

US Army Corps
of Engineers
Hydrologic Engineering Center

HECLIB
Volume 1: HECLIB Subroutines

Programmer's Manual

August 1987

Approved for Public Release. Distribution Unlimited. CPD-58

Generalized Computer Program

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instructions, searching existing data sources, gathering and maintaining the date needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
August 1987

3. REPORT TYPE AND DATES COVERED
Computer Program Document No. 58

4. TITLE AND SUBTITLE
HECLIB
Volume 1: HECLIB Subroutines
Programmer's Manual
6. AUTHOR(S)
CEWRC-IWR-HEC

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army Corps of Engineers
Institute for Water Resources
Hydrologic Engineering Center
609 Second Street
Davis, CA 95616-4687

8. PERFORMING ORGANIZATION
 REPORT NUMBER
CPD-58

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER
N/A

11. SUPPLEMENTARY NOTES
N/A
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release. Distribution of this document is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This document provides programmers information on the various subroutines in the library
HECLIB. These subroutines are designed to be called by programs written in FORTRAN 77.
The reader of this document should have a working knowledge of FORTRAN.

HECLIB has been fully implemented for HARRIS computers and MS-DOS microcomputers.
The library is written in FORTRAN 77 and assembly language. The Microsoft® FORTRAN
V4.0 compiler was used for the MS-DOS version of this library. HECLIB has been partially
implemented for other computers and other compilers on the microcomputer. Several
subroutines are written in assembly language to utilize computer capabilities not directly
accessible by FORTRAN. These capabilities primarily include I/O for files and terminals.

15. NUMBER OF PAGES
324

14. SUBJECT TERMS
HECLIB

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF
ABSTRACT
UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. Z39-18
 298-102

HECLIB

Volume 1: HECLIB Subroutines

Programmer’s Manual

August 1987

US Army Corps of Engineers
Institute for Water Resources
Hydrologic Engineering Center
609 Second Street
Davis, CA 95616

(530) 756-1104
(530) 756-8250 FAX
www.hec.usace.army.mil CPD-58

HECLIB
Volume 1: HECLIB Subroutines

Software Distribution and Availability Statement

The HECLIB library and documentation are public domain software that was developed by the
Hydrologic Engineering Center for the U.S. Army Corps of Engineers. The software was
developed at the expense of the United States Federal Government, and is therefore in the public
domain. HEC cannot provide technical support for this software to non-Corps users. See our
software vendor list (www.hec.usace.army.mil) to locate organizations that provide the program,
documentation, and support services for a fee. However, we will respond to all documented
instances of program errors. Documented errors are bugs in the software due to programming
mistakes not model problems due to user-entered data.

Table of Contents

 i

Table of Contents

Chapters

 1 Introduction ...1-1
 1.1 Machine Specifics...1-1
 1.1.1 HARRIS Computers...1-1
 1.1.2 Microcomputers Using MS-DOS..1-1

 2 File Input/Output and Handling Subroutines..2-1
 2.1 ATTACH – Attach Files to Units Via Execution Line Parameters.................2-2
 2.2 ATTEND – End of ATTACH Calls ..2-7
 2.3 ATTSET – Set ATTACH Information ..2-8
 2.4 WIND – Position to the End of File ...2-9
 2.5 RECMAX – Determine the Number of Records (Lines) in a File................2-10
 2.6 NUMLN – Determine the Number of Lines in a File2-11
 2.7 LISFIL – Determine if a Name is a Valid Filename.....................................2-12
 2.8 GETNAM - Get the Name of an Opened File ...2-13
 2.9 CCREAT - Create a File ...2-14
 2.10 CDELET - Delete a File ..2-15
 2.11 CRENAM - Rename a File ...2-16
 2.12 HARRIS Specific Subroutines ..2-17
 2.12.1 GIOP - General Input/Output Processing................................2-17
 2.12.2 CSTAT - Pick Apart an I/O Service Status2-20
 2.12.3 CRETYP - Retype the Attributes of a File2-21
 2.12.4 IFTYPE - Determine the Type of File Assigned.......................2-22
 2.12.5 CASSIG - Assign a Unit to a File...2-23
 2.12.6 ASSIGX - Assign a File in an Exclusive Mode2-24
 2.12.7 ASSIGS - Assign a File in a Shared Mode..............................2-25
 2.12.8 FLLKON - Lock a Shared Access File.....................................2-26
 2.12.9 FLLKOF - Unlock a Locked File ..2-27
 2.13 MS-DOS Specific Subroutines ...2-28
 2.13.1 DKBFOP - Disk-Buffer Open...2-29
 2.13.2 DKBFCR - Disk-Buffer Create (or Truncate) File and Open....2-30
 2.13.3 DKBFCL - Disk-Buffer Close ...2-31
 2.13.4 DKBFRD - Disk-Buffer Read ...2-32
 2.13.5 DKBFWT - Disk-Buffer Write ...2-33
 2.13.6 DKBFPS - Disk-Buffer Position ...2-34
 2.13.7 OPENF - Open a File ..2-35
 2.13.8 CREAF - Create a File ..2-36
 2.13.9 CLOSF - Close a File ..2-37
 2.13.10 READF - Read From a File ...2-38
 2.13.11 WRITF - Write to a File..2-39
 2.13.12 SEEKF - Move the File Pointer ...2-40
 2.13.13 ERASF - Erase a File ..2-41
 2.13.14 RNAMF - Rename a File ...2-42
 2.13.15 CHMOD - Change a File Mode ...2-43

Table of Contents

ii

Table of Contents (continued)

Chapters

 3 Terminal Input/Output and Control Subroutines..3-1
 3.1 ANREAD - Perform a Prompted Read ...3-2
 3.2 RBELL - Ring the Terminal Bell..3-3
 3.3 HARRIS Specific Subroutines ..3-4
 3.3.1 Character (Hot Read) I/O Subroutines3-4
 3.3.1.1 CHRWT - Write Individual Character(s) to a
 Terminal..3-5
 3.3.1.2 CHRIT1 - Initialize Characters I/O..........................3-6
 3.3.1.3 CHRFN1 - Finish Characters I/O............................3-7
 3.3.1.4 CHRWT1 - Write Character(s)3-8
 3.3.1.5 CHRRD1 - Read Character(s), Waiting for at
 Least One Character...........................3-9
 3.3.1.6 CHRRI1- Read Characters Without Waiting
 for a Character to Arrive3-10
 3.3.1.7 CHRBK1 - Backstore Characters3-11
 3.3.1.8 CHRFL1 - Flush Characters in Type-Ahead
 Buffer ..3-12
 3.3.1.9 CHRWI1 - Write Without Waiting for
 Completion..3-13
 3.3.1.10 CHRST1 - Request Status on Last Operation......3-14
 3.3.1.11 CHRSI1 - Request Status on Last Operation,
 Without Wait...3-15
 3.3.1.12 CHRIO Examples ...3-16
 3.3.2 TRMTYP - Determine the Terminal Port Type3-19
 3.3.3 CLINES - Get the Number of Lines of a Terminal Screen.......3-20
 3.3.4 CKANSI - Check if Terminal is ANSI3-21
 3.3.5 ASCTRL - ANSI Screen Control..3-22
 3.3.6 STTY - Set Terminal Port Parameters for an ASYNC Port3-25
 3.3.7 BRKOFF - Turn the Break Key Off ..3-28
 3.3.8 BRKON - Turn the Break Key On..3-29
 3.4 MS-DOS Specific Subroutines ...3-30
 3.4.1 STDINC - Read a Character from the Keyboard
 (Standard In)..3-30
 3.4.2 STDOUT - Write a Single Character to the Monitor
 (Standard Out) ...3-32
 3.4.3 TXTCOL - Set the Screen Color for Text.................................3-33
 3.4.4 VSTAT - Video Status ...3-34
 3.4.5 VNEWPG - Clear Screen ..3-35
 3.4.6 VSCROL - Scroll Screen Window ...3-36
 3.4.7 VTTYWT - Write a Line to the Screen.....................................3-38
 3.4.8 VGETCR - Get Cursor Position and Size................................3-39
 3.4.9 VPOSCR - Position of Cursor..3-40
 3.4.10 VSETCR - Set the Cursor Size ...3-41
 3.4.11 VRDAC - Get Character and Attribute at Cursor3-42
 3.4.12 VSETPG - Set the Video Page..3-43
 3.4.13 VMODE - Set the Video Mode...3-44

Table of Contents

 iii

Table of Contents (continued)

Chapters

 3 Terminal Input/Output and Control Subroutines (continued)
 3.4.14 PUF Subroutines ...3-45
 3.4.14.1 PUFA - Set a Single Attribute for a Line3-47
 3.4.14.2 PUFAS - Set an Array of Attributes for
 Characters on a Line3-48
 3.4.14.3 PUFC - Set a Single Character on a Line...........3-49
 3.4.14.4 PUFCA - Set a Single Character and
 Attribute on a Line...............................3-50
 3.4.14.5 PUFCAS - Set a Single Character and an
 Array of Attributes3-51
 3.4.14.6 PUFL - Write a Line of Characters......................3-52
 3.4.14.7 PUFLA - Write a Line of Characters with a
 Single Attribute.....................................3-53
 3.4.14.8 PUFLAS - Write a Line of Characters with
 Different Attributes3-54
 3.4.14.9 PUFWA - Set a Window to a Single Attribute3-55
 3.4.14.10 PUFWC - Set a Window to a Single
 Character ..3-56
 3.4.14.11 PUFWCA - Set a Window to a Single
 Character and Attribute....................3-57
 3.4.14.12 PUFBFR - Read a Screen Window From
 the Display ..3-58
 3.4.14.13 PUFBFW - Write a Screen Window to
 the Display ..3-59

 4 Date and Time Subroutines..4-1
 4.1 DATYMD - Convert a Character Date to Integer-Year-Month-Day4-2
 4.2 DATJUL - Convert a Character Date to Julian ...4-4
 4.3 YMDDAT - Convert an Integer Year-Month-Day Date into a
 Character Date ..4-6
 4.4 JULDAT - Convert a Julian Date into a Character Date4-8
 4.5 IYMDJL - Convert an Integer Year-Month-Day Date to Julian4-10
 4.6 JLIYMD - Convert a Julian Date into an Integer Year-Month-Day Date4-11
 4.7 IDAYWK - Get the Day of the Week from a Julian Date.............................4-12
 4.8 IHM2M - Convert a Twenty-Four Hour Clock Time to Minutes...................4-13
 4.9 M2IHM - Convert a Time in Minutes to Twenty-Four Hour Clock Time......4-14
 4.10 INCTIM - Increment a Date and Time ..4-15
 4.11 NOPERS - Determine the Number of Periods between Two Times4-17
 4.12 CURTIM - Get the Current Julian Date and Time.......................................4-19
 4.13 DATIME - Get Current Date and Time ...4-20
 4.14 WHEN - Get the Current Date and Time in Character Form4-21
 4.15 CDATE - Get the Current Date...4-22
 4.16 CTIME - Get the Current Time ...4-23
 4.17 WAITS - Wait for a Specified Amount of Time ...4-24
 4.18 XTIME - Get the Current CPU Time for the Session4-25
 4.19 GETIME - Get Time Window from a Program Command Line...................4-26

Table of Contents

iv

Table of Contents (continued)

Chapters

 5 Character Manipulation Subroutines ..5-1
 5.1 CHRBLK - Fill a Character String with Blanks..5-2
 5.2 CHRFIL - Fill a Character String with a Specified Character........................5-3
 5.3 CHRLNB - Locate the Last Non-Blank Character ..5-4
 5.4 LFLNB - Locate the First and Last Non-Blank..5-5
 5.5 REMBLK - Remove Blanks from a String...5-6
 5.6 UPCASE - Convert a Character String to Upper Case.................................5-7
 5.7 MATCH - Search a List for a Character String ...5-8
 5.8 INDEXR - Reverse Index..5-10
 5.9 NINDX - Search for the Non-Occurrence of a String..................................5-12
 5.10 NINDXR - Search for the Last Non-Occurrence of a String5-14
 5.11 ISCAN - Search a String for Individual Character(s)5-16
 5.12 NSCAN - Search a String for the Non-Occurrence of Individual
 Character(s) ...5-18
 5.13 FINDLM - Find Delimiters within a Character String...................................5-20
 5.14 SETDLM - Set Delimiters for FINDLM..5-24
 5.15 LISNUM - Determine if a Character String Contains a Number5-26
 5.16 INTGR - Read an Integer Number from a Character String5-27
 5.17 INTGRC - Write an Integer Number to a Character String5-28
 5.18 XREAL - Convert a Real Number from a Character String5-29
 5.19 XREALC - Convert a Real Number to a Character String5-30
 5.20 LJSTR - Left Justify a Character String ..5-31
 5.21 RJSTR - Right Justify a Character String ...5-32
 5.22 CJSTR - Center Justify a Character String...5-33
 5.23 CHRHOL - Convert a Character String to Hollerith
 (on Byte Boundaries)...5-34
 5.24 HOLCHR - Convert a Hollerith Array to Character
 (on Byte Boundaries)...5-35
 5.25 CH2HOL - Convert a Character String to Hollerith
 (on Word Boundaries) ...5-36
 5.26 HOL2CH - Convert a Hollerith Array to Character
 (on Word Boundaries) ...5-37

 6 PREAD Subroutines..6-1
 6.1 PTTACH - Attach PREAD Files..6-3
 6.2 PEND - Close PREAD Files ...6-5
 6.3 PREADC - PREAD Processor (Method 1) ...6-6
 6.4 PREAD - PREAD Processor (Method 2) ..6-8
 6.5 PREAD1 - Execute a PREAD Command from the Program6-9
 6.6 PSET - Set PREAD Parameters...6-10
 6.7 PINQIR - Inquire About PREAD Parameters..6-11
 6.8 PSETFN - Set PREAD Function...6-12
 6.9 PFNKEY - Get the String Assigned to a Function Key6-13

Table of Contents

 v

Table of Contents (continued)

Chapters

 7 Miscellaneous Subroutines..7-1
 7.1 LEQNER - Test for One Number Nearly Equal to Another...........................7-2
 7.2 LGENER - Test for One Number Greater Than or Nearly Equal
 To Another ..7-3
 7.3 LGTNER - Test for One Number Greater Than Another With
 a Tolerance...7-4
 7.4 LLTNER - Test for One Number Less Than Another Within
 a Tolerance...7-5
 7.5 LLENER - Test for One Number Less Than or Nearly Equal to Another7-6
 7.6 LBTEST - Test to Determine if a Bit is Set ...7-7
 7.7 IBSET - Set a Bit ..7-8
 7.8 IBCLR - Clear a Bit ...7-9
 7.9 MVBITS - Move Bits from One Word into Another7-10
 7.10 IBITS - Extract a Field of Bits ...7-11
 7.11 GETBIN - Get the Binary Representation of a Word7-12
 7.12 DIBIN - Display a Number as Binary ..7-13
 7.13 NAME-LIST Processing..7-14
 7.13.1 NAMFIL - Read a File of Pseudo and True Names.................7-15
 7.13.2 NAMLIST - List All the Pseudo and True Names7-17
 7.13.3 TRUNAM - Obtain a True Name from a Pseudo Name7-18
 7.13.4 SETNAM - Set or Remove a Name in the Name List..............7-19
 7.14 ABORT - Issue a Program Abort ..7-22
 7.15 IEB2AS - Convert EBCDIC to ASCII ..7-23
 7.16 HARRIS Specific Subroutines ..7-24
 7.16.1 LPOPT - Get Program Options..7-24
 7.16.2 CIJOBE - Initiate a Batch Job..7-25
 7.16.3 CSPOOL - Spool a File to a Physical Device..........................7-26
 7.16.4 COPCOM - Execute an OPCOM Command...........................7-27
 7.16.5 CNTRLX - Interrupt a Program by Pressing CTRL X7-28
 7.16.6 CRTN - Contingency (Error) Return ..7-29
 7.16.7 RSCPDN - Resource a Physical Device7-30
 7.16.8 XQTLINE - Get the Program's Execution Line7-32
 7.16.9 XQTJCL - Execute One Job Control Command......................7-33
 7.16.10 CHAIN3 - Chain From One Program Into Another7-34
 7.16.11 EXPROG - Execute One Program from Another.....................7-36
 7.16.12 GSTRRG - Get String Register ...7-37
 7.16.13 GNUMRG - Get Numeric Register ..7-38
 7.16.14 SSTRRG - Set String Register ..7-39
 7.16.15 SNUMRG - Set Numeric Register ...7-40
 7.16.16 TRKSET - Set Parameters for Program Tracking7-41
 7.17 MS-DOS Specific Subroutines ...7-42
 7.17.1 CPARMS - Get Command Line Parameters7-42
 7.17.2 PRNCHR - Send a Single Character to the Printer7-43
 7.17.3 PRNLN - Send a Line to the Printer ..7-44
 7.17.4 DSKSPC - Determine the Amount of Disk Space Left7-45
 7.17.5 WHRFRM - Get the Path of the Program Executing7-46

Table of Contents

vi

Table of Contents (continued)

Chapters

 7 Miscellaneous Subroutines (continued)
 7.17 MS-DOS Specific Subroutines (continued)
 7.17.6 CPLOCK - Control the Caps Lock Key....................................7-47
 7.17.7 NMLOCK - Control the Num Lock Key....................................7-48
 7.17.8 PRESED - Which (Special) Keys are Pressed........................7-49
 7.17.9 FILEN - Get File Names for a Directory...................................7-50
 7.17.10 GETPTH - Get the Current Path..7-52
 7.17.11 GETDRV - Get the Default Drive...7-53
 7.17.12 SETDRV - Set the Default Drive..7-54
 7.17.13 CHDIR - Change Directory ..7-55
 7.17.14 MKDIR - Make Directory..7-56
 7.17.15 RMDIR - Remove Directory...7-57
 7.17.16 CRDIR - Create Directories ...7-58
 7.17.17 GETSUP - Get Path of a Supplemental File............................7-59
 7.17.18 FSTENV/NXTENV - Get the Environment Table.....................7-60
 7.17.19 ICAT - Concatenate Two Bytes into One Word.......................7-61
 7.17.20 DCAT - De-Concatenate One Word into Two Bytes7-62
 7.17.21 DBITS - Determine Which Bits of a Byte are Set7-63

 8 Special Purpose Subroutines ..8-1
 8.1 HARRIS Specific Subroutines ..8-2
 8.1.1 INFO2 - Get Information About This Session............................8-2
 8.1.2 GRNSIZ - Get the Granule Size of a File8-4
 8.1.3 FOPEN - Fast Open ..8-5
 8.1.4 GETQDD - Get the Qualifier Disc Directory of a File.................8-6
 8.1.5 SYSLV - Get Current Operating System Level..........................8-7
 8.1.6 NXTLFN - Determine Units of All Files Assigned8-8
 8.1.7 TRNSBK - Transmit a Break ...8-9
 8.1.8 SPINT - Send a Special Interrupt to a Program8-10
 8.1.8.1 SPINIT - Initialize Special Interrupts8-11
 8.1.8.2 SPINFO - Get the Information Buffer Passed.....8-12
 8.1.8.3 SPDID - Define Program Identification8-13
 8.1.8.4 SPIP - Initiate a Sub-System Program with
 Special Interrupts8-14
 8.1.8.5 SPTRIG - Trigger a Special Interrupt..................8-15
 8.1.8.6 SPHINT - Hold Interrupts8-16
 8.1.8.7 SPRINT - Release Interrupts8-17
 8.1.8.8 SPWAIT - Wait for Interrupts8-18
 8.1.8.9 SPDLAY - Wait a Specified Amount of Time
 for an Interrupt...................................8-19
 8.1.8.10 IRETRN - Return from an Interrupt Subroutine...8-20
 8.1.8.11 Special Interrupt Example...................................8-21
 8.1.9 GETA - Get the A Register ..8-23
 8.1.10 GETE - Get the E Register ..8-24
 8.1.11 GETK - Get the K Register ..8-25

Table of Contents

 vii

Table of Contents (continued)

Chapters

 8 Special Purpose Subroutines (continued)
 8.1 HARRIS Specific Subroutines (continued)
 8.1.12 CHRLOC - Get the Address of a Character Variable8-26
 8.1.13 OPTSET - Set Program Options ...8-27
 8.2 MS-DOS Specific Subroutines ...8-28
 8.2.1 MEMSIZ - Memory Size ..8-28
 8.2.2 KEYBRD - Keyboard Interrupt...8-29
 8.2.3 VIDEO - Video Interrupt ..8-30
 8.2.4 GETPSP - Get Program Segment Prefix.................................8-31
 8.2.5 PEEKB - Get Byte from PSP...8-32
 8.2.6 PEEKW - Get Word from PSP...8-33
 8.2.7 POKEB - Set Byte in PSP ...8-34
 8.2.8 POKEW - Set Word in PSP...8-35
 8.2.9 INPB - Read a Byte from a Port ..8-36
 8.2.10 INPW - Read a Word from a Port ..8-37
 8.2.11 OUTPB - Write a Byte to a Port...8-38
 8.2.12 OUTPW - Write a Word to a Port ..8-39

Appendix A Obsolete Subroutines ... A-1

Appendix B Summary of Subroutine Calling Sequences... B-1

Subroutine Index... Index-1

HECLIB Subroutines

Chapter 1 - Introduction 1-1

1 Introduction

 This document provides programmers information on the various subroutines in the
library HECLIB. These subroutines are designed to be called by programs written in FORTRAN
77. The reader of this document should have a working knowledge of FORTRAN.

 HECLIB has been fully implemented for HARRIS computers and MS-DOS
microcomputers. The library is written in FORTRAN 77 and assembly language. The
Microsoft® FORTRAN V4.0 compiler was used for the MS-DOS version of this library.
HECLIB has been partially implemented for other computers and other compilers on the
microcomputer. Several subroutines are written in assembly language to utilize computer
capabilities not directly accessible by FORTRAN. These capabilities primarily include I/O for
files and terminals.

1.1 Machine Specifics

1.1.1 HARRIS Computers

 HECLIB subroutines are accessed by linking in the FORTRAN 77 version of HECLIB.
The location of the library may vary on different machines, but most often it can be found in
either qualifier 2000SYSS (2000SYSS*HECLIB), or HLIB (HLIB*HLIB77). Note that there
are FORTRAN 66 versions of HECLIB that will not work with programs using these FORTRAN
77 calls. A typical compilation and linking is as follows:

 SAUF77 MYSOURCE
 VU.R MYPROG
 LIB 2000SYSS*HECLIB *LIBERY
 BEGIN

1.1.2 Microcomputers Using MS-DOS

 HECLIB has been fully implemented on microcomputers with Microsoft® FORTRAN
Version 4.0. (HECLIB is incompatible with earlier versions of this compiler.) The library has
been partially implemented for Lahey® and Ryan-McFarland® (Professional FORTRAN)
compilers. The subroutines which have been implemented for Lahey® and Ryan-McFarland®
compilers are the general ones found at the beginning of each section (they do not include those
listed as MS-DOS specific).

 All subroutines are compiled with a word length of INTEGER*2, except for a few
specific subroutines. Programs accessing subroutines in HECLIB should either be compiled
with a 2 byte integer word default (MS FORTRAN option /4I2), or with integer and logical
variable declared as INTEGER*2 (except where noted otherwise). An exception to this are the
Julian dates and the time interval used in several of the time and date routines, and disk

HECLIB Subroutines

1-2 Chapter 1 - Introduction

positioning variables used in several of the disk I/O subroutines. These variables must be passed
as INTEGER*4.

 The Microsoft® version of HECLIB is named HECLIBMS.LIB. The library assumes the
large memory model and that the math co-processor is optional (option /Fpi). A typical
compilation and linking of program using this library is as follows:

 FL /c /4I2 /Gt /Od /Fpi myfile.for
 LINK myfile,,,HECLIBMS

 HECLIB Subroutines

Chapter 2 – File I/O and Handling Subroutines 2-1

2 File Input/Output and Handling Subroutines

 The following section describes the HECLIB subroutines that are generally used in the
Input/Output (I/O) and handling of files. This includes subroutines for connecting files to
programs, renaming, creating, deleting files, as well as direct access to assembly I/O. Some
subroutines (e.g., ATTACH, GIOP) are applicable to terminal I/O as well as for files.

 For HARRIS computers, the GIOP (General I/O Processing) provides access to all the
low level I/O functions. On MS-DOS microcomputers, the disk-buffer I/O subroutines use low
level I/O to read or write single lines, considerably faster than what may be obtained through
FORTRAN I/O. Some of the file positioning used for the MS-DOS subroutines use
INTEGER*4 words.

ATTACH HECLIB Subroutines

2-2 Chapter 2 – File I/O and Handling Subroutines

2.1 ATTACH – Attach Files to Units via Execution Line Parameters

Purpose:

 Subroutine ATTACH uses information on the program execution line to open files, or
pass execution line information to the program. This allows the program user to either connect
their own files with the program, or to use the program's default files. Filenames and
information are passed on the execution line by a keyword followed by an equal sign (=), then
the file name or information. For example:

MYPROG INPUT=MYDATA OUTPUT=MYOUT

 If the user enters a question mark (?) directly after the program name, ATTACH will
print all keywords and default file names then stop.

 If the computer system cannot provide the execution line to the ATTACH subroutine, the
files names will be prompted for.

 ATTACH is designed to be called at the beginning of the program. A call to subroutine
ATTEND must follow the last call to ATTACH. Subroutine ATTSET may be called prior to the
first call to ATTACH to have the program version or other information printed when the user
enters a question mark on the execution line.

Calling Sequence:

CALL ATTACH (IUNIT, CKEYWD, CDEFLT, CONTRL, CNAME, IOSTAT)

Declarations:

 INTEGER IUNIT, IOSTAT
 CHARACTER CKEYWD, CDEFLT, CONTRL, CNAME

Argument Description:

 IUNIT Input The unit number to open the specified file with. If execution

line information only is to be passed to the program, this
argument is ignored.

 CKEYWD Input The keyword that identifies the file to open, or the information

to pass. The keyword is given on the execution line (or is used
in the prompt) to identify the file to open. In the above
example "INPUT", and "OUTPUT" are keywords. A keyword
must not contain blanks, but may be abbreviated (as long as the
abbreviation is unique).

 CDEFLT Input The default file to open, or information to pass, if the user does

not specify the keyword on the execution line. The default

HECLIB Subroutines ATTACH

Chapter 2 – File I/O and Handling Subroutines 2-3

 name may be a special reserved name to connect certain files.
The default 'STDIN' will connect to the standard input, and
'STDOUT' will connect to the standard output. A list of the
reserved names follows (under Notes).

 CONTRL Input This character string defines the file parameters that are

generally used in a OPEN statement. Parameters are separated
by either a comma or a blank. To use all default values for
CONTRL, provide a blank string (' ') (this is the same as
CONTRL='A=S,F=F,P=N,S=U'). Refer to the OPEN
statement in your FORTRAN manual for further information
on the following parameters. The following control parameters
are recognized by ATTACH:

 Parameter Description
 A Access. The file access (either Sequential or

Direct) is specified by either A=S, or A=D.
If a file is specified as direct, the record
length must follow the "D", separated by a
forward slash (/). For example, to open a
direct access file with a record length of 512
bytes, CONTRL would be 'A=D/512'. If no
Access parameter is specified, the default is
sequential. (See the ACCESS and RECL
parameters in the FORTRAN OPEN
documentation.)

 F Form. To indicate whether the file is being
opened for formatted or unformatted I/O
specify either F=U or F=F. If no form is
specified, the default is formatted.

 NOP No operation. No files are to be opened;
information only is to be passed to the
program from the execution line.

 P Prompt. Where a filename is required and
was omitted on the execution line, it may be
prompted for during the execution of the
program. This is controlled by either a
'P=Y' for yes, or a 'P=N' for no. If no is
used, the default file (CDEFLT) will
automatically be opened. The default is no.

 S Status. The status of the file (New, Old,
Scratch, or Unknown) is specified by either
S=N, S=O, S=S, or S=U. If the status is
new, and the file exists, then the user will be
prompted for a decision of overwriting the
file. The default status is Unknown. (See
the STATUS parameter in the FORTRAN
OPEN documentation.)

ATTACH HECLIB Subroutines

2-4 Chapter 2 – File I/O and Handling Subroutines

 CNAME Output CNAME is returned with the name of the file opened (either
the specified or the default name), or the information that was
obtained from the execution line. CNAME must be declared
long enough to hold the longest name that might be used.

 IOSTAT Output A status parameter indicating the successfulness of the OPEN.

If IOSTAT is less than or equal to zero, then the OPEN was
successful. If IOSTAT is greater than zero, an error occurred,
and the value of IOSTAT corresponds to the IOSTAT values
given in the OPEN statement of the FORTRAN manual. The
successful IOSTAT values are:

 IOSTAT Description
 0 Open performed successfully. The default file

name was used.
 -1 Open performed successfully. This file was

specified on the execution line.
 -2 Open performed successfully. All default files

were used (no keywords were given on the
execution line).

 -10 The user entered a question mark (?) on the
execution line to determine the keywords and
default file names. No files are opened, and
no information is passed. The program will
stop when the call to ATTEND is reached.

Remarks:

 ATTACH will WIND a file when the file name specified is preceded by a plus sign (+).
This will cause any information to be written to the file to be appended at the end of the file.

 The subroutine ATTEND must be called after the last call to ATTACH. This indicates
the stopping point when the user enters a question mark on the execution line (to obtain the
keywords and default file names), or an unrecognized keyword is encountered. ATTSET may be
called prior to the first call to ATTACH to pass information (such as the program version) to be
printed when a question mark is entered on the execution line.

Example:

 CHARACTER CNAME*64, CDSSFI*64, CYEAR*4

 CALL ATTSET ('MYPROG: December 31, 1980 Version')
 CALL ATTACH (5, 'INPUT', 'STDIN', 'S=O', CNAME, ISTAT)
 CALL ATTACH (6, 'OUTPUT', 'STDOUT', ' ', CNAME, ISTAT)
 CALL ATTACH (8, 'TABLE1', '+MYTABLE', 'S=U/PR/OW', CNAME, ISTAT)
 CALL ATTACH (9, 'SCRATCH1', 'SCRATCH1', ' ', CNAME, ISTAT)
 CALL ATTACH (10, 'SCRATCH2', 'SCRATCH30', 'F=U', CNAME, ISTAT)
 CALL ATTACH (0, 'YEAR', ' ', 'NOP', CYEAR, ISTAT)

HECLIB Subroutines ATTACH

Chapter 2 – File I/O and Handling Subroutines 2-5

 CALL ATTACH (0, 'DSSFILE', ' ', 'NOP', CDSSFI, ISTAT)
 CALL ATTEND

HARRIS Notes:

 CONTROL Parameters

 The file access may be specified in the "S" (status) CONTROL parameter to use
when a file is created by ATTACH. This is accomplished by placing a slash following the U or
N parameter, then the file access (those given in a HARRIS Map command). For example, to
have the file created with public read, owner write, and owner delete access, enter the CONTRL
parameter as:

'S=U/PR/OW/OD'
The default access level used is public read, public write and public delete.

 A file may be created as unblocked or random access with the "A" (access) parameter
for direct access files. To accomplish this, follow the record length with a slash (/) then a "U"
(for unblocked) or a "R" (for random). For example, 'A=D/512/R'. The default is a unblocked
file.

 A file may be assigned in a exclusive or shared mode by use of the mode (M)
parameter. An exclusive assignment is made with a 'M=E' control parameter. A shared
assignment is made with a 'M=S' control parameter. The default is a normal assignment.

 The above control parameters will be ignored on other systems.

 HARRIS Reserved Filenames (for CDEFLT)

 STDIN is attached to unit 0.
 STDOUT is attached to unit 3.

 SCRATCH1 through SCRATCH10 are attached to blocked work files W1 through

W0 (W1, W2, W3, W4, W5, W6, W7, W8, W9, W0).

 SCRATCH11 through SCRATCH20 are attached to blocked work files T1 through

T0.

 SCRATCH21 through SCRATCH30 are attached to blocked work files S1 through

S0. (Caution: The S work files may not be accessible at some sites.)

 SCRATCH31 through SCRATCH40 are attached to unblocked work files U1 through

U0.

 SCRATCH41 through SCRATCH50 are attached to unblocked work files H1 through

H0. (Caution: The H work files may not be accessible at some sites.)

ATTACH HECLIB Subroutines

2-6 Chapter 2 – File I/O and Handling Subroutines

MS-DOS Notes:

 STDIN is the keyboard and STDOUT is the screen, unless redirected (using > or <).

 SCRATCH1 through SCRATCH999 will create files named SCRATCH with extensions
of .001 through .999 in the default directory. These files are not eliminated at the end of the
program execution unless they are declared scratch in the CONTRL parameter (S=S), or
explicitly deleted in the CLOSE statement (e.g., CLOSE (UNIT=18,STATUS=DELETE)).

HECLIB Subroutines ATTEND

Chapter 2 – File I/O and Handling Subroutines 2-7

2.2 ATTEND – End of ATTACH Calls

Purpose:

 ATTEND must be called after the last ATTACH call. This indicates to ATTACH where
to stop the program execution when the user enters a question mark on the execution line to print
the program's keywords and default file names. Unrecognized keywords are also identified at
this point.

Calling Sequence:

CALL ATTEND

ATTSET HECLIB Subroutines

2-8 Chapter 2 – File I/O and Handling Subroutines

2.3 ATTSET – Set ATTACH Information

Purpose:

 ATTSET provides a means of printing one line of information when the user enters a
question mark on the execution line. This information is often the version date of the program.
ATTSET must be called prior to the first call to ATTACH.

Calling Sequence:

CALL ATTSET (CLINE)

Declarations:

 CHARACTER CLINE

Argument Description:

 CLINE Input The line of information to be printed out when a question mark

is entered on the execution line. Up to 132 characters may be
printed.

Example:

 CALL ATTSET ('MYPROG: July 4, 1976; 5 reservoir limit')
 CALL ATTACH (...

HECLIB Subroutines WIND

Chapter 2 – File I/O and Handling Subroutines 2-9

2.4 WIND – Position to the End of File

Purpose:

 WIND positions a unit to the end of the file so that any writing to that unit will append to
the file instead of replacing information in the file. WIND is the opposite of REWIND. WIND
only operates on files (not on terminals).

Calling Sequence:

CALL WIND (IUNIT)

Declarations:

 INTEGER IUNIT

Argument Description:

 IUNIT Input The unit number of the opened file to position to the end of

file.

RECMAX HECLIB Subroutines

2-10 Chapter 2 – File I/O and Handling Subroutines

2.5 RECMAX – Determine the Number of Records (Lines) in a File

Purpose:

 Subroutine RECMAX determines the number of lines in a blocked file (or the number of
sectors in an unblocked file for HARRIS computers).

Calling Sequence:

CALL RECMAX (IUNIT, NRECS)

Declarations:

 INTEGER IUNIT, NRECS

Argument Description:

 IUNIT Input The unit number connected to the file to determine the number

of records (lines). The file must have been opened.

 NRECS Output The number of records (lines) in the file for a blocked file, or

the number of sectors in the file for an unblocked file.

HECLIB Subroutines NUMLN

Chapter 2 – File I/O and Handling Subroutines 2-11

2.6 NUMLN – Determine the Number of Lines in a File

Purpose:

 Integer function NUMLIN determines the number of lines in a file, given the file name.
Use subroutine RECMAX to determine the number of lines in a file that has already been
opened.

Calling Sequence:

INUMB = NUMLIN (CNAME)

Declarations:

 CHARACTER CNAME
 INTEGER NUMLIN

Argument Description:

 CNAME Input The name of the file to find the number of lines.

 NUMLN Output The number of lines in file CNAME.

LISFIL HECLIB Subroutines

2-12 Chapter 2 – File I/O and Handling Subroutines

2.7 LISFIL – Determine if a Name is a Valid Filename

Purpose:

 Logical function LISFIL determines if a given name is a valid file name. LISFIL does
not indicate if the file exists or not, just whether the name given meets the specifications for a
file name.

Calling Sequence:

LNAME = LISFIL (CNAME)

Declarations:

 CHARACTER CNAME
 LOGICAL LISFIL

Argument Description:

 CNAME Input The name to be checked.

 LISFIL Output A logical flag returned .TRUE. if CNAME met the

specifications for a file name.

HECLIB Subroutines GETNAM

Chapter 2 – File I/O and Handling Subroutines 2-13

2.8 GETNAM – Get the Name of an Opened File

Purpose:

 GETNAM returns the name of a file attached to a specified unit. This is identical to the
FORTRAN INQUIRE statement for "NAME", except that on HARRIS computers the file name
is returned in a usable form (see remarks).

Calling Sequence:

CALL GETNAM (IUNIT, CNAME, IERR)

Declarations:

 CHARACTER CNAME
 INTEGER IUNIT, IERR

Argument Description:

 IUNIT Input The unit number the file is attached to. The file must be

assigned, but does not have to be opened.

 CNAME Output The name of the file attached to IUNIT.

 IERR Output A status parameter indicating the successfulness of the call. If

IERR is returned as zero (0), CNAME contains the file name.
On HARRIS computers, if IERR is returned as negative one (-
1), the unit number is not attached to a file. If IERR is returned
greater than one, the unit is attached to a physical device and
IERR is the PDN (physical device number).

Remarks:

 The INQUIRE statement on the HARRIS does not return the name of a file in a way that
is directly usable. GETNAM returns the name in a form that can be used in OPENS, ASSIGNS,
etc. For example, GETNAM will return a file name such as '0000SYS*MYFILE'. On HARRIS
computers, GETNAM calls LFNAME then rearranges the file name. On non-HARRIS
computers, GETNAM does a direct INQUIRE.

Example:

 CALL GETNAM (9, CNAME, IERR)
 IF (IERR.NE.0) GO TO 100
 CLOSE (UNIT=9)
 OPEN (UNIT=12, FILE=CNAME, IOSTAT=ERR)

CCREAT HECLIB Subroutines

2-14 Chapter 2 – File I/O and Handling Subroutines

2.9 CCREAT – Create a File

Purpose:

 CCREAT creates a file. On HARRIS computers, the granule size and pack may be
specified.

Calling Sequence:

CALL CCREAT (CNAME, IGRAN, IPACK, ITYPE, IERR)

Declarations:

 CHARACTER CNAME
 INTEGER IGRAN, IPACK, ITYPE, IERR

Argument Description:

 CNAME Input A character string containing the name of the file to create

 IGRAN Input The granule size of the file to be created. If zero, the default

size will be used.

 IPACK Input The pack number of where to generate the file. If zero, the

default pack will be used.

 ITYPE Input A flag indicating the type of file to create. If ITYPE is zero, a

blocked file will be created. If ITYPE is -1, an unblocked file
will be created. If ITYPE is -2, a random access unblocked file
will be created.

 IERR Output A status parameter indicating the successfulness of the call. If

IERR is returned as zero, the file was created successfully.

Remarks:

 CCREAT is the same subroutine as the HARRIS CREATE subroutine, except that the
file name is specified as a character string instead of a Hollerith array. CCREAT converts the
file name to Hollerith, then calls the HARRIS CREATE subroutine. See the CREATE
subroutine documentation in the HARRIS FORTRAN manual for more information.

HECLIB Subroutines CDELET

Chapter 2 – File I/O and Handling Subroutines 2-15

2.10 CDELET – Delete a File

Purpose:

 CDELET eliminates a file. The user of the calling program must have delete access for
the file.

Calling Sequence:

CALL CDELET (CNAME, IERR)

Declarations:

 CHARACTER CNAME
 INTEGER IERR

Argument Description:

 CNAME Input The name of the file to delete.

 IERR Output A status parameter indicating the successfulness of the delete.

If IERR is returned as zero, the file was deleted.

Remarks:

 The file must not be opened or otherwise in use to delete it. Refer to the FORTRAN
manual for error codes other than zero.

CRENAM HECLIB Subroutines

2-16 Chapter 2 – File I/O and Handling Subroutines

2.11 CRENAM – Rename a File

Purpose:

 CRENAM renames a file. The user of the calling program must have delete access for
the file.

Calling Sequence:

CALL CRENAM (COLDN, CNEWN, IERR)

Declarations:

 CHARACTER COLDN, CNEWN
 INTEGER IERR

Argument Description:

 COLDN Input The current name of the file to be renamed.

 CNEWN Input The new name to be given to the file.

 IERR Output A status parameter indicating the successfulness of the rename.

If IERR is returned as zero, the file was renamed successfully.

Remarks:

 The file must not be opened or otherwise in use to rename it. Refer to the FORTRAN
manual for error codes other than zero.

HECLIB Subroutines GIOP

Chapter 2 – File I/O and Handling Subroutines (HARRIS Specific) 2-17

2.12 HARRIS Specific Subroutines

2.12.1 GIOP – General Input/Output Processing

Purpose:

 Subroutine GIOP provides direct FORTRAN access to HARRIS assembly I/O functions.
These functions include all read-write operations, and special terminal operations. They are
described in the VOS I/O Services Reference Manual. This manual should be referred to when
using GIOP.

 Four versions of GIOP exist. The first, called GIOP, initiates a function that makes use
of an input-output buffer. The second, named GIOPLW, does the same as the first, but then does
a normal status call (which is often required to complete the function). GIOPLW will not return
until the function has completed (or an error occurred). The third, called GIOPS, initiates a
function that does not use an input-output buffer. The fourth, named GIOPSW, initiates the
function as in GIOPS, but then does a status call. Example uses follow.

Calling Sequence:

GIOP Long Call
 CALL GIOP (IUNIT, IFUN, IBUFF, NBUFF, ISTAT

GIOP Long Call with Wait (status)
 CALL GIOPLW (IUNIT, IFUN, IBUFF, NBUFF, ISTAT)

GIOP Short Call
 CALL GIOPS (IUNIT, IFUN, ISTAT)

GIOP Short Call with Wait (status)
 CALL GIOPSW (IUNIT, IFUN, ISTAT)

Declarations:

 INTEGER IUNIT, IFUN, IBUFF(NBUFF), ISTAT

Argument Description:

 IUNIT Input The unit to perform the function on. The unit must be assigned

prior to calling GIOP.

 IFUN Input The function to perform. The functions are the octal numbers

given in the VOS I/O Services Manual.

GIOP HECLIB Subroutines

2-18 Chapter 2 – File I/O and Handling Subroutines (HARRIS Specific)

 IBUFF Input/ The buffer containing the information to be written, or the
 Output buffer in which to place the data read. IBUFF must always be

an integer array, regardless of the type of data to be transferred.

 NBUFF Input The number of words of IBUFF to transfer.

 ISTAT Output A status parameter containing information regarding the

success of the call. This is the information returned in the A
register. ISTAT is rarely returned with zero, as several pieces
of information are returned indicated by what bits are set.
Subroutine CSTAT may be used to decode the status
parameter.

Remarks:

 The unit must always be assigned prior to calling GIOP. This is normally done through
an ASSIGN service (not a FORTRAN OPEN).

 Do not mix different I/O modes; If you call GIOP for I/O with a file, do not use any
FORTRAN I/O until that file has been closed and reopened with a FORTRAN OPEN statement.
An exception to this is terminal I/O, where usually both modes of I/O can be performed.

 IBUFF must always be an integer array, regardless of the type of data being transferred.
If another type of data is to be written, it must first be converted into an integer array. For
example, if character data is to be written or read, that character variable can be equivalent to
IBUFF.

 Refer to the VOS I/O Services Reference Manual for function codes.

Example Calls:

 The following list provides sample calls for the commonly used I/O services. The
following calls assume that IBUFF has been dimensioned to NBUFF integer words, and NBUFF
words are to be transferred

 Symbolic Read: CALL GIOPLW (IUNIT, '01, IBUFF, NBUFF, ISTAT)
 Symbolic Write: CALL GIOPLW (IUNIT, '02, IBUFF, NBUFF, ISTAT)
 Binary Read: CALL GIOPLW (IUNIT, '03, IBUFF, NBUFF, ISTAT)
 Binary Write: CALL GIOPLW (IUNIT, '04, IBUFF, NBUFF, ISTAT)
 Open (requires ASSIGN first): CALL GIOPSW (IUNIT, '13, ISTAT)
 Close: CALL GIOPSW (IUNIT, '14, ISTAT)
 Advance File: CALL GIOPSW (IUNIT, '16, ISTAT)
 Rewind File: CALL GIOPSW (IUNIT, '22, ISTAT)
 Move to Sector: CALL GIOPLW (IUNIT, '23, IDUM, NSECT, ISTAT)
 Dump Buffer: CALL GIOPSW (IUNIT, '24, ISTAT)
 Terminal Backstore: CALL GIOPLW (IUNIT, '27, IBUFF, NBUFF, ISTAT)
 Flush Buffer: CALL GIOPS (IUNIT, '37, ISTAT)

HECLIB Subroutines GIOP

Chapter 2 – File I/O and Handling Subroutines (HARRIS Specific) 2-19

 Transmit Break: CALL GIOPSW (IUNIT, '50, ISTAT)
 Enable Hot Read: CALL GIOPLW (IUNIT, '51, IBUFF, NBUFF, ISTAT)
 Hot Read with Wait: CALL GIOPSW (IUNIT, '51, ISTAT)
 Hot Write: CALL GIOPLW (IUNIT, '52, IBUFF, NBUFF, ISTAT)
 Hot Read No Wait: CALL GIOPSW (IUNIT, '53, ISTAT)

CSTAT HECLIB Subroutines

2-20 Chapter 2 – File I/O and Handling Subroutines (HARRIS Specific)

2.12.2 CSTAT – Pick Apart an I/O Service Status

Purpose:

 CSTAT is used to pick apart the status word returned from a system service I-O. (This is
the status value returned by the subroutine GIOP.)

Calling Sequence:

CALL CSTAT (ISTAT, IOK, LOK, LEOF, LOPEN, LXDISC, IWC, LWCNC)

Declarations:

 INTEGER ISTAT, IOK, IWC
 LOGICAL LOK, LEOF, LOPEN, LXDISC, LWCNC

Argument Description:

 ISTAT Input The status word returned from the I/O call.

 IOK Output An integer flag indicating if the operation was successful. IOK

is returned with zero (0) if the operation was completed,
otherwise IOK is returned as one (1).

 LOK Output A logical flag indicating if the operation was successful. LOK

is returned as .TRUE. if the operation was completed,
otherwise LOK is returned .FALSE.. (Similar to IOK, except a
logical flag).

 LEOF Output A logical flag that indicates if the I/O call reached the end of

file. LEOF is returned .TRUE. if the end of file condition was
met.

 LOPEN Output A logical flag indicating if the file is open or not. LOPEN is

returned .TRUE. if the file is open.

 LXDISC Output A logical flag indicating if the last operation exceed a disc

space bounds (either users, pack, or system disc space).
LXDISC is returned .TRUE. if the disc space limit was
reached.

 IWC Output Word Count. IWC is an integer variable indicating the number

of words transferred on the I/O operation.

 LWCNC Output Word Count Not Complete. LWCNC is a logical flag that is

returned .TRUE. if the number of words transferred in the I/O
operation is incomplete.

HECLIB Subroutines CRETYP

Chapter 2 – File I/O and Handling Subroutines (HARRIS Specific) 2-21

2.12.3 CRETYP – Retype the Attributes of a File

Purpose:

 CRETYP is the same subroutine as the HARRIS RETYPE subroutine, except that the file
name is specified as a character instead of a Hollerith array.

Calling Sequence:

CALL CRETYP (CNAME, IBITS, ILEVEL, IERR)

Declarations:

 CHARACTER CNAME
 INTEGER IBITS, ILEVEL, IERR

Argument Description:

 CNAME Input A character string containing the name of the file to retype.

 IBITS Input The access bits to set. These bits contain information on the

read, write, execute and delete access. See the system service
$RTYPE for information.

 ILEVEL Input The access level to set for the file.

 IERR Output A status parameter indicating the successfulness of the retype.

If IERR is returned as zero, the file was retyped successfully.

Remarks:

 Converts the file name to Hollerith, then calls the HARRIS RETYPE subroutine. See the
RETYPE subroutine documentation in the HARRIS FORTRAN manual for more information.

Example:

 Retype a file to public read, write, delete access:

 CALL CRETYP ('RES*MYFILE', 116, 0 ,IERR)

IFTYPE HECLIB Subroutines

2-22 Chapter 2 – File I/O and Handling Subroutines (HARRIS Specific)

2.12.4 IFTYPE – Determine the Type of File Assigned

Purpose:

 Function IFYTPE returns the type of file assigned to a unit. The different file types are
blocked, unblocked, and random access. The file must be assigned, but does not have to be
opened.

Calling Sequence:

ITYPE = IFTYPE (IUNIT)

Declarations:

 INTEGER IFTYPE, IUNIT

Argument Description:

 IUNIT Input The unit number that the file is assigned to.

 IFTYPE Output A flag indicating the type of file assigned. IFTYPE is returned

with five possible values:
 Value File Type
 0 Blocked
 1 Unblocked
 2 Random
 -1 Unassigned
 -2 Physical Device

HECLIB Subroutines CASSIG

Chapter 2 – File I/O and Handling Subroutines (HARRIS Specific) 2-23

2.12.5 CASSIG – Assign a Unit to a File

Purpose:

 CASSIG is the same subroutine as the HARRIS ASSIGN subroutine, except that the file
name is specified as a character instead of a Hollerith array.

Calling Sequence:

CALL CASSIG (IUNIT, CNAME, IERR)

Declarations:

 CHARACTER CNAME
 INTEGER IUNIT, IERR

Argument Description:

 IUNIT Input The unit number to assign the file to.

 CNAME Input A character string containing the name of the file to assign.

 IERR Output A status parameter indicating the successfulness of the assign.

If IERR is returned as zero, the file was assigned successfully.

Remarks:

 Converts the file name to Hollerith, then calls the HARRIS ASSIGN subroutine. See the
ASSIGN subroutine documentation in the HARRIS FORTRAN manual for more information.

ASSIGX HECLIB Subroutines

2-24 Chapter 2 – File I/O and Handling Subroutines (HARRIS Specific)

2.12.6 ASSIGX – Assign a File in an Exclusive Mode

Purpose:

 ASSIGX assigns a file in an exclusive mode on HARRIS computers. In this mode, no
other users (or other units) may connect to the file until the assignment is broken. If the file is
already assigned (any type of assignment) by another user, the exclusive assign will fail. The file
may be a sequential access or direct access file.

Calling Sequence:

CALL ASSIGX (IUNIT, CNAME, IERR)

Declarations:

 CHARACTER CNAME
 INTEGER IUNIT, IERR

Argument Description:

 IUNIT Input The unit number to assign the file to.

 CNAME Input A character string containing the name of the file to assign.

 IERR Output A status parameter indicating the successfulness of the shared

assign. If IERR is returned as zero, the file was assigned
successfully. Error code 10 is returned if the file is assigned by
some other user.

Remarks:

 If the file is already assigned (e.g., by another user), the assign will fail and return an
error of ten. See the $ASSIGN documentation in the VOS System Service's Manual for more
information.

HECLIB Subroutines ASSIGS

Chapter 2 – File I/O and Handling Subroutines (HARRIS Specific) 2-25

2.12.7 ASSIGS – Assign a File in a Shared Mode

Purpose:

 ASSIGS assigns a direct access file for shared file operations on HARRIS computers. In
this mode, two or more users may write to the file at the same time using record and file locks
(see subroutine FLLKON). A file may be connected in this mode only if it is a HARRIS random
file, and all other assignments are in the shared mode also.

Calling Sequence:

CALL ASSIGS (IUNIT, CNAME, IERR)

Declarations:

 CHARACTER CNAME
 INTEGER IUNIT, IERR

Argument Description:

 IUNIT Input The unit number to assign the file to.

 CNAME Input A character string containing the name of the file to assign.

 IERR Output A status parameter indicating the successfulness of the shared

assign. If IERR is returned as zero, the file was assigned
successfully. Error code 23 is returned if the file is assigned by
some other user in a non-shared mode, or the file is not a direct
access file.

Remarks:

 The system GEN file must specify the 'SHARED-FILES' capability. See the VOS Site
Manager's Manual for more information.

 If the file is assigned with a non-shared assignment (e.g., by another user), the assign will
fail and return an error of 23. See the $ASSIGN documentation in the VOS System Service's
Manual for more information. See the FLLKON subroutine documentation for information on
shared-assign use.

FLLKON HECLIB Subroutines

2-26 Chapter 2 – File I/O and Handling Subroutines (HARRIS Specific)

2.12.8 FLLKON – Lock a Shared Access File

Purpose:

 FLLKON "locks" a file that has been assigned to a program in a shared access mode (see
subroutine ASSIGS). This lock prevents any other program (who also has a shared assignment
to that file) from reading or writing to the file until the lock is removed (using subroutine
FLLKOF).

Calling Sequence:

CALL FLLKON (IUNIT, IWAIT, ISTAT)

Declarations:

 INTEGER IUNIT, IWAIT, ISTAT

Argument Description:

 IUNIT Input The unit number connected to the file. The file must be a

random access file and must have been assigned in a shared
access mode.

 IAWIT Input A flag indicating whether the subroutine should wait until the

file is unlocked if it has already been locked by another user. If
IWAIT is one (1), the subroutine will wait until the file has
been unlocked. If IWAIT is zero (0), it will return immediately
without locking the file (if unavailable).

 ISTAT Output A status parameter. If ISTAT is returned zero, the file was

successfully locked, otherwise not.

Remarks:

 The file must be a unblocked or random access file, in a shared access mode. Refer to the
VOS I/O Services manual, unblocked/random disc area I/O section (function code '25) for more
information about file locking and return status codes.

HECLIB Subroutines FLLKOF

Chapter 2 – File I/O and Handling Subroutines (HARRIS Specific) 2-27

2.12.9 FLLKOF – Unlock a Locked File

Purpose:

 FLLKOF "unlocks" a file that has been locked by subroutine FLLKON, allowing other
users to read and write to the file. Refer to subroutine FLLKON for more information.

Calling Sequence:

CALL FLLKOF (IUNIT, ISTAT)

Declarations:

 INTEGER IUNIT, ISTAT

Argument Description:

 IUNIT Input The unit number connected to the file. The file must be a

random access file and must have been assigned in a shared
access mode.

 ISTAT Output A status parameter. If ISTAT is returned zero, the file was

successfully unlocked.

 HECLIB Subroutines

2-28 Chapter 2 – File I/O and Handling Subroutines (MS-DOS Specific)

2.13 MS-DOS Specific Subroutines

Purpose:

 The disk-buffer I/O subroutines provide fast I/O on files for MS-DOS microcomputers.
These subroutines use an integer buffer to read or write a large amount of data at one time. The
disk-buffer subroutines are on the order of five times faster than most FORTRAN I/O.

Subroutine Summary:

 DKBFOP - Open a file (must exist)
 DKBFCR - Create (or truncate) a file and open
 DKBFCL - Close the file
 DKBFRD - Read from the file
 DKBFWT - Write to the file
 DKBFPS - Position to a byte within the file

HECLIB Subroutines DKBFOP

Chapter 2 – File I/O and Handling Subroutines (MS-DOS Specific) 2-29

2.13.1 DKBFOP – Disk-Buffer Open

Purpose:

 Open a file for disk-buffer I-O. The file must exist.

Calling Sequence:

CALL DKBFOP (IHANDL, CNAME, IBUFF, NBUFF, ISTAT)

Declarations:

 INTEGER*2 IHANDL, IBUFF(NBUFF), ISTAT
 CHARACTER CNAME

Argument Description:

 IHANDL Output The handle number given to the file. This is similar to a

FORTRAN unit number, and must be used for all DKBF calls
for that file. (Use a different handle variable for a different
file).

 CNAME Input The name of the file to perform I/O on.

 IBUFF Input/ An array used for buffering I/O, dimensioned to NBUFF.
 Output Typically, IBUFF is dimensioned to 2058, but may range from

74 to 8192. A larger buffer size generally gives faster I/O.
This same array should be passed to the other DKBF
subroutines for this file.

 NBUFF Input The dimension of IBUFF, in INTEGER*2 words.

 ISTAT Output A status parameter, set to zero if the call was successful. Non-

zero error codes may be found on page 6-42 of the DOS
Technical Reference Manual.

DKBFCR HECLIB Subroutines

2-30 Chapter 2 – File I/O and Handling Subroutines (MS-DOS Specific)

2.13.2 DKBFCR – Disk-Buffer Create (or Truncate) File and Open

Purpose:

 Creates, and then opens a new file for disk-buffer I/O. If the file already exists, any
information in the file will be eliminated.

Calling Sequence:

CALL DKBFCR (IHANDL, CNAME, IBUFF, NBUFF, ISTAT)

Declarations:

 INTEGER*2 IHANDL, IBUFF(NBUFF), ISTAT
 CHARACTER CNAME

Argument Description:

 IHANDL Output The handle number given to the file. This is similar to a

FORTRAN unit number, and must be used for all DKBF calls
for that file. (Use a different handle variable for a different
file).

 CNAME Input The name of the file to perform I/O on.

 IBUFF Input/ An array used for buffering I-O, dimensioned to NBUFF.
 Output Typically, IBUFF is dimensioned to 2058, but may range from

74 to 8192. A larger buffer size generally gives faster I/O.
This same array should be passed to the other DKBF
subroutines for this file.

 NBUFF Input The dimension of IBUFF, in INTEGER*2 words.

 ISTAT Output A status parameter, set to zero if the call was successful. Non-

zero error codes may be found on page 6-42 of the DOS
Technical Reference Manual.

HECLIB Subroutines DKBFCL

Chapter 2 – File I/O and Handling Subroutines (MS-DOS Specific) 2-31

2.13.3 DKBFCL – Disk-Buffer Close

Purpose:

 Closes the file (opened by DKBFOP or DKBFCR), dumping the buffer if necessary.

Calling Sequence:

CALL DKBFCL (IHANDL, IBUFF, ISTAT)

Declarations:

 INTEGER*2 IHANDL, IBUFF(NBUFF), ISTAT

Argument Description:

 IHANDL Output The handle number from DKBFOP or DKBFCR.

 IBUFF Input The buffer array from DKBFOP or DKBFCR.

 ISTAT Output A status parameter, set to zero if the call was successful. If the

buffer was not initialized (with DKBFOP or DKBFCR),
ISTAT is returned with a -3. Positive error codes may be
found on page 6-42 of the DOS Technical Reference Manual.

Remarks:

 A file opened by DKBFOP or DKBFCR should always be closed by this subroutine.

DKBFRD HECLIB Subroutines

2-32 Chapter 2 – File I/O and Handling Subroutines (MS-DOS Specific)

2.13.4 DKBFRD – Disk-Buffer Read

Purpose:

 Reads a single line from a file. The file must have been opened with either DKBFOP or
DKBFCR.

Calling Sequence:

CALL DKBFRD (IHANDL, CLINE, NLINE, IBUFF, ISTAT)

Declarations:

 INTEGER*2 IHANDL, IBUFF(NBUFF), ISTAT, NLINE
 CHARACTER CLINE

Argument Description:

 IHANDL Output The handle number from DKBFOP or DKBFCR.

 CLINE Output The line read from the file. The number of characters returned

will not be greater than the declared length of CLINE.

 NLINE Output A status parameter, set to zero if the call was successful. If the

buffer was not initialized (with DKBFOP or DKBFCR),
ISTAT is returned with a -3. Positive error codes may be
found on page 6-42 of the DOS Technical Reference Manual.

 IBUFF Input/ The buffer array from DKBFOP or DKBFCR.
 Output

 ISTAT Output A status parameter, set to zero if the call was successful. If at

the end of the file, ISTAT is returned with a -1. If the buffer
was not initialized (with DKBFOP or DKBFCR), ISTAT is
returned with a -3. Positive error codes may be found on page
6-42 of the DOS Technical Reference Manual.

Remarks:

 DKBFRD reads blocks of information from the file, NBUFF words at a time. The line
returned is from this block (or buffer). Physical reads are done only when the line requested is
outside of the current block.

HECLIB Subroutines DKBFWT

Chapter 2 – File I/O and Handling Subroutines (MS-DOS Specific) 2-33

2.13.5 DKBFWT – Disk-Buffer Write

Purpose:

 Writes a single line to a file. The file must have been opened with either DKBFOP or
DKBFCR.

Calling Sequence:

CALL DKBFWT (IHANDL, CLINE, IBUFF, ISTAT

Declarations:

 INTEGER*2 IHANDL, IBUFF(NBUFF), ISTAT
 CHARACTER CLINE

Argument Description:

 IHANDL Input The handle number from DKBFOP or DKBFCR.

 CLINE Input The line to write to the file. The number of characters to write

is implied by the length of CLINE (e.g., CLINE(1:20).

 IBUFF Input/ The buffer array from DKBFOP or DKBFCR. Do not use the
 Output same buffer to read and write with.

 ISTAT Output A status parameter, set to zero if the call was successful. If the

buffer was not initialized (with DKBFOP or DKBFCR),
ISTAT is returned with -3. Other error codes may be found on
page 6-42 of the DOS Technical Reference Manual.

Remarks:

 DKBFWT writes blocks of information to the file, NBUFF words at a time. The line
passed to DKBFWT is stored in the buffer. The buffer is not dumped to disk until a reference
outside the block is requested, or the file is closed. It is important to close the file with DKBFCL
to insure the buffer has been dumped.

 Do not use the same buffer to read and write with.

DKBFPS HECLIB Subroutines

2-34 Chapter 2 – File I/O and Handling Subroutines (MS-DOS Specific)

2.13.6 DKBFPS – Disk-Buffer Position

Purpose:

 Positions to a specified byte in the file. DKBFPS will wind to the end of the file by
setting IBYTE to -1, or return the current by position by setting IBYTE to zero. The file must
have been opened with either DKBFOP or DKBFCR.

Calling Sequence:

CALL DKBFPS (IHANDL, IBYTE, IPOS, IBUFF, ISTAT)

Declarations:

 INTEGER*2 IHANDL, IBUFF(NBUFF), ISTAT
 INTEGER*4 IBYTE, IPOS

Argument Description:

 IHANDL Input The handle number from DKBFOP or DKBFCR.

 IBYTE Input The byte number to position to (where 1 is the first byte in the

file). To position to the end of the file, set IBYTE to -1. To
get the current position, set IBYTE to 0. IBYTE must be
INTEGER*4.

 IPOS Output The resulting byte position (usually equal to IBYTE unless an

error occurred or the position was requested. IPOS must be
INTEGER*4.

 IBUFF Input/ The buffer array from DKBFOP or DKBFCR.
 Output

 ISTAT Output A status parameter, set to zero if the call was successful. If the

buffer was not initialized (with DKBFOP or DKBFCR),
ISTAT is returned with -3. Positive error codes may be found
on page 6-42 of the DOS Technical Reference Manual.

Remarks:

 If reposition to a different block, the block (buffer) will be dumped to the disk.

HECLIB Subroutines OPENF

Chapter 2 – File I/O and Handling Subroutines (MS-DOS Specific) 2-35

2.13.7 OPENF – Open a File

Purpose:

 OPENF is a low-level subroutine that opens an old file. Refer to the Open function
(3DH) in the DOS Technical Reference Manual for more information (page 6-126).

Calling Sequence:

CALL OPENF (CNAME, IACESS, IHANDL, ISTAT)

Declarations:

 CHARACTER CNAME
 INTEGER*2 IACESS, IHANDL, ISTAT

Argument Description:

 CNAME Input The name of the file to open. This file name must be

terminated by a zero value byte (e.g., CNAME//CHAR(0)).

 IACESS Input The file access. The accesses are:
 0 Requires read access only.
 1 Requires write access only.
 2 Requires both read and write access.

 IHANDL Output The file handle. This is similar to the FORTRAN unit number,

but the number is assigned by the open function.

 ISTAT Output A status parameter, set to zero if the call was successful.

Nonzero error codes may be found on page 6-42 of the DOS
Technical Reference Manual.

CREAF HECLIB Subroutines

2-36 Chapter 2 – File I/O and Handling Subroutines (MS-DOS Specific)

2.13.8 CREAF – Create a File

Purpose:

 CREAF is a low-level subroutine that creates and opens a new file or truncates an old file
to zero length for preparation for writing. Refer to the CREAT function (3CH) in the DOS
Technical Reference Manual for more information (page 6-122).

Calling Sequence:

CALL CREAF (CNAME, IFATT, IHANDL, ISTAT)

Declarations:

 CHARACTER CNAME
 INTEGER*2 IFATT, IHANDL, ISTAT

Argument Description:

 CNAME Input The name of the file to create (or truncate). This file name

must be terminated by a zero value byte (e.g.,
CNAME//CHAR(0)).

 IFATT Input The file attributes, as described on page 5-11 of the DOS

Technical Reference Manual. This should be set to zero for
normal files.:

 IHANDL Output The file handle. This is similar to the FORTRAN unit number,

but the number is assigned by the create function.

 ISTAT Output A status parameter, set to zero if the call was successful.

Nonzero error codes may be found on page 6-42 of the DOS
Technical Reference Manual.

HECLIB Subroutines CLOSF

Chapter 2 – File I/O and Handling Subroutines (MS-DOS Specific) 2-37

2.13.9 CLOSF – Close a File

Purpose:

 CLOSF is a low-level subroutine that closes a file opened by OPENF or CREAF. Refer
to the Close function (3EH) in the DOS Technical Reference Manual for more information (page
6-136).

Calling Sequence:

CALL CLOSF (IHANDL, ISTAT)

Declarations:

 INTEGER*2 IHANDL, ISTAT

Argument Description:

 IHANDL Input The file handle from OPENF or CREAF.

 ISTAT Output A status parameter, set to zero if the call was successful.

Nonzero error codes may be found on page 6-42 of the DOS
Technical Reference Manual.

READF HECLIB Subroutines

2-38 Chapter 2 – File I/O and Handling Subroutines (MS-DOS Specific)

2.13.10 READF – Read From a File

Purpose:

 READF is a low-level subroutine that reads an integer buffer from a file opened by
OPENF or CREAF. READF does not read individual lines, but a specified number of bytes.
Refer to the Read function (3FH) in the DOS Technical Reference Manual for more information
(page 6-137).

Calling Sequence:

CALL READF (IHANDL, IBUFF, NBYTES, ISTAT, NTRANS)

Declarations:

 INTEGER*2 IHANDL, IBUFF, NBYTES, ISTAT, NTRANS

Argument Description:

 IHANDL Input The file handle from OPENF or CREAF.

 IBUFF Output An integer buffer to contain the information read.

 NBYTES Input The number of bytes to read.

 ISTAT Output A status parameter, set to zero if the call was successful.

Nonzero error codes may be found on page 6-42 of the DOS
Technical Reference Manual.

 NTRANS Output The number of bytes actually read. NTRANS will be less than

NBYTES if the end of file position was reached. NTRANS
will be zero if the file position was at the end of file.

HECLIB Subroutines WRITF

Chapter 2 – File I/O and Handling Subroutines (MS-DOS Specific) 2-39

2.13.11 WRITF – Write to a File

Purpose:

 WRITF is a low-level subroutine that writes an integer buffer to a file opened by OPENF
or CREAF. WRITF does not write individual lines, but a specified number of bytes. Refer to
the Write function (40H) in the DOS Technical Reference Manual for more information (page 6-
139).

Calling Sequence:

CALL WRITF (IHANDL, IBUFF, NBYTES, ISTAT, NTRANS)

Declarations:

 INTEGER*2 IHANDL, IBUFF, NBYTES, ISTAT, NTRANS

Argument Description:

 IHANDL Input The file handle from OPENF or CREAF.

 IBUFF Input The integer buffer to be written.

 NBYTES Input The number of bytes to write.

 ISTAT Output A status parameter, set to zero if the call was successful.

Nonzero error codes may be found on page 6-42 of the DOS
Technical Reference Manual.

 NTRANS Output The number of bytes actually written.

SEEKF HECLIB Subroutines

2-40 Chapter 2 – File I/O and Handling Subroutines (MS-DOS Specific)

2.13.12 SEEKF – Move the File Pointer

Purpose:

 SEEKF is a low-level subroutine that moves the file pointer to a specified location for
files opened by OPENF or CREAF. Refer to the LSEEK function (42H) in the DOS Technical
Reference Manual for more information (page 6-143).

Calling Sequence:

CALL SEEKF (IHANDL, IMODE, IOFSET, IPOS, ISTAT)

Declarations:

 INTEGER*2 IHANDL, IMODE, ISTAT
 INTEGER*4 IOFSET, IPOS

Argument Description:

 IHANDL Input The file handle from OPENF or CREAF.

 IMODE Input The mode of the offset. IMODE has three possible values:
 0 The offset is from the beginning of the file.
 1 The offset is from the current location.
 2 The offset is from the end of the file.

 IOFSET Input The number of bytes to move. This must be an INTEGER*4

number.

 IPOS Output The resulting file byte position after the move. This must be

an INTEGER*4 variable.

 ISTAT Output A status parameter, set to zero if the call was successful.

Nonzero error codes may be found on page 6-42 of the DOS
Technical Reference Manual.

HECLIB Subroutines ERASF

Chapter 2 – File I/O and Handling Subroutines (MS-DOS Specific) 2-41

2.13.13 ERASF – Erase a File

Purpose:

 ERASF erases the specified file(s). The name specified may contain wild characters to
erase all files that match the parts specified. Refer to the Delete function (13H) in the DOS
Technical Reference Manual for more information (page 6-74).

Calling Sequence:

CALL ERASF (CNAME, ISTAT)

Declarations:

 CHARACTER CNAME
 INTEGER*2 ISTAT

Argument Description:

 CNAME Input The name of the file to delete (or name with wild characters).

This name must be terminated by a zero value byte (e.g.,
CNAME//CHAR(0)).

 ISTAT Output A status parameter, set to zero if the call was successful.

Nonzero error codes may be found on page 6-42 of the DOS
Technical Reference Manual.

RNAMF HECLIB Subroutines

2-42 Chapter 2 – File I/O and Handling Subroutines (MS-DOS Specific)

2.13.14 RNAMF – Rename a File

Purpose:

 RNAMF renames a file(s). The file names may contain the wild characters used by DOS
to rename several files with matching parts. Refer to the Rename function (17H) in the DOS
Technical Reference Manual for more information (page 6-79).

Calling Sequence:

CALL RNAMF (COLDN, CNEWN, ISTAT)

Declarations:

 CHARACTER COLDN, CNEWN
 INTEGER*2 ISTAT

Argument Description:

 COLDN Input The current name of the file (or name with wild characters).

This name must be terminated by a zero value byte (e.g.,
COLDN//CHAR(0)).

 CNEWN Input The new name to give the file (or name with wild characters).

This name must be terminated by a zero value byte (e.g.,
CNEWN//CHAR(0)).

 ISTAT Output A status parameter, set to zero if the call was successful.

Nonzero error codes may be found on page 6-42 of the DOS
Technical Reference Manual.

HECLIB Subroutines CHMOD

Chapter 2 – File I/O and Handling Subroutines (MS-DOS Specific) 2-43

2.13.15 CHMOD – Change a File Mode

Purpose:

 CHMOD is a low-level subroutine that changes a files mode. Refer to the CHMOD
function (43H) in the DOS Technical Reference Manual for more information (page 6-145).

Calling Sequence:

CALL CHMOD (CNAME, IFATT, IFUN, ISTAT)

Declarations:

 CHARACTER CNAME
 INTEGER*2 IFATT, IFUN, ISTAT

Argument Description:

 CNAME Input The name of the file whose mode is to be changed. This file

name must be terminated by a zero value byte (e.g.,
CNAME//CHAR(0)).

 IFATT Input/ The file attributes, as described on page 5-11 of the DOS
 Output Technical Reference Manual.

 IFUN Input If IFUN is set to zero, the file's attribute is returned in IFATT.

If IFUN is set to one, the file attributes will be set according to
IFATT.

 ISTAT Output A status parameter, set to zero if the call was successful.

Nonzero error codes may be found on page 6-42 of the DOS
Technical Reference Manual.

 HECLIB Subroutines

Chapter 3 – Terminal Input/Output and Control Subroutines 3-1

3 Terminal Input/Output and Control Subroutines

 The following chapter describes the subroutines that are designed for terminal input-
output and control of the terminal screen. This includes reading and writing single characters (as
opposed to complete lines as required by FORTRAN), and full screen control of the terminal.
These items are available for both HARRIS and MS-DOS computers.

 On HARRIS computers, terminal I/O is accomplished with the CHRIO (Hot-Read)
subroutines. Screen control is provided for terminals that meet ANSI standards with subroutine
ASCTRL. At this time there are no provisions for non-ANSI terminals.

 On MS-DOS microcomputers, terminal I/O is accomplished with the subroutines STDIN
and STDOUT. (The CHRIO subroutines have been implemented for the microcomputer using
calls to these routines.) The screen is controlled with either the Video routines (those that begin
with the letter "V"), or the PUF routines. The video subroutines perform functions such as
scrolling the screen, clearing the screen, positioning the cursor, etc. The PUF subroutines
provide a means of creating windows and changing colors or attributes of specific portions of the
screen.

ANREAD HECLIB Subroutines

3-2 Chapter 3 – Terminal Input/Output and Control Subroutines

3.1 ANREAD – Perform a Prompted Read

Purpose:

 ANREAD writes a prompt to the terminal screen, then reads from the terminal without an
intervening carriage return and line feed. ANREAD will read from the different port types or
from a file input.

Calling Sequence:

CALL ANREAD (IUNIT, CPROMPT, NPROMPT, CLINE, NLINE)

Declarations:

 CHARACTER CPROMPT, CLINE
 INTEGER IUNIT, NPROMPT, NLINE

Argument Description:

 IUNIT Input The unit number to prompt and read from. This unit may be

connected to either a file or a terminal (or console).

 CPROMPT Input A character string containing the prompt to write out.

 NPROMPT Input The number of characters in CPROMPT to write.

 CLINE Output CLINE will contain the line read. The length of CLINE is

implicit (e.g., CLINE(1:60)).

 NLINE Output The number of characters read (in CLINE). If ANREAD

detected an end-of-file condition, NLINE is returned as -1. If
the declared length of CLINE is less then the length of the
expanded line, NLINE is returned as -2 (and the line is
truncated).

Remarks:

 If an escape character is pressed, or the user backspaces into the prompt, ANREAD will
print an exclamation mark (!), then write a new prompt. Currently, ANREAD does not correctly
read from redirected input on the microcomputer.

Example:

 CALL ANREAD (5, 'Do you want to continue? ', 25, CLINE, NLINE)
 IF (CLINE(1:1).EQ.'Y') THEN ...

HECLIB Subroutines RBELL

Chapter 3 – Terminal Input/Output and Control Subroutines 3-3

3.2 RBELL – Ring the Terminal Bell

Purpose:

 RBELL rings the terminal bell. No action is taken if the program is running in a batch
mode.

Calling Sequence:

CALL RBELL

 CHRIO (Hot Read Subroutines) HECLIB Subroutines

3-4 Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific)

3.3 HARRIS Specific Subroutines

3.3.1 Character (Hot Read) I/O Subroutines

Purpose:

 This describes the CHRIO set of subroutines that perform Hot Read Input/Output
functions with Character type data. These subroutines utilize HARRIS assembly code for
specialized terminal I/O. Never call any of these subroutines when I-O is being performed on a
file, as an error will occur (with a message of INVALID FUNCTION CODE). Refer to the
HARRIS Asynchronous Device Handler or I/O System Services Reference Manual for more
information on Hot Read I/O.

 Before performing any reads with Hot Read, the Hot Mode must be initialized with a call
to CHRIT1. This initialization sets up the I-O buffer and sets the port in Hot Mode. When in
Hot Mode, only Hot Reads may occur; no FORTRAN reads to the terminal can take place during
this time. When complete, the Hot Mode is terminated by a call to CHRFN1. (After this call,
FORTRAN reads may be used.)

 The CHRIO subroutines are divided into two sets for I/O on two different ports
(simultaneously). Usually, terminal I/O will be conducted at one port (unit) only, so the CHRIO
subroutines utilizing channel 1 will normally be used. The following subroutines end with the
number 1, indicating they are for I/O on channel 1. The same set of subroutines can be used for
another unit by replacing the number 1 with the number 2 (for channel 2).

 Hot Writes to a terminal may occur at any time. The Hot Mode does not need to be
initialized. FORTRAN writes can also occur at any time on ASYNC ports; regardless if the port
is in Hot Mode (this was not true with previous implementations of Hot Read).

Subroutine Summary:

 CHRIT1 - Initialize character I/O
 CHRFN1 - Finish character I/O
 CHRWT1 - Write character(s)
 CHRRD1 - Read character(s), waiting for at least one character
 CHRRI1 - Read character(s) without waiting for a character to arrive
 CHRBK1 - Backstore characters
 CHRFL1 - Flush characters in type-ahead buffer
 CHRWI1 - Write without waiting for completion
 CHRST1 - Request status on last operation (waiting for completion)
 CHRSI1 - Request status on last operation (without waiting for completion)

HECLIB Subroutines CHRWT

Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific) 3-5

3.3.1.1 CHRWT – Write Individual Character(s) to a Terminal

Purpose:

 CHRWT writes individual characters to a terminal, or similar device. CHRWT writes
out exactly what is specified: Implicit line feeds and carriage returns are not written at the end of
the character sequence. No initialization subroutine needs to be called.

Calling Sequence:

CALL CHRWT (IUNIT, CSTR, NSTR)

Declarations:

 CHARACTER CSTR
 INTEGER NSTR, IUNIT

Argument Description:

 IUNIT Input The unit to write the character to. This unit must be attached to

a terminal (or physical device), not a file.

 CSTR Input The character string to be written. No implicit carriage returns

or line feeds will be added to the string (they must be explicitly
written).

 NSTR Input The number of characters (in CSTR) to write.

CHRIT1 HECLIB Subroutines

3-6 Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific)

3.3.1.2 CHRIT1 – Initialize Characters I/O

Purpose:

 CHRIT1 initializes a unit for reading characters from a terminal. CHRIT1 must be called
prior to any character reads (but is not necessary for character writes). Immediately after this
call, any characters entered at the terminal will be stored in a type-ahead buffer (until a character
read routine is called). The character I/O mode will remain effective until CHRFN1 is called.

Calling Sequence:

CALL CHRIT1 (IUNIT, IBUFF, NUBFF)

Declarations:

 INTEGER IUNIT, IBUFF(NBUFF)

Argument Description:

 IUNIT Input The unit (channel #1) to perform the character I/O on. This

unit must be attached to a terminal (or the physical device), not
a file.

 IBUFF Input An integer array where the characters read will be temporarily

stored. The dimension of IBUFF determines the size of the
type-ahead buffer. The maximum type-ahead buffer size is 86
words (for 256 characters).

 NBUFF Input The dimension of IBUFF (in integer words).

Remarks:

 To initiate the character I/O mode for a second terminal, call subroutine CHRIT2, with
identical arguments.

HECLIB Subroutines CHRFN1

Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific) 3-7

3.3.1.3 CHRFN1 – Finish Characters I/O

Purpose:

 CHRFN1 terminates the character I/O mode for channel #1, after a CHRIT1 call has been
made. This call should be made prior to exiting a program, and must be made before a
FORTRAN read may be accomplished on that unit.

Calling Sequence:

CALL CHRFN1

CHRWT1 HECLIB Subroutines

3-8 Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific)

3.3.1.4 CHRWT1 – Write Character(s)

Purpose:

 CHRWT1 writes characters to the unit specified in the CHRIT1 call. CHRWT1 writes
out exactly what is specified: Implicit line feeds and carriage returns are not written at the end of
the character sequence. Characters may be written to a terminal, without calling CHRIT1, by
calling subroutine CHRWT instead.

Calling Sequence:

CALL CHRWT1 (CSTR, NSTR)

Declarations:

 CHARACTER CSTR
 INTEGER NSTR

Argument Description:

 CSTR Input The character string to be written. No implicit carriage returns

or line feeds will be added to the string (they must be explicitly
written).

 NSTR Input The number of characters (in CSTR) to write.

HECLIB Subroutines CHRRD1

Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific) 3-9

3.3.1.5 CHRRD1 – Read Character(s), Waiting for at Least One Character

Purpose:

 CHRRD1 reads characters from channel 1. If no characters are in the type ahead buffer,
CHRRD1 will wait until at least one character arrives. CHRIT1 must have been called prior to
CHRRD1.

 CHRRD1 removes the parity (8th) bit from all characters read.

Calling Sequence:

CALL CHRRD1 (CSTR, NSTR)

Declarations:

 CHARACTER CSTR
 INTEGER NSTR

Argument Description:

 CSTR Output A character variable that will contain the characters read. This

variable should an equivalent size as the IBUFF array passed to
CHRIT1. For example, if IBUFF is dimensioned to 86, CSTR
should be 258 characters long (although only one character
might be returned).

 NSTR Output The number of characters read and contained in CSTR. This

will not be larger than that provided for by IBUFF in CHRIT1
(those entered beyond that limit will be lost).

CHRRI1 HECLIB Subroutines

3-10 Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific)

3.3.1.6 CHRRI1 – Read Characters Without Waiting for a Character to
 Arrive

Purpose:

 CHRRI1 reads characters from channel 1 similarly to CHRRD1, except CHRRI1 does
not wait for any characters to arrive: CHRRI1 returns immediately, regardless if any characters
have been read or not. CHRRI1 is typically used when another operation is occurring
simultaneously.

 CHRRI1 removes the parity (eighth) bit from all characters read.

Calling Sequence:

CALL CHRRI1 (CSTR, NSTR)

Declarations:

 CHARACTER CSTR
 INTEGER NSTR

Argument Description:

 CSTR Output A character variable that will contain any characters read. This

variable should an equivalent size as the IBUFF array passed to
CHRIT1. For example, if IBUFF is dimensioned to 86, CSTR
should be 258 characters long (although no characters may be
returned).

 NSTR Output The number of characters read and contained in CSTR. This

will not be larger than that provided for by IBUFF in CHRIT1
(those entered beyond that limit will be lost), and may be zero.

HECLIB Subroutines CHRBK1

Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific) 3-11

3.3.1.7 CHRBK1 – Backstore Characters

Purpose:

 CHRBK1 backstores the specified character string, returning it to the type-ahead buffer.

Calling Sequence:

CALL CHRBK1 (CSTR, NSTR)

Declarations:

 CHARACTER CSTR
 INTEGER NSTR

Argument Description:

 CSTR Input The character string to backstore.

 NSTR Input The number of characters (in CSTR) to backstore.

CHRFL1 HECLIB Subroutines

3-12 Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific)

3.3.1.8 CHRFL1 – Flush Characters in Type-Ahead Buffer

Purpose:

 Flushes (removes) all characters in the type-ahead buffer.

Calling Sequence:

CALL CHRFL1

HECLIB Subroutines CHRWI1

Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific) 3-13

3.3.1.9 CHRWI1 – Write Without Waiting for Completion

Purpose:

 CHRWI1 writes characters to channel 1, but does not wait for the operation to complete.
This subroutine is usually used when two simultaneous operations are occurring, and time is of
the essence. CHRSI1 may be called to determine the status of the write.

Calling Sequence:

CALL CHRWI1 (CSTR, NSTR)

Declarations:

 CHARACTER CSTR
 INTEGER NSTR

Argument Description:

 CSTR Input The handle number given to the file. This is similar to a

FORTRAN unit number, and must be used for all DKBF calls
for that file. (Use a different handle variable for a different
file).

 NSTR Input The name of the file to perform I/O on.

CHRST1 HECLIB Subroutines

3-14 Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific)

3.3.1.10 CHRST1 - Request Status on Last Operation

Purpose:

 CHRST1 returns the status of the most recent operation. CHRST1 will wait until the
operation has completed, or an error occurs. If it is necessary to check the status without being
placed in a wait mode, call CHRSI1 instead of CHRST1.

Calling Sequence:

CALL CHRST1 (ISTAT, JSTAT)

Declarations:

 INTEGER ISTAT, JSTAT

Argument Description:

 ISTAT Output Returned as zero if the operation was completed without any

errors. If an error occurred, ISTAT is returned as one.

 JSTAT Output The status returned in a coded form, with bits set indicating

information about the operation. Call subroutine CSTAT to
decode this status. A description of this word may be found in
the I-O Services Reference Manual for function code '00.

HECLIB Subroutines CHRSI1

Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific) 3-15

3.3.1.11 CHRSI1 – Request Status on Last Operation, Without Wait

Purpose:

 CHRSI1 returns the status of the most recent operation, without waiting for the operation
to complete. This is normally called to check the status of a call to CHRWI1.

Calling Sequence:

CALL CHRSI1 (ISTAT, JSTAT

Declarations:

 INTEGER ISTAT, JSTAT

Argument Description:

 ISTAT Output Returned as zero if the operation was completed without any

errors. If the operation is still in progress, ISTAT is returned
set to -1. If an error occurred, ISTAT is returned as one.

 JSTAT Output The status returned in a coded form, with bits set indicating

information about the operation. Call subroutine CSTAT to
decode this status. A description of this word may be found in
the I-O Services Reference Manual for function code '00.

CHRIO Examples HECLIB Subroutines

3-16 Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific)

3.3.1.12 CHRIO Examples

 SUBROUTINE PROMRD (CPROM, CREAD)
 C
 C Perform a simple prompted read
 C (Note: This is an incomplete example. See the
 C source code to ANREAD for a complete example).
 C
 CHARACTER CPROM*(*), CREAD*(*), CSTR*256
 INTEGER IBUFF(86)
 C
 C Initialize Character Read (on unit 0)
 CALL CHRIT1 (0, IBUFF, 86)
 C
 C Write Prompt, adding a line feed at the beginning
 NSTR = LEN(CPROM)
 CALL CHRWT1 (CHAR(10)//CPROM, NSTR+1)
 C Blank fill CREAD
 CALL CHRBLK (CREAD)
 C
 C Read characters until a carriage return is found.
 IMAX = LEN(CREAD)
 NLEN = 0
 20 CONTINUE
 CALL CHRRD1 (CSTR, NSTR)
 C
 C Process characters
 DO 40 I=1,NSTR
 C
 C Check for backspace
 IF (CSTR(I:I).EQ.CHAR(8)) THEN
 ...
 C
 C Echo character
 CALL CHRWT1 (CSTR(I:I), 1)
 C
 C Check for carriage return
 IF (CSTR(I:I).EQ.CHAR(13)) THEN
 CALL CHRFN1
 C If more characters remaining, backstore them
 IF (I.NE.NSTR) CALL CHRBK1 (CSTR(I+1:NSTR), NSTR-I)
 RETURN
 ENDIF
 C
 C Check for max length. If OK, place character in CREAD
 NLEN = NLEN + 1
 IF (NLEN.GT.IMAX) GO TO 40

HECLIB Subroutines CHRIO Examples

Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific) 3-17

 CREAD(NLEN:NLEN) = CSTR(I:I)
 C
 40 CONTINUE
 C
 C Go back and read more
 GO TO 20
 END

 C This example illustrates direct 2 way communication between
 C two terminals. (This is a complete operational program).
 C
 INTEGER IBUFF1(86), IBUFF2(86)
 CHARACTER CSTR1*256, CSTR2*256
 C
 C Resource the other terminal
 C CALL RSCPDN (...
 C
 C OPEN and initialize the terminals
 OPEN (UNIT=8)
 CALL CHRIT1 (0, IBUFF1, 86)
 CALL CHRIT2 (8, IBUFF2, 86)
 C
 C Now loop, reading and writing to each terminal
 LOOP
 C
 C Don't wait for a character - Do an immediate read
 CALL CHRRI1 (CSTR1, NSTR1)
 CALL CHRRI2 (CSTR2, NSTR2)
 C
 IF (NSTR1.GT.0) THEN
 C Exit if a control-A was entered
 EXIT LOOP IF (INDEX(CSTR1(1:NSTR1),CHAR(1)).GT.0)
 C Send the character(s) to the other terminal
 CALL CHRWT2 (CSTR1, NSTR1)
 C Echo the character(s) on this terminal
 CALL CHRWT1 (CSTR1, NSTR1)
 ENDIF
 C
 IF (NSTR2.GT.0) THEN
 C Send the character(s) to the other terminal
 CALL CHRWT1 (CSTR2, NSTR2)
 C Echo the character(s) on this terminal
 CALL CHRWT2 (CSTR2, NSTR2)
 ENDIF
 C
 C If no characters transferred, wait for a short amount of
 C time, so we don't burn CPU.

CHRIO Examples HECLIB Subroutines

3-18 Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific)

 IF ((NSTR1.EQ.0).AND.(NSTR2.EQ.0)) CALL WAITS (0.1)
 C
 ENDLOOP
 C
 C Terminate Character I-O
 CALL CHRFN1
 CALL CHRFN2
 CLOSE (UNIT=8)
 C
 STOP
 END

HECLIB Subroutines TRMTYP

Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific) 3-19

3.3.2 TRMTYP – Determine the Terminal Port Type

Purpose:

 TRMTYP returns the type of device handler being used. There are three types:
Asynchronous, CRT, and TTY.

Calling Sequence:

CALL TRMTYP (IUNIT, CTYPE)

Declarations:

 CHARACTER CTYPE*3
 INTEGER IUNIT

Argument Description:

 IUNIT Input The unit number connected to the port for which the type is

desired. This typically is unit 0, but may be a resourced
physical device (this is the unit number, not the PDN).

 CTYPE Output (Output) A three character variable containing the port type.

Four responses are possible:
 'ASY' - Async Handler
 'TTY' - TTY Handler
 'CRT' - CRT Handler
 'UNK' - Unknown or error

Remarks:

 Call TRMTYP only for units connected to a physical device, not a file.

CLINES HECLIB Subroutines

3-20 Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific)

3.3.3 CLINES – Get the Number of Lines of a Terminal Screen

Purpose:

 CLINES returns the number of lines the terminal screen is designated to hold. On
HARRIS computers, CLINES obtains this information from the system gen file. On the MS-
DOS microcomputer, the number of lines is set to twenty-five.

Calling Sequence:

CALL CLINES (NLINES)

Declarations:

 INTEGER NLINES

Argument Description:

 NLINES Output The number of lines the terminal can hold.

Remarks:

 CLINES is useful when displaying several screens of information on the terminal.

Example:

 CALL CLINES(NLINES)
 10 DO 40 I=1,NLINES-1
 READ (9, 20, END=100) CLINE
 20 FORMAT (A)
 WRITE (6, 25) CLINE
 25 FORMAT (1X,A)
 40 CONTINUE
 C
 CALL ANREAD (5,' -- Press Carriage Return to Continue -- ', 41,
 * CLINE, NLINE)
 GO TO 10

HECLIB Subroutines CKANSI

Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific) 3-21

3.3.4 CKANSI – Check if Terminal is ANSI

Purpose:

 CKANSI is used to determine if the terminal being accessed meets the ANSI standards
for terminals (or is in ANSI mode). If it is, ANSI commands may be sent to control the terminal
(e.g., clear the screen, move the cursor, etc.).

Calling Sequence:

CALL CKANSI (IUNIT, LANSI)

Declarations:

 INTEGER IUNIT
 LOGICAL LANSI

Argument Description:

 IUNIT Input The unit number of the terminal to check. The unit must have

been opened (if other than zero or three).

 LANSI Output A logical flag set to .TRUE. if the terminal responds to ANSI

commands.

Remarks:

 CKANSI sends a request for a cursor position report. If a valid response is received
within three seconds, LASNI is returned true. If it is not an ANSI terminal, three characters may
appear on the screen.

 CKANSI will flush any type-ahead buffer. Subroutine CHRRD1 is used to read the
report from the terminal. Therefore CHRIT1 should not be called before CKANIS, unless
CHRFN1 is called to terminate the hot-read state (it may be re-initiated after CKANSI).

ASCTRL HECLIB Subroutines

3-22 Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific)

3.3.5 ASCTRL – ANSI Screen Control

Purpose:

 ASCTRL controls certain terminal functions for ANSI terminals. This includes clearing
the screen, moving the cursor, highlighting characters, etc.. The terminal accessed must be an
ANSI terminal (or in ANSI mode). CKANSI should be called prior to ASCTRL to be certain
that the terminal is ANSI.

Calling Sequence:

CALL ASCTRL (IUNIT, CFUN, IARG1, IARG2)

Declarations:

 CHARACTER CFUN*2
 INTEGER IUNIT, IARG1, IARG2

Argument Description:

 IUNIT Input The unit number connected to the terminal to access (usually

3). This unit must have been opened.

 CFUN Input A two character description of the function to be performed.

The functions are listed in the table on the next page.

 IARG1 Input An integer argument used for those functions that provide for a

variable number of occurrences. For example, if five
characters are to be deleted, IARG1 should be five. For a
single occurrence, IARG1 may be set to zero.

 IARG2 Input A second argument used only for positioning the cursor.

Functions:

 CFUN IARG1 IARG2 Description
 'MC' Row Col Move the cursor to row IARG1, column IARG2.
 'CR' Nchs - Move the cursor IARG1 spaces right.
 'CL' Nchs - Move the cursor IARG1 spaces left.
 'CU' Nlines - Move the cursor IARG1 lines up.
 'CD' Nlines - Move the cursor IARG1 lines down.
 'DC' Nchs - Delete IARG1 characters right from the cursor.
 'DL' Nlines - Delete IARG1 lines down from the current line.
 'IL' Nlines - Insert IARG1 lines below the current line.
 'IC' - - Go into Insert Character Mode.
 'TO' - - Go into Type-Over Mode.
 'CS' - - Clear Screen.

HECLIB Subroutines ASCTRL

Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific) 3-23

 'EL' - - Erase Line (fill with blanks).
 'KA' - - Put Keypad in Application Mode.
 'KN' - - Put Keypad in Numeric Mode.
 'BO' - - Bold characters.
 'BL' - - Blinking characters.
 'UL' - - Underline characters.
 'RV' - - Reverse Video characters.
 'NO' - - Normal character attributes.

Remarks:

 The character attributes are additive; to change from one attribute to another, reset the
attributes to normal then set the new attribute (otherwise both attributes will be set). These
attributes only affect characters that are printed after the attribute has been issued.

 On ANSI terminals, the upper left hand corner is referred to as row 1, column 1. On
most terminals there are 25 rows and 80 columns. To go to the home position, use move cursor
('MC') to row 1, column 1.

 Be sure that the terminal is an ANSI terminal (or in ANSI mode). Subroutine CKANSI
may be called to check this.

Example:

 CALL CLINES(NLINES)
 C Form fill-in program
 C
 CHARACTER CGAGE*10, CPRE*10, CSTAG*10
 LOGICAL LANSI, LVALID
 C
 C Check that this is an ANSI terminal
 CALL CKANSI (3, LANSI)
 IF (.NOT.LANSI) GO TO 900
 C
 C Clear the screen
 CALL ASCTRL (3, 'CS', 0, 0)
 C Write out the form (A short form is given here)
 C Position Cursor and write info.
 CALL ASCTRL (3, 'MC', 5, 14)
 CALL CHRWT (3, 'Gage Name:', 10)
 C
 CALL ASCTRL (3, 'MC', 8, 10)
 CALL CHRWT (3, 'Precipitation:', 14)
 CALL ASCTRL (3, 'MC', 9, 18)
 CALL CHRWT (3, 'Stage:', 6)
 C
 C Now read in info. Use ANREAD, but move it a line above

ASCTRL HECLIB Subroutines

3-24 Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific)

 C position to read from because it issues a line feed at beg.
 20 CONTINUE
 CALL ASCTRL (3, 'MC', 4, 25)
 CALL ANREAD (3, ' ', 0, CGAGE, NGAGE)
 C
 C Make sure that this is a valid gage
 30 CALL CKGAGE (LVALID, CGAGE, NGAGE)
 C If not a valid file, print an error message, bold and underline
 IF (.NOT.LVALID) THEN
 CALL ASCTRL (3, 'MC', 20, 20)
 CALL ASCTRL (3, 'BO', 0, 0)
 CALL ASCTRL (3, 'UL', 0, 0)
 CALL CHRWT (3, 'Unrecognized gage!', 18)
 C Re-read gage name (with normal attributes)
 CALL ASCTRL (3, 'NO', 0, 0)
 CALL ASCTRL (3, 'MC', 4, 25)
 CALL ANREAD (3, ' ', 0, CGAGE, NGAGE)
 C New name - erase error message
 CALL ASCTRL (3, 'MC', 20, 0)
 CALL ASCTRL (3, 'EL', 0, 0)
 GO TO 30
 ENDIF
 C
 C Read other parameters
 CALL ASCTRL (3, 'MC', 7, 25)
 CALL ANREAD (3, ' ', 0, CPRE, NPRE)
 CALL ASCTRL (3, 'MC', 8, 25)
 CALL ANREAD (3, ' ', 0, CSTAG, NSTAG)
 C
 C Process the data
 CALL PRDATA (CPRE, NPRE, CSTAG, NSTAG)
 C
 C Erase the old information
 CALL ASCTRL (3, 'MC', 5, 25)
 CALL ASCTRL (3, 'DC', NGAGE, 0)
 CALL ASCTRL (3, 'MC', 8, 25)
 CALL ASCTRL (3, 'DC', NPRE, 0)
 CALL ASCTRL (3, 'MC', 9, 25)
 CALL ASCTRL (3, 'DC', NSTAG, 0)
 C
 C Go back and read more data
 GO TO 20

HECLIB Subroutines STTY

Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific) 3-25

3.3.6 STTY – Set Terminal Port Parameters for an ASYNC Port

Purpose:

 Subroutine STTY provides a means of getting or altering port parameters on an ASYNC
port, similar to program STTY. A complete list of the parameters that may be obtained or
changed is provided in the Device Configuration Block listing of Table 3.1 in the HARRIS
Asynchronous Device Handler Manual. STTY must only be called for a unit connected to an
ASYNC port. The port type can be determined by subroutine TRMTYP.

Calling Sequence:

CALL STTY (IUNIT, CDIR, CITEM, CSTR, ISTAT)

Declarations:

 CHARACTER CDIR*3, CITEM, CSTR
 INTEGER IUNIT, ISTAT

Argument Description:

 IUNIT Input The unit number of the port to set. This may be either the

terminal the program is running at, or a resourced PDN. This
unit should have been already opened.

 CDIR Input The direction. Must either be 'SET' or 'GET'.

 CITEM Input The item to set or get. This item must be one of the keywords

specified in Table 3.1 of the ASYNC manual, or 'BAUD' to set
the baud rate.

 CSTR Input/ What that item is set to (or what to set it to). For items that
 Output indicate the setting of a single bit in table 3.1 (e.g., IXON),

CSTR is either 'ON' or 'OFF'. For items that occupy one byte,
CSTR is set or returned as a single character. For example, to
set the abort character to control-B, CSTR would be set equal
to CHAR(2). If the prompt is to be set or retrieved, CSTR will
contain the character prompt, up to nine characters long. If the
baud rate is to be set or retrieved, CSTR will contain the baud
rate (for example, '2400'). CSTR should contain a number for
keywords PADHI, PADMD, PADLO and COL. For example,
if getting the number of columns for a terminal, do an internal
read after calling STTY (e.g., READ(CSTR,'(I3)') NCOL).

 ISTAT Output A status parameter, set to one of the following:

STTY HECLIB Subroutines

3-26 Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific)

 IOSTAT Description
 0 Call completed successfully
 1 No Device Configuration Block available
 2 Item not in list
 3 CDIR not 'SET' or 'GET'
 4 CSTR not 'ON' or 'OFF' for single bit items
 5 Read only parameter - cannot set
 6 Invalid parameter for CSTR

Remarks:

 The HARRIS Asynchronous Device Handler Reference Manual should be referenced to
when using this subroutine. The item must appear exactly as shown in Table 3.1 (e.g., 'rCTS').

 When the unit is closed (or the user signs off), the device settings are reset to their default
values. Thus, it would not be useful to reset the logon character via STTY.

 When the prompt string is requested, it is returned in the variable CSTR, null filled.

Example 1:

 C Temporarily reset the prompt to 'Input>'
 CHARACTER CPROMP*9
 C
 C First, get the current prompt
 CALL STTY (0, 'GET', 'PROMPT', CPROMP, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 C
 C Now reset it
 CALL STTY (0, 'SET', 'PROMPT', 'Input>', ISTAT)
 C
 C Do any input and output . . .
 C
 C Finished, set it back
 CALL STTY (0, 'SET', 'PROMPT', CPROMP, ISTAT)

Example 2:

 C Set the baud rate of a unit resourced to a modem port
 C
 C Resource the port to unit 9
 CALL RSCPDN (...
 OPEN (UNIT=9)
 C
 CALL STTY (9, 'SET', 'BAUD', '2400', ISTAT)

HECLIB Subroutines STTY

Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific) 3-27

Example 3:

 C Determine the delete to end of line character, and
 C change the delete word character to control-D.
 CHARACTER CDEND*1
 C
 C Get Delete to end of line char
 CALL STTY (0, 'GET', 'DEND', CDEND, ISTAT)
 IDEND = ICHAR(CDEND)
 C
 C Set delete word character to control-D (ASCII 4)
 CALL STTY (0, 'SET', 'DWORD', CHAR(4), ISTAT

BRKOFF HECLIB Subroutines

3-28 Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific)

3.3.7 BRKOFF – Turn the Break Key Off

Purpose:

 BRKOFF disables the terminal break key. The break key will be disabled until it is
turned back on using subroutine BRKON, or the session is ended.

Calling Sequence:

CALL BRKOFF

Remarks:

 BRKOFF will work on all terminal types (i.e., ASYNC, CRT, TTY). A program may be
aborted from the OPCOM if the break key has been disabled.

HECLIB Subroutines BRKON

Chapter 3 – Terminal Input/Output and Control Subroutines (HARRIS Specific) 3-29

3.3.8 BRKON – Turn the Break Key On

Purpose:

 BRKON re-enables the break key after it has been disabled by subroutine BRKOFF.

Calling Sequence:

CALL BRKON

STDINC HECLIB Subroutines

3-30 Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific)

3.4 MS-DOS Specific Subroutines

3.4.1 STDINC – Read a Character from the Keyboard (Standard In)

Purpose:

 STDINC reads a character from the keyboard (or standard input) under strict control of
the program.

Calling Sequence:

CALL STDINC (CWAIT, CECHO, CBREAK, CFLUSH, IASCII, ICODE)

Declarations:

 CHARACTER CWAIT*1, CECHO*1, CBREAK*1, CFLUSH*1
 INTEGER*2 IASCII, ICODE

Argument Description:

 CWAIT Input If CWAIT is 'Y', then STDINC will wait for a key to be

pressed. If CWAIT is 'N', then STDINC will return
immediately, returning a character from the type-ahead buffer
or with no character and IASCII set to -1.

 CECHO Input If CECHO is 'Y', then STDINC will echo the character on the

screen. If CWAIT is 'N', no echo will occur.

 CBREAK Input If CBREAK is 'Y', then STDINC will check if the break key

has been pressed (and abort the program). If CWAIT is 'N', the
break will not be checked.

 CFLUSH Output If CFLUSH is 'Y', then STDINC will flush any characters in

the type-ahead buffer. If CWAIT is 'N', the type-ahead buffer
will not be flushed.

 IASCII Output The ASCII decimal equivalent value of the character, if the key

pressed was a normal ASCII key. If an extended key was
pressed (e.g., function keys), IASCII will be set to zero, and the
extended code will be returned in ICODE.

 ICODE Output The extended key code, if a non-ASCII character key was

pressed. The extended key codes may be found in the IBM
Technical Reference Manual (under System BIOS).

HECLIB Subroutines STDINC

Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific) 3-31

Remarks:

 Not all of the above options are independent: Only certain combinations work for
CWAIT, CECHO and CBREAK. They are:

 CWAIT CECHO CBREAK
 'Y' 'Y' 'Y'
 'Y' 'N' 'Y'
 'Y' 'N' 'N'
 'N' 'N' 'N'

STDOUT HECLIB Subroutines

3-32 Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific)

3.4.2 STDOUT – Write a Single Character to the Monitor (Standard Out)

Purpose:

 STDOUT writes a single character to the monitor (or standard output). The character
must be given in its ASCII decimal equivalent value.

Calling Sequence:

CALL STDOUT (CBREAK, IASCII)

Declarations:

 CHARACTER CBREAK*1
 INTEGER*2 IASCII

Argument Description:

 CBREAK Input If CBREAK is 'Y', then STDOUT will check if the break key

has been pressed (and abort the program). If CWAIT is 'N', the
break will not be checked.

 IASACII Input The ASCII decimal equivalent of the character to write. For

example, to write a "J", pass ICHAR('J').

HECLIB Subroutines TXTCOL

Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific) 3-33

3.4.3 TXTCOL – Set the Screen Color for Text

Purpose:

 TXTCOL sets the screen color so that future writes will be written with the specified
color and attributes. TXTCOL currently requires ANSI.SYS to be installed.

Calling Sequence:

CALL TXTCOL (COLRFG, COLRBG, CATT)

Declarations:

 CHARACTER COLRFG, COLRBG, CATT

Argument Description:

 COLRFG Input The foreground (character) color. This should be one of the

colors listed below.

 COLRBG Input The background color. This should be one of the colors listed

below.

 CATT Output The attribute of the characters (foreground). This should be

either a blank (' ') for normal characters, or 'BOLD' to highlight
the characters, or 'BLINK' to make the characters blink.
BOLD and BLINK may be combined using a dash (-).

Colors:

 The recognized colors are:
 BLACK
 RED
 YELLOW
 GREEN
 BLUE
 CYAN
 MAGENTA
 WHITE

Example:

 CALL TXTCOL ('YELLOW', 'BLUE', ' ')
 CALL TXTCOL ('RED', 'BLACK', 'BOLD-BLINK')

VSTAT HECLIB Subroutines

3-34 Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific)

3.4.4 VSTAT – Video Status

Purpose:

 VSTAT returns the status of the video screen including the mode, active page, and the
number of columns on the screen.

Calling Sequence:

CALL VSTAT (IMODE, ICOL, IPAGE)

Declarations:

 INTEGER*2 IMODE, ICOL, IPAGE

Argument Description:

 IMODE Output The mode the screen is set to. Possible values include:
 ValueT Description
 0 40 X 25 Blank and White
 1 40 X 25 Color
 2 80 X 25 Blank and White
 3 80 X 25 Color
 4 320 X 200 Color Graphics
 5 320 X 200 Black and White Graphics
 6 640 X 200 Black and White Graphics
 10 640 X 200 4 Color EGA Graphics
 13 320 X 200 16 Color EGA Graphics
 14 640 X 200 16 Color EGA Graphics
 16 640 X 350 4 or 16 Color EGA Graphics

 ICOL Output The number of columns allocated for the screen.

 IPAGE Output The number of the current page.

HECLIB Subroutines VNEWPG

Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific) 3-35

3.4.5 VNEWPG – Clear Screen

Purpose:

 VNEWPG clears the screen, moves the cursor to the home position and sets the screen to
the specified attribute (color).

Calling Sequence:

CALL VNEWPG (IATT)

Declarations:

 INTEGER*2 IATT

Argument Description:

 IATT Input The attribute (color) to set the screen to.

Remarks:

 The attribute is a combination of numbers defining the color and intensity of the
foreground and background. To obtain an attribute, add a number from each of the following
colors together:

 Color Foreground Background
 Black 0 0
 Blue 1 16
 Green 2 32
 Light Blue 3 48
 Red 4 64
 Violet 5 80
 Orange 6 96
 White 7 112

 To intensify the foreground color, add eight (8). To cause the foreground to blink, add
128. For example:

 IATT = 7 + 0 = 7 gives white characters, black background
 IATT = 7 + 16 = 23 gives white characters, blue background
 IATT = 6 + 8 + 16 = 30 gives yellow (bright orange) characters, blue

background
 IATT = 3 + 64 + 128 = 195 gives blinking light blue characters on a red

background.

VSCROL HECLIB Subroutines

3-36 Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific)

3.4.6 VSCROL – Scroll Screen Window

Purpose:

 VSCROL scrolls a window on the screen. This may include scrolling the entire screen up
or down (leaving blank line(s) at the bottom or top), or scrolling a window of the screen.
VSCROL may be used to clear the screen.

Calling Sequence:

CALL VSCROL (CDIR, NLINES, IUROW, IUCOL, ILROW, ILCOL, IATT)

Declarations:

 CHARACTER CDIR*1
 INTEGER*2 NLINES, IUROW, IUCOL, ILROW, ILCOL, IATT

Argument Description:

 CDIR Input The direction to scroll. This may be either a 'U' to scroll the

screen up (and place blank lines on the bottom), or a 'D' to
scroll down (and place blank lines on the top).

 NLINES Input The number of lines to scroll. To blank the entire screen, set

NLINES equal to zero.

 IUROW Input The upper row number defining the window to scroll. If the

entire screen is to be scrolled, set IUROW to zero.

 IUCOL Input The upper column number defining the window to scroll. If

the entire screen is to be scrolled, set IUCOL to zero.

 ILROW Input The lower row number defining the window to scroll. If the

entire screen is to be scrolled, set ILROW to twenty-four.

 ILCOL Input The lower column number defining the window to scroll. If

the entire screen is to be scrolled, ILCOL should be seventy-
nine (for eighty column screens).

 IATT Input The attribute for the blank lines added to the screen. Refer to

the description of attributes in the VNEWPG subroutine
description.

Example:

 To clear the screen:

HECLIB Subroutines VSCROL

Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific) 3-37

CALL VSCROL ('U', 0, 0, 0, 24, 79, IATT)

 To scroll up one line:

CALL VSCROL ('U', 1, 0, 0, 24, 79, IATT)

 To scroll down five lines of a forty column by ten row window in the middle of the
screen:

CALL VSCROL ('D', 5, 11, 20, 21, 59, IATT)

VTTYWT HECLIB Subroutines

3-38 Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific)

3.4.7 VTTYWT – Write a Line to the Screen

Purpose:

 VTTYWT writes a character string to the screen, emulating a FORTRAN write. If the
cursor is at the bottom of the screen, the screen will be scrolled up one line.

Calling Sequence:

CALL VTTYWT (CNEWL, CLINE, NLINE)

Declarations:

 CHARACTER CNEWL*1, CLINE
 INTEGER*2 NLINE

Argument Description:

 CNEWL Input A flag indicating if the line should be written on a new line. If

CNEWL is '+', the line will be started at the current cursor
position (no line feed). If CNEWL is a blank (' '), the line will
be written on a new line.

 CLINE Input The line to write out.

 NLINE Input The number of characters in CLINE to write.

HECLIB Subroutines VGETCR

Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific) 3-39

3.4.8 VGETCR – Get Cursor Position and Size

Purpose:

 VGETCR get the current cursor position and its size for a specified video page.

Calling Sequence:

CALL VGETCR (IPAGE, IROW, ICOL, ITOP, IBOTTM)

Declarations:

 INTEGER*2 IPAGE, IROW, ICOL, ITOP, IBOTTM

Argument Description:

 IPAGE Input The page.

 IROW Output The current cursor row position.

 ICOL Output The current cursor column position.

 ITOP Output The starting scan line (pixel) (top) of the cursor, where zero is

the top and seven is the bottom of the cursor block.

 IBOTTM Output The ending scan line (bottom) of the cursor, where zero is the

top and seven is the bottom of the cursor block.

Remarks:

 The values returned may depend on the monitor adapter card being used.

 The cursor has eight scan lines that may be turned on. (It is always the same size in
width.) The top (starting) scan line is defined as line zero, and the bottom line seven. ITOP and
IBOTTM will always be between zero and seven. If ITOP is greater than IBOTTM, the cursor
will be a two part cursor.

VPOSCR HECLIB Subroutines

3-40 Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific)

3.4.9 VPOSCR – Position of Cursor

Purpose:

 VPOSCR positions the cursor on the page specified.

Calling Sequence:

CALL VPOSCR (IPAGE, IROW, ICOL)

Declarations:

 INTEGER*2 IPAGE, IROW, ICOL

Argument Description:

 IPAGE Input The page to position the cursor on.

 IROW Input The row to position the cursor on.

 ICOL Input The column to position the cursor on.

HECLIB Subroutines VSETCR

Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific) 3-41

3.4.10 VSETCR – Set the Cursor Size

Purpose:

 VSETCR sets the size of the cursor. This size is based upon the starting and ending
location of the eight scan lines that make up the cursor block (the width is always the same). The
top (starting) scan line is defined as line zero, and the bottom line seven.

Calling Sequence:

CALL VSETCR (ITOP, IBOTTM)

Declarations:

 INTEGER*2 ITOP, IBOTTM

Argument Description:

 ITOP Input The starting scan line (top) of the cursor.

 IBOTTM Input The ending scan line (bottom) of the cursor.

Remarks:

 ITOP and IBOTTM must always be between zero and seven. If ITOP is greater than
IBOTTOM, a two part cursor will be generated.

 Note: For EGA or monochrome mode, the numbers range from zero to thirteen.

VRDAC HECLIB Subroutines

3-42 Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific)

3.4.11 VRDAC – Get Character and Attribute at Cursor

Purpose:

 VRDAC reads the character and attribute at the current cursor position on the page
specified.

Calling Sequence:

CALL VRDAC (IPAGE, ICHAR, IATT)

Declarations:

 INTEGER*2 IPAGE, ICHAR, IATT

Argument Description:

 IPAGE Input The page number to read from.

 ICHAR Output The ASCII decimal equivalent of the character read.

 IATT Output The attributes of that position.

HECLIB Subroutines VSETPG

Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific) 3-43

3.4.12 VSETPG – Set the Video Page

Purpose:

 VSETPG changes the active page number. This will flash the new page on the screen.

Calling Sequence:

CALL VSETPG (IPAGE)

Declarations:

 INTEGER*2 IPAGE

Argument Description:

 IPAGE Input The number of the page to change to.

VMODE HECLIB Subroutines

3-44 Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific)

3.4.13 VMODE – Set the Video Mode

Purpose:

 VMODE sets the video mode relative to color and screen size.

Calling Sequence:

CALL VMODE (IMODE)

Declarations:

 INTEGER*2 IMODE

Argument Description:

 IMODE Output The mode to set the screen to. Valid values include:
 ValueT Description
 0 40 X 25 Blank and White
 1 40 X 25 Color
 2 80 X 25 Blank and White
 3 80 X 25 Color
 4 320 X 200 Color Graphics
 5 320 X 200 Black and White Graphics
 6 640 X 200 Black and White Graphics
 10 640 X 200 4 Color EGA Graphics
 13 320 X 200 16 Color EGA Graphics
 14 640 X 200 16 Color EGA Graphics
 16 640 X 350 4 or 16 Color EGA Graphics

HECLIB Subroutines PUF Subroutines

Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific) 3-45

3.4.14 PUF Subroutines

Purpose:

 The PUF subroutines provide a means of quickly changing text or attributes (colors) on
the microcomputer screen. The PUF Subroutines allows the programmer to cut windows onto
the screen, and then restore the original screen when complete.

Subroutine Summary:

 PUFA - Set a Single Attribute for a Line
 PUFAS - Set Attributes for Characters on a Line
 PUFC - Set a Single Character on a Line)
 PUFCA - Set a Single Character and Attribute on a Line
 PUFCAS - Set a Single Character and an Array of Attributes on a Line
 PUFL - Write a Line of Characters
 PUFLA - Write a Line of Characters with a Single Attribute
 PUFLAS - Write a Line of Characters with Different Attributes
 PUFWA - Set a Window to a Single Attribute
 PUFWC - Set a Window to a Single Character
 PUFWCA - Set a Window to a Single Character and a Single Attribute
 PUFBFR - Save a Screen Window
 PUFBFW - Restore a Screen Window

Attributes:

 A common argument in the PUF subroutines is the attribute (IATT). The attribute
controls the foreground color and intensity, and the background color. To obtain an attribute,
add a number from each of the following columns:

 Color Foreground Background
 Black 0 0
 Blue 1 16
 Green 2 32
 Light Blue 3 48
 Red 4 64
 Violet 5 80
 Orange 6 96
 White 7 112

 To intensify the foreground color, add eight (8). To cause the foreground to blink, add
128. For example:

 IATT = 7 + 0 = 7 gives white characters, black background
 IATT = 7 + 16 = 23 gives white characters, blue background

PUF Subroutines HECLIB Subroutines

3-46 Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific)

 IATT = 6 + 8 + 16 = 30 gives yellow (bright orange) characters, blue
background

 IATT = 3 + 64 + 128 = 195 gives blinking light blue characters on a red
background.

HECLIB Subroutines PUFA

Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific) 3-47

3.4.14.1 PUFA – Set a Single Attribute for a Line

Purpose:

 PUFA will set a single attribute for a specified number of characters on a line. The
primary purpose of PUFA is to highlight a line (or a portion of a line) without changing any of
the characters on the line.

Calling Sequence:

CALL PUFA (IATT, NCHS, IROW, ICOL)

Declarations:

 INTEGER*2 IATT, NCHS, IROW, ICOL

Argument Description:

 IATT Input The attribute to be set. (See the introduction to this section for

information on attributes.)

 NCHS Input The number of character locations from ICOL (inclusive) to set

the attribute.

 IROW Input The row number of the line to set the attributes (the first line on

the screen is row zero).

 ICOL Input The starting column number at which to set the attributes (the

left-most column is column zero).

Example:

 The word "ERROR!" appears on the screen at row ten, with the "E" in column forty.
Highlight it, so that it is bright blinking red with a blue background.

 First determine the attribute:

 To scroll up one line:

 IATT = red foreground + intensify + blinking + blue background
 IATT = 4 + 8 + 128 + 16
 IATT = 156

 PUFA call:

CALL PUFA (156, 6, 10, 40)

PUFAS HECLIB Subroutines

3-48 Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific)

3.4.14.2 PUFAS – Set an Array of Attributes for Characters on a Line

Purpose:

 PUFAS sets an array of attributes for a specified number of characters on a line. PUFAS
allows different attributes to be set for each character on the line (or portion of a line) without
changing any of the characters on the line. Use subroutine PUFA if the same attribute is to be
set.

Calling Sequence:

CALL PUFAS (IATTS, NCHS, IROW, ICOL)

Declarations:

 INTEGER*2 IATTS(NCHS), NCHS, IROW, ICOL

Argument Description:

 IATTS Input The attributes to be set. This must be an INTEGER*2 array

with a one to one correspondence with the characters whose
attributes are to be changed.

 NCHS Input The number of character locations from ICOL (inclusive) to set

the attributes.

 IROW Input The row number of the line to set the attributes (the first line on

the screen is row zero).

 ICOL Input The starting column number at which to change attributes (the

left-most column is column zero).

Example:

 The words "Enter Location and Value:" appear on the screen at row ten, with the "L" in
column twenty. Highlight it, so that "Location " has white characters on a blue background, and
"and Value:" has blue characters on a white background (with "Enter " unchanged).

 DO 10 I=1,9
 10 IATTS(I) = 23 (white on blue)
 C
 DO 20 I=10,19
 20 IATTS(I) = 113 (blue on white)
 C
 CALL PUFAS (IATTS, 19, 10, 20)

HECLIB Subroutines PUFC

Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific) 3-49

3.4.14.3 PUFC – Set a Single Character on a Line

Purpose:

 PUFC will set a single character for a specified number of times on a line. This call is
used to blank or set any number of characters of a line to the same value without changing the
attributes.

Calling Sequence:

CALL PUFC (CCHAR, NCHS, IROW, ICOL)

Declarations:

 CHARACTER CCHAR*1
 INTEGER*2 NCHS, IROW, ICOL

Argument Description:

 CCHAR Input The single character to set the line (or portion of the line) to.

 NCHS Input The number of character locations from ICOL (inclusive) to

set.

 IROW Input The row number of the line to set (the first line of the screen is

row zero).

 ICOL Input The starting column number (the left-most column is column

zero).

Example:

 Blank row five, starting in column ten, and ending in column seventy:

 CALL PUFC (' ', 61, 5, 10)

PUFCA HECLIB Subroutines

3-50 Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific)

3.4.14.4 PUFCA – Set a Single Character and Attribute on a Line

Purpose:

 PUFCA will set a single character and a single attribute for a specified number of times
on a line. This call is used to set both the character and the attribute for any number of
characters on a line to the same value.

Calling Sequence:

CALL PUFCA (CCHAR, IATT, NCHS, IROW, ICOL)

Declarations:

 CHARACTER CCHAR*1
 INTEGER*2 IATT, NCHS, IROW, ICOL

Argument Description:

 CCHAR Input The single character to set the line (or portion of the line) to.

 IATT Input The attribute of the character to be set.

 NCHS Input The number of character locations from ICOL (inclusive) to

set.

 IROW Input The row number of the line to set (the first line of the screen is

row zero).

 ICOL Input The starting column number (the left-most column is column

zero).

Example:

 In constructing a box around a table, set the top of the box with yellow (bright orange) on
a blue background (attribute 30). CHAR(196) is a horizontal bar, CHAR(218) is the left-top
corner of a box, and CHAR(191) is the right-top corner of a box.

 CALL PUFCA (CHAR(218), 30, 1, 2, 5)
 CALL PUFCA (CHAR(196), 30, 68, 2, 6)
 CALL PUFCA (CHAR(191), 30, 1, 2, 74)

HECLIB Subroutines PUFCAS

Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific) 3-51

3.4.14.5 PUFCAS – Set a Single Character and an Array of Attributes

Purpose:

 PUFCAS will set a single character and an array of attributes on a line (or portion of a
line). This call allows the characters of a line to be set to the same value with each attribute set
to a different value.

Calling Sequence:

CALL PUFCAS (CCHAR, IATTS, NCHS, IROW, ICOL)

Declarations:

 CHARACTER CCHAR*1
 INTEGER*2 IATTS(NCHS), NCHS, IROW, ICOL

Argument Description:

 CCHAR Input The single character to set the line (or portion of the line) to.

 IATTS Input The attributes to be set. This must be an INTEGER*2 array

with a one to one correspondence with the character locations
to be set.

 NCHS Input The number of character locations from ICOL (inclusive) to

set.

 IROW Input The row number of the line to set (the first line of the screen is

row zero).

 ICOL Input The starting column number (the left-most column is column

zero).

PUFL HECLIB Subroutines

3-52 Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific)

3.4.14.6 PUFL – Write a Line of Characters

Purpose:

 PUFL writes a character string to the screen without changing the attributes.

Calling Sequence:

CALL PUFL (CLINE, NLINE, IROW, ICOL)

Declarations:

 CHARACTER CLINE*NLINE
 INTEGER*2 NLINE, IROW, ICOL

Argument Description:

 CLINE Input The character string to write.

 NLINE Input The number of characters in CLINE to write.

 IROW Input The row number of the line to write.

 ICOL Input The starting column number at which to begin the line.

HECLIB Subroutines PUFLA

Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific) 3-53

3.4.14.7 PUFLA – Write a Line of Characters with a Single Attribute

Purpose:

 PUFLA writes a character string, with a single attribute, to the screen.

Calling Sequence:

CALL PUFLA (CLINE, IATT, NLINE, IROW, ICOL)

Declarations:

 CHARACTER CLINE*NLINE
 INTEGER*2 IATT, NLINE, IROW, ICOL

Argument Description:

 CLINE Input The character string to write.

 IATT Input The attribute to set the characters to.

 NLINE Input The number of characters in CLINE to write.

 IROW Input The row number of the line to write.

 ICOL Input The starting column number at which to begin the line.

Example:

 Write a line to the screen with yellow characters on a blue background:

 CALL PUFLA ('Enter Location Name:', 30, 20, 2, 0)

PUFLAS HECLIB Subroutines

3-54 Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific)

3.4.14.8 PUFLAS – Write a Line of Characters with Different Attributes

Purpose:

 PUFLAS writes a character string to the screen, with each character having a different
attribute.

Calling Sequence:

CALL PUFLAS (CLINE, IATTS, NLINE, IROW, ICOL)

Declarations:

 CHARACTER CLINE*NLINE
 INTEGER*2 IATTS(NLINE), NLINE, IROW, ICOL

Argument Description:

 CLINE Input The character string to write.

 IATTS Input The attributes to be set. This must be an INTEGER*2 array

with a one to one correspondence with the characters in
CLINE.

 NLINE Input The number of characters in CLINE to write.

 IROW Input The row number of the line to write.

 ICOL Input The starting column number at which to begin the line.

Example:

 Write the string "Enter Location and Value:" on the screen at row ten, with the "E" in
column 0. Highlight it, so that "Enter Location " has white characters on a blue background, and
"and Value:" has blue characters on a white background.

 DO 10 I=1,15
 10 IATTS(I) = 23 (white on blue)
 C
 DO 20 I=16,25
 20 IATTS(I) = 113 (blue on white)
 C
 CALL PUFLAS ('Enter Location and Value:', IATTS, 25, 10, 0)

HECLIB Subroutines PUFWA

Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific) 3-55

3.4.14.9 PUFWA – Set a Window to a Single Attribute

Purpose:

 PUFWA will set all of the attributes of a rectangular window on the screen to the same
value. The characters in that window are not changed.

Calling Sequence:

CALL PUFWA (IATT, IROW, ICOL, NCOLS, NROWS)

Declarations:

 INTEGER*2 IATT, IROW, ICOL, NCOLS, NROWS

Argument Description:

 IATT Input The attribute to be set.

 IROW Input The beginning row number of the window (the first line on the

screen is row zero)

 ICOL Input The starting column number of the window (the left-most

column is column zero).

 NCOLS Input The number of columns in the window.

 NROWS Input The number of rows in the window.

Example:

 Set a rectangular window to a yellow foreground and blue background. The window has
five rows by forty columns and begins on row two, column ten:

 CALL PUFWA (30, 2, 10, 5, 40)

PUFWC HECLIB Subroutines

3-56 Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific)

3.4.14.10 PUFWC – Set a Window to a Single Character

Purpose:

 PUFWC will set all of the characters of a rectangular window on the screen to the same
value. The attributes in that window are not changed.

Calling Sequence:

CALL PUFWC (CCHAR, IROW, ICOL, NCOLS, NROWS)

Declarations:

 CHARACTER CCHAR*1
 INTEGER*2 IROW, ICOL, NCOLS, NROWS

Argument Description:

 CCHAR Input The character to be set.

 IROW Input The beginning row number of the window.

 ICOL Input The starting column number of the window.

 NCOLS Input The number of columns in the window.

 NROWS Input The number of rows in the window.

Example:

 Blank a rectangular window with five rows by forty columns beginning on row two,
column ten:

 CALL PUFWC (' ', 2, 10, 5, 40)

HECLIB Subroutines PUFWCA

Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific) 3-57

3.4.14.11 PUFWCA – Set a Window to a Single Character and Attribute

Purpose:

 PUFWCA will set all of the characters and all of the attributes of a rectangular window
on the screen to the same value.

Calling Sequence:

CALL PUFWCA (CCHAR, IATT, IROW, ICOL, NCOLS, NROWS)

Declarations:

 CHARACTER CCHAR*1
 INTEGER*2 IATT, IROW, ICOL, NCOLS, NROWS

Argument Description:

 CCHAR Input The character to be set.

 IATT Input The attribute to be set.

 IROW Input The beginning row number of the window.

 ICOL Input The starting column number of the window.

 NCOLS Input The number of columns in the window.

 NROWS Input The number of rows in the window.

Example:

 Set a rectangular window of five rows by forty columns to blanks with a yellow
foreground and a blue background. The window starts on row two, column ten:

 CALL PUFWCA (' ', 30, 2, 10, 5, 40)

PUFBFR HECLIB Subroutines

3-58 Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific)

3.4.14.12 PUFBFR – Read a Screen Window From the Display

Purpose:

 PUFBFR reads a screen window (or the entire screen), and stores the characters and
attributes in an array so the screen can later be restore to its original state. PUFBFW restores the
screen from this array.

Calling Sequence:

CALL PUFBFR (IBUFF, IROW, ICOL, NCOLS, NROWS)

Declarations:

 INTEGER*2 IBUFF(NCOLS,NROWS), IROW, ICOL, NCOLS, NROWS

Argument Description:

 IBUFF Output An array to contain the characters and attributes of the defined

window. This should be dimensioned to NCOLS by NROWS.

 IROW Input The beginning row number of the window (the first line on the

screen is row zero).

 ICOL Input The starting column number of the window (the left-most

column is column zero).

 NCOLS Input The number of columns in the window.

 NROWS Input The number of rows in the window.

Example:

 Save the entire screen:

 INTEGER*2 IBUFF(80,25)
 C
 CALL PUFBFR (IBUFF, 0, 0, 80, 25)

HECLIB Subroutines PUFBFW

Chapter 3 – Terminal Input/Output and Control Subroutines (MS-DOS Specific) 3-59

3.4.14.13 PUFBFW – Write a Screen Window to the Display

Purpose:

 PUFBFW restores a screen window (or the entire screen) from the array read by
subroutine PUFBFR. PUFBFW restores the screen very quickly.

Calling Sequence:

CALL PUFBFW (IBUFF, IROW, ICOL, NCOLS, NROWS)

Declarations:

 INTEGER*2 IBUFF(NCOLS,NROWS), IROW, ICOL, NCOLS, NROWS

Argument Description:

 IBUFF Output The array read by PUFBFR.

 IROW Input The beginning row number of the window (the first line on the

screen is row zero).

 ICOL Input The starting column number of the window (the left-most

column is column zero).

 NCOLS Input The number of columns in the window.

 NROWS Input The number of rows in the window.

 HECLIB Subroutines

Chapter 4 – Date and Time Subroutines 4-1

4 Date and Time Subroutines

 The following section describes subroutines that deal with dates and times. This includes
obtaining the current system date and time, and changing the date and time to different formats.

 Several of the subroutines use Julian dates, in days since 31DEC1899 (not days since the
beginning of the year). This form of date provides an exact and relative easy means of dealing
with time-date information (for example, to increment the date by one day, one is added to the
Julian date, whereas a more complex algorithm would be required for a military style date such
as 28FEB1972). Julian dates can be negative, allowing for times in the 1800's or earlier. A
Julian date can be converted to another style date (of which many forms are available) using the
subroutine JULDAT. Conversely, different styles of dates can be converted to Julian using the
subroutine DATJUL.

 Several of the subroutines pass time information in minutes past midnight. The time in
minutes can be converted to a twenty-four hour military style time (e.g., 1430 is 2:30 p.m.) by
the subroutine M2IHM, and back to minutes with subroutine IHM2M. The time interval is given
in minutes.

On MS-DOS microcomputers, the Julian dates and the time interval must always be declared as
INTEGER*4.

DATYMD HECLIB Routines

4-2 Chapter 4 – Date and Time Subroutines

4.1 DATYMD – Convert a Character Date to Integer-Year-Month-Day

Purpose:

 DATYMD takes a character date, in a variety of styles, and converts it into an integer
year-month-day style date. If no year is provided, the current year is returned. If no day is
provided, the first of the month is returned. DATYMD will convert any of the dates produced by
subroutine YMDDAT (or JULDAT). An example list of date styles is given.

Calling Sequence:

CALL DATYMD (CDATE, IYEAR, IMONTH, IDAY, IERROR)

Declarations:

 INTEGER IYEAR, IMONTH, IDAY, IERROR
 CHARACTER CDATE*20

Argument Description:

 CDATE Input A character string containing the date to be converted. If no

year is provided, the current year is returned. If no day is
provided, the first of the month is returned (a month must be
given).

 IYEAR Output The year of the date. This will be a four digit year (e.g., 1982

instead of 82). If no year is given, the current year will be
returned.

 IMONTH Output The month number of the date provided (January is 1, February

is 2, etc.).

 IDAY Output The day of the date. If no day is given, the first of the month is

returned.

 IERROR Output A status parameter indicating the successfulness of the

conversion. If IERROR is returned as zero, the date was
converted. If IERROR is returned as -1, an invalid date was
given.

Remarks:

 DATYMD will convert the date successfully as long it can recognize the first three
characters of the month (unless a style of 3/21/82 is passed), which may be either in lower or
upper case. DATYMD assumes that the year (if given) is at the end of the character string.

HECLIB Subroutines DATYMD

Chapter 4 – Date and Time Subroutines 4-3

 If a two digit year is given, it is assumed to be for the 1900's. DATYMD will recognize
dates for the 1800's (and earlier), as long as a four digit year is specified.

 Example dates that are recognized by DATYMD are:
 March 21, 1982
 Mar 21, 82
 21MAR82
 21 Mar 1882
 3/21/82
 3-21-82
 March 82 (The date for March 1, 1982 is returned)
 21 March (The date for March 21, of the current year is returned)
 March 21 (The date for March 1, 1921 is returned, not the date for the 21st of

March as the year is always assumed to be at the end of the date)
 3-21 (The date for March 21, of the current year is returned)

DATJUL HECLIB Routines

4-4 Chapter 4 – Date and Time Subroutines

4.2 DATJUL – Convert a Character Date to Julian

Purpose:

 DATJUL takes a character date, in a variety of styles, and converts it into a Julian date in
days since December 31, 1899. If no year is provided, the current year is assumed. If no day is
provided, the first of the month is assumed. DATJUL will convert any of the dates produced by
subroutine JULDAT (or YMDDAT). An example list of date styles is given.

Calling Sequence:

CALL DATJUL (CDATE, JULIAN, IERROR)

Declarations:

 INTEGER JULIAN, IERROR
 CHARACTER CDATE*20

 On MS-DOS microcomputers, the Julian date must be INTEGER*4:

INTEGER*4 JULIAN

Argument Description:

 CDATE Input A character string containing the date to be converted. If no

year is provided, the current year is assumed. If no day is
provided, the first of the month is assumed (a month must be
given).

 JULIAN Output The Julian date of CDATE, in days since December 31, 1899.

 IERROR Output A status parameter indicating the successfulness of the

conversion. If IERROR is returned as zero, the date was
converted. If IERROR is returned as -1, an invalid date was
given, and JULIAN will be returned as -777777.

Remarks:

 DATJUL will convert the date successfully as long it can recognize the first three
characters of the month (unless a style of 3/21/82 is passed), which may be either in lower or
upper case. DATJUL assumes that the year (if given) is at the end of the character string.

 If a two digit year is provided, it is assumed to be for the 1900's. DATJUL will recognize
dates for the 1800's (and earlier), as long as a four digit year is specified.

 Example dates that are recognized by DATJUL are:
 Mar 21, 82
 21MAR82

HECLIB Subroutines DATJUL

Chapter 4 – Date and Time Subroutines 4-5

 21 Mar 1882
 3/21/82
 3-21-82
 March 82 (The date for March 1, 1982 is returned)
 21 March (The date for March 21, of the current year is returned)
 March 21 (The date for March 1, 1921 is returned, not the date for the 21st of

March as the year is always assumed to be at the end of the date)
 3-21 (The date for March 21, of the current year is returned)

 The subroutine DATYMD is used in the conversion.

YMDDAT HECLIB Routines

4-6 Chapter 4 – Date and Time Subroutines

4.3 YMDDAT - Convert an Integer Year-Month-Day Date into a
 Character Date

Purpose:

 YMDDAT takes an integer date in the form of year-month-day, and converts it into a
character date in one of a variety of styles. A list of the styles follows.

Calling Sequence:

CALL YMDDAT (IYEAR, IMONTH, IDAY, ISTYLE, CDATE, NDATE, IERROR)

Declarations:

 INTEGER IYEAR, IMONTH, IDAY, ISTYLE, NDATE, IERROR
 CHARACTER CDATE*20

Argument Description:

 IYEAR Input The year portion of the date. This can either be a two digit or

four digit number. For dates prior to 1900, a four digit number
is required.

 IMONTH Input The integer month portion of the date (e.g., 1 corresponds to

January, 2 to February, etc.). This must be a number between
one and twelve.

 IDAY Input The integer day portion of the date. This must be a number

between one and thirty-one.

 ISTYLE Input The style of date to return. A complete list of the styles

follows.

 CDATE Output The returned character date.

 NDATE Output The number of characters in the date. Characters beyond

NDATE are not changed. (If you print or pass CDATE, imply
the length by printing or passing CDATE(1:NDATE)).

 IERROR Output A status flag indicating if an error occurred. If the date was

converted properly, IERROR will be returned as zero,
otherwise IERROR will be returned as -1.

HECLIB Subroutines YMDDAT

Chapter 4 – Date and Time Subroutines 4-7

Styles:

 There are eleven basic style of dates, and four versions of each style. The differences are
whether the month should be upper or lower case, and whether a two or four digit year should be
used. The lower case styles of dates are:

 ISTYLE Form ISTYLE Form
 0 June 2, 1985 10 June 2, 85
 1 Jun 2, 1985 11 Jun 2, 85
 2 2 June 1985 12 2 June 85
 3 June 1985 13 June 85
 4 02Jun1985 14 02Jun85
 5 2Jun1985 15 2Jun85
 6 Jun1985 16 Jun85
 7 02 Jun 1985 17 02 Jun 85
 8 2 Jun 1985 18 2 Jun 85
 9 Jun 1985 19 Jun 85

 The upper case styles of dates are:

 ISTYLE Form ISTYLE Form
 100 JUNE 2, 1985 110 JUNE 2, 85
 101 JUN 2, 1985 111 JUN 2, 85
 02 2 JUNE 1985 112 2 JUNE 85
 103 JUNE 1985 113 JUNE 85
 104 02JUN1985 114 02JUN85
 105 2JUN1985 115 2JUN85
 106 JUN1985 116 JUN85
 107 02 JUN 1985 117 02 JUN 85
 108 2 JUN 1985 118 2 JUN 85
 109 JUN 1985 119 JUN 85

 The month-day-year style of dates are:

 ISTYLE Form
 -1 6/2/85
 -2 6-2-85
 -11 06/02/85
 -12 06-02-85

Remarks:

 If CDATE is not declared large enough, the date will be truncated to fit in CDATE. It is
prudent to use CDATE(1:NDATE), or to pre-blank CDATE prior to calling YMDDAT, as
characters beyond NDATE are unchanged.

JULDAT HECLIB Routines

4-8 Chapter 4 – Date and Time Subroutines

4.4 JULDAT – Convert a Julian Date into a Character Date

Purpose:

 JULDAT takes a Julian date, in days since December 31, 1899, and converts it into a
character date in one of a variety of styles. A list of the styles follows.

Calling Sequence:

CALL JULDAT (JULIAN, ISTYLE, CDATE, NDATE)

Declarations:

 INTEGER JULIAN, ISTYLE, NDATE
 CHARACTER CDATE*20

 On MS-DOS microcomputers, the Julian date must be INTEGER*4:

INTEGER*4 JULIAN

Argument Description:

 JULIAN Input The Julian date, in days since December 31, 1899. JULIAN

can be a negative number for dates in the 1800's, but a style
that includes the full four digit year should be selected.

 ISTYLE Input The style of date to return. A complete list of the styles

follows.

 CDATE Input The returned character date.

 NDATE Output The number of characters in the date. Characters beyond

NDATE are not changed. (If you print or pass CDATE, imply
the length by printing or passing CDATE(1:NDATE)).

Remarks:

 If CDATE is not declared large enough, the date will be truncated to fit in CDATE. It is
prudent to use CDATE(1:NDATE), or to pre-blank CDATE prior to calling YMDDAT, as
characters beyond NDATE are unchanged.

Styles:

 There are eleven basic style of dates, and four versions of each style. The differences are
whether the month should be upper or lower case, and whether a two or four digit year should be
used. The lower case styles of dates are:

HECLIB Subroutines JULDAT

Chapter 4 – Date and Time Subroutines 4-9

 ISTYLE Form ISTYLE Form
 0 June 2, 1985 10 June 2, 85
 1 Jun 2, 1985 11 Jun 2, 85
 2 2 June 1985 12 2 June 85
 3 June 1985 13 June 85
 4 02Jun1985 14 02Jun85
 5 2Jun1985 15 2Jun85
 6 Jun1985 16 Jun85
 7 02 Jun 1985 17 02 Jun 85
 8 2 Jun 1985 18 2 Jun 85
 9 Jun 1985 19 Jun 85

 The upper case styles of dates are:

 ISTYLE Form ISTYLE Form
 100 JUNE 2, 1985 110 JUNE 2, 85
 101 JUN 2, 1985 111 JUN 2, 85
 02 2 JUNE 1985 112 2 JUNE 85
 103 JUNE 1985 113 JUNE 85
 104 02JUN1985 114 02JUN85
 105 2JUN1985 115 2JUN85
 106 JUN1985 116 JUN85
 107 02 JUN 1985 117 02 JUN 85
 108 2 JUN 1985 118 2 JUN 85
 109 JUN 1985 119 JUN 85

 The month-day-year style of dates is:

 ISTYLE Form
 -1 6/2/85
 -2 6-2-85
 -11 06/02/85
 -12 06-02-85

IYMDJL HECLIB Routines

4-10 Chapter 4 – Date and Time Subroutines

4.5 IYMDJL – Convert an Integer Year-Month-Day Date to Julian

Purpose:

 The integer function IYMDJL takes an integer date in the form of year, month, day, and
converts it into a Julian date in days since December 31, 1899.

Calling Sequence:

JULIAN = IYMDJL (IYEAR, IMONTH, IDAY)

Declarations:

 INTEGER JULIAN, IYEAR, IMONTH, IDAY

 On MS-DOS microcomputers, the Julian date must be INTEGER*4:

INTEGER*4 JULIAN

Argument Description:

 IYEAR Input The year portion of the date. This can either be a two-digit or

four-digit number. For years prior to 1900, a four-digit number
is required.

 IMONTH Input The integer month portion of the date (e.g., 1 corresponds to

January, 2 to February, etc.). This must be a number between
one and twelve.

 IDAY Input The day of the date. This must be a number between one and

thirty-one.

 JULIAN Output The Julian date, in days since December 31, 1899. If an illegal

date was passed, JULIAN will be returned as -777777.

Remarks:

 Dates prior to December 31, 1899 can be obtained, as long as a 4 digit year is used. This
would result in a negative Julian date.

HECLIB Subroutines JLIYMD

Chapter 4 – Date and Time Subroutines 4-11

4.6 JLIYMD – Convert a Julian Date into an Integer Year-Month-Day
 Date

Purpose:

 The integer function JLIYMD takes a Julian date in days since December 31, 1899, and
converts into an integer year-month-day style date.

Calling Sequence:

IDUMMY = JLIYMD (JULIAN, IYEAR, IMONTH, IDAY)

Declarations:

 INTEGER JULIAN, IYEAR, IMONTH, IDAY, IDUMMY

 On MS-DOS microcomputers, the Julian date must be INTEGER*4:

INTEGER*4 JULIAN

Argument Description:

 JULIAN Input The Julian date, in days since December 31, 1899. JULIAN

can be a negative number for dates in the 1800's.

 IYEAR Output The integer year of the Julian date provided. This will be

returned as a 4 digit year (e.g., 1979 instead of 79).

 IMONTH Output The month number of the Julian date (January is 1, February is

2, etc.).

 IDAY Output The integer day of the Julian date.

 IDUMMY Output A dummy integer variable.

Remarks:

 JLIYMD is a function rather than a subroutine for compatibility reasons. Thus
IDUMMY is a dummy variable.

IDAYWK HECLIB Routines

4-12 Chapter 4 – Date and Time Subroutines

4.7 IDAYWK – Get the Day of the Week from a Julian Date

Purpose:

 Given a Julian day, in days since December 31, 1899, the integer function IDAYWK
returns the day of the week for that date. IDAYWK is returned as a 1 for Sunday, a 2 for
Monday, etc.

Calling Sequence:

NDAY = IDAYWK (JULIAN)

Declarations:

 INTEGER JULIAN, NDAY

 On MS-DOS microcomputers, the Julian date must be INTEGER*4:

INTEGER*4 JULIAN

Argument Description:

 JULIAN Input The Julian date, in days since December 31, 1899.

 NDAY Output The day number of the week (ranging between one and seven).

For a Sunday, NDAY is returned as one; for a Monday, NDAY
is returned as two, etc.

HECLIB Subroutines IHM2M

Chapter 4 – Date and Time Subroutines 4-13

4.8 IHM2M – Convert a Twenty-Four Hour Clock Time to Minutes

Purpose:

 IHM2M takes a character string containing a twenty-four hour military style clock time
(e.g., '1630'), and converts it into minutes past midnight.

Calling Sequence:

MINUTE = IHM2M (CTIME)

Declarations:

 INTEGER MINUTE
 CHARACTER CTIME*4

Argument Description:

 CTIME Input A character string containing the twenty-four hour clock time

(e.g., '1422').

 MINUTE Output An integer number returned with CTIME converted to minutes

past midnight. If an illegal time was passed, MINUTE is
returned as -1.

Remarks:

 The twenty-four hour clock time should always be four digits long. For example, the
time ' 900' is valid, but '9' or '09' is not.

 If you desire to convert an integer number containing a twenty-four hour clock time to
minutes past midnight, the following code can be used:

 IHOUR = ITIME/100
 IMIN = ITIME - (IHOUR*100)
 MINUTE = (IHOUR*60) + IMIN

M2IHM HECLIB Routines

4-14 Chapter 4 – Date and Time Subroutines

4.9 M2IHM – Convert a Time in Minutes to Twenty-Four Hour
 Clock Time

Purpose:

 M2IHM takes a time, in minutes past midnight, and converts it into a twenty-four hour
four character military style clock time (e.g., 1630 or 0900). The clock time is returned as both
an integer number and in a character string.

Calling Sequence:

ITIME = M2IHM (MINUTE, CTIME)

Declarations:

 INTEGER MINUTE, M2IHM
 CHARACTER CTIME*4

Argument Description:

 MINUTE Input The time, in minutes past midnight.

 CTIME Output The time returned in twenty-four hour military style clock time

(e.g., '1630'). This must be a character variable.

 M2IHM Output The time in twenty-four hour clock time returned as an integer

number.

Remarks:

 M2IHM returns both a character string and an integer number form of the time. CTIME
must be a character variable with a length of at least four. If an invalid time is passed (MINUTE
less than zero or greater than 1440, ITIME is returned as -1, and CTIME is filled with asterisks
(*).

 If an integer time only is desired, it is usually better to use the following code:

 IHR = MINUTE/60
 IMIN = MINUTE - (IHR*60)
 ITIME = IHR*100 + IMIN

HECLIB Subroutines INCTIM

Chapter 4 – Date and Time Subroutines 4-15

4.10 INCTIM – Increment a Date and Time

Purpose:

 The integer function INCTIM increments a Julian date and time a specified number of
periods, based on a given time interval. INCTIM handles leap years and the different number of
days in the different months.

Calling Sequence:

IDUMMY = INCTIM (INTL, IFLAG, NPER, JULS, ISTIME, JULE, IETIME)

Declarations:

INTEGER INTL, IFLAG, NPER, JULS, ISTIME, JULE, IETIME, IDUMMY

 On MS-DOS microcomputers, the Julian dates and time interval must be INTEGER*4:

INTEGER*4 JULS, JULE, INTL

Argument Description:

 INTL Input The time interval corresponding to the number of periods to

increment the date and time by. This is usually given in
minutes (IFLAG=0), but may be specified in days (IFLAG=1)
for larger intervals.

 IFLAG Input IFLAG indicates the units of INTL. If INTL is given in

minutes (the typical case), set IFLAG to zero. If INTL is given
in days, set IFLAG to one.

 NPER Input The number of periods to increment the date and time by.

NPER may be a negative number to decrement the date and
time.

 JULS Input The starting Julian date, in days since December 31, 1899.

 ISTIME Input The starting time, in minutes past midnight.

 JULE Output The incremented Julian date, in days since December 31, 1899.

 IETIME Output The incremented time, in minutes past midnight.

 IDUMMY Output A dummy variable allowing INCTIM to be a integer function.

This is for compatibility reasons

INCTIM HECLIB Routines

4-16 Chapter 4 – Date and Time Subroutines

Remarks:

 A time interval of one year is the only valid interval greater than one month.

 If a monthly interval is used with a Julian date corresponding to the end of the month, the
resultant incremented date will be for the end of the month. For example, if Jan. 31 is
incremented one month, the result would be Feb. 28 (depending on leap year). If Feb. 28 is
incremented one month, the result would be March 31.

 INCTIM has been tested on HARRIS computers for periods of between -10,000 and
10,000 for intervals of one month and less, and for periods of between -1,000 and 1,000 for
intervals of one year. Be cautious of round off errors for larger increments.

Examples:

 C Increment a time/date 500 periods for an interval of 1 hour
 READ (5,*) JULS, ISTIME
 IDUM = INCTIM (60, 0, 500, JULS, ISTIME, JULE, IETIME)

 C Obtain a time window for the last week.
 C Get the current time, then decrement it one week
 CALL CURTIM (JULE, IETIME)
 IDUM = INCTIM (1440, 0, -7, JULE, IETIME, JULS, ISTIME)

 C Obtain a time window spanning 50 years (ignoring time of day)
 READ (5,*) JULS
 IDUM = INCTIM (365, 1, 50, JULS, 1440, JULE, JDUM)
 or, alternatively:
 IDUM = INCTIM (525600, 0, 50, JULS, 1440, JULE, JDUM)

 C Get a time 7 months ago.
 CALL CURTIM (JULE, IETIME)
 IDUM = INCTIM (30, 1, -7, JULE, IETIME, JULS, ISTIME)
 or, alternatively:
 IDUM = INCTIM (43200, 0, -7, JULE, IETIME, JULS, ISTIME)

HECLIB Subroutines NOPERS

Chapter 4 – Date and Time Subroutines 4-17

4.11 NOPERS – Determine the Number of Periods between Two Times

Purpose:

 Given two dates and times, and a time interval, the integer function NOPERS will
determine the number of periods between them. This is the inverse function of routine INCTIM.

Calling Sequence:

NPER = NOPERS (INTL, IFLAG, JULS, ISTIME, JULE, IETIME)

Declarations:

INTEGER INTL, IFLAG, NPER, JULS, ISTIME, JULE, IETIME

 On MS-DOS microcomputers, the Julian date and time interval must be INTEGER*4:

INTEGER*4 JULS, JULE, INTL

Argument Description:

 INTL Input The time interval corresponding to the number of periods to

determine. This is usually given in minutes (IFLAG=0), but
may be specified in days (IFLAG=1) for larger intervals.

 IFLAG Input IFLAG indicates the units of INTL. If INTL is given in

minutes (the typical case), set IFLAG to zero. If INTL is given
in days, set IFLAG to one.

 JULS Input The Julian date of the start of the time window, in days since

December 31, 1899.

 ISTIME Input The starting time, in minutes past midnight.

 JULE Input The Julian date of the end of the time window, in days since

December 31, 1899.

 IETIME Input The ending time, in minutes past midnight.

 NPER Output The number of time periods. NPER may be negative if the

ending date/time is prior to the starting date/time.

Remarks:

 A time interval of one year is the only valid interval greater than one month.

NOPERS HECLIB Routines

4-18 Chapter 4 – Date and Time Subroutines

 NOPERS has been tested on HARRIS computers for periods of between -10,000 and
10,000 for intervals of one month and less, and for periods of between -1,000 and 1,000 for
intervals of one year. Be cautious of round off errors for larger increments.

HECLIB Subroutines CURTIM

Chapter 4 – Date and Time Subroutines 4-19

4.12 CURTIM – Get the Current Julian Date and Time

Purpose:

 CURTIM returns the current date in Julian days since December 31, 1899, and the
current time in minutes past midnight. This style of date and time can be used with most of the
other HECLIB time and date subroutines.

Calling Sequence:

CALL CURTIM (JULIAN, MINUTE)

Declarations:

 INTEGER JULIAN, MINUTE

 On MS-DOS microcomputers, the Julian date must be INTEGER*4:

INTEGER*4 JULIAN

Argument Description:

 JULIAN Output The current Julian date, in days since December 31, 1899

(according to the system clock).

 MINUTE Output The current time in minutes past midnight.

Remarks:

 The subroutine WHEN may be used to obtain the current date and time in character form.

DATIME HECLIB Routines

4-20 Chapter 4 – Date and Time Subroutines

4.13 DATIME – Get Current Date and Time

Purpose:

 DATIME returns the current system date and time. This is in a format of the year, Julian
day of the year (from January 1, not HEC's Julian date), and time in tenths of a second past
midnight.

Calling Sequence:

CALL DATIME (IYEAR, JDAY, ITENTH)

Declarations:

 INTEGER IYEAR, JDAY, ITENTH

Argument Description:

 IYEAR Output The current four digit year (e.g., 1987, not 87).

 JDAY Output The current Julian day from the first of the year. (This is not

the Julian day referenced in the other date routines.)

 ITENTH Output The current system time, in tenths of a second past midnight.

Remarks:

 Other time/date subroutines are usually called instead of DATIME. Refer to the
subroutines CURTIM, CDATE, CTIME, and WHEN.

HECLIB Subroutines WHEN

Chapter 4 – Date and Time Subroutines 4-21

4.14 WHEN – Get the Current Date and Time in Character Form

Purpose:

 WHEN returns the current date and time in a character format. The date is given in a
seven character military style date (e.g., 07JAN83), and the time is returned in an eight character
hours, minutes, seconds style format (e.g., 08:32:45).

Calling Sequence:

CALL WHEN (CDATE, CTIME)

Declarations:

 CHARACTER CDATE*7, CTIME*8

Argument Description:

 CDATE Output The current date, returned in a seven character military style

date (e.g., 07JAN83).

 CTIME Output The current time, returned in an eight character hours, minutes,

seconds style format (e.g., 08:32:45).

Remarks:

 The date and time are returned according to the computer's clock.

 If a different style date is desired, call HECLIB subroutine CURTIM then HECLIB
subroutine JULDAT with the selected style. A four character military style time may be
obtained by calling CURTIM then M2IHM.

CDATE HECLIB Routines

4-22 Chapter 4 – Date and Time Subroutines

4.15 CDATE – Get the Current Date

Purpose:

 CDATE returns the current system date in a nine character military style format. An
example date is '08 MAR 82'.

Calling Sequence:

CALL CDATE (CCDATE)

Declarations:

 CHARACTER CCDATE*9

Argument Description:

 CCDATE Output The current system date, in a nine character style format.

HECLIB Subroutines CTIME

Chapter 4 – Date and Time Subroutines 4-23

4.16 CTIME – Get the Current Time

Purpose:

 CTIME returns the current system time in an eight character hour, minute, second format.
An example of this format is '08:30:15'.

Calling Sequence:

CALL CTIME (CCTIME)

Declarations:

 CHARACTER CCTIME*8

Argument Description:

 CCTIME Output The current system time.

WAITS HECLIB Routines

4-24 Chapter 4 – Date and Time Subroutines

4.17 WAITS – Wait for a Specified Amount of Time

Purpose:

 WAITS will cause the calling program to pause for the specified amount of time. The
time specified is given in seconds and fractions of a second. The smallest amount of time
WAITS can pause is generally about 0.01 second.

Calling Sequence:

CALL WAITS (SECS)

Declarations:

 REAL SECS

Argument Description:

 SECS Input A real number containing the time to wait, in seconds.

Examples:

 Wait for three-quarters of a second:
 CALL WAITS (0.75)

 Wait for thirty seconds:
 CALL WAITS (30.0)

 Wait for one-twentieth of a second:
 CALL WAITS (0.05)

HECLIB Subroutines XTIME

Chapter 4 – Date and Time Subroutines 4-25

4.18 XTIME – Get the Current CPU Time for the Session

Purpose:

 XTIME returns the amount of CPU time used for the current session. On MS-DOS
microcomputers, this is the number of seconds past midnight.

Calling Sequence:

CALL XTIME (SECS)

Declarations:

 REAL SECS

Argument Description:

 SECS Output The elapsed CPU time since the beginning of the session. This

is returned in seconds and fractions of a second.

GETIME HECLIB Routines

4-26 Chapter 4 – Date and Time Subroutines

4.19 GETIME – Get Time Window from a Program Command Line

Purpose:

 Subroutine GETIME obtains a time window from a program command line input. This is
the subroutine called by programs DSPLAY and DSSUTL to specify the time window.

Calling Sequence:

CALL GETIME (CLINE, IBEG, ILEN, JULS, ISTIME, JULE, IETIME, ISTAT)

Declarations:

 CHARACTER CLINE
 INTEGER IBEG, ILEN, JULS, ISTIME, JULE, IETIME, ISTAT

 On MS-DOS microcomputers, the Julian dates must be INTEGER*4:

INTEGER*4 JULS, JULE

Argument Description:

 CLINE Input The program command line containing the users time window

input.

 IBEG Input The beginning character position in CLINE to process.

 ILEN Input The number of characters in CLINE to process.

 JULS Input/ The starting Julian date of the time window, in days since
 Output December 31, 1899. This is changed (or not changed)

according to the input on CLINE. If the time window is
cleared, JULS is set to -777777.

 ISTIME Input/ The starting time of the time window, in minutes past midnight
 Output (for midnight ISTIME is 1440, not zero). If the time window is

cleared, ISTIME is set to -1.

 JULE Input/ The ending Julian date of the time window, in days since
 Output December 31, 1899. If the time window is cleared, JULE is set

to -777777.

 IETIME Input/ The ending time of the time window, in minutes past
 Output midnight. If the time window is cleared, IETIME is set to -1.

HECLIB Subroutines GETIME

Chapter 4 – Date and Time Subroutines 4-27

 ISTAT Output A status parameter. If ISTAT is returned as zero, the time
window was set without error. If ISTAT is returned as one, the
time window was cleared. If ISTAT is returned as negative
one, some error occurred and the time window was cleared.

Remarks:

 A time window is specified by entering the starting date and time followed by the ending
date and time. The time or date may be in either order (as long as the starting time and date
precedes the ending time and date).

 A time must be a four digit number, given in twenty-four hour clock time. A date can be
one of several styles, but must not contain any spaces within it. (A seven or nine character
military style date is the style typically used.) A time window may also be set relative to the
system time by using the single character "T" or "D".

 The ending date/time may be changed without affecting the beginning date/time by
leaving empty fields (specified by commas). A date/time offset may be given by specifying the
number of hours (H), days (D) or years (Y) to add or subtract from the previous date/time
settings, or with the current date/time reference "T". The time registers may be cleared by
sending a blank line to GETIME (or setting ILEN to zero).

 Valid examples include:

 01MAR72, 2400 18SEP72, 1200
 2400 01MAR72 1200,18SEP1972
 T-4H, T (current date/time - four hours, current date/time)
 D, 1600 (today at 4 p.m.)
 -2D +8H (subtract two days from the starting date/time; add

eight hours to the ending date/time)
 T-5Y, T-31D (today - five years, today – thirty-one days)
 ,,,+12H (add twelve hours to the ending date/time)

 HECLIB Subroutines

Chapter 5 – Character Manipulation Subroutines 5-1

5 Character Manipulation Subroutines

 The following section describes subroutines that operate on character strings. This
includes scanning for specified characters (or delimiters), moving character strings, and
converting character data into Hollerith (and visa-versa).

 Some of the heavily used subroutines (such as CHRLNB and CHRBLK) are written in
assembly language.

CHRBLK HECLIB Suroutines

5-2 Chapter 5 – Character Manipulation Subroutines

5.1 CHRBLK – Fill a Character String with Blanks

Purpose:

 CHRBLK places the space character (' ') throughout a character string.

Calling Sequence:

CALL CHRBLK (CSTR)

Declarations:

 CHARACTER CSTR

Argument Description:

 CSTR Output The character string to blank fill. The beginning and ending

position are implicit (e.g., CSTR(5:50)).

Remarks:

 On HARRIS computers and MS-DOS microcomputers, CHRLNB uses assembly code
for increased efficiency. A FORTRAN substitute is available for other computers.

 CHRBLK replaces subroutines STRBLK and CHABLK.

HECLIB Subroutines CHRFIL

Chapter 5 – Character Manipulation Subroutines 5-3

5.2 CHRFIL – Fill a Character String with a Specified Character

Purpose:

 CHRFIL fills a given character string with a given character.

Calling Sequence:

CALL CHRFIL (CSTR, CHR)

Declarations:

 CHARACTER CSTR, CHR*1

Argument Description:

 CSTR Output The character variable for which each character will be

replaced with character CHR. The beginning and ending
locations are implicit.

 CHR Input The character to fill CSTR with.

Example:

 CHRFIL may be used in generating the outlines of a table, for example:
 CALL CHRFIL (CSTR(1:5), ' ')
 CALL CHRFIL (CSTR(6:70), '-')
 WRITE (6,'(A)') CSTR(1:70)

 will output a line of five blanks followed by sixty-five dashes (-).

CHRLNB HECLIB Routines

5-4 Chapter 5 – Character Manipulation Subroutines

5.3 CHRLNB – Locate the Last Non-Blank Character

Purpose:

 CHRLNB determines the position of the last non-blank character in a character string.

Calling Sequence:

CALL CHRLNB (CSTR, ILAST)

Declarations:

 CHARACTER CSTR
 INTEGER ILAST

Argument Description:

 CSTR Input The character string in which to locate the position of the last

non-blank character. The length of the string is implicit (e.g.,
CSTR(5:50)).

 ILAST Output The position of the last non-blank character in CSTR. If CSTR

is completely blank filled, ILAST is returned as zero.

Remarks:

 On HARRIS computers and MS-DOS microcomputers, CHRLNB uses assembly code
for increased efficiency. A FORTRAN substitute is available for other computers.

 CHRLNB replaces LASTCH.

HECLIB Subroutines LFLNB

Chapter 5 – Character Manipulation Subroutines 5-5

5.4 LFLNB – Locate the First and Last Non-Blank

Purpose:

 LFLNB determines the position of the first and last non-blank character in a character
string. If only the position of the last non-blank character is desired, use subroutine CHRLNB
instead.

Calling Sequence:

CALL LFLNB (CSTR, IBEG, ILEN, IFNB, NLEN)

Declarations:

 CHARACTER CSTR
 INTEGER IBEG, ILEN, IFNB, NLEN

Argument Description:

 CSTR Input The character string in which to determine the positions of the

first and last non-blank characters.

 IBEG Input The beginning character position in which to start searching.

 ILEN Input The length (number of characters) from IBEG in which to

search.

 IFNB Output The position of the first non-blank character, relative to the

beginning of CSTR (not to IBEG). If the entire string is blank
filled, IFNB is returned as zero.

 NLEN Output The number of characters from IFNB to the position of the last

non-blank character (Note: this is the length, not the ending
position). If the entire string is blank filled, NLEN is returned
as zero.

REMBLK HECLIB Routines

5-6 Chapter 5 – Character Manipulation Subroutines

5.5 REMBLK – Remove Blanks from a String

Purpose:

 REMBLK removes all blanks from a string (while left justifying the string).

Calling Sequence:

CALL REMBLK (CIN, COUT, NOUT)

Declarations:

 CHARACTER CIN, COUT
 INTEGER NOUT

Argument Description:

 CIN Input The character string in which to remove the blanks from.

 COUT Output A character variable that will contain the compressed string. If

the length of COUT is less than the number of characters to be
placed in it, it will be truncated.

 NOUT Output The number of characters placed in COUT. If CIN contains all

blanks, NOUT will be returned as zero.

Example:

 If:
 CALL REMBLK (' THIS IS A TEST LINE. ', COUT, NOUT)

 Then:
 NOUT = 16
 COUT(1:NOUT) = 'THISISATESTLINE.'

HECLIB Subroutines UPCASE

Chapter 5 – Character Manipulation Subroutines 5-7

5.6 UPCASE – Convert a Character String to Upper Case

Purpose:

 UPCASE converts all characters in a character string to upper case. This provides a
means for programs to read input in both lower and upper case, and treat it the same.

Calling Sequence:

CALL UPCASE (CLINE)

Declarations:

 CHARACTER CLINE

Argument Description:

 CLINE Input/ The character variable containing the string to be converted to
 Output upper case. If the string is already in upper case, no

processing will be done.

Example:

 CALL ANREAD (5, 'Enter Yes or No >', 17, CLINE, NLINE)
 CALL UPCASE (CLINE)
 IF (CLINE(1:1).EQ.'Y') THEN
 . . .

MATCH HECLIB Routines

5-8 Chapter 5 – Character Manipulation Subroutines

5.7 MATCH – Search a List for a Character String

Purpose:

 MATCH searches a character list (array) for the occurrence of a character string. The
number of the element matching that string is returned. If no matches were found, zero is
returned. MATCH was designed to determine what command from a program has been entered.

Calling Sequence:

CALL MATCH (CSTR, IBEG, ILEN, CLIST, NLIST, NLEN, IMATCH)

Declarations:

 CHARACTER CSTR, CLIST(NLIST)
 INTEGER IBEG, ILEN, NLIST, NLEN, IMATCH

Argument Description:

 CSTR Input The character string to search for. Typically this is the

command read from the input.

 IBEG Output The beginning position in CSTR to compare.

 ILEN Input The number of characters in CSTR, relative to IBEG, to

compare.

 CLIST Input A character array containing the strings to be searched.

Typically this is an array containing command names.

 NLIST Input The number of entries in CLIST. This may also be the

dimension of CLIST.

 NLEN Input The length of the character elements in CLIST.

 IMATCH Output IMATCH is returned with the number of the element in CLIST

that matched CSTR. Typically this will be the number of the
command. If no match is found, IMATCH will be returned as
zero.

Remarks:

 MATCH will only scan for a match of ILEN characters, and will return on the first match
found. If, for example, CSTR is one character long, then only the first character of each element
in CLIST will be compared until a match is found. Thus, if a user abbreviates a command, it
should be long enough to be unique.

HECLIB Subroutines MATCH

Chapter 5 – Character Manipulation Subroutines 5-9

Example:

 5 CONTINUE
 READ (5,10,END=100) CLINE
 10 CONTINUE
 J = ISCAN (CLINE, 1, 20, ', ', 1, 2, K)
 IF (J.EQ.0) GO TO 900
 CALL MATCH (CLINE, 1, J, CLIST, 34, 4, IMATCH)
 C
 IF (IMATCH.EQ.0) THEN
 WRITE (6,*)'UNRECOGNIZED COMMAND; REENTER'
 GO TO 5
 ENDIF

INDEXR HECLIB Routines

5-10 Chapter 5 – Character Manipulation Subroutines

5.8 INDEXR - Reverse Index

Purpose:

 The function INDEXR is similar to the FORTRAN INDEX function, except INDEXR
searches in a reverse direction. INDEXR searches character string CSTR1 for the last
occurrence of character string CSTR2 (i.e., searching from right to left). INDEXR will be
returned as the position of the left most character in the match of the last occurrence of CSTR2.
If CSTR2 is not found, INDEXR will be returned as zero.

Calling Sequence:

I = INDEXR (CSTR1,CSTR2)

Declarations:

 INTEGER INDEXR
 CHARACTER CSTR1, CSTR2

Argument Description:

 CSTR1 Input The character string to search. The beginning location and

ending location are implied (e.g., CSTR1(8:35)).

 CSTR2 Input The character string to searched for.

 INDEXR Output The position of the left-most character in the match of the last

occurrence of CSTR2 in CSTR1, relative to the start of the
search. If CSTR2 is not found, INDEXR will be returned as
zero.

Remarks:

 NDEXR searches for a string of characters, not individual characters. Refer to function
ISCAN in order to search for individual characters.

Examples:

 If:
 1234567890123456789012345678901
 CSTR1(1:31) = ' THIS IS A TEST LINE, ABC ABC. '

 Then:
 INDEXR(CSTR1,'.') = 30
 INDEXR(CSTR1,'ABC') = 27
 INDEXR(CSTR1,'ABC ') = 23

HECLIB Subroutines INDEXR

Chapter 5 – Character Manipulation Subroutines 5-11

 INDEXR(CSTR1,'A ') = 10
 INDEXR(CSTR1(10:31),'A ') = 1
 INDEXR(CSTR1(10:),'ABC') = 18
 INDEXR(CSTR1,'BCA') = 0

NINDX HECLIB Routines

5-12 Chapter 5 – Character Manipulation Subroutines

5.9 NINDX – Search for the Non-Occurrence of a String

Purpose:

 The function NINDX is similar to the FORTRAN INDEX function, except NINDX
searches for the non-occurrence of a string. NINDX searches character string CSTR1 for the
first non-occurrence of string CSTR2. NINDX is returned as the position of the left most
character of the first non-match in CSTR1 of CSTR2. If CSTR2 matches all characters in
CSTR1, NINDX is returned as zero. A typical use of NINDX is to search for the first non-blank
in a string.

Calling Sequence:

I = NINDX(CSTR1,CSTR2)

Declarations:

 INTEGER NINDX
 CHARACTER CSTR1, CSTR2

Argument Description:

 CSTR1 Input The character string to search. The beginning location and

ending location are implied (e.g., CSTR1(8:35)).

 CSTR2 Input The character string searched for its non-occurrence.

 NINDX Output The position of the left most character in the first non-match of

CSTR2. If CSTR2 matches all characters in CSTR1, NINDX
will be returned as zero.

Remarks:

 NINDX searches for the non-occurrence of a string of characters or a single character,
not individual characters. Refer to function NSCAN in order to search for the non-occurrence of
individual characters.

 Usually NINDX is used to find the first non-blank in a string. Almost always, CSTR2
will only be one character long.

Examples:

 If:
 123456789012345678901234567
 CSTR1(1:27) = ' THIS IS A TEST LINE. ''

HECLIB Subroutines NINDX

Chapter 5 – Character Manipulation Subroutines 5-13

 Then:
 NINDX(CSTR1,' ') = 5
 NINDX(CSTR1(1:4),' ') = 0
 NINDX(CSTR1,'T') = 1

 If:
 123456789
 CSTR1(1:9) = 'AAAABAAAA'

 Then:
 NINDX(CSTR1,'A') = 5
 NINDX(CSTR1(3:),'A') = 3
 NINDX(CSTR1(1:4),'A') = 0
 NINDX(CSTR1,'B') = 1
 NINDX(CSTR1,'AB') = 1

NINDXR HECLIB Routines

5-14 Chapter 5 – Character Manipulation Subroutines

5.10 NINDXR – Search for the Last Non-Occurrence of a String

Purpose:

 NINDXR provides a function similar to the FORTRAN function INDEX, except
NINDXR searches for the last non-occurrence of a string. NINDXR searches character string
CSTR1 (from right to left) for the last non-occurrence of string CSTR2. NINDXR is returned as
the position of the left most character of the last non-match in CSTR1 of CSTR2. If CSTR2
matches all characters in CSTR1, NINDXR is returned as zero. NINDXR is usually used to
search for the last non-blank character in a string.

Calling Sequence:

I = NINDXR (CSTR1,CSTR2)

Declarations:

 INTEGER NINDXR
 CHARACTER CSTR1, CSTR2

Argument Description:

 CSTR1 Input The character string to search. The beginning location and

ending location are implied (e.g., CSTR1(8:35)).

 CSTR2 Input The character string searched for its non-occurrence.

 NINDXR Output The position of the left most character in the last non-match of

CSTR2. If CSTR2 matches all characters in CSTR1, NINDXR
will be returned as zero.

Remarks:

 NINDXR searches for the non-occurrence of a string of characters or a single character,
not individual characters. Refer to function NSCAN in order to search for the non-occurrence of
individual characters.

 To search for the last non-blank of a character string, use subroutine CHRLNB.

Examples:

 If:
 123456789012345678901234567
 CSTR1(1:27) = ' THIS IS A TEST LINE. ''

HECLIB Subroutines NINDXR

Chapter 5 – Character Manipulation Subroutines 5-15

 Then:
 NINDXR(CSTR1,' ') = 5
 NINDXR(CSTR1(1:4),' ') = 0
 NINDXR(CSTR1,'T') = 1

 If:
 123456789
 CSTR1(1:9) = 'AAAABAAAA'

 Then:
 NINDXR(CSTR1,'A') = 5
 NINDXR(CSTR1(3:),'A') = 3
 NINDXR(CSTR1(1:4),'A') = 0
 NINDXR(CSTR1,'B') = 9
 NINDXR(CSTR1,'AB') = 9

ISCAN HECLIB Routines

5-16 Chapter 5 – Character Manipulation Subroutines

5.11 ISCAN – Search a String for Individual Character(s)

Purpose:

 ISCAN searches character string CSTR1 for the first or last occurrence of any characters
in CSTR2. ISCAN is returned with the position of the first character in CSTR1 that matched any
character in CSTR2. If no characters matched, ISCAN is returned zero. To make ISCAN search
in a reverse direction (for the last occurrence), set the number of characters to scan to negative.

Calling Sequence:

I = ISCAN (CSTR1, NBEG1, NLEN1, CSTR2, NBEG2, NLEN2, IPOS2)

Declarations:

 INTEGER ISCAN, NBEG1, NLEN1, NBEG2, NLEN2, IPOS2
 CHARACTER CSTR1, CSTR2

Argument Description:

 CSTR1 Input The character string to search.

 NBEG1 Input The beginning position in CSTR1 to start searching.

 NLEN1 Input The number of characters in CSTR1 to search (from NBEG1).

To cause ISCAN to search in a reverse direction (the last
occurrence), set NLEN1 to negative. In this context, NBEG1
will actually be the ending position, as ISCAN will search in
the order of NBEG1, NBEG1-1, NBEG1-2, etc.

 CSTR2 Input A character string with the individual characters to search for.

 NBEG2 Input The beginning character position in CSTR2 to be used.

 NLEN2 Input The number of characters in CSTR2 to be searched for (relative

to NBEG2).

 ISCAN Output The position of the first (or last) character in CSTR1 that

matched a character in CSTR2, relative to the beginning of the
string. If no matches were found, ISCAN is returned zero.

 IPOS2 Output The position of the character in CSTR2 for which there was a

match in CSTR1.

HECLIB Subroutines ISCAN

Chapter 5 – Character Manipulation Subroutines 5-17

Remarks:

 The beginning and lengths of the character strings are explicitly given in the arguments
NBEG1, NLEN1, etc. (This is a result of ISCAN originally being written in FORTRAN 66,
where Holleriths were used instead of characters.) Note that ISCAN is returned as a position
relative to the beginning of the string, not NBEG1.

 ISCAN searches for individual characters, not a string of characters. Refer to the
FORTRAN function INDEX or function INDEXR in order to search for a continuous string.

Examples:

 If:
 123456789012345678901
 CSTR1(1:21) = 'THIS, IS A TEST LINE.'

 Then:
 ISCAN (CSTR1, 1, 21, ' ,', 1, 2, IPOS2) = 5; IPOS2 = 2
 ISCAN (CSTR1, 1, 21, ' ,', 1, 1, IPOS2) = 6; IPOS2 = 1
 ISCAN (CSTR1, 7, 15, ' ,', 1, 2, IPOS2) = 9; IPOS2 = 1
 ISCAN (CSTR1, 1, 4, ' ,', 1, 2, IPOS2) = 0; IPOS2 = 0
 ISCAN (CSTR1, 21, -21, ' ,', 1, 2, IPOS2) = 16; IPOS2 = 1
 ISCAN (CSTR1, 1, 21, CSTR1, 17, 5, IPOS2) = 3; IPOS2 = 18
 ISCAN (CSTR1, 1, 21, 'LINE.', 1, 5, IPOS2) = 3; IPOS2 = 3

 Note that if NLEN1 is -21, NBEG1 must be greater than or equal to twenty-one. If
NBEG1 were, for example, one, then ISCAN would try to search from one through -19 (1, 0, -
1). This would result in an illegal string bounds error.

NSCAN HECLIB Routines

5-18 Chapter 5 – Character Manipulation Subroutines

5.12 NSCAN – Search a String for the Non-Occurrence of Individual
Character(s)

Purpose:

 NSCAN searches character string CSTR1 for the first or last non-occurrence of any
characters in CSTR2. NSCAN is returned with the position of the first character in CSTR1 that
did not match any character in CSTR2, relative to the beginning of CSTR1. If all characters
matched, NSCAN is returned zero. To cause NSCAN to search in a reverse direction (for the
last non-occurrence), make the number of characters to scan negative.

Calling Sequence:

I = NSCAN (CSTR1, NBEG1, NLEN1, CSTR2, NBEG2, NLEN2)

Declarations:

 INTEGER NSCAN, NBEG1, NLEN1, NBEG2, NLEN2
 CHARACTER CSTR1, CSTR2

Argument Description:

 CSTR1 Input The character string to search.

 NBEG1 Input The beginning position in CSTR1 to start searching.

 NLEN1 Input The number of characters in CSTR1 to search (from NBEG1).

Note that this is not the ending position. To cause NSCAN to
search in a reverse direction (the last occurrence), set NLEN1
to negative. In this context, NBEG1 will actually be the ending
position, as NSCAN will search in the order of NBEG1,
NBEG1-1, NBEG1-2, etc.

 CSTR2 Input A character string containing the characters searched for non-

occurrence.

 NBEG2 Input The beginning character position in CSTR2.

 NLEN2 Input The number of characters in CSTR2 to use (relative to

NBEG2).

 NSCAN Output The position of the first (or last) character in CSTR1 that did

not match a character in CSTR2, relative to the beginning of
the string. If all matches were found, NSCAN is returned zero.

HECLIB Subroutines NSCAN

Chapter 5 – Character Manipulation Subroutines 5-19

Remarks:

 The beginning and lengths of the character strings are explicitly given in the arguments
NBEG1, NLEN1, etc.. (This is a result of NSCAN originally being written in FORTRAN 66,
where Holleriths were used instead of characters.) Note that NSCAN is returned as a position
relative to the beginning of the string, not NBEG1.

 NSCAN searches for individual characters, not a string of characters. Refer to the
function NINDX or NINDXR for a continuous string.

Examples:

 If:
 1234567890123
 CSTR1(1:13) = ' 13FEB1987 '

 Then:
 NSCAN (CSTR1, 1, 13, ' ,', 1, 2) = 2
 NSCAN (CSTR1, 2, 12, '1234567890', 1, 10) = 4
 NSCAN (CSTR1, 13, -13, ' ', 1, 1) = 10
 NSCAN (CSTR1, 10, -10, '1234567890', 1, 10) = 6

 Note that if NLEN1 is -13, NBEG1 must be greater than or equal to thirteen. If NBEG1
were, for example, one, then NSCAN would try to search from one through -10 (1, 0, -1). This
would result in an illegal string bounds error.

FINDLM HECLIB Routines

5-20 Chapter 5 – Character Manipulation Subroutines

5.13 FINDLM – Find Delimiters within a Character String

Purpose:

 FINDLM locates the positions and lengths of fields (separated by delimiters) within a
character string. FINDLM essentially provides the capability of reading from a character string
in a "free format" form. The delimiters defining the fields may be set by calling subroutine
SETDLM, otherwise default values will be used.

Calling Sequence:

 CALL FINDLM (CSTRNG, NBEG, NLEN, NFIELD, IBEGF, ILENF,
 * IDELMT, IDELMP, ITBL)

Declarations:

 CHARACTER CSTRNG
 INTEGER NBEG, NLEN, NFIELD, IBEGF(MAXF), ILENF(MAXF)
 INTEGER IDELMT(MAXF), IDELMP(MAXF), ITBL(128)

 Typically
 PARAMETER (MAXF=20)

Argument Description:

 CSTRNG Output The character string to search for delimiters.

 NBEG Output The position in CSTRNG to begin the search.

 NLEN Output The number of characters to search.

 NFIELD Input/ If NFIELD is a negative number on input, then FINDLM will
 Output stop its search after the absolute value of NFIELD fields has

been found. (This indicates the dimensions of arguments
IBEGF, ILENF, IDELMT, and IDELMP.) On output,
NFIELD is returned with the number of fields that were found
in the string.

 IBEGF Output An array returned with the beginning position of each field.

IBEGF(1) corresponds to the beginning position of the first
field, IBEGF(2) to the second field, up to IBEGF(NFIELD).

 ILENF Output An array returned with the length (number of characters) in

each field, with respect to array IBEGF. ILENF(1)
corresponds to the length of the first field, ILENF(2) to the

HECLIB Subroutines FINDLM

Chapter 5 – Character Manipulation Subroutines 5-21

 second field, up to ILENF(NFIELD). The ending position may
be computed by:

 IENDP = IBEGF(1) + ILENF(1) - 1

 IDLEMT Output An array returned with the type of delimiter ending each field.

The values range from one to five.
 Type Description
 1 Normal delimiter, such as a comma.
 2 A "blank" delimiter.
 3 A string type delimiter.
 4 The last character scanned (as defined by

NLEN) was a non-delimiter.
 5 The last character scanned (as defined by

NLEN) was in the middle of a string.

 IDELMP Output An array containing the position in the delimiter string of the

delimiter found (set by SETDLM). IDELMP and IDELMT
identify the ending delimiter of the field.

 ITBL Input/ An integer array, dimension to 128 words, that contains
 Output information on the delimiters set. (Information in this array is

automatically set by FINDLM and SETDLM.) On EBCDIC
computers ITBL must be dimensioned to 260 words.

Remarks:

 FINDLM scans for three basic types of delimiters. The first type is usually identified by
a comma (,). The second type is normally associated with a blank (). Two commas delimit two
fields, whereas two blanks delimit only one field. A field terminated by a comma, then a blank
(or several blanks), is identified as a type two delimiter (and will only be one field). The third
type is a string delimiter. When a string delimiter is found, FINDLM will scan until the next
occurrence of the same (exact) delimiter is found. Delimiters inside this string are ignored.

 The dimensions of arrays IBEGF, ILENF, IDELMT, and IDELMP may be passed to
FINDLM by setting NFIELD as the negative value of the dimension. (This will prevent the
arrays from being overwritten.)

 If FINDLM is called without calling SETDLM first, default delimiters are used. If
SETDLM is called prior to FINDLM, default values will be not used (unless explicitly set).
Refer to subroutine SETDLM for more information. The default delimiter types are:

Type Delimiters Notes
1 ,=/>()
2 A blank character.
3 '" Single or double quotes.

FINDLM HECLIB Routines

5-22 Chapter 5 – Character Manipulation Subroutines

 If a slash (/) ended a field, then IDELMT would be one, and IDELMP would be three for
that field.

Example 1:

 If:
 1234567890123456789012
 CSTRNG = 32.3 45, 0.2,72.3 85.1

 CALL FINDLM (CSTRNG, 1, 22, NFIELD, IBEGF, ILENF,
 * IDELMT, IDELMP, ITBL)

 Then NFIELD would be returned with five, and the arrays would contain:
 Field IBEGF ILENF IDELMT IDELMP
 1 1 4 2 1
 2 6 2 1 1
 3 10 3 1 1
 4 14 4 2 1
 5 19 4 4 1

Example 2:

 If:
 123456789012345678901234567890123456789012345678901234567890
 CSTRNG = This is 'a "test line"' (showing delimiter types/positions).

 CALL FINDLM (CSTRNG, 1, 60, NFIELD, ILENF, IDELMT, IDELMP, ITBL)

 Then NFIELD would be returned with eight, and the arrays would contain:
 Field IBEGF ILENF IDELMT IDELMP
 1 1 4 2 1
 2 6 2 3 1
 3 10 13 1 5
 4 26 7 2 1
 5 34 9 2 1
 6 44 5 1 3
 7 50 9 1 6
 8 60 1 4 1

Example 3:

 In the following code, FINDLM is used to read data in free format, with error handling.

 PARAMETER (MAXF=20), (MAXDAT=1000)
 CHARACTER CLINE*80
 NTEGER IBEGF(MAXF), ILENF(MAXF), IDELMT(MAXF), IDELMP(MAXF)
 INTEGER ITBL(128)

HECLIB Subroutines FINDLM

Chapter 5 – Character Manipulation Subroutines 5-23

 REAL VALUES(MAXDAT)

 . . .
 NVALS = 0
 10 CONTINUE
 READ (5, 20, END=100, ERR=900) CLINE
 20 FORMAT (A)
 NFIELD = -MAXF
 CALL FINDLM (CLINE, 1, 80, NFIELD, IBEGF, ILENF, IDELMT,
 * IDELMP, ITBL)
 DO 30 I=1,NFIELD
 IF (NVALS.GE.MAXDAT) GO TO 800
 NVALS = NVALS + 1
 VALUES(NVALS) = XREAL (CLINE, IBEGF(I), ILENF(I), IERR)
 IF (IERR.NE.0) GO TO 920
 30 CONTINUE
 GO TO 10

SETDLM HECLIB Routines

5-24 Chapter 5 – Character Manipulation Subroutines

5.14 SETDLM – Set Delimiters for FINDLM

Purpose:

 SETDLM sets the delimiters to be searched for by FINDLM (if other than the default
ones are desired). If SETDLM is call prior to the first call to FINDLM, the default delimiters
will not be set (unless explicitly set).

Calling Sequence:

CALL SETLDM (ITYPE, CSTRNG, IBEG, NUMB, ITBL)

Declarations:

 INTEGER ITYPE, IBEG, NUMB, ITBL(128)
 CHARACTER CSTRNG

Argument Description:

 ITYPE Input The type of delimiter to set:
 ITYPE Description
 0 Resets all delimiters to be the default ones
 1 Normal delimiters, such as a comma (,).
 2 Blank type delimiters.
 3 String type delimiters, such as quotes (").

 CSTRNG Input A character string containing the delimiters to be set. If

delimiters are set to default values, this argument is ignored.

 IBEG Input The beginning position in CSTRNG.

 NUMB Input The number of characters in CSTRNG. To set this type of

delimiter to the default values, set NUMB to -1. To erase all
delimiters from a type (so FINDLM will not search for this
type), set NUMB to zero (0).

 ITBL Input/ The integer array used by FINDLM to store delimiter
 Output information.

Remarks:

 SETDLM usually does not need to be called, unless delimiters other than the default are
to be set. If SETDLM is called prior to FINDLM, the default delimiters will not be set, unless
explicitly requested. Thus, if you desired to set type one delimiter to a comma and an equal sign
only, leaving types two and three as the default, you would need to set the default delimiters for
types two and three. (This could be accomplished by calling SETDLM with a type of zero (0)
first.)

HECLIB Subroutines SETDLM

Chapter 5 – Character Manipulation Subroutines 5-25

 All delimiters will be reset to the default ones by setting ITYPE to zero. Each type of
delimiter can be reset to the default values by setting NUMB to a negative one (-1). To erase all
delimiters from a type (so FINDLM will not search for this type), set NUMB to zero (0).

 The default delimiters are:

Type Delimiters Notes
1 ,=/>()
2 A blank character.
3 '" Single or double quotes.

Examples:

 To set all delimiters to the default values:
 CALL SETDLM (0, ' ', IDUM, IDUM, ITBL)

 To set type one delimiter to the default values:
 CALL SETDLM (1, ' ', 1, -1, ITBL)

 To set type one delimiter to a comma and an equal sign (only):
 CALL SETDLM (1, ',=', 1, 2, ITBL)

 To set type three delimiters to double quotes only, with others as their defaults:
 CALL SETDLM (0, ' ', IDUM, IDUM, ITBL)
 CALL SETDLM (3, '"', 1, 1, ITBL)

 or, alternatively:
 CALL SETDLM (3, '"', 1, 1, ITBL)
 CALL SETDLM (1, ' ', 1, -1, ITBL)
 CALL SETDLM (2, ' ', 1, -1, ITBL)

 To remove all string delimiters (after other delimiters have been set):
 CALL SETDLM (3, ' ', 1, 0, ITBL)

LISNUM HECLIB Routines

5-26 Chapter 5 – Character Manipulation Subroutines

5.15 LISNUM – Determine if a Character String Contains a Number

Purpose:

 LISNUM is a logical function that determines if a character string contains a number, or
contains alpha characters.

Calling Sequence:

LNUMB = LISNUM (CSTRNG)

Declarations:

 CHARACTER CSTRNG*(*)
 LOGICAL LISNUM

Argument Description:

 CSTRNG Input The character string to test.

 LISNUM Output A logical flag that is returned .TRUE. if only numerical

characters are found (-+.0123456789), or .FALSE. if some
other characters are found. If any non-numeric characters are
found, LISNUM is returned as .FALSE.

HECLIB Subroutines INTGR

Chapter 5 – Character Manipulation Subroutines 5-27

5.16 INTGR – Read an Integer Number from a Character String

Purpose:

 Function INTGR converts a number in a character string into an integer number.

Calling Sequence:

NUMBER = INTGR (CSTR, NBEG, NLEN, IERR)

Declarations:

 CHARACTER CSTR
 INTEGER INTGR, NBEG, NLEN, IERR

Argument Description:

 CSTR Input The character string containing the number to be read.

 NBEG Input The beginning position in CSTR of the number to convert.

This may include leading blanks.

 NLEN Input The number of characters in CSTR to read for the number.

This should not include trailing blanks.

 IERR Output A status parameter indicating the successfulness of the

conversion. If the number was converted correctly, IERR is
returned as zero (0). If the string specified contained an illegal
character, or some other error occurred, IERR is returned as -1.

 INTGR Output The integer value of the converted string. INTGR is set to -1 if

an error occurred.

Remarks:

 If the length of the string is known, the number may be read directly using a FORTRAN
READ. If the length of the string may vary from call to call, INTGR will create the proper
format to read the number.

INTGRC HECLIB Routines

5-28 Chapter 5 – Character Manipulation Subroutines

5.17 INTGRC – Write an Integer Number to a Character String

Purpose:

 INTGRC writes an integer number into a character string.

Calling Sequence:

CALL INTGRC (NUMBER, CSTR, NBEG, NLEN)

Declarations:

 CHARACTER CSTR
 INTEGER NUMBER, NBEG, NLEN

Argument Description:

 NUMBER Input The integer number to be written to the character string.

 CSTR Output The character string to contain the integer number. The results

will be right justified and blank filled. If the number overflows
the space provided, the field will be set to asterisks (*).

 NBEG Input The beginning position in CSTR in which to place the

converted number.

 NLEN Input The number of characters in CSTR available to write the

number.

Remarks:

 Generally, a FORTRAN write statement may be used instead of INTGRC. INTGRC
may be used when the size of the number may vary considerably, since INTGRC forms a format
based upon the size of the number.

HECLIB Subroutines XREAL

Chapter 5 – Character Manipulation Subroutines 5-29

5.18 XREAL – Convert a Real Number from a Character String

Purpose:

 Function XREAL converts a number in a character string. A typical use for this occurs
when data is read using a character format and then must be converted to a real number.

Calling Sequence:

XNUMB = XREAL (CSTR, NBEG, NLEN, IERR)

Declarations:

 CHARACTER CSTR
 INTEGER NBEG, NLEN, IERR
 REAL XREAL

Argument Description:

 CSTR Input The character string containing the number to be converted.

 NBEG Input The beginning position in CSTR of the number to convert.

This may include leading blanks.

 NLEN Input The number of characters in CSTR to convert.

 IERR Output A status parameter indicating the successfulness of the

conversion. If the number was read correctly, IERR is returned
as zero (0). If the string specified contained an illegal
character, or some other error occurred, IERR is returned as -1.

 XREAL Output The real number of the converted string. XREAL is set to -1.0

if an error occurred.

Remarks:

 Exponential numbers may be converted with XREAL. The same rules apply to XREAL
as to the 'F' descriptor in the FORTRAN format statement.

 If the length of the string is known, the number may be read directly using a FORTRAN
READ. If the length of the string may vary from call to call, XREAL will create the proper
format to read the number.

XREALC HECLIB Routines

5-30 Chapter 5 – Character Manipulation Subroutines

5.19 XREALC – Convert a Real Number to a Character String

Purpose:

 XREALC converts a real number to a character string.

Calling Sequence:

CALL XREALC (XNUMB, CSTR, NBEG, NLEN, NDEC)

Declarations:

 CHARACTER CSTR
 INTEGER NBEG, NLEN, NDEC
 REAL XNUMB

Argument Description:

 XNUMB Input The real number to be converted into character form.

 CSTR Output The character string to contain the number. The results will be

right justified and blank filled. If the number overflows the
space provided, the field will be set to asterisks (*).

 NBEG Input The beginning position in CSTR in which to place the number.

 NLEN Input The number of characters in CSTR to write the number.

 NDEC Input The number of digits after the decimal place to write.

Remarks:

 NLEN and NDEC together form an equivalent 'F' format descriptor, in the form
'Fnlen.dec'. For example, if NLEN is ten and NDEC is three, the equivalent 'F' descriptor would
be F10.3.

HECLIB Subroutines LJSTR

Chapter 5 – Character Manipulation Subroutines 5-31

5.20 LJSTR – Left Justify a Character String

Purpose:

 Subroutine LJSTR takes a character string and shifts it so that the string (the non-blank
characters) is left justified.

Calling Sequence:

CALL LJSTR (CSTR1, NBEG1, NLEN1, CSTR2, NBEG2)

Declarations:

 INTEGER NBEG1, NLEN1, NBEG2
 CHARACTER CSTR1, CSTR2

Argument Description:

 CSTR1 Input The character string to be left justified.

 NBEG1 Input The position in CSTR1 defining the beginning of the string.

 NLEN1 Input The length of CSTR1, relative to NBEG1.

 CSTR2 Output The character variable to contain the left justified string.

CSTR2 may be variable CSTR1.

 NBEG2 Input The beginning position in CSTR2 in which to place the left

justified string.

Remarks:

 CSTR1 and CSTR2 may be the same arguments.

Examples:

 CALL LJSTR (CSTRNG, 1, 80, CSTRNG, 1)
 CALL LJSTR (' xyz ', 1, 30, CSTRNG, 1)

RJSTR HECLIB Routines

5-32 Chapter 5 – Character Manipulation Subroutines

5.21 RJSTR – Right Justify a Character String

Purpose:

 Subroutine RJSTR takes a character string and shifts it so that the string (the non-blank
characters) is right justified.

Calling Sequence:

CALL RJSTR (CSTR1, NBEG1, NLEN1, CSTR2, NBEG2)

Declarations:

 INTEGER NBEG1, NLEN1, NBEG2
 CHARACTER CSTR1, CSTR2

Argument Description:

 CSTR1 Input The character string to be right justified.

 NBEG1 Input The position in CSTR1 defining the beginning of the string.

 NLEN1 Input The length of CSTR1, relative to NBEG1.

 CSTR2 Output The character variable to contain the right justified string.

CSTR2 may be variable CSTR1.

 NBEG2 Input The beginning position in CSTR2 in which to place the right

justified string.

Remarks:

 CSTR1 and CSTR2 may be the same arguments.

Examples:

 CALL RJSTR (CSTRNG, 1, 80, CSTRNG, 1)
 CALL RJSTR (' xyz ', 1, 30, CSTRNG, 1)

HECLIB Subroutines CJSTR

Chapter 5 – Character Manipulation Subroutines 5-33

5.22 CJSTR – Center Justify a Character String

Purpose:

 Subroutine CJSTR takes a character string and shifts it so that the string (the non-blank
characters) is in the center.

Calling Sequence:

CALL CJSTR (CSTR1, NBEG1, NLEN1, CSTR2, NBEG2)

Declarations:

 INTEGER NBEG1, NLEN1, NBEG2
 CHARACTER CSTR1, CSTR2

Argument Description:

 CSTR1 Input The character string to be centered.

 NBEG1 Input The position in CSTR1 defining the beginning of the string.

 NLEN1 Input The length of CSTR1, relative to NBEG1.

 CSTR2 Output The character variable to contain the centered string. CSTR2

may be variable CSTR1.

 NBEG2 Input The beginning position in CSTR2 in which to place the

centered string.

Remarks:

 CSTR1 and CSTR2 may be the same arguments.

Examples:

 CALL CJSTR (CSTRNG, 1, 80, CSTRNG, 1)

 CALL CJSTR (' Title ', 1, 30, CSTRNG, 1)

 CALL CHRBLK (CSTRNG)
 CSTRNG(1:) = 'APPENDIX A'
 CALL CJSTR (CSTRNG, 1, 100, CSTRNG, 1)

CHRHOL HECLIB Routines

5-34 Chapter 5 – Character Manipulation Subroutines

5.23 CHRHOL – Convert a Character String to Hollerith
 (on Byte Boundaries)

Purpose:

 CHRHOL converts a character string to Hollerith (an integer array). This is necessary
where both alphanumeric and integer or real data must be stored in the same array. CHRHOL
converts on byte boundaries. A similar routine, CH2HOL, is faster but converts complete
machine words.

Calling Sequence:

CALL CHRHOL (CSTR, IBEG, ILEN, IHOL, NBEG)

Declarations:

 CHARACTER CSTR
 INTEGER IHOL(*), IBEG, ILEN, NBEG

Argument Description:

 CSTR Input The character string to be converted into Hollerith.

 IBEG Input The beginning position in CSTR defining where to start

converting.

 ILEN Input The number of characters in CSTR to convert.

 IHOL Output An integer array to contain the characters in Hollerith form.

 NBEG Input The beginning byte position in IHOL in which to place the

converted characters.

Remarks:

 The bytes in IHOL that are not replaced by the converted characters are unaltered.

HECLIB Subroutines HOLCHR

Chapter 5 – Character Manipulation Subroutines 5-35

5.24 HOLCHR – Convert a Hollerith Array to Character
 (on Byte Boundaries)

Purpose:

 HOLCHR converts an integer array containing Hollerith characters to a character
variable. This is necessary where both alphanumeric and integer or real data are stored in the
same array. HOLCHR operates on byte boundaries. A similar routine, HOL2CH, is faster but
converts complete machine words.

Calling Sequence:

CALL HOLCHR (IHOL, IBEG, ILEN, CSTR, NBEG)

Declarations:

 CHARACTER CSTR
 INTEGER IHOL(*), IBEG, ILEN, NBEG

Argument Description:

 IHOL Input An integer array containing the characters in Hollerith form.

 IBEG Input The beginning byte position in IHOL defining where to start

converting.

 ILEN Input The number of bytes in IHOL, from IBEG, to convert.

 CSTR Output The character variable to contain the converted characters.

 NBEG Input The beginning character position in CSTR in which to place

the converted characters.

CH2HOL HECLIB Routines

5-36 Chapter 5 – Character Manipulation Subroutines

5.25 CH2HOL – Convert a Character String to Hollerith
 (on Word Boundaries)

Purpose:

 CH2HOL converts a character string to Hollerith (an integer array) on word boundaries.
This is necessary where both alphanumeric and integer or real data must be stored in the same
array. A similar routine, CHRHOL, operates on byte boundaries but is slower.

Calling Sequence:

CALL CH2HOL (CSTR, IHOL, NWORDS)

Declarations:

 CHARACTER CSTR
 INTEGER IHOL(*), NWORDS

Argument Description:

 CSTR Input The character string to be converted into Hollerith.

 IHOL Output An integer array to contain the characters in Hollerith form.

 NWORDS Input The number of words to convert from character into Hollerith.

Complete words are converted.

HECLIB Subroutines HOL2CH

Chapter 5 – Character Manipulation Subroutines 5-37

5.26 HOL2CH – Convert a Hollerith Array to Character
 (on Word Boundaries)

Purpose:

 HOL2CH converts an integer array containing Hollerith characters to a character variable
on word boundaries. This is necessary where both alphanumeric and integer or real data are
stored in the same array. HOLCHR operates on byte boundaries. A similar routine, HOLCHR,
operates on byte boundaries but is slower.

Calling Sequence:

CALL HOL2CH (IHOL, CSTR, NWORDS)

Declarations:

 CHARACTER CSTR
 INTEGER IHOL(*), NWORDS

Argument Description:

 IHOL Input The integer array containing the Hollerith characters to be

converted.

 CSTR Output The character variable to contain the converted characters

 NWORDS Input The number of words to convert from Hollerith into character.

Complete words are converted.

 HECLIB Subroutines

Chapter 6 – PREAD Subroutines 6-1

6 PREAD Subroutines

 The PREAD preprocessor subroutines provide a means of enhancing the user friendliness
of an interactive program. PREAD will operate in either an interactive or batch environment. A
complete description of PREAD and the use of PREAD may be found in the Water Control
Software Implementation and Management Guide. This section describes how to add the
PREAD software to a program.

 There are two ways in which to call PREAD. In the first method (the preferred method)
the input unit number is passed to subroutine PREADC, which in turn returns the line read in a
character variable. For the second method, PREAD is called prior to each FORTRAN READ.
In this method the unit number is passed to PREAD in a variable, and this variable is used for the
unit number in the FORTRAN READ. The second method is provided for compatibility of older
programs.

 The steps to add PREAD to a program are as follows:
 1. Add calls to PTTACH. Calls to PTTACH should be made at the beginning of the

program, similar to the example following.
 2. Add calls to PREAD:
 Method 1
 a. Replace every READ (from the standard input) with a call to PREADC.

PREADC will return the line read in character variable.
 Method 2
 a. Set an integer variable equal to the standard input unit.
 b. Call PREAD with this variable just before each FORTRAN READ.
 c. Use this variable for the unit number in each FORTRAN READ.
 3. Call PEND at the end of the program to close the PREAD files.

 If PREAD menus will never be accessed by the program, dummy menu subroutines may
be loaded in order to reduce the program size and prevent references to graphics subroutines.
This is accomplished by either loading the file PMDUM during linking, or compiling file
PMDUMS along with the program. Both of these files should be located in the same area as the
library. Also, do not call PTTACH with the menu file keyword (MENFILE). If menus will be
accessed, the program must link in the Tektronix graphics library "AG2LIB".

 Similarly, if PREAD screens will never be accessed by the program, dummy screen
subroutines may be loaded from file PSDUM or compiled from file PSDUMS. Do not call
PTTACH with the screen file keyword (SCNFILE).

Example:

 CHARACTER CNAME*64
 C
 CALL ATTACH(5, 'INPUT', 'STDIN', ' ', CNAME, ISTAT)
 CALL ATTACH(6, 'OUTPUT', 'STDOUT', ' ', CNAME, ISTAT)
 C

HECLIB Subroutines

6-2 Chapter 6 – PREAD Subroutines

 CALL PTTACH(30, 'SCRATCH', 'SCRATCH1', ' ', CNAME, ISTAT)
 CALL PTTACH(31, 'FUNFILE', 'GENFUN', ' ', CNAME, ISTAT)
 CALL PTTACH(32, 'MACFILE', 'GENMAC', ' ', CNAME, ISTAT)
 CALL PTTACH(33, 'MENFILE', 'GENMEN', ' ', CNAME, ISTAT)
 CALL PTTACH(34, 'SCNFILE', 'GENSCN', ' ', CNAME, ISTAT)
 CALL PTTACH(35, 'LOGFILE', 'PGLOG', ' ', CNAME, ISTAT)
 CALL ATTEND

 Method 1
 CALL PREADC (5, CLINE, ISTAT, *800)
 ...

 800 CONTINUE

 CALL PREADC (5, CLINE, ISTAT, *800)
 READ (CLINE,40) X, Y, Z
 ...

 800 CONTINUE

 Method 2
 INPUT = 5
 ...

 CALL PREAD (INPUT)
 READ (INPUT,10,END=800) CLINE
 ...

 CALL PREAD (INPUT)
 READ (INPUT,40,END=700) X, Y, Z
 ...

 CALL PEND
 CLOSE (UNIT=5)
 CLOSE (UNIT=6)
 STOP

HECLIB Subroutines PTTACH

Chapter 6 – PREAD Subroutines 6-3

6.1 PTTACH – Attach PREAD Files

Purpose:

 PTTACH is used to attach files accessed by PREAD (e.g., the macro file, function file,
etc.). PTTACH has the same arguments as subroutine ATTACH, except that the files are not
opened or accessed until a reference is made to them. (For example, the macro file is not
opened, or created, until a !RUN or similar command is issued.)

 All the files to be referenced by PREAD must have an associated PTTACH call. PREAD
files not specified in a PTTACH call will have that capability disabled. For example, if a macro
file is not provided, the macro capability will not be enabled. The PREAD scratch file must be
specified in a PTTACH call (all other files are optional).

 The subroutine ATTEND should be called after the last call to PTTACH or ATTACH.
See the ATTACH subroutine documentation for further information.

Calling Sequence:

CALL PTTACH (IUNIT, CKEYWD, CDEFLT, CDUMMY, CNAME, IOSTAT)

Declarations:

 INTEGER IUNIT, IOSTAT
 CHARACTER CKEYWD, CDEFLT, CDUMMY, CNAME

Argument Description:

 IUNIT Input The unit number to be associated with that file.

 CKEYWD Input The keyword that identifies the file to be accessed. The valid

keywords are:
 'SCRATCH'
 'FUNFILE'
 'MACFILE'
 'MENFILE'
 'LOGFILE'
 'SCNFILE'

 CDEFLT Input The default file to access, if the user does not enter a file name

on the execution line for this keyword.

 CDUMMY Input A dummy character argument. This may be a blank character

(' ').

PTTACH HECLIB Subroutines

6-4 Chapter 6 – PREAD Subroutines

 CNAME Output CNAME is returned with the name of the file specified on the
execution line, or the default name if none was specified.
CNAME must be declared long enough to hold the longest
name that might be used.

 IOSTAT Output A status parameter indicating the successfulness of the call.

Because the files are not opened until accessed, this argument
is returned with zero unless the program was executed with a
question mark on the execution line (see the ATTACH status
codes).

Remarks:

 PTTACH calls ATTACH with a CONTRL of 'NOP', and then remembers the file name.
To disable a PREAD capability, do not call PTTACH with the associated keyword.

 A PREAD scratch file must always be specified. This file can be any blocked scratch file
(see the ATTACH documentation for a valid list).

Example:

 CHARACTER CNAME*64
 C
 CALL ATTACH(5, 'INPUT', 'STDIN', ' ', CNAME, ISTAT)
 CALL ATTACH(6, 'OUTPUT', 'STDOUT', ' ', CNAME, ISTAT)
 C
 CALL PTTACH(30, 'SCRATCH', 'SCRATCH1', ' ', CNAME, ISTAT)
 CALL PTTACH(31, 'FUNFILE', 'GENFUN', ' ', CNAME, ISTAT)
 CALL PTTACH(32, 'MACFILE', 'GENMAC', ' ', CNAME, ISTAT)
 CALL PTTACH(33, 'MENFILE', 'GENMEN', ' ', CNAME, ISTAT)
 CALL PTTACH(34, 'SCNFILE', 'GENSCN', ' ', CNAME, ISTAT)
 CALL PTTACH(35, 'LOGFILE', 'PGLOG', ' ', CNAME, ISTAT)
 CALL ATTEND

HECLIB Subroutines PEND

Chapter 6 – PREAD Subroutines 6-5

6.2 PEND – Close PREAD Files

Purpose:

 PEND closes all PREAD files accessed. PEND should be called at the end of a program,
along with any other CLOSE statements.

Calling Sequence:

CALL PEND

PREADC HECLIB Subroutines

6-6 Chapter 6 – PREAD Subroutines

6.3 PREADC – PREAD Processor (Method 1)

Purpose:

 PREADC preprocess lines read from the terminal (or other input). PREADC returns a
character variable containing the line read, and has an alternative return for End-Of-File
conditions.

Calling Sequence:

CALL PREADC (IUNIT, CLINE, ISTAT, *EOF-statement)

Declarations:

 CHARACTER CLINE
 INTEGER IUNIT, ISTAT

Argument Description:

 IUNIT Input The unit number attached to the standard input.

 CLINE Output The expanded line read from IUNIT. CLINE is blanked by

PREAD prior to reading.

 ISTAT Output A status parameter. If ISTAT is returned as zero or positive, it

reflects the number of characters read (in CLINE). If PREAD
detected an end-of-file condition, ISTAT is returned as -1. If
the declared length of CLINE is less then the length of the
expanded line, ISTAT is returned as -2 (and the line is
truncated).

 *EOF-statement Input The statement number to jump to if an end-of-file condition

was met (an alternative return). This is the same as an "END="
parameter in a FORTRAN READ.

Example:

 CHARACTER CLINE*132
 C
 CALL ATTACH(5, 'INPUT', 'STDIN', ' ', CNAME, ISTAT)
 …
 C
 CALL PREADC (5, CLINE, ISTAT, *800)
 READ (CLINE,20) X, Y, Z
 …
 C

HECLIB Subroutines PREADC

Chapter 6 – PREAD Subroutines 6-7

 C EOF DETECTED
 800 CONTINUE
 …

PREAD HECLIB Subroutines

6-8 Chapter 6 – PREAD Subroutines

6.4 PREAD – PREAD Processor (Method 2)

Purpose:

 PREAD is the main subroutine that preprocesses lines read from the terminal or other
input. PREAD should be called prior to each FORTRAN READ from the standard input.

Calling Sequence:

CALL PREAD (IUNIT)

Declarations:

 INTEGER IUNIT

Argument Description:

 IUNIT Input/ A variable containing the unit number attached to the standard
 Output input. This must be a variable, and the same variable for all

calls to PREAD (if PREAD is called in another subroutine, that
variable must be passed to that subroutine). The unit number
should be set in a DATA or similar statement (only once).

Remarks:

 PREAD should be called just before each READ from the standard input. The unit
variable should be used for the unit number in the FORTRAN READ following the call to
PREAD (do not use a literal value).

Example:

 DATA INPUT /5/
 ...

 CALL PREAD (INPUT)
 READ (INPUT,10,END=900) CLINE
 ..

HECLIB Subroutines PREAD1

Chapter 6 – PREAD Subroutines 6-9

6.5 PREAD1 – Execute a PREAD Command from the Program

Purpose:

 PREAD1 will execute a PREAD command directly from the calling program. PREAD1
is not intended to be called prior to a READ statement.

Calling Sequence:

CALL PREAD1 (CLINE)

Declarations:

 CHARACTER CLINE

Argument Description:

 CLINE Input CLINE (Input) The PREAD command to execute. This

should be the complete command, including the PREAD
command character (!).

Example:

 CALL PREAD1 ('!RUN MAC1')
 CALL PREAD1 ('!TEACH & /SOUTH BEND/FLOW/')
 CALL PREAD1 ('!/SS')

PSET HECLIB Subroutines

6-10 Chapter 6 – PREAD Subroutines

6.6 PSET – Set PREAD Parameters

Purpose:

 PSET is used to set PREAD parameters. This currently includes the prompt string, input
echo, and the logging capability.

Calling Sequence:

CALL PSET (CFLAG, CPARM, NPARM)

Declarations:

 CHARACTER CFLAG*4, CPARM
 INTEGER NPARM

Argument Description:

 CFLAG Input/ A flag, indicating which parameter to set. A list of the valid

flags follows.

 CPARM Input The character to set the parameter to.

 NPARM Input The integer number to set the parameter to.

Valid Parameters:

 CFLAG CPARM NPARM Description

 'PROM' prompt # chars Sets the input prompt to CPARM,

with NPARM characters long.
 'ECHO' 'ON' or 'OFF' - Turns the echo on or off.
 'LOGF' 'ON' or 'OFF' - Turns the log on or off.
 'LOGN' - unit Changes the log file unit number.

HECLIB Subroutines PINQIR

Chapter 6 – PREAD Subroutines 6-11

6.7 PINQIR – Inquire About PREAD Parameters

Purpose:

 PINQIR returns the current setting of several PREAD parameters.

Calling Sequence:

CALL PINQIR (CFLAG, CPARM, NPARM)

Declarations:

 CHARACTER CFLAG*4, CPARM
 INTEGER NPARM

Argument Description:

 CFLAG Input A flag, indicating which parameter to inquire about. A list of

the valid flags follows.

 CPARM Output A character variable containing the setting of the parameter.

 NPARM Output An integer number containing the setting of the parameter.

Valid Parameters:

 CFLAG CPARM NPARM Description

 'PROM' prompt nchs Returns the prompt in CPARM,

and its length in NPARM.
 'ECHO' 'ON' or 'OFF' - Indicates if the echo is on or off.
 'LOGF' 'ON' or 'OFF' - Indicates if the log is on or off.
 'LOGN' - unit Returns the log file unit number.
 'TERM' term type - Returns the port (terminal) type

(i.e., 'ASY', 'TTY', or 'CRT').
 'FUNC' 'ON' or 'OFF' - Indicates if the function mode is on

or off.
 'MACR' 'ON' or 'OFF' - Indicates if a macro is currently

running.
 'MENU' 'ON' or 'OFF' - Indicates if input is from the menu.
 'LEAR' 'ON' or 'OFF' - Indicates if the learn is on or off.
 'SCRE' 'ON' or 'OFF' - Indicates if input is from screens.

PSETFN HECLIB Subroutines

6-12 Chapter 6 – PREAD Subroutines

6.8 PSETFN – Set PREAD Function

Purpose:

 PSETFN sets a character to a function in the PREAD function file.

Calling Sequence:

CALL PSETFN (CKEY, CFUN, NFUN)

Declarations:

 CHARACTER CKEY*1, CFUN
 INTEGER NFUN 2

Argument Description:

 CKEY Input The single character to set as the function character.

 CFUN Input The character string to set as the function.

 NFUN Input The number of characters in CFUN.

HECLIB Subroutines PFNKEY

Chapter 6 – PREAD Subroutines 6-13

6.9 PFNKEY – Get the String Assigned to a Function Key

Purpose:

 PFNKEY returns an expanded function string, given the function character.

Calling Sequence:

CALL PFNKEY (CKEY, CFUN, NFUN)

Declarations:

 CHARACTER CKEY*1, CFUN
 INTEGER NFUN

Argument Description:

 CKEY Input The single function character of which to get the expanded

string.

 CFUN Output The expanded function character string.

 NFUN Output The number of characters in CFUN.

 HECLIB Subroutines

Chapter 7 – Miscellaneous Subroutines 7-1

7 Miscellaneous Subroutines

 The following chapter describes general purpose miscellaneous subroutines. This
includes a set of subroutines that test real numbers within a specified tolerance (accounting for
real number round-off errors), bit manipulation subroutines, and name-list subroutines (to get a
desired name from several synonyms.

 This section also includes a variety of subroutines that are specific to either HARRIS
computers or MS-DOS microcomputers.

LEQNER HECLIB Subroutines

7-2 Chapter 7 - Miscellaneous Subroutines

7.1 LEQNER – Test for One Number Nearly Equal to Another

Purpose:

 LEQNER is a logical function that tests two real numbers within a specified tolerance to
determine if they are nearly equal to each other. LEQNER was designed to account for possible
round-off errors of real numbers.

Calling Sequence:

LTEST = LEQNER (X, Y, TOL)

Declarations:

 LOGICAL LEQNER
 REAL X, Y, TOL

Argument Description:

 X Input The number to compare against Y.

 Y Input The number to be compared to X.

 TOL Input The tolerance to check the numbers with. TOL is usually a

small number, such as 0.0001.

 LEQNER Output A logical flag that is returned .TRUE. if X is equal to Y within

the tolerance specified.

Example:

Instead of:

 IF (X.EQ.Y) THEN

use:

 IF (LEQNER(X,Y,0.0001)) THEN

Make sure that LEQNER is declared as a logical variable. LEQNER works for both positive and
negative numbers.

HECLIB Subroutines LGENER

Chapter 7 – Miscellaneous Subroutines 7-3

7.2 LGENER – Test for One Number Greater Than or Nearly Equal to
Another

Purpose:

 LGENER is a logical function that determines if one number is greater than or nearly
equal to another within a specified tolerance. LGENER was designed to account for possible
round-off errors of real numbers.

Calling Sequence:

LTEST = LGENER (X, Y, TOL)

Declarations:

 LOGICAL LGENER
 REAL X, Y, TOL

Argument Description:

 X Input The number to test if it is greater than or nearly equal to Y.

 Y Input The number to be compared against X.

 TOL Input The tolerance to check the numbers with. TOL is usually a

small number, such as 0.0001.

 LGENER Output A logical flag that is returned .TRUE. if X is greater than or

equal to Y within the tolerance specified.

Example:

Instead of:

 IF (X.EQ.Y) THEN

use:

 IF (LGENER(X,Y,0.0001)) THEN

Make sure that LGENER is declared as a logical variable. LGENER works for both positive and
negative numbers.

LGTNER HECLIB Subroutines

7-4 Chapter 7 - Miscellaneous Subroutines

7.3 LGTNER – Test for One Number Greater Than Another With a

Tolerance

Purpose:

 LGTNER is a logical function that determines if one number is greater than another,
within a specified tolerance. LGTNER was designed to account for possible round-off errors of
real numbers.

Calling Sequence:

LTEST = LGTNER (X, Y, TOL)

Declarations:

 LOGICAL LGTNER
 REAL X, Y, TOL

Argument Description:

 X Input The number to test if it is greater than Y.

 Y Input The number to be compared against X.

 TOL Input The tolerance to check the numbers with. TOL is usually a

small number, such as 0.0001.

 LGTNER Output A logical flag that is returned .TRUE. if X is greater than Y

within the tolerance specified. This is equivalent to
(X.GT.Y+TOL), except LGTNER accounts for both positive
and negative numbers.

Example:

Instead of:

 IF (X.GT.Y+0.0001) THEN

use:

 IF (LGTNER(X,Y,0.0001)) THEN

Make sure that LGTNER is declared as a logical variable. LGTNER works for both positive and
negative numbers.

HECLIB Subroutines LLTNER

Chapter 7 – Miscellaneous Subroutines 7-5

7.4 LLTNER – Test for One Number Less Than Another Within a
Tolerance

Purpose:

 LLTNER is a logical function determines if one number is less than another, within a
specified tolerance. LLTNER was designed to account for possible round-off errors of real
numbers.

Calling Sequence:

LTEST = LLTNER (X, Y, TOL

Declarations:

 LOGICAL LLTNER
 REAL X, Y, TOL

Argument Description:

 X Input/ The number to test if it is less than Y.

 Y Input The number to be compared against X.

 TOL Input The tolerance to check the numbers with. TOL is usually a

small number, such as 0.0001.

 LLTNER Output A logical flag that is returned .TRUE. if X is less than Y within

the tolerance specified. This is the same as (X.LT.Y-TOL),
except LLTNER accounts for both positive and negative
numbers.

Example:

Instead of:

 IF (X.LT.Y-0.0001) THEN

use:

 IF (LLTNER(X,Y,0.0001)) THEN

Make sure that LLTNER is declared as a logical variable. LLTNER works for both positive and
negative numbers.

LLENER HECLIB Subroutines

7-6 Chapter 7 - Miscellaneous Subroutines

7.5 LLENER – Test for One Number Less Than or Nearly Equal to
Another

Purpose:

 LLENER is a logical function that determines if one number is less than another, within a
specified tolerance. LLENER was designed to account for possible round-off errors of real
numbers.

Calling Sequence:

LTEST = LLENER (X, Y, TOL)

Declarations:

 LOGICAL LLENER
 REAL X, Y, TOL

Argument Description:

 X Input The number to test if it is less than or nearly equal to Y.

 Y Input The number to be compared against X.

 TOL Input The tolerance to check the numbers with. TOL is usually a

small number, such as 0.0001.

 LLENER Output A logical flag that is returned .TRUE. if X is less than or equal

to Y within the tolerance specified.

Example:

Instead of:

 IF (X.LE.Y) THEN

use:

 IF (LLENER(X,Y,0.0001)) THEN

Make sure that LLENER is declared as a logical variable. LLENER works for both positive and
negative numbers.

HECLIB Subroutines LBTEST

Chapter 7 – Miscellaneous Subroutines 7-7

7.6 LBTEST – Test to Determine if a Bit is Set

Purpose:

 Logical Function LBTEST is used to determine if a specified bit is set. LBTEST is the
same function as the MIL-STD-1753 BTEST function.

Calling Sequence:

LTEST = LBTEST (IWORD, NBIT)

Declarations:

 LOGICAL LBTEST
 INTEGER IWORD, NBIT

Argument Description:

 IWORD Input The integer word containing the bits to be tested.

 NBIT Input The bit number to test for. NBIT may range from zero to

twenty-three on HARRIS computers, zero to fifteen on MS-
DOS microcomputers.

 LBTEST Output LBTEST is returned .TRUE. if the specified bit is set,

otherwise .FALSE.

Example:

 LOGICAL LBTEST
 C
 C AFTER A CALL TO GIOP, BIT 17 IS SET IF AN ERROR OCCURRED
 CALL GIOP (..., ISTAT)
 IF (LBTEST(ISTAT,17)) GO TO 900

IBSET HECLIB Subroutines

7-8 Chapter 7 - Miscellaneous Subroutines

7.7 IBSET – Set a Bit

Purpose:

 IBSET sets a specified bit on in an integer word.

Calling Sequence:

JWORD = IBSET (IWORD, NBIT)

Declarations:

 INTEGER IBSET, IWORD, NBIT

Argument Description:

 IWORD Input The word in which to set the bit. Note that this is an input

parameter and is not changed. The result is returned in IBSET.

 NBIT Input The bit to set.

 IBSET Output IBSET is returned with bit NBIT set in IWORD. (The other

bits remain unchanged.)

HECLIB Subroutines IBCLR

Chapter 7 – Miscellaneous Subroutines 7-9

7.8 IBCLR – Clear a Bit

Purpose:

 PSETFN IBCLR sets a specified bit off from an integer word.

Calling Sequence:

JWORD = IBCLR (IWORD, NBIT)

Declarations:

 INTEGER IBSET, IWORD, NBIT

Argument Description:

 IWORD Input The word in which to set the bit off. Note that this is an input

parameter and is not changed. The result is returned in IBSET.

 NBIT Input The bit to reset.

 IBSET Output IBSET is returned with bit NBIT reset in IWORD. (The other

bits remain unchanged.)

MVBITS HECLIB Subroutines

7-10 Chapter 7 - Miscellaneous Subroutines

7.9 MVBITS – Move Bits from One Word into Another

Purpose:

 MVBITS moves bits from one integer word into another.

Calling Sequence:

CALL MVBITS (IWORD, IPOS, NBITS, JWORD, JPOS)

Declarations:

 INTEGER IWORD, IPOS, NBITS, JWORD, JPOS

Argument Description:

 IWORD Input The word containing the bits to be moved (copied).

 IPOS Input The beginning bit position of IWORD to move.

 NBITS Input The number of bits to move.

 JWORD Input/ The word in which to move the bits into. The bits in JWORD
 Output which are outside the specified range are unchanged.

 JPOS Input The beginning bit position in JWORD in which to move the

bits.

Remarks:

 JWORD and IWORD may be the same variable. If the range specified exceeds the word
boundaries, those bits are truncated (MVBITS operates only on one integer word).

Example:

If:

 I = 11111111 11111111 11010111
 J = 00000000 00000000 00000000

Then:

 CALL MVBITS (I, 0, 8, J, 0)
 J = 00000000 00000000 11010111
 CALL MVBITS (I, 1, 2, J, 7)
 J = 00000000 00000001 10000000

HECLIB Subroutines IBITS

Chapter 7 – Miscellaneous Subroutines 7-11

7.10 IBITS – Extract a Field of Bits

Purpose:

 IBITS extracts a field of bits from an integer word.

Calling Sequence:

JWORD = IBITS (IWORD, ISTART, NBITS)

Declarations:

 INTEGER IBITS, IWORD, ISTART, NBITS

Argument Description:

 IWORD Input The integer word from which to extract the bits.

 ISTART Input The right-most bit number of the starting position of the bits to

extract.

 NBITS Input The number of bits to extract. NBITS extends left from

ISTART.

 IBITS Output The extracted field. The result is right justified and the

remaining bits set to zero.

Remarks:

 IBITS extracts a subfield of NBITS bits in length from IWORD starting with bit position
ISTART and extending NBITS left.

GETBIN HECLIB Subroutines

7-12 Chapter 7 - Miscellaneous Subroutines

7.11 GETBIN – Get the Binary Representation of a Word

Purpose:

 GETBIN takes bytes from (a) word(s), and creates a binary representation in a character
array for display purposes. The binary representation of a byte is a character variable (8
characters long), with each character being either a zero (bit off), or a one (bit on). The
programmer may print this character array to see which bits are on, and which bits are off.

Calling Sequence:

CALL GETBIN (IWORDS, NBYTES, CREPR)

Declarations:

 INTEGER IWORDS(*), NBYTES
 CHARACTER CREPR(NBYTES)*8

Argument Description:

 IWORDS Input The integer word (or words) to get the binary representation of.

 NBYTES Input The number of bytes to process. The first byte is the leftmost

byte in IWORDS.

 CREPR Output The binary representation of IWORDS. This must be a

character array eight characters long, and dimensioned to (at
least) NBYTES.

Example:

 INTEGER IWORDS(2)
 CHARACTER CREPR(4)*8

If:

 IWORDS(1) = 1234567
 IWORDS(2) = 1234567
 CALL GETBIN (IWORDS, 4, CREPR)

Then:

 CREPR(1) = '00010010'
 CREPR(2) = '11010110'
 CREPR(3) = '10000111'
 CREPR(4) = '00010010'

HECLIB Subroutines DIBIN

Chapter 7 – Miscellaneous Subroutines 7-13

7.12 DIBIN – Display a Number as Binary

Purpose:

 DIBIN displays a number in its binary representation.

Calling Sequence:

CALL DIBIN (IUNIT, NUMBER)

Declarations:

 INTEGER IUNIT, NUMBER

Argument Description:

 IUNIT Input The The unit number to write the binary representation to.

 NUMBER Input The number to write the binary representation of. This must be

a regular integer number (on the HARRIS, three bytes long, on
MS-DOS microcomputers, two bytes long).

Example:

 NUMBER = 123456
 CALL DIBIN (6, NUMBER)

DIBIN writes to unit 6:

 " VALUE = 00000001 11100010 01000000"

 HECLIB Subroutines

7-14 Chapter 7 - Miscellaneous Subroutines (NAME-LIST Subroutines)

7.13 NAME-LIST Processing

Purpose:

 The NAME-LIST subroutines provides a means of allowing several alternative items or
names to be recognized as a single item or name. An example of this might be the name of a
gaging station, where different agencies may give different names (or codes) for the same
station. The name-list routines will take any of these names and obtain the primary name that is
to be used. For example, the USGS may refer to a station by the code '08928231', the NWS may
use the code 'STBO5', and the common (or desired) name might be 'South Bend'. If any of these
names are given to the subroutine, it would return 'South Bend'.

 Typically, names for the NAME-LIST subroutines are read from a file that contains the
substitute (or pseudo) name followed by a comma, then the desired (or true) name. Such a file
might appear as follows:

 08928231,South Bend
 STBO5,South Bend
 S BEND,South Bend
 08928422,Crescent City
 CRCO6,Crescent City
 CRES,Crescent City
 C.C.,Crescent City

Subroutine Summary:

 NAMFIL - Read a File of Pseudo and True Names
 NAMLST - List all the Pseudo and True Names
 TRUNAM - Obtain a True Name from a Pseudo Name
 SETNAM - Set or Remove a Name

HECLIB Subroutines NAMFIL

Chapter 7 – Miscellaneous Subroutines (NAME-LIST Subroutines) 7-15

7.13.1 NAMFIL – Read a File of Pseudo and True Names

Purpose:

 NAMFIL creates a name list from a file containing a list of alternative (pseudo) names
and desired (true) names. This list is then used by the other name-list subroutines to find true
names from pseudo names. NAMFIL is usually called once, at the beginning of the program.
The length of a name is defined by the calling program, but may not exceed eighty characters.

 The file that NAMFIL reads should contain the pseudo name followed by a comma then
the true name. An example of such a list follows.

Calling Sequence:

CALL NAMFIL (IUNIT, CNAMES, INAMES, MAXNAM, ISTAT)

Declarations:

 PARAMETER (MAXNAM=?)
 CHARACTER CNAMES(MAXNAM)*(*)
 INTEGER INAMES(MAXNAM+5), ISTAT

Argument Description:

 IUNIT Input The unit number of the file containing the pseudo and true

names. This file must have been opened by the calling
program.

 CNAMES Output The name-list. This must be a character array, dimensioned to

MAXNAM. The maximum length for any name is implied in
the CHARACTER statement.

 INAMES Output INAMES is a pointer array, which must be dimensioned to

MAXNAM + 5.

 MAXNAM Input The dimension of CNAMES. This is the maximum number of

names that can be in the list (including true names).

 ISTAT Output A status parameter indicating the successfulness of the call.

The following values are possible:
 ISTAT Description
 0 NAMFIL completed successfully
 -1 Unrecognizable line in file
 -2 Illegal name in file
 -3 Reached maximum number of names (prior to

the end of the file)

NAMFIL HECLIB Subroutines

7-16 Chapter 7 - Miscellaneous Subroutines (NAME-LIST Subroutines)

Remarks:

 Any error messages are written to unit 6. Unit 6 should be attached to the standard output
by the calling program.

 See the example use of the name-list subroutines given at the end of this section.

Example:

 The following is an example of a name-list input file for use by NAMFIL. Such a file
would be created by a standard editor.

 08928231,South Bend
 STBO5,South Bend
 S BEND,South Bend
 08928422,Crescent City
 CRCO6,Crescent City
 CRES,Crescent City
 C.C.,Crescent City

 etc.

HECLIB Subroutines NAMLST

Chapter 7 – Miscellaneous Subroutines (NAME-LIST Subroutines) 7-17

7.13.2 NAMLST – List All the Pseudo and True Names

Purpose:

 NAMLST prints all the pseudo and true names in a name-list to unit 6.

Calling Sequence:

CALL NAMLST (CNAMES, INAMES)

Declarations:

 CHARACTER CNAMES(MAXNAM)*(*)
 INTEGER INAMES(MAXNAM+5)

Argument Description:

 CNAMES Input The name-list (read in by subroutine NAMFIL).

 INAMES Input INAMES is the pointer array, which must be dimensioned to

MAXNAM+5.

TRUNAM HECLIB Subroutines

7-18 Chapter 7 - Miscellaneous Subroutines (NAME-LIST Subroutines)

7.13.3 TRUNAM – Obtain a True Name from a Pseudo Name

Purpose:

 TRUNAM obtains a desired or true name from a name-list, given a alternative or pseudo
name. If the input pseudo name is not found, the returned true name will contain all blanks.

Calling Sequence:

CALL TRUNAM (CPSUDO, CTRUE, CNAMES, INAMES)

Declarations:

 CHARACTER CPSUDO, CTRUE, CNAMES(MAXNAM)
 INTEGER INAMES(MAXNAM+5)

Argument Description:

 CPSUDO Input The name to be matched. The length of CPSUDO should be

the same as CTRUE and CNAMES.

 CTRUE Output The desired or true name matching CPSUDO. If a match could

not be found, CTRUE is returned blank filled.

 CNAMES Input The name-list (read in by subroutine NAMFIL).

 INAMES Input INAMES is the pointer array, which must be dimensioned to

MAXNAM+5.

Remarks:

 See the example at the end of the section for an example use of TRUNAM.

HECLIB Subroutines SETNAM

Chapter 7 – Miscellaneous Subroutines (NAME-LIST Subroutines) 7-19

7.13.4 SETNAM – Set or Remove a Name in the Name List

Purpose:

 SETNAM allows editing of the name-list by a program. (SETNAM edits the in-core list,
not the name-list file.) A pseudo or true name can be added or removed by SETNAM.

Calling Sequence:

CALL SETNAM (CPSUDO, CTRUE, MAXNAM, CNAMES, INAMES, NNAMES, ISTAT)

Declarations:

 CHARACTER CPSUDO, CTRUE, CNAMES(MAXNAM)
 INTEGER INAMES(MAXNAM+5), NNAMES, ISTAT

Argument Description:

 CPSUDO Input The pseudo (alternative) name to set or remove. See use below

on how to set or remove names.

 CTRUE Input The true (desired) name to set or remove.

 MAXNAM Input The dimension of CNAMES. This is the maximum number of

names that can be in the list (including true names).

 CNAMES Input/ The name-list to be edited. This list is typically created by
 Output NAMFIL.

 INAMES Input/ A pointer array for the name-list. This array must be
 Output dimensioned to MAXNAM+5.

 NNAMES Output The current number of names in the name-list (including true

names).

 ISTAT Output A status parameter indicating the successfulness of the call.

The following values are possible:
 ISTAT Description
 0 SETNAM completed successfully
 1 Could not find true name in list
 2 Could not find pseudo name in list
 3 Name given is already in list
 4 Reached maximum number of names

SETNAM HECLIB Subroutines

7-20 Chapter 7 - Miscellaneous Subroutines (NAME-LIST Subroutines)

Use:

 The name-list is edited by:
 (1) Set a new true name in the list: Set CPSUDO equal to CTRUE.
 (2) Set a new pseudo name in the name list: Set CPSUDO equal to the new pseudo

name and CTRUE equal to the true name corresponding to it. The true name
must have already been entered.

 (3) Remove a pseudo name from the name list: Set CPSUDO equal to the pseudo
name, and CTRUE blank filled.

 (4) Remove a true name and all the associated pseudo names: Blank fill CPSUDO,
and set CTRUE to the true name to remove.

Remarks:

 Typically, editing of the list is not done by a program. However, SETNAM does provide
this capability if it is desired.

Example Use o f Name-List Subroutines:

 C Allow a maximum of 200 names in the name list, with
 C a maximum of 32 characters in each name.
 PARAMETER (MAXNAM=200)
 CHARACTER CNAMES(MAXNAM)*32, CPSUDO*32, CLOC*32
 INTEGER INAMES(MAXNAM+5)

 ...

 C Open the name file
 OPEN (UNIT=10, FILE='NAMLST', IOSTAT=IERR)
 IF (IERR.NE.0) GO TO 900
 C
 C Read in the name list
 CALL NAMFIL (10, CNAMES, INAMES, MAXNAM, ISTAT)
 CLOSE (UNIT=10)
 IF (ISTAT.NE.0) GO TO 900

 ...

 10 CONTINUE
 WRITE (6,*)'Enter location name'
 READ (5,20,END=920) CPSUDO
 20 FORMAT (A)
 C Get the desired name, if the user entered a alternative one
 CALL TRUNAM (CPSUDO, CLOC, CNAMES, INAMES)
 C See if a valid name was entered
 IF (CLOC(1:3).EQ.' ') THEN

HECLIB Subroutines SETNAM

Chapter 7 – Miscellaneous Subroutines (NAME-LIST Subroutines) 7-21

 WRITE (6,*)'Unknown location - reenter location name'
 GO TO 10
 ENDIF
 C
 C Process name ...

ABORT HECLIB Subroutines

7-22 Chapter 7 - Miscellaneous Subroutines

7.14 ABORT – Issue a Program Abort

Purpose:

 Subroutine ABORT initiates an abort procedure (which causes certain error processes to
occur), then stops the program. On HARRIS computers, this includes printing the program
address when the abort occurred, and setting certain error registers (this will cause a batch job to
terminate). If walkback is set, the program will print the location and subroutines called to this
location. ABORT should be called only when a significant error occurs.

Calling Sequence:

CALL ABORT

Remarks:

 On HARRIS computers, a special abort instruction is issued. On non-HARRIS
computers, an error message is printed, then an illegal instruction is attempted (the square root of
a negative number).

HECLIB Subroutines IEB2AS

Chapter 7 – Miscellaneous Subroutines 7-23

7.15 IEB2AS – Convert EBCDIC to ASCII

Purpose:

 Subroutine IEB2AS converts an EBCDIC character decimal representation to ASCII for
IBM mainframes and similar computers. This is need only where the decimal representation of
characters on EBCDIC are used. IEB2AS operates on single characters represented as integer
values. On ASCII computers, the character representation is returned unaltered.

Calling Sequence:

CALL IEB2AS (ICH)

Declarations:

 INTEGER ICH

Argument Description:

 ICH Input/ The EBCIDIC decimal representation of the character to be
 Output converted. ICH is returned with the ASCII representation of

that character.

Example:

 C COUNT THE NUMBER OF EACH CHARACTER IN A FILE
 C THIS WILL WORK ON AN ASCII OR EBCIDIC COMPUTER
 C
 INTEGER ICOUNT(128)
 C
 5 READ (5, 10, END=100) CLINE
 10 FORMAT (A80)
 DO 20 I=1,80
 ICH = ICHAR(CLINE(I:I))
 CALL IEB2AS(ICH)
 ICOUNT(ICH) = ICOUNT(ICH) + 1
 20 CONTINUE

 GO TO 5

LPOPT HECLIB Subroutines

7-24 Chapter 7 - Miscellaneous Subroutines (HARRIS Specific)

7.16 HARRIS Specific Subroutines

7.16.1 LPOPT – Get Program Options

Purpose:

 LPOPT is a logical function which indicates if a single character program option has been
set from the execution line for HARRIS computers. An example of program options for the
compiler is: "SAUF77.IL". LPOPT would be used to determine whether the "I" and the "L"
options have been set.

Calling Sequence:

LTEST = LPOPT (C)

Declarations:

 CHARACTER C*1
 LOGICAL LPOPT

Argument Description:

 C Input A single character letter to test if this option has been set.

 LPOPT Output Returns .TRUE. if that letter option has been set, otherwise

LPOPT is returned as .FALSE..

Remarks:

 HARRIS options are valid for the letters A through X only. LPOPT must be declared as
logical in the calling routine.

Example:

 If the letter 'D' is chosen to indicate a debug run, then an execution of:

 MYPROG.D

will cause LPOPT to return the following:

 IF (LPOPT('D')) THEN ... (LPOPT returns .TRUE.)
 IF (LPOPT('F')) THEN ... (LPOPT returns .FALSE.)

HECLIB Subroutines CIJOBE

Chapter 7 – Miscellaneous Subroutines (HARRIS Specific) 7-25

7.16.2 CIJOBE – Initiate a Batch Job

Purpose:

 CIJOBE is the same subroutine as the HARRIS IJOBE subroutine, except that the job file
name and optional password are specified as a character string instead of Hollerith arrays.

Calling Sequence:

CALL CIJOBE (CNAME, CPASS, IERR)

Declarations:

 CHARACTER CNAME, CPASS*6
 INTEGER IERR

Argument Description:

 CNAME Input A character string containing the name of the job file to be

initiated.

 CPASS Input If a password is required to initiate the job, this character string

must contain that password, and otherwise it should be blank.

 IERR Output A status parameter indicating the successfulness of the

initiation. If IERR is returned as zero, the job was successfully
initiated.

Remarks:

 Converts the file name and password to Hollerith, then calls the HARRIS IJOBE
subroutine. See the IJOBE subroutine documentation in the HARRIS FORTRAN manual for
more information.

CSPOOL HECLIB Subroutines

7-26 Chapter 7 - Miscellaneous Subroutines (HARRIS Specific)

7.16.3 CSPOOL – Spool a File to a Physical Device

Purpose:

 CSPOOL is the same subroutine as the HARRIS SPOOL subroutine, except that the file
name is specified as a character string instead of a Hollerith array.

Calling Sequence:

CALL CSPOOL (CNAME, IPDN, IERR)

Declarations:

 CHARACTER CNAME
 INTEGER IPDN, IERR

Argument Description:

 CNAME Input A character string containing the name of the file to spool.

 IPDN Input The physical device number to spool the file to. If this is the

system printer, IPDN should be set to six.

 IERR Output A status parameter indicating the successfulness of the call. If

IERR is returned as zero, the file was spooled successfully.

Remarks:

 Converts the file name to Hollerith, and then calls the HARRIS SPOOL subroutine. See
the SPOOL subroutine documentation in the HARRIS FORTRAN manual for more information.

HECLIB Subroutines COPCOM

Chapter 7 – Miscellaneous Subroutines (HARRIS Specific) 7-27

7.16.4 COPCOM – Execute an OPCOM Command

Purpose:

 COPCOM is the same subroutine as the HARRIS OPCOM subroutine, except that the
command is specified as a character string instead of a Hollerith array. OPCOM commands are
those system commands that can be executed from a terminal (e.g., /SS), but must not be
preceded by the slash (/).

Calling Sequence:

CALL COPCOM (COMAND, IERR)

Declarations:

 CHARACTER COMAND
 INTEGER IERR

Argument Description:

 COMAND Input A character string containing the OPCOM command to

execute.

 IERR Output A status parameter indicating the successfulness of the

execution. If IERR is returned as zero, the command was
successfully executed.

Remarks:

 Converts the command to Hollerith, and then calls the HARRIS OPCOM subroutine.
See the OPCOM subroutine documentation in the HARRIS FORTRAN manual for more
information.

CNTRLX HECLIB Subroutines

7-28 Chapter 7 - Miscellaneous Subroutines (HARRIS Specific)

7.16.5 CNTRLX – Interrupt a Program by Pressing CTRL X

Purpose:

 CNTRLX provides a means for a user to interrupt the execution of a program by pressing
a CTRL X. When this key is pressed, control of the program will jump to a predefined location.
This is often used to allow a quick exit from a task that is displaying a substantial amount of
data.

Calling Sequence:

CALL CNTRLX ($statement)

Declarations:

 The argument may either be a literal or variable, depending on its use.

Argument Description:

 $statement

 Normal Use:
 (1) Input The statement number (preceded by a dollar sign) of where to jump

to when a CTRL X is pressed. For example, if the program should
go to statement 100 (100 CONTINUE), then this argument would
be $100. The statement must be in the same subroutine where
CNTRLX is called.

 Other Use:
 (2) Input To disable the control-x key (after it has been set), pass zero to the

subroutine (i.e., CALL CNTRLX (0)).

 (3) Input/ To determine the address that control will be passed to, set an
 Output integer variable to -1, then pass that variable. The variable will be

returned with the address that would be jumped to. Be sure that a
variable is passed, not a literal -1. For example:

 IVAR = -1
 CALL CNTRLX (IVAR)

 (4) Input If an argument of -2 is passed to CNTRLX (either a literal or a

variable), the program will jump to the previously specified
location, just as if a CTRL X had been entered at the keyboard.

HECLIB Subroutines CRTN

Chapter 7 – Miscellaneous Subroutines (HARRIS Specific) 7-29

7.16.6 CRTN – Contingency (Error) Return

Purpose:

 CRTN is a subroutine that provides a means of performing error processing after a
program abort has occurred. With CRTN enabled, a specified subroutine will be called when an
abort occurs. This subroutine may do processing such as closing files, writing an error message
to a log file, etc.

Calling Sequence:

CALL CRTN (subroutine-name, IENABL)

Declarations:

 EXTERNAL subroutine-name
 INTEGER IENABL

Argument Description:

 subroutine-name Input The name of the subroutine to call when an abort occurs. This

name must be a literal and must be declared as EXTERNAL in
the subroutine that calls it. See the Example section.

 IENABL Input A argument that enables or disables the error return. Set

IENABL to one to enable the error return, zero to remove the
subroutine from error processing.

Remarks:

 Several subroutines can be added to the contingency return list. They are executed in a
last in, first out order. The subroutine(s) must execute a normal return (do not allow the
subroutine to STOP). A second abort will cause the program to bypass any remaining
contingency returns.

Example:

 EXTERNAL ABTPRO
 CALL CRTN (ABTPRO, 1)
 . . .

 SUBROUTINE ABTPRO
 . . .
 RETURN
 END

RSCPDN HECLIB Subroutines

7-30 Chapter 7 - Miscellaneous Subroutines (HARRIS Specific)

7.16.7 RSCPDN – Resource a Physical Device

Purpose:

 RSCPDN resources a physical device (e.g., a terminal), based upon its PDN. RSCPDN
may be called either from a interactive program, a real-time program, or a batch job, but different
parameters must be passed for different program types. After a PDN has been resourced and
opened, I-O can take place with that PDN.

Calling Sequence:

CALL RSCPDN (IUNIT, IPDN, IFUN, ISTAT)

Declarations:

 INTEGER IUNIT, IPDN, IFUN, ISTAT

Argument Description:

 IUNIT Input The unit number to attach to the PDN.

 IPDN Input The physical device number to resource.

 IFUN Input A number, indicating the function to perform (based on the

terminal type):
 1 Request resource for interactive programs. This

function will not wait for the resource to occur.
 2 Test for resource allocation. Returns value in

ISTAT indicating if the allocation has been
made or not.

 3 Wait for allocation. RSCPDN will not return
until the PDN has been resourced (could be a
long time!).

 5 Request resource for real-time programs.
 6 Request resource for control point programs.

 ISTAT Output A status parameter indicating the successfulness of the call.

ISTAT is returned as zero if the call was successful, nonzero if
the call failed.

Remarks:

 Resourcing a physical device is a two step process. First, a request for the device is
made. Then a test for resource allocation is made after waiting for an appropriate amount of
time. Because a wait for allocation will cause a wait until that device is available, usually only
the test for resource allocation is made. Because the resource takes some of time, a program

HECLIB Subroutines RSCPDN

Chapter 7 – Miscellaneous Subroutines (HARRIS Specific) 7-31

should pause between the resource request and the test. An example is shown in the Example
section.

 The status parameter should be checked after each call to RSCPDN. If ISTAT is not zero
after the first call, then the PDN requested probably does not exist (or some other error
occurred). On the second, and any subsequent calls, the status parameter indicates whether the
resource has been accomplished. If it has not, and you do not want to wait for the allocation, be
sure to CLOSE that unit, as the allocation may occur (unexpectedly) some time in the future.

 Refer to the $RESORC section in the VOS System Services Manual for more
information.

Example:

 C Resource unit 9 to PDN 80 from an interactive program
 C Wait up to 5 seconds for the resource to occur.
 C
 IPDN = 80
 IUNIT = 9
 C
 CALL RSCPDN (IUNIT, IPDN, 1, ISTAT)
 C Does this PDN exist? (If not, error out)
 IF (ISTAT.NE.0) GO TO 900
 C
 C Loop, waiting for 1/2 second for allocation to occur.
 DO 20 I=1,10
 CALL WAITS (0.5)
 CALL RSCPDN (IUNIT, IPDN, 2, ISTAT)
 IF (ISTAT.EQ.0) GO TO 40
 20 CONTINUE
 C
 C Unable to resource PDN. Close IUNIT
 CLOSE (UNIT=IUNIT)
 GO TO 920
 C
 C Successfully resourced IUNIT to IPDN. Open IUNIT
 40 OPEN (UNIT=IUNIT,IOSTAT=ISTAT)
 . . .

 Note: If the above code were for a real-time program, the third argument in the first call

to RSCPDN would be five instead of one. If this were for a control-point (batch)
program, the third argument would be six.

XQTLINE HECLIB Subroutines

7-32 Chapter 7 - Miscellaneous Subroutines (HARRIS Specific)

7.16.8 XQTLINE – Get the Program's Execution Line

Purpose:

 XQTLNE obtains the execution line that was used to execute the program. This line may
contain parameters to be passed to the program.

Calling Sequence:

CALL XQTLNE (CLINE, NLINE)

Declarations:

 CHARACTER CLINE
 INTEGER NLINE

Argument Description:

 CLINE Output A character variable to contain the execution line.

 NLINE Output The number of characters in the execution line. If the number

of characters on the execution line is more than the length of
CLINE, the line will be truncated and NLINE will indicate the
length of CLINE.

Remarks:

 XQTLNE will obtain up to 132 characters from the execution line. XQTLNE operates
for batch and interactive environments.

HECLIB Subroutines XQTJCL

Chapter 7 – Miscellaneous Subroutines (HARRIS Specific) 7-33

7.16.9 XQTJCL – Execute One Job Control Command

Purpose:

 XQTJCL executes one job control command from within an interactive program.
XQTJCL does not work in a batch environment.

Calling Sequence:

CALL XQTJCL (ISUNIT, CLINE, NLINE)

Declarations:

 CHARACTER CLINE
 INTEGER ISUNIT, NLINE

Argument Description:

 ISUNIT Input The unit number of a blocked scratch file (which must be

assigned). The contents of that file will not be preserved.

 CLINE Input The job control command to execute.

 NLINE Input The number of characters in CLINE.

Remarks:

 XQTJCL works by writing CLINE to the scratch file, then temporarily reassigning unit 0
to that file. Job control is chained to, where it reads from the scratch file (unit 0). After
executing the command, unit 0 is reassigned to the terminal and control is returned to the
program.

Example:

 C CONNECT UNIT 9 TO WORK FILE W3
 CALL CASSIG (9, 'W9', IERR)
 IF (IERR.NE.0) GO TO 900
 . .
 C DO A CONTROL POINT LISTING
 CALL XQTJCL (9, '/CL', 3)
 . .
 C EXECUTE A MAP COMMAND
 CALL XQTJCL (9, 'MAP.UL', 6)
 CLOSE (UNIT=9)

CHAIN3 HECLIB Subroutines

7-34 Chapter 7 - Miscellaneous Subroutines (HARRIS Specific)

7.16.10 CHAIN3 – Chain From One Program Into Another

Purpose:

 CHAIN3 provides a means of chaining (or transferring control) from one program into
another (or into job control). When the program chained into executes an exit (e.g., a STOP),
control will be returned to the calling program. CHAIN3 attempts to re-establish those file
assignments that have been freed or closed before returning to the calling program, but the files
are not repositioned (if they have been reassigned).

Calling Sequence:

CALL CHAIN3 (CFROM, NFROM, CTO, NTO)

Declarations:

 CHARACTER CFROM, CTO
 INTEGER NFROM, NTO

Argument Description:

 CFROM Input The name of the program calling CHAIN3. This is used for

informative purposes only.

 NFROM Input The number of characters in NFROM.

 CTO Input The name of the program to chain to. CTO should contain the

entire execution line (whatever is normally passed to the
program to be executed). If chaining into job control, CTO
should be '*JOBCNTRL'. It is wise to include the qualifier in
the program name.

 NTO Input The number of characters in CTO.

Remarks:

 CHAIN3 operates well when chaining into another program in an interactive
environment. CHAIN3 cannot chain into a HARRIS Macro, it must chain directly into a
program. Program letter options can be passed via CHAIN3 (e.g., MYPROG.D). The file
positions are not guaranteed (and may be at the beginning of the file upon return to the calling
program). CHAIN3 does not work well in a batch environment, as the input and output files
may be repositioned. Subroutine EXPROG may be better suited for batch jobs (it does not
reassign any units).

 Abnormal assignment types (e.g., PDN resources or exclusive assignments) will not be
correctly reassigned if those units were closed or freed by the program chained into. The calling
program should re-establish these types of assignments.

HECLIB Subroutines CHAIN3

Chapter 7 – Miscellaneous Subroutines (HARRIS Specific) 7-35

Example:

 Chain into job control:

 CALL CHAIN3 ('MYPROG', 6, '*JOBCNTRL', 9)

 Chain into COED:

 CALL CHAIN3 ('MYPROG', 6, 'SYST*COED WRKFIL', 16)

 Chain into YOURPRG:

 CALL CHAIN3 ('MYPROG', 6, '2002RES*YOURPRG.D INPUT=MYIN', 28)

EXPROG HECLIB Subroutines

7-36 Chapter 7 - Miscellaneous Subroutines (HARRIS Specific)

7.16.11 EXPROG – Execute One Program from Another

Purpose:

 EXPROG provides a means of chaining (or transferring control) from one program into
another. EXPROG is similar to CHAIN3, except that no units are re-established. EXPROG may
be used in a batch environment where the file assignments used are known, and any re-
establishing of assignments will be completed by the calling program. CHAIN3 should be used
in an interactive environment. When the program chained into executes an exit (e.g., a STOP),
control will be returned to the calling program.

Calling Sequence:

CALL EXPROG (CPROG)

Declarations:

 CHARACTER CPROG

Argument Description:

 CPROG Input The name of the program to chain to. CPROG should contain

the entire execution line (whatever is normally passed to the
program to be executed). It is wise to include the qualifier in
the program name.

Remarks:

 EXPROG cannot chain into a HARRIS Macro, it must chain directly into a program.
Program letter options cannot be passed via EXPROG (at this time).

HECLIB Subroutines GSTRRG

Chapter 7 – Miscellaneous Subroutines (HARRIS Specific) 7-37

7.16.12 GSTRRG – Get String Register

Purpose:

 GSTRRG obtains the contents of a HARRIS string (text) register.

Calling Sequence:

CALL GSTRRG (CNAME, CSTR, NSTR, ISTAT)

Declarations:

 CHARACTER CNAME*3, CSTR
 INTEGER NSTR, ISTAT

Argument Description:

 CNAME Input The three character name of the string register to obtain.

 CSTR Output A character variable that will contain the contents of the

register. If the length of CSTR is less than the register
contents, the string will be truncated.

 NSTR Output The number of characters in the string register. (NSTR is the

actual number of characters in the register, regardless of the
length of CSTR).

 ISTAT Output A status parameter. If the call was successful, ISTAT is

returned as zero.

Remarks:

 GSTRRG will retrieve up to 255 bytes from a register. Refer to the HARRIS System
Services Manual for more information on registers.

GNUMRG HECLIB Subroutines

7-38 Chapter 7 - Miscellaneous Subroutines (HARRIS Specific)

7.16.13 GNUMRG – Get Numeric Register

Purpose:

 GNUMRG obtains the contents of a HARRIS numeric register.

Calling Sequence:

CALL GNUMRG (CNAME, NRANGE, NVALUE, ISTAT)

Declarations:

 CHARACTER CNAME*3
 INTEGER NRANGE, NVALUE, ISTAT

Argument Description:

 CNAME Input The three character name of the numeric register to obtain.

 NRANGE Output If the register contains a numeric range, this is the increment

value. That is, NVALUE is the low value of the range and
NVALUE + NRANGE is the high value. If no range is set,
NRANGE is returned as zero.

 NVALUE Output The numeric value of the register.

 ISTAT Output A status parameter. If the call was successful, ISTAT is

returned as zero.

Remarks:

 Refer to the HARRIS System Services Manual for more information on registers.

HECLIB Subroutines SSTRG

Chapter 7 – Miscellaneous Subroutines (HARRIS Specific) 7-39

7.16.14 SSTRRG – Set String Register

Purpose:

 SSTRRG sets a HARRIS string (text) register.

Calling Sequence:

CALL SSTRRG (CNAME, CSTR, NSTR, ISTAT)

Declarations:

 CHARACTER CNAME*3, CSTR
 INTEGER NSTR, ISTAT

Argument Description:

 CNAME Input The three character name of the string register to set.

 CSTR Input The string to be set.

 NSTR Input The number of characters in CSTR.

 ISTAT Output A status parameter. If the call was successful, ISTAT is

returned as zero.

Remarks:

 SSTRRG will set up to 255 characters in a register. Refer to the HARRIS System
Services Manual for more information on registers.

SNUMRG HECLIB Subroutines

7-40 Chapter 7 - Miscellaneous Subroutines (HARRIS Specific)

7.16.15 SNUMRG – Set Numeric Register

Purpose:

 SNUMRG sets a HARRIS numeric register.

Calling Sequence:

CALL SNUMRG (CNAME, NRANGE, NVALUE, ISTAT)

Declarations:

 CHARACTER CNAME*3
 INTEGER NRANGE, NVALUE, ISTAT

Argument Description:

 CNAME Input The three character name of the numeric register to set.

 NRANGE Input If the register is to contain a numeric range, this is the

increment value. That is, NVALUE is the low value of the
range and NVALUE + NRANGE is the high value. If no range
is to be set, NRANGE should be zero.

 NVALUE Input The numeric value to set.

 ISTAT Output A status parameter. If the call was successful, ISTAT is

returned as zero.

Remarks:

 Refer to the HARRIS System Services Manual for more information on registers.

HECLIB Subroutines TRKSET

Chapter 7 – Miscellaneous Subroutines (HARRIS Specific) 7-41

7.16.16 TRKSET – Set Parameters for Program Tracking

Purpose:

 TRKSET provides a means of setting a program name and program version for tracking
HEC programs. Program tracking indicates how often programs were executed and the amount
of time they took. Contact the HEC for further information.

Calling Sequence:

CALL TRKSET (CITEM, CPARM)

Declarations:

 CHARACTER CITEM, CPARM

Argument Description:

 CITEM Input The item to set. This should either be 'PROGRAM' or 'DATE'

 CPARM Input The corresponding parameter. If the item to set is

'PROGRAM', this should be program name (up to six
characters). If the item to be set is the 'DATE' this should be
the version date of the program. The date to be set may be a
variety of styles (see remarks).

Remarks:

 TRKSET should be called at the beginning of the program, prior to any calls to
ATTACH.

 The date may be the month and year, or the day month and year. It may be either upper
or lower case, and of several styles as long as the year is the last part of the date. See the
YMDDAT subroutine documentation for the date styles that are recognized.

Example:

 CALL TRKSET ('PROGRAM', 'MYPROG')
 CALL TRKSET ('DATE', 'June 1986')
 C
 CALL ATTSET ('MYPROG: June 1986')
 CALL ATTACH (...

CPARMS HECLIB Subroutines

7-42 Chapter 7 - Miscellaneous Subroutines (MS-DOS Specific)

7.17 MS-DOS Specific Subroutines

7.17.1 CPARMS – Get Command Line Parameters

Purpose:

 Subroutine CPARMS returns the parameters entered on the command line following the
program name (used to execute the current program).

Calling Sequence:

CALL CPARMS (CLINE, NLINE)

Declarations:

 CHARACTER CLINE*80
 INTEGER*2 NLINE

Argument Description:

 CLINE Input CLINE is returned with the command line beginning just after

the last character of the program name. CLINE must be a long
enough variable to hold the longest possible command line.

 NLINE Output The number of characters in CLINE.

Example:

 If a program is executed as follows:

 MYPROG,File1 /r /X

then:

 CLINE = ',File1 /r /X'
 NLINE = 12

HECLIB Subroutines PRNCHR

Chapter 7 – Miscellaneous Subroutines (MS-DOS Specific) 7-43

7.17.2 PRNCHR – Send a Single Character to the Printer

Purpose:

 PRNCHR sends a single character to the printer.

Calling Sequence:

CALL PRNCHR (CCHAR)

Declarations:

 CHARACTER CCHAR*1

Argument Description:

 CCHAR Input The character to send to the printer.

PRNLN HECLIB Subroutines

7-44 Chapter 7 - Miscellaneous Subroutines (MS-DOS Specific)

7.17.3 PRNLN – Send a Line to the Printer

Purpose:

 PRNLN sends a line to the printer with the appropriate carriage return and line feed
characters added.

Calling Sequence:

CALL PRNLIN (CLINE)

Declarations:

 CHARACTER CLINE

Argument Description:

 CLINE Input The line to send to the printer.

HECLIB Subroutines DSKSPC

Chapter 7 – Miscellaneous Subroutines (MS-DOS Specific) 7-45

7.17.4 DSKSPC – Determine the Amount of Disk Space Left

Purpose:

 Subroutine DSKSPC returns the amount of available disk space for a specified drive.

Calling Sequence:

CALL DSKSPC (CDRIVE, ISPACE, ISTAT)

Declarations:

 CHARACTER CDRIVE*1
 INTEGER*2 ISTAT

Argument Description:

 CDRIVE Input The letter of the drive to check.

 ISPACE Output An INTEGER*4 variable returned with the number of bytes of

disk space available on CDRIVE.

 ISTAT Output A status parameter set to 0 if the call was successful. If the

drive is not available, ISTAT is returned with -1.

WHRFRM HECLIB Subroutines

7-46 Chapter 7 - Miscellaneous Subroutines (MS-DOS Specific)

7.17.5 WHRFRM – Get the Path of the Program Executing

Purpose:

 Subroutine WHRFRM obtains the drive and path of the currently executing program.

Calling Sequence:

CALL WHRFRM (CPATH)

Declarations:

 CHARACTER CPATH*68

Argument Description:

 CPATH Output The drive and path of the program. Unused characters are

blanked.

Example:

 CPATH = 'C:\PROGDIR\MYPROG.EXE'

HECLIB Subroutines CPLOCK

Chapter 7 – Miscellaneous Subroutines (MS-DOS Specific) 7-47

7.17.6 CPLOCK – Control the Caps Lock Key

Purpose:

 CPLOCK allows manipulation of the Caps Lock key.

Calling Sequence:

CALL CPLOCK (CFLAG, LSTATE)

Declarations:

 CHARACTER CFLAG
 LOGICAL LSTATE

Argument Description:

 CFLAG Input A flag indicating what to set the Caps Lock key to. The

following flags are valid:
 'SET' Turn the Caps Lock key on.
 'RESET' Turn the Caps Lock key off.
 'TOG' Toggle the Caps Lock key.
 'CURR' Just return the current state of the Caps Lock

key.

 LSTATE Output The state of the Caps Lock key after the desired action.

LSTAT is returned .TRUE. if Caps Lock is on.

NMLOCK HECLIB Subroutines

7-48 Chapter 7 - Miscellaneous Subroutines (MS-DOS Specific)

7.17.7 NMLOCK – Control the Num Lock Key

Purpose:

 NMLOCK allows manipulation of the Num Lock key.

Calling Sequence:

CALL NMLOCK (CFLAG, LSTATE)

Declarations:

 CHARACTER CFLAG
 LOGICAL LSTATE

Argument Description:

 CFLAG Input A flag indicating what to set the Num Lock key to. The

following flags are valid:
 'SET' Turn the Num Lock key on.
 'RESET' Turn the Num Lock key off.
 'TOG' Toggle the Num Lock key.
 'CURR' Just return the current state of the Num Lock

key.

 LSTATE Output The state of the Num Lock key after the desired action.

LSTAT is returned .TRUE. if Num Lock is on.

HECLIB Subroutines PRESED

Chapter 7 – Miscellaneous Subroutines (MS-DOS Specific) 7-49

7.17.8 PRESED – Which (Special) Keys are Pressed

Purpose:

 CALL PRESED (LALT, LCTRL, LLSHFT, LRSHFT)

Calling Sequence:

CALL PRESED (LALT, LCTRL, LLSHFT, LRSHFT)

Declarations:

 LOGICAL LALT, LCTRL, LLSHFT, LRSHFT

Argument Description:

 LALT Output Returns .TRUE. if the Alt key is pressed, .FALSE. if it is not.

 LCTRL Output Returns .TRUE. if the Control key is pressed.

 LLSHFT Output Returns .TRUE. if the left shift key is pressed.

 LRSHFT Output Returns .TRUE. if the right shift key is pressed.

FILEN HECLIB Subroutines

7-50 Chapter 7 - Miscellaneous Subroutines (MS-DOS Specific)

7.17.9 FILEN – Get File Names for a Directory

Purpose:

 Subroutine FILEN obtains the names and attributes of the files in a directory, based upon
a file name mask. FILEN is called once for each file, until a status flag indicates that all files
(matching the mask) have been found.

Calling Sequence:

 CALL FILEN (CMASK, IFATT, CMODE, CFNAME, IFSIZE, CFDATE,
 * CFTIME, IATT, ISTAT)

Declarations:

 CHARACTER CMASK, CMODE*1, CFNAME*12, CFDATE*6, CFTIME*8
 INTEGER*2 IFATT, IATT
 INTEGER*4 IFSIZE

Argument Description:

 CMASK Input The DOS mask used for defining file names, ending with a

zero byte (e.g., CMASK//CHAR(0)). To search for all files
(and subdirectories) in the current directory, use a mask of
'*.*'//CHAR(0). To search for all ".OUT" files, use a mask of
'*.OUT'//CHAR(0).

 IFATT Input The attributes of the files to search for, as defined in chapter 5

of the DOS Technical Reference Manual (page 5-11). To
search for all normal files, set IFATT = 0.

 CMODE Input A flag to indicate if this is the first call, or a "next" call. If the

first, set CMODE = 'F'. If a next call (after the first call), set
CMODE = 'N'.

 CFNAME Output The name of the file found.

 IFSIZE Output The size of the file found, in bytes.

 CFDATE Output The last written date of the file, returned in a format of

YYMMDD.

 CFTIME Output The last written time of the file, returned in a format of

HH:MM:SS.

 IATT Output The attributes of the file, as described in chapter 5 of the DOS

Technical Reference Manual (page 5-11).

HECLIB Subroutines FILEN

Chapter 7 – Miscellaneous Subroutines (MS-DOS Specific) 7-51

 ISTAT Output A status flag returned as zero if a file was found (and FILEN
should be called again), or returned as one if no more files
were found (the search should be ended).

Remarks:

 FILEN uses the DOS FIND FIRST (4EH) and FIND NEXT (4FH) functions for
searching. Refer to the documentation of those functions in the Dos Technical Reference
Manual for more information (Chapter 6).

Example:

 Find all files in the current directory with an extension of '.DAT'. Place these names in
the character array CNAMES.

 CHARACTER CFNAME*12, CFDATE*6, CFTIME*8, CNAMES(100)*12
 INTEGER*2 IFATT, IATT
 INTEGER*4 IFIZE
 C
 NNAMES = 0
 CALL FILEN ('*.DAT'//CHAR(0), 0, 'F', CFNAME,
 * IFSIZE, CFDATE, CFTIME, IATT, ISTAT)
 IF (ISTAT.NE.0) GO TO 100
 C
 NNAMES = NNAMES + 1
 CNAMES(NNAMES) = CFNAME
 C
 10 CONTINUE
 CALL FILEN ('*.DAT'//CHAR(0), 0, 'N', CFNAME,
 * IFSIZE, CFDATE, CFTIME, IATT, ISTAT)
 IF (ISTAT.NE.0) GO TO 100
 NNAMES = NNAMES + 1
 IF (NNAMES.GT.100) GO TO 900
 CNAMES(NNAMES) = CFNAME
 GO TO 10
 C
 100 CONTINUE

 ...

GETPTH HECLIB Subroutines

7-52 Chapter 7 - Miscellaneous Subroutines (MS-DOS Specific)

7.17.10 GETPTH – Get the Current Path

Purpose:

 GETPTH obtains the current path (directory), given the letter of the drive for the path
desired.

Calling Sequence:

CALL GETPTH (CDRIVE, CPATH)

Declarations:

 CHARACTER CDRIVE*1, CPATH*68

Argument Description:

 CDRIVE Input The letter of the drive for the path desired.

 CPATH Output The current path of that drive (including the drive letter). If no

drive letter is specified in CDRIVE, or the drive letter is
invalid, the default drive is used.

Remarks:

 If CDRIVE is not a valid drive, or a blank, CPATH is returned with the default drive and
path.

Example:

 If:

 CALL GETPTH ('A', CPATH)

then:

 CPATH = 'A:\MYDIR'

HECLIB Subroutines GETDRV

Chapter 7 – Miscellaneous Subroutines (MS-DOS Specific) 7-53

7.17.11 GETDRV – Get the Default Drive

Purpose:

 GETDRV obtains the default drive letter.

Calling Sequence:

CALL GETDRV (CDRIVE)

Declarations:

 CHARACTER CDRIVE*1

Argument Description:

 CDRIVE Output The letter of the current default drive.

SETDRV HECLIB Subroutines

7-54 Chapter 7 - Miscellaneous Subroutines (MS-DOS Specific)

7.17.12 SETDRV – Set the Default Drive

Purpose:

 SETDRV sets the default drive to the letter specified.

Calling Sequence:

CALL SETDRV (CDRIVE, IDRIVE)

Declarations:

 CHARACTER CDRIVE*1
 INTEGER*2 IDRIVE

Argument Description:

 CDRIVE Input The letter to set the default drive to.

 IDRIVE Output The number of drives in the system.

HECLIB Subroutines CHDIR

Chapter 7 – Miscellaneous Subroutines (MS-DOS Specific) 7-55

7.17.13 CHDIR – Change Directory

Purpose:

 CHDIR changes the current directory to the directory specified. Refer to the CHDIR
function (3BH) in the DOS Technical Reference Manual for more information (page 6-121).

Calling Sequence:

CALL CHDIR (CDIR, ISTAT)

Declarations:

 CHARACTER CDIR
 INTEGER*2 ISTAT

Argument Description:

 CDIR Input The name of the directory to change to. This name must be

terminated by a zero value byte (e.g., CDIR//CHAR(0)).

 ISTAT Output A status parameter, set to zero if the call was successful.

Nonzero error codes may be found on page 6-42 of the DOS
Technical Reference Manual.

MKDIR HECLIB Subroutines

7-56 Chapter 7 - Miscellaneous Subroutines (MS-DOS Specific)

7.17.14 MKDIR – Make Directory

Purpose:

 MKDIR creates the specified subdirectory. Refer to the MKDIR function (39H) in the
DOS Technical Reference Manual for more information (page 6-119).

Calling Sequence:

CALL MKDIR (CDIR, ISTAT)

Declarations:

 CHARACTER CDIR
 INTEGER*2 ISTAT

Argument Description:

 CDIR Input The name of the directory to create. This name must be

terminated by a zero value byte (e.g., CDIR//CHAR(0)).

 ISTAT Output A status parameter, set to zero if the call was successful.

Nonzero error codes may be found on page 6-42 of the DOS
Technical Reference Manual.

HECLIB Subroutines RMDIR

Chapter 7 – Miscellaneous Subroutines (MS-DOS Specific) 7-57

7.17.15 RMDIR – Remove Directory

Purpose:

 RMDIR removes the specified subdirectory. Refer to the RMDIR function (3AH) in the
DOS Technical Reference Manual for more information (page 6-120).

Calling Sequence:

CALL RMDIR (CDIR, ISTAT)

Declarations:

 CHARACTER CDIR
 INTEGER*2 ISTAT

Argument Description:

 CDIR Input The name of the directory to remove. This name must be

terminated by a zero value byte (e.g., CDIR//CHAR(0)).

 ISTAT Output A status parameter, set to zero if the call was successful.

Nonzero error codes may be found on page 6-42 of the DOS
Technical Reference Manual.

CRDIR HECLIB Subroutines

7-58 Chapter 7 - Miscellaneous Subroutines (MS-DOS Specific)

7.17.16 CRDIR – Create Directories

Purpose:

 CRDIR creates all the subdirectories of the specified path. This is different than MKDIR
in that MKDIR creates only one directory, while CRDIR creates all the directories specified in
the path (that do not already exist).

Calling Sequence:

CALL CRDIR (CPATH, ISTAT)

Declarations:

 CHARACTER CPATH
 INTEGER*2 ISTAT

Argument Description:

 CPATH Input The path containing the directories to create. If the drive is not

included, the default drive will be used.

 ISTAT Output A status parameter, set to zero if the call was successful.

Nonzero error codes may be found on page 6-42 of the DOS
Technical Reference Manual.

Example:

 CALL CRDIR ('D:\DIRA\DIRB\DIRC')

This is equivalent to:

 MKDIR D:\DIRA
 MKDIR D:\DIRA\DIRB
 MKDIR D:\DIRA\DIRB\DIRC

HECLIB Subroutines GETSUP

Chapter 7 – Miscellaneous Subroutines (MS-DOS Specific) 7-59

7.17.17 GETSUP – Get Path of a Supplemental File

Purpose:

 GETSUP obtains the path for the specified file. Such a file would be one used by the
calling program (e.g., the program help file), but whose exact location is unknown (depending on
how the program was installed).

Calling Sequence:

CALL GETSUP (CNAME, CPATH, NPATH)

Declarations:

 CHARACTER CNAME, CPATH
 INTEGER*2 NPATH

Argument Description:

 CNAME Input The name of the file to search for. If CNAME is blanked,

GETSUP will look for the first existing path in the search order
listed below.

 CPATH Output The complete path of the file, including the drive.

 NPATH Output The number of characters in CPATH. NPATH is returned with

0 if the file could not be found. If the number of actual
characters in the path was more than the length of CPATH,
NPATH is returned as -1.

Remarks:

 The search order of GETSUP is as follows:
 1. Searches the Environment Table for HECSUP. If found, that directory is

searched.
 2. If the program resides in directory \HECEXE, the directory \HECEXE\SUP is

searched.
 3. The directory where the program resides.
 4. The default directory is searched.

FSTENV/NXTENV HECLIB Subroutines

7-60 Chapter 7 - Miscellaneous Subroutines (MS-DOS Specific)

7.17.18 FSTENV/NXTENV – Get the Environment Table

Purpose:

 Subroutines FSTENV and NXTENV returns items in the environment table. FSTENV
returns the first item in the table, and NXTENV returns subsequent items. Items in the
environment table may include the PATH, and the prompt. A list of the item set will be
displayed by executing the DOS 'SET' command.

Calling Sequence:

 CALL FSTENV (CITEM, NITEM)
 CALL NXTENV (CITEM, NITEM)

Declarations:

 CHARACTER CITEM
 INTEGER*2 NITEM

Argument Description:

 CITEM Output The item from the environment table.

 NITEM Output The number of characters in CITEM. NITEM is returned with

0 if there are no more items in the table. If the number of
actual characters for the item was more than the length of
CITEM, NITEM is returned as -1.

Example:

 C Print out all items in the Environment Table
 CHARACTER CITEM*80

 C
 CALL FSTENV (CITEM, NITEM)
 IF (NITEM.EQ.0) GO TO 100
 IF (NITEM.EQ.-1) GO TO 900
 WRITE (6, 10) CITEM(1:NITEM)
 10 FORMAT (A)

 C
 20 CALL NXTENV (CITEM, NITEM)
 IF (NITEM.EQ.0) GO TO 100
 IF (NITEM.EQ.-1) GO TO 900
 WRITE (6, 10) CITEM(1:NITEM)
 GO TO 20

HECLIB Subroutines ICAT

Chapter 7 – Miscellaneous Subroutines (MS-DOS Specific) 7-61

7.17.19 ICAT – Concatenate Two Bytes into One Word

Purpose:

 Integer function ICAT takes the lower bytes of two integer words and concatenates them
into one integer word. The higher bytes of each word are ignored.

Calling Sequence:

IWORD = ICAT (IHIGH, ILOW)

Declarations:

 INTEGER*2 ICAT, IHIGH, ILOW

Argument Description:

 IHIGH Input The lower byte of this integer word will be placed in the higher

byte of ICAT.

 ILOW Input The lower byte of this integer word will be placed in the lower

byte of ICAT.

 ICAT Output The concatenated word.

Example:

 I = ICAT (1,0)
 ICAT returns I = 256

 I = ICAT (0,1)
 ICAT returns I = 1

DCAT HECLIB Subroutines

7-62 Chapter 7 - Miscellaneous Subroutines (MS-DOS Specific)

7.17.20 DCAT – De-Concatenate One Word into Two Bytes

Purpose:

 Subroutine DCAT takes an integer word and de-concatenates it into the lower bytes of
two integer words.

Calling Sequence:

CALL DCAT (IWORD, IHIGH, ILOW)

Declarations:

 INTEGER*2 IWORD, IHIGH, ILOW

Argument Description:

 IWORD Input The integer word to be de-concatenated.

 IHIGH Output The higher byte of IWORD (placed in the lower byte position

of IHIGH with the higher byte zeroed).

 ILOW Output The lower byte of IWORD (placed in the lower byte position

of ILOW with the higher byte zeroed).

Example:

 CALL DCAT (256, IHIGH, ILOW)
 returns IHIGH = 1, ILOW = 0

 CALL DCAT (255, IHIGH, ILOW)
 returns IHIGH = 0, ILOW = 255

HECLIB Subroutines DBITS

Chapter 7 – Miscellaneous Subroutines (MS-DOS Specific) 7-63

7.17.21 DBITS – Determine Which Bits of a Byte are Set

Purpose:

 DBITS takes the lower byte of an integer words and determines which bits are set. The
status of each bit is indicated by a 1 if that bit is on, or a 0 if that bit is off.

Calling Sequence:

CALL DBITS (IBYTE, IB7, IB6, IB5, IB4, IB3, IB2, IB1, IB0)

Declarations:

 INTEGER*2 IBYTE, IB7, IB6, IB5, IB4, IB3, IB2, IB1, IB0

Argument Description:

 IBYTE Input The integer word of which the lower byte is to be used in

determining which bits are set.

 IB7 Output The status of the 7th (highest) bit. This integer is set to one (1)

if the bit is on, zero (0) if the bit is off.

 IB6 Output The status of the 6th bit.

 IB5 Output The status of the 5th bit.

 IB4 Output The status of the 4th bit.

 IB3 Output The status of the 3th bit.

 IB2 Output The status of the 2th bit.

 IB1 Output The status of the 1st bit.

 IB0 Output The status of the 0th (lowest) bit.

 HECLIB Subroutines

Chapter 8 – Special Purpose Subroutines 8-1

8 Special Purpose Subroutines

 This chapter describes those subroutines that are used for special purposes on HARRIS
machines only. These subroutines are low-level subroutines that are not generally called by
typical programs. Computer manual are needed to use a considerable number of these
subroutines.

INFO2 HECLIB Subroutines

8-2 Chapter 8 – Special Purpose Subroutines (HARRIS Specific)

8.1 HARRIS Specific Subroutines

8.1.1 INFO2 – Get Information About This Session

Purpose:

 INFO2 returns several pieces of information about the current session. This includes
such items as the PDN, the name of the program running, the priority of the program, the
qualifier, the user’s name, and the starting time of the session.

Calling Sequence:

 CALL INFO2 (CPTYPE, CPDN, IPDN, IPRIOR, CPROG,
• * CDQUAL, CSQUAL, CUNAME, CUNMUB, CSTIME)

Declarations:

 CHARACTER CPTYPE*3, CPDN*3, CPROG*17, CDQUAL*8
 CHARACTER CSQUAL*8, CUNAME*12, CUNUMB*6, CSTIME*16
 INTEGER IPDN, IPRIOR

Argument Description:

 CPTYPE Output The program type. CPTYPE will be returned as one of the

following:
 'INT' Interactive
 'CP' Control Point
 'RT' Real Time

 CPDN Output The physical device number that the program is running under.

This is a three character string containing the PDN or the
control point letter (e.g., '52', or 'F'). If the program is a real-
time program, CPDN will contain the PDN that it was initiated
from.

 IPDN Output The physical device number in an integer representation. If the

program is running at a control point, IPDN is returned as zero.
If the program is running interactively, IPDN will be returned
positive containing the PDN of the terminal.

 IPRIOR Output The current priority of the session (e.g., 15).

 CPROG Output The file name of the program executing. This is the complete

name of the file of the program, including the qualifier. For
example, '1000SYSS*MYPROGX'.

HECLIB Subroutines INFO2

Chapter 8 – Special Purpose Subroutines (HARRIS Specific) 8-3

 CDQUAL Output The default qualifier set.

 CSQUAL Output The qualifier the user signed-on under.

 CUNAME Output The twelve character user’s name associated with this session.

 CUNUMB Output The six character user’s number.

 CSTIME Output The starting date and time of this session (or when this

program was initiated, if a real time program). CSTIME is
returned in the format: 'DD MMM YY HH:MM:SS' For
example: '16 JAN 86 14:30:15'

Remarks:

 Make sure the character variables declared are of the correct length, as shown in the
declarations.

GRNSIZ HECLIB Subroutines

8-4 Chapter 8 – Special Purpose Subroutines (HARRIS Specific)

8.1.2 GRNSIZ – Get the Granule Size of a File

Purpose:

 GRNSIZ returns the granule size of an assigned file.

Calling Sequence:

CALL GRNSIZ (UNIT, IGSIZE)

Declarations:

 INTEGER IUNIT, IGSIZE

Argument Description:

 IUNIT Input The unit number assigned to the file to determine the granule

size of.

 IGSIZE Output The granule size of the file.

HECLIB Subroutines FOPEN

Chapter 8 – Special Purpose Subroutines (HARRIS Specific) 8-5

8.1.3 FOPEN – Fast Open

Purpose:

 FOPEN opens a file without changing the last accessed or written date and time. This
reduces the time in connecting to a file. FOPEN should only be called when time is of the
essence. The file must have been previously assigned.

Calling Sequence:

CALL FOPEN (UNIT, ISTAT)

Declarations:

 INTEGER IUNIT, ISTAT

Argument Description:

 IUNIT Input The unit number assigned to the file to open.

 ISTAT Output A status parameter set to zero if the call was successful.

Remarks:

 See the VOS I/O Services Manual section on $I/O (function code ’13) for more
information and return status codes.

GETQDD HECLIB Subroutines

8-6 Chapter 8 – Special Purpose Subroutines (HARRIS Specific)

8.1.4 GETQDD – Get the Qualifier Disc Directory of a File

Purpose:

 GETQDD returns a file’s QDD (Qualifier Disc Directory) and similar information. This
information includes the file name, size, last referenced date/time, etc. Refer to the $DASAVE
command in the VOS System Services Manual for a complete list.

Calling Sequence:

CALL GETQDD (IAREA, IQUAL, IQDD)

Declarations:

 INTEGER IAREA(2), IQUAL(2), IQDD(28)

Argument Description:

 IAREA Input The file name, in truncated ASCII.

 IQUAL Input The qualifier, in truncated ASCII.

 IQDD Output The QDD and other information. This is the list parameters

that follows the $DASAVE command. Note that PARLIST +0
corresponds to element one of array IQDD. Also note that the
date and times are coded in a special format.

HECLIB Subroutines SYSLV

Chapter 8 – Special Purpose Subroutines (HARRIS Specific) 8-7

8.1.5 SYSLV – Get Current Operating System Level

Purpose:

 SYSLV returns the current VOS operation system version. Only the first 3 characters of
the level are returned.

Calling Sequence:

CALL SYSLV (ILEVEL)

Declarations:

 INTEGER ILEVEL

Argument Description:

 ILEVEL Output The current operation system level returned in a Hollerith

format (A3).

Example:

 CALL SYSLV (ILEVEL)
 WRITE (3,’ (1X,A3)’)ILEVEL

This is printed out as:

 5.1

NXTLFN HECLIB Subroutines

8-8 Chapter 8 – Special Purpose Subroutines (HARRIS Specific)

8.1.6 NXTLFN – Determine Units of All Files Assigned

Purpose:

 NXTLFN will determine the unit numbers and open status of all files assigned. This is
accomplished by calling NXTLFN several times, one for each unit, until NXTLFN indicates no
more units are opened. Unit numbers are returned in a sequential order (beginning with unit 0).

Calling Sequence:

CALL NXTLFN (IUNIT, IOPEN)

Declarations:

 INTEGER IUNIT, IOPEN

Argument Description:

 IUNIT Input/ To begin the search for files assigned, set IUNIT to negative
 Output one (-1). NXTLFN will return the unit number of each file

assigned in IUNIT. When all files assigned have been
determined, IUNIT will be returned as -1.

 IOPEN Output A flag indicating whether this file is opened or not. IOPEN is

returned as 1 for an opened file, 0 if the file is not open.

Example:

 C PRINT THE UNIT NUMBER OF ALL ASSIGNED FILES
 IUNIT = -1
 10 CONTINUE
 CALL NXTLFN (IUNIT, IOPEN)
 IF (IUNIT.EQ.-1) GO TO 30
 WRITE (6,20) IUNIT, IOPEN
 20 FORMAT (‘ UNIT ASSIGNED:’I4,’ OPEN STATUS: ‘,I2)
 GOT TO 10
 C
 30 CONTINUE

HECLIB Subroutines TRNSBK

Chapter 8 – Special Purpose Subroutines (HARRIS Specific) 8-9

8.1.7 TRNSBK – Transmit a Break

Purpose:

 TRNSBK sends a break to a physical device on an Async port. TRNSBK is typically
used to send a break to a resourced modem.

Calling Sequence:

CALL TRNSBK (IUNIT, ISTAT)

Declarations:

 INTEGER IUNIT, ISTAT

Argument Description:

 IUNIT Input The unit number connected to the PDN to send the break to.

 ISTAT Output A status parameter, returned zero if no error occurred.

Remarks:

 The unit must be connected to an Async port. A break will not be sent on a TTY or CRT
port.

SPINT HECLIB Subroutines

8-10 Chapter 8 – Special Purpose Subroutines (HARRIS Specific)

8.1.8 SPINT – Send a Special Interrupt to a Program

Purpose:

 Special Interrupt provides a means for two or more programs to communicate with each
other. One program “interrupts” the other program (regardless of what it is doing), optionally
passing a buffer of information.

 Special interrupt is usually used with real-time programs. Refer to the $SPINT
documentation in the VOS System Services (Chapter 12) for information on interrupts. It is
intended that the $SPINT documentation be the primary source of information, and should be
referenced along with this documentation.

Subroutine Summary:

 SPINIT - Initialize special interrupts
 SPINFO - Get the information buffer
 SPDID - Define program identification
 SPIP - Initiate a sub-system program with special interrupts
 SPTRIG - Trigger a special interrupt
 SPHINT - Hold interrupts
 SPRINT - Release interrupts
 SPWAIT - Wait for interrupt
 SPDLAY - Wait a specified amount of time for an interrupt
 IRETRN - Return from an interrupt subroutine

HECLIB Subroutines SPINIT

Chapter 8 – Special Purpose Subroutines (HARRIS Specific) 8-11

8.1.8.1 SPINIT – Initialize Special Interrupts

Purpose:

 SPINIT enables special interrupts to be sent or received. SPINIT must be called prior to
any other special interrupt routines, and before any interrupts take place. This is the $SPINT
function.

Calling Sequence:

CALL SPINIT (ILEVEL, IBUFF, sub-name, ISTAT)

Declarations:

 INTEGER ILEVEL, IBUFF(9), ISTAT
 EXTERNAL sub-name

Argument Description:

 ILEVEL Input The group/level specification as defined in $SPINT

documentation. Bit 23 enables or disable the special interrupt.

 IBUFF Input/ A nine word integer buffer, returned with. The information
 Output defined in chapter 12.2.1 of the VOS System Services Manual.

 sub-name Input The name of the subroutine to execute when the program

receives a special interrupt. This must be a literal, and must be
define as an external. Returns from this subroutine should be
made by a call to IRETRN, instead of a FORTRAN RETURN.

 ISTAT Output A status parameter set to zero if the call was successful.

SPINFO HECLIB Subroutines

8-12 Chapter 8 – Special Purpose Subroutines (HARRIS Specific)

8.1.8.2 SPINFO – Get the Information Buffer Passed

Purpose:

 SPINFO retrieves the information buffer that was optionally passed to it via a SPTRIG
call. This is the $SPINFO function.

Calling Sequence:

CALL SPINFO (INFOB, NINFO, ISTAT)

Declarations:

 INTEGER NINFO, INFOB(NINFO), ISTAT

Argument Description:

 INFOB Output The information buffer. This is integer array, NINFO words

long.

 NINFO Input The dimension of INFOB.

 ISTAT Output A status parameter set to zero if the call was successful.

HECLIB Subroutines SPDID

Chapter 8 – Special Purpose Subroutines (HARRIS Specific) 8-13

8.1.8.3 SPDID – Define Program Identification

Purpose:

 SPDID defines the identifier (name) of the program. This is the $DEFID function.

Calling Sequence:

CALL SPDID (INAME, ISTAT)

Declarations:

 INTEGER INAME(2), ISTAT

Argument Description:

 INAME Input A six character Hollerith string containing the name or ID of

the program for other programs to refer to.

 ISTAT Output A status parameter set to zero if the call was successful.

SPIP HECLIB Subroutines

8-14 Chapter 8 – Special Purpose Subroutines (HARRIS Specific)

8.1.8.4 SPIP – Initiate a Sub-System Program with Special Interrupts

Purpose:

 SPIP initiates a sub-system real-time program with special interrupts. It does not need to
be called for program not using a sub-system. This is the $INITSS function.

Calling Sequence:

CALL SPIP (ITAREA, ITQUAL, IPRI, IPAR, IPID, ILEVEL, IBUFF, ISTAT)

Declarations:

 INTEGER ITAREA(2), ITQUAL(2), IPRI, IPAR, IPID(2)
 INTEGER ILEVEL, IBUFF(9), ISTAT

Argument Description:

 ITAREA Input The file (area) name of the program to initiated, in truncated

ASCII.

 ITQUAL Input The qualifier of the program’s file name, in truncated ASCII.

 IPRI Input The priority to initiate it at.

 IPAR Input A parameter to be sent to the program via the "K" register.

 IPID Input A six character program identifier, as defined in the SPDID

subroutine.

 ILEVEL Input The group/level word, as defined in the SPINIT subroutine.

 IBUFF Input/ The nine word buffer define in the SPINIT subroutine.
 Output

 ISTAT Output A status parameter, set to zero if the call was successful.

HECLIB Subroutines SPTRIG

Chapter 8 – Special Purpose Subroutines (HARRIS Specific) 8-15

8.1.8.5 SPTRIG – Trigger a Special Interrupt

Purpose:

 SPTRIG initiates a sub-system real-time program with special interrupts. It does not
need to be called for programs not using a sub-system. This is the $INITSS function.

Calling Sequence:

CALL SPTRIG (IPID, INWORD, ILEVEL, INFOB, NINFO, ISTAT)

Declarations:

 INTEGER IPID(2), INWORD, ILEVEL, INFOB(NINFO), ISTAT

Argument Description:

 IPID Input The identifier of the program to send the interrupt to. This is

the same identifier used in the SPDID call (which the receiving
program must have called).

 INWORD Input A single information word that is passed to the receiving

program.

 ILEVEL Input The group/level word defined in the SPINIT call.

 INFOB Input When more than one word of information needs to be passed,

the information is passed via this array. The receiving program
obtains.

 NINFO Input The number of words in INFOB to pass.

 ISTAT Output A status parameter, set to zero if the call was successful.

SPHINT HECLIB Subroutines

8-16 Chapter 8 – Special Purpose Subroutines (HARRIS Specific)

8.1.8.6 SPHINT – Hold Interrupts

Purpose:

 SPHINT holds interrupts so that they queue instead of interrupting the program. This is
usually called after a program has been interrupted, so that another interrupt does not interrupt
the current process. Interrupts are released by calling SPRINT. Returns from and interrupt
processing subroutine should be made my call to IRETRN, not a FORTRAN RETURN. This is
the $HPINT function.

Calling Sequence:

CALL SPHINT

Declarations:

 CHARACTER CNAMES(MAXNAM)*(*)
 INTEGER INAMES(MAXNAM+5)

HECLIB Subroutines SPRINT

Chapter 8 – Special Purpose Subroutines (HARRIS Specific) 8-17

8.1.8.7 SPRINT – Release Interrupts

Purpose:

 SPRINT releases interrupts after a call to SPHINT is made. SPRINT should be called
just prior to IRETRN. This is he $RPINT function.

Calling Sequence:

CALL SPRINT

SPWAIT HECLIB Subroutines

8-18 Chapter 8 – Special Purpose Subroutines (HARRIS Specific)

8.1.8.8 SPWAIT – Wait for Interrupts

Purpose:

 SPDLAY causes the program to wait a specified amount of time for an interrupt. If the
time specified expires, a normal return will occurs. If an interrupt is received, that interrupt will
be processed, and any remaining time to wait will be canceled. This is the $IDELAY function.

Calling Sequence:

CALL SPWAIT

HECLIB Subroutines SPDLAY

Chapter 8 – Special Purpose Subroutines (HARRIS Specific) 8-19

8.1.8.9 SPDLAY – Wait a Specified Amount of Time for an Interrupt

Purpose:

 Subroutine ABORT initiates an abort procedure (which causes certain error processes to
occur), then stops the program. On HARRIS computers, this includes printing the program
address when the abort occurred, and setting certain error registers (this will cause a batch job to
terminate). If walkback is set, the program will print the location and subroutines called to this
location. ABORT should be called only when a significant error occurs.

Calling Sequence:

CALL SPDLAY (NTICKS, ISTAT)

Declarations:

 INTEGER NTICKS, ISTAT

Argument Description:

 NTICKS Input The number of clock ticks to wait. Clock ticks are given in

1/120th of a second.

 ISTAT Output A status parameter set to zero if the call was successful.

IRETRN HECLIB Subroutines

8-20 Chapter 8 – Special Purpose Subroutines (HARRIS Specific)

8.1.8.10 IRETRN – Return from an Interrupt Subroutine

Purpose:

 IRETRN returns an interrupt processing subroutine to the calling program. IRETRN
should always be called instead of the FORTRAN RETURN statement. This is the $IRETRN
function.

Calling Sequence:

CALL IRETRN

HECLIB Subroutines

Chapter 8 – Special Purpose Subroutines (HARRIS Specific) 8-21

8.1.8.11 Special Interrupt Example

 The use of special interrupts can be quiet involved. The following example briefly shows
the order that the subroutines should be called in.

 PROGRAM MYPROG
 C
 C This is Real-time program that looks at a resourced port.
 C When at least 10 characters arrive, it stores the data in a
 C buffer and sends it to real-time program PRDATA
 C via an interrupt.
 C PRDATA may send info back to MYPROG.
 C
 EXTERNAL PROSUB
 COMMON/INTBLK/ INTBUF(9)
 INTEGER ITAREA, ITQUAL
 C
 DATA ILEVEL/’02000100/
 DATA PID /6HMYPROG/
 DATA PIDPR /6HPRDATA/
 C
 C Initialize interrupts (if a interrupt is received,
 C PROSUB is called)
 CALL SPINIT (ILEVEL, INTUBUF, PROSUB, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 CALL SPDID (PID, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 C
 C Initialize processing program “PRDATA”
 CALL ATOTA (8H0000SYST, ITQUAL, 8)
 CALL ATOTA (8HPRDATA, ITAREA, 8)
 CALL SPIP (ITAREA, ITQUAL, 30, 0, PIDPR, ILEVEL, INTBUF, ISTAT)
 IF (ISTAT.NE.0) GOT TO 920
 C
 C Now resource the port, etc.
 . . .
 C
 C Assume that NCHS characters have arrived. Send them to PRDATA
 C via an interrupt. (Send the number of characters
 C as the information word)
 NBUFF = (N-1)/3+1
 CALL SPTRIG (PIDPR, N, ILEVEL, IBUFF, NBUFF, ISTAT)
 C
 . . .

 HECLIB Subroutines

8-22 Chapter 8 – Special Purpose Subroutines (HARRIS Specific)

 SUBROUTINE PROSUB
 C
 C This subroutine is called if MYPROG is interrupted
 C
 INTEGER INFOB(100)
 C
 C Hold any interrupts
 CALL SPHINT
 C
 C Get any information passed
 NWORD = 100
 CALL SPINFO (INFOB, NWORD, ISTAT)
 C Process that information
 . . .

 C All done – go back to main program
 C First, release interrupts
 CALL SPRINT
 C Now return, using IRETRN
 CALL IRETRN
 END

 Program PRDATA would have similar calls and a similar PROSUB subroutine. Because
PRDATA was initiated by SPIP, PRDATA does not need a SPINIT or SPDID call. If PRDATA
was initiated via some other means (e.g., it was initiated via a call to SPTRIG.

 PRDATA’s main loop may be a call to SPWAIT:

 10 CONTINUE
 CALL SPWAIT
 GO TO 10

HECLIB Subroutines GETA

Chapter 8 – Special Purpose Subroutines (HARRIS Specific) 8-23

8.1.9 GETA – Get the A Register

Purpose:

 GETA returns the current value of the "A" software register.

Calling Sequence:

CALL GETA (IA)

Declarations:

 INTEGER IA

Argument Description:

 IA Output IA is returned with the current value of the "A" register.

GETE HECLIB Subroutines

8-24 Chapter 8 – Special Purpose Subroutines (HARRIS Specific)

8.1.10 GETE – Get the E Register

Purpose:

 GETE returns the current value of the "E" software register.

Calling Sequence:

CALL GETE (IE)

Declarations:

 INTEGER IE

Argument Description:

 IE Output IE is returned with the current value of the "E" register.

HECLIB Subroutines GETK

Chapter 8 – Special Purpose Subroutines (HARRIS Specific) 8-25

8.1.11 GETK – Get the K Register

Purpose:

 GETK returns the current value of the K software register. The K register holds the
program parameter passed to a real-time program. GETK will retrieve this parameter if it is the
very first executable statement in the program.

Calling Sequence:

CALL GETK (K)

Declarations:

 INTEGER K

Argument Description:

 K Output K is returned with the current value of the "K" register.

CHRLOC HECLIB Subroutines

8-26 Chapter 8 – Special Purpose Subroutines (HARRIS Specific)

8.1.12 CHRLOC – Get the Address of a Character Variable

Purpose:

 CHRLOC is a low level routine that retunes the equivalent integer address and length of a
character variable. The subroutine is usually used for machine specific low level operations.

Calling Sequence:

CALL CHRLOC (CHR, IWADD, IPOS, ILEN)

Declarations:

 CHARACTER CHR
 INTEGER IWADD, IPOS, ILEN

Argument Description:

 CHR Input The character variable.

 IWADD Output The equivalent integer word address of the character variable.

 IPOS Output The byte position within IWADD of the variable. IPOS may

range from 1 to 3, with 1 being the left-most byte.

 ILEN Output The length of the character variable, in bytes.

HECLIB Subroutines OPTSET

Chapter 8 – Special Purpose Subroutines (HARRIS Specific) 8-27

8.1.13 OPTSET – Set Program Options

Purpose:

 OPSET sets the option word for a program. This is normally called during chaining.

Calling Sequence:

CALL OPSET (IBITS)

Declarations:

 INTEGER IBITS

Argument Description:

 IBITS Input The option word to be set, with bits indicating which letter

option is set. Bit 0 corresponds to option A, bit 23 corresponds
to option X.

MEMSIZ HECLIB Subroutines

8-28 Chapter 8 – Special Purpose Subroutines (MS-DOS Specific)

8.2 MS-DOS Specific Subroutines

8.2.1 MEMSIZ – Memory Size

Purpose:

 MEMSIZ returns the amount of RAM installed in the computer. This is not the amount
of free memory available.

Calling Sequence:

CALL MEMSIZ (IMEM)

Declarations:

 INTEGER*2 IMEM

Argument Description:

 IMEM Output The amount of RAM, in kilobytes (e.g., 640).

HECLIB Subroutines KEYBRD

Chapter 8 – Special Purpose Subroutines (MS-DOS Specify) 8-29

8.2.2 KEYBRD – Keyboard Interrupt

Purpose:

 The subroutine KEYBRD provides direct access to the BIOS keyboard control. Refer to
section 5 of the IBM Technical Reference Manual fore information regarding this (page 5-46).

Calling Sequence:

CALL KEYBRD (IAX, IBX, ICX, IDX, IFLAGS)

Declarations:

 INTEGER*2 IAX, IBX, ICX, IDX, IFLAGS

Argument Description:

 IAX Input/ The AX register.
 Output

 IBX Input/ The BX register.
 Output

 ICX Input/ The CX register.
 Output

 IDX Input/ The DX register.
 Output

 IFLAGS Input/ The FLAGS register.
 Output

VIDEO HECLIB Subroutines

8-30 Chapter 8 – Special Purpose Subroutines (MS-DOS Specific)

8.2.3 VIDEO – Video Interrupt

Purpose:

 The subroutine VIDEO provides a direct access to the BIOS display control. Refer to
section 5 (I/O Support: Display) of the IBM Technical Reference Manual for information.

Calling Sequence:

CALL VIDEO (IAX, IBX, ICX, IDX)

Declarations:

 INTEGER*2 IAX, IBX, ICX, IDX

Argument Description:

 IAX Input/ The AX register.
 Output

 IBX Input/ The BX register.
 Output

 ICX Input/ The CX register.
 Output

 IDX Input/ The DX register.
 Output

HECLIB Subroutines GETPSP

Chapter 8 – Special Purpose Subroutines (MS-DOS Specify) 8-31

8.2.4 GETPSP – Get Program Segment Prefix

Purpose:

 GETPSP returns the segment address of the program segment prefix (PSP). Refer to
chapter 7 of the DOS Technical Reference Manual for more information.

Calling Sequence:

CALL GETPSP (ISEG)

Declarations:

 INTEGER*2 ISEG

Argument Description:

 ISEG Output The segment address of the PSP.

PEEKB HECLIB Subroutines

8-32 Chapter 8 – Special Purpose Subroutines (MS-DOS Specific)

8.2.5 PEEKB – Get Byte from PSP

Purpose:

 PEEKB returns the value of the byte from the memory location specified.

Calling Sequence:

CALL PEEKB (ISEG, IOFF, IVAL)

Declarations:

 INTEGER*2 ISEG, IOFF, IVAL

Argument Description:

 ISEG Input The segment address of the PSP.

 IOFF Input The offset from ISEG, in bytes.

 IVAL Output The value of the byte in memory at the location (given in the

lower byte of IVAL).

HECLIB Subroutines PEEKW

Chapter 8 – Special Purpose Subroutines (MS-DOS Specify) 8-33

8.2.6 PEEKW – Get Word from PSP

Purpose:

 PEEKW returns the value of the word from the memory location specified.

Calling Sequence:

CALL PEEKW (ISEG, IOFF, IVAL)

Declarations:

 INTEGER*2 ISEG, IOFF, IVAL

Argument Description:

 ISEG Input The segment address of the PSP.

 IOFF Input The offset from ISEG, in bytes.

 IVAL Output The value of the word in memory at that location.

POKEB HECLIB Subroutines

8-34 Chapter 8 – Special Purpose Subroutines (MS-DOS Specific)

8.2.7 POKEB – Set Byte in PSP

Purpose:

 POKEB sets a byte in the memory location specified.

Calling Sequence:

CALL POKEB (ISEG, IOFF, IVAL)

Declarations:

 INTEGER*2 ISEG, IOFF, IVAL

Argument Description:

 ISEG Input The segment address of the PSP.

 IOFF Input The offset from ISEG, in bytes.

 IVAL Input The value of the byte to set (in the lower byte of IVAL).

HECLIB Subroutines POKEW

Chapter 8 – Special Purpose Subroutines (MS-DOS Specify) 8-35

8.2.8 POKEW – Set Word in PSP

Purpose:

 POKEW sets a word in the memory location specified.

Calling Sequence:

CALL POKEW (ISEG, IOFF, IVAL)

Declarations:

 INTEGER*2 ISEG, IOFF, IVAL

Argument Description:

 ISEG Input The segment address of the PSP.

 IOFF Input The offset from ISEG, in bytes.

 IVAL Input The value of the word to set.

INPB HECLIB Subroutines

8-36 Chapter 8 – Special Purpose Subroutines (MS-DOS Specific)

8.2.9 INPB – Read a Byte from a Port

Purpose:

 INPB reads a byte (inports) from the specified hardware port.

Calling Sequence:

CALL INPB (IPORT, IVAL)

Declarations:

 INTEGER*2 IPORT, IVAL

Argument Description:

 IPORT Input The port to read the byte from.

 IVAL Output The value of the byte read (in lower byte of IVAL).

HECLIB Subroutines INPW

Chapter 8 – Special Purpose Subroutines (MS-DOS Specify) 8-37

8.2.10 INPW – Read a Word from a Port

Purpose:

 INPW reads a word (inports) from the specified hardware port.

Calling Sequence:

CALL INPW (IPORT, IVAL)

Declarations:

 INTEGER*2 IPORT, IVAL

Argument Description:

 IPORT Input The port to read from.

 IVAL Output The value of the word read.

OUTPB HECLIB Subroutines

8-38 Chapter 8 – Special Purpose Subroutines (MS-DOS Specific)

8.2.11 OUTPB – Write a Byte to a Port

Purpose:

 OUTPB writes a byte (outports) to the specified hardware port.

Calling Sequence:

CALL OUTPB (IPORT, IVAL)

Declarations:

 INTEGER*2 IPORT, IVAL

Argument Description:

 IPORT Input The port to write the byte to.

 IVAL Output The byte to write (in the lower byte of IVAL).

HECLIB Subroutines OUTPW

Chapter 8 – Special Purpose Subroutines (MS-DOS Specify) 8-39

8.2.12 OUTPW – Write a Word to a Port

Purpose:

 OUTPW writes a word (outports) to the specified hardware port.

Calling Sequence:

CALL OUTPW (IPORT, IVAL)

Declarations:

 INTEGER*2 IPORT, IVAL

Argument Description:

 IPORT Input The port to write the word to.

 IVAL Output The word to write.

HECDSS Subroutines Appendix A – Obsolete Subroutines

 A-1

Appendix A Obsolete Subroutines

 The following subroutines are no longer supported. However, they currently remain in
HECLIB for compatibility. Programs accessing these subroutines should be updated. These
subroutines will be removed from the library in the future.

 Subroutine Replaced By

 A4TOCH none
 CHABLK CHRBLK
 CHAFIL CHRFIL
 CHARFL CHRFIL
 CHTOA4 none
 CIJOB CIJOBE
 CLOSE FORTRAN CLOSE (or GIOP)
 COMPAR FORTRAN .EQ.
 CREAT CREAF
 DEFDRV GETDRV
 DISECT none
 ILSTR FORTRAN INDEX
 IYMDML YMDDAT
 JULMIL JULDAT
 JNLML9 JULDAT
 LASTCH CHRLNB
 LOCKST CPLOCK
 LSAME FORTRAN .EQ.
 MILJUL DATJUL
 MLIYMD DATYMD
 MOVSTR FORTRAN =
 OPENFL FORTRAN OPEN (or GIOP)
 PDN TRMTYP
 STDINS none
 STRBLK CHRBLK
 STRMOV FORTRAN =
 TOUPC UPCASE
 XPARMS ATTACH

HECDSS Subroutines Appendix B - Summary of Subroutine Calling Sequences

 B-1

Appendix B Summary of Subroutine Calling Sequences

ABORT Issue a Program Abort..7-22
 CALL ABORT

ANREAD Perform a Prompted Read ..3-2
 CALL ANREAD (IUNIT, CPROMPT, NPROMPT, CLINE, NLINE)

ASCTRL ANSI Screen Control (HARRIS)...3-22
 CALL ASCTRL (IUNIT, CFUN, IARG1, IARG2)

ASSIGS Assign a File in a Shared Mode (HARRIS) ..2-25
 CALL ASSIGS (IUNIT, CNAME, IERR)

ASSIGX Assign a File in an Exclusive Mode (HARRIS)..2-24
 CALL ASSIGX (IUNIT, CNAME, IERR)

ATTACH Attach Files to Units via Execution Line Parameters..2-2
 CALL ATTACH (IUNIT, CKEYWD, CDEFLT, CONTRL, CNAME,
 * IOSTAT)

ATTEND End of ATTACH Calls...2-7
 CALL ATTEND

ATTSET Set ATTACH Information ...2-8
 CALL ATTSET (CLINE)

BRKOFF Turn the Break Key Off (HARRIS)...3-28
 CALL BRKOFF

BRKON Turn the Break Key On (HARRIS) ...3-29
 CALL BRKON

CASSIG Assign a Unit to a File (HARRIS) ...2-23
 CALL CASSIG (IUNIT, CNAME, IERR)

CCREAT Create a File..2-14
 CALL CCREAT (CNAME, IGRAN, IPACK, ITYPE, IERR)

CDATE Get the Current Date ..4-22
 CALL CDATE (CCDATE)

CDELET Delete a File..2-15
 CALL CDELET (CNAME, IERR)

Appendix B - Summary of Subroutine Calling Sequences HECDSS Subroutines

B-2

CH2HOL Convert a Character String to Hollerith (on Word Boundaries)5-36
 CALL CH2HOL (CSTR, IHOL, NWORDS)

CHAIN3 Chain from One Program into Another (HARRIS) ..7-34
 CALL CHAIN3 (CFROM, NFROM, CTO, NTO)

CHDIR Change Directory (MS-DOS) ..7-55
 CALL CHDIR (CDIR, ISTAT)

CHMOD Change a File Mode (MS-DOS) ..2-43
 CALL CHMOD (CNAME, IFATT, IFUN, ISTAT)

CHRBK1 Backstore Characters (HARRIS) ...3-11
 CALL CHRBK1 (CSTR, NSTR)

CHRBLK Fill a Character String with Blanks..5-2
 CALL CHRBLK (CSTR)

CHRFIL Fill a Character String with a Specified Character..5-3
 CALL CHRFIL (CSTR, CHR)

CHRFL1 Flush Characters in Type-Ahead Buffer (HARRIS)...3-12
 CALL CHRFL1

CHRFN1 Finish Character I-O (HARRIS) ..3-7
 CALL CHRFN1

CHRHOL Convert a String to Hollerith (on Byte Boundaries)..5-34
 CALL CHRHOL (CSTR, IBEG, ILEN, IHOL, NBEG)

CHRIT1 Initialize Character I-O (HARRIS)..3-6
 CALL CHRIT1 (IUNIT, IBUFF, NUBFF)

CHRLNB Locate the Last Non-Blank Character ...5-4
 CALL CHRLNB (CSTR, ILAST)

CHRLOC Get the Address of a Character Variable (HARRIS) ..8-26
 CALL CHRLOC (CHR, IWADD, IPOS, ILEN)

CHRRD1 Read Character(s), Waiting for at Least One Character (HARRIS)...........................3-9
 CALL CHRRD1 (CSTR, NSTR)

CHRRI1 Rear Characters Without Waiting for a Character to Arrive (HARRIS)..................3-10
 CALL CHRRI1 (CSTR, NSTR)

CHRSI1 Request Status on Last Operation, Without Wait (HARRIS)...................................3-15
 CALL CHRST1 (ISTAT, JSTAT)

HECDSS Subroutines Appendix B - Summary of Subroutine Calling Sequences

 B-3

CHRST1 Request Status on Last Operation (HARRIS) ...3-14
 CALL CHRST1 (ISTAT, JSTAT)

CHRWI1 Write Without Waiting for Completion (HARRIS)..3-13
 CALL CHRWI1 (CSTR, NSTR)

CHRWT Write Individual Character(s) to a Terminal (HARRIS)...3-5
 CALL CHRWT (IUNIT, CSTR, NSTR)

CHRWT1 Write Character(s) (HARRIS) ...3-8
 CALL CHRWT1 (CSTR, NSTR)

CIJOBE Initiate a Batch Job (HARRIS) ..7-25
 CALL CIJOBE (CNAME, CPASS, IERR)

CJSTR Center Justify a Character String ...5-33
 CALL CJSTR (CGTR1, NBEG1, NLEN1, CSTR2, NBEG2)

CKANSI Check if Terminal is ANSI (HARRIS)..3-21
 CALL CKANSI (IUNIT, LANSI)

CLINES Get the Number of Lines of a Terminal Screen (HARRIS)......................................3-20
 CALL CLINES (NLINES)

CLOSF Close a File (MS-DOS)..2-37
 CALL CLOSF (IHANDL, ISTAT)

CNTRLX Interrupt a Program by Pressing CTRL X (HARRIS) ..7-28
 CALL CNTRLX ($statement)

COPCOM Execute an OPCOM Command (HARRIS) ..7-27
 CALL COPCOM (COMAND, IERR)

CPARMS Get Command Line Parameters (MS-DOS)..7-42
 CALL CPARMS (CLINE, NLINE)

CPLOCK Control the Caps Lock Key (MS-DOS) ..7-47
 CALL CPLOCK (CFLAG, LSTATE)

CRDIR Create Directories (MS-DOS)..7-58
 CALL CRDIR (CPATH)

CREAF Create a File (MS-DOS)...2-36
 CALL CREAF (CNAME, IFATT, IHANDL, ISTAT)

CRENAM Rename a File ...2-16
 CALL CRENAM (COLDN, CDEWN, IERR)

Appendix B - Summary of Subroutine Calling Sequences HECDSS Subroutines

B-4

CRETYP Retype the Attributes of a File (HARRIS) ..2-21
 CALL CRETYP (CNAME, IBITS, ILEVEL, IERR)

CRTN Contingency (Error) Return (HARRIS) ..7-29
 CALL CRTN (subroutine-name, IENABL)

CSPOOL Spool a file to a Physical Device (HARRIS)...7-26
 CALL CSPOOL (CNAME, IPDN, IERR)

CSTAT Pick Apart an I/O Service Status (HARRIS)...2-20
 CALL CSTAT (ISTAT, IOK, LOK, LEOF, LOPEN, LXDISC, IWC, LWCNC)

CTIME Get the Current Time..4-23
 CALL CTIME (CCTIME)

CURTIM Get the Current Julian Date and Time ...4-19
 CALL CURTIM (JULIAN, MINUTE)

DATIME Get Current Date and Time... 4-20
 CALL DATIME (IYEAR, JDAY, ITENTH)

DATJUL Convert a Character Date to Julian ... 4-4
 CALL DATJUL (CDATE, JULIAN, IERROR)

DATYMD Convert a Character Date to Integer-Year-Month-Day .. 4-2
 CALL DATYMD (CDATE, IYEAR, IMONTH, IDAY, IERROR)

DBITS Determine Which Bits of a Byte are Set (MS-DOS) .. 7-63
 CALL DBITS (IBYTE, IB7, IB6, IB5, IB4, IB3, IB2, IB1, IB0)

DCAT De-Concatenate One Word into Two Bytes (MS-DOS)....................................... 7-62
 CALL DCAT (IWORD, IHIGH, ILOW)

DIBIN Display a number as Binary.. 7-13
 CALL DIBIN (IUNIT, NUMBER)

DKBFCL Disk-Buffer Close (MS-DOS) .. 2-31
 CALL DKBFCL (IHANDL, IBUFF, ISTAT)

DKBFCR Disk-Buffer Create (or Truncate) File and Open (MS-DOS) 2-30
 CALL DKBFCR (IHANDL, CNAME, IBUFF, NBUFF, ISTAT)

DKBFOP Disk-Buffer Open (MS-DOS)... 2-29
 CALL DKBFOP (IHANDL, CNAME, IBUFF, NBUFF, ISTAT)

DKBFPS Disk-Buffer Position (MS-DOS) .. 2-34
 CALL DKBFPS (IHANDL, IBYTE, IPOS, IBUFF, ISTAT)

HECDSS Subroutines Appendix B - Summary of Subroutine Calling Sequences

 B-5

DKBFRD Disk-Buffer Read (MS-DOS) ... 2-32
 CALL DKBFRD (IHANDL, CLINE, NLINE, IBUFF, ISTAT)

DKBFWT Disk-Buffer Write (MS-DOS) .. 2-33
 CALL DKBFWT (IHANDL, CLINE, IBUFF, ISTAT)

DSKSPC Determine the Amount of Disk Space Left (MS-DOS).. 7-45
 CALL DSKSPC (CDRIVE, ISPACE, ISTAT)

ERASF Erase a File (MS-DOS)... 2-41
 CALL ERASF (CNAME, ISTAT)

EXPROG Execute One Program from Another (HARRIS) .. 7-36
 CALL EXPROG (CPROG)

FILEN Get File Names For a Directory (MS-DOS) ... 7-50
 CALL FILEN (CMASK, IFATT, CMODE, CFNAME, IFSIZE, CFDATE,
 * CFTIME, IATT, ISTAT)

FINDLM Find Delimiters within a Character String .. 5-20
 CALL FINDLM (CSTRNG, NBEG, NLEN, NFIELD, IBEGF, ILENF,
 * IDELMT, IDELMP, ITBL)

FLLKOF Unlock a Locked File (HARRIS) ... 2-27
 CALL FLLKOF (IUNIT, ISTAT)

FLLKON Lock a Shared Access File (HARRIS).. 2-26
 CALL FLLKON (IUNIT, IWAIT, ISTAT)

FOPEN Fast Open (HARRIS).. 8-5
 CALL FOPEN (IUNIT, ISTAT)

FSTENV/
NXTENV Get Environment Table (MS-DOS) .. 7-60
 CALL FSTENV (CITEM, NITEM)
 CALL NXTENV (CITEM, NITEM)

GETA Get the A Register (HARRIS) .. 8-23
 CALL GETA (IA)

GETBIN Get the Binary Representation of a Word... 7-12
 CALL GETBIN (IWONDS, NBYTES, CREPR)

GETDRV Get the Default Drive (MS-DOS) ... 7-53
 CALL GETDRV (CDRIVE)

GETE Get the E Register (HARRIS)... 8-24
 CALL GETE (IE)

Appendix B - Summary of Subroutine Calling Sequences HECDSS Subroutines

B-6

GETIME Get Time Window from a Program Command Line .. 4-26
 CALL GETIME (CLINE, IBEG, ILAN, JULS, ISTIME,
 * JULE, IETIME, ISTAT)

GETK Get the K Register (HARRIS) .. 8-25
 CALL GETK (K)

GETNAM Get the Name of an Opened File... 2-13
 CALL GETNAM (IUNIT, CNAME, IERR)

GETPSP Get Program Segment Prefix (MS-DOS) ... 8-31
 CALL GETPSP (ISEG)

GETPTH Get the Current Path (MS-DOS)... 7-52
 CALL GSTPTH (CDRIVE, CPATH)

GETQDD Get the Qualifier Disc Directory of a File (HARRIS) .. 8-6
 CALL GETQDD (IAREA, IQUAL, IQDD)

GETSUP Get Path of a Supplemental File (MS-DOS)... 7-59
 CALL GETSUP (CNAME, CPATH, NPATH)

GIOP General Input-Output Processing (HARRIS) ... 2-17
 CALL GIOP (IUNIT, IFUN, IBUFF, NBUFF, ISTAT)
 CALL GIOPLW (IUNIT, IFUN, IBUFF, NBUFF, ISTAT)
 CALL GIOPS (IUNIT, IFUN, ISTAT)
 CALL GIOPSW (IUNIT, IFUN, ISTAT)

GNUMRG Get Numeric Register (HARRIS) ... 7-38
 CALL GNUMRG (CNAME, NRANGE, NVALUE, ISTAT)

GRNSIZ Get the Granule Size of a File (HARRIS) .. 8-4
 CALL GRNSIZ (IUNIT, IGSIZE)

GSTRRG Get String Register (HARRIS) ... 7-37
 CALL GSTRRG (CNAME, CSTR, NSTR, ISTAT)

HOL2CH Convert a Hollerith Array to Character (on Word Boundaries) 5-37
 CALL HOL2CH (IHOL, CSTR, NWORDS)

HOLCHR Convert a Hollerith Array to Character (on Byte Boundaries) 5-35
 CALL HOLCHR (IHOL, IBEG, ILEN, CSTR, NBEG)

IBCLR Clear a Bit ... 7-9
 JWORD = IBCLR (IWORD, NBIT)

HECDSS Subroutines Appendix B - Summary of Subroutine Calling Sequences

 B-7

IBITS Extract a Field of Bits ... 7-11
 JWORD = IBITS (IWORD, ISTART, NBITS)

IBSET Set a Bit... 7-8
 JWORD = IBSET (IWORD, NBIT)

ICAT Concatenate Two Bytes into One Word (MS-DOS)... 7-61
 IWORD = ICAT (IHIGH, ILOW)

IDAYWK Get the Day of the Week from a Julian Date .. 4-12
 NDAY = IDAYWK (JULIAN)

IEB2AS Convert EBCIDIC to ASCII ... 7-23
 CALL IEB2AS (ICH)

IFTYPE Determine the Type of File Assigned (HARRIS)... 2-22
 ITYPE = IFTYPE (IUNIT)

IHM2M Convert a Twenty-Four Hour Clock Time to Minutes ... 4-13
 MINUTE = IHM2M (CTIME)

INCTIM Increment a Date and Time... 4-15
 IDUMMY = INCTIM (INTL, IFLAG, NPER, JULS, ISTIME, JULE,
 * IETIME)

INDEXR Reverse Index.. 5-10
 I = INDEXR (CSTR1,CSTR2)

INFO2 Get Information about This Session (HARRIS) ... 8-2
 CALL INFO2 (CPTYPE, CPDN, IPDN, IPRIOR, CPROG,
 * CDQUAL, CSQUAL, CUNAME, CUNUMB, CSTIME)

INPB Read a Byte from a Port (MS-DOS) ... 8-36
 CALL INPB (IPORT, IVAL)

INPW Read a Word from a Port (MS-DOS) ... 8-37
 CALL INPW (IPORT, IVAL)

INTGR Read an Integer Number from a Character String .. 5-27
 NUMBER = INTGR (CSTR, NBEG, NLEN, IERR)

INTGRC Write an Integer Number to a Character String .. 5-28
 CALL INTGRC (NUMBER, CSTR, NBEG, NLEN)

IRETRN Return from an Interrupt Subroutine (HARRIS) .. 8-20
 CALL IRETRN

Appendix B - Summary of Subroutine Calling Sequences HECDSS Subroutines

B-8

ISCAN Search a String for Individual Character(s) .. 5-16
 I = ISCAN (CSTR1, NBEG1, NLEN1, CSTR2, NBEG2, NLEN2, IPOS2)

IYMDJL Convert an Integer Year-Month-Day Date to Julian... 4-10
 JULIAN = IYMDJL (IYEAR, IMONTH, IDAY)

JLIYMD Convert a Julian Date into an Integer Year-Month-Day Date 4-11
 IDUMMY = JLIYMD (JULIAN, IYEAR, IMONTH, IDAY)

JULDAT Convert a Julian Date into a Character Date... 4-8
 CALL JULDAT (JULIAN, ISTYLE, CDATE, NDATE)

KEYBRD Keyboard Interrupt (MS-DOS) ... 8-29
 CALL KEYBRD (IAX, IBX, ICX, IDX, IFLAGS)

LBTEST Test to Determine if a Bit is Set.. 7-7
 LTEST = LBTEST (IWORD, NBIT)

LEQNER Test for One Number Nearly Equal to Another.. 7-2
 LTEST = LEQNER (X, Y, TOL)

LFLNB Locate the First and Last Non-Blank .. 5-5
 CALL LFLNB (CSTR, IBEG, ILEN, IFNB, NLEN)

LGENER Test for One Number Greater Than or Nearly Equal to Another 7-3
 LTEST = LGENER (X, Y, TOL)

LGTNER Test for One Number Greater Than Another Within a Tolerance 7-4
 LTESF = LGTNER (X, Y, TOL)

LISFIL Determine if a Name is a Valid File Name... 2-12
 LNAME = LISFIL (CNAME)

LISNUM Determine if a Character String Contains a Number .. 5-26
 LNUMB = LISNUM (CSTRNG)

LJSTR Left Justify a Character String .. 5-31
 CALL LJSTR (CSTR1, NBEG1, NLEN1, CSTR2, NBEG2)

LLENER Test for One Number Less Than or Nearly Equal to Another................................ 7-6
 LTEST = LLENER (X, Y, TOL)

LLTNER Test for One Number Less Than Another Within a Tolerance............................... 7-5
 LTEST = LLTNER (X, Y, TOL)

LPOPT Get Program Options (HARRIS) .. 7-24
 LTEST = LPOPT (C)

HECDSS Subroutines Appendix B - Summary of Subroutine Calling Sequences

 B-9

M2IHM Convert a Time in Minutes to Twenty-Four Hour Clock Time............................ 4-14
 ITIME = M2IHM (MINUTE, CTIME)

MATCH Search a List for a Character String.. 5-8
 CALL MATCH (CSTR, IBEG, ILEN, CLIST, NLIST, NLEN, IMATCH)

MEMSIZ Memory Size (MS-DOS) .. 8-28
 CALL MEMSIZ (IMEM)

MKDIR Make Directory (MS-DOS) .. 7-56
 CALL MKDIR (CDIR, ISTAT)

MVBITS Move Bits From One Word into Another ... 7-10
 CALL MVBITS (IWORD, IPOS, NBITS, JWORD, JPOS)

NAMFIL Read a File of Pseudo and True Names .. 7-15
 CALL NAMFIL (IUNIT, CNAMES, INAMES, MAXNAM, ISTAT)

NAMLST List all the Pseudo and True Names .. 7-17
 CALL NAMLST (CNAMES, INAMES)

NINDX Search for the Non-Occurrence of a String... 5-12
 I = NINDX(CSTR1,CSTR2)

NINDXR Search for a the Last Non-Occurrence of a String.. 5-14
 I = NINDXR (CSTR1,CSTR2)

NMLOCK Control the Num Lock Key (MS-DOS).. 7-48
 CALL NMLOCK (CFLAG, LSTATE)

NOPERS Determine the Number of Periods between Two Times....................................... 4-17
 NPER = NOPERS (INTL, IFLAG, JULS, ISTIME, JULE, IETIME)

NSCAN Search a String for the Non-Occurrence of Individual Characters 5-18
 C = NSCAN (CSTR1, NBEG1, NLEN1, CSTR2, NBEG3, NLEN2)

NUMLIN Determine the Number of Lines in a File ... 2-11
 INUMB = NUMLIN (CNAME)

NXTLFN Determine Units of All File Assigned (HARRIS) .. 8-8
 CALL NXTLFN (IUNIT, IOPEN)

OPENF Open a File (MS-DOS) ... 2-35
 CALL OPENF (CNAME, IACESS, IHANDL, ISTAT)

OPTSET Set Program Options (HARRIS)... 8-27
 CALL OPTSET (IBITS)

Appendix B - Summary of Subroutine Calling Sequences HECDSS Subroutines

B-10

OUTPB Write a Byte to a Port (MS-DOS)... 8-38
 CALL OUTPB (IPOBT, IVAL)

OUTPW Write a Word to a Port (MS-DOS) ... 8-39
 CALL OUTPW (IPORT, IVAL)

PEEKB Get Byte from PSP (MS-DOS) ... 8-32
 CALL PEEKB (ISEG, IOFF, IVAL)

PEEKW Get Word from PSP (MS-DOS) ... 8-33
 CALL PEEKW (ISEG, IOFF, IVAL)

PEND Close PREAD Files... 6-5
 CALL PEND

PFNKEY Get the String Assigned to a Function Key .. 6-13
 CALL PFNKEY (CKEY, CFUN, NFUN)

PINQIR Inquire About PREAD Parameters ... 6-11
 CALL PINQIR (CFLAG, CPARM, NPARM)

POKEB Set Byte in PSP (MS-DOS) .. 8-34
 CALL POKEB (ISEG, IOFF, IVAL)

POKEW Set Word in PSP (MS-DOS)... 8-35
 CALL POKEW (ISEG, IOFF, IVAL)

PREAD PREAD Processor (Method 2).. 6-8
 CALL PREAD (IUNIT)

PREAD1 Execute a PREAD Command from the Program.. 6-9
 CALL PREAD1 (CLINE)

PREADC PREAD Processor (Method 1).. 6-6
 CALL PREADC (IUNIT, CLINE, ISTAT, *EOF-statement)

PRESED Which (Special) Keys are Pressed (MS-DOS) ... 7-49
 CALL PRESED (LALT, LCTRL, LLSHFT, LRSHFT)

PRNCHR Send a Single Character to the Printer (MS-DOS) ... 7-43
 CALL PRNCHR (CCHAR)

PRNLIN Send a Line to the Printer (MS-DOS)... 7-44
 CALL PRNLIN (CLINE)

PSET Set PREAD Parameters... 6-10
 CALL PSET (CFLAG, CPARM, NPARM)

HECDSS Subroutines Appendix B - Summary of Subroutine Calling Sequences

 B-11

PSETFN Set PREAD Function .. 6-12
 CALL PSETFN (CKEY, CFUN, NFUN)

PTTACH Attach PREAD Files ... 6-3
 CALL PTTACH (IUNIT, CKEYWD, CDEFLT, CDUMMY, CNAME,
 * IOSTAT)

PUFA Set a Single Attribute for a Line (MS-DOS) .. 3-47
 CALL PUFA (IATT, NCHS, IROW, ICOL)

PUFAS Set an Array of Attributes for Characters on a Line (MS-DOS) 3-48
 CALL PUFAS (IATTS, NCHS, IROW, ICOL)

PUFBFR Read a Screen Window from the Display (MS-DOS) .. 3-58
 CALL PUFBFR (IBUFF, IROW, ICOL, NCOLS, NROWS)

PUFBFW Write a Screen Window to the Display (MS-DOS).. 3-59
 CALL PUFBFW (IBUFF, IROW, ICOL, NCOLS, NROWS)

PUFC Set a Single Character on a Line (MS-DOS) .. 3-49
 CALL PUFC (CCHAR, NCHS, IROW, ICOL)

PUFCA Set a Single Character and Attribute on a Line (MS-DOS).................................. 3-50
 CALL PUFCA (CCHAR, IATT, NCHS, IROW, ICOL)

PUFCAS Set a Single Character and an Array of Attributes (MS-DOS)............................. 3-51
 CALL PUFCAS (CCHAR, IATTS, NCHS, IROW, ICOL)

PUFL Write a Line of Characters (MS-DOS) ... 3-52
 CALL PUFL (CLINE, NLINE, IROW, ICOL)

PUFLA Write a Line of Characters with a Single Attribute (MS-DOS)............................ 3-53
 CALL PUFLA (CLINE, IATT, NLINE, IROW, ICOL)

PUFLAS Write a Line of Characters with Different Attributes (MS-DOS) 3-54
 CALL PUFLAS (CLINE, IATTS, NLINE, IROW, ICOL)

PUFWA Set a Window to a Single Attribute (MS-DOS).. 3-55
 CALL PUFWA (IATT, IROW, ICOL, NCOLS, NROWS)

PUFWC Set a Window to a Single Character (MS-DOS) .. 3-56
 CALL PUFWC (CCHAR, IROW, ICOL, NCOLS, NROWS)

PUFWCA Set a Window to a Single Character and Attribute (MS-DOS) 3-57
 CALL PUFWCA (CCHAR, IATT, IROW, ICOL, NCOLS, NROWS)

RBELL Ring the Terminal Bell.. 3-3
 CALL RBELL

Appendix B - Summary of Subroutine Calling Sequences HECDSS Subroutines

B-12

READF Read From a Fine (MS-DOS) ... 2-38
 CALL READF (IHANDL, IBUFF, NBYTES, ISTAT, NTRANS)

RECMAX Determine the Number of Records (Lines) in a File... 2-10
 CALL RECMAX (IUNIT, NRECS)

REMBLK Remove Blanks From a String.. 5-6
 CALL REMBLK (CIN, COUT, NOUT)

RJSTR Right Justify a Character String.. 5-32
 CALL RJSTR (CSTR1, NBEG1, NLEN1, CSTR2, NBEG2)

RMDIR Remove Directory (MS-DOS) .. 7-57
 CALL RMDIR (CDIR, ISTAT)

RNAMF Rename a File (MS-DOS)... 2-42
 CALL RNAMF (COLDN, CNEWN, ISTAT)

RSCPDN Resource a Physical Device (HARRIS).. 7-30
 CALL RSCPDN (IUNIT, IPDN, IFUN, ISTAT)

SEEKF Move the File Pointer (MS-DOS)... 2-40
 CALL SEEKF (IHANDL, IMODZ, IOFSET, IPOS, ISTAT)

SETDLM Set Delimiters for FINDLM.. 5-24
 CALL SETLDM (ITYPE, CSTRNG, IBEG, NUMB, ITBL)

SETDRV Set the Default Drive (MS-DOS).. 7-54
 CALL SETDRV (CDRIVE)

SETNAM Set or Remove a Name in the Name List.. 7-19
 CALL SETNAM (CPSUDO, CTRUE, MAXNAM, CNAMES, INAMES,
 * NNAMES, ISTAT)

SNUMRG Set Numeric Register (HARRIS).. 7-40
 CALL SNUMRG (CNAME, NRANGE, NVALUE, ISTAT)

SPDID Define Program Identification (HARRIS) .. 8-13
 CALL SPDID (INAME, ISTAT)

SPDLAY Wait a Specified Amount of Time for an Interrupt (HARRIS) 8-19
 CALL SPDLAY (NTICKS, ISTAT)

SPHINT Hold Interrupts (HARRIS).. 8-16
 CALL SPHINT

HECDSS Subroutines Appendix B - Summary of Subroutine Calling Sequences

 B-13

SPINFO Get the Information Buffer Passed (HARRIS) ... 8-12
 CALL SPINFO (INFOB, NINFO, ISTAT)

SPINIT Initialize Special Interrupts (HARRIS)... 8-11
 CALL SPINIT (ILEVEL, IBUFF, sub-name, ISTAT)

SPIP Initiate a Sub-System Program with Interrupts (HARRIS) 8-14
 CALL SPIP (ITAREA, ITQUAL, IPRI, IPAR, IPID, ILEVEL,
 * IBUFF, ISTAT)

SPRINT Release Interrupts (HARRIS) ... 8-17
 CALL SPRINT

SPTRIG Trigger a Special Interrupt (HARRIS).. 8-15
 CALL SPTRIG (IPID, INWORD, ILEVEL, INFOB, NINFO, ISTAT)

SPWAIT Wait for Interrupt (HARRIS).. 8-18
 CALL SPWAIT

SSTRRG Set String Register (HARRIS) .. 7-39
 CALL SSTRRG (CNAME, CSTR, NSTR, ISTAT)

STDINC Read a Character from the Keyboard (Standard In) (MS-DOS)........................... 3-30
 CALL STDINC (CWAIT, CECHO, CBREAK, CFLUSH, IASCII, ICODE)

STDOUT Write a Single Character to the Monitor (Standard Out) (MS-DOS) 3-32
 CALL STDOUT (CBREAK, IASCII)

STTY Set Terminal Port Parameters for an ASYNC Port (HARRIS) 3-25
 CALL STTY (IUNIT, CDIR, CITEM, CSTR, ISTAT)

SYSLV Get Current Operating System Level (HARRIS) ... 8-7
 CALL SYSLV (ILEVEL)

TRKSET Set Parameters for Program Tracking (HARRIS) .. 7-41
 CALL TRKSET (CITEM, CPARM)

TRMTYP Determine the Terminal Port Type (HARRIS .. 3-19
 CALL TRMTYP (IUNIT, CTYPE)

TRNSBK Transmit a Break (HARRIS) .. 8-9
 CALL TRNSBK (IUNIT, ISTAT)

TRUNAM Obtain a True Name from a Pseudo Name ... 7-18
 CALL TRUNAM (CPSUDO, CTRUE, CNAMES, INAMES)

TXTCOL Set the Screen Color for Text (MS-DOS)... 3-33
 CALL TXTCOL (COLRFG, COLRBG, CATT)

Appendix B - Summary of Subroutine Calling Sequences HECDSS Subroutines

B-14

UPCASE Convert a Character String to Upper Case.. 5-7
 CALL UPCASE (CLINE)

VGETCR Get Cursor Position and Size (MS-DOS) ... 3-39
 CALL VGETCR (IPAGE, IROW, ICOL, ITOP, IBOTTM)

VIDEO Video Interrupt (MS-DOS) ... 8-30
 CALL VIDEO (IAX, IBX, ICX, IDX)

VMODE Set the Video Mode (MS-SOS) .. 3-44
 CALL VMODE (IMODE)

VNEWPG Clear Screen (MS-DOS) ... 3-35
 CALL VNEWPG (IATT)

VPOSCR Position Cursor (MS-DOS)... 3-40
 CALL VPOSCR (IPAGE, IROW, ICOL)

VRDAC Get Character and Attribute at Cursor (MS-DOS) ... 3-42
 CALF VRDAC (IPAGE, ICHAR, IATT)

VSCROL Scholl Screen Window (MS-DOS)... 3-36
 CALL VSCROL (CDIR, NLINES, IUROW, IUCOL, ILROW, ILCOL,
 * IATT)

VSETCR Set the Cursor Size (MS-DOS) ... 3-41
 CALL VSETCR (ITOP, IBOTTM)

VSETPG Set the Video Page (MS-DOS) ... 3-43
 CALL VSETPG (IPAGE)

VSTAT Video Status (MS-DOS) ... 3-34
 CALL VSTAT (IMODE, ICOL, IPAGE)

VTTYWT Write a Line to the Screen (MS-DOS).. 3-38
 CALL VTTYWT (CNEWL, CLINE, NLINE)

WAITS Wait for a Specified Amount of Time .. 4-24
 CALL WAITS (SECS)

WHEN Get the Current Date and Time in Character Form... 4-21
 CALL WHEN (CDATE, CTIME)

WHRFRM Get the Path of the Program Executing (MS-DOS).. 7-46
 CALL WHRFRM (CPATH)

HECDSS Subroutines Appendix B - Summary of Subroutine Calling Sequences

 B-15

WIND Position to the End of File .. 2-9
 CALL WIND (IUNIT)

WRITF Write to a File (MS-DOS)... 2-39
 CALL WRITF (IHANDL, IBUFF, NBYTES, ISTAT, NTRANS)

XQTJCL Execute One Job Control Command (HARRIS) .. 7-33
 CALL XQTJCL (ISUNIT, CLINE, NLINE)

XQTLNE Get the Program's Execution Line (HARRIS) .. 7-32
 CALL XQTLNE (CLINE, NLINE)

XREAL Convert a Real Number from a Character String.. 5-29
 XNUMB = XREAL (CSTR, NBEG, NLEN, IERR)

XREALC Convert a Real Number to a Character String .. 5-30
 CALL XREALC (XNUMB, CSTR, NBEG, NLEN, NDEC)

XTIME Get the Current CPU Time for the Session... 4-25
 CALL XTIME (SECS)

YMDDAT Convert an Integer Year-Month-Day Date into a Character Date 4-6
 CALL YMDDAT (IYEAR, IMONTH, IDAY, ISTYLE, CDATE, NDATE,
 * IERROR)

HECDSS Subroutines Subroutine Index

 Index-1

Subroutine Index

ABORT.. 7-22
ANREAD... 3-2
ASCTRL .. 3-22
ASSIGS.. 2-25
ASSIGX ... 2-24
ATTACH ... 2-2
ATTEND.. 2-7
ATTSET... 2-8
BRKOFF.. 3-28
BRKON.. 3-29
CASSIG ... 2-23
CCREAT.. 2-14
CDATE .. 4-22
CDELET .. 2-15
CH2HOL.. 5-36
CHAIN3... 7-34
CHDIR ... 7-55
CHMOD... 2-43
CHRBK1.. 3-11
CHRBLK ... 5-2
CHRFIL ... 5-3
CHRFL1... 3-12
CHRFN1 .. 3-7
CHRHOL ... 5-34
CHRIT1.. 3-6
CHRLNB ... 5-4
CHRLOC ... 8-26
CHRRD1.. 3-9
CHRRI1 ... 3-10
CHRSI1.. 3-15
CHRST1... 3-14
CHRWI1 .. 3-13
CHRWT ... 3-5
CHRWT1 ... 3-8
CIJOBE.. 7-25
CJSTR.. 5-33
CKANSI... 3-21
CLINES.. 3-20
CLOSF ... 2-37
CNTRLX.. 7-28
COPCOM... 7-27
CPARMS ... 7-42
CPLOCK.. 7-47
CRDIR ... 7-58

CREAF... 2-36
CRENAM .. 2-16
CRETYP .. 2-21
CRTN... 7-29
CSPOOL .. 7-26
CSTAT... 2-20
CTIME ... 4-23
CURTIM.. 4-19
DATIME.. 4-20
DATJUL .. 4-4
DATYMD.. 4-2
DBITS.. 7-63
DCAT... 7-62
DIBIN .. 7-13
DKBFCL.. 2-31
DKBFCR.. 2-30
DKBFOP.. 2-29
DKBFPS .. 2-34
DKBFRD ... 2-32
DKBFWT... 2-33
DSKSPC .. 7-45
ERASF ... 2-41
EXPROG.. 7-36
FILEN .. 7-50
FINDLM .. 5-20
FLLKOF .. 2-27
FLLKON.. 2-26
FOPEN... 8-5
FSTENV .. 7-60
GETA... 8-23
GETBIN... 7-12
GETDRV ... 7-53
GETE ... 8-24
GETIME .. 4-26
GETK... 8-25
GETNAM .. 2-13
GETPSP ... 8-31
GETPTH .. 7-52
GETQDD ... 8-6
GETSUP .. 7-59
GIOP .. 2-17
GNUMRG.. 7-38
GRNSIZ ... 8-4
GSTRRG.. 7-37

Appendix F - Summary of Subroutine Calling Sequences HECDSS Subroutines

F-2

HOL2CH.. 5-37
HOLCHR ... 5-35
IBCLR.. 7-9
IBITS.. 7-11
IBSET .. 7-8
ICAT .. 7-61
IDAYWK... 4-12
IEB2AS.. 7-23
IFTYPE.. 2-22
IHM2M .. 4-13
INCTIM ... 4-15
INDEXR .. 5-10
INFO2 .. 8-2
INPB .. 8-36
INPW ... 8-37
INTGR ... 5-27
INTGRC... 5-28
IRETRN ... 8-20
ISCAN.. 5-16
IYMDJL... 4-10
JLIYMD... 4-11
JULDAT .. 4-8
KEYBRD ... 8-29
LBTEST... 7-7
LEQNER.. 7-2
LFLNB... 5-5
LGENER.. 7-3
LGTNER.. 7-4
LISFIL.. 2-12
LISNUM .. 5-26
LJSTR .. 5-31
LLENER .. 7-6
LLTNER .. 7-5
LPOPT ... 7-24
M21HM.. 4-14
MATCH ... 5-8
MEMSIZ.. 8-28
MKDIR .. 7-56
MVBITS .. 7-10
NAMFIL .. 7-15
NAMLST ... 7-17
NINDX... 5-12
NINDXR.. 5-14
NMLOCK .. 7-48
NOPERS .. 4-17
NSCAN.. 5-18
NUMLIN.. 2-11

NXTENV ... 7-60
NXTLFN.. 8-8
OPENF... 2-35
OPTSET... 8-27
OUTPB .. 8-38
OUTPW ... 8-39
PEEKB... 8-32
PEEKW.. 8-33
PEND ... 6-5
PFNKEY.. 6-13
PINQIR .. 6-11
POKEB .. 8-34
POKEW ... 8-35
PREAD .. 6-8
PREAD1 .. 6-9
PREADC.. 6-6
PRESED... 7-49
PRNCHR.. 7-43
PRNLIN ... 7-44
PSET .. 6-10
PSETFN ... 6-12
PTTACH.. 6-3
PUFA ... 3-47
PUFAS ... 3-48
PUFBFR... 3-58
PUFBFW.. 3-59
PUFC.. 3-49
PUFCA... 3-50
PUFCAS .. 3-51
PUFL.. 3-52
PUFLA... 3-53
PUFLAS... 3-54
PUFWA.. 3-55
PUFWC.. 3-56
PUFWCA... 3-57
RBELL... 3-3
READF .. 2-38
RECMAX .. 2-10
REMBLK... 5-6
RJSTR.. 5-32
RMDIR .. 7-57
RNAMF ... 2-42
RSCPDN.. 7-30
SEEKF ... 2-40
SETDLM.. 5-24
SETDRV.. 7-54
SETNAM ... 7-19

HECDSS Subroutines Subroutine Index

 Index-3

SNUMRG .. 7-40
SPDID.. 8-13
SPDLAY.. 8-19
SPHINT.. 8-16
SPINFO.. 8-12
SPINIT ... 8-11
SPIP.. 8-14
SPRINT.. 8-17
SPTRIG.. 8-15
SPWAIT... 8-18
SSTRRG .. 7-39
STDINC ... 3-30
STDOUT.. 3-32
STTY.. 3-25
SYSLV... 8-7
TRKSET .. 7-41
TRMTYP ... 3-19
TRNSBK.. 8-9
TRUNAM .. 7-18
TXTCOL.. 3-33
UPCASE .. 5-7
VGETCR.. 3-39

VIDEO ... 8-30
VMODE... 3-44
VNEWPG .. 3-35
VPOSCR.. 3-40
VRDAC.. 3-42
VSCROL.. 3-36
VSETCR .. 3-41
VSETPG .. 3-43
VSTAT... 3-34
VTTYWT... 3-38
WAITS... 4-24
WHEN.. 4-21
WHRFRM.. 7-46
WIND... 2-9
WRTIF ... 2-39
XQTJCL... 7-33
XQTLNE.. 7-32
XREAL .. 5-29
XREALC.. 5-30
XTIME... 4-25
YMDDAT.. 4-6

Appendix F - Summary of Subroutine Calling Sequences HECDSS Subroutines

F-4

	Front Cover
	Table of Contents
	Chapter 1 - Introduction
	Chapter 2 - File Input/Output and Handling Subroutines
	ATTACH - Attach files to Units via Execution Line Parameters
	ATTEND - End of ATTACH Calls
	ATTSET - Set ATTACH Information
	WIND - Position to the End of File
	RECMAX - Determine the Number of Records (Lines) in a File
	NUMLN - Determine the Number of Lines in a File
	LISFIL - Determine if a Name is a Valid Filename
	GETNAM - Get the Name of an Opened File
	CCREAT - Create a File
	CDELET - Delete a File
	CRENAM - Rename a File
	HARRIS Specific Subroutines
	GIOP - General Input/Output Processing
	CSTAT - Pick Apart an I/O Service Status
	CRETYP - Retype the Attributes of a File
	IFTYPE - Determine the Type of File Assigned
	CASSIG - Assign a Unit to a File
	ASSIGX - Assign a File in an Exclusive Mode
	ASSIGS - Assign a File in a Shared Mode
	FILKON - Lock a Shared Access File
	FILKOF - Unlock a Locked File

	MS-DOS Specific Subroutines
	DKBFOP - Disk-Buffer Open
	DKBFCR - Disk-Buffer Create (or Truncate) File and Open
	DKBFCL - Disk-Buffer Close
	DKBFRD - Disk-Buffer Read
	DKBFWT - Disk-Buffer Write
	DKBFPS - Disk-Buffer Position
	OPENF - Open a File
	CREAF - Create a File
	CLOSF - Close a File
	READF - Read From a File
	WRITF - Write to a File
	SEEKF - Move the File Pointer
	ERASF - Erase a File
	RNAMF - Rename a File
	CHMOD - Change a File Mode

	Chapter 3 - Terminal Input/Output and Control Subroutines
	ANREAD - Perform a Prompted Read
	RBELL - Ring the Terminal Bell
	HARRIS Specific Subroutines
	Character (Hot Read) I/O Subroutines
	CHRWT - Write Individual Character(s) to a Terminal
	CHRIT1 - Initialize Characters I/O
	CHRFN1 - Finish Character I/O
	CHRWT1 - Write Character(s)
	CHRRD1 - Read Character(s), Waiting for at Least One Character
	CHRRI1 - Read Characters Without Waiting for a Character to Arrive
	CHRBK1 - Backstore Characters
	CHRFL1 - Flush Characters in Type-Ahead Buffer
	CHRWI1 - Write Without Waiting for Completion
	CHRST1 - Request Status on Last Operation
	CHRSI1 - Request Status on Last Operation, Without Wait
	CHRIO Examples

	TRMTYP - Determine the Terminal Port Type
	CLINES - Get the Number of Lines of a Termainal Screen
	CKANSI - Check if Terminal is ANSI
	ASCTRL - ANSI Screen Control
	STTY - Set Terminal Port Parameters for an ASYNC Port
	BRKOFF - Turn the Break Key Off
	BRKON - Turn the Break Key On

	MS-DOS Specific Subroutines
	STDINC - Read a Character from the Keyboard (Standard In)
	STDOUT - Write a Single Character to the Monitor (Standard Out)
	TXTCOL - Set the Screen Color for Text
	VSTAT - Video Status
	VNEWPG - Clear Screen
	VSCROL - Scroll Screen Window
	VTTYWT - Write a Line to the Screen
	VGETCR - Get Cursor Position and Size
	VPOSCR - Position of Cursor
	VSETCR - Set the Cursor Size
	VRDAC - Get Character and Attribute at Cursor
	VSETPG - Set the Video Page
	VMODE - Set the Video Mode
	PUF Subroutines
	PUFA - Set a Single Attribute for a Line
	PUFAS - Set an Array of Attributes for Characters on a Line
	PUFC - Set a Single Character on a Line
	PUFCA - Set a Single Character an Attribute on a Line
	PUFCAS - Set a Single Character and an Array of Attributes
	PUFL - Write a Line of Characters
	PUFLA - Write a Line of Characters with a Single Attribute
	PUFLAS - Write a Line of Characters with Different Attributes
	PUFWA - Set a Window to a Single Attribute
	PUFWC - Set a Window to a Single Character
	PUFWCA - Set a Window to a Single Character and Attribute
	PUFBFR - Read a Screen Window From the Display
	PUFBFW - Write a Screen Window to the Display

	Chapter 4 - Date and Time Subroutines
	DATYMD - Convert a Character Date to Integer-Year-Month-Day
	DATJUL - Convert a Character Date to Julian
	YMDDAT - Convert an Integer Year-Month-Day Date into a Character Date
	JULDAT - Convert a Julian Date into a Character Date
	IYMDJL - Convert an Integer Year-Month-Day Date to Julian
	JLIYMD - Convert a Julian Date into an Integer Year-Month-Day Date
	IDAYWK - Get the Day of the Week from a Julian Date
	IHM2M - Convert a Twenty-Four Hour Clock Time to Minutes
	M2IHM - Convert a Time in Minutes to Twenty-Four Hour Clock Time
	INCTIM - Increment a Date and Time
	NOPERS - Determine the Number of Periods between Two Times
	CURTIM - Get the Current Julian Date and Time
	DATIME - Get Current Date and Time
	WHEN - Get the Current Date and Time in Character Form
	CDATE - Get the Current Date
	CTIME - Get the Current Time
	WAITS - Wait for a Specified Amount of Time
	XTIME - Get the Current CPU Time for the Session
	GETIME - Get Time Window from a Program Command Line

	Chapter 5 - Character Manipulation Subroutines
	CHRBLK - Fill a Character String with Blanks
	CHRFIL - Fill a Character String with a Specified Character
	CHRLNB - Locate the Last Non-Blank Character
	LFLNB - Locate the First and Last Non-Blank
	REMBLK - Remove Blanks from a String
	UPCASE - Convert a Character String to Upper Case
	MATCH - Search a List for a Character String
	INDEXR - Reverse Index
	NINDX - Search for the Non-Occurrence of a String
	NINDXR - Search for the Last Non-Occurrence of a String
	ISCAN - Search a String for Individual Character(s)
	HSCAN - Search a String for the Non-Occurrence of Individual Character(s)
	FINDLM - Find Delimiters within a Character String
	SETDLM - Set Delimiters for FINDLM
	LISNUM - Determine if a Character String Contains a Number
	INTGR - Read an Integer Number from a Character String
	INTGRC - Write an Integer Number to a Character String
	XREAL - Convert a Real Number from a Character String
	XREALC - Convert a Real Number to a Character String
	LJSTR - Left Justify a Character String
	RJSTR - Right Justify a Character String
	CJSTR - Center Justify a Character String
	CHRHOL - Convert a Character String to Hollerith (on Byte Boundaries)
	HOLCHR - Convert a Hollerith Array to Character (on Byte Boundaries)
	CH2HOL - Convert a Character String to Hollerith (on Word Boundaries)
	HOL2CH - Convert a Hollerith Array to Character (on Word Boundaries)

	Chapter 6 - PREAD Subroutines
	PTTACH - Attach PREAD Files
	PEND - Close PREAD Files
	PREADC - PREAD Processor (Method 1)
	PREAD - PREAD Processor (Method 2)
	PREAD1 - Execute a PREAD Command from the Program
	PSET - Set PREAD Parameters
	PINQIR - Inquire About PREAD Parameters
	PSETFN - Set PREAD Function
	PFNKEY - Get the String Assigned to a Function Key

	Chapter 7 - Miscellaneous Subroutines
	LEQNER - Test for One Number Nearly Equal to Another
	LGENER - Test for One Number Greater Than or Nearly Equal to Another
	LGTNER - Test for One Number Greater Than Another With a Tolerance
	LLTNER - Test for One Number Less Than Another Within a Tolerance
	LLENER - Test for One Number Less Than or Nearly Equal to Another
	LBTEST - Test to Determine if a Bit is Set
	IBSET - Set a Bit
	IBCLR - Clear a Bit
	MVBITS - Move Bits from One Word into Another
	IBITS - Extract a Field of Bits
	GETBIN - Get the Binary Representation of a Word
	DIBN - Display a Number as Binary
	NAME-LIST Processing
	NAMFIL - Read a File of Psuedo and True Names
	NAMLST - List all the Psuedo and True Names
	TRUNAM - Obtain a True Name from a Psuedo Name
	SETNAM - Set or Remove a Name in the Name List

	ABORT - Issue a Program Abort
	IEB2AS - Convert EBCDIC to ASCII
	HARRIS Specific Subroutines
	LPOPT - Get Program Options
	CIJOBE - Initiate a Batch Job
	CSPOOL - Spool a File to a Physical Device
	COPCOM - Execute an OPCOM Command
	CNTRLX - Interrupt a Program by Pressing CTRL X
	CRTN - Contingency (Error) Return
	RSCPDN - Resource a Physical Device
	XQTLINE - Get the Program's Execution Line
	XQTJCL - Execute One Job Control Command
	CHAIN3 - Chain From One Program Into Another
	EXPROG - Execute One Program from Antoher
	GSTRRG - Get String Register
	GNUMRG - Get Numeric Register
	SSTRRG - Set String Register
	SNUMRG - Set Numeric Register
	TRKSET - Set Parameters for Program Tracking

	MS-DOS Specific Subroutines
	CPARMS - Get Command Line Parameters
	PRNCHR - Send a Single Character to the Printer
	PRNLN - Send a Line to the Printer
	DSKSPC - Determine the Amount of Disk Space Left
	WHRFRM - Get the Path of the Program Executing
	CPLOCK - Control the Caps Lock Key
	NMLOCK - Control the Num Lock Key
	PRESED - Which (Special) Keys are Pressed
	FILEN - Get File Names for a Directory
	GETPTH - Get the Current Path
	GETDRV - Get the Default Drive
	SETDRV - Set the Default Drive
	CHDIR - Change Directory
	MKDIR - Make Directory
	RMDIR - Remove Directory
	CRDIR - Create Directories
	GETSUP - Get Path of a Supplemental File
	FSTENV/NXTENV - Get the Environment Table
	ICAT - Concatenate Two Bytes into One Word
	DCAT - De-Concatenate One Word into Two Bytes
	DBITS - Determine Which Bits of a Byte are Set

	Chapter 8 - Special Purpose Subroutines
	HARRIS Specific Subroutines
	INFO2 - Get Information About This Session
	GRNSIZ - Get the Granule Size of a File
	FOPEN - Fast Open
	GETQDD - Get the Qualifier Disc Directory of a File
	SYSLV - Get Current Operating System Level
	NXTLFN - Determine Units of All Files Assigned
	TRNSBK - Transmit a Break
	SPINT - Send a Special Interrupt to a Program
	SPINIT - Initialize Special Interrupts
	SPINFO - Get the Information Buffer Passed
	SPDID - Define Program Identification
	SPIP - Initiate a Sub-System Program with Special Interrupts
	SPTRIG - Trigger a Special Interrupt
	SPHINT - Hold Interrupts
	SPRINT - Release Interrupts
	SWAIT - Wait for Interrupts
	SPDLAY - Wait a Specified Amount of Time for an Interrupt
	IRETRN - Return from an Interrupt Subroutine
	Special Interrupt Example

	GETA - Get the A Register
	GETE - Get the E Register
	GETK - Get the K Register
	CHRLOC - Get the Address of a Character Variable
	OPTSET - Set Program Options

	MS-DOS Specific Subroutines
	MEMSIZ - Memory Size
	KEYBRD - Keyboard Interrupt
	VIDEO - Video Interrupt
	GETPSP - Get Program Segment Prefix
	PEEKB - Get Byte from PSP
	PEEKW - Get Word from PSP
	POKEB - Set Byte in PSP
	POKEW - Set Word in PSP
	INPB - Read a Byte from a Port
	INPW - Read a Word from a Port
	OUTPB - Write a Byte to a Port
	OUTPW - Write a Word to a Port

	Appendix A - Obsolete Subroutines
	Appendix B - Summary of Subroutine Calling Sequences

