110

NOTE: Remaining months not shown.

	AV MO. 45	183		DM AN	
	54-MU 2656	10872		2564	10214
	6-MU 1 009	3579	си 1	00 36	196
	1-M0 288	1010	1-W.	ŝ	11
	6 V I	0	6	- 1 7	13
S	×43 243 243	2	æ	ۍ م	87
TéD FLOI	2 6 7 90 288 216 4 82 1610 1000 27		7	11	0
UNSTITU	6 288 1010		9	36 315	141
AND REC	200 682		ι υ	279.2	1
ECORDED	118 403		41	136	
~	152 330		۳ م	116	
5 YEA 2	33		2 6	37	
1 01	49 146				
PERIOU 12	4 F 4 F		2 60	13	
lés For 11	38 38	ES 11	- 1 (f) -	12	
M VOLUP	119	M VOLUM	ູ່	11	
MAXIMU STA		MINI MU. STA	110	111	

T0TAL 642 1114 2215 572	T0TAL 2628 459C 8484 2267 1802	T0TAL 535 536 536 308	1014L 2294 2938 1213 2554 1422
00NW40	5 1 1 6 U 5 1 1 6 U 5 1 1 6 U	640m-4	10000000000000000000000000000000000000
138 139 139 13	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	× 0 4 1 8 8	8 69 165 205 33
138 138 138 138 138 138 138 138 138 138	2093 217 217 2093 2093 2093	85 85 12 12 12	225 433 519 87
1 2 4 4 1 5 4 5 5 9 5 9	050 050 5588 642 842	118 201 37 161 52	644 644 909 346 966
112245 21245 21245 2125 2125 2125 2125 2	4 0 8 4 4 7 0 8 0 4 7 0 8 0 0 8 0 0 8 0 7 0 8 0 0	150 145 1245 1245 1245 1245 1245 1245 1245	5 2 2 2 2 2 2 2 5 3 5 5 5 5 5 5 5 5 5 5
11 20 20 20 20 20 20 20 20 20 20 20 20 20	د 293 241 169 167	1 40 1 1 60 5 7 3 8	244 248 1338 196
5 7 0 1 4 5 5 7 0 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	52555 11357 11357 11357 11357 1357 1357 13	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	214 329 169 114
8 1 8 8 7 9 8 4 8 8 9 8 4 8 8 8 9 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ま 1 5 5 5 5 1 5 5 5 5 1 5	2282 10440 13400 13	2 52 44 44
1 99 11 79 28	26 26 213 22 38 213 22 22 22 22 22 22 22 22 22 22 22 22 22	2 33 1 2 4 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9	1 96 113 99 99
し こ こ い い い い よ よ よ は し し	1 m 3 1 4 2 2 m 4 2 2 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 4 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
よってってる	- 4 C C C C C A - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	145 145 145 145 145 145 145 145 145 145	322211 9122211
26-9-12 			28 128 102 102 102
~~~~~~~~~	STA YEAR IC 111 1909 16 111 1910 52 111 1914 29 111 1912 54 111 1913 6 111 1913 6	YEAR 1909 1910 1911 1911 1912	Y EAF 1909 1910 1911 1912 1913
57A 110 110 110 110	STA 111 111 111 111 111 111 111 111 111 1	1110 1110 1110	217 211 211 211 211 211 211 211 211 211

PAGE 18 EXHIBIT 4

GENERATED FLOWS FOR PERIOU 1

AV MO 45 204

AV MG

	13 40 13 40 13 40	2						
L A A			6	10 10 10 10 10 10 10 10 10 10 10 10 10 1	**** 8.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00	, o	N 10	STROM SAB
чрј Lү			ø	0405 50005 10005	-		0000 2800 2800	
L X Cd	0000 200-	* * *		8 8 8 8 8*3 8*4	0 0 0 0 9 4 0 9 4		8 8 8 8 8 8 8 8 8	
AYI UD AYI UD	6m9 6m	4 24	2	1 8 5 6 5 1 5 5 1 1 5 1 1 5 1 1 5 1 1 5 1 5	2,449 4449 4449 4449 4449 4449 4449 4449	~	1,050 6 5 1 6 5 1 7 6 5 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	84 84 84 84 84 84 84 84 84 84 84 84 84 8
2 2 2 2 2 2 2			ç	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	60 3 2 4	و	2012 1010 1010	<b>1</b> 000 1000
IGNRL 2	2 4 G	A N		6-0 4-1 6-0 6-0 0-71-0-10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		চ-সন্থায়ে। দুরু জন্ম আন্দু শা	<b>เ</b> จุกอุ
M NC3TY	7 216 1000	9~4 (~~) 5~5	ŝ	N 14 CN4V CN4V CN4V CN4V N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ហ	2002 2002 2007 2007 2007 2007 2007 2007	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NCOMB NTNDM -0	288 288 1010	- Mi	Ŧ	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	N N N N N N N N N N N N N N	4	1.858 190 .771	2.278 2.163 2.678 2.678
NSTA NC ~0	200 200 682	14 6 6 6 11 14	MB	* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	8 1 1 1 1 1 1 1 1 1 1 1 1 1	м	1.758 .259 1.454 1.67	2,250 ,193 2,038 2,038
1PCHS 0	1 18 18 13	2 5 5 4	N	•••• ••• ••• ••• ••• ••• ••• ••• ••• •	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ny.	1。290 。164 。626 。21	1.782 .158 .558 .64
S IPCHG	24 M 20 M 20 M	M マ ウ M コ ゴ	96	1,130 ,439 ,071 ,20	1 • 67 3 • 2 4 7 3 • 6 9 5 • 6 9 5 • 6 9		.130 .439 .071 .20	• 669 • 209 • 69
NPAS	8 M M M M M M M M M M M M M M M M M M M	ころて	ç	5 N O IN	50 60 60 60	N 13 2	r r n o	•• । গেহিহ
NYMXG 10	04 <b>5</b> 49 46	~ 3 M				DJUSTMEN 12	0 /	**** ****
01 NYRG	жесокоео FLOW 12 14 19 14 49 146 146	<u>ດ</u> ກ ຫ	11	• • 130 • • 130 • • • • • • • • • • • • • • • • • • •		2 F	115 115 1335 10 10	200 200 200 200 200 200 200 200 200 200
AL HXRCS	104 M 1440	11 22 37 10 8	10	. * * * * * * * * * * * * * * * * * * *	10459 10459 11117 144 4	STATISTICS AFTE Item 10		1 ,448 e407 1 ,117 e44
INNTH JANAL 10 10	VOLUMES 10 34 119	VOLUMES 10 11 11 12 27 STATISTIC	N DI I	HEAN HEAD OEV Skew Incant Years	484N 910 06V 346M 1N04M1 Y64K5	ITEM	REAN STD REV SKEW INCRAT	ПЕАN STD DEV Sxem Incret
1 1001 1 1001	MAXIMUM Sta 110 11:	MININUN V 57A 110 111 111 FREDUENCY	STA	11 11 11	tent tent tent tent tent tent tent tent	FREQUENCY STA		5 - 5 P/
								r i

PAGE 19

HAW CORRELATION COEFFICIENTS FOR MONTH 10

	-	
	HUNDH	
	CURRENT	
	HTIW	
38 3 5 5 6		100
110		000
STA		0.00

110 1.000 .997 111 .997 1.000

WITH PRECEDING MOWTH AT AHOVE STATION 10 548 574

4

RAW CORRELATION COEFFICIENTS FOR MONTH 11

			WITH PRECEDING MONTH AT ABOVE STATION		
			AT		
HLN			MONTH		
Ω			NG		
WITH CURRENT MONTH			PRECEDI		
WITH	2		HIIM		
9-7 7 7 7		1,000		<b>•</b> 944	9094
110	110 1.000	\$ 174		183,	580,
574	110	111		110	5 4 5 5 4 7

# NOTE: Remaining months not shown

## RECORDED AND RECONSTITUTED FLOWS

10 33 44 70 70 70 70 70 70 70 70 70 70 70 70 70	10181 1666 16666 16666 16666 1148 1148			
5 C M M J G	ፍ ኳ ቅ ፍ ካ ብ ማ ኳ ዮ ብ ዓ በ	6	2010 2010 2010 2010 2010 2010 2010 2010	
の て ら よ よ よ よ の ろ ら ろ ろ ろ ろ	6 8 6 8 7 7 0 7 7 0 7 6 7 6 8 6 8 6 8	30	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	
N-42-955-4 4-4-9-9-4 N-	ta 3	k	1 1 0 4 1 1 0 4 1 1 0 1 0 1 1 0 0 1 0 0	
4 5 5 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1001 1001 1000 1000 1000 1000 1000 100	Q.	4 4 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
1 4 1 4 4 1 7 7 0 0 4 7 7 0 0 6 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	ນພັງ ຈີນ ທີ 20 ອີດອີດ 24 ເບີ້ວ ອີດເທີ່ມ ອີ ເມື່ອ ອີດເທີ່ມ ອີ	2 A	2003 1 2003 1 2003 1 2003 1 2003 2 2000 2 2000 2 2000 2 2000 2 2000 2 2000 2 2000 2 2000 2 2000 2 20	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	187	4	1, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	
またいので しょうちゅう	យ ក ភ ១ C ១ ឆ ក ភ ៣ ១ ៣ ភ ភ ៣ ល ភ	(M	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
~~~~~~~	して ま 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ഹ		
ちょうしょう	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6-0	1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	
ለሥጫክሩሪ ተ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12	ດ ເມີດ ເມີດ ເມີດ ເມີດ ເມີດ ເມີດ ເມີດ ເມີ	
まれらょうの	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ristres 11		
C M M M G F	C U C H H H M H H H H H H H H H H H H H H H H	ENCY STAT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
YEAR 1904 1905 1906 1906 1908	1904 1904 1905 1905 1917 1918	ADJUSTED FREQUENCY STATISTICS Sta item 10 11	STD DEV SKEW SKEW INCRHT MEAN STD DEV SKEW INCRHT	
8111111 800000 7111111	* ** ** ** ** ** * ** ** ** ** Ø ** ** ** **	adjuste Sta	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		•	PAGE 20 EXE	II

PAGE 20 EXHIBIT 4

CONSISTENT CORRELATION MATRIX FOR MONTH 10

		ABOVE STATION		
		۸۳		
HLNOW		MONTH		
		9 2		
WITH CURRENT		PRECEDING MONTH AT		
HTTH		HIIM		
111	1997		e 578	.651
110	1.000		.588	•660
STA	110	4	110	111

CONSISTENT CORRELATION MATRIX FOR MONTH 11

ENT MONTH	WITH PRECEDING MONTH AT ARNVE STATTON			NOTE: Rem
WITH CURRENT MONTH	WITH PEFCE	2		
•	-1	.903	•964	
110	°964	.881	974	
57A 110	111	110	111	

OTE: Remaining months not shown

MUMIXAM	VOLUMES	5 FOR	PERIOD	1 0F	5 YEARS	UF R	ECORDED	AND REC	UTITEND	TEU FLO	E O H					
STA	10	11	12	**		m	7	ស	¢	~	Ð	¢	1-M0	6 • MD	54 - M O	AV MD
110	M	ç	14	49		152	152 118	200	288	216	ち	12	288	1009	2656	
222	119	3 B	43 146	346		330	403	682	682 1010 1000 J	1000	270	67	1010	3579	10797	2
MTNTMIN VOLINKES	VUI IIME 6	e														I
STA	10	م و مر	12	م نه	¢,	Ņ	ব	ŝ	9	~	80	6	1. m M D	6-MC	Chakn Slawn	
110	M	M	m	ব	13	3 M	47	រោ	36	11	s gri	- 141	3 P4			
111	11	21	13	12	37	116	153	216	253	11.6	28	M #1	-	196	10240	
GENERAL	GENERALIZED STATISTICS	1TIST	ICS		×											
VAD CTP PAV	DAV															

511 572 RAV 110 110 .774 111 110 .981 111 111 .789 574 AVMN SDAV MAXHO MINHO 110 1.964 .767 .300 6 11 111 2.578 1.384 .271 7 12

PAGE 21 EXHIBIT 4

CONSISTENT CORRELATION MATRIX FOR MONTH 10

WITH CURRENT MONTH 111 110 STA

_981 1,000 1 • 000 • 981 111

WITH PRECEDING MONTH AT ABOVE STATION

CONSISTENT CORRELATION MATRIX FOR HONTH 11

WITH PRECEDING MONTH AT ABOVE STATION WITH CURRENT MONTH ,981 1,000 111 110 1.000 .924 .853 STA 110 8 7 0 7 7 0 7 7 0

NOTE: Remaining months not shown

av 70 45 182	AV HO
10701 107-42	54-HO 2564 10240
1009 1009 1579	6 3 3 6 4 9 6 6 1 9 6
1-30 288 1010	
4 N A	64 M 60
88 54 10 10 10 10 10 10 10 10 10 10 10 10 10	កា សម្គាល់ សម្គាល់
AND RECONSTITUTED FLOWS 5 6 7 200 288 216 682 1010 1000 2	112
CONSTITU 6 288 1010	2 26 23 26
AND REC 2005 682	
S DF RECORDED 3 14 152 118 330 403	1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 0F 81	20 N N N N N N N N N N N N N N N N N N N
5 YEARS 33 101	a L N
107 140 146	여 다 [U
PERIOD 12 14 14 44	0 M M
708 36 38	5 ^m c
MAXINUM VOLUMES Sta 10 110 33 111 119	VOLUMES 10 11 11
MAXIMUM Sta 110 111	MINIMUM 578 110 111

PAGE 22 EXHIBIT 4

	440 470	DH
	A V 3	AV
	54°40 2691 10214	54-40 1935 7809
C C C C C C C C C C C C C C C C C C C	0H=9 797 2507	6 5 5 6 6 7 6 7 6 7 6 7 7 7 7 7 7 7 7 7
	0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 ~ 13 2 1 1
うえもえぬねす ろら うろえるのがす びらうしょう うろうえん ちょう うん うろうしん うううしょう ういうしん ひろう かうしん ていろん ひょうちょう うちん ひょう ちょう うち かい うち かい うち かい うち かい うち	\$ \$ \$ \$ \$ \$ \$	6 4 9 4
ちょう う ごうらうちょう ちょうしつ ちょう しょう うろう ひょうしつ うろう ひょうしつ うろう しょうしょう しょうしょう しょうしょう しょうしょう しょう しょう しょ	8 - 2 2 5 7	11 11 12 13
またし ししししし ここのりろくがのちのうち ちょうしょう しししし ここでんのないない ひろうしょう ちょうしょう うろう かいちょう うろう ちょう しししょう こう ちょう しょう しょう しょう しょう しょう しょう しょう しょう しょう し	573 573	5 6 A
ちょうしょうののようの そうてい ちょうしんしゅうしゅう そうしょう そうしゅうしゅう そうしゅう そうしょう そうしょう ひゅうしょう ひゅうしょう ひゅうしょう ひゅうしょう ひゅうしょう ひゅうしょう ひゅうしょう しょう しょう しょう しょう しょう しょう しょう しょう しょう	136 135	248
う うちょう ひごう しょうよう ふごこう うちょう うちょう しょうしょう しょう しょう しょう しょう しょう しょう しょう しょ	C FLOWS 392 774	5 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4442 ちちち ちちん ちちょう たちま たち ちちち ちちち ちちち ちちち ちちち ちちち ちちち ちちょう しょう しょう しょう しょう しょう しょう しょう しょう しょう し	SYNTHETI .4 211 500	4 M 9 M 9 C
	0 F 3 263 269	4 9 M
します。 します。 します。 したす。 したす。 したす。 したす。 したす。 したす。 したす。 したす。 したす。 したす。 したす。 したする したする	0 YEAR3 2 85 208	N IJ M
またし しょう そう そう そう ひつんち	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- M N
2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PER 100 12 24 50	
- D CG465766330 C37673678675 C	7122 1222 1222 1222 1222 1222 1222 1222	- 10 -
8 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VOLUMES 10 17 54	VOLUMES 10 7
Z FUERENEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	M M M M	MUM MUM
У К К Сосососососос К К Сососососососос Сананана Санананана Санананана Санананан	MAXI 871 110 110	MINI 978 110 111

ono

0

PAGE 23

0191 VON
.2340 3N - NC 1ED
TEST DATA - 723-X6-L2340 DUTHLY STREAMFLOA SIMULATION - 3 STATISTICS FURNISHED
A - 72. JA SIMU TICS FU
TEST DATA - 72 STREAMFLUA SIN STATISTICS N
TcS -Y STR S
IH TNCF

1	
PER 100	
FÜR	
FLOAS	
NERATED	

	TOTAL	427	361	154	199	230	163	264	368	117	162	TUTAI		116	258	457	588	832	341	594	498	232	341
	6	-1	0	0	0	-1	0	0	0	0	o	σ	. 1	6	6	¢	10	7	4	8	'n	m	80
	8		إستر		-	7	أنحج	7	4	I	-4	æ	,	31	ŝ	ړې	18	20	5	13	10	٥	6
	2	ð	2	'n	7	ŝ	7	~	2	2	2	2	• •	185	11	48	71	121	12	36	32	٦C	24
	¢	10	4	8	7	10	ŝ	7	6	4	Ŷ	4	,	214	45 5	125	137	267	80	126	88	46	64
	S	15	19	18	14	14	13	18	15	12	12	ŭ		224	63	145	131	191	90	126	107	73	83
	4	30	6	17	ЭС	34	18	38	27	14	24	4	-	98	ιί	48	68	96	54	129	74	41	67
	3	77	22	61	74	89	67	111	106	47	75	P	r	64	22	24	76	73	47	79	52	24	52
	7	28	44	18	24	25	34	28	25	25	25	ſ	J	20	6	17	19	22	17	29	28	14	20
	r-t	18	13	6	23	35	8	31	157	8	14	-	4	16	4	14	16	18	4	28	66	4	~
	12	237	236	19	21	15	51	25	43	0	4		77	26	28	30	10	6	8	12	13	4	ŝ
PERIUD 1	11	ŝ	ŝ	2	7	2	2	2	2				7 7	8	8	4	, v	1	ŝ	4	හ	4	ŝ
FÜR	10	\$	10	-		~	. .	-	3	امو ا	0	ç	۲C	16	26	- 7 1]	n In	4	. r	1 - T	17	. ~1	- 7
GENERATED FLOAS	YEAR	-	2	ŝ	4	ŝ	9	-	. 60	. 0	10		Y LAK	****	~	1	4	• ư	. . C	• •-		• 0*	10
GENERA			107	107	107	107	107	107	107	107	101	9		110	110	110					011	110	110

	AV MO 21 184	AV MO
T0TA 1376 1376 1376 2148 2384 1514 2555 2178 2555 2178 1501	54M0 1346 1258	54-MO 751 1712 7668
でものてかしてのできる らてたってかれの	6-MU 405 816 3681	6-MG 8 123 123
6910 10245 6910 10245 1025 1025 1025 1025 1025 1025 1025 102	1-MU 237 267 1354	6 S S 1-
1354 1354 1354 1355 201 2552 201 2552 201 2552 201 2552 201	6 10 11 12	ი ი ი ი ო
411 411 411 411	8 J E 8 9 J E 6 9 J E 6	0 4 7 1 9 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7
69659990 6965990 6965990 7979990 7979990 7979990 797990 79790 79790 79790 79790 7970 70700 70000 70000 70000 70000 700000 7000000	7 185 1354	88 88 88
211230444 841230444 8412308444 2112308444 2112308444 2112308444 2112308444	6 10 267	6 4 297 297
250 250 69 2227 1112 217 217 217 299 299	C FLOWS 5 19 224 690	1 5 63 295
25 55 56 75 75 75 75 75 75 75 75 75 75 75 75 75	SYNTHETLC 54 38 373 373	4 9 163 1
2 1 8 8 1 2 4 9 9 9 4 1 4 1 1 8 8 1 2 4 9 9 9 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	111 37 3 111 79 271	8 2 2 5 7 5 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 YEAR 2 44 103	0 0 0 0 0 1
	0 1 0F 157 151 141	0 4 m
1401010101 16010101 160140101	08 Pékl00 237 237 29	1 4 7 7
69522274760 1952255574760 195255555555555555555555555555555555555	VOLUMES FOR 10 11 8 3 26 8 114 50	VOLUMES 10 11 2 3 3 3 9 13
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	44X1MUM VOL 574 10 107 8 110 26 111 114	101 WUM 101
	MAX1 STJ 11C	MIN STI 101 111

PAGE 25 EX

TEST DATA - 723-x6-L2340 MONTHLY STREAMFLDW SIMULATION - NOV 1970 GENERALIZED STATISTICS FURNISHED 1,094 1,194 1,011 N N N 0 0 0 INCONSISTENT CORREL MATRIX ADJUSTED INCONSISTENT CORREL MATRIX ADJUSTED INCONSISTENT CORREL MATRIX ADJUSTED

RAW CORRELATION COEFFICIENTS FOR MONTH 10

		STATION		
		ABOVE		
		A T		
		MONTH AT		
5		DING		
111 MYTH CHORENY	4 4 5 4 7	1.000 WITH PRECEDING	- M	۵°
110	1,000		-567 -913	.836
101	1.000	.744	.681 .567	.570
STA	107		107	111

HAW CORRELATION COEFFICIENTS FOR MONTH 11

		STATION			
		ABOVE			
		ΑT			
111 WITH CURRENT MONTH		MITH PRECEDING MONTH	.570	633B	°913
110	.741 1.000	C ar •	.567	e16.	8 38
107	1.000		.531	,567	.570
STA	107	111	107	110	111

NOTE: Remaining months not shown

11 10	PAGE		EXHIBIT	4
GENERATED FLOWS	TA YEAR 07 1 07 2	10	107 107 107 107 107 1	
FLOWS	2 - N	i m st u	1918990	
F0R	C N -	• ••• ••• C		
PERIOD		N 77 N	ા અને અન્દ (દી અને (દી	
et se de la constante de la const	~ 0 ~ ~	0 P -	ም ነጥ ላይ የህ ላይ 4	
	181	10 0	> ₩ (1 @ 3 @ M (1 @ 3 @	
	ល ភា M កា ហ	90 U 10 0	NNN - N	
	M 13 N	11 O 1) J M J O J J	
	4 7 N N M	ው ብ ር የነ ወ) 19 19 19 19 19 19 19 19 19 19 19 19 19	
	50 J	M M A	ាម ក្រុស ហេ ហេ ក្រុស ហេ ហេ ហេ	
	o m r	යන	า ณ จา คา ณ ณ	
	b ≈ ad b 1	a ni u	ત ન્ય છે છે. છે	
	50 mi mi	0	4 Q) vel vel vel vel	
	6		4 Q 04 04 Q 04	

 ๔๐ N N อ す ช ว ► ช ว	し への ウァ ワリ ー リリマ ら	2 11	AV MO
	F 0 3 5 M 6 5 M 6 7 M 7 M M 6 7 M M 6 7 M M 6 M M 7 M M 7 M M 7 M 7	2000	54-70 513 6250 6433 6433
๛ ๚ ๚ ๛ ๚ ๛ ๚ ๛ ๚ ๛ ๛ ๚ ๛ ๚ ๛ ๚ ๛ ๚ ๛ ๚	ちょうのて ちつう さい ゆう うち	6 216 1053 4049	66∞₩() 456 168
ちっていい ちょううしょう うっしょう	ちょうち ちょう ままま	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	50 N N 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
~ 50 0 0 1 0 0 0 1 1 ~ 5 0 0 1 1 0 0 0 1 ~ 5 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	までごはこしまれます。 おりごてはほけらてて できめきのほうはらいこつ	し り つ う つ う う う う う う う う う う う う う う う う	e o M O M
0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ます。 ろう うち	む ~ ~ い す 〇 が	ອວ <u>ນ</u> N
M 4 M 4 M M 4 M 4 8 4 0 8 6 6 M 8 8 M 9 9 4 0 8 6 6 M 8 8 M 7 9 4 0 9 M 8 8 M 7 9 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9000000 9000000 90000000 9000000000000	1 2 2 4 1 0 8	10 10
	またしまでで、 15 をままの 15 をままの 15 でまま 15 でまま 15 でまま 15 でまま 15 でまま 15 でまま 15 できま 15 でき 15 で 15 でき 15 でき 15 15 15 でき 15 15 15 15 15 15 15 15 15 15	100 100 100 100 100 100 100 100 100 100	180 180
ちゃやて 0 ぎ 2 くり 2 う ちゃく 5 ざ ごう 5 う	うま こくますま ひかう しょう こうま こう しょう こう しょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ	IC FLOWS 37 411 1462	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 N N M M N F 3 - N N O M O F 6 N N O M F N O M O F 6 N N O M F S - N N M M N F 3 - N	2 44 04 4 0 44 0 4 0 44 0 4 0 44 0 4 0 4	SYNTHET 3 90 2 208 2 208 1 633	8 1 1 2 2 8 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 8 7
1979年まで多 2019年まである。 まりまするようなものもこので	ま りは らら の こ ら う ら う ら う ら う ら う ら う ら う ら う ら う ら	22 27 27 21 21 22 22 22 22 22 22 22 22 22 22 22	0 0 5 5 M
うちちらう ちつうりごう う こう うちょう うち うちょう	まりちょう うちょう うちょう うちょう うちょう うちょう うちょう うちょう	0F 10 Y 1 48 344 7 105 21	مر الا مر الم ال
- N	- O C C I D O M C G D D - O C S M M C + M + N	558100 258 958 958 958 958 958 958 958 958 958 9	ស្រស ក្រ
まま ま ま ひゅざひらのですぶらごら	まちまですめるようここですみんまちん	153 1108 111 211 90 90 90	5
> < A A J J J J J J J J J J J J J J J J J J	ド スージョットののつ スージョットののつ		000 M 4
821 11 11 10 11 10 10 10 10 10 10 10 10 10	द लगलन न न न न न न न - ज न न न न न न न न न () न न न न न न न न न न न	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	110 1110

PAGE 27 EXHIBIT 4

DEFINITIONS - 723-X6-L2340

ACL	Alienstien eenfleining fan statien 1
	- Alienation coefficient for station 1
AC2	- Alienation coefficient for station 2
AC3	- Alienation coefficient for station 3
ADJ	- Plus sign indicates value smaller than upstream sum by
	tandem test
ADJI	- Equal sign indicates value adjusted by tandem test
ALCFT(I,K)	- Alienation coefficient array
ALOG	- Computer library function of natural logarithm
ANLCG	- Number of logarithms
ANYRS	- Number of years of record
AV(I,K)	- Mean logarithm
AVG(I,K)	- Average of the generated deviates
AVGQ(I)	- Average monthly flow for a station
AVMN(I)	- Average logarithm of flow for minimum 3 consecutive months
AVMX(I)	- Average logarithm of flow for maximum 3 consecutive months
B(L)	- Beta coefficient
BETA(I,K,L)	- Beta coefficient for generation equation
BLANK	- Blank space
CROUT	-
CSTAC(KX,K)	 Program subroutine to solve simultaneous equations Coefficient by which flows are multiplied before adding in
COTAC (NA, A)	
DADC	a combination
DABS	- Computer library function of absolute value of double precision number
DO(T, T)	
DQ(I,K)	- Increment of flow
DTRMC	- Determination coefficient
E	- Letter E indicates estimated value
FAC	- Temporary factor
I	- Index for calendar month
IA	- Indicator in column 1 of first card for each job
IANAL	- Indicator, positive value calls for analysis
IENDF	- End of file indicator
IGNRL	- Indicator, + 2 calls for computing generalized statistics
	and + 1 or + 2 calls for using generalized statistics for
	generating flows
IMN(I)	- Month sequence number of last month of 3 driest consecutive
	months
IMNTH	- Calendar month number for first month of water year
IMX(I)	- Month sequence number of last month of 3 wettest consecutive
	months
INDC	- Transfer indicator
IP	- Month number for preceding month
IPASS	- Sequence number of pass (subset of stations)
IPCHQ	- Indicator, positive value calls for writing discharges on tape
IPCHS	- Indicator, positive value calls for punching statistics
	- Fixed-point conversion of flow values
IQ(I)	- LIVER-DOTHE CONVELDION OF ITOM AGTNED

IQTAP	- Tape number for storing flows
IRCON	- Indicator, positive value calls for flow reconstitution
ISKZ	- Positive value calls for varying flow increment (DQ) to
	make skew zero.
IST(K,L)	- Sequence number of upstream station for tandem test
ISTA(K)	- Station number
ISTAC(KX,K)	
ISTAN	- Station number in a combination
ISTAP	- Temporary station number
	- Station sequence number for all passes
ISTAT	- Tape number for storing statistics
ISTN(L)	- Station number of downstream tandem station
ISTT(K,L)	- Station number of upstream tandem station
ISTX(L)	- Station number of independent station for consistences test
ISTY(L)	- Station number of dependent station for consistences test
ITEMP	- Temporary variable
ITMP	- Temporary variable
ITMPP	- Temporary variable
ITP	- Temporary variable
ITRNS	- Transfer indicator
IX	- Temporary variation of I
IXX	- Argument for random number function
IYR	- Number of current year
IYRA	- First year of data
IYRPJ	- Year of start of flow projection
J	- Index for year
JA	- Sequence number of projection year
JTMP(L)	- Matrix column number
JTP	- Matrix column number
JX	- Temporary variation of J
JXTMP	- Temporary variation of J
K	- Index for station
КM	- Dimension limit for number of consecutive months
KPASS	- Dimension limit for number of passes
KSTA	- Dimension limit for total number of stations
KSTAC(KX,K)	- Index number of station in a combination
KSTAP	- Dimension limit for total number of stations
KX	- Temporary variation of K or combination sequence
KYR	- Dimension limit for number of consecutive years
L	- Index for related station
LA	- Temporary variation of L
LQTAP	- Number of records up to present position on tape IQTAP
LSTAT	- Number of records up to present position on tape 10TAP
LTMP(L)	- Number of records up to present position on tape ISTAT - Matrix row number
LTP	- Matrix row number
LTRA	- Letter A
LINA	
LYRPJ	- Temporary variation of L
M	- Last year of each projection
MA	- Serial number of month
1.123	- Sequence number of month of projected flow

<i>(</i>)	
MO(I)	- Calendar month number
MPASS	- Temporary counter for number of passes
MTHPJ	- Calendar month of start of each projection
MXRCS	- Number of years in each period for which maximum and minimum
	recorded and reconstituted flows are desired
Ν	- Serial number of period of flows
NC	- Counter to prevent continuous looping
NCA	- Counter to prevent continuous looping
NCAB(I,K,L)	- Number of values and cross products used to compute correlation
(LeAet) CAUN	
MOD	coefficients
NCB	- Transfer indicator
NCOMB	- Number of combinations of stations max. and min. quantities
	are to be computed
NCSTY	- Number of consistency tests
NINDP	- Number of independent variables in regression study
NJ	- Number of years in computation sequence
NLOG(I,K)	- Number of logarithms used to compute frequency statistics
NMNMX	- Number of months following dry season and preceding wet season
NMXMN	- Number of months following wet season and preceding dry season
NPASS	- Total number of passes in job
NPROJ	- Number of projections of future flows from present conditions
NQ	- Counter for number of flows
NQTAP	- Total number of records saved on tape IQTAP
NSMX(L)	- Number of upstream stations in tandem test
NSTA	- Number of stations in analysis
NSTAA	- NSTA + 1
NSTAC(KX)	- Number of stations in a combination
	- Total number of records saved on tape ISTAT
NSTAT	-
NSTAX	- NSTA + NSTA
NSTNP(I)	- Number of stations in a particular pass
NSTX	- Number of stations in current pass that occurred in preceding
	pesses
NSTXX	- NSTX $+$ 1
NSUM(K)	- Number of stations upstream from a station for tandem test
NTNDM	- Number of tandem tests
NVAR	- Total number of variable in regression study
NYMXG	- Number of years of generated flows in each period for which
	maximum and minimum flows are desired
NYRG	- Total number of years of generated flows
NYRS	- Number of years of recorded flows
Q(M,K)	- Monthly flow
QM(I)	- Monthly flow
QMIN(I,K)	- Minimum flow
QPREV(I)	- Flow for previous month
QR(M,K)	- Identification symbol
QSTAP(I)	- Temporary storage of QPREV
R(K,L)	- Correlation coefficient in a given matrix
RA(I,K,L)	- Correlation coefficient
	- Average correlation coefficient for 12 calendar months
RAV(K,L)	- AACLARC COLLETROTON COLLECTON TOL TE CATCINGE MONOND

RMAX RMIN	- Maximum consistent correlation coefficient - Minimum consistent correlation coefficient
RNGEN(IXX)	- Program random number function
Rl	- Correlation coefficient being tested
R2	- Correlation coefficient being tested
R3	- Correlation coefficient being tested
SD(I,K)	- Standard devaition of logarithms for calendar month
SDAV(K)	- Average standard deviation for 12 consecutive months
SDV(I,K)	- Standard deviation of the generated deviates
SKEW(I,K)	- Skew coefficient of logarithms for calendar month
SMQ(J,K)	- Maximum or minimum flow for month or duration
SQA(I,K,L)	- Sum of squares of first variable
SQB(I,K,L)	- Sum of squares of second variable
SUM	- Average correlation coefficient of matrix
SUMA(I,K,L)	- Sum of first variable
SUMB(I,K,L)	- Sum of second variable
Т	- Large positive constant
TEMP	- Temporary variable
TMP	- Temporary variable
TMPA	- Temporary variable
TMPB	- Temporary variable
TMPP	- Temporary variable
TP	- Temporary variable
$\mathbf{X}(\mathbf{I})$	- Value of independent variable in regression equation
\mathbf{X} INCR(I)	- Iteration value for flow increment
XPAB(I,K,L)	- Sum of cross products of first and second variables

C 723-¥6-L2340 MONTHLY STREAMFLOW SIMULATION HEC, C OF E, USA NOV CA * * * * * LIBPARY FUNCTIONS ALOG, DAHS * * * * * * * * * * C PROGRAM SUBPOUTINE CROUT, RNGEN SEE COMMENTS IN RNGEN C INDEXES I=CALENDAR MONTH J=YEAR K=STA L=RELATED STA H=SUCCESSIVE MON C DIMENSION ,B(10),R(10,11), .ALCFT(12,10),AV(12,10),AVG(12,10),AVGG(10),AVMN(10),AVMX(10);	* 1002 1003
<pre>,BETA(12,10,10),DQ(12,10),IMN(10),IMX(10),IQ(15), .ISTA(10),JTMP(9),LTMP(10),FO(12),NCAB(12,10,20), .NLOG(12,10),D(1201,10),GM(12),CMIN(12,10),GPREV(10),GR(1201,10), .QRTAP(100),RA(12,10,20),KAV(10,10),3D(12,10),SDAV(10),SDV(12,10) .SKEW(12,10),SMG(30,10),3GA(12,10,20),SGR(12,12,20),SUMA(12,10,20) .SIMP(12,10,20),X(10),XINCR(12),XPAG(12,10,20), .CRTAC(2,10,5),ISTAC(2,10,JISTN(10),ISTT(10,10),ISTX(10), .ISTY(10),KSTAC(2,10,5),NSNX(10),NSTAC(2,5),NSTNP(5), .NSUM(10,5),MCOMB(5),MTNCM(5),IST(10,10,5) DOUBLE PRECISION R,B</pre>	1016
CONHON DTRMC,NINDP,B DATA LTRA/1HA/,BLANK/1H /,E/1HE/,ADJ/1H+/,ADJ1/1H#/ 10 FORMAT(1H1) 20 FORMAT(1X,I5,1916) 30 FORMAT(1X,I7,918) 40 FORMAT(1X,A3,9A4,10A4) 50 FORMAT(1X,I3,I4,12F6.0) 60 FORMAT(1X,F7.0,9F8.0) 70 FORMAT(1X,I3,I4,12F6.3)	1017 1018 1019 1020000 1021 1023 1023 1024 1025
80 FORMAT (1X,17,12F6,3) 90 FORMAT (1X,17,12F6,1) 100 FORMAT (1X,14,16,1218,110) 110 FORMAT (A1,A3,944,10A4) 120 FORMAT (A1,A3,944,10A4) 130 FORMAT (A23H GENERALIZED STATISTICS//13H ST1 ST2 RAV) 130 FORMAT (/23H GENERALIZED STATISTICS//13H ST1 ST2 RAV) 140 FORMAT (/23H GENERALIZED STATISTICS//13H ST1 ST2 RAV) 140 FORMAT (/36H STA AVMX AVMN SDAV MAXMU HINMU) 157AT=8 107AP=9 KPAS5=5	1026 1027 1028 1029 1030000 1031 1032 1034 1035
KSTAP=100 KSTA=10 KYR=100 KM=KYR±12+1 NSTA=0 C WASTE CARDS UNTIL AN A IN COLUMN 1, FIRST TITLE CARD C HASTE CARDS UNTIL AN A IN COLUMN 1, FIRST TITLE CARD A# CARD A ## 150 READ(5,110) IA,(SMG(M,1),M=1,20) IF (IA.NE.LTRA) GO TO 150	1045
WRITE(6,10) READ(5,40)((SHQ(H,K), M=1,20), K=2,3) WRITE(6,40)((SHQ(H,K), N=1,20), K=1,3) C READ(5,30)IYRA, IHNTH, IANAL, HXRCS, NYRG, NYMXG, NPASS, IPCHQ, IPCHS, NS1 1, NCOMB, NTNDM, NCSTY, IGNRL, NPROJ, IYRPJ, MTHPJ, LYRPJ C TERMINATE WITH 5 PLANK CARDS, AN A IN COL 1 OF FIRST ITHP=IANAL+NYRG IF(ITMP.GT.0)GQ TO 180	
STOP 160 WRITE (6,170) NYKS,NSTA,NCOMB,IPASS 170 FORMAT (/19H DIMENGION EXCEEDED ,5%, GHNVRS,14,5%, GHNSTA,13,5%, 15HNCOMB,I3,5%, 5HIPASS,13) GO TO 150 180 WRITE(6,190) 190 FORMAT(/108H IYRA IMNTH IANAL MXPCS NYRG NYM%G NPASS IPCHQ IPCH 1 NSTA NCOHB NTNDH NCSYY IGNPL NPROJ IYRPJ MTHPJ LYRPJ) HRITE(6,20) IYRA,IMNTH,IANAL,M%RCS,NYRG,NYM%G,NPASS,IPCHQ,IPCHS, 1NSTA,NCOHB,NTNDH,NCSYY,IGNRL,NPROJ,IYRPJ,HTHPJ,LYRPJ	1060 1061000 1062000 1063 1064
IF (LYRPJ=IYRA_GE_KYR) GD TO 150	1069 * 1070 1071 1072 1073 1074 1075

		IMN7H#IHNTH#1 NSTX=0 NSTXX=1	1075 1077 1078
		IPASSE1 Rewind Istat	1079
		NSTATEO	1080 1081
		LSTAT=0	1082
		REWIND IGTAP	1083
			1084
		LOTAP=0 Do 195 J=1,KpA38	1085
		ACDW8(1)=0	
		HTNDH (J)=0	
	19	5 CONTINUE	
í	*	GO TO 270	1086
1		SAVE STATIONS FROM PREVIOUS PASSES IF NECESSARY C IPASS=1PASS+1	1087 1088
	-	HRITE(6,10)	1089
	_	IF (IPASS.GT.KPASS) GO TO 160	1090
0	5	SEAD (5 30) YOON NOTE YOUR CONTACT OF	1091
		READ (5,30) NCOMB, NTNOM, NCSTY, NSTX, (ISTA(K), K=1, NSTX) WRITE (6,210) IPASS, (ISTA(K), K=1, NSTX)	1093
	21	GRMAT(SHOPASS , 13/28H STA(3) FROM PREVIOUS PASSES , 1016)	1094
		NSTXX=NSTX+1	1095
		REWIND IGTAP	1096
		L0148=0 Relation 19717	1097
		REWIND ISTAT Mpass=1	1098
		READ (ISTAT)	1099 1100
		LSTATEL	1101
		ITP=NYRS+12+1	1102
		ITEMPENSTNP(NPASS) ITMPP=0	1103
		D0 250 K=1,NSTX	1104 1105
	220	READ (107AP) ITMP, (0(M,K), M=1, ITP)	1105
		LOTAP=LOTAP+1	1107
	- 74	IF (ISTA(K), NE, ITMP) GO TO 220	11០ខ្
	200	IF(ITMPP=GT.ITEMP) GO TO 240	1109
		READ (ISTAT) ITHP, (AV(I,K), SD(I,K), SKEW(I,K), DO(I,K), (BETA(I,K,L),L	1111
		1=1, [TEMP], ALCFT(I,K), I=1, 12)	1112
		LSTATELSTAT+1	1113
		IF (ITHP.EG.ISTA(K)) GO TO 250 Gn To 230	1114
	240	READ(ISTAT)	1115
		LSTAT=LSTAT+1	1117
		HPA33=MPA33+1	1118
		ITEMP=N9TNP(HPASS) ITMPP=0	1119
		G0 T0 230	1120 1121
	250	CONTINUE	1122
		DD 26C X=1,NSTX	1123
	_	NSUM(K, 1FA3S)=0	
	260	QU 260 I=1,12 NLUG(I,K)=NVRS	1125
		IF (IANAL_GT.O) NSTACHETY	1126 1127
		Dn 280 1=1,12	1128
		HO(J)=IHNTH+I	1129
		IF(MO(I).LT.13)GO TO 280 HO(I)=HC(I)=12	1130
	280	CONTINUE	1131
	5 W	IF(NCONR.LE.O) GO TO 320	1132 1133
		HCCMB(IPASS)=NCONB	
C		IDENTIFY STATION COMBINATIONS	1134
С			1135
ų			1136 1137
		WRITE (6,290) K, ITP, (ISTAC(K,L),L=1, ITP)	1138
	290	FORMAT (/SH COMB,I2,SH STA,1518)	1139000
С		NSTAC(X, IPASS) = ITP	
U.		READ (5,60) TEMP, (CSTAC (K,L, IPASS), L=1, ITP) ** CARD E **	1141

	310	WHITE(5,310) (CSTAC(K,L,IPASO),L=1,ITP) FORMAT (7X,5HRATID,BX,14F8,3) TF(NTNDM,LE.O) GO TO 350 MTNDH(IPASS)=HTNDM					1144000 1145 1146
с	340	DO 340 LX=1,NTNDH READ(5,30) ISTN(LX),ITHP,(ISTT(LX,L),L=1,ITHP) WRITE(6,330) LX,ISTN(LX),(ISTT(LX,L),L=1,ITHP) FORMAT (/13H TANDEM GROUP,I3.6X,14H00HNSTREAM STA,I5, IISHUPSTRFA4 STA(S),10IS) NSHX(LX)=ITHP IF(IPASS,E3,1)NYRS=0 DO 360 K=NSTXX,XSTA NSUM(K,IPAS3)=0		CAHD	4		
C	360	ISTA(K)=1000-K INITIATE =1, NO RECORD FOR ALL FLOWS DO 360 M=1,KM 9(M,K)==1. DO 370 I=1,12 NLCG(I,K)=0 DO(I,K)=0.					1156 1157 1158 1159 1160 1161 1162
		MMIN(I,K)=T CONTINUE CONTINUE 1F(NCSTY_LE.0) GD TO 420 WRITE(6,390)					1163 1164 - 1165 1165 1166
		FORHAT (/30x, 8HSTATIONS/17H CONSISTENCY TEST, 5X, 23HING DENDENT) D0 400 L=1, NCSTY		CARD			1168 1169 1170 1171
	410	READ (5,30) ISTX(L),ISTY(L) HRITE(6,410) L,ISTX(L),ISTY(L) FORMAT(13X,I3,8X,I5,8X,I5) IF(IANAL_LE_0)G0 TO 1570 * * * * READ AND PROCESS 1 STATION=YEAR OF DATA * *	÷ *		Ŕ	* *	1172 1173 1174 1175 1176
Ċ		READ(5,50) ISTAN, IYR, (QK(I), I=1, 12)	**	CARD	н	**	1177 1178
c c	-	BLANK CARD INDICATES END OF FLOW DATA IF (ISTAN_LT.1)GO TO SCO IF (NSTA_LT.1)GO TO 450 ASSIGN SUBSCRIPT TO STATION DO 440 KENSTXX,NSTA IF (ISTAN_EQ.ISTA(K))GO TO 460 CONTINUE NSTAENSTA+1 IF (NSTA.GT.KSTA) GD TO 160 K=NSTA ISTA(K)=ISTAN ASSIGN SUBSCRIPT TO YEAR	**	CARD	I		1179 1180 1181 1182 1183 1184 1185 1186 1187 1187 1187 1187 1188 1189 1190
C		J=IYR+IYRA IF(NYRS_LT_J_AND_IPA53.FG.1)NYRS#J IF(J_GT_O_AND_J_LE_NYRS) GO TO 460 WRITE (6.470)IYR					1/191 1192 1193 1194 1195000
C		FORMAT (/16H UNACCEPTABLE YEAR, I5) GO TO 150 STORE FLOWS IN STATION AND MONTH ARRAY M=J+12-11 DO 490 I=1,12					1196 1197 1198 1199
	•	N=M+1 IF(GH(I)_LE_(=1.)) GO TO 490 IF(GH(I)_UT_OMIN(I,K)) GHIN(I,K)=GH(I) NLOG(I,K)=NLOG(I,K)+1 DQ(I,K)=DP(I,K)+OH(I) G(H,K)=OP(I) CONTINUE GO TO 430 NSTAA=NATA+1 IF (NYRS_GT_KYB+DR.NSTA+NCOHB.GT.KSTA) GO TO 160 IF(NSTA.LE.0) GD TO 160 NSTNP(IPASS)=NSTA					1200 1201 1202 1203 1204 1205 1206 1206 1207 1208 1209 1210 1211 1212
		NSTAX=N97A+NSTA					

	,	
_	IF (NCOMB, LE. 0)GD TO 540	1213
C	IDENTIFY STA SUBSCRIPTS FOR STAS IN COMBINATIONS Dn 530 Kx=1,NCONB	1214
	ITP=NSTAC(KX, IPASS)	1215
		1217
	Dn 520 L=1, ITP	1218
	ITEMP=ISTAC(KX,L)	1219
	DO 510 K=1,NSTA	1220
	IF(ISTA(K).NE.ITEMP)GO TO 510	1221
		1555
	KSTAC(KX,LX,IPASS)=K Gn to 520	
510	CONTINUE	1224 1225
	CONTINUE	1225
C	REDUCE STATIONS TO THOSE IDENTIFIABLE	1227
-	NSTAC (KX, IPASS)=LX	•~
530	CONTINUE	1229
¢	IDENTIFY STATIONS IN TANDEM	1230
540	IF(NTNDH_LE.O) GD TO 600	1231
	DO 590 LX=1,NTNOM Do 550 K=1,NSTA	1232
	IF(ISTA(K).EQ.ISTN(LX)) GQ TO 560	1233
550	CONTINUE	1235
	ISTN(LX)=K	1236
	NSUM(K, IPASS)=NSHX(LX)	
	ITHP=NSHX(LX)	1238
	DD 580 L=1,ITMP	1239
	DO 570 KXF1,NSTA	1240
27 A	IF(ISTA(KX)+E9+ISTT(LX+L)) GO TO 580 Continue	1241 1242
	IST (K.L. IPASS)=XX	1545
	CONTINUE	1244
c	IDENTIFY PAIRS OF STATIONS FOR CONSISTENCY TESTS	1245
600	IF(NCSTY.LE.0) GO TO 630	1246
	DD 640 L=1,NCSTY	1247
	Dn 630 K=1,NSTA	1248
	IF(ISTA(K)_E0_ISTX(L)) GO TO 610	1249
	IF(ISTA(K)_EQ.ISTY(L)) GO TO 620	1250 1251
610	157X(L)=K	1525
	GO TO 630	1253
520	ISTY(L)=K	1254
630	CONTINUE	1255
	CONTINUE	1256
	ITHPANSTA+NCOMB	1257
C 4	* * * * HAX AND MIN RECORDED VOLUMES * * * * * * * * * * * * * * * * * * *	* * 1258 1259
U	Dn 790 K=NSTXX,ITMP	1260
		1261
	Ng=0	1262
	Dn 660 I=1,15	1263
660	5Hg(I,K)=+T	1264
	Dn 670 J=16,30	1265
5/0	SHQ(I,K)=T	1266
	TABARO.	1267 1268
		1269
	N=0	1270
	Dn 780 J=1, NVR8	1271
	Dn 770 1=1,12	1272
	Hading and the second sec	1273
	N=N+1 IF(K_LE_NSTA)GO TO 700	1274 1275
С	COMPUTE COMBINED FLOMS	1276
~	KX=K=NSTA	1277
	ITP=NSTAC(KX, IPASS)	
	9(H.K)=0.	1279
	D0 690 L=1,ITP	1280
•	ITEMPSKSTAC(KX,L, IPASS)	1323
C	COMBINED FLOW MISSING IF (D(M,ITEMP).EQ.=1.0R.0(M,K).E0.=1.) GO TO 680	1282 1283
	G/H_K)=G(N_K)+G(H,ITEMP)+CSTAC(KX,L,IFASS)	<u>A</u> 3 ₂₀ ↔ 44 ⁶
	in de la servició de la servició na servició na servició de la dela servició de la servició de la servició de l La servició de la servició na servició na servició na servició de la servició de la servició de la servició de l	

		GO TO 690	1285
	680		1285
	690	UDAT INDE	1287
	700	TE(D(N.K)_NE_=1.) 60 TO 710	1248
С		START NEW ACCUMULATIONS WHEN FLOW MISSING	1289
6		N=O	1290
		THP=0.	1291
		ΥΗΡΛΞΟ,	1292
		Sn to 770	1293
		ТЕмра((Н,К)	1294
-	110	1 C C C C C C C C C C C C C C C C C C C	1295
C		IF (3NG(I,K),LT,TEMP)SHQ(I,K)=TEMP	1296
		IF(SMG(I)X), IF(F))OF(I)AND(I)AFEN	1297
			1298
			1299
		The fould feature to the traine that the traine the traine	•
C		6-MONTH FLOWS	1300
		TNPSTMP+TEHP	1301
		THPASTHPASTENP	1302
		IF (N-6)760,730,720	1303
	720	THO THOSE (Had K)	1304
	730	IF (TMP_LT, SM0(29, K)) SM0(29, K) #TMP	1305
	100	IF (THP.GT.SHO(14,K)) SHO(14,K) #THP	1306
		54=MONTH FLOWS	1307
C		IF (N=54)760,750,740	1308 -
		The flyer of the floor the	1309
	740	THPARTMPA-0(M-54,K)	1310
	750	I FILMPALLI SUMM COUPAJIGHU COVINIE HUNCH	1311
		THEIWHY REFOUND TO ANY TO BE THE AND N	1312
C		HACKHOC LEAN	1313
	760	AVGD(K)=AVGD(K)+TEMP	1313
	770	CONTINUE	1315
	780	CONTINUE	1316
		**************************************	1317
		AVCOLKIZAVCOLKIZTEHP	1318
	795	CONTINUE	1319
	1.24	WRITE(6.800)	1320
		FORMAT(/34H HAXINUN VOLUMES OF RECORDED FLOWS)	1321
	800		1322
		FITE (6,810) (HO(1)) (H) (F) (C) (F) (C) (F) (C) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F	1323000
	810	FORMAL CON STATISTICAL TURG COME	1324
		ITMPENSTA+NCOMB	1325
		DO 830 KENSTXX, ITHP	1326
		ITEMPRAVGQ(K)+.5	1327
		DO 820 I=1,15	1328
	820	In(I)=SHQ(I,K)+.5	1329
	830	WEITE (6, 840) ISTA(K), (IQ(I), I=1, 15), ITEMP	1330
	840	FORMAT(1X, 14, 1217, 218, 19, 18)	1331
		NPITE(6.850)	1332
	850	FORMAT(/16H HINIKUM VOLUHES)	
		HRITE(6,810)(HO(I),I=1,12)	1333
		DN ATO KENSTXX, ITHP	1334
		Dn 860 I=1,15	1335
	94.5	In(I)=SMB(I415,K)+.5	1336
	C 3 A		
~			1337
- C	-		1337
	E *	WRITE(6,840)ISTA(K),(IG(I),I=1,IJ) *** * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * *	1337
Ť	E * 1	WRITE(6,840)ISTA(K);(IG(I);I=1;I)) * * * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * *	1337 1338
•	E * 1	WRITE(6,840)ISTA(K),(IG(I),I=1,IJ) * * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * WRITE (6,830) FORMAT (/21H FREQUENCY STATISTICS)	1337 1338 1339
•	E * : 880	WRITE(6,840)ISTA(K),(IG(I),I=1,ID) * * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * *	1337 1338 1339 1340 1341
Ū	E * : 880	<pre>WRITE(6,840)ISTA(K),(IG(I),I=1,13) * * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * *</pre>	1337 1338 1339 1340 1341 1342000
c	E * 1 880 890	WRITE(6,840)ISTA(K),(IG(I),I=I,IS) * * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * *	1337 1338 1339 1340 1341 1342000 1343
	E * 1 880 890	<pre>WRITE(6,840)ISTA(K),(IG(I),I=1,13) * * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * *</pre>	1337 1338 1339 1340 1341 1342000 1343 1344
	E * 1 820 890	WRITE(6,840)ISTA(K),(IG(I),I=I,IS) * * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * *	1337 1338 1339 1340 1341 1342000 1343 1344 1345
	E * 1 820 890	WRITE(6,840)ISTA(K),(IG(I),I=I,IS) * * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * *	1337 1338 1339 1340 1341 1342000 1343 1344 1345 1346
	E * 1 820 890	WRITE(6,840)ISTA(K),(IG(I),I=1,15) * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * WRITE (6,830) FORMAT (/21H FREQUENCY STATISTICS) WRITE(6,890)(MO(I),I=1,12) FORMAT (/14H STA ITEM,I7,1118) MISSING FLOW PRECEDING FIRST RECORD MONTH DO 900 K=HSTXX,NSTA U(1,K)=T IPCON=0	1337 1338 1339 1340 1341 1342000 1343 1344 1345 1346 1346
	E * 1 820 890	<pre>wRITE(6,840)ISTA(K),(IG(I),I=I,ID) * * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * *</pre>	1337 1338 1339 1340 1341 1342000 1343 1344 1345 1345 1346 1346100 1347000
	E * 1 820 890	<pre>wRITE(6,840)ISTA(K),(IG(I),I=I,ID) * * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * *</pre>	1337 1338 1339 1340 1341 1342000 1343 1344 1345 1346 1346 1346100 1347000 1347100
	E * 1 820 890	<pre>wRITE(6,840)ISTA(K),(IG(I),I=I,ID) * * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * *</pre>	1337 1338 1339 1340 1341 1342000 1343 1344 1345 1346 1345 1346 1347000 1347100 1347-2
	E * - 880 890 90C	<pre>wRITE(6,840)ISTA(K),(IG(I),I=I,ID) * * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * *</pre>	1337 1338 1339 1340 1341 1342000 1343 1344 1345 1346 1345 1346 1347000 1347100 1347-2 1348
	E * - 880 890 90C	<pre>wRITE(6,840)ISTA(K),(IG(I),I=I,ID) * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * *</pre>	1337 1338 1339 1340 1341 1342000 1343 1344 1345 1346 1345 1346 1347100 1347100 1347-2 1348 1349
	E * - 880 890 90C	<pre>wrITE(6,840)ISTA(K),(IG(I),I=I,ID) *** COMPUTE FREQUENCY STATISTICS ************************************</pre>	1337 1338 1339 1340 1341 1342000 1343 1344 1345 1346 1345 1346 1347000 1347100 1347=2 1348
	E * - 880 890 90C	<pre>wrITE(6,840)ISTA(K),(IG(I),I=I,ID) * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * *</pre>	1337 1338 1339 1340 1341 1342000 1343 1344 1345 1346 1345 1346 1346 1347000 1347100 1347100 1347-2 1348 1349
	E * - 880 890 90C	<pre>wrITE(6,840)ISTA(K),(IG(I),I=1,ID) * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * *</pre>	1337 1338 1339 1340 1341 1342000 1343 1344 1345 1346 1346 1346 1347100 1347100 1347100 1347-2 1348 1349 1350
	E * - 880 890 900 910	<pre>wrITE(6,840)ISTA(K),(IG(I),I=I,ID) * * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * *</pre>	1337 1338 1339 1340 1341 1342000 1343 1344 1345 1346 1346100 1347100 1347100 13477-2 1348 1349 1350 1351
	E * - 880 890 900 910	<pre>wrITE(6,840)ISTA(K),(IG(I),I=1,ID) * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * *</pre>	1337 1338 1339 1340 1341 1342000 1343 1344 1345 1346 1346 1347000 1347100 1347100 13477=2 1348 1349 1350 1351 1352

		1354
9.50	Dn 940 7m1,12	1355
	AV(I,K)=0.	1356
	SD(I,K)=0.	1357
	SKÊW(I,K)≓O.	1358
	TMPEN	1359
	XINCR(I)≈(00(I,K)+0HIN(I,K))/(16.~THP)	1360
940	CONTINUE	1361
942	8=1	1362
	Dn 970 Jei, Nyr3	1363
	Dn 960 I=1,12	1364
	N#N+1	1365
	IF(0(H,K).E01.) 60 TO 950	1366
C	REPLACE FLOW ARRAY WITH LOG ARRAY	1367
	TEHP=ALOG(Q(H+K)+DQ(I+K))/2.3025851	1368
	Q (M, K) 2TEHP	1369
	IF (K_LE_NSTX) 60 TO 960	1369=2
Ċ	SUM, SQUARES, AND CUBES	1370
	AV(T,K) = AV(I,K) + TEMP	1371
	SD((,K)=SD(I,K)+TEMP*TEMP	1372
	SKEW(I,K)=SKEW(I,K)+TEMP*TEMP*TEMP	1373
	60 70 960	1374
С	HISSING FLOWS EQUATED TO T	1375
950	G(H,K)=T	1375
	IRCON=1	1 377
960	CONTINUE	1378
	CONTINUE	1379
	IF (K.LE.NSTX) GD TO 1180	1379=2
	INDC#0	1380
	00 1000 7=1,12	1391
	TEMPENLOS(I,K)	1382
	IF(TEMP_1T_3_)GO TO 1120	1383
		1384
	AV(T,K)=THP/TEHP	1385
	IF(SD(I,K)_LE_0_)GD TO 980	1386
	THPA=9D(I,X)	1387
	SO(I,K)=(SD(1,K)-4V(I,K)*TPP)/(TEMP=1.)	1348
	TF(SD(I,K)_LE.0.) G0 TO 980	1388+2+
	50(I,K)=50(I,K)##.5	1389
	IF (SD(I,K),LT.,0005) GD TD 990	1390
	SKEW(I,K)=(TEMP*TEMP*SKEW(I,K)=3.*TEMP*TMP*TMPA72.*TMP*TMP*TMP	1391
•	/(TEMP+(TEMP+1.)+(TEMF+2.)+SD(I.K)+*3)	1392
•	IF (SKEW(I,K)_LT_(=1),0P.SKEW(I,K)_GT1) INOC=1	1393
	IF (SKEW(I,K)_GT.3.) SKEW(I,K)=3.	*****
	IF (9KEW(I_K)_LT_=3_) SKEW(I_K)==3_	
		1394
	3D(I,K)=0.	1395
	SKEW(I,K)=0.	1396
	CONTINUE	1397
		1398
	IF(N.GT.1)G0 T0 1060	1399
	WRITE(6,1010)ISTA(K), (AV(1,K), I=1,12)	1400
1010	FORMAT (/14, 15, BH HEAN, 12F8.3)	1401000
	WRITE(6,1020)(SD(I,K),I=1,12)	1402
	FORMAT (7%, 7%STD DEV, 12F8.3)	1403000
	WRITE(6,1030)(SKEW(I,X),I=1,12)	1404
	FORMAT (10%, HHSKEW, 12F8.3)	1405000
	wRITE(6,1040)(DP(I,K),I=1,12)	1405
	FORMAT (8X,6HINCRHT,F7,2,11F8,2)	1407000
	WRITE(6,1050)(NLOG(I,K),I=1,12)	1408
	FORMAT (94, 5HYEARS, 1218)	1409000
	IF(N.GE.14) GO TO 1180	1410
	IF(INDC_LE_0) GO TO 1180	1411
C	THE FOLLOWING ROUTINE WILL ADJUST THE INCREMENT TO	1412
č	TRY TO OBTAIN ZERO SKEW	1413
C	CHANGE THE FOLLOWING STAT TO ISKZ=1 TO ACTIVATE	1414
	ISK720	1415
	IF(ISKZ_LE_0) GO TO 1180	1415
	[7P#e11	1417
	1110 I=1,12	1418
	Ha[164]	1419
	DR 1080 J=1,NYRS	1420
	er e e e e en e	. T 14 14

	44U113	1421
	M##+12 IF(0(N,K).E0.T) 60 TO 1070	1422
	THEAD(MAK)	1423
	H(H,K)=10.+*THP HDO(I,K)	1424
1070	GN TH 1080 G(M,K)==1.	1425 1426
	CONTINUE	1427
-	TEMPESKEW(I,K)	1428
	IF (TEHP.RT. (-1), AND.TEHP.LT1) GO TO 1110	1429
tadá	IF(TEMP) 1090,1110,1100 Do(T,K)=DQ(T,K)=2.	1430 1431
1136	GO TO 1110	1432
1100	D((I,K)=D((I,K)+XINCR(I)	1433
1110	CONTINUE	1434
• •	GD TD 930 * * * * * DELETE STATIONS WITH LESS THAN 3 YEARS OF DATA* * * * *	1435
	NATE A DELEIC STATIONS WITH LESS THAN D TEARS OF DATAR W W R W NRITE(6:1130)ISTA(K)	1430
	FORMAT (14H STA, 16, 20H DELETED, INSUFFICIENT DATA)	1438000
	NRTA=1	1439
	NSTAA=NSTA+1	1440
	NSTAX=NSTA+NSTA IF(K.gt.NSTA)G0_T0_1180	1441 1442
С	PEDUCE SUBSCRIPTS OF SUBSEQUENT STATIONS	1443
Ģ	Dn 1170 KX=K,NSTA	1444
	ISTA(KX)=ISTA(KX+1)	1445
		1446
	Dn 1150 J=1,NYRS Dn 1140 I=1,12	1447 1448
	MaH+1 Ma 1440 1−1111	1449
1140	Q(H,KX) = Q(H,KX+1)	1450
1150	CONTINUE	1451
	DD 1160 J=1,12 GMIN(I,KX)=GMIN(I,KX+1)	1452 1453
	$\frac{1}{1} \frac{1}{1} \frac{1}$	1454
1160	$D_{0}(1,K_{X}) = D_{0}(1,K_{X}+1)$	1455
	CONTINUE	1456
	GR TR 910	1457
1160	CONTINUE Itrns=0	1458 1459
	IF(IPCON_LE.O) GD TD 1370	1460
CF* *	* * * * ADJUSTMENT OF FREQUENCY STATISTICS TO LONG TERM * * *	
	Do 1190 I=1,12	1462
	Dn 1190 K=1,NSTA Dn 1190 L=1,NSTAX	1463 1464
	NCAB(I.K.L)=0	1465
	SHHA(I,K,L)=0.	1466
	SUP9(I,K,L)=0.	1467
	SnA(I,K,L)=0.	1468
	SOB(T,K,L)=0. XPAB(T,K,L)=0.	1469 1470
	RA((,K,L)=-4,	1471
1190	CONTINUE	1472
	DO 1220 K=1,NSTA	1473
	XXXXXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1474 1475
	DD 1220 J=1,NYRS	1476
	Dn 1210 1=1,12	1477
	n=H+1	1478
	TFHP=Q(K,K)	1479
	IF(TEMP.E9.T) GO TO 1210 Do 1200 Laky.NSTAX	1480
	LX=L=NSTA	1482
	IF(LX,LT,1) THP=0(H,L)	1483
	IF(LX,GT,O) THP=O(H-1,LX)	1484
	IF(THP_E0,T) GO TO 1200 NCAB(I,K,L)=NCAB(I,K,L)+1	1485 1486
	NEAN(I, N, E) = NEAN(I, N, E) + TEMP	1487
	SUFB(I,K,L)=SUFB(I,K,L)+TFP	1488
	30A(I,K+L)=SQA(I,K+L)+TEMP+TEMP	1489
	SOB(I,K,L)=SOB(I,K,L)+TMP+TMP	1490 1491
	XPAB(I,K,L)=XPAB(I,K,L)+TEMP*THP IF(L_GT_NSTA) GO TO 1200	1492
	PLPMBARANCELS AN IM PEAR	

	NCAR(I,L,K)=NCAB(I,K,L)	1493
	SUMA(I,L,X)=SUHB(I,X,L)	1494
	SUMB(I,L,K)=SUMA(I,X,L)	1495
	S¤A(I,L,K)=S□ ^R (I,K,L) S¤E(I,L,K)=S□A(I,K,L)	1496
	XPAB(I,L,K)=XPAB(I,X,L)	1497 1498
1200	CONTINUE	1499
	CONTINUE	1500
1220	CONTINUE	1501
	INDC=0 Do 1260 k=1,NSTA	1502 1503
	KX=K+1	1503
	S1,1=1,12	1505
	RA(I,K,K)=1.	1506
	DØ 1290 L=KX,NSTAX IF(NČAB(I,K,L).LE.2) GØ TO 1290	1507
	TEHP=NCA8(I+K+L)	1508 1509
	THP=SQA(I,K,L)	1510
	TP=508(I,K,L)	1511
	THPA=SUHA(I,K,L)	1512
	TMPP=(TMP=TMPA**2/TEMP)/TEMP	1513
	IF(THPP+LT.0.) THPP=0. 304(I+K+L)=THPP#*.5	1514 1515
	THP8#SUMR(I,K,L)	1516
	THPP=(TP-THPB**2/TEMP)/TEMP	1517
	IF(THPP.LT.O.) THPP=0.	1518
	508(I,K,L)=THPP**.5	1519
	ТМР=(THP-THPA*+2/TEMP)*(TP=TMPB*+2/TEMP) IF(TMP_LE=0-) GD TD 1230	1520 1521
	THPAXXPAB(I/K+L)=THPARTMPB/TEMP	1522
	TMP8=1.	1523
	IF (THPA.LT.O.) THPB==THPB	1524
		1525
	TMPA=1_=(1_=TMPA)*(TEMP=1_)/(TEMP=2_) IF(TMPA_LT_0_)TMPA=0_	1526 1527
	RA(I.K.L)=TNPB*THPA**.5	1528
	ITPAI	• •• •• ••
	LA=1.	
	LXELENSTA	
	IF(L_LE_NSTA) GO TO 1235 ITP=I=1	
	IF(ITP_LT_1) ITP=12	
	LASLX	
1235	IF (3D(I,K)_LT.,0001.0R.SD(ITP,LA)_LT.,0001) G0 T0 1230	
1 7 7 4	Gn TD 1240 RA(I,K,L)≈0.	1529 1530
	IF(L.GT.NSTÅ) GO TO 1250	1531
34 4	30A(J,L,K)=\$98(I,K,L)	1532
	30H(1,L,K)=S(A(1,K,L)	1533
	RA(I,L,K) = RA(I,K,L)	1534
	CONTINUE	1535 1536
	Dn 1280 K=1.NSTA	1537
	Dn 1280 I=1,12	1538
	TEMPENLOG(I,K)	1539
		1540
	DN 1270 L=1,NSTA IF(L_EQ,K.OR_RA(I,K,L).LE_#4.) GD TO 1270	1541 1542
	IF(VLOG(I,L),LE.NLOG(I,K)) GC TO 1270	1543
	THPA=NCAB(1,K,L)	1544
	THPR=NLOG(I+L)	1545
	TP=THPA/(1.=(THPB=THPA)*RA(I,K,L)**2/TMPB)	1546
	IF(TP.LE.TEMP) GO TO 1270 Lx=L	1547 1548
	LIZEL TEMPatp	1549
	THPPHTHPA	1550
1270	CONTINUE	1551
	IF(LX_LE_0) GO TO 1280	1592
	IF(SUA(I,K,LX).LE0001.08.SUB(I,K,LX).LE0001) GD TO 1280 INDC=1	1553
	THPESGA(I,K,LX)/SRB(I,K,LX)	1554
	THPA=SUMA(I,K,LX)/THPP	1555

	THPS=SUMB(I,K,LX)/THPP	1556
	Av(I,K)=TNPA+(AV(I,LX)+TMPE)*RA(I,K,LX)+TMP	1557
	SC(I,K)=SCA(I,K,LX)+(SD(I,LX)-SCB(I,K,LX))*RA(I,K,LX)**2*TMP	1558
	CONTINUE ADJUST STANDARD DEVIATIONS FOR CONSISTENCY	1559 1560
C	IF (NCSTY_LE.0) GO TO 1340	1561
•	TRANSFER FROM 1011	1562
C	DE 1330 LX=1, NCSTY	1563
1270	K=ISTX (LX)	1564
		1565
	0 1320 1=1,12	1566
	TEMP=(AV(I,K)-AV(I,L))/3	1567
	IF (AV(I,K), GT, AV(I,L)) GC TO 1300	1568
	TEMPHETEMPHED(I,K)	1569
	IF (SO(I,L),LT,TEMP) GO TO 1310	1570
	TEMP=SD(I,K)+2.=TEMP	1571
	IF (5D (I,L) - TEMP) 1320,1320,1310	1572
1300	TEMP=TEMP+SD(I,K)	1573
	IF (50(I,L).GT.TEMP) GC TO 1310	1574
	TFKP=SD(I,K)+2, . TENP	1575
	IF (SD(I,L), GE. TEMP) GD TO 1320	1576
	SD(T,L)=TEHP	1577
	CONTINUE	1578
1330	CONTINUE	1579
	IF(ITRNS_GT_0) GD TO 2820	
1340	IF(INDC.LE.O. AND.NCSTY,LE.O) GO TO 1370	1581
	HUTE(6,1350) Format(/39H Frequency statistics After Adjustments)	1583
1350	POPAL (234 PRODUCAT STATISTICS AFTER ADJUGTICATO)	1584
	HRITE(6,890)(MO(I),I=1,12) D0 1360 K=1,NSTA	1585
	$H^{0}ITE(6,1010)ISTA(K), (AV(I,K), I=1,12)$	1586
	wRITE(5,1020)(SO(I,K), I=1,12)	1587
	WRITE(6,1030)(SKEW(I,X),I=1,12)	1588
	WRITE(6,1040)(DD(I,K),I=1,12)	1589
1360	CONTINUE	1590
00.4	* * * * TRANSFORM TU STANDARDIZED VARIATES * * * * * * * * * *	* 1591
1370	DR 1420 K=1, NSTA	1592
		1593
	00 1410 J=1,NYRS	1594
	PO 1400 I=1,12	1595
	A= P + 1	1596
	OR (H,K)=BLANK	1597
	IF (0(H,K).E0,T)G0 T0 1400	1600
	IF(SD(I,K)_E0.0.)60 TO 1390	1601
	$\Omega(M,K) = (\Omega(M,K) - AV(I,K)) / SD(I,K)$	1602
C	PEARSON TYPE III TRANSFORM	1603
	IF (SKEW(I,K),EQ.0.)GD TO 1400	1604
	TEMP=,5*8KEW(I,K)*0(M,K)+1.	1605
	TMP=1. IF(TEMP.GE_0_)GU TO 1300	1606
	TERDETTERD	1607
	Yapen I	1608
1380	Q(H,K)=6_*(THP*TEMP**(3./3.)=1.)/SKEW(I,K)+SKEW(I,K)/6.	1609
	Gn Th 1400	1610
1390	Q(P,K)=0,	1611
	CONTINUE	1612
-	CONTINUE	1613
1420	CONTINUE	1614
C * 1	* * * * * COMPUTE SUMS OF SQUARES AND CROSS PRODUCTS & * * * * *	* 1615
	DO 1450 K=1,NSTA	1616
	Dn 1440 I=1,12	1617
	DA 1030 LAI, HSTAX	1618 1619
	RA(T,K,L) = (-4.)	1620
	SUFA(I,K,L)=0.	1621
	SIMB(I,K,L)=0.	1622
	SOA(I,K,L)≈0.	1623
		1624
	XPAB(I,K,L)=0,	1625
1430		1626
	RA(I,K,K)=1. Continue	1627
	CONTINUE	1628
1430	- A LULE TO A LULE A	

	na tana yasi nasi	
	DD. 1540 K=1,NSTA Kx=K+1	1629
	Mai	1630
	DO 1480 J=1,NYRS	1631 1632
	Dn 1470 I=1,12	1632
	K#M+1	1634
	TEMP=R(N,K)	1635
	IF(TEMP.E0.T)90 TO 1470 00 1460 L=K%,NSTA%	1636
с		1637
0	SUBSCRIPTS EXCEEDING NOTA RELATE TO PRECEDING MONTH	1638
	IF(LX,LT,1) TMP=O(H,L)	1639 1640
	IF(LX.GT.O) TMP=Q(M=1,LX)	1641
	IF (TMP.ER.T) GO TO 1460	1642
C	COUNT AND USE ONLY RECORDED PAIRS	1643
	NCAR(I,K,L)=NCAR(I,K,L)+1 SHMA(I,K,L)=SHMA(I,K,L)+TEMP	1644
	SUMA(I,K,L)=SUMB(I,K,L)+THP	1645
	304 (1,K,L)=804 (1,K,L)+TEMP+TEMP	1646
	508 (I,X,L)=308 (I,X,L)+TNP+TNP	1647 1648
	XPAR(I,X,L)=XPAR(I,K,L)+TEMP#TMP	1649
	IF(L.GT.NSTA) GO TO 1460	1650
	NCAB(I,L,K)=NCAB(I,K,L)	1651
	SUHA(I,L,K)=SUHB(I,K,L)	1652
	SUMB(T,L,K)=SUMA(T,K,L) SDA (T,L,K)=SOB (T,K,L)	1653
	S09 (I,L,K)=S08 (I,K,L)	1654
	XPA8(I,L,K)=XPA8(I,K,L)	1655
1460	CONTINUE	1656
	CONTINUE	1657 1658
	SONTINUE	1859
C * 1	* * * * COMPUTE CORRELATION COEFFICIENTS * * * * * * * * * * * * * * * * * * *	
	00 1530 I=1,12	1661
	DO 1520 L=KX,NSTAX	1662
C	LX=L=NSTA ELIMINATE PAIRS WITH LESS THAN 3 YRS DATA	1663
	IF (NCAB(I,K,L)_LE_2) GO TO 1510	1664
	TENPENCAB(I,K,L)	1665 1665
	TMP=(SQA(T,K,L)=SUMA(I,K,L)+SUMA(I,K,L)/(EMP)+(SQB(I,K,L)=SHMB	1667
1	(I,K,L)+SUMB(I,K,L)/TEMP)	1668
C	ELIHINATE PAIRS WITH ZERD VARIANCE PRODUCT	1569
	IF(TMP,LE.0.) GO TO 1500	1670
	THPB=1. TMPA=XPAB(I,K,L)-SUHA(I,K,L)+SUMB(I,K,L)/TEMP	1671
C	RETAIN ALGEBRAIC SIGN	1672
	IF (TMPA_LT_0_) TMPR=THPH	1673 1674
	TMPA=THPA+TMPA/THP	1675
	R*(T,K,L)=TMPB+TMPA++.5	1675
	ITP=I	1677
		1678
	IF(I_LE_NSTA) GR TO 1490	1579
	ITP=I=1 IF(ITP_LT-1) ITP=12	1680
-		1681
	IF (SD(I,K).LT.,0001.DR.SD(ITP,L4).LT.,0001) HA(I,K,L)=0.	1682 1683
į	Gn Tn 1510	1684
	HA(T,K,L)=0.	1685
	IF(L.GT.NSTA) GD TU 1320	1586
	<a(t,l,k)=#a(t,k,l) Construct</a(t,l,k)=#a(t,k,l) 	1687
	CONTINUE	1688
	CONTINUE	1689
	30 TO 2170	1690
1550	(RITE(6,1560)	1691 1692
	FORMAT (/18H DATA OUT OF ORDER)	1693
6	Sn TO 150	1600
CH * *	* * * * READ CORRELATION COEFFICIENTS * * * * * * * * * * * * * * * * * * *	1695
1570 0	10 10 20 K=1*N2LY	1696
	F (K.EG.1)GO TO 1600 TP=K=1	1697
	17 1590 L=1,ITP	1698
C	CURRENT MONTH CORRELATION	1699
-		1700

					_	
	PEARSE BAAMMAN PARAM SALES A LAND		**	CAR	DL	**
	READ(5,70)ITHP,ITEMP,(RA(I,K,L),I=1,12) HAV(K,L)=RA(1,K,L)					
	IF(IGNRL_EQ.1)ISTA(X)#ITMP					
	IF (ITMP.NE. ISTA(K)) GD TO 1550					
	IF (ITEHP, NE. ISTA(L)) GO TO 1550					
	00 1580 1#1,12					
	RA(J,L,K)=RA(I,K,L) Continue					
	PRECEDING MONTH CORRELATION					
600	LX=NSTAA					
	IF (IGNRL.EQ.1) LX=NSTA+K					
	LAENSTAX					
	IF (IGNAL.EQ.1) LAFLX Do 1610 LFLX,LA				•	
	ITP=L=NSTA					
		** 0	ARD	K 0	RM	
	HEAD(5,70)ITHP, ITEMP, (RA(I,K,L), In1,12)					
	IF (K.EQ.1)ISTA(K)=ITMP					
	IF (K.EQ.1)ISTA(ITP)=ITEMP					
	IF (IGNRL.EQ.1) $RAY(K,K) = RA(1,K,L)$					
	IF (ITHP.NE.ISTA(K))GO TO 1550 IF (ITEHP.NE.ISTA(ITP))GO TO 1550					
610	CONTINUE					
0.40	1620 I=1,12					
620	R4(T,K,K)=1.					
630	CONTINUE					• •
* 1	* * * * READ FREQUENCY STATISTICS * * * * *	* * 1	* * 1	k 7	* *	* *
	0n 1640 K=1,NSTA	** 6	1420	NO	p n	**
	READ(5,80) ITP, (AV(I,K), 1=1,12)	** (,,,,,			
	IF (ITP_NE_ISTA(K))GD TO 1550					
	GENERALIZED STATISTICS ON DNE CARD PE	R STAT	FIGN			
	AVMY(K) = AV(1, K)	•				
	AVMN(K) = AV(2, K)					
	SDAV(K)=AV(3,K)					
	ITHPEAV(4,K)+.1					
	INX(K)=ITHP=HQ(12)					
	ITHP=AV(5,K)+.1 IHN(K)=ITHP=H0(12)					
	IF (IMX(K)_LT.1) IHX(X)=IMX(K)+12					
	IF (INH(K).LT.1) INN(K)=IMN(K)+12					
	IF (IGNRL.EG.1)GD TO 1640			• • •		
			会 旁	CAR	90	
	READ(5,80)ITP,(80(I,K),I=1,12)					
	IF(ITP.NE.ISTA(K))GO TO 1550		*	CAR	กอ	
				Q = 11	U a	• •
	READ(5,80)ITP,(3KEW(I,K),I=1,12) IF(ITP_NE_ISTA(K))GD TO 1550					
	TH (TIL "WE POINT // 100 // 100 //		**	CAR	0 8	
	READ(5,90)ITP, (DO(I,K), 1=1,12)					
	IF (ITP_NE_ISTA(K)) GO TO 1550					
640		-			. .	* *
	ESTIMATE HISSING CORRELATION COEFFICI	<u>en</u> tă i	त ही '	* *	* *	* *
650	IF (IGNAL, EG. 1)60 TO 3020					
	IF (NSTA-LE.1)GO TO 2310					
	Dg 1720 I=1,12					
	IP=I+1 IF(JP_LT_1)IP=12					
	Dg 1710 K=1,NSTA					
	ITPEK+1					
	DB 1700 ISTTP-NSTAX					
	I AND K CORRELATION POSSIBLY MIDSING.					
	IF (RA(I,K,L).GE. (~1.)) GO TO 1700					
	RHAY=1.					
	RHIN=-1. LX SEARCHES ALL RELATED CORRELATIONS	EXCEPT	r FO	LLCH	ING	HTH
	LY SEARCHED ALL RELAIED CURRELAILUNG	,				
	DR 1690 LXH1, NSTAX					
	TERI V. FR. KIGD 18 1670					
	IF(LX.E0.K)G0 10 1690 IF(L.E0.LX)G0 10 1690 TEMPERA(I,K,LX) IF(L.LE.NSTA)G0 T0 1660					

	IF(LX-LE-NSTA)GO TO 1670	1772
C	BOTH L AND LX REPRESENT PRECEDING MONTH	1773
		1774
	ITEMPELXENSTA	1775
	THP=RA(IP,ITHP,ITEMP)	1776
	Gn To 1680	1777
C	L REPRESENTS CURRENT HONTH	1778
1660	THP=RA(I,L,LX)	1779
	G0 T0 1680	
C	LX AND NOT L REPRESENTS CURRENT MONTH	1780
1670	よう そのだ 中式 や し およ 伝え おし え	1781
1680	1 IF (TMP+TEHP.LT2.0) GE TO 1690	1782
	THPA= ((1TEMP*TEMP)*(1TMP*TMP))	1783
	IF (TMPA.LT.O.) TMPARO.	1784
	THPATTHPANK	1785
	THPB=THP+TEMP+THPA	1786
	IF (TMP8.LT.RHAX) HMAXETHPB	1787
	TMPS=THPS=THPA=THPA	1788
	IF (THPB.GT_RHIN)RHIN#THPB	1789
1690	CONTINUE	1790
C		1791
	AVERAGE SHALLEST MAY AND LARGEST MIN CONSISTENT VALUE	1792
	RA(I,K,L)=(RMAX+RMIN) + 5	1793
4 4 4 4	IF (L.LE.NSTA) PA (I,L,K) #RA(I,K,L)	1794
	CONTINUE	1795
	CONTINUE	1796
1720	CONTINUE	1797
	GO TO 2310	1798
CJ *	* * * * TEST FOR TRIAD CONSISTENCY * * * * * * * * * * * * * * * * * * *	* 1799
	NCARO	1600
1740	FACE1.	1801
	NCA=NCA+1	1802
	IF(NCA_LT_NSTA*12) GO TC 1750	1803
	XRITE(6,1840)	1804
	SO TO 150	1805
1750	NCB=0	1806
	NC=0	1807
1760	INGC=Q	1808
	DD 1830 I=1,12	1809
	IP=I=1	1810
	IF (IP .LT. 1) IP=12	1811
Ċ	K, L, AND LX SEARCH ALL RELATED TRIUS OF CORREL COEFS	1812
-	DO 1820 KEI,NSTA	1812
	ITNP=K+1	1813
	ON 1810 LEITHP, NSTAX	1815
	IF (L.ED.NSTAX)GD TO 1810	
	LA=L-NSTA	1816
	RI=RA(I,K,L)	1817
	ITP=[+1	1818
	DO 1800 LXHITP, NSTAX	1819
	ITEMPELX=NSTA	1820
	R2=RA(I,K,LX)	1821
	IF (L.LE.NSTA)R3RRA(I,L,LX)	1822
Ċ.	BOTH L AND LX REPRESENT PRECEDING MONTH	1823
	IF (L.GT_NSTA) R3=RA(IP,LA,ITEMP)	1824
Ċ.	RAISE LOWEST CCEFFICIENT IF INCONSISTENT	1625
	ACI=(1,=R1+R1) x=,5	1826
		1827
	AC2=(1,=R2+R2) **.5	1828
	AC3=(1,=R3+R3)++,5	1958
	IF(91.GT.R2) GO TO 1770	1930
	IF(R1_GT_R3) GO TO 1780	1831
	RHIN=R2+R3+AC2+AC3+FAC	1832
	IF(PMIN_LT_=1.) RMINZ=1.	1833
	IF(R1.GE_RHIN) GO TO 1800	1634
	INDC=1	1835
	RA(I,K,L)=RHIN	1836
	IF (L.LE.NSTA) RA(I,L,K)#RHIN	1837
	SN TO 1800	1838
	IF (92.GT_83) GD TO 1780	1839
۶	RHIN=R1+R3+AC1+AC3+FAC	1840
3	IF(RHIN.LT.=1.) PHINE.	1841
3	IF(R2,GE,RHIN) GO TO 1800	1842
	INDC=1	1843
•		

	RA(T,K,LX)=RHIN	1844
	IF (LX.LE.NSTA) RA(I,LX,K)=RMIN Gn to 1800	1845
1780	NMIN=R1#R2=ACt*AC2*FAC	1847
11.0	IF(RHIN_LT,=1.) HHIND=1.	1848
	IF (P3, GE, RHIH) GO TO 1800	1849
	INDC=1	1850
	IF (L.GT.NSTA) GO TO 1790	1851
	RA(T,L,LX)=RHIN	1852
	IF (LX_LE_NGTA) RA(I,LX,L)=RMIN	1853
	GO TO 1800	1854
1790	RA(TP,LA,ITEHP)=RMIN	1855
1000	RA(IP,ITEMP,LA)=RHIN CONTINUE	1856 1857
	CRATINE	1858
	CONTINUE	1859
	CONTINUE	1860
	NC=NC+1	1861
	IF (NC, LE, NSTA +12) GO TO 1850	1862
	WRITE(6,1840)	1863
1840	FORMAT(32H CORRELATION MATRIX INCONSISTENT)	1864
	GO TO 150	1865
	IF(INDC_EQ_1) GD TO 1760 * * * * * TEST FOR DVER=ALL CONSISTENCY * * * * * * * * * * * * * * * *	1866
GR 9	ITEMPRO	1868
	GO TO 1870	1869
1860	ITENP=1	1870
C	WHEN ITEMPE1, CURRENT MONTH USED FOR ALL INDEPENDENT STAS	1871
č	OTHERWISE, PREC MTH USED FOR CURRENT AND SUBSEQUENT STAS	1872
1870	NINDPENSTA	1873
	HVAR=NINDP+1	1874
	Dn 2150 I=1,12	1875
		1876 1877
~	IF(IP_LT_1)IP=12 CONSTRUCT COMPLETE CORREL MATRIX FOR EACH MONTH AND STA	1878
C	DO 2150 K=1, HSTA	1879
ċ	L IS ROW NUMBER, J IS COLUMN NUMBER	1840
L	DO 2020 L=1,NSTA	1881
	LX=L+NSTA	1882
	00 1980 J=1,NSTA	1883
	ATENEL	1884
	IF(L=K) 1880,1920,1960	1885
1880	IF(J-K) 1890,1910,1900	1886 188700
1890	R(L,J) = DOLE(RA(I,L,J))	1888
		1889
	J אד GR TO 1970	1890
1900	IF(ITEMP) 1910,1910,1890	1891
1910	R(L,J) = DBLE(RA(I,L,JX))	189200
	LTKP(L)=L	1893
	JTHP (J)=JX	1694
	GO TO 1970	1895
1920	IF(J-K) 1930,1940,1950	1896 189700
1930	R(L,J) = DBLE(RA(I,J,LX))	1898
		1895
	JTHP(J)=LX Gn to 1970	1900
10/0	$\Re(L,J) = DBLE(\Re A(IP_{s}L,J))$	190100
17.0	LTMP(L)=LX	1902
	JTHP (J) #JX	1903
	GR TR 1970	1904
1950	IF(TTEMP) 1940,1940,1930	1905
1960	IF(TTEMP) 1920,1920,1880	1905
	R(J,L)=R(L,J)	1907 1908
1980	CONTINUE	1902
	LTHP(L) = K	1910
C	SPECIAL SUBSCRIPT FOR DEPENDENT VARIABLE	1911
1000	IF (L=K) 1990,2010,2000 R(L,N97AA) = DBLE(HA(I,K,L))	191200
1440	JTHP(NSTAA)=L	1913
		1914
2000	IF (ITEHP.GT.0) 60 TO 1990	1915
• • • • •		

2010	R(L, NSTAA) = OBLE(RA(I, K, LX))	1916000
3436	JTHO (NSTAA) =LX	1917
	CONTINUE	1918
	MATRIX CONSIGTENT IF CORREL DOES NOT EXCEED 1.0	1919
	020	1920
~	NC=0	1921
C		1922
	CALL CROUT(R)	1923
C		1924
	IF(OTRHC.LE.1.) GO TO 2130	1925
3040	WRITE(6,2040) N,I,K,DTRHC	1926
C 2070	FORMAT (/36H INCONSISTENT CORREL MATRIX ADJUSTED, 314, F12, 3)	1927000
L.	FAC=FAC+.2	1928-1931
	IF (FAC.GT.=.1)G0 TD 1750	1932
	NC0=1	1933
		1934
	IF (N_GT.10) GO TO 150	1935
	SUN=0.	1936
	Dn 2080 L=1, NINDP	1937
	DO 2070 LX=1, NVAR	1938
	IF (L.E9.LX) GU TO 2070	1939
	TMPP=== (L,LX)	1940
	SUMASUMATHPP	1941
	CONTINUE	1942
	CONTINUE	1943
	TEHP=NINDP+NINDP	1944
	SUM#SUM/TEHP	1945
	TEMP=DTRHC=1.	1946
	IF (TEMP.GT. 1) TEMP= 1	1947
	TNP=1.=TEMP	1948
	00 2120 L=1, NINDP	1949
	17P=1+1	1950
	DO RIIO LXHITP, NVAR	1951
	R(L,LX) = DBLE(THPP*TMP + SUM*TEMP)	1952
	IF(LX.LE.NINDP) R(LX,L)=R(L,LX)	1953000
	TPELTAP(L)	1954
	ITP=JTNP(LX)	1955
1	F(LTP_LE_NSTA) GD TO 2100	1956 1957
1	(TTP.LE.NSTA) GO TO 2090	1958
L	TPALTRANSTA	1959
	ATEN-974	1960
	(IP,LTP,JTP)=R(L,LX)	1961
5	IA(IP,JTP,LTP)=R(L,LX)	1962
	IO TO 2110	1963
	THPELTP	1964
	TPEJTP	1965
	TPEITHP	1966
eloc 4	A(I,LTP,JTP)=R(L,LX)	1967
1	F(JTP.LE.NSTA) HA(I, JTP, LTP) = R(L, LX)	1968
	ONTINUE Intinue	1969
	n TO 2030	1970
		1971
	F(DTHMC.GE.O.) GO TO 2140	1972
	RITE(6,70)I,K,DTRHC TENC=0.	1973
	F(NC8,GT.0) GD TO 1740	1974
5140 0	ONTINUE	1975
2160 0	ONTINUE	1976
	F (ITEMP.EG.0) GD TO 1860	1977
	F(ITRNS_EQ.2) GD TO 3100	1978
	RITE(6,10)	1979
		1980
	* * * PRINT CORRELATION MATRIX * * * * * * * * * * * * * * * * * * *	
	F(ITRN3_LE.O) WRITE(6,2180)MO(I)	1982
2180 Fr	RMAT (//39H RAW CORRELATION COEFFICIENTS FOR MONTH,13)	1983
T	F(ITRNS_GT_0) WRITE(6,2190) Hg(I)	1984000
2190 Fr	SRMAT (//40H CONSISTENT CORRELATION MATRIX FOR MONTH, 13)	1985
WE	PITE(6,2200) (ISTA(K),K=1,NSTA)	1986000
2200 Fr	IRMAT (/3X, 3HSTA, 1817)	1987
WR	PITE (6, 2210)	1988000
2210 FC	RHAT (20X, 19H WITH CURRENT MONTH)	1989 1970
		1 3 10

	00 2220 Hm	
22	PO 2220 K#1, NSTA	1991
22	20 NRITE(6,2230) ISTA(K), (HA(I,K,L),L=1,NSTA) 30 FRRHAT (1X,I5,18F7.3)	1992
	1911230.227003	1993000
55	C FORHAT (20%, 36H WITH PRECEDING MONTH AT ABOVE STATION)	1994
	1 1979 1978 2 4 1	
	00 2250 KH1.NSTA	1996 1997
55	DU SPITE(6,2230) TSTAFRY FORFY R INJETTP.NSTAX)	1998
556	10 LEANTINGE	1999
	IF (TANAL LE.0) GO TO 3100	2000
	IF (ITRNS.LE.O) GO TO 1650	2001
C	IF (JPCHS, LE. O) GO TO 2870	2005
	PUNCH ESSENTIAL ELEMENTS OF MATRIX	2003
	IF (K.EG.1) GD TO 2280	2004
	ITP=K-1	2005
		2006
227	0 HRITE(7,70) ISTA(K), TSTA(K), (SA(T,K),), (=1,12)	2008
558	C 40 2290 LANSTAA, NSTAX	2009
5.50	JTFMP=L=NSTA	2010
224	C SPITE(7,70) ISTA(K), ISTA(ITEMP), (RA(I,K,L), I=1,12)	2011
e 30	C CONTINUE 60 TO 2850	2012
ci *		2013
231	* * * * * RECONSTITUTE MISSING DATA * * * * * * * * * * * * * * * * * *	
· · · · · · · · ·	IF (IRCON_LE_0) 60 TO 2610	2015
	NVARENSTA+1	2016
	24 m 1	2017 2018
	DA 500 Jai'NAS	2019
	00 2590 141,12	2020
		2021
	IF(IX_LT_1)IX=12 N=P+1	5055
	00 2580 K=1,NSTA	5053
	IF(0(M,K),NE,T) G0 T0 2580	2024
C	FURN CORRELATION MATRIX FOR EACH HISSING FLOW	2025
	NINDPRO	
	00 2390 L=1,NSTA	7505 8505
	LX=L+NSTA	2029
	IF (Q(H,L),NE,T) GO TO 2320	2030
	IF(0(M=1,L),E0,T) GO TO 2390	2031
	NTNOP=NINDP+1	2032
	ITEHP=NTNDP X(MINDP)=Q(M=1,L)	2033
	R(NTNDP,NVAR) = DBLE(RA(I,X,LX))	2034
	GN TO 2330	2035000
2320	NTNOP=NINDP+1	2036
	ITEMP=NINDP	2038
	X(NINDP)=Q(H,L)	2039
	RENINDRANVAR) = DOLE(RA(IAKAL))	2040000
5320	R(NINDP, NINDP) = 1.0D0	2041000
	IF(L_EQ_NSTA) GO TO 2390 ITF=L+1	2042
	DD 2380 LATITP,NSTA	2043
	JX=LA+NGTA	2044
	IF (0(H,L).E0,T) G0 TO 2350	2045 2046
	IF(0(H,LA),E0.T) GO TO 2340	2047
	ITEMP#ITENP+1	2048
	R(NINDP, ITEMP) = DBLE(RA(I,L,LA))	2049000
	GN TO 2370	2050
2340	IF(0(M=1,LA)_EG.T) GO TC 2380 ITEMP=ITEMP+1	2051
	$R(NINDP, ITEMP) \Rightarrow DBLE(RA(I,L,JX))$	2052
	Gn Tg 2370	2053000
2350	IF (0(H,LA),E0.T) 60 TC 2360	2054
	ITEMPEITEMP+1	2055 2056
	R(NINDP, ITEMP) = DRLE(RA(I,LA,LX))	2057000
	Gn Tn 2370	2058
2360	IF (0(H-1,LA) EG.T) GD TC 2380	2059
	ITENPEITENP+1	2060
~	R(NINDP,ITEMP) = DBLE(RA(IX,L,LA)) ADD SYMMETRICAL ELEMENTS	2061000
C	HUN ALGUCTHICHT CFCLID	2052

2796	R(ITEMP,NINDP)=R(NINDP,ITEMP)	2063
	CONTINUE	2064
2390	CONTINUE	2065
	IF(NINDP_GT.O) GD TO 2400	2066
	NINDPEI	2067
		• • •
-	x(1)=0.	2068
	P(1,1) = 1.000	2069000
	LX=K+NSTA	2070
	R(1, NVAR) = DBLE(RA(1, K, LX))	2071000
2400	ITEMP=NINDF+1	2072
	DN 2410 L=1,NINDP	2073
2410	R(L, ITEMP)=R(L, NVAR)	
		2074
C	3333523382	2075
2420	CALL CROUT (R)	2076
С	7========	2077
•	ITEMPENINDP+1	
		2078
	TEHPA1.	2079
	INDC=0	2080
	0n 2440 L=1,NINDP	2081
	THP=DAB3(R(L,ITEMP))	5085
	IF(THP_GT_TEHP) GO TO 2430	2083
		2084
	ITP#L	
		2035
2430	IF (R(L, ITEMP) .LE. 0 AND. 8 (L), GT, (-1.5) . AND. 8 (L) .LT.0.5) GC TO 2440	2086
	IF (R (L, ITEMP) .GE. 0 AND .B (L) .GT. (-0.5) .AND .B (L) .LT.1.5) GC TO 244(2087
	INDC=1	2088
3 // / A		
244Q	CONTINUE	2089
	IF(TNDC.GT.0) GO TO 2450	2090
	IF (DTRHC_LE_1, AND DTRHC_GE.C.) GO TO 2510	2091
С	IF MATRIX INCONSISTENT, ONIT VARIABLE WITH LEAST	
		5095
C	CORRELATION	2093
2450	ITHP=NINDP=1	2094
	IF(ITP.GT.ITHP) GO TO 2480	2095
	DO 2470 LEITP, ITMP	2096
	DN 2460 LASI, ITENP	2097
2460	R(L,LA)=R(L+1,LA)	2098
	x(L)=x(L+1)	2099
2480	DA 2500 L=1,ITMP	2100
	DO 2490 LASITP, NINDP	2101
2490	$R(L_{+}L_{A}) = R(L_{+}L_{A}+1)$	2102
	CONTINUE	
E 304		2103
	NTNOPHITHP	2104
	60 TO 2420	2105
C	ADD RANDOM COMPONENT TO PRESERVE VARIANCE	2106
4210	ТЕНЬ=0	2107
	00 2520 L=1,6	5108
	TEMP#TEMP+RNGEN(IXX)	2109
	TEMP=TEMP-ANGEN (IXX)	2110
С	COMPUTE FLOW	2111
	AL=(1,=0T926)**.5	2115
	TEMPATEMPAAL	2113
	00 2530 L=1, NINDP	2114
5220	TEHP=TEHP+8(L) *X(L)	2115
	Q (M,K)=TEMP	2116
	QP (N,K)=E	2117
		2118
_		
C	ADD NEW VALUE TO SUMS OF SQUARES AND CROSS PRODUCTS	2119
	DA 2560 L=1,NSTAX	5150
	IF(L_Eg_K) G0 T0 2560	2121
<u>.</u>	THE SUBARY OF THE EVERATE SET OF ARE TO REPORT OF ADDITION	
C	SUBSCRIPTS EXCEEDING NSTA RELATE TO PRECEDING HUNTH	2122
	LX=L=NSTA	5153
	IF (LX_LT_1) THP=Q(H,L)	2124
	IF (LX.GT.0) THP=G (H+1,LX)	2125
	IF (TMP.ED.T) GO TO 2560	2126
C	COUNT AND USE ONLY RECORDED PAIRS	2127
	NCAB(I,K,L) = NCAB(I,K,L) + 1	2128
		2129
	SUMA(I,K,L)=SUMA(I,K,L)+TP	
	SUMB(I,K,L)=SUMB(I,K,L)+TMP	2130
	SOA (I,K.L)=SOA (I,K,L)+TP+TP	2131
	SOR (I,K,L)=SOU (I,K,L)+TMP+THP	2132
	XPAR(I_K_L)=XPAB(I_K_L)+TP+TNP	2133
	IF(L_GT_NSTA) GO TO 2540	2134

	NCAR(I,L,K)=NCAR(I,K,L)	2135
	SUMA(I,L,K)=SUMA(I,K,L)	2135
	SUMB(I,L,K)=SUMA(I,K,L)	2137
	SDA (I,L,K)=SDA (I,K,L) SDB (I.L.K)=SDA (I,K,L)	2138 2139
	XPAH(I,L,K) = XPAH(I,K,L)	2139
C	RECHMPUTE CORRELATION COEFFICIENTS TO INCLUDE NEW DATA	2141
2540	IF(NCAB(I,K,L).LE.2) 60 TC 2560	2142
	TEMP#NCAB(I,K,L) TMP=(SQA(I,K,L)=SUMA(I,K,L)*SUMA(I,K,L)/TEMP)*(SQB(I,K,L)=SUMB	2143 2144
	1(I,K,L)*SUNB(I,K,L)/TEMP)	2145
C	ELIMINATE PAIRS WITH ZERD VARIANCE PRODUCT	2146
	IF(THP.LE.O.) GO TO 2560 TMPD=1_	2147 2148
	THPA=XPAB(I,K,L)=3UMA(I,K,L)=SUMB(I,K,L)/TEMP	2149
C	RETAIN ALGEBRATC SIGN	2150
	IF(TMPA_LT_Q_)TMPH==TMPH TMPA=TMPA <tmpa td="" tmp<=""><td>2151</td></tmpa>	2151
	RACI,K.L)#THPB#THPA***S	2152 2153
	ITPOI	2154
		2155
	IF(L_LE_N8TA) GD TO 2550 Itps://	2156
	IF(ITP_LT_1) ITP=12	2158
	LA=LX	2159
2520	IF(SD(I,K)_LT0001.0R.SD(ITP,LA)_LT0001) RA(I,K,L)=0. IF(L.GT.NSTA) G0 TO 2560	2160 2161
	HA(T,L,K)=RA(T,K,L)	2162
2560	CONTINUE	2163
	ITHPENYRS#12+1	2164 2165
	IF(M.GE.ITHP) GO TO 2580 TENP=Q(M,K)	2166
	DD 2570 L=1,NSTA	2167
	TMPRQ(H+1+1)	2168
	IF(TMP.EC.T) GC TO 2570 Lx=K+NSTA	2169 2170
	ITP#1+1	2171
	IF(ITP,GT.12) ITP=1	2172
	NCAR(ITP,L,LX)=NCAB(ITP,L,LX)+1 SNMA(ITP,L,LX)=SUMA(ITP,L,LX)+TMP	2173 2174
	SINA (ITP,L,LX)=SUNB (ITP,L,LX)+TP	2175
	SOA (ITP,L,LX)=SOA (ITP,L,LX)+TMP*TMP	2176
	SOB (ITP,L,LX)=SOB (ITP,L,LX)+TP*TP xpab(ITP,L,LX)=xpab(ITP,L,LX)+TP*TNP	2177 2178
	IF(HCAB(ITP)L,LX).LE.2) GO TO 2570	2179
	TENPENCAR (TTP+L+LX)	2160
	TMP=(80A(ITP,L,LX)-SUMA(ITP,L,LX)*SUMA(ITP,L,LX)/TEMP)*	2181 2182
	1(SRH(ITP,L,LX)-SUMB(ITP,L,LX)*SUMB(ITP,L,LX)/TEMP) IF(TMP,LE.0.) G0 T0 2570	2183
	TKP8=1.	2184
	THPA=XP48(ITP,L,LX)=SUHA(ITP,L,LX) +SUMB(ITP,L,LX)/TEMP	2185 2186
	IF(TMPA_LY_0_) TMPB=#TMP8 TMPA=TMPA+TMP4/TMP	2187
		2188
	IF (SD (I,K) .LT0001.0R.SD (ITP,L).LT0001) RA(ITP,L,LX)=0.	2189
	CONTINUE	2190 2191
	CANTINUE	2192
2600	CONTINUE	2193
2610	IF(TANAL_LE+0) GD TO 3100 * * * * CONVERT STANDARD DEVIATES TO FLOHS - * * * * * * * * * * *	2194
64 8 1	IF (NPA55.LE.1) GU TO 2630	2195
	24HPP=N4435+1	2197
	DR 2620 ITHP=1,100	2198 2199
	IF(LOTAP.EG.NGTAP) GO TO 2630 READ(IGTAP)	2200
565C	LOTAPSLOTAP+1	1055
	NPITE(6,10)	2202
56.04	WRITE (6,2640) Format(33H Recorded and reconstituted flows)	2204
-	IF(NPASS_GT_1) HRITE(6,265C) IPASS	5502
2650	FORMAT (5H P455, 13)	2206

ANYASENYRS Dr 2810 K=1,HSTA	2207
IF (K.GT.NSTX) WRITE(6,2660) (Mg(1),1=1,12)	5509
2680 FORMAT (/114 STA YEAH, 1218, 6X, SHTOTAL)	2209
	2210000 2211
0n 2760 J#1,/1YR8	2212
	2213
DO 2720 Im1,12	2214 .
TEMPED(N,K)	2215
THPESKEW(I,K)	2216 2217
IF (THP.NE.O.) TEMP=((THF#(TEMP-TMP/6.)/6.+1.)##3 #1.)#2./THP	2218
AF (48 (7) 8) - 9E - ED - 50 - 2090	2219
IF (TEMP.GT. 2. AND.SD(I,K).GT3) TEMP=2.+(TEMP=2.)*.3/SD(I,K)	2550
IF(TMP_LT.=.0001.0R.TMP.GT0001) TMP=(-2.)/TMP IF(3KEW(I,K)) 2670,2690,2680	
2670 IF(TEMP.GT.THP) TEMPETHP	5555
G0 T0 2690	2223 2224
2680 IF (TEMP.LT.THP) TEMPSTHP	2225
2690 THPHTEMPAGD(I,K)+AV(I,K) D(M,K)=10.++THP+DD(I,K)	2226
IF (R(M,K).LT.O.,AND.GMIN(I,K).GE.O.) G(H,K)=0.	2227
AM(I) #OK(N'K)	5559
ITMP=NSHM(K, TPASS)	5553
IF(ITMP.LE.0) 60 TO 2710	
TEMPEQ	2232
00 2700 L=1,ITHP Lx=IST(K,L,IPASS)	2233
2700 TEMP=TEMP+0(M,LX)	
IF (9(H,K).GT.TENP) GO TO 2710	2235
G d C T J HAD J	2236 2237
IF (OR (M, K) .NE.E) GO TO 2710	2239
QH(J)=ADJI Q(M,K)=TEMP	2239
2710 IO(1)=Q(M,K)+,5	2240
8720 ITP=ITP+IQ(I)	2241
IYF=IY6A+J	2242
IF (K.LE.NOTX) GO TO 2760	2244
IF(IPCHG_LE_0)GN TO 2740	2245
WRITE(7,2730) ISTA(K),IYR,(IQ(I),I=1,12) 2730 FORHAT(214,1216)	2246
274C WRITE(6,2750)ISTA(K),IY9,(IQ(I),GM(I),I=1,12) ,ITP	2247
eroc Pormar(1x,14,16,16,11(17,41),110)	2248 2249
2760 CONTINUE	2250
IF(NPASS_LE_1) GO TO 2765	2250#1
NOTAPHOTAP)ISTA(K),(G(M,K),MH1,ITMPP) Notaphotap+1	2251
2765 IF(IRCON, LE. 0) GD TO 2810	5525
- CN + + + + *RECOMPUTE HEAN AND STANDARD DEVIATION - + + + + + + + + + + + + + + + + + +	2253
DG 2770 I=1,12	2255
4V(I,K)=0.	2256
SKEW(I,K)=0. 2770 SD(T,K)=0.	2257
	2258
00 2790 J=1, NYR3	2259 2260
00 2780 I=1.12	2261
Naxy+1 Takanaki ang today kalang data kalang panganaki	2222
TEMP=ALOG(Q(H,K)→DQ(I,K))±,4342945 4v(T,K)=Av(I,K)+TEMP	5593
SKEW(I,K)#SKEW(I,K)+TEMP##3	2264
2780 SD(I,K)=SD(I,K)+TEMP*TEMP	2265 2266
2790 CONTINUE	2267
00 2800 I=1,12	2268
TEMP=AV(I,K) TMPA=SD(I,K)	2269
THEFACOULING -TEMP*TEMP/ANYRS)/(ANYRS=1.)	2270
IF(THP_LT_0.) THEFO.	2271
AV(T,K)=TEMP/ANYRS	2272 227 3
SD(1,K)=TMP++.5	2274
THP=SKEW(I,K)	2275
SKER(I,K)=0. IF(9D(I,K)=LE0005) GD tO 2800	2276
- forratusmanass an in ronô	2277

	SKEW(I,K)=(ANYRS++2+TMP+3,+ANYRS+TEMP+THPA+2,+TEMP++3)			2278
	1/ (ANYR3* (ANYH3=1.)* (ANYR5=2.)* SD(I.K)**3)			2279
	CONTINUE			2290
2810	CONTINUE			5591
	LOTAPENQTAP			5585
	ITRNS=1			2283
	IF (IRCON, LE. 0) GO TO 2930			2284 *
				2285
	IF (NCSTY.GT.0) 60 TO 1290			
C	PRINT ADJUSTED FREQUENCY STATISTICS			2286
5950	NRITE(6,10)			2287
	WRITE(6,2830)			2288
3330	FORMAT (/30H ADJUSTED FREQUENCY STATISTICS)			2289
20.00				2290
	SPITE (6,890) (ND(I), I=1,12)			
	In 2540 K=NSTXX, NSTA			2291
	WRITE (6,1010) ISTA(K); (AV(I,K),I=1,12)			5565
	HRITE (6,1020) (SD(1,K), 1=1,12)			5583
	URITE (6,1030) (SKEW(I,K),1=1,12)			2294
	WHITE (6,1040) (DA(I,K),I=1,12)			2295
				2296
2840	CONTINUE			
C	PHINT CONSISTENT CORRELATION MATRIX			2297
	LTRNS=1			2298
	Gn Tn 2170			2299
3450	TE (TPCHS.LE.0) 60 TO 2870			2300
				2301
C	PUNCH FREQUENCY STATISTICS			
	DR 2860 KENSTXX,NSTA			2302
	WPITE(7,80)ISTA(K),(AV(I,K),I=1,12)			2303
	WRITE(7,80)IGTA(K), (SD(1,K), 1=1,12)			2304
	WRITE(7,80)ISTA(K), (SKEW(I,K), I=1,12)			2305
	HRITE(7,90) ISTA(K), (DQ(1,K), I=1,12)			2306
				2307
2860	CONTINUE			
С	COMPUTE CONDINATION FLOWS			2308
С				2309
2876	IF (NCOMB_LE_0) GO TO 2910			2310
E (1) V	ITHP=12*NYRS+1			2311
			•	2312
	DN 2900 HT2, ITHP			2313
	DO 2890 KX=1,NCOHB			
	Kaxxansta			2314
	ITP=NSTAC(KX, IPASS)			
	0(H,K)=0.			2316
				2317
	Dn 2880 L=1, TP			
	ITEMPEKSTAC (XX, L, IPASS)			
2880	Q(M,K)=Q(M,K)+Q(H,ITEKP)*CSTAC(KX,L,IPASS)			3736
2890	CONTINUE			2320
2966	CONTINUE			5351
c				5355
6.	* * * * HAX AND HIN RECONSTITUTED FLOWS * * * * * *	* * 1	* * *	* 5353
				2324
2910				2325
	ITPNS=1			2326
	IF (HXRCS.LE.0) GD TB 2930			
	ITMP=NYRS			2327
2020	IF(TTMP.LE.0) 60 TO 2930			5358
2124	1000-1000-000-000-000-000-000-000-000-0			5358
	•			2330
	NJEHXRCS			2331
	ITMP=ITMP=MXQCS			2332
	IF(ITHP.GE.0) GO TO 3730			
	ITMPHMXRCS+ITMP			2333
	NJETTHP			2334
	ITHPEO	,		2335
				2336
	GN TO 3730			2337
5930	[F(IGNRL_NE_2)60 TO 3020			* 2338
C *	* * * * COMPUTE GENERALIZED STATISTICS* * * * * * *	'		2339
	WRITE(6,130)			
	DD 3000 K#1,NSTA			2340
e.	AVERAGE CORNELATION COEFFICIENT			2341
C				5345
	DG 2950 L=1,K			2343
	LYEL+NSTA			2344
	RAV(K,L)=0.			2345
	0n 2940 1=1,12			
	THP=RA(I,K,L)			2346
	IF(L.GE.K)THF=RA(I,K,LX)			2347
	RAV(K,L)=RAV(K,L)+THP			2348
54#0				2349
	RAV(X,L)=RAV(K,L)/12.			

	HRITE(6,70)ISTA(K);ISTA(L),RAV(K,L)	2350
	CONTINUE	2351
C	AVERAGE LOGS FOR WET AND DRY SEASONS	2352
	AVHX(K)=AV(11,K)+AV(12,K)+AV(1,K)	2353
	YANN(K)=\$ANX(K) Imx(K)=1	2354
	1 MN (K) #1	2355
	THP=AV(12,K)+AV(1,K)+AV(2,K)	2356 2357
	IF (AVMX(K) . GE . TMP) GO TO 2960	2358
	AVPX (K) STMP	2359
	IMX(K)=2	2360
	Gn To 2970	2361
2980	AVMN(K)=THP	2362
	IHN(K) = 2	2363
0	AND AVERAGE STANDARD DEVIATION	2364
2910	SnAv(K)=SD(1,K)+SD(2,K)	2365
	Dn 2990 I=3,12 Snav(K)=SDAV(K)+SD(I,K)	2366
	TMP=AV(I=2,K)+AV(I=1,K)+AV(I,K)	2367
	IF(AVMX(K)_GE_TMP)GO TO 2980	2368
		<u>2</u> 369 2370
	IHX (K) =1	2371
2980	IF (AVHN(K) LE TMP) GO TO 2990	2372
	AVMN(K)=TMP	2373
	IHN (K) #I	2374
2990	CONTINUE	2375
	AVMX(K)=AVMX(K)/3.	2376
	AVMN(K)=AVMN(K)/3	2377
	SDAV(K)=SDAV(K)/12,	2378
3000	CONTINUE	2379
	HRITE(6,140)	2320
	PR 3010 K=1,NSTA ItP=IMx(K)	2381
	ITMPHINN(K)	2382 2383
3010	WPITE(6,120)ISTA(K),AVMX(K),AVMN(K),SDAV(K),H0(ITP),H0(ITPP)	2384
	* * * * APPLY GENERALIZED STATISTICS* * * * * * * * * * * *	
	IF(IGNRL_LE_0)GO TO 3100	2386
	00 3080 K=1,NSTA	2387
	X X = X + NGTA	2399
C	INTERMEDIATE MONTHS	2389
	NWXHW#IHX(K)-IHX(K)-3	2390
	IF (NMXHN_LT.D) NMXMN#NHXMN+12	2391
	NHNHX=6+NHXMN	5395
•	00 3040 I=1,12	2393
C	STANDARD DEVIATION UNIFORM, SKEW ZERD	2394 2395
	3KEW(I,K)≖0, D¤(I,K)=0,	2395
	SD(I,K)=SDAV(K)	2397
	Dn 3030 L=1,NSTA	2398
C	ZERO CORRELATION WITH OTHER STATIONS AND PRECEDING MONTH	2399
-	LX=L+NSTA	2400
	R4(I,K,LX)=0.	2401
*	IF(L_GE_K)GO TO 3030	2402
С	UNIFORM SERIAL CORREL INTERHEDIATE MONTHS AND INTER-STA	2403
	RACI,K,L)=RAV(K,L)	2404
	RA(I,L,K) = RA(I,K,L)	2405
3030	CONTINUE	2406
	RA(I,K,KX)=RAV(K,K)	2407 2408
7040	RA(I,K,K)=1. Continue	2408
C 30-0	MEAN AND SERIAL CORREL, NET AND DRY SEASONS	2410
~	TMP=RAV(K,K) +.15	2411
	TEMP=THP=.3	2412
	IF (TMP.GT., 9a) TMP=.98	2413
	IF (TEMP_LT_0) TEMP=0.	2414
	ITP=IMx(K)	2415
	AV(JTP,K)=AVHX(K)=,1	2416
	RA(ITP,K,KX)=TENP	2417
	ITP=IMX(K)=1	2418
	IF(ITP.LT.1)ITP=12	2419
	AV(TTP,K)=AVHX(K)+_2	2420
	RA(ITP,K,KX)=TEMP	2421

	ITP=IHX(K)=2	2422
	IF(TTP.LT.1)ITP=ITP+12	2423
	AV(TTP,K)=AVHX(K)=.1	2424
	R4(ITP,K,KX)=TERP	2425
	ITP=IHN(K)	2426
	AV(ITP,K)=AVHN(K)	
	RA(ITP,K,KX) THP	2427
	ITPHINN(K)=1	2428
	IF(ITP_LT_1)TTP=12	2429
	AV(ITP,K)=AVIN(K)	2430
		2431
	RA(ITP,K,KX)=TMP	2432
	ITP=IMN(K)=2	2433
	IF(ITP.LT.1)ITP=ITP+12	2434
	AV(ITP,K) = AVHN(K)	2435
	RA(ITP,K,KX)=THP	2436
C C	HEANS FOR MONTHS FOLLOWING WET SEASON	2437
	IF (NHXMN.LT.1)GD TO 3060	2438
	ITPHINX(K)	2439
	TENP=NMXMN+1	2440
	TEMP= (AVHX (K)=.1=AVMN (K))/TEMP	
	00 3050 IX=1.NHXHN	2441
	LABAIA AN 2010 TYAT'UMYAN	2442
	• •	2443
	I=IHX(K)+IX	2444
_	IF(I.GT.12)I=I=12	2445
3050	AV(I,K)=AV(ITP,K)=TEMP*THP	2446
С	MEANS FOR MONTHS FOLLOWING DRY SEASON	2447
3060	IF (NHNHX_LT.1)60 TO 3090	2448
	ITP=INN(K)	2449
	TENP=NNNHX+1	2450
	TEHP=(AVMX(K)=,1=AVMN(K))/TEMP	
		2451
	DO 3070 IX=1,NMNMX	2452
	TMP=IX	2453
	ITIMN(K)+IX	2454
	IF(I_GT_12)I=I=12	2455
3070	AV(I,K)=AV(ITP,K)+TEMP*TMP	2456
3080	CONTINUE	2457
	IGN9L=0	
		2458
	IRCONEO	2459
	19CUNEO 60 TO 1730	2459 2460
3100	IRCONTO GR TO 1730 IF(NYRG,LE,O,AND,NPROJ,LE,O,AND,NPA38,LE,1) GD TO 150	2459 2460 2461 *
3100	IRCONTO GD TO 1730 IF(NYRG.LE.C.AND.NPROJ.LE.C.AND.NPA35.LE.1) GD TO 150 * * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * *	2459 2460 2461 * * 2462
3100	IRCONTO GR TO 1730 IF(NYRG.LE.C.AND.NPROJ.LE.C.AND.NPA35.LE.1) GO TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * NINDP=NSTA	2459 2460 2461 * * 2452 2463
3100	IRCONTO GR TO 1730 IF(NYRG.LE.O.AND.NPROJ.LE.O.AND.NPA38.LE.1) GO TO 150 * * * * FLOW GENERATION EQUATIONS & * * * * * * * * * * * * * * NINDP=NSTA NYAR=NSTA+1	2459 2460 2461 * 2462 2463 2463 2464
3100	IRCONTO GR TO 1730 IF(NYRG.LE.C.AND.NPROJ.LE.C.AND.NPA35.LE.1) GO TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * NINDP=NSTA	2459 2460 2461 * * 2452 2463
3100	IRCONTO GR TO 1730 IF(NYRG.LE.O.AND.NPROJ.LE.O.AND.NPA38.LE.1) GO TO 150 * * * * FLOW GENERATION EQUATIONS & * * * * * * * * * * * * * * NINDP=NSTA NYAR=NSTA+1	2459 2460 2461 * 2462 2463 2463 2464
3100	IRCONTO GR TO 1730 IF(NYRG.LE.O.AND.NPROJ.LE.O.AND.NPA35.LE.1) GO TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *	2459 2460 2461 * * 2452 2463 2463 2464 2465
3100	IRCONEO GR TO 1730 IF(NYRG.LE.O.AND.NPROJ.LE.O.AND.NPA38.LE.1) GO TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *	2459 2460 2461 * 2463 2463 2464 2465 2465 2466 2467
3100	IRCONEO GR TO 1730 IF(NYRG.LE.O.AND.NPROJ.LE.O.AND.NPASS.LE.1) GO TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *	2459 2460 2461 * 2463 2463 2464 2465 2465 2466 2467 2468
3100 CP *	IRCONEO GR TO 1730 IF(NYRG.LE.O.AND.NPROJ.LE.O.AND.NPASS.LE.1) GO TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *	2459 2460 2461 * 2463 2463 2465 2465 2465 2465 2466 2466 2466 2466
3100	IRCONED GD TO 1730 IF(NYRG_LE_O_AND_NPROJ_LE_O_AND_NPASS_LE_1) GD TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *	2459 2460 2461 2463 2463 2465 2465 2465 2465 2466 2466 2467 2468 2469 2470
3100 CP *	IRCONEO GD TO 1730 IF(NYRG.LE.O.AND.NPROJ.LE.O.AND.NPA3S.LE.1) GD TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *	2459 2460 2461 2463 2463 2464 2465 2465 2466 24667 2468 2468 2468 2467 2468 2470 2471
3100 CP *	IRCONEO GD TO 1730 IF(NYRG_LE_O_AND_NPROJ_LE_O_AND_NPA3S_LE_1) GD TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *	2459 2460 2461 * 2463 2464 2465 2465 2466 2466 2468 2468 2469 2470 2471 2472000
3100 CP *	IRCONEO GD TO 1730 IF(NYRG_LE_O_AND_NPROJ_LE_O_AND_NPA3S_LE_1) GD TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *	2459 2460 2461 * * 2463 2464 2465 2465 2466 2466 2468 2469 2470 2471 2472000 2473
3100 CP *	IQCUNEO GD TO 1730 IF(NYRG_LE_O_AND_NPROJ_LE_O_AND_NPA3S_LE_1) GD TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *	2459 2460 2461 * 2463 2463 2465 2465 2465 2465 2465 2466 2467 2468 2469 2470 2471 2471 2473 2474
3100 CP *	IQCUNEO GR TO 1730 IF(NYRG.LE.O.AND.NPROJ.LE.O.AND.NPA3S.LE.1) GO TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *	2459 2460 2461 * 2463 2463 2464 2465 2465 2465 2466 2467 2468 2469 2470 2471 2472000 2473 2474 2475000
3100 CP *	IQCUNEO GD TO 1730 IF(NYRG.LE.O.AND.NPROJ.LE.O.AND.NPA3S.LE.1) GD TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *	2459 2460 2461 * 2463 2463 2465 2465 2465 2465 2465 2466 2467 2468 2469 2470 2471 2471 2473 2474
3100 CP *	IQCUNEO GR TO 1730 IF(NYRG.LE.O.AND.NPROJ.LE.O.AND.NPA3S.LE.1) GO TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *	2459 2460 2461 * 2463 2463 2464 2465 2465 2465 2466 2467 2468 2469 2470 2471 2473 2473 2473 2475000
3100 CP *	IQCUNEO GD TO 1730 IF(NYRG.LE.O.AND.NPROJ.LE.O.AND.NPA3S.LE.1) GD TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *	2459 2460 2461 * 2463 2463 2464 2465 2465 2465 2466 2467 2468 2469 2470 2471 2472000 2473 2475000 2476000
3100 CP *	<pre>IQCUNEO GD TO 1730 IF(NYRG.LE.O.AND.NPROJ.LE.O.AND.NPA3S.LE.1) GD TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *</pre>	2459 2460 2461 2463 2463 2465 2465 2465 2466 2467 2468 2467 2468 2469 2470 2471 2472000 2477 2475000 2477 2478
310C CP * C 311C C	<pre>IRCUNEO GD TO 1730 IF(NYRG.LE.O.AND.NPROJ.LE.O.AND.NPASS.LE.1) GD TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *</pre>	2459 2460 2461 2463 2465 2465 2465 2465 2466 2465 2466 2467 2468 2467 2471 2472 00 2477 2475 00 2477 2477 24778 2479
310C CP * C 311C C	IQCUNEO GR TO 1730 IF(NYRG.LE.O.AND.NPROJ.LE.O.AND.NPASS.LE.1) GD TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *	2459 2460 2461 * 2463 2465 2465 2465 2466 2466 2466 2466 2466
310C CP * C 311C C	<pre>IQCUNEQ GR TO 1730 IF(NYRG.LE,0.AND.NPROJ.LE.0.AND.NPA3S.LE.1) GO TO 150 * * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *</pre>	2459 2460 2461 * 2463 2464 2465 2466 2466 2466 2466 2466 2468 2470 2471 247200 2477 2475000 2477 24778 24779 2480 2491000
310C CP * C 311C C	<pre>IQCUN=0 GR TO 1730 IF(NyRG_LE_O_AND_NPROJ_LE_O_AND_NPA3S_LE_1) GO TO 150 * * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *</pre>	2459 2460 2461 * 2463 2464 2465 2465 2466 2465 2466 2466 2466
3100 CP * 3110 C 3120	<pre>IQCUNEQ GD TO 1730 IF(NYRG.LE,0.AND.NPROJ.LE.0.AND.NPA3S.LE.1) GD TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * NINDPENSTA NVARENSTA*1 DD 3200 I=1,12 IP=I=1 IF (IP.LT.1) IP=12 DD 3190 K=1,NSTA DD 3140 L=1,NSTA CORRELATIONS IN CURRENT MONTH IF (L.GE.K) GD TO 3120 R(L,NVAR) = DHLE(RA(I,K,L)) DD 3110 L=L,NSTA LY=LA+NSTA IF (LA.GE.K) R(L,LA) = DHLE(RA(I,L,LA)) IF (LA.GE.K) R(L,LA) = DHLE(RA(I,L,LA)) R(LA.L)=R(L,LA) GD TO 3140 CORRELATIONS WITH PRECEDING MONTH LY=L+NSTA R(L,NVAR) = DHLE(RA(I,K,LX)) DD 3130 LA=L,NSTA R(L,LA) = DHLE(RA(I,K,LA))</pre>	2459 2460 2461 * * 2463 2464 2465 2465 2466 2465 2466 2466 2468 2469 2470 2477 2478 2477 24776000 2477 24778 24779 2478 2479 2480 2481000 2482 2483000
3100 CP * C 3110 C 3120 3130	<pre>IRCONEQ GR TO 1730 IF(NYRG,LE,0_AND,NPROJ,LE.0,AND,NPA3S,LE.1) GD TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *</pre>	2459 2460 2461 * * 2463 2464 2465 2465 2466 2465 2466 2466 2466
3100 CP * C 3110 C 3120 3120 3130 3140	<pre>IQCUN=0 Gn TO 1730 IF(NVRG_LE,0_AND_NPROJ_LE.0_AND_NPA38_LE.1) GD TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *</pre>	2459 2460 2461 * * 2463 2464 2465 2465 2466 2466 2466 2466 2466
3100 CP * C 3110 C 3120 3130	<pre>IQCUN=0 GR TD 1730 IF(NYRG_LE,0_AND_NPROJ_LE.0_AND_NPA3S_LE.1) GD TD 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *</pre>	2459 2460 2461 * * 2463 2464 2465 2465 2466 2465 2466 2466 2466
3100 CP * C 3110 C 3120 3120 3130 3140	<pre>IQCUN=0 Gn TO 1730 IF(NVRG_LE,0_AND_NPROJ_LE.0_AND_NPA38_LE.1) GD TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *</pre>	2459 2460 2461 * * 2463 2464 2465 2465 2466 2466 2466 2466 2466
3100 CP * C 3110 C 3120 3120 3130 3140	<pre>IQCUN=0 GR TD 1730 IF(NYRG_LE,0_AND_NPROJ_LE.0_AND_NPA3S_LE.1) GD TD 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *</pre>	2459 2460 2461 2463 2465 2465 2465 2465 2465 2465 2466 2467 2468 2467 2470 2477 2477 24773 24775000 2477 24779 24770 2477 24779 24830 24830 24830 24832 2483 2483 2483 2483 2483 2483 248
3100 CP * 3110 C 3110 C 3120 3130 3140 C C	<pre>IRCUNEQ GG TO 1730 IF(NYRG.LE.O.AND.NPROJ.LE.O.AND.NPA3S.LE.1) GO TO 150 * * * * FLON GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *</pre>	2459 2460 2461 2463 2465 2465 2465 2465 2465 2465 2466 2467 2468 2467 2470 2477 2477 24773 24775 000 2477 24778 24770 24778 24770 24778 2479 24830 2483 2483 2483 2483 2483 2483 2483 2483
3100 CP * 3110 C 3110 C 3120 3130 3140 C C C	<pre>IRCUNED GP TO 1730 IF(NYRG.LE,0_AND.NPROJ.LE.0_AND.NPA35.LE.1) GD TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *</pre>	2459 2460 2461 2463 2465 2465 2465 24667 24667 24667 24667 24667 24667 24667 24667 24667 24667 24667 24667 24771 00 24771 00 24773 24775 000 24778 24778 24778 24778 24778 24810 2482 2483 2488 2488 2488 2488 2488 2488
3100 CP * 3110 C 3110 C 3120 3130 3140 C C C	<pre>IRCUNED GG TO 1730 IF(NYRG.LE.O.AND.NPRDJ.LE.O.AND.NPA3S.LE.1) GO TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *</pre>	2459 2460 2461 2462 2463 2465 2465 2465 2466 24667 24668 24667 24668 24667 24668 24771 24773 24774 24773 24774 247750000 24778 24779 24779 24810 2482 2483 2483 2483 2485 2488 2488 2488 2488 2489 2490
3100 CP * 3110 C 3110 C 3120 3130 3140 C C C	<pre>IQCUNEQ GG TO 1730 IF(NYRG.LE.0.AND.NPROJ.LE.0.AND.NPA3S.LE.1) GO TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *</pre>	2459 2460 2461 2462 2463 2465 2465 2465 2466 2466 2466 2466 2466
3100 CP * C 3110 C 3120 3130 3140 C C S150	<pre>IPCCUNEQ GG TO 1730 IF(NYRG_LE_0_AND_NPROJ_LE_0_AND_NPASS_LE_1) GO TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *</pre>	2459 2460 2462 2462 2463 2465 2465 2466 24667 24669 24669 24771 00 24773 24773 24773 24773 24775 000 00 24669 24669 24669 2467 24669 244773 24773 24775 000 00 2468 24669 24669 24669 2467 24669 24669 2467 24669 2467 24669 2467 24669 2467 24669 2467 24669 2467 24669 2467 24669 2467 24669 2467 24669 2467 24669 2467 24669 244773 24775 000 00 00 00 00 00 00 00 00 00 00 00 0
3100 CP * C 3110 C 3120 3130 3140 C C S150	<pre>IQCUNEQ GG TO 1730 IF(NYRG.LE.0.AND.NPROJ.LE.0.AND.NPA3S.LE.1) GO TO 150 * * * * FLOW GENERATION EQUATIONS * * * * * * * * * * * * * * * * * * *</pre>	2459 2460 2461 2462 2463 2465 2465 2465 2466 24667 24668 24667 24668 24669 24771 24773 24773 24773 24774 24775 000 24778 24778 24778 24778 24810 2482 2488 2488 2488 2488 2488 2488 2469 2478 2468 2469 2467 2468 2469 2468 2469 2468 2468 2468 2469 2469 2469 2468 2468 2468 2468 2469 2468 2469 2468 2468 2468 2468 2468 2468 2468 2468

	19H DTRHS=, F6.3)		
			2494000
	ITANS=2		2495
	GO TO 1730		2496
317	C IF (DTRHC, GE.O.) GO TO 3180		
	WRITE(6,70)I, X, DTRHC		2497
			2498
_	• 0TR4C=0		2499
318	0 ALCFT(I+K)=(1+=DTRHC)++_5		2500
	IC CONTINUE		
			2501
	IC CANTINUE		2502
C *	* * * * * GENERATE FLOWS * * * * * * * * * * * * * * * * * * *		2543
	IF (NPAS3, LE. 1) GO TO 3240	чя	
731			2504
261	C IF (LSTAT.EG.NSTAT) GD TO 3220		2505
	READ (ISTAT)		2506
	LSTAT=LSTAT+1		
	G0 T0 3210		2507
			2508
355	O HRITE(ISTAT)NSTXX,NSTA,(ISTA(K),K=1,NSTA)		2509
	NGTATENSTAT+1		
	LSTATENSTAT		2510
			2511
	DN 3230 K=1, NATA		2512
	HPITE(ISTAT) ISTA(K), (AV(I,K), SD(I,K), SKEH(I,K), DG(I,K),		2513
	1 (9ETA(I,K,L),L=1,NSTA),ALCFT(I,K),I=1,12)		
7 2 7	Q NSTATENSTAT+1		2514
263			2515
	LSTATENSTAT		2516
	IF(IPA33.LT.NPA33) GD TO 200		2517
324			
			2518
	IPA85=1		2519
	N=Q		2520
	HAZO .		
	IF (NPROJ_LE.0) GO TO 3310		2221
			2522
ព្ភ 🛪	* * * * PROJECTED FLOW SEQUENCES * * * * * * * * * * * * * *	* *	2523
325(C JAHIYRDJUIYRA		2524
	NJELYRPJOTYRA		
			2525
	1THP20		2526
	1=HTHM1=LQHTH=1	:	2527
	IF(ITP_NE_0) GO TO 3260		2528
	1199212		
		i	2529
3260	: IF (ITP_LT_1) ITP=ITP+12	i	2531
	MA=(JA=1)+12+ITP+1=ITMP		2532
	DD 3290 K=1, NSTA		
	IF (SD(ITP,K),E0.0,.0R.HA,E0.1) GD TO 3200		2533
		ā	2534
	TEMP#ALOG(O(H4,K)+D9(ITP,K))*+4342945	ā	2535
	DPREV(K)=(TEMP+AV(ITP,K))/SD(ITP,K)		2536
	IF (SKEN(ITP,K).E0.0.) GU TO 3290		
			2537
	TEMP#,5*SKEW(ITP,K)*QPREV(K)+1.	è	2538
	THP=1.	2	1539
	IF (TEHP.GE.O.) GO TO 3270		540
	TEMP= (-TEMP)		
		Z	2541
	THP=(-TMP)	ā	2542
3270	□ □PREV(K)=6.*(TNP*TEMP**(1./3.)=1.)/SKEW(ITP+K)+SKEW(ITP+K)/6.		543
	Gn TN 3290		544
7794	DAREA(K)=0		
	•		1545
3580	CONTINUE	2	546
	Jx=IYRPJ=1	2	547
c	N = SEQUENCE NO., H = MONTH NO., JX = YEAR NC.		548
2000			549
	GO TO 3330	2	550
С	START WITH ZERC DEVIATION AT ALL STATIONS		551
	Dh 3320 K=1,KGTA		-
			552
	0=F2V(X)=0=		553
C	GENERATE 2 YEARS FOR DISCARDING	5	554
	N 1=2		555
	7×==5		· · •
			536
333C	IF (NPASS, LE.1) GO TO 3400	5	557
	IF(IPASS.GT.1) GO TO 3340	2	558
	RENIND ISTAT		559
	NCTAPEQ		560
	ISTAPBO	2	561
3340	REWIND IGTAP		562
	LOTÁPRO		563
	READ(ISTAT)NSTXX, NSTA, (ISTA(X), KR1, NSTA)		584
	Naty=Nstyx=1	3	565
			556
	IF (NSTX.LE.O) GO TO 3380		556

	ITPANJA12+1 Dr. 3370 ka1,N8TX	2567
	IF(IPASS_LE.1) GD TD 3360	2568
2290	PEAD(INTAP) ITEMP,(0(M,K),N=2,ITP)	2589
10.10	LOTAP=LOTAP=1	2570
	IF(ITEHP_NE_ISTA(K)) GU TO 3350	2571
3360	EAD(ISTAT) IP, (AV(I,K), SD(I,K), SKEW(I,K), DQ(I,K), (BETA(I,K,L),L#1	2572
	1,NSTA), ALCET(I,K), I=1,12)	
3370	CONTINUE	2574
	DO 3390 KENSTXX, NSTA	2575
	ISTAP=ISTAP+1	2576 2577
	IF (N.GT.O) REPEVIKIEDSTARITSTARY	5850
3390	READ (ISTAT) IP, (AV(I,K), SD(I,K), SKEW(I,K), DA(I,K), (BETA(I,K,L),L=1	2570
	JANSTAJAALUFTETAKJAIHIA123	3540
CR *	* * * * GENERATE CORRELATED STANDARD DEVIATE * * * * * * * * * * * * * * * * * * *	2581
3400	IF (IPASS.EQ.1) JXTHP#JX	2582
	NCCHB=HCCHB(IPASS)	
	NTNDH#HTNDH(IPASS)	
	ON 3420 KF1,USTA	2583
	0n 3410 I=1,12	2584
	$A \vee G(I,K) = 0$	2585
	SDV(I,K)=0.	2586
	CONTINUE	2587
3420	CONTINUE	2588
	IF(N_LE_0) GO TO 3440	2589
	WAITE (6,10)	2590
3/130	HRITE (6,3430) N Format (27h generated flows for period,13)	2591
J 4.2 U	IF (NPASS.GT.1) WRITE (6,2650) IPASS	2592000
3640		2593
1440		2594
		2595 2596
		2597
		2598
	Bu The set wash	2599
3450	and an and the second	5000
346C	IP (HILE MA) GD TO 3500	2601
		5605
C		2503
		2604
		2505
		2606
3470		2607
		8098
7000		2609
3800		2610
	Charles and a construction of the community of the commun	2611
	and a second	2612
		2613 2614
3490		2615
		2616
		2617
		2618
3520	IF (LATAP, ED, NOTAP) GD TO 3530	2619
	READ (IGTAP)	5950
	LOTAP=LOTAP+1	2621
		2622
3530		2623
	ISTAPHISTAPHNSTAANSTX	2624
		2625
		2626
	•	2627 2628
		2629
3540	05TAP(13TAP)=0(ITP ₃ K)	2630
3550		2631
		* 5535
	IF (NJ+JXTMP.GT.0) WRITE(6,2660) (HO(I),I=1,12)	2633 *
	D0 3560 I=1,12	2634
	AVG (I.K) = AVG (T.K) / ANI DC	2635
	50 V (I+K) = ((3DV (I,K) + AVG (I,K) + #2+AKLDG) / ANLDG) ##,5	2636

350	O CONTINUE		2638	
	JXZJXTHP		2640	
	Dn 3660 J≓JA,NJ		2641	
	JX=JX+1		2642	
	M=12*J=11		2643	
	IF (JX.LE.0) GO TO 3660		2644	
	ITP=0			
	D0 3650 1=1,12		2645	
	H=H+1		2645	
	IF (M.LE.MA) GO TO 3640		2647	
С	TRANSFORM TO LOG PEARSON TYPE III VARIATE (FLOW)		2648	
	TMPESKEW(I.K)		2649	
	IF (ANLOG. GT. 19. AND. SDV (I, K). GT. 0.)		2650	
	3 Q(H,K)=(O(H,K)=AVG(I,K))/SDV(I,K)			
	IF (TMP.E0.0.) GO TO 3600			
С			2651	
L.	THP=((TMP*(Q(H,K)=TMP/6,)/6,+1,)**3 =1,)*2,/TMP TEMP=(=2,)/9KEH(I,K)	WITHDREW	2652	*
	THE ((THE (N(C), K) - THE /6.) /6.+1.) **3 -1.)*2./THE		2653	
			2654	
	IF (SKEW(I,K)) 3580,3600,3590		2655	
3540	IF (THP.GT.TEHP) THPETEMP		2656	
	GO TO 3610		2657	
359(IF (TMP.LT.TEMP) THPETENP		2658	
	GO TO 3610			
3600	TNPED(M,K)		2659	
	IF (TMP.GT.2. AND.SD(I,K).GT. 3) THP=2.+(TMP-2.)*.3/SD(I,K)	1	2660	
	THP=TNP*SD(I,K)+AV(I,K)		2661	
	9(H,K)=10,**TMP=DQ(I,K)		5992	
			2663	
	ITHP=NSUM(K, IPASS)			
	IF (ITMP.LE.C) GO TO 3630			
	TEMPEO		2666	
	00 3620 L=1,ITHP		2667	
	LX=IST(K,L,IPASS)		2307	
3650	TEHP=TEHP+Q(H,LX)		2669	
	IF (Q(M,K) LT. TEMP) Q(M,K) =TEMP			
3630	IF (0 (M,K) .LT.0. AND.QMIN (I,K) .GE.0.) 0(H,K)=0.		2670	
3600	ID (I) 40 (M ₂ K) + ₆ 5		2671	
2040			5925	
7/80	ITP#[TP+IG(I)		2673	
	CONTINUE		2674	
C		WITHOREW	2675	
	ID(13)4ITP		2676	
<i></i>	HRITE (6,100) ISTA(K), JX, (IG(I), I=1,13)		2677	
	IF (1PCH9.LE.0)GD TO 3660		2678	
	WFITE(7,2730) ISTA(K), JX, (IQ(I), I=1,12)			
3660	CONTINUE		2679	
	CONTINUE		2680	
	IF (NCEMB_LE.O) GO TO 3720		2681	
			5995	
	DD 3710 J=J4,NJ		2643	
			2073	
	H=12+J=11		2684	
	00 3700 I=1.12			
	Dn 3700 1=1.12 H=M+1		2684	
с	DO 3700 I=1.12 H=M+1 COMPUTE CONDINATION FLOWS		2684 2685	
С	Dn 3700 1=1.12 H=M+1		2684 2685 2686 2687	
C	DO 3700 I=1.12 H=M+1 COMPUTE CONBINATION FLOWS DO 3690 KX=1,NCOH8		2684 2685 2686 2687 2688	
С	DD 3700 I=1.12 H=M+1 COMPUTE CONBINATION FLOWS DD 3690 KX=1,NCOH8 K=KX+NSTA		2684 2685 2686 2687	
С	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS Do 3690 Kx=1,NCOH8 K=KX+NSTA ITP=NSTAC(KX,IPASS)		2684 2685 2685 2687 2688 2689	
С	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOH8 K=KX+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0.		2684 2685 2685 2687 2687 2689 2689	
С	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOH8 K=KY+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0, DD 3680 L=1,ITP		2684 2685 2685 2687 2688 2689	
a	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOH8 K=KY+NSTA ITP=NSTAC(KX,IPASS) 9(H,K)=0. DO 3680 L=1.ITP ITEMP=KSTAC(KX,L,IPASS)		2684 2685 2685 2687 2687 2689 2689	
3680	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOH8 K=KY+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0. DO 3680 L=1.ITP ITEMP=KSTAC(KX,L,IPASS) G(H,K)=G(H,K)+G(H,ITEMP)+CSTAC(KX,L,IPASS)		2684 2685 2685 2687 2687 2689 2689	
3680 3690	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 Kx=1,NCOM8 K=KY+NSTA ITP=NSTAC(KX,IPASS) 9(H,K)=0, DO 3680 L=1,ITP ITEMP=KSTAC(KX,L,IPASS) O(M,K)=0(M,K)+0(M,ITEMP)+CSTAC(KX,L,IPASS) CONTINUE		2684 2685 2685 2687 2687 2689 2689	
3680 3690 3700	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOM8 K=KY+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0. DO 3680 L=1,ITP ITEMP=KSTAC(KX,L,IPASS) G(M,K)=0(M,K)+G(M,ITEMP)*C3TAC(KX,L,IPASS) CONTINUE		2684 2685 2685 2687 2688 2689 2689 2691 2692	
3680 3690 3700 3710	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NGOH8 K=KY+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0, DO 3680 L=1,ITP ITEMP=KSTAC(KX,L,IPASS) G(M,K)=0(M,ITEMP)+C3TAC(KX,L,IPASS) CONTINUE CONTINUE CONTINUE		2684 2685 2685 2687 2687 2689 2689 2689 2692	
3680 3690 3700 3710	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOMB K=KY+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0. DO 3680 L=1.ITP ITEMP=KSTAC(KX,L,IPASS) G(M,K)=0(M,ITEMP)+C3TAC(KX,L,IPASS) CONTINUE CONTINUE CONTINUE IF(N,LT.NPR0J) SO TO 3250		2684 2685 2685 2687 2687 2689 2689 2691 2692 2693 2695	
3680 3690 3700 3710 3720	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOMB K=KY+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0. DO 3680 L=1.1TP ITEMP=KSTAC(KX,L,IPASS) G(M,K)=G(M,K)+G(M,ITEMP) +CSTAC(KX,L,IPASS) CONTINUE CONTINUE CONTINUE CONTINUE IF(N,LT.NPROJ) GO TO 3250 IF(NYMXG,LE.0)GO TO 3800		2684 2684 2685 2686 2687 2689 2689 2699 2699 2699 2699 2699 2699	
3680 3690 3700 3710 3720	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOMB K=KY+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0. DO 3680 L=1.1TP ITEMP=KSTAC(KX,L,IPASS) G(M,K)=G(M,K)+G(M,ITEMP) +CSTAC(KX,L,IPASS) CONTINUE CONTINUE CONTINUE CONTINUE IF(N,LT.NPROJ) GO TO 3250 IF(NYMXG,LE.0)GO TO 3800		2684 2684 2685 2686 2687 2689 2689 2699 2699 2699 2699 2699 2699	
3680 3690 3700 3710 3720 C9 * *	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOMB K=KY+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0. DO 3680 L=1.1TP ITEMP=KSTAC(KX,L,IPASS) G(M,K)=G(M,K)+G(M,ITEMP)+CSTAC(KX,L,IPASS) CONTINUE CONTINUE CONTINUE CONTINUE IF(N,LT.NPROJ) GO TO 3250 IF(NYMXG_LE.0)GO TO 3400 * * * * MAX AND MIN GENERATED FLOWS * * * * * * * * *	* * * * *	2684 2685 2685 2686 2687 2688 2689 2692 2692 2693 2695 2697 2699 2699 2699 2699 2699 2699 2699	
3680 3690 3700 3710 3720 CS * *	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOMB K=KY+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0. DO 3680 L=1.1TP ITEMP=KSTAC(KX,L,IPASS) G(M,K)=G(M,K)+G(M,ITEMP)+CSTAC(KX,L,IPASS) CONTINUE CONTINUE CONTINUE CONTINUE IF(N,LT.NPROJ) GO TO 3250 IF(NYMXG_LE.0)GO TO 3800 * * * * MAX AND MIN GENERATED FLOWS * * * * * * * * IF(JX_LE.0)GO TO 3870	* * * *	2684 2685 2685 2686 2687 2688 2689 2691 2692 2693 2695 2697 2699 2699 2699 2699 2699 2699 2699	
3680 3690 3700 3710 3720 C9 * *	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOMB K=KY+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0. DO 3680 L=1.TP ITEMP=KSTAC(KX,L,IPASS) G(H,K)=0(H,K)+G(H,ITEMP)+CSTAC(KX,L,IPASS) CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE IF(N,LT.NPROJ) SO TO 3250 IF(NYMXG.LE.0)GO TO 3400 * * * * MAX AND MIN GENERATED FLOWS * * * * * * * * * IF(JX.LE.0)GO TO 3870 SKIP HAXMIN IF REMAINING YEARS INSUFFICIENT	* * * *	2684 2685 2685 2687 2689 2689 2698 2698 2698 2698 2699 2699	
3680 3690 3700 3710 3720 C9 * *	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOMB K=KY+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0. DO 3680 L=1.1TP ITEMP=KSTAC(KX,L,IPASS) G(M,K)=G(M,K)+G(M,ITEMP) *CSTAC(KX,L,IPASS) CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE IF(NYMXG_LE.0)GO TO 3250 IF(NYMXG_LE.0)GO TO 3250 IF(X=LE.0)GO TO 3870 SKIP MAXMIN IF REMAINING YEARS INSUFFICIENT IF(JX.EE.0,AND.NJ.LT.NYMXG)GO TO 150	* * * *	2684 2685 2686 2687 2688 2689 2689 2699 2699 2699 2699 2699	
3680 3690 3700 3710 3720 C9 * *	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOMB K=KY+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0. DO 3680 L=1.ITP ITEMP=KSTAC(KX,L,IPASS) G(M,K)=0(M,K)+G(M,ITEMP)*CSTAC(KX,L,IPASS) CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE IF(N+KG,LE.0)GO TO 3250 IF(NYNXG,LE.0)GO TO 3800 * * * MAX AND MIN GENERATED FLOWS * * * * * * * * * * IF(JX.LE.0)GO TO 3870 SKIP MAXMIN IF REMAINING YEARS INSUFFICIENT IF(JX.GT.0.AND.NJ.LT.NYMXG)GO TO 150 ITRNS=0	* * * *	2684 2685 2685 2686 2687 2688 2689 2691 2692 2693 2693 2693 2693 2693 2693 2693	
3680 3690 3700 3710 3720 CS * * C 3730	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOM8 K=KY+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0. DO 3680 L=1,ITP ITEMP=KSTAC(KX,L,IPASS) G(M,K)=0(M,K)+G(M,ITEMP)*CSTAC(KX,L,IPASS) CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE IF(NYMXG_LE.0)GO TO 3250 IF(NYMXG_LE.0)GO TO 3400 * * * MAX AND MIN GENERATED FLOWS * * * * * * * * * IF(JX_LE.0)GO TO 3870 SKIP HAXMIN IF REMAINING YEARS INSUFFICIENT IF(JX_GT_0_AND_NJ_LT_NYMXG)GO TO 150 ITRNS=0 ITP=NSTA+NCOMB	* * * *	2684 2685 2686 2687 2688 2689 2689 2699 2699 2699 2699 2699	
3680 3690 3700 3710 3720 CS * * C 3730	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOMB K=KY+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0. DO 3680 L=1,ITP ITEMP=KSTAC(KX,L,IPASS) G(M,K)=G(M,K)+G(M,ITEMP)+C3TAC(KX,L,IPASS) CONTINUE CONTINUE CONTINUE CONTINUE IF(N_LT_NPROJ) GO TO 3250 IF(NYMXG_LE.0)GO TO 3250 IF(NYMXG_LE.0)GO TO 3250 IF(NYMXG_LE.0)GO TO 3250 IF(JX_LE.0)GO TO 3870 SKIP HAXMIN IF REMAINING YEARS INSUFFICIENT IF(JX_GT_0_AND_NJ_LT_NYMXG)GO TO 150 ITP=NSTA+NCOMB DO 3600 K=NSTXX,ITP		2684 2685 2685 2686 2687 2688 2689 2691 2692 2693 2693 2693 2693 2693 2693 2693	
3680 3690 3700 3710 3720 CS * * C 3730	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOM8 K=KY+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0. DO 3680 L=1,ITP ITEMP=KSTAC(KX,L,IPASS) G(M,K)=0(M,K)+G(M,ITEMP)*CSTAC(KX,L,IPASS) CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE IF(NYMXG_LE.0)GO TO 3250 IF(NYMXG_LE.0)GO TO 3250 IF(JX.GT.0.AND.NJ.LT.NYMXG)GO TO 150 ITRNS=0 ITP=NSTA+NCOMB		2684 2685 2685 2686 2687 2688 2689 2689 2699 2699 2699 2699 2699	
3680 3690 3700 3710 3720 CS * * C 3730 C	DO 3700 I=1.12 H=M+1 COMPUTE COMBINATION FLOWS DO 3690 KX=1,NCOMB K=KY+NSTA ITP=NSTAC(KX,IPASS) G(H,K)=0. DO 3680 L=1,ITP ITEMP=KSTAC(KX,L,IPASS) G(M,K)=0(M,K)+G(M,ITEMP)+C3TAC(KX,L,IPASS) CONTINUE CONTINUE CONTINUE CONTINUE IF(N_LT_NPROJ) GO TO 3250 IF(NYMXG_LE.0)GO TO 3250 IF(NYMXG_LE.0)GO TO 3250 IF(NYMXG_LE.0)GO TO 3250 IF(JX_LE.0)GO TO 3870 SKIP HAXMIN IF REMAINING YEARS INSUFFICIENT IF(JX_GT_0_AND_NJ_LT_NYMXG)GO TO 150 ITP=NSTA+NCOMB DO 3600 K=NSTXX,ITP		2684 2685 2685 2686 2687 2688 2689 2699 2699 2699 2699 2699 2699	

79/10) Cup (4	
C 3740	SHO(I,K)=T	2709
C	HIN CALENDAR HE 16-27, MIN MO 28, 6+40 29, 54+40 30	
3750	SHQ(I,K)=T	2711
C	THP = 6+H0, TEMP = 54+H0 VOLUME, THPA = 1=H0	2712
•	TEMPED,	2713
	TMP=0	2714
	AVGD(K)=0.	2715
	Np=0	2716 2717
	ria <u>i</u>	2718
	IF(ITRNS.GT.0) M=(N=1)+MXRCS+12+1	2719
	Dn 3790 J=1, NJ	2720
	Dn 3780 I=1,12	2721
		2722
		2723
	TMPA=0(M,K) AVG0(K)=AVG0(K)+TMPA	2724
	NCHNC+1	2725
	IF (THPA.GT.SHQ(I,K))SNQ(I,K)=THPA	2726
	IF(TKPA,LT,SHQ(IX,K))SHQ(IX,K)=THPA	2727
	IF (THPA.GT.SHO(13,K))SHO(13,K)=THPA	2728
	IF (TMPA,LT,SHQ(28,K))SHQ(28,K)=THPA	2729 2730
	THP=THP+THPA	2731 \
	TEMPETEMP+TNPA	2732
	IF(M_LT_8)G0 T0 3760	2733
	THP=THP=D(H=6,X)	2734
	IF(TMP.GT.SMQ(14,K))SMO(14,K)=TMP	2735
	IF(TMP_LT_3NO(29,K))SMC(29,K)=TMP	2736
	IF(M.LT.56)GD TO 3770 TEMP=TEMP=Q(M=54.K)	2737
	IF (TEMP.GT.SMR(15,K))SMR(15,K)=TEMP	2738
	IF (TEMP_LT_SMA(30,K))SMA(30,K)=TEMP	2739
	GN TO 3780	2740
3760	5H9(14,K)=TMP	2742
3770	SHR(15,K)=TEHP	2743
•	CONTINUE	2744
	CONTINUE	2745
C	AVERAGE MONTHLY FLOW	2746
	TEMP=NO AVGO(K)=AVGO(K)/TEMP	2747
3800	CONTINUE	2748 2749
2000	HPITE (6.10)	2750
	IF (ITRNS.GT. D) WRITE (6, 3810) N, NJ	2751
3810	FORHAT (/27H MAXIMUM VOLUMES FOR PERIOD, 13, 3H OF, 14,	2752000
1	42H YEARS OF RECORDED AND RECONSTITUTED FLOWS)	2753000
	IF (TTRNS.LE.O) WRITE (6, 3820) N, NJ	2754
	FORMAT (/27H MAXIMUM VOLUMES FOR PERIOD, 13, 3H OF, 14,	2755000
	25H YEARS OF SYNTHETIC FLOWS)	2756000
	HΦITE(6,810)(HO(I),I=1,12) ITF=N8TA+NCOMÜ	2757
	DD 3840 KENSTXX,ITP	2758
	ITEHPRAYGR(K)+.5	2760
	On 3830 I=1,15	2761
	19(T)=SH0(1,K)+.5	2762
	wpite(6,840)iStA(K),(IQ(I),I=1,15),ITEMP	2763
	CONTINUE	2764
	WRITE(6,850)	2765
	WPITE(6,810)(MO(I),I=1,12) Dn 3860 k=NSTXX,ITP	2766
	00 3850 I=1,15	2767 2768
	In([]====================================	2769
	WRITE(6,840)ISTA(K),(IU(I),I=1,15)	2770
	CONTINUE	2771
C	TRANSFER BACK TO RECONSTITUTED FLOWS	2772
	IF(ITRNS.GT.0)60 TD 2920	2773
	NJ = NYMXG	2774
	Gn T0 3890	2775
	NJ = KYR IF(NPASS_LE_1) GO TO 3900	2776
	IF(NPASS_LE_1) OU IU 3900 TPASS=1PASS+1	2777 2778
	IF(N_E9.0,AND,IPASS,LE,APASS) GO TO 3310	2779
	IF (IP453 LE NPASS) GO TO 3340	2780
	· · · · · · · · · · · · · · · · · · ·	

	IPA33=1		
	C G	0 TO NEW JOB	2781 2782
	3900 IF (NYRG.LE	.0) GD TD 150	2783
	LFENJ_GT_N Nyrg=Nyrg=	YZG)NJ=NYRG	2784
	GO TO 3300		2785
	END		2786
	SUBROUTINE	CROUT(RX)	2787
	DIMENSION :	8(10), A(10,11), AX(10,11)	1001 1002
	DAUBLE PREI	CIGION R, B, RX	1003
	COMMON OTR: Nyar=nindp-		1004
	D0 20 J=1.		1005
	8(J)=0.	ν = 33 = <u>1</u>	1006
	01 10 K=1.1	NVAR	1007 1008
	10 R(J.K)=RX(J	J+K)	1009
	20 CONTINUE	r.1)50 T9 30	1010
	8(1)=R(1,2)	161764 (U.SQ) 1787(1.1)	1011
	DTRNC=9(1) +		. 1012
	RETURN		1013 1014
(EPIVED MATRIX **********	* 1015
	30 00 40 KS2,N 40 8(1,K)=8(1,	4 Y H	1016
	DO 80 K=5'N		1017
	ITP=K+1	1913198.	1018
	DO 60 3=K,N		1019
	00 50 I=1,I	Τ p	1020 1021
			1055
	IF(J.EQ.K)	K) →R (J,L) *R (L,K)	1023
	R(K.J)=R(J.		1024
	SC CONTINUE		1025
	00 70 I=1,I	TP	1025 1027
		the strength man second states a	1028
	TEMP=DABS(R	$(K, NVAR) \Rightarrow R(L, NVAR) \Rightarrow R(K, L)$	1029
	IF (TEMP_RT_	.090001) G0 T0 80	1030
	0TRMC=1.5	90-70-70 00 10 00	1031 1032
	RETURN	_	1032
~	PC R(KANVAR) RR	(K, NVAR)/R(K,K)	1034
C	5(NINOP)=R(5	CK SDLUTION * * * * * * * * * * * * * * * * * * *	1035
	DO 100 1=2,4		1036
	J=NYAR=I		1037 1038
	1x=1-1		1038
	B(J)=R(J,NVA	1R)	1040
	D∩ 90 L⊒1,IX K⊐J+L		1041
	90 #(J)=8(J)=8((K)#8(J.K)	1042
	100 CONTINUE		1043 1044
	DTRHC=0.		1045
	00 110 J=1,N	INOP	1046
	110 DTAHC=DTRHC+ RETURN	B(J)*RX(J,NVAR)	1047
	END		1048
	FUNCTION RNG	EN(IX)	1049 1001
Ç	RANDOM NUMBE	R SUBROUTINE FOR A BINARY HACHINE	1002
C	GENERATES IN	IFCRM RANDON NUMBERS IN THE INTERVAL O TO 1	1003
с С	ARRNGEN(IX)	E IS AS FOLLOWS	1004
с с с		INITIALIZED TO ZERO IN THE PROGRAM	1005
Ċ	IARG CAN BE	ANY LARGE, COD INTEGER	1006 1007
Ç	CONSTANTS HU	ST BE COMPUTED BY FOLLOWING EQUATIONS	1008
C C	* * * * ICO: * * * * ICO:	x * * * 5 + ((8+1)/2))+3 * * * *	1009
c			1010
č	WHERE SE NUMP	RER OF BITS IN THE INTEGER WORD	1011
Ċ			1012
	DATA IARG/759		1014
	IF(IARG.EQ.I) IX=IARG	ki on in 10	1015
	******		1016

=26=

17#1X	
ICON1=16777219	1017
	1018
10 IV=IV*ICON1	1019
ICON22281474976710655	
IF(IY,LT.0) [Y=IY+ICON2+1	10201
	1021
RNGENETY	
FC0N3=,3552713678E=14	2501
	1023
RNGEN=RNGEN*FCON3	1024
RETURN	
END	1025
	1026

EXHIBIT 7

INFUT DATA 723-X6-L2340

CARD	VARIABLE	COMMENTS
Α		Three title cards, first must have A in column 1.
В		First specification card.
	 IYRA IMNTH IANAL MXRCS MXRCS NYRG NYRG NYMXG NYMXG NPASS IPCHQ IPCHS NSTA 	 Earliest year of record at any station. Calendar month number of first month of water year. Indicator, positive value calls for statistical analysis routines. Number of years in each period of recorded and reconstituted flows for which maximum and minimum values are to be obtained, dimensioned for 100. Total number of years of hypothetical flows to be generated. Number of years in each period of generated flows which maximum and minimum values are to be obtained, dimensioned for 100. Total number of years of hypothetical flows to be generated. Number of years in each period of generated flows which maximum and minimum values are to be obtained, dimensioned for 100. Number of consecutive passes, each pass consisting of a new group of stations which can be correlated with specified stations in previous passes, dimensioned for 5. Indicator, positive value calls for writing recorded and reconstituted flows and generated flows on Tape 7. Indicator, positive value calls for writing statistics on Tape 7. Number of stations at which flows are to be generated,
		not required if flow data are supplied. NSTA + NCOMB (C-1) dimensioned for 10.
С		Second specification card.
	1. NCOMB	- Number of combinations of stations, the totals of which are used to obtain maximum and minimum flows, dimensioned for 2 If positive provide D and E conde
	 NTNDM NCSTY 	 dimensioned for 2. If positive, provide D and E cards. Number of tandem situations, compares sum of monthly values of upstream stations with downstream station and adjusts if value is less than sum and that station's value has been estimated or generated, dimension for 10. If positive, provide F card. Number of consistency tests. Adjusts standard deviation of a dependent station in tandem with an independent station to prevent frequency curves from crossing, dimensioned for 10. If positive, provide G card.

EXHIBIT 7

CARD	VAF	TABLE		COMMENTS
C (Cont'd	1)			
	4.	IGNRL	62	Indicator, + 1 calls for reading generalized stat- istics and using for generation, + 2 calls for com- puting generalized statistics from flow data and using for generation.
	5.	NPROJ	-	Number of projections of future flows from present conditions, usually 0.
	6.	IYRPJ	-	Year of start of each projection.
	7.		-	Calendar month of start of each projection.
	8.	LYRPJ		Last year of each projection, number of recorded and reconstituted years plus number of projected years dimensioned for 100.
D			•	Identification of combination, NCOMB (C-1) sets of D and E cards.
	1.	NSTAC	66)	Number of stations in this combination, dimensioned for 10.
	2.	ISTAC		Station number (NSTAC values).
E				Combining coefficients, NCOMB (C-1) sets of D and E cards.
		NSTAC CSTAC	-	Same as D-1. Coefficient of flow used for adding, corresponds to respective items in D-2.
F				Identification of tandem situation, NTNDM (C-2) cards.
	1. 2. 3.	istn NSMX Istt		Station number of downstream station. Number of upstream stations, dimensioned for 10. Station number of upstream station (NSMX values).
G				Identification of consistency test, NCSTY (C-3) cards.
		ISTX ISTY		Independent station number. Dependent station number.
H				Flow data, cards in any order, omit if IANAL (B-3) is not positive, follow all flow data cards by 1 blank card (I card).
		Cols 2-4, Cols 5-8,		ation number ar number.

2

EXHIBIT 7

CARD VARIABLE

~~~

COMMENTS

| CARD      | VARIABLE                 | COMMENTS                                                                                                                                                                                                                                                                                                              |
|-----------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H (Cont'd | 1)                       |                                                                                                                                                                                                                                                                                                                       |
|           | selected s               | 15-20, etc., Flow in desired units. Units should be<br>o generated flows will not exceed 999,999. Use -1 for<br>cord. If record for entire year is missing, omit card<br>ear.                                                                                                                                         |
| I         |                          | Card blank after Col 1 to indicate end of flow data, omit if IANAL (B-3) is not positive.                                                                                                                                                                                                                             |
| J         | 1. NCOMB                 | <ul> <li>Identification of stations in previous passes to be used in current pass, supply only if NPASS (B-7) is greater than 1. The variables NCOMB, NTNDM, and NCSTY apply to the current pass only.</li> <li>Number of combinations of stations, the totals of .</li> </ul>                                        |
|           | 2. NTNDM                 | <ul> <li>which are used to obtain maximum and minimum flows,<br/>dimensioned for 2. If positive, provide D and E cards.</li> <li>Number of tandem situations, compares sum of monthly<br/>values of upstream stations with downstream station<br/>and adjusts if value is less than sum and that station's</li> </ul> |
|           | 3. NCSTY                 | value has been estimated or generated, dimension for 10.<br>If positive, provide F card.<br>Number of consistency tests. Adjusts standard deviation<br>of a dependent station in tandem with an independent<br>station to prevent frequency curves from crossing,                                                     |
|           | 4. NSTX -                | dimensioned for 10. If positive, provide G card.<br>Number of stations from previous passes which are to<br>be used with the additional data in current pass as a<br>means of maintaining consistent flows between groups of<br>stations, number of stations from previous passes                                     |
|           | 5. ISTA -                | plus number of new stations dimensioned for 10.<br>Station number of station in a previous pass which is<br>to be used in current pass (NSTX values). Must be<br>in same order as stations first appear.                                                                                                              |
| K         | follow d<br>of J, H,     | a for current pass supplied as described for H card and<br>ata with a blank card (I card), supply NPASS-1 sets<br>and I cards (also D,E,F, and G, if necessary) when<br>eater than 1.<br>Preceding-month correlation coefficients for first<br>station, omit if IANAL (B-3) is positive (NSTA cards).                 |
|           | 1. ISTA(K)<br>2. ISTA(L) | <ul> <li>Cols 2-4, Number of first station.</li> <li>Cols 5-8, Number of station from 1 to NSTA (B-10) on successive cards. If IGNRL (C-4) = 1, only first card is used.</li> </ul>                                                                                                                                   |
|           | 3. RA(I,K,LX)            | - Cols 9-14, 15-20, etc., Correlation coefficients for<br>successive months between flows at first station and<br>preceding-month flows at stations from 1 to NSTA (B-10)<br>on separate cards. If IGNRL (C-4) = 1, only general-<br>ized coefficient (in cols 9-14) is given.                                        |

| CARD           | VAF | RIABLE      |     | COMMENTS                                                                                                                                                                                                                                        |
|----------------|-----|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Γ <del>×</del> |     |             |     | Current-month correlation coefficients, omit if LANAL (B-3) is positive, (NSTA-1) pairs of L and M cards.                                                                                                                                       |
|                |     | . ISTA(K)   |     | Cols 2-4, Number of station, progressing from $K = 2$ through NSTA (B-10) stations on different sets of L and M cards.                                                                                                                          |
|                |     | . ISTA(L)   |     | Cols 5-8, Number of station, progressing on different cards through all stations from $L = 1$ to K-1.                                                                                                                                           |
|                | 3   | . RA(I,K,L) | -   | Cols 9-14, 15-20, etc., Correlation coefficient for<br>each successive calendar month between flows at station<br>K and concurrent flows at station L (12 items). If<br>IGNRL (C-4) = 1, only generalized coefficient in cols<br>9-14 is given. |
| M*             |     |             |     | Preceding-month correlation coefficients for remaining stations, omit if IANAL (B-3) is positive. Paired with L card.                                                                                                                           |
|                | 1.  |             | -   | Cols 2-4, Same station number as on corresponding L card (L-1).                                                                                                                                                                                 |
|                | 2.  | - (- )      |     | Cols 5-8, Number of station, progressing in same order<br>on different cards through all stations from $L = 1$ to<br>NSTA (B-10). If IGNRL (C-4) = 1, only card with $L = K$<br>is used.                                                        |
|                | 3.  | RA(I,K,LX)  | ) - | Cols 9-14, 15-20, etc., Correlation coefficient for each successive calendar month between flows at station K and flows in preceding month at station L (12 items). If IGNRL $(C-4) = 1$ , only generalized coefficient in Cols 9-14 is given.  |
| Ν              |     |             |     | Generalized frequency statistics, omit if IANAL (B-3) is positive or IGNRL (C-4) does not equal 1.                                                                                                                                              |
|                | 1.  | ISTA(K)     | -   | Cols 2-8, Station number for NSTA (B-10) stations on successive cards in same order as supplied by L cards (L-1).                                                                                                                               |
|                | 2.  | AVMX(K)     | -   | Cols 9-14, Average mean logarithm for wet season (3 months).                                                                                                                                                                                    |
|                | 3.  | AVMN(K)     | -   | Cols 15-20, Average mean logarithm for dry season (3 months).                                                                                                                                                                                   |
|                | 4.  | SDAV(K)     |     | Cols 21-26, Average standard deviation for the 12 months.                                                                                                                                                                                       |

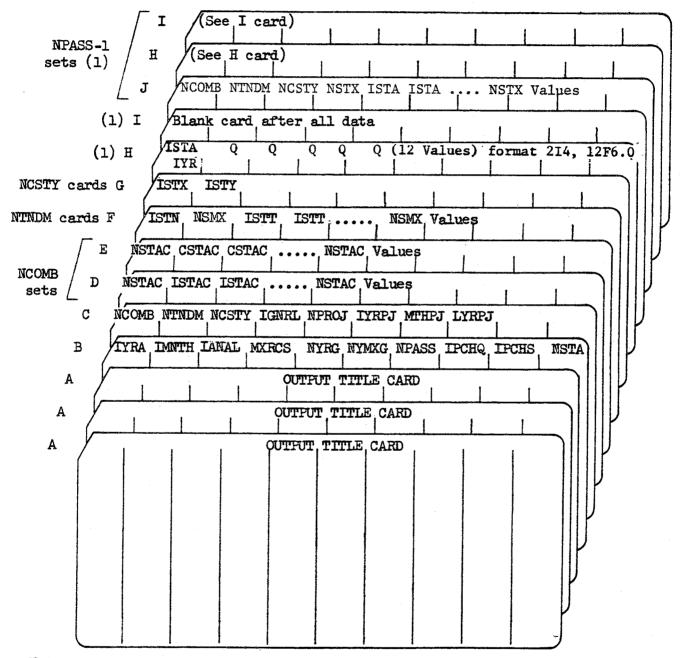
\* Sets of L and M cards are required for each station from K = 2 to NSTA.

4

EXHIBIT 7

| CARD      | VARIABLE                   | COMMENTS                                                                                                                |  |
|-----------|----------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| N (Cont'  | d)                         |                                                                                                                         |  |
|           | 5. MOMX(K)<br>6. MOMN(K)   | <ul> <li>Calendar number of last month of wet season.</li> <li>Calendar number of last month of dry season.</li> </ul>  |  |
| 0         |                            | Mean logarithms, omit if IANAL (B-3) is positive or IGNRL (C-4) equals 1.                                               |  |
|           | 1. ISTA(K)<br>2. AV(I,K)   | <ul> <li>Same as (M-1).</li> <li>Cols 9-14, 15-20, etc., Mean logarithms for successive calendar months.</li> </ul>     |  |
| P         |                            | Standard deviations, omit if IANAL (B-3) is positive or IGNRL (C-4) equals 1.                                           |  |
|           | 1. ISTA(K)<br>2. SD(I,K)   | <ul> <li>Same as (M-1).</li> <li>Cols 9-14, 15-20, etc., Standard deviations for successive calendar months.</li> </ul> |  |
| Q         |                            | Skew coefficients, omit if IANAL (B-3) is positive or IGNRL (C-4) equals 1.                                             |  |
|           | 1. ISTA(K)<br>2. SKEW(I,K) | - Same as (M-1).<br>- Cols 9-14, 15-20, etc., Skew coefficients for suc-<br>cessive calendar months.                    |  |
| R         |                            | Flow increments, omit if IANAL (B-3) is positive or IGNRL (C-4) equals 1.                                               |  |
|           | 1. ISTA(K)<br>2. DQ(I,K)   | - Same as (M-1).<br>- Cols 9-14, 15-20, etc., Flow increments for successive<br>calendar months.                        |  |
| Five blan | cards with A               | Col 1 of first should follow last job.                                                                                  |  |

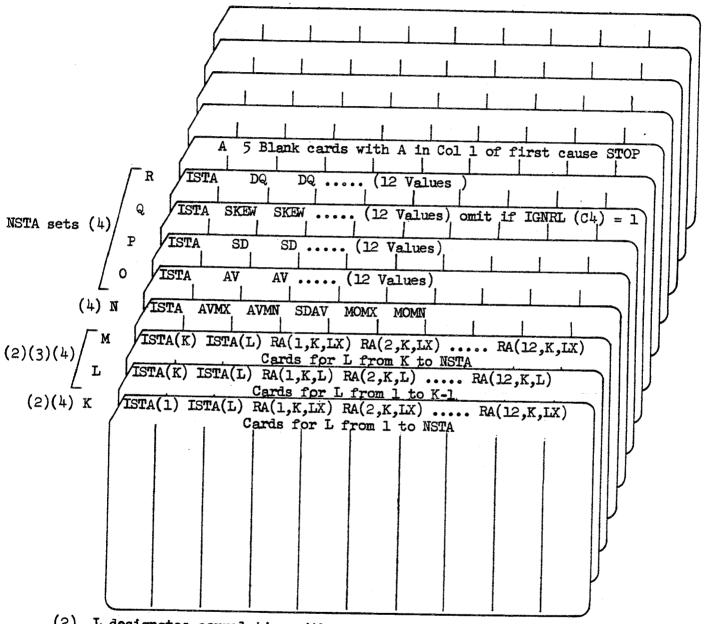
العجرة


Note: Cards K through R are not required if cards H and I are supplied. Cards K through R are as punched by computer when IPCHS is positive.

## EXHIBIT 7

•

#### EXHIBIT 8


## SUMMARY OF REQUIRED CARDS 723-X6-L2340



#### Notes:

(1) Supply only if IANAL (B3) is positive. Repeat H card for each station-year of data before supplying I card.

## SUMMARY OF REQUIRED CARDS Continued 723-X6-L2340



- (2) L designates correlation with current month and LX with preceding month. If IGNRL(C4) = 1, only one (generalized) coefficient is given following station numbers on each card and only 1 K and M card is used for each K station, with L = K. Use same format as H card.
- Repeat set of L and M cards for each K station except first. (3) (4)
- Omit if IANAL (B3) is positive.



# Daily Streamflow Simulation

This program is furnished by the Government and is accepted and used by the recipient upon the express understanding that the United States Government makes no warranties, express or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the information and data contained in this program or furnished in connection therewith, and the United States shall be under no liability whatsoever to any person by reason of any use made thereof.

The program herein belongs to the Government. Therefore, the recipient further agrees not to assert any proprietary rights therein or to represent this program to anyone as other than a Government program.

## DAILY STREAMFLOW SIMULATION

#### THE HYDROLOGIC ENGINEERING CENTER

## COMPUTER PROGRAM 723-G2-L2190

APRIL 1968

Sacramento District, Corps of Engineers 650 Capitol Mall Sacramento, California

## DAILY STREAMFLOW SIMULATION

## THE HYDROLOGIC ENGINEERING CENTER COMPUTER PROGRAM 723-G2-L2190

#### CONTENTS

## Paragraph

## Title

## Page

| 1 | ORIGIN OF PROGRAM           | 1 |
|---|-----------------------------|---|
| 2 | PURPOSE OF PROGRAM          | l |
| 3 | DESCRIPTION OF EQUIPMENT    | 1 |
| 4 | METHODS OF COMPUTATION      | 1 |
| 5 | INPUT                       | 6 |
| 6 | OUTPUT                      | 6 |
| 7 | OPERATING INSTRUCTIONS      | 6 |
| 8 | DEFINITIONS OF TERMS        | 6 |
| 9 | PROPOSED FUTURE DEVELOPMENT | 6 |

#### EXHIBITS

# 1 - INPUT EXAMPLE

- 2 OUTPUT EXAMPLE
- 3 DEFINITIONS
- 4 SOURCE PROGRAM
- 5 INPUT DATA
- 6 SUMMARY OF REQUIRED CARDS

#### DAILY STREAMFLOW SIMULATION

#### THE HYDROLOGIC ENGINEERING CENTER COMPUTER PROGRAM 723-G2-L2190

#### 1. ORIGIN OF PROGRAM

This program was prepared in The Hydrologic Engineering Center by R. G. Willey. It was derived from programs 24-J2-L224 and 24-J2-L235, written by William Morse, and supersedes them. Up-to-date information and copies of source statement cards for various types of computers can be obtained from the Center upon request by Government and other cooperating agencies.

#### 2. PURPOSE OF PROGRAM

This program analyzes historical daily streamflows at one station to determine their statistical characteristics and generates a sequence of hypothetical daily streamflows. The generated streamflows, which can be of any desired length and will have statistical characteristics similar to the historical daily streamflows, are based on given monthly flows. The sum of each month's generated daily flows is equal to the monthly flow previously generated by another program such as 23-C\*-L267.

#### 3. DESCRIPTION OF EQUIPMENT

Use of this program requires a computer with a FORTRAN IV compiler and about 20,000 words of storage capacity (in the CDC 6600 computer). Library functions for cosine and natural logarithms are required routines. It is desirable, but not necessary, to use two input tapes and one output tape.

#### 4. METHODS OF COMPUTATION

a. The daily streamflow simulator is based on a second-order Markov chain and therefore requires computation of serial correlation among flows for 3 successive days and of the frequency statistics. All of these vary seasonally and they are therefore computed separately for each calendar month.

b. The frequency function used is the log-normal, defined by the mean and standard deviation of daily-flow logarithms.

In order to avoid large negative logarithms, a small increment is added to each daily flow before the logarithm transform is applied. The increment is later subtracted from the generated flows. The mean and standard deviation of the logarithm of incremented daily flows for each calendar month are computed as follows:

$$X_{i,m} = \log (Q_{i,m} + q)$$
 (1)

$$\overline{X}_{m} = \sum_{i=1}^{N_{m}} X_{i,m} / N_{m}$$
(2)

$$S_{m,j} = \begin{bmatrix} N_{m} & N_{m} \\ \sum_{i=1}^{N_{m}} X_{i,m}^{2} - (\sum_{i=1}^{N_{i,m}})^{2} / N_{m} \\ \frac{i=1}{N_{m}-1} \end{bmatrix}^{\frac{1}{2}}$$
(3)

in which:

 $X_{i,m}$  = Logarithm of incremented flow for day i of month m Q<sub>i.m</sub> = Recorded flow for day i of month m = Small increment of flow used to prevent large negative đ logarithms  $\overline{\mathbf{X}}_{\mathbf{m}}$ = Mean daily flow logarithm for month m Nm = Total number of days in month m  $S_{m,j} =$ Unbiased estimate of population standard deviation for month m of year j = Day number i m = Calendar month number j = Year number

c. It was found that for the same calendar month the standard deviation of daily flow logarithms is greater in wet months than in dry months. This important variation is accounted for by using a regression equation of the standard deviation of a month's daily flows as a function of the total monthly flow computed as follows:

$$S_{m} = a + b X_{m,j}$$
(3a)

where:

d. The serial correlation coefficients for a one-day and a two-day lag for each calendar month are calculated by the use of the following equations:

$$R_{1,2,m} = \begin{cases} \frac{N_{m}}{\sum (X_{i,m}X_{i-1,m}) - \sum X_{i,m}} N_{m}}{\sum (X_{i,m}X_{i-1,m}) - \sum X_{i,m}} \sum X_{i-1,m}/N_{m}} \\ \frac{i=1 \qquad i=1}{\sum (X_{i,m})^{2} - (\sum X_{i,m})^{2}/N_{m}} \\ \sum (X_{i,m})^{2} - (\sum X_{i,m})^{2}/N_{m} \\ i=1 \qquad i=1 \end{cases} \cdot \begin{bmatrix} \sum (X_{i-1,m})^{2} - (\sum X_{i-1,m})^{2}/N_{m} \\ i=1 \qquad i=1 \end{cases} \cdot \begin{cases} \frac{N_{m}}{2} \\ \frac{N_{m}}{2} \\$$

$$R_{1.3,m} = \left\{ \frac{\sum_{i=1}^{N_{m}} \sum_{i=1}^{N_{m}} \sum_{i=1}^{N_$$

R<sub>1.2,m</sub> = Serial correlation coefficient for one-day lag in month m R<sub>1.3,m</sub> = Serial correlation coefficient for two-day lag in month m X<sub>i,m</sub> = Logarithm of incremented daily flow for day i in month m N<sub>m</sub> = Total number of days in month m m = Month number

e. In order to stabilize the erratic variation of certain statistics from month to month, their computed values are smoothed by averaging the computed value with the average of the corresponding computed values for the preceding and following months. These consist of the serial correlation coefficients and the regression coefficient and constant that relate the standard deviation to monthly flow.

f. Calculation of the multiple linear regression equation for generating daily streamflows for each calendar month requires three

simple correlation coefficients. These constitute a "triad" of coefficients:  $R_{1,2}$ ,  $R_{2,3}$  and  $R_{1,3}$ , where subscripts refer to successive day numbers. It will be recognized that the first two are identical, inasmuch as they represent correlation between adjacent days in the same month. Since they are offset one day, however, there will be a slight difference in calculated values due to sampling error. When they are equated in this model, it is possible that the triad will inadvertently be made inconsistent. When this occurs, the value of  $R_{1,3}$ .

g. The beta coefficients for each month for the 1-day and 2-day lag are calculated using the following equations:

$$\beta_{1.2,m} = (R_{1.2,m} - R_{1.3,m} \cdot R_{1.2,m}) / (1 - R_{1.2,m} \cdot R_{1.2,m})$$
(6)

$$\beta_{1.3,m} = (R_{1.3,m} - R_{1.2,m} \cdot R_{1.2,m})/(1 - R_{1.2m} \cdot R_{1.2,m})$$
(7)

h. The adjusted multiple determination coefficient of the lagged daily flows for each month is calculated using the following equation:

$$\overline{R}_{1.23,m}^{2} = (R_{1.2,m} \cdot R_{1.2,m} + R_{1.3,m} \cdot R_{1.3,m} - 2R_{1.2,m} \cdot R_{1.2,m} \cdot R_{1.3,m}) / (1 - R_{1.2,m} \cdot R_{1.2,m})$$
(8)

i. To insure a random start, daily flow logarithms for one month (month m-1) are generated (based on arbitrary initial deviates) and discarded except for the last two daily flow values (defined as  $X_{i-1}$ , and  $X_{i-2,m}$ ). These two daily flow values from the preceding month are transformed to normal standard deviates based on the current month's mean and standard deviation as shown by the following equations:

$$D_{i-1,m} = (X_{i-1,m} - \bar{X}_m) / S_m$$
(9)  
$$D_{i-2,m} = (X_{i-2,m} - \bar{X}_m) / S_m$$
(10)

where:

The above calculation occurs every month between the last two daily flow values in the preceding month and the two starting deviates in the current month. Flow values for a full month can now be generated using the following equations:

$$D_{i,m} = \beta_{1.2,m} \cdot D_{i-1,m} + \beta_{1.3,m} \cdot D_{i-2,m} + (1-\overline{R}^2)^{2} \cdot RN_{i,m} \quad (11)$$

$$X_{i,m} = \overline{X}_{m} + S_{m} \cdot D_{i,m}$$
(12)

$$Q_{i,m} = (antilog X_{i,m}) - q_m (negative values are set to zero (13))$$

in which:

j. After flows for an entire month are computed, their sum is tested against the given monthly flow, and they are then adjusted to equal the given value. In order to minimize discontinuities at the end of each month, a second pass generation is accomplished by using the identical random numbers of the first pass generation but with the adjusted monthly mean. Since the sum of the second pass will not exactly equal the given monthly flow, the generated flows are multiplied by a constant (very close to 1.0) to obtain the exact sum.

#### 5. INPUT

Input is summarized in Exhibits 5 and 6. An example of the input is given in Exhibit 1. Column 1 on all cards is reserved for identification and is not read by the program. All data (except as noted) are punched using 8 columns per variable (except the first field which is 7 columns) and right justified.

#### 6. OUTPUT

Printed output includes the three input title cards and all results of the computations. Generated flows can be written on magnetic tape or punched on card output. An example of the printed output is given in Exhibit 2.

7. OPERATING INSTRUCTIONS

Standard FORTRAN IV coding is used. Library functions for cosine and natural logarithms are required routines. No sense switches are used.

#### 8. DEFINITIONS OF TERMS

Terms used in this program are defined in Exhibit 3.

## 9. PROPOSED FUTURE DEVELOPMENT

a. Although skew coefficients are highly variable, there has been considerable consistency between corresponding values in the two halves of each record. Accordingly, an appropriate technique should be developed to account for the coefficient of skew within the model.

b. The model must eventually be expanded to generate flows for more than one station simultaneously. This is complicated considerably by the fact that the relative timing of flows in different parts of a drainage system must be recognized. INPUT EXAMPLE

|                                                   |     |      | 50.0 | 50.0 | 0   | 920.       | •      | 9          | 50.  | 40  | 0     |           |         | 92      | 1714               |                                                                                                  |
|---------------------------------------------------|-----|------|------|------|-----|------------|--------|------------|------|-----|-------|-----------|---------|---------|--------------------|--------------------------------------------------------------------------------------------------|
|                                                   |     |      | 0    |      | 0   | N          |        | 10         | 4    | 13  | ŝ     |           |         | 31 3    |                    |                                                                                                  |
|                                                   |     |      | •    | 80.  | 50. | 20.        | 50.    | 060.       | 370. |     | 450.( |           |         | 5       | 4                  | ¥                                                                                                |
|                                                   | 0   |      |      |      |     | ٠          | ٠      | ٠          | •    | ٠   |       |           |         | 1494    | 312                | BLANK                                                                                            |
|                                                   |     |      | 00   | 150  |     | $\sim$     | $\sim$ | Ś          | ŝ    | ŝ   | 4     |           |         | 939     | 01219              | ILSE 4                                                                                           |
|                                                   | 0   | C    | 50.0 | •    | 20. | 50.        | 20.    | •          | 40.  | 70. | 40.   | ≻         |         | 28596   | 2988021            | RDS OR E                                                                                         |
|                                                   | 0   | +    | •    | 80.0 | •   | $^{\circ}$ | 50.    | $^{\circ}$ | 50.  | 70. | 40.   | NTHS PER  |         | 1116 I  | 06171315           | ITLE CAR                                                                                         |
|                                                   |     | 0    | •    | 80.0 | •   | •          | 70.    | •          | 70.  | 70. | 540.0 | H. 12 MON | RS<br>S | 5       | 4342184<br>CARDS   | TH ITS T                                                                                         |
| NO                                                | 10  | 0    | •    | 80.0 | •   | •          | 70.    | 150.0      | 30.  | -   | 450.0 | ER MONT   | 2 OF YE | 3337720 | 5323522<br>BER OF  | S WI                                                                                             |
| VER<br>R• KY<br>SIMULATION                        | ŝ   | 49   | 50.0 | 50.0 | ۰   | ٠          | ٠      | 80.0       | ۲    | •   | •     | CARDS     | NL NUN  | 33 9835 | 3332314<br>1YSYN N | L<br>D<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B |
| KENTUCKY RIVER<br>T WINCHESTER,<br>STREAMFLOW SIM | ŝ   | 48   | 10   |      |     |            |        |            |      |     | 12    | WILL BE   | AND NY  | 823 498 | 1712<br>LL B       | THE NEX<br>CARDS                                                                                 |
| A KENTI<br>ADAILY STRE                            | 840 | 55.5 | 1908 |      |     |            | 1908   |            |      |     | 1908  | THERE W   |         | ~       | 09 5<br>ERE        | EITHER                                                                                           |
| A<br>A<br>D/                                      | മ   | UC   | u    | ш    | L   | ω          | ш      | ш          | ш    | ш   | ш     | L         | w       | ŝ       | ŵ                  |                                                                                                  |

|                                                                 |                                                                                                        | KENTUCKY                                                                                                            |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                 | DA H                                                                                                   | AT WINCHES                                                                                                          | TER, KY<br>W SIMULATION                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                 |                                                                                                        | JI JINLAMILU                                                                                                        |                                                                                                                      | DANNATION OF A SPACE AND THE REAL OPPOSITE OF A SPACE O | ne na management and a standard and that is a standard and and a standard and a standard and a standard and a s |
|                                                                 |                                                                                                        |                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                 |                                                                                                        |                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                 |                                                                                                        |                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| ANALYSIS C                                                      | F STREAMFLOW                                                                                           | υνιά                                                                                                                | ĦŎŦŢŦŦĸŦŦŦŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎ                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | National and a state of the second |
|                                                                 |                                                                                                        |                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                 |                                                                                                        |                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| ENTIRE REG                                                      | ORC 48YEAR                                                                                             | S AT STATIC                                                                                                         | N NO.                                                                                                                | 840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
| A.F. (*** B. 2. 17 1 1                                          | A3.17 A A3                                                                                             |                                                                                                                     | างการเขาะการการการการการการการการการการการการการก                                                                    | R12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RIE                                                                                                             |
| MONTH<br>10                                                     | MEAN<br>2,582                                                                                          | • 490                                                                                                               | G<br>1.029                                                                                                           | ,951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×1:<br>•876                                                                                                     |
| 10                                                              | 2.930                                                                                                  | .573                                                                                                                | .687                                                                                                                 | <u>,943</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .85                                                                                                             |
| 12                                                              | 3.351                                                                                                  | \$578                                                                                                               | .072                                                                                                                 | \$953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .864                                                                                                            |
| 1                                                               | 3.718                                                                                                  | • 530                                                                                                               | 202                                                                                                                  | .939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .822                                                                                                            |
| 2                                                               | 3.789                                                                                                  | .481                                                                                                                | 313                                                                                                                  | •948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |
| 3                                                               | 3.909                                                                                                  | ,391                                                                                                                | •198                                                                                                                 | •915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • 756                                                                                                           |
| 4                                                               | 3.735                                                                                                  | <b>.</b> 366                                                                                                        | .417                                                                                                                 | .930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .792                                                                                                            |
| 5                                                               | 3.478                                                                                                  | .450                                                                                                                | .090                                                                                                                 | .944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • 846                                                                                                           |
| 6                                                               | 3.145                                                                                                  | .499                                                                                                                | .508                                                                                                                 | .939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .842                                                                                                            |
| 1                                                               | 3.020                                                                                                  | ,537                                                                                                                | • 503<br>564                                                                                                         | ,938<br>,935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • 848<br>• 853                                                                                                  |
| 8                                                               | 2.856<br>2.652                                                                                         | 。493<br>。459                                                                                                        | •554<br>•715                                                                                                         | •936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •02:<br>•85(                                                                                                    |
|                                                                 |                                                                                                        |                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                 |                                                                                                        |                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                 |                                                                                                        | GRESSION EQ                                                                                                         |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| STAN                                                            |                                                                                                        |                                                                                                                     | UATION<br>G MONIHLY FLOW                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| STAN                                                            | DARD DEVIATIO                                                                                          |                                                                                                                     | G MONTHLY FLOW                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                 | DARD DEVIATIO                                                                                          | IN VERSUS LO                                                                                                        | G MONTHLY FLOW                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>TO<br>11                                               | DARD DEVIATIO<br>CONSTANT<br>901<br>736                                                                | COEFFICIENT<br>.280<br>.233                                                                                         | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>10<br>11<br>12                                         | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416                                                         | ON VERSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156                                                                 | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564<br>.401                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>10<br>11<br>12<br>1                                    | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001                                                  | ON VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.069                                                         | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564<br>.401<br>.021                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>10<br>11<br>12<br>1<br>2                               | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001<br>066                                           | ON VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.069<br>.076                                                 | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564<br>.401<br>.021<br>.014                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>10<br>11<br>12<br>1<br>2<br>3                          | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001<br>066<br>285                                    | ON VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.069<br>.076<br>.109                                         | G MONTHLY FLOW<br>DET. COEF.<br>.534<br>.564<br>.401<br>.021<br>.014<br>.072                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>10<br>11<br>12<br>1<br>2<br>3<br>4                     | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001<br>066<br>285<br>915                             | ON VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.669<br>.076<br>.109<br>.226                                 | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564<br>.401<br>.021<br>.014<br>.072<br>.363                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>10<br>11<br>12<br>1<br>2<br>3<br>4<br>5                | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001<br>066<br>285<br>915<br>058                      | ON VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.069<br>.076<br>.109<br>.226<br>.076                         | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564<br>.401<br>.021<br>.014<br>.072<br>.363<br>.046                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>10<br>11<br>12<br>1<br>2<br>3<br>4<br>5<br>6           | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001<br>066<br>285<br>915<br>058<br>468               | ON VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.069<br>.076<br>.109<br>.226<br>.076<br>.165                 | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564<br>.401<br>.021<br>.014<br>.072<br>.363<br>.046<br>.450                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>10<br>11<br>12<br>1<br>2<br>3<br>4<br>5<br>6<br>7      | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001<br>066<br>285<br>915<br>058<br>468<br>545        | DN VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.069<br>.076<br>.109<br>.226<br>.076<br>.165<br>.189         | G MONTHLY FLOW<br>DET. COEF.<br>.534<br>.564<br>.401<br>.021<br>.014<br>.072<br>.363<br>.046<br>.450<br>.614         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>10<br>11<br>12<br>1<br>2<br>3<br>4<br>5<br>6           | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001<br>066<br>285<br>915<br>058<br>468               | ON VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.069<br>.076<br>.109<br>.226<br>.076<br>.165                 | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564<br>.401<br>.021<br>.014<br>.072<br>.363<br>.046<br>.450                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>10<br>11<br>12<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001<br>066<br>285<br>915<br>058<br>468<br>545<br>507 | DN VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.069<br>.076<br>.109<br>.226<br>.076<br>.165<br>.189<br>.179 | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564<br>.401<br>.021<br>.014<br>.072<br>.363<br>.046<br>.450<br>.614<br>.551 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>10<br>11<br>12<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001<br>066<br>285<br>915<br>058<br>468<br>545<br>507 | DN VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.069<br>.076<br>.109<br>.226<br>.076<br>.165<br>.189<br>.179 | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564<br>.401<br>.021<br>.014<br>.072<br>.363<br>.046<br>.450<br>.614<br>.551 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>10<br>11<br>12<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001<br>066<br>285<br>915<br>058<br>468<br>545<br>507 | DN VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.069<br>.076<br>.109<br>.226<br>.076<br>.165<br>.189<br>.179 | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564<br>.401<br>.021<br>.014<br>.072<br>.363<br>.046<br>.450<br>.614<br>.551 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>TO<br>11<br>12<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001<br>066<br>285<br>915<br>058<br>468<br>545<br>507 | DN VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.069<br>.076<br>.109<br>.226<br>.076<br>.165<br>.189<br>.179 | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564<br>.401<br>.021<br>.014<br>.072<br>.363<br>.046<br>.450<br>.614<br>.551 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>TO<br>11<br>12<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001<br>066<br>285<br>915<br>058<br>468<br>545<br>507 | DN VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.069<br>.076<br>.109<br>.226<br>.076<br>.165<br>.189<br>.179 | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564<br>.401<br>.021<br>.014<br>.072<br>.363<br>.046<br>.450<br>.614<br>.551 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>10<br>11<br>12<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001<br>066<br>285<br>915<br>058<br>468<br>545<br>507 | DN VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.069<br>.076<br>.109<br>.226<br>.076<br>.165<br>.189<br>.179 | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564<br>.401<br>.021<br>.014<br>.072<br>.363<br>.046<br>.450<br>.614<br>.551 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>TO<br>11<br>12<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001<br>066<br>285<br>915<br>058<br>468<br>545<br>507 | DN VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.069<br>.076<br>.109<br>.226<br>.076<br>.165<br>.189<br>.179 | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564<br>.401<br>.021<br>.014<br>.072<br>.363<br>.046<br>.450<br>.614<br>.551 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>TO<br>11<br>12<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001<br>066<br>285<br>915<br>058<br>468<br>545<br>507 | DN VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.069<br>.076<br>.109<br>.226<br>.076<br>.165<br>.189<br>.179 | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564<br>.401<br>.021<br>.014<br>.072<br>.363<br>.046<br>.450<br>.614<br>.551 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MONTH<br>TO<br>11<br>12<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | DARD DEVIATIO<br>CONSTANT<br>901<br>736<br>416<br>001<br>066<br>285<br>915<br>058<br>468<br>545<br>507 | DN VEPSUS LO<br>COEFFICIENT<br>.280<br>.233<br>.156<br>.069<br>.076<br>.109<br>.226<br>.076<br>.165<br>.189<br>.179 | G MONTHLY FLOW<br>DET. COEF.<br>.634<br>.564<br>.401<br>.021<br>.014<br>.072<br>.363<br>.046<br>.450<br>.614<br>.551 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |

GENERATION OF STREAMFLOW DATA

| ENTIRE RECO                                                           | )RD 4 <b>9</b> YE / | ARS AT STATION                                                                                                  | I NC.                                                                                                          | 840                                                                                                             |                                                                                                                  |
|-----------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| MONTH                                                                 | MEAN                | S D                                                                                                             | G                                                                                                              | R12                                                                                                             | R 13                                                                                                             |
| 10                                                                    | 2.715               | • 5 2 Z                                                                                                         | • 343                                                                                                          | • 978                                                                                                           | • 944                                                                                                            |
| 11                                                                    | 2.966               | .555                                                                                                            | .231                                                                                                           | .981                                                                                                            | <b>.</b> 950                                                                                                     |
| 1.2                                                                   | 3.400               | .541                                                                                                            | 081                                                                                                            | . 974                                                                                                           | * 353                                                                                                            |
| 1                                                                     | 3.803               | .452                                                                                                            | 217                                                                                                            | .958                                                                                                            | <b>.</b> 875                                                                                                     |
| 2                                                                     | 3.882               | . 409                                                                                                           | 278                                                                                                            | <b>.</b> 952                                                                                                    | .856                                                                                                             |
| 3                                                                     | 3,930               | • 421                                                                                                           | 103                                                                                                            | .952                                                                                                            | .859                                                                                                             |
|                                                                       | 3.727               | » 355                                                                                                           | 054                                                                                                            | ,946                                                                                                            | • 845                                                                                                            |
| 5                                                                     | 3.562               | .412                                                                                                            | .018                                                                                                           | .959                                                                                                            | .881                                                                                                             |
| 6                                                                     | 3.161               | • 548                                                                                                           | 117                                                                                                            | .977                                                                                                            | •938                                                                                                             |
| 7                                                                     | 3.103               | * 546                                                                                                           | 037                                                                                                            | .975                                                                                                            | •940                                                                                                             |
| 8                                                                     | 2.858               | • 492                                                                                                           | .261                                                                                                           | . 972                                                                                                           | • 935                                                                                                            |
| 9                                                                     | 2.680               | • 469                                                                                                           | <b>,</b> 494                                                                                                   | <b>.</b> 975                                                                                                    | •941                                                                                                             |
| SIM                                                                   | PLE REGRESS         | SIGN EQUATION                                                                                                   |                                                                                                                |                                                                                                                 |                                                                                                                  |
|                                                                       |                     | SUS LOG MONTH                                                                                                   | ILY FLOW                                                                                                       |                                                                                                                 |                                                                                                                  |
| MONTH                                                                 | CONSTANT            | COEFFICIENT                                                                                                     | DET, COEF,                                                                                                     |                                                                                                                 |                                                                                                                  |
| 10                                                                    | -,332               | .136                                                                                                            | .306                                                                                                           |                                                                                                                 |                                                                                                                  |
|                                                                       | -,350               | •136                                                                                                            | • 307                                                                                                          |                                                                                                                 |                                                                                                                  |
| 12                                                                    | 042                 | .072                                                                                                            | .068                                                                                                           |                                                                                                                 |                                                                                                                  |
| <br>                                                                  | 174                 | .092                                                                                                            | .077                                                                                                           |                                                                                                                 | - A                                                                                                              |
| 2                                                                     | •409                | • 0 • 2 -<br>() •                                                                                               | 009                                                                                                            |                                                                                                                 |                                                                                                                  |
|                                                                       |                     | •117                                                                                                            | .061                                                                                                           | wara                                                                                                            |                                                                                                                  |
|                                                                       |                     |                                                                                                                 | •001<br>•028                                                                                                   |                                                                                                                 |                                                                                                                  |
| 4                                                                     | 191                 | •090                                                                                                            |                                                                                                                | an - Main - Kana Andri Chang Chan Hanza zan Mazi - Mazi Mazi Maria Maria Zana Kana Mazi Maria Mazi Maria Mazi M | רו העבודה או אוראי האוראינט אוראי אינט בנוגני איני אונא אוראי אינט אינא אינע אינע אינע אינע אינע אינע אינע       |
| 4000 0000 0000 0000 0000 00000 00000000                               | 166                 | ••••••••••••••••••••••••••••••••••••••                                                                          | • 064                                                                                                          |                                                                                                                 |                                                                                                                  |
| 6                                                                     | .548                | e ()                                                                                                            | 011                                                                                                            |                                                                                                                 |                                                                                                                  |
| 1                                                                     | -,010               |                                                                                                                 | .064                                                                                                           |                                                                                                                 |                                                                                                                  |
| 8                                                                     | .492                | 0                                                                                                               | 017                                                                                                            |                                                                                                                 |                                                                                                                  |
| 9                                                                     | 529                 | .182                                                                                                            | .385                                                                                                           |                                                                                                                 |                                                                                                                  |
| annan an an ann ann ann an an an ann an                               | ************        | and a second development of the second s  | אין אינער איז אינעריונייער איז                                             | naanseen na aalaanse tiike ooreen na visetying oorsee orkaatsone toorseen waarseen gewaarse                     | аналанан колторуу каларуу калар  |
|                                                                       |                     |                                                                                                                 |                                                                                                                |                                                                                                                 |                                                                                                                  |
|                                                                       |                     |                                                                                                                 |                                                                                                                |                                                                                                                 |                                                                                                                  |
|                                                                       |                     |                                                                                                                 |                                                                                                                |                                                                                                                 |                                                                                                                  |
|                                                                       |                     | en mus museus en ener screen en mer a a avec anom en benedigens. Ou mes and we stat the energy wave             | 994 A REAL PROFESSION REAL PLANT | n fi fals di 2000 a un deserve se provinsi de construction a superior de la construction de la construcción de  | andra and a start of the other of the second start of the source of the source of the second start of the second |
|                                                                       |                     |                                                                                                                 |                                                                                                                |                                                                                                                 |                                                                                                                  |
|                                                                       |                     |                                                                                                                 |                                                                                                                |                                                                                                                 |                                                                                                                  |
|                                                                       |                     |                                                                                                                 |                                                                                                                |                                                                                                                 |                                                                                                                  |
| al a faith a faith a faith an ann an an ann an ann an ann an ann an a |                     | 97 - 107 - 98 - 117 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - |                                                                                                                |                                                                                                                 |                                                                                                                  |
|                                                                       |                     |                                                                                                                 |                                                                                                                |                                                                                                                 |                                                                                                                  |
|                                                                       |                     |                                                                                                                 |                                                                                                                |                                                                                                                 |                                                                                                                  |
|                                                                       |                     |                                                                                                                 | <b>о</b>                                                                                                       | FX                                                                                                              | HIBIT 2                                                                                                          |
| an a                              |                     | an a la se an                                                               |                                                                                                                |                                                                                                                 |                                                                                                                  |
|                                                                       |                     |                                                                                                                 |                                                                                                                |                                                                                                                 |                                                                                                                  |

# EXHIBIT 3

# DEFINITIONS - 723-G2-L2190

| A<br>ASD(MO,J)<br>B(MO,J)<br>BO(MO)<br>B1(MO)<br>B2(MO)<br>C(MO,J)<br>CONST | <ul> <li>Variable used for input and output of title cards</li> <li>Standard deviation as calculated by the regression equation</li> <li>Regression coefficient for ASD = C+B·QM</li> <li>Alienation coefficient of lagged daily flow</li> <li>Beta coefficient for 2-day lagged flow</li> <li>Beta coefficient for l-day lagged flow</li> <li>Regression constant for ASD = C+B·QM</li> <li>The value to multiply times the monthly flows to convert them to day-second-feet</li> </ul> |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D(ND)                                                                       | - Normal standard deviate                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DELIK                                                                       | - Monthly total of the logarithms of flow for day i times day i + 2                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DELK                                                                        | - Monthly total of the logarithms of flow for day i + 1                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DELKK                                                                       | - Monthly total of the logarithms of flow for day i + 1 times day i + 1                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DELL                                                                        | - Monthly total of the logarithms of flow for day i + 2                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DELLL.                                                                      | - Monthly total of the logarithms of flow for day i + 2 times day i + 2                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DELQ                                                                        | - Monthly total of the logarithms of flow for day i                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DELQ2                                                                       | - Monthly total of the logarithms of flow for day i squared                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DELQ3                                                                       | - Monthly total of the logarithms of flow for day i cubed                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DELTA                                                                       | - Incremental daily flow to prevent large negative logarithms                                                                                                                                                                                                                                                                                                                                                                                                                            |
| E<br>A(MO T)                                                                | - Temporary variable for an intermediate calculation                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| G(MO,J)                                                                     | - Coefficient of skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| I<br>ICOUNT                                                                 | - Miscellaneous subscript                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| II                                                                          | <ul> <li>Counter for the number of leap years in record</li> <li>Subscript for number of sets of records which increments from<br/>1 to NPASS</li> </ul>                                                                                                                                                                                                                                                                                                                                 |
| IFILE                                                                       | - Dummy variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IMO                                                                         | - Month read from tape or cards                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IRCD                                                                        | - Dummy variable for both ISKIP and ISKP                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ISKIP                                                                       | - Number of records to waste before starting to read daily flows from tape                                                                                                                                                                                                                                                                                                                                                                                                               |
| ISKP                                                                        | - Number of records to waste before starting to read monthly flows from tape                                                                                                                                                                                                                                                                                                                                                                                                             |
| ISMDO                                                                       | - Indicator to select option of smoothing statistics                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ISTA                                                                        | - Station number at which flows are to be generated                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ISTART                                                                      | - Indicator to select option of estimating first 2 days of daily record                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ITAPE                                                                       | - Input tape number which contains historical daily flows                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             | - Indicator to select option of testing martix consistency                                                                                                                                                                                                                                                                                                                                                                                                                               |
| J                                                                           | - Miscellaneous subscript                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JCOUNT                                                                      | - Counter for the number of leap years in the entire record                                                                                                                                                                                                                                                                                                                                                                                                                              |
| JJ                                                                          | - Indicator to determine which pass of the generator is to be used next                                                                                                                                                                                                                                                                                                                                                                                                                  |

EXHIBIT 3

| JTAPE          | -          | Input tape number which contains monthly flows                     |
|----------------|------------|--------------------------------------------------------------------|
| KD(MO)         |            | Number of days plus two in month MO                                |
| KTAPE          |            | Output tape number which will contain the synthetic daily flows    |
| L              | - 10       | Miscellaneous subscript                                            |
| м <b>(</b> МО) | <b>880</b> | Actual calendar month numbers (10=0ct, 11=Nov, 12=Dec, etc.)       |
| MO             |            | Month number (1=Oct, 2=Nov, 3=Dec, etc.)                           |
| MOL            | -          | Month number plus one                                              |
| MSTAT          | 108        | Indicator to select option of monthly statistics                   |
| ML.            |            | Indicator for determining which section of the subroutine STAT     |
|                |            | is to be used next                                                 |
| N              | -          | Subscript for number of years which increments from 1 to NYR       |
| ND             | 4880       | Temporary location for number of days in month plus 2              |
| NN             | 440        | Number of days in entire record                                    |
| NPASS          |            | Subscript for number of sets of records desired                    |
| NT             | 829        | Total number of years in entire record                             |
| NTOT           | -          | Number of days in entire record                                    |
| NYANL          | **         | Number of years of record for analysis                             |
| NYR            | 86         | Subscript for maximum number of years in a half record             |
| NYSYN          | -          | Number of years desired for synthesis                              |
| Q(ND)          | 1000       | Daily flow                                                         |
| ୟ <b>(</b> 32) | -          | Total monthly flow for analysis                                    |
| QD             | -          | Mean monthly flow for simulation                                   |
| QDLOG(MO)      | -          | Logarithm of mean monthly flow for simulation                      |
| QLOD(ND)       | -          | Logarithm of daily flow                                            |
| QLOG(34)       | 824        | logarithm of total monthly flow for analysis                       |
| QM(MO,N)       | -          | Total monthly flow for simulation                                  |
| RATIO          | <b>689</b> | Total monthly flow for simulation divided by total of daily        |
|                |            | simulated flows                                                    |
| RN(ND)         | 435        | Random numbers with zero mean and unit standard deviation          |
| R12(M0,J)      |            | Serial correlation coefficient for 1-day lag flow                  |
| R13(M0, J)     |            | Serial correlation coefficient for 2-day lag flow                  |
| R2(MO,J)       |            | Determination coefficient for regression equation of ASD=C+B·QM    |
| SD(MO, J)      | -          | Standard deviation of logarithm of daily flows (actual and         |
|                |            | simulated)                                                         |
| T              |            | Temporary variable                                                 |
| TM(MO,J)       |            | Total of logarithms of total monthly flow (actual and simulated)   |
| TMPIK(MO,J)    |            | Temporary location for TQIK                                        |
| TMPIL(MO,J)    |            | Temporary location for TQIL                                        |
| TMPK(MO, J)    |            | Temporary location for TQK                                         |
| TMPKK(MO, J)   |            | Temporary location for TQKK                                        |
| TMPL(MO, J)    |            | Temporary location for TQL                                         |
| TMPLL(MO, J)   |            | Temporary location for TQLL                                        |
| TMPQ(MO, J)    |            | Temporary location for TQ                                          |
| TMPQ2(MO, J)   |            | Temporary location for TQ2                                         |
| TMPQ3(MO, J)   |            | Temporary location for TQ3                                         |
| TMS(MO, J)     |            | Total of logarithms of total monthly flow times standard deviation |
| TM2(MO, J)     | 965        | Total of logarithms of total monthly flow squared                  |

EXHIBIT 3

| TOT(MO,J)              | - Total of logarithms of generated daily flows              |
|------------------------|-------------------------------------------------------------|
| TQ(MO, J)              |                                                             |
| TQIK(MO,J)             | - Total of logarithms of flow for day i times day i + 1     |
| TQIL(MO, J)            | - Total of logarithms of flow for day i times day i + 2     |
| TQK(MO,J)              | - Total of logarithms of flow for day i + 1                 |
| TQKK(MO,J)             | - Total of logarithms of flow for day i + 1 squared         |
| TQL(MO, J)             | - Total of logarithms of flow for day i + 2                 |
| TQLL(MO,J)             | - Total of logarithms of flow for day i + 2 squared         |
| TQ2(MO, J)             | - Total of logarithms of flow for day i squared             |
| TQ3(MO, J)             | - Total of logarithms of flow for day i cubed               |
| TS(MO, J)              | - Total of standard deviations                              |
| TS2(MO, J)             | - Total of standard deviations squared                      |
| Ul                     | - Temporary location for random number                      |
| U2                     | - Temporary location for random number                      |
| V <b>(</b> I)          | - Temporary location for logarithms of flow for last 2 days |
|                        | in previous month                                           |
| VAR                    | - Dummy variable name                                       |
| W                      | - Temporary variable                                        |
| X                      | - Temporary variable                                        |
| XBAR(MO,J)             | - Mean of logarithms of daily flow                          |
| XD                     | - Number of days in month                                   |
| $\mathbf{X}\mathbf{N}$ | - Number of years in record                                 |
| XTOT                   | - Number of days in record                                  |
| Xl                     | - Temporary variable                                        |
| X2                     | - Temporary variable                                        |
| Y                      | - Temporary variable                                        |
| Z                      | - Temporary variable                                        |
|                        |                                                             |

14.4

LISTING OF SOURCE PROGRAM

236

| 1001<br>1002<br>1003<br>1004                       | 1006<br>1011<br>1012<br>1012<br>1014<br>1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1019<br>1020<br>1021<br>1022<br>1022 | 1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SIC ENGINE<br>TREAMFLOW<br>R 1967<br>IV<br>CALLING | DIMENSION<br>COMMON A(1<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CONST,<br>CO |                                      | FORMAT       (20)         READ       INPUT-         ISTA       STAT         ITAPE       U         CONSTE       U         CONSTE       U         NSTAPE       U         MSTAPE       U         MSTAPE       I         ISSO04       I         ITEST       I         ITEST       I         READ       (5, 1) |

EXHIBIT 4

| 30 | FORMAT                           | (816.0.8. |      |      |      |      |     |      |    |                                     |      |
|----|----------------------------------|-----------|------|------|------|------|-----|------|----|-------------------------------------|------|
|    | IF (ITAPE.LE.0) STOP             | đ         |      |      |      |      |     |      |    |                                     |      |
|    | CALL ANAL                        |           |      |      |      |      |     |      |    |                                     | 1035 |
|    | CALL GEN                         |           |      |      |      |      |     |      |    |                                     | 1036 |
|    | IF (ITAPE.LE.O) 60               | TO 141    |      |      |      |      |     |      |    |                                     |      |
|    | IF(JTAPE.EQ.5) GO TO 140         | 0 140     |      |      |      |      |     |      |    |                                     |      |
|    | 4                                | Ϋ́        |      |      |      |      |     |      |    |                                     |      |
| 31 | FORMAT (2044)                    |           |      |      |      |      |     |      |    |                                     |      |
|    | IF (EOF, JTAPE) 140,132          | 132       |      |      |      |      |     |      |    |                                     |      |
| 32 | WRITE (6+133)                    |           |      |      |      |      |     |      |    |                                     |      |
| 33 | FORMAT (70H AN EOF SHOULD HAVE I | SHOULD H  | IAVE | BEEN | READ | FROM | THE | TAPE | ЧO | BEEN READ FROM THE TAPE OF GENERATE |      |
|    | 1D MONTHLY FLOWS**)              |           |      |      |      |      |     |      |    |                                     |      |
|    | STOP                             |           |      |      |      |      |     |      |    |                                     |      |
| 41 | WRITE (6,150)                    |           |      |      |      |      |     |      |    |                                     |      |
| 50 | FORMAT(1H1)                      |           |      |      |      |      |     |      |    |                                     | 1039 |
|    | ENDFILE KTAPE                    |           |      |      |      |      |     |      |    |                                     |      |
|    | REWIND KTAPE                     |           |      |      |      |      |     |      |    |                                     |      |
|    | STOP                             |           |      |      |      |      |     |      |    |                                     | 1042 |
|    | END                              |           |      |      |      |      |     |      |    |                                     | 1043 |

|     | ANAL<br>(12)<br>•3)•ASD(12•2)•B(13•2)•BO(12)•B1(12)•B2(12)•C(13•2)•<br>(33)•DELIK•DELIL•DELK•DELKK•DELL+DELLL•DELQ2•<br>ELTA•G(12•2)•ICOUNT•ISMOO•ISKP•ISTA•ITAPE•ITEST•J•<br>JTAPE•K•KTAPE•MO•MSTAT•M1•N•ND•NP•NYANL•NYR•NYSYN•NY | 1001<br>1002<br>1003 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|     | 3*NYK4*W(34)*UU*UULUG(12)*ULOG(34)*UM(12*<br>2(13*2)*R13(13*2)*R2(12*2)*SD(12*2)*TM(12                                                                                                                                             | 00                   |
|     | •2).TMPIL(12.2).TMPK(12.2).TMPKK(12.2).                                                                                                                                                                                            | 000                  |
| -   | 2) • TMPLL(12,2) • TMPQ(12,2) • TMPQ2(12,                                                                                                                                                                                          | 01                   |
| -   | •2) • TMS(12•2) • TM2(12•2) • TQ(12•2) • TQIK(12                                                                                                                                                                                   | 10                   |
|     | 2) • TQK (12 • 2) • TQKK (12 • 2) • TQL (12 • 2) • TQLL (12 • 2)                                                                                                                                                                   | 01                   |
| -   | ) + TQ3(12+2) + TS(12+2) + TS2(12+2) + V(2) + XBAR(1<br>KD(12)                                                                                                                                                                     | 1013                 |
|     | I=1,12)/33,32,33,33,33,30,33,32,33,37,                                                                                                                                                                                             | 50                   |
|     | M0=1,12)/10,11,12,1,2,3,4,5,6,7,8,9/                                                                                                                                                                                               | 10                   |
|     | N DATA CARD                                                                                                                                                                                                                        | 02                   |
|     | ENT TO BE ADDED TO FL                                                                                                                                                                                                              | 02                   |
|     | OF YEARS OF DAILY FLOW I                                                                                                                                                                                                           |                      |
|     | OF YEARS OF MONTHLY FLOW INPL                                                                                                                                                                                                      |                      |
| U   | <pre><ip=number before="" daily="" flow="" of="" pre="" reading="" records="" tap<="" to="" waste=""></ip=number></pre>                                                                                                            |                      |
| υ   | TART=0 FOR READING IN FIRST TWO DAYS OF RECORD. I FOR ESTI                                                                                                                                                                         | 1017                 |
| U   | ASS=NUMBER OF PERIODS OF GENERATED DATA REQUIRED                                                                                                                                                                                   |                      |
| U   | <pre><pre><pre><pre>cp =number of records to waste before reading monthly flow tap</pre></pre></pre></pre>                                                                                                                         |                      |
| U   | 33 =NUMBER OF YEARS OF DAILY FLOW INPUT IN SECOND HALF OF RECOR                                                                                                                                                                    |                      |
| υ   | <pre>34 =NUMBER OF YEARS OF MONTH+FLOW INPUT IN SECOND HALF OF RECO</pre>                                                                                                                                                          |                      |
|     | 4D (5.210) DELTA,NYANL,NYSYN,ISKIP,ISTART,NPASS,ISKP,NYR3,NYR                                                                                                                                                                      |                      |
| 210 | ZMAT (1X+F7.0.9                                                                                                                                                                                                                    | 1027                 |
| 1   | NL                                                                                                                                                                                                                                 |                      |
| ΰ   | ITIALIZE A                                                                                                                                                                                                                         | 020                  |
|     | 220 MO=1+1                                                                                                                                                                                                                         | 1030                 |
|     |                                                                                                                                                                                                                                    | 0                    |
|     | =( ( • OW )                                                                                                                                                                                                                        | 03                   |
|     | =([, OM) 2)=                                                                                                                                                                                                                       | 03                   |
|     | 3 (NO.J)=                                                                                                                                                                                                                          | 03                   |
|     | (NO,J)=                                                                                                                                                                                                                            | 03                   |
|     | (10·0W) 2                                                                                                                                                                                                                          | 03                   |
|     | =([~•OW])                                                                                                                                                                                                                          | 03                   |
|     | 2 (MO+J)=                                                                                                                                                                                                                          | 03                   |
|     | = ( C • O W ) =                                                                                                                                                                                                                    | 03                   |
|     | TQIK(M0.J)=0.                                                                                                                                                                                                                      | 40                   |

EXHIBIT 4

3

762-

| 444444                                                                                                                         | 1050<br>1050<br>1050<br>1052<br>1052<br>1052<br>1052<br>1052 | 00000                                                | 1062<br>1063<br>1065<br>1065 | 1072<br>1073<br>1074                                                                                                                                                                                                                                                                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TQIL (MO · J) = 0.<br>TQKK (MO · J) = 0.<br>TQL (MO · J) = 0.<br>TQL (MO · J) = 0.<br>TMPK (MO · J) = 0.<br>TMPL (MO · J) = 0. |                                                              | 220 CONTINUE<br>J=0<br>WRITE(6.450)<br>WRITE (6.450) | 50)<br>50)<br>50)            | <pre>IF (NYR3.LE.0) G0 T0 271<br/>WRITE (6.270) J.NYR.ISTA<br/>270 FORMAT(1H .12.11HHALF-RECORD.16.20HYEARS AT STATION NO112)<br/>271 D0 520 N=1.NYR<br/>IF (MSTAT.EQ.1) WRITE (6.280)<br/>280 FORMAT(1H0.3X.5HMONTH.7X.4HMEAN.9X.2HSD.11X.1HG.10X.3HR12<br/>1.9X.3HR13)<br/>D0 510 MO=1.12<br/>M1=0</pre> | 340 IF (N.NE.1.0R.MO.NE.1.0R.J.NE.1) GO TO 370<br>CALL SKPFILE (ITAPE.0.ISKIP)<br>IF (ISTART.NE.0) GO TO 370<br>350 READ (ITAPE.360) Q(1),Q(2)<br>360 FORMAT (48X,2F8.2)<br>QLOG (1)=ALOG(Q (1)+DELTA)*.434295<br>QLOG (2)=ALOG(Q (2)+DELTA)*.434295<br>370 READ (ITAPE.280)<br>170 READ (ITAPE.280) |

Ļ

2 B

| 380         | ORMAT (1X+17+18+8F8+2/3(16X+8F                                    |        |
|-------------|-------------------------------------------------------------------|--------|
|             | F (N.NE.1.OR.MO.NE.1.OR.ISTART.                                   |        |
|             | LOG(1)=ALOG(Q(3)+DELTA)*+43429                                    | 110(   |
|             | L06(2)                                                            | 110    |
| 410         | D=KD(M                                                            | 110    |
|             | F (IYR                                                            | 110    |
|             | 0 10 4                                                            | 1100   |
| 420         | D=31                                                              | 0      |
|             | COUNT = ICOUNT +                                                  | 110    |
|             | COUNT                                                             | 110    |
| 430         | 0 440 I=                                                          | -      |
|             | L0G (                                                             | 111    |
| 440         | ONTINU                                                            | III    |
|             | -ON=O                                                             |        |
|             | L06(34                                                            | 111    |
|             | ALL ST                                                            | TTT    |
|             | F (MST                                                            |        |
| Ś           | RITE(6.470) M(MO), XBA                                            | III    |
| ~           | ORMAT (18.5F                                                      |        |
| 480         | ALL REG                                                           | 112(   |
| 9           | F. (N.N                                                           | 112    |
|             | 1=1                                                               | 112    |
|             | F (MO.                                                            | 112    |
|             | ALL STA                                                           | 112    |
| 500         | LOG(1)                                                            | 112    |
|             | L0G(2)=                                                           | 1.1.2( |
|             | <b>ONTINU</b>                                                     | 112    |
| 520         | ONTINUE                                                           | 1120   |
|             | F (NYR3                                                           |        |
|             | RITE(6)                                                           | 1129   |
| 450         | ORMAT                                                             | TIT    |
|             | RITE (6                                                           |        |
| 530         | ORMAT                                                             |        |
|             | RITE (                                                            | 113    |
|             | RITE (6,470) (M(MO),XBAR(MO,J),SD(MO,J),G(MO,J),                  | 113    |
| •           | 12(MO·J),R13(MO,J),MO=1,12)                                       | 113    |
| 540         | RITE (6+550)                                                      | 113    |
| 50          | IIX/I5X,26HSIMPLE REGRESSION EQUATION/6X,43H STANDARD DEVIAT      | 1136   |
| <b></b> 1 ( | ON VERSUS LOG MONTHLY FLOW/1H0.3X.5HMONTH.5X.8HCONSTANT.2X.11HCOE | 113    |
| <b>-</b> -1 | FICIENT, 2X, 10HDET, COEF,                                        | 113    |
|             | RITE (6,560) (M(MO),C(MO,J),B(MO,J),R2(MO,J),MO=1,12)             | 113    |

5

2.04

EXHIBIT 4

. .

| 60  | FORMAT (18+3F12+3)                                       | 1140        |
|-----|----------------------------------------------------------|-------------|
| 20  | NYR=NYR3                                                 |             |
| 580 | 60 TO (260+590)+J                                        | 1142        |
|     |                                                          | 1143        |
|     | NYR1=NYANL                                               | 1<br>1<br>1 |
|     | NYR2#NYR3                                                |             |
|     | ENTIR                                                    | 1144        |
|     | WRITE(6.450)                                             | 1145        |
|     | NT #NYANL+NYR3                                           |             |
|     | : (6,                                                    |             |
| 600 | FORMAT (14H ENTIRE RECORD+16+20HYEARS AT STATION NO+112) |             |
|     |                                                          | 1149        |
|     | (6+4                                                     | 1150        |
|     | IRI2(M0.J), RI3(M0.J), M0=1,12)                          | 1151        |
| 610 | : (6+5                                                   | 1152        |
|     | (6,                                                      | 1153        |
| 620 | RETURN                                                   | 1154        |
|     | Z                                                        | 1155        |
|     |                                                          |             |

| UBROUTINE GEN<br>IMENSION M(12)<br>OMMON A(13*3)<br>CONST.D(33)<br>CONST.D(33)<br>CONST.D(33)<br>CONST.D(33)<br>CONST.D(33)<br>CONST.D(12*2)<br>TMPL((12*2)<br>TMPL((12*2)<br>TMPL((12*2))<br>TMPC(12*2)<br>TMPL((12*2))<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(12*2)<br>TMPC(1                                                                                                                                                                           | 1001<br>*2).<br>1002<br>*J.<br>YN.NYR1.<br>RN(33).                                               | •<br>•<br>•                          | 30                  | 10                | 10                   | 0                         | 01     | 10           | 1017            | 10              | 02     | 02     | 02     | 02             | 1024            |               | 02    | 02    | 02  | 02             | 03      | 000     | 0 | 000       |      | 200  | 1037    | 03     | 03       | 40       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|-------------------|----------------------|---------------------------|--------|--------------|-----------------|-----------------|--------|--------|--------|----------------|-----------------|---------------|-------|-------|-----|----------------|---------|---------|---|-----------|------|------|---------|--------|----------|----------|
| SUBROUTINE GEN<br>DIMENSION M(12)<br>COMMON A(13*3) + DELIK+DELIK+DELKK+DE<br>CONST+D(33) + DELIK+DELIL+DELK+DELKK+DE<br>CONST+D(33) + DELIK+DELIL+DELK+DELKK+DE<br>DELQ3+DELTA+G(12*2) + ICOUNT:ISMOO+ISKP<br>JCOUNT-JTAPE+K+KTAPE+MDGG(12) + GLO<br>NYR2*NYR3+NYR4+G(34) + GD+GG(12) + GLO<br>NYR2*NYR3+NYR4+G(32) + TMPC(12*2) + TG(12<br>TMPL(12*2) + TMPLL(12*2) + TMPC(12*2) + TG(12)<br>TMPL(12*2) + TMPLL(12*2) + TG(12*2) + TG(12)<br>TMPL(12*2) + TMPLL(12*2) + TMPLL(12*2) + TG(12)<br>TMPL(12*2) + TMPLL(12*2) + TMPLL(12*2) + TG(12)<br>TMPL(12*2) + TMPLL(12*2) + TMPLL(12*2) + TG(12)<br>TMPLT(12*2) + TMPLL(12*2) + TMPLL(12*2) + TG(12*2) + TG(12*1) + TC(12*1) + T                                                                                                                                                                                                                                                                                                                                                                                                                                 | (12),82(12),C(1<br>L,DELLL,DELQ,DE<br>ISTA,ITAPE,ITES<br>NP,NYANL,NYR,NY<br>(34),QM(12,100)      | 12.2),TM(12.2),<br>KK(12.2).         | 2(12+2)+            | 2) • TQIK(12•2    | •2) • TOLL (12.2)    | •V(2)•XBAR(12•            |        |              | 3+32+33+33+3    | 7.8.9           |        |        |        |                |                 |               |       |       |     |                |         |         |   |           |      |      |         |        |          |          |
| SUBROUTINE GEN<br>DIMENSION M(12)<br>COMMON A(13*3) • DELIK• DEL<br>CONST•D(33) • DELIK• DEL<br>DELQ3•DELTA•G(12*2) • 1<br>JCOUNT•JTAPE•K•KTAPE•<br>NYR2•NYR3•NYR4•G(34) • 1<br>JCOUNT•JTAPE•K*KTAPE•<br>NYR2•NYR3•NYR4•G(32+2) • 1<br>JCOUNT•JTAPE*K*KTAPE•<br>NYR2•NYR3•NYR4•G(12*2) • 1<br>TMPL(12*2) • TMPLL(12*2) • 1<br>TMPL(12*2) • TMPLL(12*2) • 1<br>TMPL(12*2) • TMPLL(12*2) • 1<br>TQ2(12*2) • TQ3(12*2) • 1<br>TQ2(12*1) • 1<br>TC2(13*1) • 1<br>TC2(12*1) • 1<br>TC2(                                                                                                                                                | (13,2),80(12),81<br>L,DELK,DELKK,DEL<br>OUNT,1SMOO,1SKP,<br>0,MSTAT,M1,N,ND,<br>D,QDLOG(12),QLOG | •2)•R2(12•2)•SD(<br>)•TMPK(12•2)•TMP | • TMPQ(12.2) • TMPQ | TM2(12,2), TQ(12, | QKK(12+2)+TQL(12     | (12,2),TS2(12,2           |        | EACH MONT    | 33+33+30+33+32+ | •12•1•2•3•4•5•6 |        |        |        | TREAMFLOW DAT  | U               |               |       |       |     |                |         |         |   |           |      |      |         |        |          |          |
| SUBROUTINE<br>SUBROUTINE<br>COMMENSION<br>COMMENSION<br>COMMON A(1)<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>CONST:<br>C | N<br>2)<br>3) ASD(12,2),B<br>3) 9DELIK,DELI<br>TA,G(12,2),IC<br>APE,K,KTAPE,M<br>•NYR4,Q(34),Q   | (13.2).R13(13<br>2).TMPI1 (12.2      | ) • TMPLL (12•2)    | 2)+TMS(12+2)+     | ) • TQK (12 • 2) • T | •TQ3(I2•2)•TS<br>//JJ.•IX | D(12)  | ER OF DAYS I | =1+12)/33+32+   | 0=1,12)/10,11   | 0      |        | (0)    | OGENERATION OF | NG ALL STATISTI | Q.1) GO TO 74 | 12+1  | 12,1  | 12. | (12,1          | RI2     | י א     |   |           | 4    |      |         |        | ۰        | ٠        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SUBROUTINE<br>DIMENSION<br>COMMON A(1<br>CONST;<br>DELQ3;<br>JCOUNT<br>NYR2;N                    | RATIO.                               | TMPL (1             | TMPQ3(            | TOIL(]               | TQ2(12<br>COMMON /ST      | VN/DAY | HASN         | (KD(I           | OW I W)         | E (6•7 | AT (1H | E (6,7 | AT (30         | SMOOTHI         | I SMOO .E     | R1=R1 | 82#R1 |     | 60<br>11<br>10 | (13,1)= | (I3•I)= |   | L T ON UR | WDR1 | A DR | = TEMPC | =TEMPB | EMPR1=R1 | EMPR2=R1 |

EXHIBIT 4

7

2.06

| T MATRIX 1050                                                                                                    | 10<br>10<br>10                                                                                                                                                                                                                                                                           |                                                                                                                                                              | UEI. COEF. 1084<br>1085<br>12(MO.1)*R12(M 1088<br>1090<br>1092<br>1093<br>1093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATION COEFFICIENT                                                                                                | K13=•F7•3•3HXA=•                                                                                                                                                                                                                                                                         | 3=,F7,3,3                                                                                                                                                    | MUL 1 1 F L F<br>MO • 1 ) - 2 • * R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <pre>+(W+R13(M01.1)) +(T+R12(M01.1)) 3(M01.1)) :(M01.1)) :(M01.1)) . OF THE CORRELATION</pre>                    | 760<br>13(M0.1).XA<br>2.5HMONTH.12.4HR13<br>CY TEST. TOO HIGH)                                                                                                                                                                                                                           |                                                                                                                                                              | G * 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MO.1)<br>*R13(MO.1)+.25*<br>*R12(MO.1)+.25*<br>(MO.1)+.25*(Y+E<br>(MO.1)+.25*(Y+E<br>THE CONSISTENCY             | <pre>f.EQ.1) GO TO 890<br/>D=1.12<br/>E(MO.1)*R12(MO.1)<br/>P.1)*R12(MO.1)+AC<br/>D.1)*R12(MO.1)+AC<br/>D.1)*R12(MO.1)-AC<br/>d0.1).LT.XA) GO TO 760<br/>770) ISTA.M(MO).R13(N<br/>12H STATION NO112.5H<br/>I2H STATION NO112.5H<br/>EAILED CONSISTENCY 7<br/>EAULED CONSISTENCY 7</pre> | 0<br>M0+1).GT.XS) GO TO 880<br>.810) ISTA,M(M0).R13(M0+1).XS<br>12H STATION NO.,I12.5HMONTH.I2<br>3 FAILED CONSISTENCY TEST. TOC<br>)=XS<br>0=1.12<br>0=1.12 | <pre>ULALING THE BETA CUEFFICIENTS<br/>(M0.1)*R12(M0.1)<br/>R12(M0.1)-R13(M0.1)*R12(M0.1)<br/>R13(M0.1)-R12(M0.1)*R12(M0.1)<br/>R12(M0.1)*R12(M0.1)+R13(M0.1)<br/>R12(M0.1)/E<br/>0).6T1.0) B0(M0)=1.0<br/>0).6T1.0) B0(M0)=1.0<br/>1B0(M0))**.5<br/>IB0(M0))**.5<br/>IB0(M0))**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0(M0)S**.5<br/>IB0</pre> |
| TEMPB =B (P<br>MO1=MO+1<br>R13(MO+1)=-5<br>R12(MO+1)=-5<br>B(MO+1)=-5<br>C(MO+1)=-5*C<br>CONTINUE<br>NOW TESTING | IF (ITES<br>DO 880 M<br>AC=1RI<br>XAC=1RI<br>XS=RI2(M<br>XS=RI2(M<br>IF (RI3(<br>WRITE (6<br>FORMAT (<br>FORMAT (                                                                                                                                                                        | GG T0 88<br>IF (R13 88<br>FORMAT (<br>36HR1 (<br>36HR1 (<br>36HR1 (<br>CONTINUE<br>D0 900 MG                                                                 | CALCALCALCALCALCALCALCALCALCALCALCALCALC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 730                                                                                                              | 740<br>750<br>770                                                                                                                                                                                                                                                                        | 760<br>810<br>880<br>890                                                                                                                                     | 1 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

1098 1106 1108 1.1.2.8 1129 1099 1100 1102 1103 1104 1105 1109 1110 LILL 1112 1113 1.1.14 1115 1116 1117 1118 1119 1120 1122 1124 1125 1126 1127 1131 1133 1134 1097 1101 1121 STATION NO. 112) FORMAT (1H .12.11HHALF-RECORD.16.20HYEARS AT WRITE (6,950) J.NYR, ISTA IF (NYR4+LE+0) GO TO 951 C(M0+2)=C(M0+1 B (M0+2)=B (M0+1 FMPQ (M0.J)=0. TMPQ3 (M0+J)=0. TMPKK (M0+J)=0. DO 930 MO=1,12 IMPIK(MO,J)=0.TMP1L (M0, J)=0. TMPLL (M0.J)=0. TQIL(M0.J)=0. TOKK (MO . J)=0. FMPK (M0.J)=0. TMPL (M0.J)=0. TMPQ2(M0, J)=0 WRITE (6,920) (MO+))=0. (MO+J)=0. ( MO . J) = 0. .0=( [ • 0M) ( MO + J) = 0 + TMS (MO+J)=0. TQIK(M0.J)=0. TQLL (MO . J)=0. • 0=( C + OM) ( MO . J )=0. TQK (MO+J)=0. 00 910 J=1+2 TQL (M0.J)=0. FORMAT (1H0) 0 ICOUNT = 0NYR=NYSYN # CONTINUE CONTINUE V(1) = 0.1V(2) = 0.1JCOUNT 1+0=0 02 **TS2** 0=0 03 TM2 Σ S 2 910 920 930 940 950

9

|                                                                | •1HG•10X•3HRI2 1142   | 1144       | 1145                                       |                                             | - 4           | 15   | 15         | 15          | 1153                                                                                             | n ¥ | 16          | THE SMOOTHED REGRE 115 | 115          | 1            |              |                 |               | 95 1                                          |                      |                     |                            | 1164 | 1165     |                                  | 1167              | 1168                   | 1169 | 1170 |              |   |
|----------------------------------------------------------------|-----------------------|------------|--------------------------------------------|---------------------------------------------|---------------|------|------------|-------------|--------------------------------------------------------------------------------------------------|-----|-------------|------------------------|--------------|--------------|--------------|-----------------|---------------|-----------------------------------------------|----------------------|---------------------|----------------------------|------|----------|----------------------------------|-------------------|------------------------|------|------|--------------|---|
| 1,NYR<br>960) ISTA.N<br>12)<br>EQ.1) WRITE (6,970)             | EAN + 9X + 2HSD + 11X | GO TO 1000 | •UK+J+NE+1) GU 10 980<br>Le (Jtape+0+Iskp) | <pre>&gt;E&lt;990) (QM(MO,N),MO=1,12)</pre> | 1510001       |      |            | AR TEST**** | • N• AND• MO• EQ•5) GO TO 1010                                                                   |     | COUNT + 1   | μ                      | COEFFICIENT. |              | ) GO TO 1021 | QI., CONST = XD | (MO.N) *CONST | C(M0+J)+B(M0+J)*ALOG(QM(M0+N)+XD*DELTA)*+4342 | ).GE.0.05)GO TO 1040 | 30) M(MO),ASD(MO,1) | ASU(91294791)1973.30<br>05 | •    | ± :      | PE+1050) M(MO)+IX3+(Q(I)+I=3+ND) | •7F10.1/(8F10.1)) | JR+MO+NE+1) GO TO 1060 |      | (5): | 1 UE (NU=1 ) |   |
| 51 D0 1120 N=1<br>WRITE (10+9<br>60 FORMAT (211<br>IF (MSTAT+E | N n                   | ш.<br>Ш.   | CALL SKPFIL                                | APE                                         | 00 DO IIIO MC | 0=TW | ND=KD (MO) | ۲<br>م      | е<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | J   | I COUNT = I | NOW CALCUL             | TA           | 1020 XD=ND-2 | ш            | -               | Q<br>II       | 1                                             | <u>é</u>             | WRITE (6)]          | ASD(MO.1)=                 | W    | IX3=ND-2 | WRITE (KTA                       | 2                 | -<br>-                 | 5 č  | 3 +  |              | 5 |

: 204

1190 1208 1175 1178 6111 1180 1181 1182 1183 1184 1185 1188 1189 1611 1192 1193 1194 1195 1196 1197 1198 1202 1203 1210 1211 1212 1213 1214 1201 1207 WRITE(641080)M(MO)+XBAR(MO+J)+SD(MO+J)+G(MO+J)+R12(MO+J)+R13(MO+J) FORMAT (1X/9X,26HSIMPLE REGRESSION EQUATION/43H STANDARD DEVIATION I VERSUS LOG MONTHLY FLOW/IH0,3X,5HMONTH,5X,8HCONSTANT,2X,11HCOEFFI FORMAT (14H ENTIRE RECORD, 16, 20HYEARS AT STATION NO., 112) WRITE (6,1150) (M(MO),C(MO,J),B(MO,J),R2(MO,J),MO=1,12) WRITE (6,1150) (M(MO),C(MO,J),B(MO,J),R2(MO,J),MO=1,12) WRITE (6.1080) (M(MO).XBAR(MO.J).SD(MO.J).6(MO.J). WRITE (6.1080) (M(MO).XBAR(MO.J).SD(MO.J).G(MO.J). FORMAT (16,20HYEARS AT STATION NO., 112) = ICOUNT RI2(M0+J), R13(M0+J), M0=1,12) R12(M0, J), R13(M0, J), M0=1, 12) IF (NYR4.LE.0) GO TO 1161 TO 1110 JCOUNT = JCOUNT + I COUNT WRITE (6,1130) NYR, ISTA ICIENT, 2X, 10HDET. COEF.) WRITE (6.1180) NT.ISTA IF (NYR4.LE.O) JCOUNT IF (J.EQ.I) GO TO 940 FORMAT (18.3F12.3) FORMAT (18,5F12,3) 0 0 0 NT =NYSYN+NYR4 WRITE (6.1140) WRITE (6,1140) IF (N.NE.NYR) (016.61) WRITE (6,920) WRITE (6+970) WRITE (6,920) CALL REGRES CALL ENTIRE NYR1=NYSYN NYR2=NYR4 STAT NYR=NYR4 CONTINUE CONTINUE CONTINUE WRITE RETURN I = I MCALL END 1160 1140 1100 1120 1130 1190 010 1080 1110 1150 1090 1180 1161 1170

**~~** 

EXHIBIT 4

 $\mathbb{Z}$ 

1046 1047 1048 1049 1050 1041 1042 1042 1044 1045 1051 1052 1053 1054 1055 1056 1057 QDL06(M0)=QDL06(M0)+AL06(RATI0)\*-434295 QLOG(34)=ALOG(Q(34)+XD\*DELTA)\*•434295 V(1)= ALOG(Q(ND-1)+DELTA)\*•434295 V(2)= ALOG(Q(ND) +DELTA)\*•434295 QLOG(I)=ALOG(Q(I)+DELTA)\*.434295 IF (JJJ.NE.0) GO TO 1290 IF(JJ.NE.I) GO TO 1260 Q(34) = Q(34) + Q(I)Q(I)=Q(I)\*RATIO DO 1270 I=3.ND GO TO 1240 GO TO 1200 CONTINUE Q(34)=0. RETURN 1:10=1 END 1270 1260 1280 1290

242

| 1001<br>1002<br>7R1,                                                                                            | 100                      | 0100                                              | 0000              |                                                                                             | 111111111111<br>1000000000000000000000000 | 000000   |
|-----------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|----------|
| 2)•C(13•2)•<br>ELQ•DELQ2•<br>E•ITEST•J•<br>NYR•NYSYN•N                                                          | 2,92),                   | 2•2)•<br>12•2)•                                   | (12,              |                                                                                             |                                           |          |
| B1(12),B2(1<br>ELL,DELLL,D<br>P,ISTA,ITAP<br>D,NP,NYANL,                                                        | (12,2),TM(<br>0KK(12,2), | 2) • TQIK (1<br>• 2) • TQIK (1<br>2 • 2) • TQLL ( | ) • V ( 2 ) • XBA | (1)<br>(1)*QLOG<br>(1)*                                                                     |                                           |          |
| 2)•B0(12)<br>LK•DELKK•<br>•ISM00•IS<br>TAT•M1•N•                                                                | R2(12,2),<br>PK(12,2),   | 12,2),TQ(<br>12,2),TQ(<br>12,2),TQL               | 2)•T52(12         | (I)<br>(I)*QLOG<br>(I)*QLOG<br>(I)*QLOG<br>(I)*QLOG                                         | × 0 L 0 × 0 L 0 × 0 L 0                   |          |
| D(12•2)•B(13•<br>ELIK•DELIL•DE<br>(12•2)•ICOUNT<br>K•KTAPE•MO•MS                                                | ).RI3(13)<br>DIL(12.2)   | 5(12,2),TG<br>(12,2),TG<br>(12,2),TG              | 12,2),15(<br>1340 | + + + + + + +                                                                               |                                           | t<br>V   |
| E STAT<br>[3+3]+AS<br>[0(33]+D<br>[0[T4]66<br>[0]T4PE                                                           | RI2(13)                  | 12+2)+TG                                          |                   | ))=TQ (N)<br>)=TQK(M0)<br>)=TQL(M0)<br>))=TQL(M0)<br>))=TQ2 (N)<br>))=TQ2 (N)<br>))=TQ1K(N) |                                           |          |
| S COMMO<br>S COMMO<br>S C OMMO<br>S C OMMO<br>S C OMMO<br>S C C OMMO<br>S C C C C C C C C C C C C C C C C C C C |                          |                                                   |                   |                                                                                             |                                           | 112 D AR |

-

| GO TO 1330<br>1310 XD=ND-2                                  | 1042         |
|-------------------------------------------------------------|--------------|
| XBAR(MO,J)= DELQ/XD                                         | 1043         |
| IF (DELQ2-DELQ**2/(ND-2).6T0001 ) GO TO 1320<br>SD(MO.J)=0. | 00           |
|                                                             | 1040         |
|                                                             | 04           |
| 1330                                                        | 4 4<br>7 7   |
| MO • J) = ( (DEL                                            |              |
| <pre>e ( MO • J ) = ( XD*XD*DELQ3-</pre>                    | 50           |
| D-1•)*(XD-2•) *S                                            | 05           |
| 0+))=(DELIK-DELQ<br>K-DFIK+DFIK/YD))                        | 1054         |
|                                                             | ດ ຟ<br>ວ (   |
| IF (R12(M0.J).LT.0.) R12(M0.J)=0.                           | 0 C          |
| (1.0                                                        | 0.0          |
| (100                                                        | 050          |
| (DELLL                                                      | 00           |
| 13(M0.J)=1(1R13(                                            | 06           |
| F (RI3(M0.J).LT.0.                                          | 06           |
| R13(M0+J)=(R13(M0                                           | 06           |
| MPQ (MO.)                                                   | 1064         |
| MPK (MO . J)                                                | 06           |
| MPL (MO · J) = TQL (M                                       | 06           |
| MPQ2(M0,J)=TQ2                                              | 1067         |
| MPQ3(M0, J)=                                                | 06           |
| MPIK (MO.                                                   | 00           |
| MPIL (MO.J)=TQIL                                            | 5            |
| MPKK(MO, J) = TQKK                                          | 50           |
| ΔI                                                          | 1072         |
| KETURN                                                      | ~            |
| TOT = NYR*(ND-2)                                            | 1-           |
| IF (MO+EQ+5) NTOT = NTOT +ICOUNT<br>XTOT=NTOT               | 1075         |
| BAR (MO, J)                                                 | 1076         |
| (r.ow) 0                                                    |              |
| G (MO+J)=(XTOT*XTOT*TQ3(MO+J)-3.*XTOT*TQ (MO,J)*TQ2(MO,J)   | 1078         |
| 2.**IQ (MO                                                  | 01           |
| RIZ                                                         | 1080<br>1081 |
|                                                             | ,            |

. 89

1086 1088 ITQ(MO.J)\*TQ(MO.J)/XTOT)\*(TQKK(MO.J)-TQK(MO.J)\*TQK(MO.J)/XTOT))
RI2(MO.J)=(1.-(1.-RI2(MO.J))\*(XTOT-1.)/(XTOT-2.))\*\*.5
RI3(MO.J)=(TQIL(MO.J)-TQ(MO.J)\*TQL(MO.J)/XTOT)\*\*2/((TQ2(MO.J)-ITQ(MO.J)\*TQ(MO.J)/XTOT)\*(TQLL(MO.J)-TQL(MO.J)/XTOT)\*\*2/((TQ2(MO.J)-RI3(MO.J)\*TQ(MO.J)/XTOT)\*(TQLL(MO.J)-TQL(MO.J)\*TQL(MO.J)/XTOT))
RI3(MO.J)\*TQL(MO.J)\*(TOT)\*(TOT-1.)/(XTOT-2.))\*\*.5 RE TURN END

,

| SUBROUTINE REGRES<br>COMMON A(13,3), ASI<br>CONST,D(33), DF<br>CONST,D(33), DF<br>2 DELQ3,DELTA,G<br>2 JCOUNT, JTAPE,F<br>3 NYR2,NYR3,NYR4 | D(12•2)•B(13•2)•B0(12)•B1(12)•B2(12)•C(13•2)•<br>ELIK•DELIL•DELK•DELKK•DELL•DELLL•DELQ•DELQ2•<br>(12•2)•ICOUNT•ISMOO•ISKP•ISTA•ITAPE•ITEST•J•<br>K•KTAPE•MO•MSTAT•M1•N·ND•NP•NYANL•NYR•NYSYN•NYR1•<br>4•Q(34)•QD+QDLOG(12)•QLOG(34)•QM(12•100)•RN(33)• | 1001<br>1002 |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| RATIO.R12(13                                                                                                                               | •R13(13•2)•R2(12•2)•SD(12•2)•TM(12•2)•                                                                                                                                                                                                                 | 00           |
| TMPIK(12.2).                                                                                                                               | IL(12,2),TMPK(12,2),TMPKK(12,2),                                                                                                                                                                                                                       | 00           |
| TMPL(12.2).T                                                                                                                               | -(12,2),TMPQ(12,2),TMPQ2(12,2),                                                                                                                                                                                                                        | 00           |
| TMPQ3(12.2).                                                                                                                               | (12•2).TM2(12•2).TQ(12•2).TQIK(12•2).                                                                                                                                                                                                                  | 0            |
| TQIL(12.2).1                                                                                                                               | 12•2)•TQKK(12•2)•TQL(12•2)•TQLL(12•2)•                                                                                                                                                                                                                 | 10           |
| TQ2(12+2)+TG                                                                                                                               | 2•2)•TS(12•2)•TS2(12•2)•V(2)•XBAR(12•2)                                                                                                                                                                                                                | 10           |
| M (MO+))=TM (MC                                                                                                                            | +QLOG (34)                                                                                                                                                                                                                                             | 10           |
| M2(M0.J)=TM2(M0.                                                                                                                           | J)+QLOG(34)*QLOG(34)                                                                                                                                                                                                                                   | 0            |
| S (MO+J)=TS (MO+                                                                                                                           | J)+SD(M0+J)                                                                                                                                                                                                                                            | 01           |
| S2(M0+J)=TS2(M0+                                                                                                                           | ()+SD(MO•J)*SD(MO•J)                                                                                                                                                                                                                                   | 10           |
| MS(MO.J)=TMS(MO.                                                                                                                           | J)+QEOG(34) *SD(MO+J)                                                                                                                                                                                                                                  | 01           |
| F (N.NE.NYR) RET                                                                                                                           | URN                                                                                                                                                                                                                                                    | 1018         |
| Z                                                                                                                                          |                                                                                                                                                                                                                                                        |              |
| =TMS(MO.J)-TS (                                                                                                                            | NX/(C*OW)                                                                                                                                                                                                                                              | 10           |
| =TM2(M0,J)-TM (                                                                                                                            |                                                                                                                                                                                                                                                        | 02           |
| Y/ Z= (C . OW)                                                                                                                             |                                                                                                                                                                                                                                                        | 1021         |
| (M0.J)=TS(M0.J)                                                                                                                            | (N                                                                                                                                                                                                                                                     | 02           |
| 2(WO+J)=Z*Z/(X*)                                                                                                                           | [S2(MO,J)+TS (MO,J)*TS (MO,J)/XN))                                                                                                                                                                                                                     | 02           |
| 2(MO, J)=1(1F                                                                                                                              | 2(WO+J))*(XN-I+)/(XN-2+)                                                                                                                                                                                                                               | 02           |
| F ( R2(M0+J)+GE                                                                                                                            | )•) GO TO 1400                                                                                                                                                                                                                                         | 02           |
| ( WO + ) )=0                                                                                                                               |                                                                                                                                                                                                                                                        | 02           |
| F (MO.EQ.5) ND=3                                                                                                                           | 0                                                                                                                                                                                                                                                      | 02           |
| TOT =NYR                                                                                                                                   |                                                                                                                                                                                                                                                        | 02           |
| 0.EQ.5) N                                                                                                                                  | = NTOT + ICOUNT                                                                                                                                                                                                                                        | 02           |
| TOT=NTOT                                                                                                                                   |                                                                                                                                                                                                                                                        |              |
| C(M0, J) = ((TQ2(M0, J)))                                                                                                                  | J)-TQ(M0,J)*TQ(M0,J)/XTOT)/(XTOT-1.))**.5                                                                                                                                                                                                              | 1030         |
| ETUR                                                                                                                                       |                                                                                                                                                                                                                                                        | 03           |
| Z                                                                                                                                          |                                                                                                                                                                                                                                                        | 03           |
|                                                                                                                                            |                                                                                                                                                                                                                                                        |              |
|                                                                                                                                            |                                                                                                                                                                                                                                                        |              |

| <pre>SUBROUTINE ENTIRE<br/>COMMON/DAYS/KD(12)<br/>COMMON/DAYS/KD(12)<br/>COMMON A(13.3).ASD(12.2).B(13.2).BO(12).BI(12).B2(12).C(13.2).<br/>COMMON A(13.3).ASD(12.2).BC(13.2).BO(12).BI(12).B2(12).C(13.2).<br/>CONST.D(33).DELIK.DELIL.DELK.DELKK.DELLL.DELLL.DELQ2.<br/>CONST.D(33).DELIK.DELIL.DELK.DELKK.DELLL.DELLL.DELQ2.<br/>DELQ3.DELTA.G(12.2).ICOUNT.ISMO0.ISKP.ISTA.ITAPE.ITEST.J.<br/>COUNT.JTAPE.K.KTAPE.M0.MSTAT.M1.N.ND.NP.NYANL.NYR.NYSYN.NYR1.<br/>NYR2.NYR3.NYR4.Q(34).QD.QDLOG(12).QLOG(34).QM(12.100).RN(33).</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1001<br>1002<br>1003 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| DATTO.DIJII.201010101010101010101001010101010101010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                    |
| THOMAS AND ALL | 0                    |
| IMPLK(1292)91MPLL(1292)91MPK(1292)91MPKK(1292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00                   |
| TMPL(12,2),TMPLL(12,2),TMPQ(12,2),TMPQ2(12,2),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01                   |
| TMP03(12,2), TMS(12,2), TM2(12,2), TQ(12,2), TQ1K(12,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01                   |
| TQ1L(12,2),TQK(12,2),TQKK(12,2),TQL(12,2),TQL(12,2),<br>TO2/12,2),TO2/12,2),TE(12,2),TE(12,2),TC(12,2),TQ2,2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                   |
| DIMENSION ETM(12,2) • EXBAR(12,2) • ETQ(12,2) • ETQ2(12,2) • ETQ3(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56                   |
| ETS(12+2)+ETS2(12+2)+ETMS(12+2)+ETQIK(12+2)+ETQIL(12+2)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TO                   |
| ETQKK(12+2)+ETQLL(12+2)+EB(13+2)+EC(13+2)+ER2(12+2)+ESD(12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                   |
| EG(12+2)+ETQL(12+2)+ER12(13+2)+ER13(13+2)+ETM2(12+2)+ETQK(12+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01                   |
| QUIVALENCE (B+EB)+(C+EC)+(R2+ER2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01                   |
| VALENCE (SD+ESD)+(6+EG)+ (RI2+ERI2)+(RI3+ERI<br>Valence / EvenD-venD) //IIO-IO/IO/IO/IO/IO/IO/IO/IO/IO/IO/IO/IO/IO/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                   |
| EGUTVALENCE / EABANAXBAN)(ELUSIU))(ELUZSIUZ))(ELUZS)(U)<br>(FTM2&TM2)&(FTS&TS)&(FTS2&TS2).(FTMS,TMS).(FTM2), (FTM1K,TD1K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 202                  |
| (FTOIL TOIL ) • (FTOKK • TOKK ) • (FTOLL • TOLL) • (FTOK • TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 0                  |
| TQL+TQL)+(ETM+TM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 4 0                |
| 0 I510 MO=1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 02                   |
| TM (MO+1)=TM (MO+1)+TM (M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02                   |
| TQ (M0.1)=TQ (M0.1)+TQ (M0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00                   |
| TOK (MO + 1) = TOK (MO + 1) + TOK (MO + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02                   |
| UL(MU.)]=[UL(MO.])+ UL(MO.2)<br>TD2 (MO.1)=TD2 (MO.1)+TD2 (MO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| TQ3 (MO+1)=TQ3 (MO+1)+TQ3 (MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n v<br>O C           |
| TM2 (M0+1)=TM2 (M0+1)+TM2 (M0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03                   |
| TS (M0.1)=TS (M0.1)+TS (M0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03                   |
| TS2 (M0.1)=TS2 (M0.1)+TS2 (M0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03                   |
| TMS (MO.1)=TMS (MO.1)+TMS (MO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03                   |
| TQIK(M0+1)=TQIK(M0+1)+TQIK(M0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03                   |
| TGL(M0+1)=TGLL(M0+1)+TGLL(M0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00                   |
| TOL: (MO - 1) = TOL: (MO - 1) + TOL: (MO - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 0<br>0 0           |
| D=KD(MO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1039                 |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40                   |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |

| NN=NT*(ND-2)<br>IF (MO•EQ•5) NN=NN+ JCOUNT<br>XN=NN               |                           | 1041<br>1042 |
|-------------------------------------------------------------------|---------------------------|--------------|
| XBAR(MO                                                           |                           | 1043         |
| SD(MO+1)                                                          | (1)) / (XN-1•))**•5       | 1044         |
| EG(MO+1)=(XN*XN*ETQ3(MO+1)-3+XN*ETQ(MO+1)*ETQ2(MO+1)+2+*ETQ(MO+1) | )*ETQ2(M0+1)+2+*ETQ(M0+1) | 1045         |
| *ETQ(MO .)                                                        | *ESD(MO+1)*ESD(MO+1)*     | 1046         |
| ESD(MO                                                            |                           | 1047         |
| ERI2(MO.                                                          | ),J)/XN)**2/((ETQ2(MO,J)- | 1048         |
| TQ(MO.J                                                           | ((MO+J)*ETQK(MO+J)/XN))   | 1049         |
| ER12(M0+1)=(1-(1-ER12(M0+1))*(XN-1-)/(XN-2-))**5                  | (N-2•))***5               | 1051         |
| RI3(MO.                                                           | )•J)/XN)**2/((ETQ2(MO•J)- | 1052         |
| TQ(MO+)                                                           | .(MO+J)*ETQL(MO+J)/XN))   | 1053         |
| ш                                                                 | (N-2•))**•5               | 1055         |
| <pre>1500 Y=ETM2(M0+1)=ETM(M0+1)*ETM(M0+1)/XT</pre>               |                           | 1056         |
| Z=ETMS(M0+1)-ETM(M0+1)*ETS(M0+1)/XT                               |                           | 1057         |
| B(M0.1)=                                                          |                           | 1058         |
| C(MO+1)=                                                          | ×X.T                      | 1059         |
| R2(M0.1)                                                          | ((1X/(I•0W))).            | 1060         |
| R2(M0+1)=1+-(1+-ER2(M0+                                           |                           | 1061         |
| F (ER2()                                                          |                           | 1062         |
| B ( MO • 1                                                        |                           | 1063         |
| $EC(MO \cdot I) = ESD(MO \cdot I)$                                |                           | 1064         |
| ONTINU                                                            |                           | 1065         |
| RETURN                                                            |                           | 1066         |
| ENC.                                                              |                           | 1067         |
|                                                                   |                           |              |

~ ~

~1

 $m \mapsto m = m = m$ 

in in M

EXHIBIT 4

1002 1004 1005 1006 1007 1008 1009 1010 1012 1013 1011 1001 ~ 20 0 GENERATES UNIFORM RANDOM NUMBERS IN THE INTERVAL IX SHOULD BE INITIALIZED TO ZERO IN THE PROGRAM RANDOM NUMBER SUBROUTINE FOR A BINARY MACHINE B= NUMBER OF BITS IN THE INTEGER WORD SUBROUTINE SKPFILE (ITAPE, IFILE, IRCD) IF (IFILE) 1640,1640,1600 IF(IY•LT•0) IY=IY+281474976710655+1 CONSTANT ONE=(2\*\*((B+1)/2))+3 IF (ENDFILE ITAPE) 1630,1610 GENERAL USAGE IS AS FOLLOWS RNGEN=RNGEN\* • 3552713678E-14 CONSTANT THREE=1.0/(2.\*\*B) IF (IRCD) 1670,1670,1650 ന CONSTANT TWO=(2\*\*B)-1 READ (ITAPE, 1620) VAR IF(IARG.EQ.IX) GO TO READ (ITAPE, 1620) VAR FUNCTION RNGEN(IX) DO 1630 I=1, IFILE DATA 1ARG/759821/ D0 1660 I=1,IRCD IY=IY\*16777219 FORMAT(20A4) A=RNGEN(IX) CONTINUE CONTINUE RNGEN=IY I X = I ARG RETURN **RETURN** X = YEND END 1600 1640 m 1610 1620 1630 1650 1660 1670

000000000

389

#### EXHIBIT 5

# INPUT DATA - 723-G2-L2190

A Three title cards

B Specification card - input and output control

1. ISTA - Station number at which flows are to be generated

- 2. ITAPE Number of the input tape containing historic daily flows. If daily flows are on cards use 5
- 3. JTAPE Number of the input tape containing monthly flows. If monthly flows are on cards use 5
- 4. KTAPE Number of the tape to be used for output of synthetic daily flows. If output should be on cards use 5
- 5. CONST A constant to convert monthly flows to cfs-days. Its value is determined as follows:

If synthetic monthly flows are in cfs-days use 1. If synthetic monthly flows are in thousand cfs-days use 1000. If synthetic monthly flows are in cfs use -1. If synthetic monthly flows are in acre-feet use .504167 If synthetic monthly flows are in thousand acre-feet use 504.167 If synthetic monthly flows are in inches use 26.9 × (Drainage area in square miles)

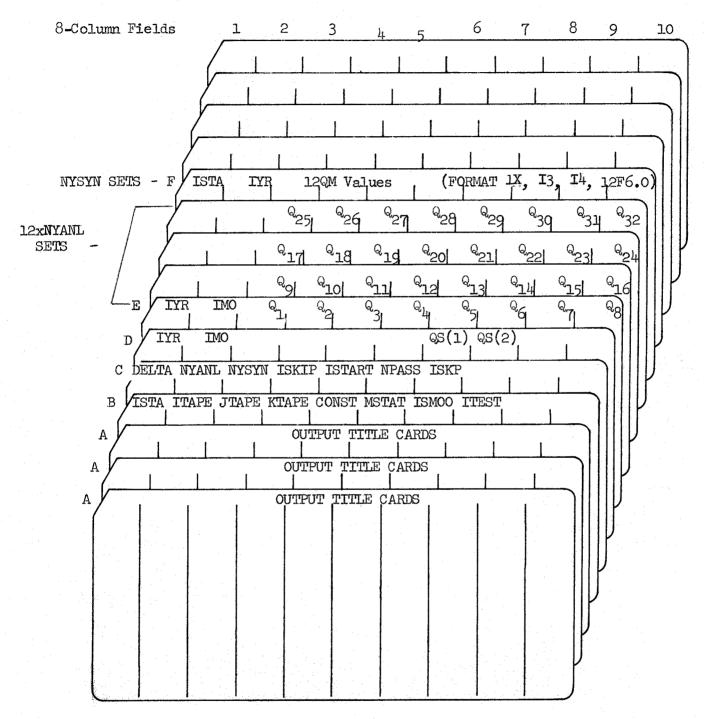
6. MSTAT - Indicator, + 1 if monthly statistics are desired
7. ISMOO - Indicator, + 1 if smoothing is not desired
8. ITEST - Indicator, + 1 if matrix consistency test is not desired

- C Specification card station information
  - 1. DELTA Incremental flow which is added to all flows before converting to a logarithmic value (.01095 × MEAN ANNUAL FLOW IN CFS).
  - 2. NYANL Number of years of historical daily flow input
  - 3. MYSYN Number of years of monthly flow input
  - 4. ISKIP Number of records to waste before starting to read daily flows from tape (leave blank if using cards for daily data)
  - 5. ISTART Indicator, + 1 if estimate of first two days of record is desired
  - 6. NPASS Number of sets of records of NYSYN years to be generated

- 7. ISKP Number of years of monthly flows to waste before starting to read monthly flows from tape (leave blank if using cards for monthly data)
- D Initial daily flows only need the D card if ISTART is zero or blank

1. IYR - Calendar year
2. IMO - Month
3. - 6. - Blank fields
7. QS(1) - First starting daily flow value (Sept. 29)
8. QS(2) - Second starting daily flow value (Sept. 30)

# E Historical daily flow data (12 × NYANL sets of data) - 4 card format


# F Simulated monthly flow data (NYSYN sets of data)

- ISTA Same as on card Bl (cols. 2-4)
   IYR Calendar year (cols. 5-8)
- 3. QM Monthly flows (12 fields of 6 columns each)

### EXHIBIT 6

SUMMARY OF REQUIRED CARDS

723-G2-L2190



All data (except as noted) are read using 10 fields of eight columns each except that column one of each card is reserved for identification of the card. Therefore, the first field is restricted to seven columns. The above input should be followed by either the next job or 4 blank cards to end the program.

| ELECTRONIC COM                                                                                                                                                                                                                                                                                      | PUTER PROGRAM ABSTRA                                                                                                     | ICT                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| TITLE OF PROGRAM<br>Daily Streamflow Simulation                                                                                                                                                                                                                                                     | <u></u>                                                                                                                  | PROGRAM NO.<br>723-62-L2190                                                                    |
|                                                                                                                                                                                                                                                                                                     | eering Center, U.S. A<br>avis, California 956                                                                            | Rmy Corps of Engineers                                                                         |
| R. G. Willey                                                                                                                                                                                                                                                                                        | April 1968                                                                                                               | PHASE STAGE<br>Init. Op.                                                                       |
| A. PURPOSE OF PROGRAM<br>This program analyzes historical da<br>their statistical characteristics a<br>daily streamflows. The generated s<br>length and will have statistical cl<br>daily streamflows, are based on giv<br>generated daily flows is equal to<br>another program such as 723-X6-L234 | and generates a seque<br>streamflows, which ca<br>haracteristics simila<br>ven monthly flows. I<br>the monthly flow prev | nce of hypothetical<br>In be of any desired<br>In to the historical<br>The sum of each month's |
| B. PROGRAM SPECIFICATIONS<br>The program is written in standard<br>300 years of synthetic data.                                                                                                                                                                                                     | FORTRAN IV. The pro                                                                                                      | ogram is dimensioned for                                                                       |
| C. METHODS<br>The method is based on the second-<br>for each month of the year to acco<br>streamflow data is assumed to be lo                                                                                                                                                                       | for seasonal varia                                                                                                       | tions. The daily                                                                               |
| D. EQUIPMENT DETAILS<br>Required storage capacity is about<br>library functions are the cosine a                                                                                                                                                                                                    | 20,000 words (in the<br>nd natural logarithm                                                                             | e CDC 6600) and required routines.                                                             |
| E. INPUT-OUTPUT<br>It is desirable, but not necessary<br>An on-line printer is required. Ca<br>Tape 6.                                                                                                                                                                                              | , to use two input ta<br>ard input is Tape 5 a                                                                           | apes and one output tape.<br>and printer output is                                             |
| F. ADDITIONAL REMARKS<br>Occasionally this program does not<br>studies are planned to develop a m                                                                                                                                                                                                   | provide acceptable model.                                                                                                | results. Research                                                                              |

# Hydrologic Engineering Methods for Water Resources Development

| Volume 1  | Requirements and General Procedures, 1971        |
|-----------|--------------------------------------------------|
| Volume 2  | Hydrologic Data Management, 1972                 |
| Volume 3  | Hydrologic Frequency Analysis, 1975              |
| Volume 4  | Hydrograph Analysis, 1973                        |
| Volume 5  | Hypothetical Floods, 1975                        |
| Volume 6  | Water Surface Profiles, 1975                     |
| Volume 7  | Flood Control by Reservoir, 1976                 |
| Volume 8  | Reservoir Yield, 1975                            |
| Volume 9  | Reservoir System Analysis for Conservation, 1977 |
| Volume 10 | Principles of Groundwater Hydrology, 1972        |
| Volume 11 | Water Quality Determinations, 1972               |
| Volume 12 | Sediment Transport, 1977                         |