

HEC-ResSim Reservoir System Simulation

Quick Start Guide

Version 3.0 April 2007

Approved for Public Release. Distribution Unlimited.

REPORT DO	Form Approved OMB No. 0704-0188		
existing data sources, gathering and maintaini burden estimate or any other aspect of this co Services and Communications Directorate (07	ng the data needed, and completing and reviewing llection of information, including suggestions for red 04-0188). Respondents should be aware that notw a collection of information if it does not display a co	sponse, including the time for reviewing instructions, searching the collection of information. Send comments regarding this ucing this burden, to the Department of Defense, Executive ithstanding any other provision of law, no person shall be urrently valid OMB control number.	
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)	
April 2007 4. TITLE AND SUBTITLE	Computer Program Documentation		
4. TITLE AND SUBTITLE	5a.	CONTRACT NUMBER	
HEC-ResSim	viele Stort Guide	GRANT NUMBER	
Reservoir System Simulation Qu Version 3.0		PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) 5d.		PROJECT NUMBER	
	50.	FROJECT NOMBER	
		TASK NUMBER	
Marilyn B. Hurst 5F.		WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER	
US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center 609 Second Street	(HEC)	CPD-82a	
Davis, CA 95616-4687			
9. SPONSORING/MONITORING AGENCY N	AME(S) AND ADDRESS(ES)	10. SPONSOR/ MONITOR'S ACRONYM(S)	
		11. SPONSOR/ MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION / AVAILABILITY STATE Approved for public release; dis			
13. SUPPLEMENTARY NOTES Also, see HEC-ResSim User's M	Ianual, CPD-82		
14. ABSTRACT			

The U.S. Army Corps of Engineers' Hydrologic Engineering Center's Reservoir System Simulation (HEC-ResSim) is a computer program comprised of a graphical user interface (GUI) and a computational program to simulate reservoir operations. Included are data storage and management capabilities and graphics and reporting facilities. HEC's Data Storage System (HEC-DSS) is used for storage and retrieval of input and output time series data.

15. SUBJECT TERMS

HEC-ResSim, Reservoir Simulation, computer program

16. SECURITY CLASS	IFICATION OF:		17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON
a. REPORT U	b. ABSTRACT U	c. THIS PAGE U	of abstract UU	of pages 43	19b. TELEPHONE NUMBER

HEC-ResSim Reservoir System Simulation

Quick Start Guide

Version 3.0 April 2007

US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center 609 Second Street Davis, CA 95616

(530) 756-1104 (530) 756-8250 FAX www.hec.usace.army.mil

CPD-82a

Reservoir System Simulation, HEC-ResSim

Software Distribution and Support Statement:

2007. This Hydrologic Engineering Center (HEC) documentation was developed with U.S. Federal Government resources and is therefore in the public domain. It may be used, copied, distributed, or redistributed freely. However, it is requested that HEC be given appropriate acknowledgment in any subsequent use of this work.

Use of the software described by this document is controlled by certain terms and conditions. The user must acknowledge and agree to be bound by the terms and conditions of usage before the software can be installed or used. For reference, a copy of the terms and conditions of usage are included below so that they may be examined before obtaining the software. The software described by this document can be downloaded for free from our internet site (www.hec.usace.army.mil).

HEC cannot provide technical support for this software to non-Corps users. See our software vendor list (on our web page) to locate organizations that provide the program, documentation, and support services for a fee. However, we will respond to all documented instances of program errors. Documented errors are bugs in the software due to programming mistakes not model problems due to user-entered data.

This document contains references to product names that are trademarks or registered trademarks of their respective owners. Use of specific product names does not imply official or unofficial endorsement. Product names are used solely for the purpose of identifying products available in the public market place.

Microsoft and *Windows* are registered trademarks of Microsoft Corp. *Solaris* and *Java* are trademarks of Sun Microsystems, Inc.

Terms and Conditions for Use of HEC-ResSim:

The United States Government, US Army Corps of Engineers, Hydrologic Engineering Center ("HEC") grants to the user the rights to install HEC-ResSim "the Software" (either from a disk copy obtained from HEC, a distributor or another user or by downloading it from a network) and to use, copy and/or distribute copies of the Software to other users, subject to the following Terms and Conditions of Use:

All copies of the Software received or reproduced by or for user pursuant to the authority of this Terms and Conditions of Use will be and remain the property of HEC.

User may reproduce and distribute the Software provided that the recipient agrees to the Terms and Conditions for Use noted herein.

HEC is solely responsible for the content of the Software. The Software may not be modified, abridged, decompiled, disassembled, unobfuscated or reverse engineered. The user is solely responsible for the content, interactions, and effects of any and all amendments, if present, whether they be extension modules, language resource bundles, scripts or any other amendment.

No part of this Terms and Conditions for Use may be modified, deleted or obliterated from the Software.

No part of the Software may be exported or re-exported in contravention of U.S. export laws or regulations.

Waiver of Warranty

THE UNITED STATES GOVERNMENT AND ITS AGENCIES, OFFICIALS, REPRESENTATIVES, AND EMPLOYEES, INCLUDING ITS CONTRACTORS AND SUPPLIERS PROVIDE HEC-RESSIM "AS IS," WITHOUT ANY WARRANTY OR CONDITION, EXPRESS, IMPLIED OR STATUTORY, AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. Depending on state law, the foregoing disclaimer may not apply to you, and you may also have other legal rights that vary from state to state.

Limitation of Liability

IN NO EVENT SHALL THE UNITED STATES GOVERNMENT AND ITS AGENCIES, OFFICIALS, REPRESENTATIVES, AND EMPLOYEES, INCLUDING ITS CONTRACTORS AND SUPPLIERS, BE LIABLE FOR LOST PROFITS OR ANY SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH USE OF HEC-RESSIM REGARDLESS OF CAUSE, INCLUDING NEGLIGENCE.

THE UNITED STATES GOVERNMENT'S LIABILITY, AND THE LIABILITY OF ITS AGENCIES, OFFICIALS, REPRESENTATIVES, AND EMPLOYEES, INCLUDING ITS CONTRACTORS AND SUPPLIERS, TO YOU OR ANY THIRD PARTIES IN ANY CIRCUMSTANCE IS LIMITED TO THE REPLACEMENT OF CERTIFIED COPIES OF HEC-RESSIM WITH IDENTIFIED ERRORS CORRECTED. Depending on state law, the above limitation or exclusion may not apply to you.

Indemnity

As a voluntary user of HEC-ResSim you agree to indemnify and hold the United States Government, and its agencies, officials, representatives, and employees, including its contractors and suppliers, harmless from any claim or demand, including reasonable attorneys' fees, made by any third party due to or arising out of your use of HEC-ResSim or breach of this Agreement or your violation of any law or the rights of a third party.

Assent

By using this program you voluntarily accept these terms and conditions. If you do not agree to these terms and conditions, uninstall the program and return any program materials to HEC (If you downloaded the program and do not have disk media, please delete all copies, and cease using the program).

Table of Contents

Section	Page
Introduction	1
Starting the Program	
Exiting the Program	
First, Some Terminology	
What is a Watershed?	
What are Watershed Locations?	
What are Modules?	
Watershed Setup Module	
Reservoir Network Module	
Simulation Module	9
Getting Down to Business	11
Steps in Developing a Reservoir Model	
Set Up the Watershed	
Create/Open a Watershed	
Add a Map	
Draw a Stream Alignment	
Create a Configuration	
Place Project Elements into the Configuration	
Develop a Reservoir Network	
Create/Open a Reservoir Network	
Add Routing Reaches, etc.	
Edit Junction and Reach Properties	
Edit Reservoir Properties	
Physical Data	
The Pool	
The Dam	
Adding Outlets	
Operation Data	
Zones and Rules	
Observed Data	
Define Alternatives	
Select the Network	
Select the Operation Set	
Define the Lookback Data	
Identify the Time-Series Records	
Identify Observed Records	
Perform a Simulation	
Create/Open a Simulation	
Set Alternative to be Active	
Compute	
View Results	
Specify Overrides	
Manage Simulation Data	

List of Figures

Figure

1	Teels Many Options Editor Watershed Leasting	2
1	Tools Menu, Options Editor, Watershed Locations	
2 3	Add Watershed Location	
-	ResSim Module Concepts	
4 5	Watershed Setup Module, Opening Window	
-	Watershed Setup Module, Opened Watershed, HayesBasin	
6	Reservoir Network Module, HayesBasin	
7	Simulation Module, HayesBasin	
8	New Watershed	
9	Allow Layer Editing	
10	Drawing a Stream Alignment	
11	Configuration Editor.	
12	Rename Computation Point	
13	A Simple Configuration, Existing	
14	Create New Reservoir Network	
15	New Network Based on Configuration Existing	
16	Drawing Routing Reaches	
17	Junction Editor	
18	Reach Editor	
19	Reservoir Editor, Pool Data	
20	Reservoir Editor, Dam Data	
21	Reservoir Editor, Gated Outlet	
22	Reservoir Editor, Uncontrolled Outlet (Spillway)	
23	New Operation Set	
24	New Operating Rule	
25	Zones and Rules Panel	
26	Observed Data Tab	
27	Alternative Editor, Create New Alternative	
28	Alternative Editor, Operations Tab	
29	Alternative Editor, Lookback Tab	
30	Alternative Editor, Time-Series Mapping	
31	DSS Time-Series Record Selector	
32	Simulation Editor	
33	Overrides Editor	.35

Introduction

Welcome to the HEC-ResSim Quick Start Guide. This document will take you through the steps needed to develop a reservoir simulation model using HEC-ResSim. Use this document to get a quick overview of the program and its basic features. For more detailed information, refer to the HEC-ResSim User's Manual *[references to the HEC-ResSim User's Manual are given in this type of formatted text to provide you with a cross reference for locating additional information].* "New" features (from Version 2.0 to Version 3.0) are indicated as highlighted text.

Starting the Program

Once HEC-ResSim has been installed on your PC, start the program as follows:

From Microsoft Windows -

On your desktop, double-click on the HEC-ResSim icon or, from the Start menu, select All Programs \rightarrow HEC- \rightarrow HEC-ResSim \rightarrow HEC-ResSim 3.0.

When you first start the program, you will see an introductory screen containing the version and contact information. This screen will disappear after a few moments. However, the same information is available from ResSim's **Help** menu by selecting the **About** option.

Exiting the Program

To exit the program, from the **File** menu on the Main Window, select **Exit**. The program will prompt you to save all files.

First, Some Terminology...

What is a Watershed?

In HEC-ResSim terminology, a **Watershed** is a collection of data associated with a particular reservoir system or study *[Chapter 3]*. Types of data include Watershed Setup (Configurations) *[Chapter 7]*, Reservoir Networks (including Operation Sets *[Chapter 11]* and Alternatives *[Chapter 13]*), and Simulations *[Chapter 14]*. After performing a Simulation, which will include one or more Alternatives, you can view and print results in both tabular and graphical form *[Sections 14.5 & 14.8 and Appendices E & F]*. This guide provides basic steps for using the Graphical User Interface (GUI) to enter data, run simulations and view results.

What are Watershed Locations?

A **Watershed Location** is the place on disk where you can store watersheds; also called a working directory *(Section 3.3.1).* You can have multiple watershed locations, although a given watershed cannot span multiple locations. Each watershed location should be given a descriptive name, such as *My Watersheds* or *General Projects*, and a path specification that identifies the directory "on disk" where you want to create and edit your watershed data.

😿 HEC-ResSim 3.0	Options 🛛 🔀
Model Directories	Cache Directory Compute Display Debug Levels General Fonts
Watershed Locati	ons
Name	Location
Add Locatio	n Remove Location Edit Location
	OK Cancel
	OK Cancer

Figure 1 – Tools Menu, Options Editor, Watershed Locations

Before you can create or open a watershed, you must define at least one watershed location. Do so by selecting **Options** from the **Tools** menu. The Options Editor will appear as shown in Figure 1. The first tab of the Options editor is used to define Watershed Locations. To add a new location to the list, press the **Add Location...** button. The Add Watershed Location screen will appear (Figure 2). In the **Location** field,

Add Watershed Location		×
Name:		Browse
	ОК	Cancel

Figure 2 – Add Watershed Location

you can enter the full path to the working directory or you can **Browse** to the area on disk where you want to build your watershed (this working directory will be the "holder" of a sub-directory named "base"). Next, enter the name you are giving this location in the **Name** field and press **OK**.

What are Modules?

The ResSim program is divided into separate sets of functions called **modules** *[Chapters 1 and 2]*. Each module provides access to specific types and directories of data within the watershed data tree *[Appendix A]*. The three modules within the ResSim program are:

- Watershed Setup [Sections 1.1 & 2.3 and Chapters 3 through 7]
- Reservoir Network [Sections 1.2 & 2.4 and Chapters 8 through 13]
- Simulation [Sections 1.3 & 2.5 and Chapter 14]

Figure 3 provides a graphical illustration of the three modules that make up HEC-ResSim. Refer back to this figure as you learn more about the function of each module to help keep the concepts organized.

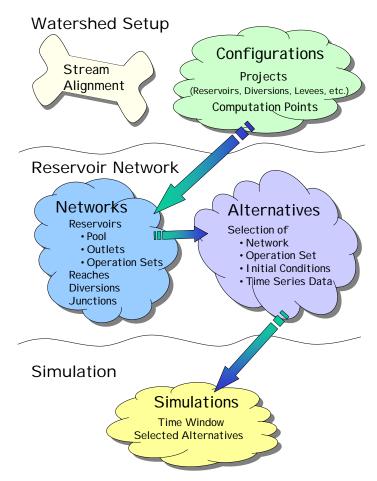


Figure 3 – ResSim Module Concepts

Watershed Setup Module

The opening window of the **Watershed Setup Module** is shown in Figure 4. As you can see, most menus and tools are inactive (greyed-out). They will remain so until a watershed is created or opened, which can be done by selecting **New Watershed** or **Open Watershed** from the **File** menu in the Watershed Setup Module. When a watershed is created, ResSim constructs a directory tree where all files pertaining to the watershed will be stored. Those files specific to the ResSim model (and not shared by other models) are stored in the watershed directory tree in a subdirectory named **rss**.

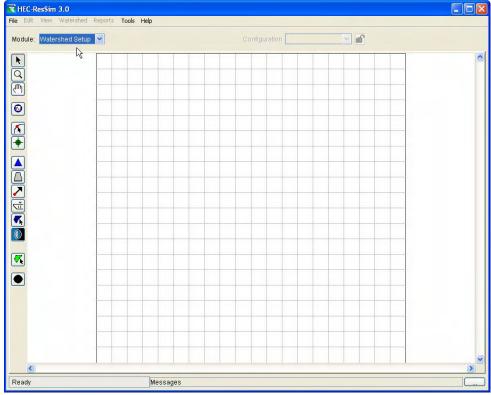


Figure 4 – Watershed Setup Module, Opening Window

The Watershed Setup Module main window has the following menus:

File	This menu will appear in all modules and most editors. In the main window, it always includes the options Open Watershed , Save Watershed , Save Map As , and Exit . In the Watershed Setup Module, the option New is also included. These options relate to the overall watershed data.
Edit	This menu will appear in all modules and most editors. This menu is module specific. The edit options will be relevant to data elements currently available for modification.
View	View options relate to all modules. Options include adding Layers that are displayed in the map region and defining the Unit System for <i>viewing</i> .
Watershed	This menu is only available in the Watershed Setup Module. Watershed options relate to the entire watershed, as well as to the individual configurations and the stream alignment. Options include Configuration Editor , Update Computation Points , Import and Export (of Stream Alignment), and Save Configuration .
Reports	Predefined reports and tables are listed in this menu. This menu appears in all modules, but its content is module specific. In the Watershed Setup and Reservoir Network Modules, most of the reports detail input data. In the Simulation Module, the reports detail simulation results.
Tools	User setting options, properties, and extended tools such as HEC-DSSVue and scripting are found here.
Help	On-line help is not yet available. This option currently displays version information. This option also provides for accessing user documentation and for the installation of example watersheds after defining a watershed location <i>(Section 3.3.1)</i> .

Figure 5 shows the main window of the **Watershed Setup Module** after opening an existing watershed (HayesBasin). A map region occupies the majority of this window, where the user must place the project elements (e.g., reservoirs) onto the stream alignment (all configurations that will be defined for this watershed will be on this alignment). A background map can be added (but is not required) to the map region to help identify the streams for the alignment.

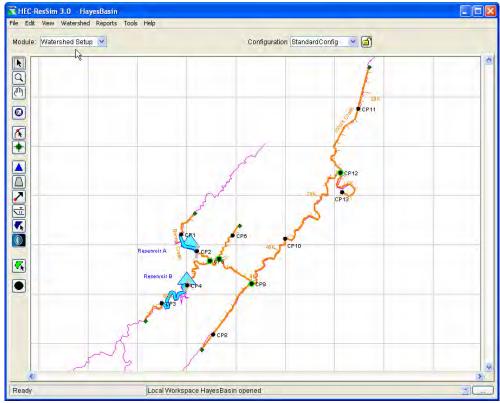


Figure 5 – Watershed Setup Module, Opened Watershed, HayesBasin

Reservoir Network Module

The **Reservoir Network Module** is used for editing element (e.g., reservoir, computation point, and routing reach) data and placing additional elements onto the stream alignment. Figure 6 shows an example of the Reservoir Network Module window for HayesBasin. This example shows a Network named "NormalNetwork2" which was created by selecting **New** from the **Network** menu and selecting "StandardConfig" from the Configuration list. A map region occupies the majority of this window, where the user must place Routing Reaches (required for connectivity) and Diverted Outlets (if appropriate) onto the stream alignment.

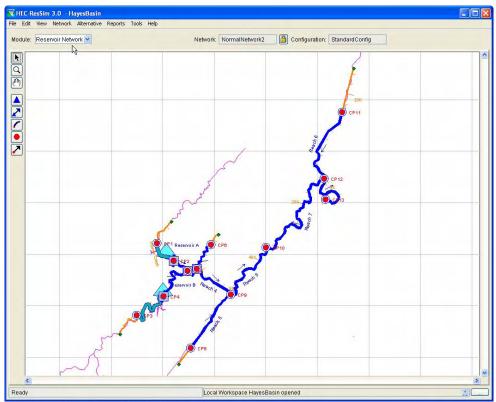


Figure 6 – Reservoir Network Module, HayesBasin

You edit element data within the Reservoir Network Module. First, select the appropriate tool from the tool bar on the left side of the window, then right-click on the element. A shortcut menu appears with options to edit data defining the element. Alternatively, select the general pointer tool **k** from the top of the toolbar on the left side and right-click on any element to view the shortcut menu. The menus that are new or unique to the **Reservoir Network Module** are listed and described below:

Edit	This menu will appear in all modules and most editors. The edit options available for reservoir networks include: Reservoirs , Reaches , Junctions , Diversions , and Reservoir Systems , State Variables , Import Elements , and Allow Network Editing .
Network	Network options are used in defining the network and configuration to be used. Options include New , Open , Save , Save As , and Rename . Also included are the Update Network from Configuration and Delete Networks options.
Alternative	The only option in this menu is Edit . This opens the Alternative Editor, which will enable you to create, edit, and save alternatives.
Reports	Predefined reports and tables are listed in this menu. Options include Reservoir List , Reach List , Junction List , and Diversion List . An Advanced option is also available that shows a summary table of the Network elements and their connectivity, as well as a listing of Nodes in the network.

Simulation Module

The **Simulation Module** is designed to facilitate the analysis phase of reservoir modeling. In this module you will create and run Simulations. Each Simulation is a specification of the time window and Alternatives that you want to analyze.

A view of the Simulation Module is shown in Figure 7. This view shows an open Simulation (20Oct1999-0600) with one of the Alternatives (StandNorm2) of the Simulation set as active (bolded alternative).

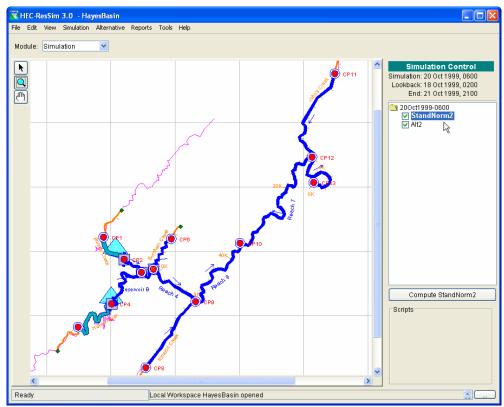


Figure 7 – Simulation Module, HayesBasin

The menus that are new or unique to the **Simulation Module** are listed and described below:

Edit	This menu will appear in all modules and most editors. The edit options available for the Simulation Module include: Script List selection, Set Active Alternative, and editors for Reservoirs, Reaches, Junctions, Diversions, Reservoir Systems and State Variables.
Simulation	Simulation options are provided for creating, opening, saving, and editing simulations. Options include New, Open, Re-Open, Close, Edit, Save, Delete, and Info. Also, Release Overrides can be defined from this menu.
Alternative	The only option in this menu is Edit . This opens the Alternative Editor, which will enable you to edit and save alternatives.
Reports	Predefined reports and tables are listed in this menu. Options include Reservoir Summary , Flow Summary , Power Summary , Gates Summary , Stage Summary and Release Decision report. Also available from this menu are User Reports and Compute reports and Network Element Lists (Reservoir , Reach , Junction , and Diversion , as well as the Advanced Network Summary).

Getting Down to Business...

The basic steps for developing a reservoir model are outlined below. These steps are illustrated in the sections that follow.

Steps in Developing a Reservoir Model

A ResSim application entails the following steps:

□ Set Up the Watershed

- Create/Open a Watershed [Section 3.3]
- Add Map files [Section 3.4 and Chapter 4 and Appendix C]
- Draw a Stream Alignment [Chapter 5]
- Create a Configuration [Chapter 7]
- Place Project Elements into the Configuration [Chapter 6]

Develop a Reservoir Network

- Create/Open a Network [Section 8.2]
- Add Routing Reaches [Section 8.4]
- Edit Junction Properties [Section 9.1]
- Edit Reach Properties [Section 9.2]
- Edit Reservoir Properties
 - > Physical Data [Chapter 10]
 - Operations Data [Chapters 11 and 12]
 - Observed Data [Sections 10.21 and 13.8]

Define Alternatives

- Create an Alternative [Sections 13.2 and 13.3]
- Select the Operation Scheme(s) [Section 13.4]
- Specify Lookback Conditions [Section 13.6]
- Identify Time-Series data records from DSS [Sections 13.7 and 13.8]

Perform a Simulation

- Create/Open a Simulation [Sections 14.2 and 14.3]
- Select/Activate Alternatives [Section 14.4.1]
- Compute [Section 14.4.2]
- View Results [Sections 14.5 & 14.8 and Appendices E & F]
- Specify Overrides [Section 14.6.3]
- Manage Simulation Data [Section 14.7]

Set Up the Watershed

1. **Create/Open a Watershed**. In the **Watershed Setup Module**, choose **New Watershed** from **File** menu. The new watershed screen will appear, as illustrated in Figure 8. Enter a name for your watershed and a detailed description in the appropriate fields. From the **Location** list, select where you want your watershed stored. If the

Location list is empty, press Cancel, and go back to page 2 to see

how to add a Watershed Location. Use the **Units** list to select the unit system that the watershed will use when storing its data. The available unit systems are English and SI (i.e., US Customary

Create New	Watershed	2
Name:		
Description:		
Location:	My Watersheds	*
Units:		2
	Time Zone:	B
	0	K Cancel

Figure 8 – New Watershed

and International System of Units). Then select a **Time Zone**. The watershed time zone is always specified as some offset from GMT, which does NOT recognize Daylight Savings Time. When you have completed all fields, press **OK** [Section 3.3].

2. Add a Map. When a watershed is created, ResSim constructs a whole directory tree. One of the subdirectories in the watershed tree is the maps directory. Using a file system viewer (like Windows Explorer), copy the files you will use as background maps into the maps directory of your watershed:

Figure 9 – Allow Layer Editing

<watershed location>\base\<watershed name>\maps

The supported types of map files include DLG (USGS Digital Line Graphs), SHP (ArcView® shapefiles), DXF (Autocad® Digital Exchange Format), DEM (USGS Digital Elevation Models), IMG (Raster Image), ASC (ArcInfo® ASCII grid), and NET (ASCII NetTIN) [Appendix C].

To display a map in the watershed, go to **View**, **Layers...** This will open the Layers Editor. First, make the layers editable by selecting **Allow Layer Editing** from the **Edit** menu. This is illustrated in Figure 9. Then, from the **Maps** menu, select **Add Map Layer**. This will open another window from which you can select the map file you want to view. Note that it is not necessary to display a map. However, it is convenient to have the map as a guide when creating stream alignments [Section 3.4 and Chapter 4].

- Zoom. To zoom in or out on the map area, select the zoom tool on the left side of the window. To zoom in, click and drag over the desired viewing area. To zoom out, right-click until the desired viewing area is visible. Alternately, to zoom out to the original display, go to View, Zoom to All.
- 3. Draw a Stream Alignment. The next step is to create a stream alignment on which stream reaches and reservoirs can later be located *[Chapter 5]*. First, ensure that you are working in the Watershed Setup Module. If you aren't, then be sure to select Watershed Setup from the Module list. Second, from the Edit menu, activate Allow Editing (a check mark will appear to the left and the "yellow lock" in the upper right portion of the window will lock to indicate that you are

in the edit mode). Alternately, the yellow lock allow editing.

Figure 10 – Drawing a Stream Alignment

• Create a Stream Alignment Element. The Stream Alignment must be created *from upstream to downstream*. Select the stream

alignment tool from the tool bar along the left side of the map region. Hold down the control (**CTRL**) key and click to place successive points along the stream alignment. To terminate the stream element, release the **CTRL** key and click to place the last point of the stream. As shown in Figure 10, a tributary may be connected to a stream by following the same procedure as above and terminating the stream at the point of connection to the existing stream.

- Edit a Stream Element. Select the stream alignment tool A and double click on the stream element to be edited. The stream will change color, and nodes will appear where each stream point was originally defined. These element points can be moved to realign the stream by positioning the cursor over them and holding down the left mouse button and dragging. New points are added to a stream by clicking on the stream while holding down the **CTRL** key. Remove points from a stream by clicking over an existing point while holding down both the **SHIFT** and **CTRL** keys. An entire stream can be deleted by right-clicking on it and selecting **Delete Stream Element** from the shortcut menu. Streams can be renamed by right-clicking on the stream and selecting **Rename Stream Element**.
- **Define Stationing**. The green dots at the end of each stream in the alignment are Stream Nodes. Their purpose is to define the stationing along the stream. By default, the most downstream node will get a stream station of zero, and the node at the upstream end will get a stream station value determined by the length of the stream line in the coordinate system of the map region. However, these default values can be changed to more accurately describe

the stream. Using the stream node tool right-click on a stream node and select **Edit Node**. In the editor that appears, uncheck the "Use Default Stationing" box then update the value of the station to represent the appropriate real world station value of that representative point. If you change the stationing of the upstream node, then you may need to edit the most downstream node to reset its station to zero (0.0). Stationing along a stream will be determined proportionally based on the station values of the bounding nodes. Interior stream nodes can be added to a stream to more accurately define distances along a stream and to locate known river station landmarks. To do so, select the stream node tool, then while holding down the **CTRL** key, click those locations on a stream where you want to place a stream node.

- 4. **Create a Configuration.** Before adding reservoirs and computation points, a Configuration must be defined *[Chapter 7]*. In brief, a Configuration is the identification of a "set" of projects that you want to model in your watershed. If more than one set of projects will be considered in a study, then more than one Configuration will be needed. While you add projects to your Configurations, a special "superset" (named Study) is developed by the program to contain all projects from all Configurations in the watershed. If multiple programs (e.g., HEC-HMS, HEC-FIA, HEC-RAS, etc) are going to be applied to your watershed, then Configurations should be developed by the whole modeling team before the models for an individual program are produced.
 - Make the Configuration Editable. Before you can create or modify a Configuration, you must make it editable. To do so, select Allow Editing from the Edit menu (or click the "unlocked" gellow lock, which "locks" the configuration (allowing you to perform editing). In other words, this option

turns on (or off) the ability to make changes to the Configuration.

• Create the Configuration. From the Watershed menu, select Configuration Editor. From the Configuration menu in the Configuration Editor that has opened (Figure 11), select New. In

the new configuration window, enter a **Name** and **Description** for the Configuration and select a time step from the **Time Step** list and press **OK**. Then, click **OK** in the Configuration Editor.

Configuration	n Editor		X
Configuration Edit	Projects		
Name: 🗟			*
Description:			
Base Date:			
Time Step:			
Projects GIS			
Project Name	Project Notes	Project Type	Existing
	1		
	(CIR)	Apply	Cancel

Figure 11 – Configuration Editor

- 5. **Place Project Elements into the Configuration**. The next step is to place projects into the watershed *[Chapter 6]*. The projects you place will be added to the current Configuration as identified in the Configuration field at the top of the window.
 - **Draw Project Elements**. Verify that you have selected the appropriate configuration to which you will be adding projects. Select the appropriate tool to add projects. Each project, when placed, will create one or more computation points. When using

the reservoir tool is to place reservoirs, hold down the **CTRL** key to place the *upstream* point(s) of the reservoir, then release the **CTRL** key and place the *downstream* point. A **Name New Reservoir** window will appear so that you can name the reservoir.

Another useful tool is the computation point **O**. Use this tool to place additional computation points by holding down the **CTRL** key and clicking on additional locations as needed. As you place additional computation points, you will be prompted to name them (when placed at the junction of two or more streams, you will need to select which stream the computation point should be placed on). Placing reservoirs on the stream alignment also creates computation points at the upstream and downstream extents of the reservoir using automatically generated names. Be sure to rename each of these points so it can be easily identified from a list when the map region is not visible. To do so, right-click on the computation point, select **Rename Computation Point** from the shortcut menu and enter a new name in the window as shown in Figure 12.

Rename Con	nputation Poi	nt	
Name:	CP9		
Description:	4	-	
	ОК	Cancel	Help

Figure 12 – Rename Computation Point

• Save the Configuration. When you are finished adding elements to the Configuration, be sure to save it and turn off editing. Select Save Configuration from the Watershed menu to save, then "unlock" the Configuration lock (yellow lock button) to toggle off the editability of the Configuration. A simple Configuration (named Existing) is shown in Figure 13.

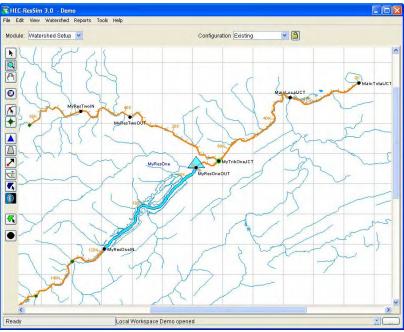


Figure 13 – A Simple Configuration, Existing

Develop a Reservoir Network

With a stream alignment in place and one or more configurations defined, a network of reservoirs and stream routing reaches can be created. A summary of the basic steps is presented in the following paragraphs. From the **Module** list, select **Reservoir Network**.

1. Create/Open a Reservoir Network. From the Network menu, select New. The Create New Reservoir Network window will appear (Figure 14). Specify a name and description for the network. Then, select the Configuration on which this network will be based and click New [Section 8.2].

Reservoirs and computation points that were part of the selected configuration will automatically be created as elements in the Reservoir

Vatershed: Demo		
Existing Reservoir Net	works	_
Name	Description	
		-
		2
New Reservoir Networ	k	
Name:		
Description:	1)
Configuration: Existin	q	~

Figure 14 – Create New Reservoir Network

Network. Reservoirs transfer directly. Computation points appear as Junctions. This is depicted in Figure 15.

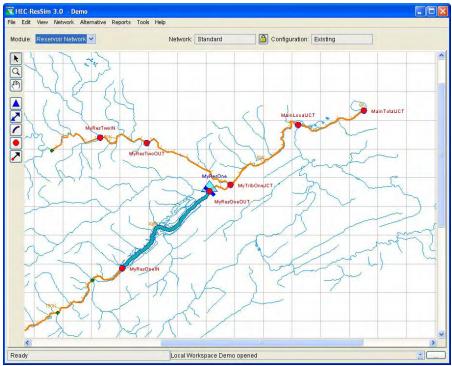
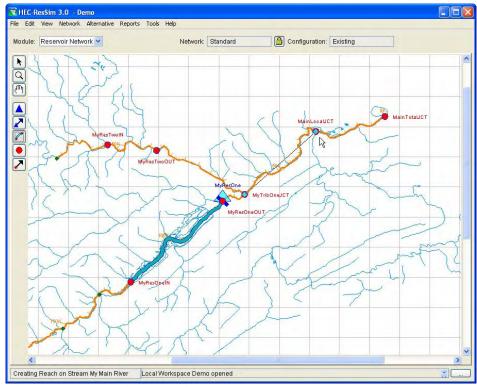



Figure 15 – New Network Based on Configuration Existing

• Make the Network Editable. Before you can begin editing, you must ensure the network is editable. To do so, select Allow Network

Editing from the **Edit** menu (or press the "yellow lock" button This option turns on (or off) the ability to make changes to the network.

- 2. Add Routing Reaches, etc. Draw the additional elements needed to complete the connectivity of the reservoir network schematic [Section 8.4].
 - **Draw Routing Reaches**. Select the routing reach tool **(**. Hold down the **CTRL** key and click anywhere on the stream to place the upstream end of the reach. Release the **CTRL** key and move the mouse along the stream and click again at a lower station on the stream to place the downstream end, as shown in Figure 16. Routing reaches must be connected to an existing junction. If you start or end a reach where there is no junction one will be created, and you will be prompted to first name the new junction and then name the new reach. Note: tributaries cannot connect to the middle of a reach; they must connect to a junction.

Figure 16 – Drawing Routing Reaches

- 3. Edit Junction and Reach Properties. With a reservoir network schematic complete, the data for the model elements can be entered and saved.
 - Edit Junction Properties. With the pointer tool relation or the junction tool selected, right-click on desired junction and select Edit Junction Properties. The Junction Editor will appear. Select the Local Flow tab and input a name and factor for each external flow entering the junction (as shown in Figure 17). The name entered will appear during the Alternative definition to identify the local flow for time-series mapping. Therefore, the name given on the Local Flow tab should be recognizable during the time-series mapping. Flows *must* be supplied to headwater junctions and are optional at other junctions.

Vame	MainLocalJCT		2 of 7 🕨
Descriptio	on		(
Info Lo	cal Flow Rating Curve Observ	red Data	
Name	1	Factor	4.01-0
	Tow for Trib relow Dam (on mainstem)		1.0 🔨
_			
-			
_			
			~

Figure 17 – Junction Editor

To edit junction properties for other junctions without exiting this window, click **Apply** and then select another junction from the **Name** list or use the navigator buttons located in the upper right portion of the window. Alternately, click **OK**, then right-click and **Edit** another junction *[Section 9.1]*.

For each junction where you specify **Local Flows**, you will see a "halo" around the Junction element. This provides you with a visual reference for ensuring local flows have been indicated for the appropriate locations in your watershed.

• Edit Reach Properties. With the reach tool *f* or the pointer tool

selected, right-click on the desired reach and select **Edit Reach Properties**. Select the routing method from the **Method** list (as shown in Figure 18) and fill in the necessary parameters for the selected routing method. The default routing method is **Null Routing** (no route).

Reach Na	ame MyTribOneJCT to MainLocalJCT	💌 🖌 🛛 1 of 1 🕨 🕨
Descriptio	on Reach from Confluence with MyTribO	ne to Junction at a major tributary
Routing	Losses Observed Data	
Method	Coef. Routing	a
	Null Routing	78
-	Coef Routing	
	Muskingum Muskingum-Cunge 8-pt Channel Muskingum-Cunge Prismatic Channel Modified Puls SSARR Routing Working R&D	0.300 0.500 0.200
1	6	Contract of the second s
	7	
	8	
	g	
	10	
-	11	

Figure 18 – Reach Editor

The **Coefficient Routing** method can be used to model most linear routing methods by representing the method as a series of coefficients for each time step of the routing extent. Specifying a coefficient of 1.0 in the first row of the Coefficient table is the same as specifying a null routing.

To edit another reach without exiting this window, click **Apply** then select another reach from the **Reach Name** list or use the navigator buttons to select another reach. Alternately, click **OK**, then right-click and **Edit** another reach *[Section 9.2]*.

4. Edit Reservoir Properties. With the reservoir tool \triangle or the pointer

tool k selected, right-click on a reservoir, select Edit Reservoir Properties and the Reservoir Editor window will appear as shown in Figure 19. This editor has a tab panel with three tabs: **Physical** tab [Chapter 10], Operations tab [Chapters 11 and 12], and Observed Data tab [Sections 10.21 and 13.8].

a. On the **Physical** tab, a *tree* appears in the left panel of the window. Initially, two branches of the tree are shown: **Pool** and Dam. The Pool reflects characteristics of the reservoir storage while the Dam reflects the reservoir dam.

eservoir MyResOne	Description				4 <u>1 of 1</u> ▶
Physical Operations Observed D MyResOne Pool Dam at My Main River	Data MyResOne-Pool				
	Linear Interpolation O Conic Interpolation Initial Conic Depth (ft)				
	Elevation (ft)	Storage (ac-ft)	Area (acre)	1	
		(11 19			
				(jap 6-	
				In) A	
					.0 6.0 8.0 10
				Stor	(undef)
				Elev (under)	
				A 4	
				2.0 4	0 6.0 8.0 10 (undef)

Figure 19 – Reservoir Editor, Pool Data

Enter Pool Properties. Click on **Pool** to enter the Elevation • vs. Storage vs. Area data (as shown in Figure 19). At least two rows are required for Elevation, Storage and Area data, with values increasing down the columns (no duplicate values). The maximum elevation should not exceed the Elevation at top of dam, which is input when **Dam** is selected. Pool losses can be specified by right-clicking on **Pool** and selecting **Add** Pool Evaporation and/or Add Pool Seepage

[Sections 10.2 through 10.4 and 10.14].

Enter Dam Properties. Click on Dam in the reservoir tree. • The data area to the right of the reservoir tree will change to allow you to enter the data needed to define the dam [Sections 10.5 and 10.6]. Before proceeding, take a look at the name of the dam. The name is probably something like "Dam at My Main River." This is the default name the program gives to the dam. It identifies the dam based on the name of the underlying stream upon which the dam was placed. This enables the program to uniquely identify more than one dam within a reservoir. It is a rare case when a reservoir has more than one dam, so feel free to rename the dam by right-clicking on the dam name and selecting **Rename** (as shown in Figure 20). One suggestion is to name it *Dam* by removing the stream name. Another possibility is to name the dam by its actual name (many reservoirs have a name for the pool and a different name for the dam; ResSim provides the ability to name each part individually).

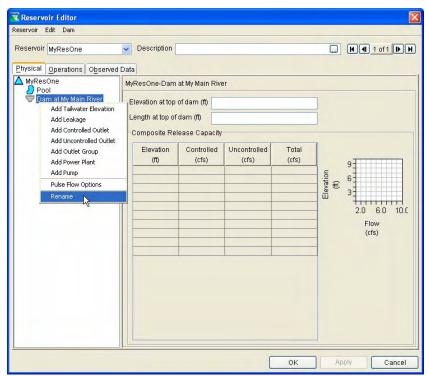


Figure 20 – Reservoir Editor, Rename Dam

Enter the elevation and length of the dam in the relevant fields. The composite release capacity table is not editable. This table is informational and will be filled automatically as you add outlets to the dam. • Add Outlets. Physical Outlets can be added to the Dam by right-clicking on the **Dam**. Figure 20 illustrates the dam's shortcut menu. Select **Controlled Outlet** to add a gate or other control structure to the dam *[Sections 10.8 and 10.16]*. You can rename the outlet by right-clicking on the outlet and selecting **Rename**.

A simple controlled outlet can be defined by entering a maximum release capacity curve for the outlet. If a more detailed outlet is desired, press the **Edit Gate Settings** button. The Gate Settings Editor will allow you to define a set of gate openings with Elevation vs. Maximum Capacity (flow) data. When finished, the release capacity table will show several more columns (as shown in Figure 21), one for each gate opening in the set you defined.

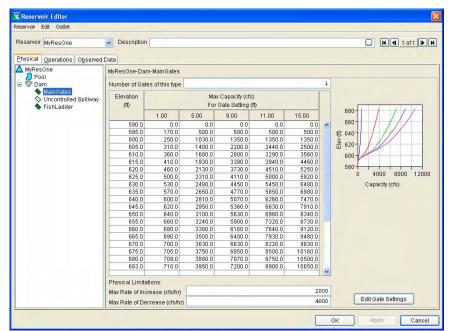


Figure 21 – Reservoir Editor, Gated Outlet

Select **Uncontrolled Outlet** to add an ungated emergency spillway to the dam *[Sections 10.9 and 10.18]*. For an Uncontrolled Outlet, the spillway length and elevation are entered along with either a **Weir Coefficient** or an **Elevation vs. Outflow** relationship. The spillway elevation must be at or below the **Elevation at top of dam** and above the minimum storage elevation. Figure 22 shows the window for entering data for an Uncontrolled Outlet.

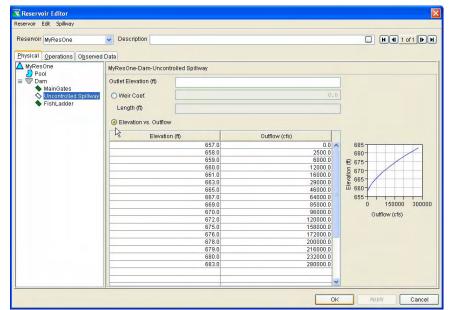


Figure 22 – Reservoir Editor, Uncontrolled Outlet (Spillway)

• In addition to Controlled and Uncontrolled Outlets, the following components can also be added to the Dam:

Leakage [Sections 10.6 and 10.15],

Outlet Group [Section 10.7],

Tailwater Elevation [Sections 10.10 and 10.19],

Power Plant [Section 10.8.2 and 10.17], and

Pump [Section 10.8.3 and 10.18].

 In addition to adding physical components to the Dam, there is an advanced option for specifying Pulse Flow Options [Section 10.22]. b. When the **Operations** tab is initially chosen, a screen similar to Figure 23 will appear. A new operation data set must be created before operations data can be entered [Section 11.2.1].

Reservoir Editor			
Reservoir Edit Operations	Zone Rule IF_Block Description		
Physical Operations O	Descriptio		
Zone-Rules Rel: Alloc.	Outages Stor. Credit Dec. Storage Zone	Description	
		New Operation Set	
	Allow Multi-year Seaso Starting Year		Cancel Help
	Define Zone with Time	-Series	Apply Cancel

Figure 23 – New Operation Set

- Create an Operation Set. Select New from the Operations menu and give the new operation set a name (as illustrated in Figure 23). An Operation Set is the operation plan or scheme upon which a reservoir bases its decisions regarding how much water to release at each time step of a simulation run [Section 11.2].
- Operation Zones. Once an Operation Set is created, then a set of "default" reservoir zones is generated: Flood Control, Conservation, and Inactive. Additional zones can be added by selecting New from the Zone menu. Top of zone curves must be entered, as no default values are available [Section 11.3].
- Operation Rules. To add a rule to a zone, highlight the appropriate zone and select **New** from the **Rule** menu. In the new rule window (Figure 24), enter a name for the rule, then select the pool, dam, outlet,

🔀 New Operating Rule		X
Rule Name:	1	1
Operates Release From:	MyResOne	~
Rule Type:	Release Function	
	OK Cancel	
	UK Caliber	

or outlet group for which the rule will apply (**Operates Release From**), then select the rule type from the **Rule Type** list, and then click **OK** *[Sections 11.4 and 11.5]*.

Rule types differ depending on where the rule is applied (pool, dam, or outlet) *[Section 11.5]*. The rules that apply to the Reservoir Pool, are typically relevant to *Storage* or *Elevation*, whereas the rules that apply to a Dam or an Outlet are relevant to *Flow*.

Rules for the **<u>Reservoir Pool</u>** include the following:

- Release Function, Maximum, Minimum or Specified Release as a function of Date, Date and Time, Model Variable, or External Variable [Section 11.5.3].
- Downstream Control Function, Minimum or Maximum Flow or Stage target or constraint (at a downstream location) as a function of Date, Date and Time, Model Variable, or External Variable [Section 11.5.4].
- Tandem Operation, Release based on balancing pool with a downstream reservoir [Section 11.5.5].
- Induced Surcharge, Special flood control operation using gate regulation parameters [Section 11.5.6].
- Flow Rate of Change Limit, Allowable change when increasing or decreasing release values [Section 11.5.7].
- Elev Rate of Change Limit, Allowable change when increasing or decreasing pool elevation values [Section 11.5.8].
- Script, User-defined scripting available that dramatically increases the flexibility of reservoir operations. [Section 11.5.11].

Rules for the **<u>Reservoir Dam</u>**, <u>**Controlled Outlets**</u>, <u>**Outlet Groups**</u>, and <u>**Diverted Outlets**</u> include the following:

- Release Function, Maximum, Minimum or Specified Release as a function of Date, Date and Time, Model Variable, or External Variable [Section 11.5.3].
- Flow Rate of Change Limit, Allowable change when increasing or decreasing release values [Section 11.5.7].
- Script, User-defined scripting available that dramatically increases the flexibility of reservoir operations. [Section 11.5.11].

Rules for **<u>Power Plant</u>** include the following:

- Release Function, Maximum, Minimum or Specified Release as a function of Date, Date and Time, Model Variable, or External Variable [Section 11.5.3].
- Flow Rate of Change Limit, Allowable change when increasing or decreasing release values [Section 11.5.7].
- Hydropower Schedule, Monthly Firm Energy Requirements (specified as Monthly MWH or % Plant Factor) with optional Daily and Hourly distributions [Section 11.5.9.1].

- Hydropower System Schedule, Monthly Firm Energy Requirements (specified as Monthly MWH or % Plant Factor) with optional Daily and Hourly distributions [Section 11.5.9.4].
- Hydropower Time Series Schedule, Energy Requirement as defined by user-supplied time-series data [Section 11.5.9.2].
- Hydropower -Power Guide Curve, Energy Requirement (expressed as % Plant Factor) is dependent on the available power storage. Optional Daily and Hourly distributions can be specified [Section 11.5.9.3].
- Script, User-defined scripting available that dramatically increases the flexibility of reservoir operations. [Section 11.5.11].

Rules for **<u>Pumps</u>** include the following single rule:

Pump Schedule, Pumpback storage operation using user defined schedule [Section 11.5.10].

Depending on the rule type, you will need to enter data to define the rule. A screen will open in the editor to allow you to enter the required data for each rule. The rules and storage zones are displayed in a tree on the left side of the window (as shown in Figure 25). Once a rule has been defined, it can be included in more than one zone by selecting Use Existing from the Rule menu. Similarly, a rule can be removed from a zone by selecting **Remove from Zone**. A rule can be deleted from the operation set by selecting **Delete**. However, when a rule is Deleted, then it is no longer available to any of the zones; therefore, caution should be used when actually deleting a rule.

When finished entering data for a reservoir, click **OK**. To edit a different reservoir without exiting the reservoir editor, click **Apply** and select another reservoir from the **Reservoir** list.

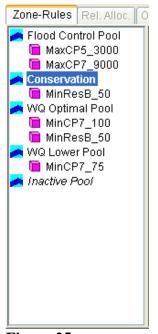


Figure 25 – Zones and Rules Panel

c. The **Observed Data** tab is used to indicate that observed data is available for comparison purposes *[Section 10.21]*. If the **Observed** box is "checked" in the table (as shown in Figure 26), then there will be a corresponding entry in the Observed Time-Series mapping table when an Alternative is created *[Section 13.8]*.

hysical Operations Observed Data elect Locations that display Observed data in	output reports and plots	
Location	Variable	Observed
Reservoir A-Pool	Elev	
Reservoir A-Pool	Stor	
Reservoir A-Pool	Flow-IN	
Reservoir A-Pool	Flow-IN NET	15°
Reservoir A-Pool	Flow-EVAP	10 m
Reservoir A-Pool	Flow-SEEPAGE	10-
Reservoir A-Pool	Area	10 C
Reservoir A-Pool	Flow-OUT	19
Reservoir A-Dam at Bonner Creek Tailwater	Flow	~
Reservoir A-Dam at Bonner Creek L&O	Flow	10°
Reservoir A-Controlled Outlet	Flow	100 M
Reservoir A-Uncontrolled Spillway	Flow	

Figure 26 – Observed Data Tab

5. Save the Reservoir's Physical and Operations data, Junction information, Routing criteria, etc.. From the Network menu select Save. *It is a good idea to do this <u>frequently</u>.*

Define Alternatives

Create an Alternative. An Alternative consists of a Reservoir Network, an Operation Set for each reservoir in the network, a definition of initial conditions, and a mapping all time-series records to identified local inflows, etc. To create an alternative:

1. From the **Alternative** menu (in the Reservoir Network module) select **Edit** [Section 13.2].

Alternative	
Edit	

2. In the Alternative editor, ensure that the appropriate **Configuration** name is displayed from the list of available configurations. Then, from the **Alternative** menu, select **New** (as shown in Figure 27).

ResSim Alternative Editor	×	
Alternative		1
New Ctrl+N Save & Ctrl+S Save As Delete Ctrl+D Close	Description	
Name:	Rew Alternative	X
Description: Reservoir Network	Name: Description:	
Operations Lookback Time-Series Obs	Network: NormalNetwork2	Č.
Reservoir System	ОК	Cancel
Reservoir	Operation Set	

Figure 27 – Alternative Editor, Create New Alternative

3. In the New Alternative editor, enter a name for the Alternative in the **Name** box and a description in the **Description** box. Select a **Reservoir Network** from the list and click **OK**.

All of the relevant fields in the Alternative Editor will become active *[Section 13.3]*.

4. In the Alternative editor, select an Alternative. On the **Operations** tab, select an **Operation Set** for each reservoir *[Section 13.4]*. This can be accomplished in the Operation Set column by selecting (for each Reservoir) the operation set from the list that appears, as shown in Figure 28.

ResSim Alternative Editor	
Alternative	
Configuration: StandardConfig	v
Name StandNorm2	Description
TypOps Alt2	Typical Operations, StandardConfig, Normal
Name: TypOps	
Description: Typical Operations, StandardCo	infig, NormalNet2
Reservoir Network NormalNetwork2	×
Operations Lookback Time-Series Obse	rved Data
Reservoir System	Storage Balance
Reservoir	Operation Set
Reservoir A Reservoir B	Day-to-Day Operations
	Day-to-Day operations

Figure 28 – Alternative Editor, Operations Tab

 On the Lookback tab [Section 13.6], select the initial conditions Type (Times-Series or Constant) from the list for each Location listed, as shown in Figure 29. This is similar to selecting the operation set per reservoir. For Variables defined as Constants, enter a constant Value for the Elevation or Release.

Location	Variable	Туре		Default Value
Reservoir B-Pool	Lookback Elevation	Constant 📃 💌		1430.0
Reservoir B-Pool	Lookback Storage	Computed	Ψ.	
Reservoir B-Controlled Outlet	Lookback Release	Constant	Ŧ	155.0
Reservoir B-Uncontrolled Spillway	Lookback Spill	Constant	Ŧ	0.0
Reservoir A-Pool	Lookback Elevation	Constant	Ψ.	1450.0
Reservoir A-Pool	Lookback Storage	Computed	Ŧ	
Reservoir A-Controlled Outlet	Lookback Release	Constant	Ŧ	122.0
Reservoir A-Uncontrolled Spillway	Lookback Spill	Constant	¥	0.0
		Constant		
		Time-Series	. 0	

Figure 29 – Alternative Editor, Lookback Tab

6. On the **Time-Series** tab *[Section 13.7]* select a row in the time-series mapping table (as shown in Figure 30). Each row in the table represents a *required input* for a local flow location (specified in the Local Flow tab within the Junction editor), an element/parameter you have defined on the Lookback tab as Time Series, or a Time Series that is referenced in the Operation rules. To attach a time-series record to the selected location, press the **Select DSS Path** button.

_ocation	Variable	DSS File	PartA	Part B	Part C	Part E	Part F
RESERVOIR A	Known Flow						
RESERVOIR B	Known Flow						
CP5	Known Flow						
CP7	Known Flow						
CP9	Known Flow						
CP10	Known Flow						
CP12	Known Flow						
CP11	Known Flow						
CP6(CP7X.40)	Known Flow						
CP8(CP9X2)	Known Flow						
CP13	Known Flow						
Reservoir B-Pool	Lookback Elevation						
Reservoir B-Controlled Outlet	Lookback Release						
Reservoir A-Pool	Lookback Elevation						
Reservoir A-Controlled Outlet	Lookback Release						
						· · · · · · · · · · · · · · · · · · ·	

Figure 30 – Alternative Editor, Time-Series Mapping

The DSS path selector window will appear as shown in Figure 31. Open a DSS file, use the parts filters to organize the catalog listing, and select a record. To get the selected record to map back to the alternative editor, press the button labeled **Set Pathname**.

File Name Pathnames		C Data\HEC-ResSim_v3 0 Pathnames Selected		iyesBasin\shared names in File: 14	\HayesOct File Size:			
Search By Parts:	A: B:	¥ ¥	C: FLOW D:	·	 E: F: 2 	B		~
Number	A part	Bpart	Cpart	D part / range		E part	Epart	
3		KEYSER HW LUKE LOC	FLOW FLOW	010CT1999 010CT1999		1HOUR 1HOUR	2B 2B	
5		MYLOC PINTO LOC	FLOW FLOW	01OCT1999 01OCT1999		1HOUR 1HOUR	2B 2B	
7		RANDOLPH INFLOW JC		01OCT1999 01OCT1999		1HOUR 1HOUR	2B 2B	
9		WILLS CK LOC	FLOW	010CT1999		1HOUR	20 28	~
RANDOLPH	HINFLOW	JCT/FLOW/010CT1999/1HC	UR/2B/					^

Figure 31 – DSS Time-Series Record Selector

7. On the **Observed Data** tab *[Section 13.8]*, using the same procedure as the Time-Series mapping described above, select *optional* time-series records for use in comparing with computed results.

Perform a Simulation

Once the reservoir system data are entered, the model can be configured for a Simulation. From the **Module** list, select **Simulation**. Model elements of a Reservoir Network will not display in the map region until a Simulation is created or opened and an Alternative has been made active.

1. **Create/Open a Simulation.** To create a Simulation, from the **Simulation** menu select **New.** The window illustrated in Figure 32 will open *[Sections 14.2 and 14.3]*.

👿 Simulati	on Ec	litor			
Name	200	5.12.22-1000			
Description					
Simulation	Time	s			
Start Date			22Dec2005 🛄	Time	1000
Lookback	Date		22Dec2005	Time	1000
End Date			22Dec2005 🛄	Time	1000
Time Step		1 Hour 🔽		🔽 Ru	un New Extract
Alternatives	s	. 0			
Select		Name	Description		
	5	StandNorm2			
	-	ГурОрз	Typical Operations	, Stand	lardConfig, NormalNet2
	1	Alt2			
					OK Cancel

Figure 32 – Simulation Editor

- Enter a Start Date & Time, a Lookback Date & Time, and an End Date & Time.
- Enter a name for the Simulation in the **Name** box. A name is generated by default based on the time window. You can use the default name or you can wipe it out and put in a name that is more meaningful to you. You can also enter a Simulation Description.
- Select a **Time Step** from the list.
- Select one or more applicable **Alternatives** for the Simulation and click **OK**.
- 2. Set Alternative to be Active. In the "tree list" of alternatives for the simulation (on the right side of the screen), right-click on the desired alternative and select **Set as Active**. At this point, the model elements of the Reservoir Network will be displayed in the map region reflecting the active (notice **bolded name**) alternative [Section 14.4.1].

3. Compute. After all data and parameters have been input as desired, click on the Compute "Name of Alternative" button in the control panel of the Simulation Module's main window Compute Typops Compute Typops A compute window will appear showing status messages and program progress. When the computation is finished, a "Compute Complete" message will appear and the status bar will read 100%. Click Close to close this window. Note: You can stop the compute process before

the compute is complete by clicking on Stop Compute.

- 4. **View Results.** Model results can be reviewed from three different approaches [Section 14.5 and Appendices E & F].
 - **Plots.** On the model schematic you can right-click on a model element to get a menu list. Included on the list will be one or more plot options. Select the option by clicking on it. The default plot will display. The plotted results can be tabulated by selecting **Tabulate** from the plot's **File** menu *[Section 14.5.2]*.
 - Summary Reports. From the Reports menu in the Simulation module, there is a list of Summary Reports for the model simulation [Section 14.5.3]. The Reservoir, Flow, Power, Gates, and Stage reports provide Average, Maximum and Minimum values for the simulation. The Release Decision summary report provides the current zone and limiting operating rule for each reservoir for all time periods of the simulation.

Reservoir A Edit Reservoir Properties

Plot Operation Plot Power

Plot Releases User Plots

Release Decision Report

DSS Viewer. When HEC-DSSVue is selected from the Tools menu, a DSS file is opened that contains the results of the simulation [Section 14.8 and Appendix E]. A list of pathnames is provided but a screened list can be obtained by selecting a pathname part from the lists in the Search by Parts section of the window.

To select records to be displayed, highlight the pathnames and click on the **Select** button. After one or more records are selected, the buttons for plot and tabulate become active. Click either button to generate the associated output.

5. Specify Overrides. Once you have completed a simulation, you can override model results by specifying either reservoir the Elevation Target or Releases (per outlet) or Capacity Factors (per outlet) for some (or all) of the time steps [Section 14.6.3]. ResSim will use the values you specify for Elevation Target and Release Overrides, within the physical limits of the reservoir (i.e., the physical rate-of-change, the release

Simulation	Alternative	Reports	Tools
New			
Open			
Re-Oper			
Close			
Edit			
Save			
Delete			
Info			
Release	Overrides 🕨	ТурОр	s
		Alt2	

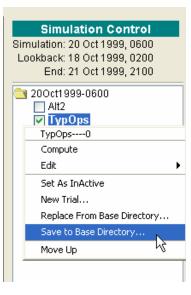
capacity and the amount of water available in the reservoir may preclude ResSim from using your override values). To specify the override values, select **Release Overrides** from the **Simulation** menu in the Simulation module for the desired alternative; or, you can select the **Overrides** button by right-clicking on the "Active Alternative" and selecting **Edit** \rightarrow **ResSim** from the shortcut menu and then click on the **Overrides** button. The Overrides Editor will open (Figure 33).

	-			
Elevation Targe	t Release Cap	acity		
Date	Time	Elevation Target (ft)	T	I la sua zie.
200ct1999	0700	1,450.00	AL	Unspecify
200ct1999	0800	1,450.04	1	Unspecify All
200ct1999	0900	1,450.33	L	Onspecily Air
200ct1999	1000	1,451.25	T	Import
200ct1999	1100	1,453.28	L	and politica.
200ct1999	1200	1,456.95		
200ct1999	1300	1,461.89		
200ct1999	1400	1,467.16		1480
200ct1999	1500	1,471.57		1475
200ct1999	1600	1,474.66		1475
200ct1999	1700	1,475.32		1470-
200ct1999	1800	1,475.09		
200ct1999	1900	1,474.39		1465-
200ct1999	2000	1,473.49		£
200ct1999	2100	1,472.65		€ 1460
200ct1999	2200	1,472.00	1	
200ct1999	2300	1,471.47		1455
21Oct1999	0000	1,471.03		1450
21Oct1999	0100	1,470.65		1450
21Oct1999	0200	1,470.32		1445
21Oct1999	0300	1,470.03		12:00 00:00 12:00
21Oct1999	0400	1,469.83	-	200ct1999 210ct1999
21.Oct1.999	0500	1.469.62	5	20000399 1 21000 989

Figure 33 – Overrides Editor

To specify override values for the "selected reservoir" (see Reservoir list at top of Overrides editor), do the following:

- Select either the **Elevation Target** or **Release** or **Capacity** overrides tab.
- To revise a *single* value, double-click in the cell you want to revise and enter the new value.


- To revise *multiple* adjacent values:
 - 1. Point and click on the first cell, then drag your mouse or shift-click to highlight the cells to be revised.
 - 2. Right-click on the highlighted cells, and select **Fill** from the shortcut menu. The Table Fill Options dialog box will open.
 - 3. Select the appropriate fill option in the **Table Fill Options** dialog box, then click **OK**. The revised values will reflect the fill option you selected. Also, the color of the revised values changes from black to blue and the mini-plot shows the revised values as a red line.

Elevatio	n Target (ft)	
	1,450.00 木	
	1,450.04	
	1,450.33	
	Cut	
	Сору	
	Paste	
	Clear	
	Fill	
	Select All	;
	Print	
	Print Preview.	
	Export	
	1,471.47	
	1,471.03	
	1,470.65	
	1,470.32	

Table Fill Options	
O Linear Fill	
Repeat Fill	
O Add Constant:	
O Multiple Factor:	
OK	Cancel

- For those time steps where you do not specify override values, ResSim uses the reservoir rules to determine the reservoir release values. After running a simulation using your override values, you may decide to no longer use some, or all, of your override values. If so, you can use the Unspecify and Unspecify All buttons to indicate that you want ResSim to determine the release values during the next compute.
 - Use the Unspecify button when you want release values to be based on the reservoir rules for some of the override values you have specified. Highlight the cells where you have specified override values (they are green in the Release Overrides table), then press the Unspecify button.
 - Use the Unspecify All button when you want all of the release values to be based on the reservoir rules and not have any overrides specified.
- Use the Import button when you want to use a Time Series of override values. The Import Overrides Time Series dialog box will open, which functions exactly like the Select Time Series Path dialog box used to select time-series records for an Alternative.

- 6. **Manage Simulation Data.** There are two operations involved in managing Simulation data *[Section 14.7]*. You can *save* your data *to* the base directory to make it available for other Simulations, and you can *replace* data in a Simulation for a specific Alternative with data *from* the base directory. See Appendix A of the ResSim User's Manual for an overview of the ResSim directory structure, including a discussion of the base and simulation directories.
 - Save Data to the Base Directory. When you edit model data from the Simulation Module, your changes apply only to an individual Alternative that is saved in your Simulation directory. If you want your changes to be available for subsequent Simulations, you will need to save the data back to the Base directory [Section 14.7.1]. This will make your changes to physical and operational data available in the Reservoir Network Module.

 Replace Data from the Base Directory. If, while editing data in the Simulation Module, you need to revert to the original Alternative data from the Network Module, you can replace the changed data in your Simulation directory with data from the Base directory. [Section 14.7.2] This will make your original data (from the Reservoir Network Module) available in the Simulation Module, overwriting any changes you made to the selected alternative within the Simulation Module.

Simulation Control
Simulation: 20 Oct 1999, 0600 Lookback: 18 Oct 1999, 0200 End: 21 Oct 1999, 2100
200ct1999-0600 ☐ Alt2 ▼ TypOps
TypOps0
Compute
Edit 🕨
Set As InActive
New Trial
Replace From Base Directory
Save to Base Directory 🤸
Move Up