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GRiP – A Flexible Approach for Calculating Risk as a 
Function of Consequence, Vulnerability, and Threat 

 
R.G. Whitfield, W.A. Buehring, and G.W. Bassett 

 
 

Executive Summary 
 
Get a GRiP (Gravitational Risk Procedure) on risk by using an approach inspired by the physics 
of gravitational forces between body masses! 
 
In April 2010, U.S. Department of Homeland Security Special Events staff (Protective Security 
Advisors [PSAs]) expressed concern about how to calculate risk given measures of consequence, 
vulnerability, and threat. The PSAs believed that it is not “right” to assign zero risk, as a 
multiplicative formula would imply, to cases in which the threat is reported to be extremely 
small, and perhaps could even be assigned a value of zero, but for which consequences and 
vulnerability are potentially high. They needed a different way to aggregate the components into 
an overall measure of risk. 
 
To address these concerns, GRiP was proposed and developed. The inspiration for GRiP is 
Sir Isaac Newton’s Universal Law of Gravitation: the attractive force between two bodies is 
directly proportional to the product of their masses and inversely proportional to the squares of 
the distance between them. The total force on one body is the sum of the forces from “other 
bodies” that influence that body.  
 
In the case of risk, the “other bodies” are the components of risk (R): consequence, vulnerability, 
and threat (which we denote as C, V, and T, respectively). GRiP treats risk as if it were a body 
within a cube. Each vertex (corner) of the cube represents one of the eight combinations of 
minimum and maximum “values” for consequence, vulnerability, and threat. The risk at each of 
the vertices is a variable that can be set. Naturally, maximum risk occurs when consequence, 
vulnerability, and threat are at their maximum values; minimum risk occurs when they are at 
their minimum values. Analogous to gravitational forces among body masses, the GRiP formula 
for risk states that the risk at any interior point of the box depends on the squares of the 
distances1 from that point to each of the eight vertices. The risk value at an interior (movable) 
point will be dominated by the value of one vertex as that point moves closer and closer to that 
one vertex. 
 
GRiP is a visualization tool that helps analysts better understand risk and its relationship to 
consequence, vulnerability, and threat. Estimates of consequence, vulnerability, and threat are 
external to GRiP; however, the GRiP approach can be linked to models or data that provide 
estimates of consequence, vulnerability, and threat. For example, the Enhanced Critical 
Infrastructure Program/Infrastructure Survey Tool produces a vulnerability index (scaled from 0 
to 100) that can be used for the vulnerability component of GRiP. 

 
                                                 
1 Other exponents on distance are possible, some of which we will explore in this report. 
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We recognize that the values used for risk components can be point estimates and that, in fact, 
there is uncertainty regarding the exact values of C, V, and T. When we use T = to (where to is a 
value of threat in its range), we mean that threat is believed to be in an interval around to. Hence, 
a value of to = 0 indicates a “best estimate” that the threat level is equal to zero, but still allows 
that it is not impossible for the threat to occur. When to = 0 but is potentially small and not 
exactly zero, there will be little impact on the overall risk value as long as the C and V 
components are not large. However, when C and/or V have large values, there can be large 
differences in risk given to = 0, and to = epsilon (where epsilon is small but greater than a value 
of zero). We believe this scenario explains the PSA’s intuition that risk is not equal to zero when 
to = 0 and C and/or V have large values. (They may also be thinking that if C has an extremely 
large value, it is unlikely that T is equal to 0; in the terrorist context, T would likely be dependent 
on C when C is extremely large.) The PSAs are implicitly recognizing the potential that 
to = epsilon. One way to take this possible scenario into account is to replace point estimates for 
risk with interval values that reflect the uncertainty in the risk components. In fact, one could 
argue that T never equals zero for a man-made hazard.  
 
This paper describes the thought process that led to the GRiP approach and the mathematical 
formula for GRiP and presents a few examples that will provide insights about how to use GRiP 
and interpret its results. 
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1  Introduction 
 
In April 2010, U.S. Department of Homeland Security (DHS) Special Events staff (Protective 
Security Advisors [PSAs]) expressed concern about how to calculate risk given measures of 
consequence, vulnerability, and threat. The PSAs believed that additive and multiplicative 
formulas were not “right.” That is, they understood that it is not truly accurate to assign zero risk 
to cases in which the level of threat is believed to be extremely small, and perhaps could even be 
assigned a value of zero, but for which the consequences and level of vulnerability are 
potentially high. They needed a different way to aggregate the components into an overall 
measure of risk. 
 
Calculating risk is a hotly debated topic in many fields and disciplines. Haimes (2006; 2009) 
discusses the definition of vulnerability in measuring risk to infrastructures, which is the context 
assumed here. DHS defines risk (DHS 2009) as follows: 
 

“… it is important to think of risk as influenced by the nature and 
magnitude of a threat, the vulnerabilities to that threat, and the 
consequences that could result: 

 
 R = f (C, V, T)” (Equation 1) 
 
where R is risk, C is consequence, V is vulnerability, and T is threat. C, V, and T are the 
components of risk. Thus, risk is a function of C, V, and T. 
 
It is interesting to note that the risk formula used in the DHS RAMCAPSM Plus process 
(ASME 2006; 2009) is expressed as a multiplicative formula (Risk = Consequence x 
Vulnerability x Threat) that may be written as follows: 
 
 R = C x V x T x k, (Equation 2) 
 
where k is a constant introduced to scale R. For example, if C, V, and T are scaled (i.e., they are 
indexes2) from 0 to 100, then k = 1/10,000 scales R from 0 to 100 (which also is an index). Willis 
(2007) uses the multiplicative formula to compare estimates of terrorism risks in urban areas that 
received Federal funding.  
 
The multiplicative formula, however, is fraught with potential problems. For one thing, those 
who use it often ignore the units of measure for C, T, and V. When T and V are treated as 
probabilities, the unit of measure for C becomes the unit of measure for R. The measure is often 
expressed as dollars, number of fatalities, or dollar equivalents of a number of consequence 
types. Cox (2008) addresses other limitations of the multiplicative formula that may undermine 
effective allocation of resources to reduce risk. 
 

                                                 
2 This treatment does not preclude the possibility that C, V, and T are real numbers (normalized between 0 and 

100), or that V and T are probabilities (again normalized between 0 and 100). 
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Perhaps the most troublesome problem is the interpretation of risk results when one of the 
components of risk is equal to zero or asserted to be nearly zero. PSAs have noted this difficulty; 
especially sensitive are PSAs who are in charge of special events (e.g., a presidential 
inauguration, a Super Bowl game, a baseball World Series game), because they often identify 
facilities associated with events that have high vulnerability levels and potentially high 
consequences – but also have little or no credible information about threat. Because these PSAs 
“know” that it is not desirable to assign near-zero risk to the facility simply because threat is 
perceived to be low, they have expressed the need for a way to evaluate plausible protective 
measures at the facility that will result in a measurable improvement in the site’s defensive 
posture – even if, for example, threat is perceived to be low. 
 
The National Academy of Sciences (2010) recently examined various DHS approaches to risk 
analysis. With respect to the multiplicative formula, which is used in RAMCAPSM Plus, the 
organization concluded:  
 

“… that the multiplicative formula, Risk = T x V x C, is not an 
adequate calculation tool for estimating risk for the terrorism 
domain, within which independence of threats, vulnerabilities, and 
consequences does not typically hold.” 

 
Because risk is a function of C, V, and T, and because it may be desirable to have a non-zero risk 
when T is zero or close to it, an additive risk formula may have some merit. An additive formula 
at one time was used in a DHS program (National Academy of Sciences, 2010). A simple 
additive formula is given by: 
 
 R = aC + bV + cT, (Equation 3) 
 
where parameters a, b, and c are constants. The additive formula shown in Equation 3 embodies 
assumptions about the way the components aggregate to risk. Because C and V are assumed to 
act independently on risk, the second-order derivative of R with respect to C and then V is equal 
to zero – a characteristic that may or may not be a desirable property of the risk relation. In 
contrast, the second cross derivative of the multiplicative formula is not equal to zero – again, a 
characteristic that may or may not be desirable. As will be demonstrated in Sec. 2, the GRiP 
(Gravitational Risk Procedure) formula, by contrast, is a complex function of C, V, and T. 
 
To address concerns by the PSAs and Special Events staff about some of the limitations of 
calculating risk using these formulas, we developed the GRiP approach. The approach is inspired 
by the physics of gravitational forces among body masses (e.g., planets, moons, and satellites; 
see The Physics Classroom [undated]). Newton’s Universal Law of Gravitation states that 
(1) every mass (body) attracts another mass by a force (a vector) directed along a straight line 
between the masses, and (2) the force is directly proportional to the product of the two masses 
and inversely proportional to the square of the distance between them, as follows: 
 

 
2

21

d

mm
GF   (Equation 4) 
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where: 
 

• F is the magnitude of the gravitational force between the two masses; 
• G is the gravitational constant; 
• m1 and m2 are the first and second masses, respectively; and 
• d is the distance between the masses. 
 

Therefore, the insights with respect to the GRiP approach to calculating risk include the 
following: 
 

• Begin with a three-dimensional (3D) space (C, V, and T);  
 

• Identify minimum and maximum values for C, V, and T (which define the boundaries of 
the space and which in turn can be visualized as a cube or box);  

 
• Specify the magnitude of the risk at each vertex (corner) of the cube; 

 
• Imagine a point body inside the cube subject to risk forces (analogous to gravitational 

forces) from bodies at each of the vertices; 
 

• Calculate the effect of each vertex on the interior point (the magnitude of the effect is 
proportional to the magnitude of the risk at a vertex and inversely proportional to the 
square of the distance of the interior body from the vertex); and 

 
• Sum those effects to obtain a measure of the risk at the interior point of the cube. 

 
The analogy of risk calculation based on C, V, and T to the physics of gravitational forces among 
body masses leads to its name, GRiP – Gravitational Risk Procedure. 
 
This paper describes the thought process that led to GRiP, the mathematical formula, and a few 
examples that provide insights about how to use GRiP and interpret its results. GRiP results are 
also compared to those yielded by a simple multiplicative formula and a simple additive formula 
for calculating risk. 
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2  The Risk Cube 
 
To begin, consider a three-dimensional space (a cube; Figure 1) in which the dimensions (axes) 
are consequence (C), vulnerability (V), and threat (T). C, V, and T are scaled from 0 to 100, 
where 0 represents minimal (possibly equal to zero) C, V, or T; and 100 represents maximal C, V, 
or T values.3 The eight vertices are labeled with index numbers from 1 to 8. 
 

 
Vertex 1, labeled 1, is the origin and is associated with C = 0, V = 0, and T = 0; it can also be 
written (C = 0, V = 0, T = 0) or (0, 0, 0). Minimum risk is associated with this vertex. Vertex 8 is 
furthest from the origin. It can be written (100, 100, 100). Maximum risk is associated with this 
vertex (C, V, and T are maximal) For vertices 2-7, at least one of C, V, and T is at a maximum 
value and at least one of C, V, and T is at a minimum value.  
 
In Figure 2, point P is visualized inside of the cube. It has coordinates (which specify its location 
within the cube) of cp, vp, and tp, which can be written (cp, vp, tp). 

                                                 
3 Where appropriate, these variables may be interpreted as probabilities. Taking threat as an example, 0 would 

mean a probability of zero (i.e., not possible), and 100 would mean a probability of 1 (i.e., certain). 

1 = (C=0,V=0,T=0)

2 = (0,0,100)

3 = (0,100,0)

4 = (0,100,100)

5 = (100,0,0)
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7 = (100,100,0)

8 = (100,100,100)
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FIGURE 1  The Risk Cube Defined by Consequence, Vulnerability, and Threat 
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In Figure 3, a line is drawn from P to each of the eight vertices. The length of each line is the 
distance from P to each of the vertices. 
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FIGURE 2  Point P Inside the Risk Cube Has Coordinates (cp, vp, tp) 

1 = (0,0,0)

2 = (0,0,100)

3 = (0,100,0)

4 = (0,100,100)

5 = (100,0,0)

6 = (100,0,100)

7 = (100,100,0)

8 = (100,100,100)
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5 = (100,0,0)

6 = (100,0,100)

7 = (100,100,0)

8 = (100,100,100)
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FIGURE 3  Solid Blue Lines Represent the Distance from Point P  

to Each Vertex 
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To make the next step in the development, additional notation is needed. As stated earlier, P is 
denoted by coordinates (cp, vp, tp). Furthermore, the coordinates of vertex i are denoted as 
(ci, vi, ti). The vertex 6 coordinates (C = 100, V = 0, T = 100) are denoted as (c6, v6, t6). Finally, 
the distance from vertex i to P is denoted as di,p. Therefore, the distance from vertex 6 to P is d6,p. 
Figure 4 illustrates the notation. 
 

 
From analytic geometry, the formula for the distance from vertex 6 to point P is: 
 

 .)t(t)v(v)c(c 2
p6

2
p6

2
p6,6 pd  (Equation 5) 

 
Next, the risk associated with each vertex is denoted as Ri. To scale R from 0 to 100, R1 must be 
equal to 0 and R8 must be equal to 100. The influence I6,p of vertex 6 on P is defined as:4 
 

                                                 
4 It is tempting to continue the analogy to gravitational forces between and among body masses and write 

2
p,6

6
p,6

d

R
I   and total risk as .RIR

8

1i
ip,ip 


 However, this formulation breaks down as point P approaches 

one of the vertices, say i, because, even in the limit, Rp will not approach Ri. Not only is this problematic when 
only R8 is not equal to zero, it is especially problematic when only R1 is equal to zero. As a result, a fractional 
approach must be used. 
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FIGURE 4  Subscript Notation to Identify Vertices  
and Distances from Vertices to P
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2
p,6

p,6
d

1
I   (Equation 6a) 

=
2

p6
2

p6
2

p6 )t(t)v(v)c(c

1


, (Equation 6b) 

 
which means that the influence of vertex 6 on P is inversely proportional to the square of the 
distance between P and vertex 6. Note that when d6,p is very small (i.e., P is very close to 
vertex 6), I6,p is very large. 
 

The fractional influence F6,p of vertex 6 on point P is: 
 

p,8p,7p,6p,5p,4p,3p,2p,1

p,6
p,6 IIIIIIII

I
F


  

 





8

1i
p,i

p,6

I

I
. (Equation 7) 

 
The total influence Rp on P (i.e., the risk associated with P) is determined from the 

fractional influence of each of the eight vertices and the risk value (Ri) at each of the 8 vertices: 
 





8

1i
ip,ip RFR  

 








8

1i
p,i

8

1i
ip,i

I

RI

, (Equation 8) 

 
which is called the overall risk formula. 
 
Note that if, for example, P is very close to vertex 6, I6,p will be very, very large (it will approach 
infinity) compared to the other Ii,p values (they will be finite and relatively small). The value of 
F6,p will approach 1.0 and the other Fi,p will be very small and will approach 0.0. In that limit, 
Equation 8 reduces to: 
 

p,6

6p,6
p F

RF
R   

 

6R . (Equation 9) 
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3  Analysis 
 
The properties of the overall risk formula are greatly influenced by the risk values assigned to the 
vertices. This section investigates several plausible settings of these values and compares results 
using GRiP to simple multiplicative and simple additive formulas. 
 
 
3.1  One Vertex is Non-Zero 
 
It has been commonplace to characterize risk as the product of consequence, vulnerability, and 
threat. With that assumption, when the value of one or more of the risk components (C, V, and/or 
T) is equal to zero, the product is equal to zero. For GRiP, this characterization means that only 
one vertex (100, 100, 100) has non-zero risk. The column labeled R0 in Table 1 lists the risk 
values for the eight vertices based on this assumption. The data in the other column, labeled 
“PSA,” will be discussed in Section 3.2. 
 
 

Table 1  Settings of the Risk Values for the 8 Vertices of the GRiP Cube 

 
 

Components 
 

Cases 
 

Vertex C V T 
 

R0 PSAa 
       
1 0 0 0  0 0 
2 0 0 100  0 16 
3 0 100 0  0 30 
4 0 100 100  0 46 
5 100 0 0  0 65 
6 100 0 100  0 80 
7 100 100 0  0 92 
8 100 100 100  100 100 

a These illustrative judgments were provided by a small group of PSAs. 
 
 
A four-dimensional plot5 (Figure 5) indicates the effects on risk attributable to the R0 values at 
the vertices. Risk – the fourth dimension – is displayed at regular (C,V,T) intervals as a bubble, 
and the amount of risk is proportional to the size of the bubble. Figure 5 demonstrates that risk 
approaches a value of zero near seven of the vertices, and approaches a value of 100 near the 
(100, 100, 100) vertex. The largest bubbles – indicative of the highest risks – are predominantly 
in the top-back region of the cube, where C, V, and T are high. 
 
The six values used for each component are 1, 20, 40, 60, 80, and 99. Therefore, there are 
63 = 216 points plotted in Figures 5 through 8. 
                                                 
5 The four-dimensional plots in this report were generated by using V3D, “…a handy, fast, and versatile 3D/4D/5D 

Image Visualization & Analysis System for Bioimages & Surface Objects. It also provides many unique 
functions. It is also Open Source, supports a very simple and powerful plugin interface and thus can be extended 
& enhanced easily” (V3D undated). 
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3.2  Only One Vertex is Zero 
 
As stated at the beginning of this report, PSAs expressed concern about how to calculate risk 
given measures of consequence, vulnerability, and threat. They felt that additive and 
multiplicative formulas are not “right.” They also believed that it is not right to assign zero risk 
to cases in which threat is asserted to be zero (or very small) but consequences and vulnerability 
are potentially high. They needed a different way to “calculate” risk. 
 
These thoughts were the catalyst for developing GRiP. Several months after the initial efforts to 
develop GRiP, the PSAs came together and, as a group, provided illustrative judgments about 
appropriate values for the vertices of the GRiP cube. The averages of their judgments at each 
vertex are listed in Table 1 in the column labeled “PSA.” Their judgments are that the potential 
for high consequences is of greater concern (indicated by a higher assigned risk index of 65) than 
high vulnerability, and the potential for high vulnerability is of greater concern (indicated by a 
higher assigned risk index of 30) than high threat (assigned a risk index of 16). Statistical 
analysis shows that these effects are highly additive, with a slightly negative interaction between 
C and V. 
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FIGURE 5  Four-Dimensional Plot of Risk at Regular Intervals in CVT-Space for 
the GRiP Formula; Risk, the Fourth Dimension, Is Proportional to the Size of 

the Bubble at the (C,V,T) Values Shown (only one vertex  
has a risk value that is not equal to zero) 



 

13 

A plot of risk versus C, V, and T for the PSA vertex values is shown in Figure 6. Note that there 
are considerably more large bubbles, which indicates higher levels of risk for more (C,V,T) 
combinations, as compared to Figure 5. 

 
 

 
 
3.3  Simple Multiplicative Formula 
 
To gain insights into the characteristics of GRiP-produced risk results, we consider a simple 
multiplicative formula (and a simple additive formula in the next section). 
 
Given that C, V, and T are indexes from 0 to 100, a multiplicative risk formula (from Equation 2) 
that is simply the product of these factors is: 
 

Rm = C x V x T / 100 / 100, (Equation 10) 

and the range of Rm in this equation is from 0 to 100. 
 
A plot of risk versus C, V, and T for the multiplicative formula (Equation 10) is shown in 
Figure 7. Comparing Figure 7 to the GRiP-generated results for the single non-zero vertex case  
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FIGURE 6  Four-Dimensional Plot of Risk at Regular Intervals in CVT-Space; 
Risk, the Fourth Dimension, Is Proportional to the Size of the Bubble at the 

(C,V,T) Values Shown (only one vertex has risk equal to zero, and the results 
are based on the judgments of PSAs and the GRiP formula) 
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in Figure 5, the multiplicative formula appears to yield lower risk values than the GRiP results at 
lower values of C, V, and T. The converse appears to be true at higher values of C, V, and T. 
 
It is difficult to see what is occurring in the four-dimensional plots. In Section 3.5, we focus on 
the main diagonal in each cube to gain insights about the properties of all four formulas 
(including the additive formula described in the next section). 
 
 
3.4  Simple Additive Formula 
 
Given that C, V, and T are indexes from 0 to 100, an additive risk formula (from Equation 3) that 
is simply the weighted sum of these factors is: 
 

Ra = 0.586 C + 0.27 V + 0.144 T, (Equation 11) 
 
where the constants in the formula are based on the ratios judged by PSAs for the vertices having 
one component at 100, as listed in Table 1. For example, the coefficient on C is the ratio of 65 
(the risk value at the vertex with only C at 100) to the sum of 65, 30 (the risk value at the vertex 
with only V at 100), and 16 (the risk value at the vertex with only T at 100). The coefficients for 
the additive formula in Eq. 11 must be normalized and add to 1.0 or the risk value at the 
(100,100,100) vertex will be greater than 100. Thus, the coefficient on C is 65/(65+30+16), 
which equals 0.586, and the range of Ra in this formula is from 0 to 100. 
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FIGURE 7  Four-Dimensional Plot of Risk at Regular Intervals  
in CVT-Space for a Simple Multiplicative Formula
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A plot of risk versus C, V, and T for the additive formula (Equation 11) is shown in Figure 8. 
When comparing Figure 8 to the GRiP-generated results for the PSA case (Table 1) in Figure 6, 
the results are quite similar. The differences between the additive formula and the GRiP/PSA 
case are examined further in the next section.  
 

 
 
3.5 Comparison of the Cube’s Main Diagonal Risk Values for Different 

Formulas 
 
If there were a universally agreed-upon formula for risk, exploration of alternative formulas for 
risk as a function of consequence, vulnerability, and threat would not be necessary. Given this 
situation, several alternative formulas can be examined to determine the advantages and 
disadvantages of each. GRiP offers the convenience of representing some very complex 
relationships between risk and C, V, and T by simply specifying the risk associated with the eight 
vertices and the exponent of the distances from any point in the cube to each of the eight 
vertices. 
 
As will be shown, several distance formulas for the GRiP approach are plausible and potentially 
useful. Four basic formulas are explored in Section 3.5.1, four variations of the GRiP formula are 
explored in Section 3.5.2, and a family of distance formulas known as Lp functions is explored in 
Section 3.5.3. Furthermore, a single shape parameter (the exponent on the distance) for all but 
the additive and multiplicative functions determines their properties. “The best” shape parameter 
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FIGURE 8  Four-Dimensional Plot of Risk at Regular Intervals  
in CVT-Space for a Simple Additive Formula 
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can be determined by specifying (i.e., judging) the risk associated with one interior point in the 
risk cube. A process for determining the best shape parameter is presented in Section 3.5.4. 
 
3.5.1  Four Basic Formulas 
 
Because it is difficult to comprehend the intricacies of these formulas by viewing four-
dimensional graphs, we turn attention to the main diagonal of the CVT cube – that is, the 
diagonal from (0, 0, 0) to (100, 100, 100). Along the main diagonal, C equals V equals T. 
 
We investigate a multiplicative function, an additive function, and two GRiP functions (one with 
one non-zero-risk vertex and one with seven non-zero-risk vertices. Results are shown in 
Figure 9. Results for the multiplicative (dashed line with triangular markers) and the GRiP 
formula with seven zero-risk vertices (solid line with diamond markers) are similar. The most 
notable difference is that the graph for GRiP results has two inflection points: values are above, 
then below, and finally above the multiplicative results as the main diagonal value increases 
from 0 to 100. 
 
The additive formula (dotted line with circle markers) and the GRiP formula with 7 non-zero-
risk vertices (based on PSA judgments; solid line with square markers) produce similar results. 
The most notable difference is that the graph for GRiP results has several (4) inflection points: 
values are below, then above, then below, and finally above the additive results as the main 
diagonal value increases from 0 to 100. 
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3.5.2  Four Additional Formulas 
 
The following modification presents an additional “twist”: instead of using the inverse of the 
distance squared, use the inverse of the distance or the inverse of the distance to the fourth power 
in the GRiP formulas for one non-zero-risk vertex and seven non-zero-risk vertices (based on the 
PSA judgments). Thus, we rewrite Equation 5 as: 
 

,])t(t)v(v)c(c[ 2/2
p6

2
p6

2
p6,6

s
pd   (Equation 12) 

 
rewrite Equation 6a more generally as: 
 

p,6

p,6
d

1
I  , (Equation 13) 

 
and calculate risk as before using Equations 7 and 8. Therefore, in Equation 12, s = 1 yields the 
1/d case, s = 2 yields the 1/d2 case, and s = 4 yields the 1/d4 case. 
 
This modification introduces some interesting possibilities, which are illustrated in Figure 10. 
Perhaps the most interesting is the case for seven non-zero-risk vertices and 1/d4: the plot has a 
distinct sigmoidal (S) shape that is low risk at first (up to a diagonal level of about 20), rises 
sharply with a relatively constant slope up to a diagonal level of about 80, and levels off 
thereafter. This effectively defines three regions: (1) one in which the risk value is very low – 
with a value near zero with main diagonal values less than about 20; (2) another in which the risk 
value is very high – nearly 100 with main diagonal values greater than about 80; and (3) a third 
with main diagonal values between 20 and 80 in which the risk value is proportional to the main 
diagonal value and varies from about 0 to about 100. 
 
The risk index value in the center of the risk cube is a function of the risk index values assigned 
to the eight vertices. When all vertices except (100, 100, 100) are assigned zero risk values, the 
GRiP-calculated risk index for (50, 50, 50) is 12.5 for three “Ro” cases; 12.5 is also the risk index 
for the multiplicative formula. For the PSA judgments, the GRiP-calculated risk index for (50, 
50, 50) is 53.6; for the additive formula, the risk index is 50. 
 
Finally, this modification leads to discussion of another family of distance formulas known as Lp 
functions. 
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3.5.3  Lp Functions 
 
If we interpret the parameter s in Equation 12 as a shape parameter, we have thus far investigated 
values of 1, 2, and 4 for s. The s = 1 case is special and an instance of a family of functions 
known in mathematics as Lp functions.6 If we view the line connecting P in the GRiP cube to 
vertex 6 (as in Equation 5) as a vector, L6,p, the general Lp formula for the length of the vector (in 
three-dimensional space) is as follows: 
 

's/1's
p6

's
p6

's
p6'sp,6 )ttvvcc(L   (Equation 14) 

 
where:  
 

 ||L6,p||s’ denotes the magnitude (length) of L6,p for a given value of s’, and 
 

 |c6–cp| denotes the absolute value of the difference between c6 and cp.  
 

Note that we use s’ instead of the traditional p in the Lp formula to avoid confusion with the 
p-notation associated with point P in the GRiP cube.  
 

                                                 
6 For information on Lp functions, see Taylor (1973).  
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Clearly, for s’ = 2, the formula is equivalent to that of the Euclidean distance (namely, 
Equation 5) between point P and vertex 6. Note that versions of Equation 12 for s = 2 and s = 4 
are not Lp functions. 
 
Next, we generalize Equation 6a for Lp functions to be: 
 

'sp,i
p,i

L

1
I  , (Equation 15) 

 
which allows Equations 7 and 8 for calculating risk to remain unchanged. 
 
It happens that risk results along the main diagonal for Lp distance functions are not much 
different from those for the 1/d formulas for main diagonal values less than about 70. Because 
the results for Lp functions are so similar to those for the GRiP formulas with the 1/d 
relationship, it is logical to conclude that raising the Lp distance to a power will again yield 
similar results. The primary usefulness of the Lp distance functions is that they allow for 
additional “fine tuning” of the basic distance calculations should that be desirable. A process for 
doing fine tuning is discussed in the next section. 
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4 A Process for Determining the Value of the Shape 
Parameter in the Risk Formula 

 
With one additional judgment, the shape parameter in Equation 12 (the distance formula) can be 
determined. Without this additional judgment, the value of s used in analysis is in turn a 
judgment with little or no foundation. A process for determining the value of s that is consistent 
with the additional judgment is described below.  
 
Given the risk index values of the eight vertices, the shape parameter for the distance formula 
(Equation 12) can be determined by specifying the risk index value for an interior point in the 
GRiP cube other than (C=50, V=50, T=50). As mentioned earlier, the risk index value in the 
center of the cube is determined by the values assigned to the vertices. A four-step process for 
determining the shape parameter is as follows: 
 

1. Determine the risk index values of the eight vertices. These are value judgments that 
should be made by SMEs. Except for vertices (0, 0, 0) and (100, 100, 100), which must 
be 0 and 100, respectively, the others can be any value between 0 and 100. 

 
2. For a point of reference, calculate the risk index value for the center of the GRiP cube. It 

will be greater than 0.125 if more than one vertex has a risk index value greater than zero. 
 

3. Determine (i.e., judge) the risk index value of a point along the main diagonal. From 
Figure 10, it appears that a diagonal value of about 80 should give more reliable results 
because there is greater separation among the functions in this region. For consistency, 
the judged value must be greater than the value in the center of the cube because all of 
these functions are monotonically increasing (i.e., always increasing along the main 
diagonal). 

 
4. Use a search algorithm to determine the value of s that satisfies the judged value of the 

point along the main diagonal.7 This is a straightforward process using a computer 
software program that has a goal seek or solver tool. 

 
Note that the shape parameter is important in the distance formula – Equation 12 – for non-Lp 
functions. The distance formula is then used in Equations 6, 7, and, finally, 8, to calculate risk. In 
the same manner, the exponent (s’) for Lp distance (Equation 13) can be determined and then 
used in conjunction with Equations 7 through 9 to calculate a risk index value. 
 
Risk values can be assigned to more than one interior point. Each will lead to a different s or s’ 
value if the assignments are not perfectly consistent. Inconsistencies should be resolved before 
proceeding. Regression techniques can be used to resolve inconsistencies or the s and s’ values 
can simply be averaged. 

                                                 
7 Note: Although it is possible to use a point that is not on the main diagonal, this approach may require more 

difficult and less reliable judgments. Whether or not these judgments are realistic can only be determined through 
experience. 
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5  Conclusions 
 
This paper describes a new, flexible approach and formula for calculating risk, which is a 
function of consequence, vulnerability, and threat. The inspiration for the formula is the physics 
of gravitational forces among body masses. We call this approach GRiP (Gravitational Risk 
Procedure). 

 
The potential need for GRiP stemmed from an April 2010 meeting with the PSAs, who were not 
comfortable about how to calculate risk based on measures of consequence, vulnerability, and 
threat. They felt that it was not right to assign “zero risk”, as a multiplicative formula would 
imply, to cases in which the threat level is reported to be extremely low, perhaps even equal to a 
value of zero, when consequences and vulnerability are potentially high. These PSAs needed a 
different approach for aggregating the components into an overall measure of risk. 

 
It is recognized that the values used for risk components can be point estimates and that, in fact, 
there is uncertainty regarding the exact values of C, T, and V. When we use T = to (where to is a 
value of threat in its range), we mean that the threat level is thought to be in an interval around to. 
Hence, a value of to = 0 indicates a “best estimate” that the threat level is equal to zero, but still 
allows that it is not impossible. When to = 0, but is potentially small and not exactly zero, there 
will be little impact on the overall risk value as long as the C and V components are not large. 
However, when C and/or V are large, there can be large differences in risk, given to = 0 and 
to = epsilon (where epsilon is small but greater than a zero value). We believe this scenario is the 
reason for the PSAs’ intuition that the risk level is not zero when to = 0 and C and/or V are large. 
The PSAs are implicitly recognizing the potential that to = epsilon. They also may have been 
thinking that if C has an extremely large value, it is unlikely that T is equal to 0 (T is to some 
degree dependent on C when C is extremely large).  
 
Another way to express the concerns of the PSAs introduces the concept of “exposure” from the 
business world. Perhaps their discomfort is closely related to an aversion to the possibility of 
large, adverse consequences even though the likelihood is near zero. 
 
The GRiP functionality addresses these concerns and is flexible for four primary reasons. First, 
the risk associated with combinations of C, V, and T having one or two zero values can be judged 
to be non-zero. Traditionally, a risk of zero is assigned to such combinations–usually because a 
multiplicative function is used to calculate risk. Second, although the primary formula uses 
inverse-distance-squared variables, other exponents for distance are feasible (e.g., 1/d and 1/d4). 
Third, in the general case of Lp functions (the GRiP formula is an Lp function in the case of 
inverse-distance-squared variables), the feasible range of the shape variable – 1 to infinity – 
allows for a wide range of functions that may have desirable properties for calculating risk. 
Fourth, C, V, and T values can be real numbers or indexes. 
 
Results, which depend on key illustrative judgments provided by the PSAs specifically for the 
GRiP approach, are presented for a number of combinations of exponents on distance and risk 
values assigned to the vertices of the GRiP cube. These are compared to a simple multiplicative 
formula and a simple additive formula. The additive formula necessarily uses a subset of the 
judgments of the DHS PSAs about the risk values of the vertices of the GRiP cube. 
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In considering GRiP results along the main diagonal of the GRiP cube for the 1/d2 case, seven 
vertices with the R = 0 assignment are quite similar to those for the additive formula. Likewise, 
in the case of 1/d2 with PSA judgments about the vertices assignment, GRiP results are quite 
similar to those for the multiplicative formula, for values along the main diagonal that are less 
than about 70 (see Figure 10). Thus, the differences in risk values (e.g., those from a GRiP 
formula vs. a multiplicative formula) at higher values of C, V, and T may be important. 
 
Finally, the process for determining a shape parameter (an exponent applied to the distance) is 
described in Section 4. This parameter greatly increases possibilities for the overall risk formula 
– regardless of how distance is calculated (i.e., GRiP, Lp, additive, or multiplicative functions). 
 
We are hopeful that risk analysts will find GRiP useful and that it will help them obtain 
additional insight into some of the complexities of addressing risk.  
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