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ABSTRACT

A universally accepted definition for vector correlation in oceanography and meteorology does not presently
exist. To address this need, a generalized correlation coefficient, originally proposed by Hooper and later expanded
upon by Jupp and Mardia, is explored. A short history of previous definitions is presented. Then the definition
originally proposed by Hooper is presented together with supporting theory and associated properties. The most
significant properties of this vector correlation coefficient are that it is a generalization of the square of the
simple one-dimensional correlation coefficient, and when the vectors are independent, its asymptotic distribution
is known; hence, it can be used for hypothesis testing. Because the asymptotic results hold only for large samples,
and in practical situations only small samples are often available, modified sampling distributions are derived
using simulation techniques for samples as small as eight. It is symmetric with respect to its arguments and has
a simple interpretation in terms of canonical correlation. It is invariant under transformations of the coordinate
axes, including rotations and changes of scale.

Finally, to assist in interpreting this vector correlation coefficient, several cases that lead to perfect correlation
and zero correlation are examined, and.the technique is applied to surface marine winds at two locations in the
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northwest Atlantic.

1. Introduction

The problem of correlating vector quantities has
been of interest to meteorologists and oceanographers
for at least the past 75 years (e.g., Detzius 1916; Sver-
drup 1917; Charles 1959; Buell 1971; Breckling 1989).
The problem arises because a vector requires both
magnitude and direction, and is further complicated
because direction is a circular function. When a vector
is decomposed into its scalar components, standard
correlation techniques can be applied such as the Pear-
son product-moment correlation coefficient. This ap-
proach has been used extensively in the fields of me-
teorology and oceanography. It is important to rec-
ognize, however, that when the scalar components of
a vector are correlated, the results are not unique since
they depend on the choice of the coordinate system
used for the decomposition. For example, if the scalar
components of a vector are correlated using a spherical,
earth-oriented coordinate system, one will generally
obtain different results than if a natural coordinate sys-
tem were used.
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When vectors are correlated directly without de-
composition, the effects of both magnitude and direc-
tion are included, yielding a simple scalar value that is
taken as a measure of the degree of association between
the vectors of interest. A number of definitions for vec-
tor correlation have appeared in the literature that take
into account both speed and direction (e.g., Durst 1957,
Court 1958; Breckling 1989), but no single definition
is in general use at this time. Crosby et al. (1991) re-
cently presented another definition for vector corre-
lation that was originally proposed by Hooper (1959)
and later refined by Jupp and Mardia (1980). This
definition is a generalization of the standard definition
for scalar correlation. Both the population parameter
and its sample statistic have a rather complete set of
useful statistical properties. It is the purpose of this
study to present this definition with the supporting
theoretical background along with an application of
this vector correlation technique to a practical problem
in marine meteorology.

The text is presented in the following order. First, a
short review of the basic properties of vector quantities
is followed by some of the properties of the standard
product-moment correlation coeflicient for scalar
variables. Next, a number of the previous definitions
of vector correlation are presented. Then the definition



356

for vector correlation originally proposed by Hooper
(1959) is presented. The properties of this vector cor-
relation coefficient follow as well as some simulation
results related to its statistical properties. Finally, several
cases are presented that lead to perfect correlation, fol-
lowed by a practical example in the application and
interpretation of this vector correlation coefficient.
Proofs of most of the properties are contained in the
Appendix.

a. Basic properties

The following basic definitions for vector quantities
are given for a two-dimensional vector W with com-
ponents # and v. We follow the standard convention
used in meteorology and oceanography by adopting
an earth-oriented Cartesian coordinate system. Thus,
u increases to the right along the x axis and v increases
upward along the positive y axis.

The mean vector of a sample of vectors W,;, W,
..., W, is given by

w=o
n

M=

W,. (1.1)

I

i=1

If we have a sample of vectors W; (i = 1 to n), let
S, be the sample covariance matrix. That is,

n

2 (W, — W)(W, - W)T

i=t
2
Su  Suv
= ( o, ) , (1.2)
Sou Sv

where the sum is taken over a sample of size n. The
sample variance of a vector can be defined as the trace
(Tr) of the covariance matrix. That is, one definition
of the variance is

Tr(Sw) = s2 + s2.

S, =

n—

(1.3)

This, of course, is the sum of the variances of the in-
dividual # and v components. A more conventional
definition is the generalized variance given by |Sw|,
the determinant of the covariance matrix.

b. Properties of the product-moment correlation
coefficient

Most of the previous definitions of vector correlation
have attempted to generalize the definition of the stan-
dard, one-dimensional, linear correlation coefficient.
In order to present the history and further motivate
the discussion related to vector correlation, we review
some of the properties of the population standard
product-moment correlation coefficient p.

Given two random variables # and v, with standard
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deviations ¢,, 0,, and covariance 7,,, the correlation
coeflicient is defined as

Oyy

0,0y

Given a sample of ¥ and v, the sample correlation coef-
ficient r is defined as

)

SuSy

The population correlation coefficient p has the fol-
lowing properties: —1 < p < 1, and if x = ¢ + bu and
y = ¢+ dv, where a, b, ¢, and d are any scalars such
that b and d are not equal to zero, then

Puv = Pxy-

Thus, p is invariant under linear transformations of u
and v. If ¥ and v are independent, then p = 0.

Further, p = 1 if and only if u = a + bv for some a
and b; thus, it is reasonable to expect that a vector
correlation coefficient should have similar properties.

Similar properties hold for the sample correlation
coefficient, except for property 3. That is, even if ¥ and
v are independent, the sample correlation coefficient
will not be equal to zero. It will, of course, approach
zero as the sample size approaches infinity.

The sample correlation coefficient is related to least-
squares regression. If, from a sample of ¥ and v, the
least-squares regression of u on v is found so that the
predicted value of u given v is

12[2 a+bv,—,

then it can be shown that

and
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The quantity r? represents the proportion of explained
variance and is often referred to as the coefficient of
determination.

2. History

a. Mathematical background

To examine vector correlation in greater detail, cer-
tain additional concepts are defined. Let W, and W,
be a pair of two-dimensional random vectors. Then

iy

<()-|:
Wz U

vy
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is a four-dimensional vector. Further, let

2X=<Eu Eu)
E21 222
o(uy, uy) o(uy, vy) o(uy, uz) o(uy, va)
_tov,w) o(vi,v) o(vr, 2) o(vy, v2)
o(uy, uy) o, V1) o2, a) o(uy, 02)
o(vy, uy) o(v2,v1) o(vs, ) o(v2, 1)

(2.1)

be the 4 X 4 population covariance matrix of the vector
X. In Eq. (2.1), 2, is the covariance matrix of W,
2>, the covariance matrix of W,, Z;, the cross-co-
variance matrix of W, and W,, and Z,, the cross-co-
variance matrix of W, and W,.

b. Early definitions

Early definitions of vector correlation are summa-
rized in Court (1958). Here, we express each of the
definitions in terms of the population parameters and
in matrix notation,' whereas previous studies have
usually given the definitions in scalar notation and in
terms of the sample parameters. An early definition
was given by Detzius (1916) as

Tr(Z,)?
Tr (24) Tr(2yn) )

This definition has sometimes been referred to as the
“stretch” correlation coeflicient.

A later definition that involved both “stretch” and
“turn” was given by Sverdrup (1917) as

2 _ Tr(Z12)* + [o(u, v2) — o(uy, V)]
* Tr(Zy) Tr(Z2)

This definition was often used by British meteorologists
during the 1950s (e.g., Durst 1957). This definition is
also related to the so-called complex correlation coef-
ficient, which is defined as

- Tr(Z2) + ilo(uy, v2) — o(uy, V)]
[Tr(21) Tr(22)]%° ’

where i = (—1)%3. See Kundu (1976) for a geometric
interpretation of this coefficient. We note that the
square of the absolute value of the complex vector cor-
relation coefficient is the same as the definition given
by Sverdrup.

Hotelling (1936 ) presented the following definition:
pir = I[(Z11)7'212(22)7'251]|. Hotelling derived
many of the statistical properties of the sample statistic
for this parameter.

ph =

o

Pr

! Matrix notation does not necessarily simplify the expressions in
the two-dimensional case. However, it is essential for higher dimen-
sions.
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A definition proposed by Court (1958) and later
elaborated on by Lenhard et al. (1963a), Buell (1963),
and Lenhard et al. (1963b) was based on a generaliza-
tion of the concept of explained variance. His definition
was

p2 = Tr[212(222) ']
¢ Tr(Z)

In this definition, W, represents the dependent variable.
This definition is not symmetric in W, and W, and is
not invariant under changes in scale.

Since 1960, a series of papers on the correlation of
directional data or angular association have appeared.
For a history and discussion of these more recent stud-
ies see Breckling (1989).

¢. The definition
Here, we consider the following definition:
py =Tr[(Z11)7'212(222) ' 22]. (2.2)

This is essentially the definition originally given by
Hooper (1959) and further developed by Jupp and
Mardia (1980). Many of the definitions of vector cor-
relation have been normalized so that this parameter
will fall between 0.0 and 1.0. Following Jupp and Mar-
dia, we have not divided the right-hand side of Eq.
(2.2) by a constant, which will depend on the dimen-
sions of the vectors, to ensure that p? lies between 0.0
and 1.0. In the two-dimensional case discussed in this
paper, p2 will be between 0.0 and 2.0. This is the only
case considered in this study.

In the next section, we show that this definition is a
generalization of the standard scalar correlation coef-
ficient. Unlike some of its predecessors, however, which
have been restricted to the unit circle (e.g., Mardia and
Puri 1978; Stephens 1979), this definition includes
both direction and magnitude. For applied problems
in oceanography and meteorology, this is a very im-
portant distinction. Also, it has a rather complete set
of desirable properties.

3. Basic theory

As indicated in the Introduction, a number of def-
initions for vector correlation have been proposed. In
this section we present the most important properties
of the vector correlation coefficient defined by Jupp
and Mardia (1980). The proofs of most of these prop-
erties are given in the Appendix. We give the results
for two-dimensional vectors in ordinary Euclidean
space. To generalize the results to three or four di-
mensions is conceptually straightforward.

a. Properties

The most significant properties of the vector corre-
lation coeflicient defined above follow. The vector cor-
relation coefficient is a generalization of the square of
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the simple one-dimensional correlation coefficient, is
symmetric in its arguments, and has a simple inter-
pretation in terms of canonical correlation. It is in-
variant under transformations of the coordinate axes,
including rotations and changes in scale. It is equal to
zero when the vectors are independent and obtains its
maximum value if and only if they are linearly depen-
dent. In addition, the statistic that is used to estimate
this parameter has a sampling distribution that is
asymptotically robust. That is, if W, and W, are in-
dependent and if their distributions have all fourth-
order moments, then the asymptotic distribution of
the statistic does not depend on the distributions of
W, and W, (Jupp and Mardia 1980). Since the dis-
tributions of the W; may be unknown or difficult to
express in closed form, this property is very significant
for applications such as large-sample hypothesis testing.
. We consider this last property to be particularly im-
portant for its use and interpretation in practice.

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

VOLUME 10

b. Basic definition

Let W, and W, be a pair of two-dimensional random
vectors. Then we define the vector X, its covariance
matrix Zy, and the submatrices of Z, exactly as in Eq.
(2.1). Here, we always assume that Z;; and Z,; are
nonsingular. Thus, the vectors W, and W, are non-
degenerate; that is, u; ¥ a; + b;v; (i = 1, 2) for some
a; and b;. We also assume that all moments of the
vector X exist.

Then the definition of the vector correlation coef-
ficient between W, and W, is

ps =Tr[(Z11) '212(Z22) ' 221], (3.1)
where the 2, are as in Eq. (2.1 }.2 Ini terms of the u’s
and v’s, this definition is given by

pl= i , Wwhere (3.2)

= o(w, w) {0, w)[o(vy, ©2)1* + o(vz, v2) 001, )17}

+ o(vy, V1) { 012, ) o(ur, V2)1% + o(v2, V2)[o(ur, U2)1*} + 2[0(1er, 1) o(uy, V2)0(Vy, U2) (U2, V2)]

+ 2[a(uy, v1)o(u, w2)o(vy, V2)a(Uz, v2)] — 2[ (U, u)) o(vy, Uz) o(vy, V2)o( U2, V7)]

= 2[a(vy, vy)a(uy, u2)o(uy, v2) oz, v2)1 — 2[o(uz, uz)o(uy, v1)o(uy, vV2)a(vy, V2)]

and

= 2[o(v2, v2)a(uy, v1)a(uy, u2) (v, uz)],

g = {a(u, u)o(vy, v1) — [oluy, Un)]z} {U(uz, i) o( vz, v2) — [a(1t2, Uz)]z}-

. This expression is found by expanding the matrix
products in Eq. (3.1) and then simplifying the results.
- This expanded form is useful for computational ap-
plications (Crosby et al. 1990).

- ¢. Generalizing the basic definition

It is easily seen that the definition given in Eq. (3.1)
is a generalization of the square of the standard Pearson
. correlation coefficient for a pair of one-dimensional
- random variables.

d. Relationship to canonical correlation

An intuitive justification for this definition of vector
. correlation is-based on canonical correlation. Let W,
"~ and W, be a pair of two-dimensional random vectors.
The canonical correlations are defined in the following
manner: linear combinations of u; and v, and u, and
v, are formed where

" zn = anuy + by,

Zy2 = Aty + bty

such that for all linear combinations the standard one-
dimensional correlation p; = corr{z;;, z;2) between
z1, and z;; is a maximum. The variables z,; and z;,

are called the first canonical variables. Note that p,
= 0. The parameter p, is the first canonical correlation.
Then a second set of variables

Zy1 = an Uy + b211)1, and

23 = anih + bypvs,

is found such that
corr(zy1, Za1) = corr(zyy, Z22) = corr(2zyz, 221)

= corr(z2, 2p20) =0, and

p2 = corr(zyy, Z2,)

is a maximum. The parameter p; is the second canon-
ical correlation and is nonnegative. The vector corre-
lation coefficient given by Eq. (3.1) is the sum of the
squares of the two canonical correlations. That is, p2
= p? + p3. The remaining properties and proofs are
given in the Appendix.

2 Although not explicitly shown, this definition is also an extension
of the coefficient of determination in multiple regression.
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4. Sampling distribution
a. The asymptotic behavior

If the covariance matrix Z, of X is estimated in the
usual way from a sample of size n by
> (X = X)X - X)T;
i=1

S, = (sn Slz>= ni 1

Sy S»
then p? is estimated by
p: = Tr(S1!S:8S2). (4.1)

The statistic defined in Eq. (4.1) will have several of
the properties of p2. Namely, it is symmetric in W,
and W,. It is invariant under transformations of the
coordinate axes. It is equal to the sum of the squares
of the sample canonical correlations. If W, and W, are
linearly dependent, then p2 = 2.0.

If W, and W, are independent, it does not follow

that
S, = ;
12 (0 0) ’

hence, p2 # 0. However, as the sample size in-
creases, S;, will approach the zero matrix and 5?2 will
approach 0.

If W, and W, are two-dimensional and independent,
then np? is distributed asymptotically as a chi-square
variable with four degrees of freedom (Jupp and Mardia
1980). This asymptotic distribution is valid for most
realistic marginal distributions of the W, and W, vec-
tors. Hence, for large samples, the statistic 52 can be
used to test for independence even when the distri-

100
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butions of the W’s are not known. This situation is
rather common in the geophysical sciences. A more
general development of the asymptotic distributions
for statistics of this type is given in Anderson (1984).

b. Small sample distribution of p2

In practice, sample sizes that are too small to use
the asymptotic result given above (i.e., n € 64) are
frequently encountered. Thus, we seek to extend the
results of Jupp and Mardia to small sample sizes by
estimating the small sample distributions, using Monte
Carlo techniques. In particular, a random number
generator (Press et al. 1986) was used to generate nor-
mally distributed (0, 1) «# and v vector components for
two-component vectors for sample sizes of 8, 12, 32,
and 64. Values of p 2 were calculated for 1 000 000 cases
for each sample size. One million runs were required
for each sample size in order to achieve reasonable
accuracy (i.e., to the second decimal place) over the
tails of the distributions that were generated.

The resulting empirical cumulative frequency dis-
tributions are shown together with the theoretical chi-
square distribution with four degrees of freedom in Fig,
1. There is a significant departure from the theoretical
chi-square distribution for small sample sizes. The rea-
son for the crossover of the curves at approximately
constant values of 752 is not known. For sample sizes
greater than 64, the form of the distribution closely
approximates chi square with four degrees of freedom;
for samples smaller than eight, the general form of the
distribution breaks down, no longer resembling chi
square.

/.z/'/
90 .
80 - Y
7
_70r ///‘
: /1
60 - /
£ /)
@ A
2 50
E ///// Legend
g 40 L //// == ;;:i::;ll;r;i::{vgf:h4degrees of freedom
[&] // —~ — —— —~ = Sample size of 32
/ ] ~~—— ~— —— = Sample size of 12

30 - /// — = Sample size of 8

20 - ///

ol f

/.
] ! ! i | I ! I ) ) . I 1
20 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0

nr?

FiG. 1. Cumulative frequency distributions for two-dimensional vectors for sample sizes of 8,
12, 32, 64, and for the theoretical chi-square distribution with four degrees of freedom.
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FIG. 2. Probability density functions (PDFs) corresponding to the cumulative frequency dis-
tributions shown in Fig. 1 for sample sizes of 12 and 32. The PDF for the theoretical chi-square

distribution is also included.

CASES FOR PERFECT CORRELATION

[ A

FiG. 3. Examples of vector sequences that produce perfect correlation (i.e., p2 = 2.0). In (a) the vectors
are identical; in (b) the magnitudes of the vectors in the second sequence are multiplied by a constant; in
(¢) the directions of the vectors in the second sequence are each rotated by a constant angle; and in (d) the
second sequence is both multiplied by a constant and rotated by a constant angle.

VOLUME 10
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FIG. 4. The case leading to zero correlation between two vector sequences. In this case, the
vectors in each sequence are generated randomly and the results averaged over 50 realizations
and then plotted for sample sizes of 10, 100, 1000, 10 000, and 100 000.

The corresponding density functions for the cu-
mulative distributions given in Fig. 1 are shown in Fig.
2. The results are given for sample sizes of 12 and 32.
As sample size increases, the distributions become more
positively skewed and more peaked.

In cases where the variables are normally distributed,
the theory for testing for the independence of sets of
variables is well developed. For a discussion of this
theory, see Morrison (1990).

5. Interpreting p2

The simple linear correlation coefficient is a measure
of linear interdependence and as such it does not mea-
sure other types of dependence. Even in the simple
case of two random variables, any expression of their
joint variability is far too complex to be summarized
in a single parameter. Thus, any correlation coefficient
should be used only as an indicator of interdependence
rather than as a precise measure. These comments
should apply even more strongly to a single parameter
that attempts to measure the association between vec-
tors.

To provide more insight into the types of vectors
(i.e., vector sequences ) that may lead to relatively high
sample values for this parameter, we consider situations
that lead to perfect correlation (i.e., p2 = 2) and zero
correlation (i.e., p2 = 0). Then we present an appli-
cation using marine surface winds from the northwest
Atlantic.

a. Situations that lead to perfect and zero correlation

Four cases that lead to perfect correlation are shown
in Fig. 3. The first, or trivial case, arises when the vector

pairs are identical (Fig. 3a). The second case that pro-
duces perfect correlation arises when the magnitudes
of the vectors in the second sequence are multiplied

AN

Y,

FIG. 5. Locations of the two NDBC environmental data buoys
from which time-series surface winds were extracted. Period covers
| December 1987-4 February 1988. A typical winter storm track has
been included (Klein 1957).
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by a constant (i.e., magnification; Fig. 3b). A third
~case of perfect correlation arises when the directions
of the vectors in the second sequence are each rotated
by a constant angle (Fig. 3c). The fourth case arises
when the second sequence is derived from the first by
combining both magnification and rotation (Fig. 3d).

From the above, we generalize these results to in-
clude any situation where one vector sequence can be
expressed as a linear combination of the other (i.e.,
any case where two vector sequences are linearly de-

" pendent). In vector notation, if there exists a nonsin-

" gular matrix A and a vector B such that W;; = AW,;
+ B for all i, then the vector correlation between W,;

- and W,; will be perfect. This is a restatement of prop-
erty 7 of the Appendix.

Next, we consider the situation when there is zero
correlation between two vector sequences. It is true
that if two vectors are independent, then their vector
correlation will be zero. In cases where the vectors are

~ jointly normally distributed, their vector correlation
will be zero if and only if they are independent. Using
the random number generator described above, we
generated independent vector sequences with normally
' distributed vector components for sample sizes of 10,

AND OCEANIC TECHNOLOGY VOLUME 10

100, 1000, 10 000, and 100 000, and computed 52 for
each sample size. This experiment was repeated 50
times for each sample size and the results averaged. As
theory predicts, 52 clearly approaches zero for increas-
ing sample size (Fig. 4). For a sample size of 100 000,
for example, the averaged value of 42 is approximately
0.006. These results also demonstrate that relatively
high correlations (e.g., >0.6) can be obtained solely by
chance for small sample sizes (e.g., of order 10).

In the interpretation of p3, it is also important to
consider the proper choice of sample size. The opti-
mum choice will depend in part on the length of time
it takes for the vectors to vary significantly. For ex-
ample, if a sample size is chosen that is too small to
encompass significant variability within the vector se-
quences, the resulting values of 52 raay not be mean-
ingful. Help in identifying this problem may be ob-
tained by examining the trace of the sample covariance
matrix from which p2 is calculated. The trace of the
covariance matrix may provide a measure of the “sig-
nal-like” character for the calculated values of p2. Thus,
values of the trace that exceed some threshold may
have corresponding vector correlations that are mean-
ingful.
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of winds from NDBC buoy 44008.
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b. Application to marine surface winds

In the following application, we calculate vector
correlations between surface winds at two locations in
the northwestern Atlantic. The main purpose of this
analysis was to construct a time series of sample pa-
rameters that will give a measure of the linear associ-
ation of these winds at the two locations. In order to
obtain similar information from the individual scalar
correlations it would be necessary to examine four time
series. The wind observations were acquired from
NOAA Data Buoy Center (NDBC) environmental data
buoys located at 40.5°N, 69.5°W (buoy number
44008) and at 34.9°N, 72.9°W (buoy number 41001).
These buoys, whose locations are shown in Fig. 5, are
approximately 700 km apart. The observations, taken
hourly, extend from | December 1987 to 4 February
1988, a period of 65 days. An expected winter storm
track for this region has been included (Klein 1957).
As winter low pressure systems leave the east coast of
the United States, they often deepen over the Gulf
Stream and expand as they propagate to the northeast.
Thus, the winds at both buoys are expected to be

CROSBY ET AL.
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strongly influenced by the passage of these low pressure
systems that pass through the area during the winter
months. The stick diagram shown in the upper two
panels of Fig. 8 depict the time series of wind vectors
at each location.

Autocorrelation and spectral analyses were initially
conducted to estimate the time scales of persistence
and to identify any major periodic components in the
data for each buoy (Figs. 6 and 7). Autocorrelation
analysis of the # and v wind components indicate cor-
relation time scales that are on the order of half a day;
consequently, the original data have been subsampled
every 12th point to produce series with observations
that are approximately independent. The plots of power
spectral density indicate monotonically decreasing
spectral variance with increasing frequency (i.e., the
so-called “red noise” spectrum ), in each case revealing
no major peaks (i.e., periodic components).

Vector correlations have been calculated for four
sample sizes—8, 16, 24, and the entire series (i.e.,
130)—corresponding to periods of 96, 192, 288, and
1560 h, respectively. A sliding sample window was em-
ployed that was stepped forward one data interval at a
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FIG. 8. Wind vector sequences for NDBC buoys 44008 (top panel) and 41001 (next to top panel), and
the corresponding vector correlations for sample sizes of 8, 16, and 24 (lower three panels).

time for each sample size. The results are shown in
Fig. 8 (lower three panels). In order to provide an in-
dication of the relative values of the correlation coef-
ficient for the different sample sizes, the upper 95th
percentile of the distribution (Fig. 1) has been included
to determine whether or not the individual values of
52 would be statistically significant at the 5% level. Use
of this distribution is based on the assumption that the
points within the series are independent.

Our choices of sample size are based primarily on
the synoptic time scales of variation in the surface wind
fields. The winds shown in Fig. 8 indicate time scales
of variation (i.e., “event” time scales) on the order of
2-4 days. Sample sizes of 8 (4 days), 16 (8 days), and
24 (12 days) clearly encompass these time scales. It is
important to recognize that the sample size must be
sufficient to include significant variation in the vector
sequences being correlated.

The results for a sample size of eight indicate that
large variations in p2 occur over the length of the series.
Relatively high values (52 = 1.5 or greater) tend to
occur where major changes in surface wind (particu-
larly noticeable in wind direction) are similar at both
locations (i.e., synoptic scale). Relatively low values
of p2 (less than about 0.4) tend to occur throughout

the record, and may be related to mesoscale motions
that occur independently at the two locations.

As sample size increases from 8 to 16 and from 16
to 24, the correlations increase somewhat in most cases
but the changes in p2 tend to reflect to a lesser extent
the major 2-4-day event-scale changes in surface wind.
It becomes increasingly difficult to relate the values of
52 to individual events in the wind field. In the limit,
when N equals 130, we obtain a single value for 7 that
represents the correlation between the surface wind
fields at the two locations over the entire record. In
this case p? is equal to 0.54, a value that is statistically
significant at the 5% level.

6. Discussion and conclusions

The vector correlation presented here has a number
of desirable properties. It is a generalization of the
square of the standard scalar correlation coefficient. Its
properties 1) give an intuitive meaning to the defini-
tion, 2) relate the definition to the multivariate coef-
ficient of determination, and 3) allow it to be used in
a variety of practical situations, especially those where
the distributions of the W vectors are unknown or
nonstandard. Because of the simple form of the defi-
nition presented in this paper, its intuitive meaning,
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and its desirable statistical properties, we believe that
the above definition of vector correlation should be
considered in future applications.

Based on the results above, it becomes clear that
care must be exercised in selecting the “proper” sample
size for calculating vector correlations for time series
data. At one extreme, choosing a sample size that is
too small may lead to quite variable correlations that
will not be amenable to interpretation. At the other
extreme, when vector correlations for the entire series
are calculated, a single value is obtained that will be
meaningful, but the opportunity to examine time vari-
ations in correlation within the series will be lost. In
cases where the sample sizes are small enough to reveal
correlations related to individual events within the se-
ries, it may be possible to interpret 52 in terms of these
events. We have not attempted to do so here, because
these vector correlations may well depend on additional
information to which we did not have access.

Our primary purpose has been to present Hooper’s
original definition of vector correlation with prelimi-
nary guidance on its use and interpretation. There are
still many open questions about its application. For
example, the distribution of this statistic is known for
large samples when the correlation is zero and the
sample points are independent. However, little is
known about its distribution when the sample points
are not independent, a situation often encountered in
time series data. Consequently, considerably more ef-
fort should be devoted to the application of this tech-
nique to the practical problems that frequently arise
in comparing vector quantities. In future studies we
will apply the method of vector correlation presented
here 1) to vector time series at several locations, 2) to
datasets that are not time series, and 3) to the problem
of forecasting vector sequences using regression tech-
niques.
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APPENDIX
Proofs of the Properties of p2

In order to develop the properties of p2 we will need
the following results. If M and N are square matrices,
then

Tr(MN) = Tr(NM). (A.1)
If M and N are nonsingular, then
(MN)'=N"'"M~!, (A.2)

(Graybill 1969).
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We now consider the properties of p2.
Property 1. The coefficient p? is symmetric in W,
and W,. Using (A.1) twice, it is seen that

ps(Wi, Wy) = Tr(Z7! 21,23/ Z21)
=Tr(Z% 221! Zp)
= p3(W,, W)).

As discussed earlier, this is not true for some of the
alternate definitions of vector correlation.

Property 2. The parameter p2 is invariant under
nonsingular linear transformations of the coordinate
axes, including rotation and changes in scale.

For translations, this property is obvious since the
covariance matrix is unchanged by such transforma-
tions. The second part of this property can be restated
as the following theorem.

Theorem 1. The vector correlation p, is invariant
under linear transformations of W; and W, if the
transformations are of rank 2. That is, if a linear trans-
formation of the form

a;; ap 0 0

L= a apy O 0 =(A 0)
0 0 by b 0 B/’
0 0 b2| biy

where A and B are nonsingular, is applied to the four-
dimensional vector X, then p2 is unchanged. To see

this, let
X% - LX = Wi\ _ (AW,
w3 BW,/’

The covariance matrix of X * is then given by
A 0)(2“ Zp\/AT O )
0 Z Zn/\0 BT/
The covariance of X * is equal to

Az, AT|AZ,BT
BZ,AT |BZ,,BT/

Then for the new vectors W and W3,
P (WY, W3)
= Tr[(AEnAT)_l(AEIZBT)(BzzzBT)_I(BzzlAT)]-
(A.3)

Using Eqs. (A.1) and (A.2), the right-hand side of Eq.
(A.3) becomes

Tr(Z1 212253 251) = p2(W;, Wy).

Property 3. The parameter p2 is the sum of the
squares of the canonical correlations. This can be
shown using property 2. Computing the canonical cor-
relations is equivalent to finding an A and B of Eq.
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(A.3) such that the covariance matrix of X * is equal
to

1 0 P1 0
0 1 0 P2
pp 0 1 0)°
0 P2 0 1

where p; = p, = 0.0 and p, and p, are maximized. That

. 18, p, is the first canonical correlation and p, is the

second (Anderson 1984). Next, let

D= (”‘ 0).
0 o
Then for W¥ and W7,
p? = Tr(1"'DI-'D),
= pi + p3, (A4)

which by property 2 is equal to p2(W,, W, ) and where
1is the 2 X 2 identity matrix.

Property 4. If the covariance matrix takes on the
special form below, then p? is a simple function of the
squares of ordinary correlations. Let the covariance
matrix of W, and W, be of the following form:

1 0

g1 012

I R _1 0 1 o o2
RT 1 g1 oy 1 0
ag12 [15%) O 1

‘ Then,

pi =0t +oh + 03 + ok (A.5)

. The proof of this result is similar to that of property
"~ 3. Note that the covariances are correlations in this

case.
Property 5. If W; and W, are independent, then
p2 = 0. Proof: if W, and W, are independent, then

=3 —(O %) -0
12 21 0 0 ’

and

p2=Tr(2710250) = 0.

Property 6. If corr(u,, u,), corr(u;, v,), corr(v,,
#,), and corr(v,, v;) are not all 0, then p2 > 0.
To show this property, we note the following set of

© inequalities:

 ps = pi = max[|corr(u;, )],

|corr(uy, vy)|, |corr(vy, wp)], |corr(v;, v,)|].

Property 7. The random vectors W; and W, are lin-
early dependent in the two-dimensional case if and
only if p2 = 2

Assume W, and W, are linearly dependent. Then
there are nonsingular matrices C and D and a vector
A such that

CW1+DWZ+A:0.
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Here, 0 represents a 2 X 1 null vector; hence,
W;=-C'DW, - C'A."

This relationship can be written as

Wx) _ (0 -C7'D\/ O + ~C'A

W, 0 I W, 0 '

It follows that the covariance matrix of X can be written
as

[211
22
Then from Eq. (3.1) we have

pi = Tr{[CT'DZLDT(C)T]7'CT'DZ(22)™"
X $,DT(C™)T} = Tr(1) = 2.

(A.6)

—'c—lDzzz]
E22 '

Zu]  [CT'DEDT(CHT
22 —-Z,,DT(CHT

(A7)

Next, assume
py = 2.

Then the canonical correlations p, and p, are both
equal to 1. This follows because

ps = p1+p3,
and
0<p<p <l.

Then as in the proof of property 3, there are nonsin-
gular matrices A and B such that

*

U
w7 ¥ A 0\/W,
* = = 1] =
X (w:) u3 (0 B)(w)’ (A8)
vy

where the covariance matrix of X * is of the form

S — O

Hence, the correlation between u} and u3 is 1.0 and
the correlation between v} and v5 is 1.0. Since these
are ordinary correlation coeflicients, this implies that

*
ut = ¢ + cu’,
and
* %*
v = d() + dlvz .

Hence, it follows that

* C| 0 * Co
= W35 + . A9
wis(o a)vie(2) e
From Eq. (A.8) we have
—1 *
W, _ A 0 (WL) (A.10)
W, 0 B !'/\w3
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From Egs. (A.9) and (A.10) it follows that

C) 0 * [ Co
W3 + A}
0 d,) ? (do)

- Al O 0 * Co
A (0 dl)BW2 " A<do) ’
which proves the assertion.

Property 8. If W, and W, are a pair of independent
two-dimensional vectors with finite fourth moments,
then np is distributed asymptotically as a chi-square
variable with four degrees of freedom. This asymptotic
distribution is valid for any form of the marginal dis-
tribution of the W vectors. The proof of this property
is difficult and lengthy and is not included here. For

details, see Anderson (1984) or Jupp and Mardia
(1980).

W, =AW = A“(
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