

Recent Results of ITER TF Conductor Performance Tests

Joseph V. Minervini

MIT Plasma Science and Fusion Center Cambridge, MA, 02139 December 19, 2007

DSFC Technology & Engineering Division

Mechanical Effects

Pliī

The critical properties of certain superconductors (such as Nb_3Sn) can degrade when a *strain* is applied. Various strains appear when a magnet is energized:

T_c Strain Sensitivity of Nb, Nb₃Sn and Nb₃Al Using Ab-Initio Techniques

Pliī

Matteo Salvetti, MIT Mechanical Engineering Graduate Student

The electron-phonon (el-ph) interaction is the mechanism behind the critical temperature T_c in conventional superconductors. The presence of strain in real materials modifies the el-ph coupling and the Tc value.

DSIC Technology & **Engineering** 1

Photomicrographs: Strand Subelements

Luvata Jew

Jewell et al, NHMFL

OST

Impressions (No quantitative analysis); grey "dust" is artifact

- OST still has more radial bridging than Luvata, but less than OST CS
- Subelement gaps thicker in Luvata
- OST more unreacted Nb in filament cores, (Jewell- crack initiators?)

Plii

FEA Models of Strand Bending Bronze and Internal Tin

Current Experimental Work

Technology & Engineering Division

Þ\$**F**(

(Pure bending of a single strand)

W. Goldacker

A Nijhuis

P. Lee

Periodic bending

l'Ili7

IAGNETIC TECHNOLOGY DIVISION BOULDER, COLORADO

I_c OST CS strand starts 36 % higher than OKAS; only 4 % after 2nd cycle Reversibility limits not established; simulations not attempted

Luvata/Outokumpu less sensitive than OST, but within data spread

New Experiment (Transverse Load Cable Test)

Single piece case to sustain load

Wedge

Four samples after heat treatment Same heat treatment for single strand, 3strands, 9 strands, 45 strands cables

Sample holder

\Extensometer

Pliī

ITER TF Conductor

TF Conductor

- It is foreseen to manufacture 18 TF Coils + One Spare: 10 in the EU and 9 and Japan.
- Each TF Coil is made up of 5 *regular* Double Pancakes (rDP) and 2 *side* Double Pancakes (sDP).
- Each DP is wound from a single, continuous length of Cable-In-Conduit Conductor, referred to as *Conductor UL*.
- rDP Conductor UL: ~765 m.
- sDP Conductor UL: ~425 m.
- Total: 95 rDP's + 38 sDP's (plus spares).

ITER TF Conductor Supply

TF Conductor	EU	JA	RF	KO	US	CN	Total
Credits (kIUA) (2007 M€)	43.4 (62)	53.7 (76)	41.5 (59)	43.4 (62)	16 (24)	16.2 (23)	215 (305)
Share (%)	20.2	25.0	19.3	20.2	7.8	7.5	100
rDP (765 m)	19	24	18	19	9	6	95
sDP (425 m)	8	9	8	8		5	38
sc weight (t)	77	95	74	77	30	29	381
Manufacturers							
Bronze	1	3	1				5
Internal Tin	2	1		1	2	1	7
Number of billets	1239	1071	614	1539	591	576	5629
Minimum number of strand acceptance tests	2479	2141	1227	3077	1183	1151	11259

- Total weight of Nb₃Sn wires: \sim 380 t (annual production presently estimated around 15 t).
- Total number of billets: ~5600 (similar to LHC, where it was ~6000).
- Large number of QC tests on strands (*e.g.*, as many as ~11000 *I*_C measurements).

- Specifications call for
 - Diameter
 - Cu-to-Non-Cu ratio
 - I_c at 4.2 K and 12 T (ITER Barrel) 200–300 A
 - Hystreresis loss over ± 3 T cycle < 1000 mJ/cm³
 - RRR (after heat treatment)

- 0.82 mm 1:1

- > 100
- Most suppliers around the world are able to meet these specs.

EAS (Br; EU) Boschwar (Br; RF) OST (IT; EU) NIN&WST (IT; CN)

• The ITER TF cable pattern is complicated; it mixes 900 sc strands with 522 Cu strands in five stages

- inner triplet: (2 sc + 1 Cu)
- x 3
- x 5
- petal: x 5 around (3 x 4 Cu) + stainless steel wrap
- x 6 around central cooling spiral + stainless steel wrap

Pliī

Conduit

Plii

Finished conductor

Compaction tool

(courtesy of Yu Wu, ASIPP)

 The jacketed conductor is compacted to achieve the desired void fraction.

SULTAN Facility @CRPP (http://crppsc.web.psi.ch/Facilities/sultan.html)

DSIC

Technology &

Engineering Division

- At present, the performance of a CICC cannot be extrapolated from the performances measured on individual strands.
- \Rightarrow each strand/cable/jacket combination must be tested in a fullsize conductor sample.
- Testing of full-size CICC samples requires a dedicated facility, that, ideally, should reproduce the most severe "in-coil" operating conditions.
- The only facility of this kind is SULTAN at CRPP (Centre de Recherche en Physique des Plasmas), located in Villigen, Switzerland.

Pliī

• This mixture of effects can lead to significant inconsistencies between voltage and calorimetric data.

OST-1: ITER reference cable pattern gives degraded $T_{cs} \sim 6$ K, *n*-value ~ 8 . OST-2: new cable layout based on TEMLOP prediction with outstanding result: $T_{cs} = 7.3$ K, no degradation, no *IxB* sensitivity, *n*-value similar to strand (20), maximum achievable performance.

- Significant worldwide effort has been applied to understanding effects of longitudinal, bending, and transverse compression strain on degradation of critical current of Nb₃Sn superconductors.
- Some ITER relevant Nb₃Sn strands appear more sensitive to strain than others.
- Initial short-length, full-size ITER conductor samples using baseline parameters have shown disappointing results in SULTAN Facility tests.
- Most recent tests using redefined cable twist patterns indicates required conductor performance can be achieved or exceeded.
- Further comprehensive qualification of ITER TF conductor samples will be performed during 2008 in SULTAN facility.