

FCC Field Hearing on Energy and the Environment

Cambridge, MA; November 30, 2009

© EnerNOC Inc.

Why Demand Response?

Annual Electricity Demand

Demand Response Benefits Ratepayers

ISO-New England: *Electricity Costs White Paper (2006)*

 Reducing electricity use by 5% during peak times will save consumers
\$580 million per year

Brattle Group: *Quantifying Demand Response Benefits in PJM (2007)*

• **\$138-281 Million of system benefits** to PJM if load curtailed 3% during top 20 5hour price blocks of 2005

Summit Blue: Demand Response Resources Valuation and Market Analysis (2006)

 Forecast: Demand response will save \$892 million in capacity charges over next 20 years (present value, 2004 \$)

Energy Data from Every Customer

Capture Meter Data

•At each site, the utility installs a KYZ pulse on the end-user meter, or an EnerNOC field technician installs a current transformer. The ESS stores this usage data.

Send Meter Data

 In real-time, each ESS transmits usage data to EnerNOC's PowerTrak® software platform via broadband or wireless connection.

Present Meter Data

•Users have access to PowerTrak, online energy management software, that presents EnerNOC consumption data and demand response performance in real-time.

1	Energy P	rofiling	Ad	nin					÷
ime > Energy ro	Profiling	≥.							
r Chart#1									
. "		~	11			R	~	-	
g n n	21	1	2			11	V	1	
65	V		~	\sim	\sim	V			
60 19 Jun 2000 0 01	19	20	21	22	22	24	25	24 Jun 2008 0:00	
	15 (Artu	al Air Sp	sce Terr	perature					
▶ 06 R.M. A+1									

Policy Implications

- Communications and computing are the keys to the Smart Grid
- Customers should have access to their own data directly from the meter in near real time
- Standards are important
- Making broadband availability more ubiquitous will allow more and smaller customers to be able to participate in Demand Response and Energy Efficiency activities.

Rick Counihan

Vice President, Regulatory Affairs 415.517.861 rcounihan@enernoc.com

