USGS - science for a changing world

Amphibian Research and Monitoring Initiative

ARMI » Recent Products

Recent Products

Content image.
Gallant A  
This is an ARMI Product. Integrated monitoring of ecological conditions in wetland-upland landscapes: U.S. Geological Survey Fact Sheet 2012-3103.
Authors: Gallant A, Sadinski W | Date: 2012-07-25 | Outlet: U.S. Geological Survey Fact Sheet 2012–3103, 2 p. | Format: .PDF
Landscapes of interwoven wetlands and uplands offer a rich set of ecosystem goods and services. Managing lands to maximize ecosystem services requires information that distinguishes change caused by local actions from broader-scale shifts in climate, land use, and other forms of global change. Satellite and airborne sensors collect valuable data for this purpose, especially when the data are analyzed along with data collected from ground-based sensors. The U.S. Geological Survey (USGS) is using remote sensing technology in this way as part of the Terrestrial Wetland Global Change Research Network to assess effects of climate change interacting with land-use change and other potential stressors along environmental gradients of wetland-upland landscapes in the United States and Canada.

This is an ARMI Product. Influence of Drought on Salamander Occupancy of Isolated Wetlands on the Southeastern Coastal Plain of the United States
Authors: Walls SC, Barichivich WJ, Brown ME, Scott DE | Outlet: Wetlands
In the southeastern U.S., changes in temperature and precipitation over the last three decades have been the most dramatic in winter and spring seasons. Continuation of these trends could negatively impact pond-breeding amphibians, especially those that rely on winter and spring rains to fill seasonal wetlands, trigger breeding, and ensure reproductive success. From 2009 to 2012, we monitored aquatic stages (larval and paedomorphic, gilled adult) of a winter-breeding amphibian (the mole salamander, Ambystoma talpoideum) and used a single-species, multi-season model to estimate occupancy, detection probability, local colonization and extinction. Annual estimates of occupancy, corrected for imperfect detection, ranged from 9.9 to 23.1%, with the rate of change in occupancy probabilities between sampling seasons fluctuating over time. Our best supported model suggested that this change in occupancy was driven by an increase in estimates of extinction probabilities which, in turn, corresponded with an increase in drought over time. In contrast, colonization was low and less variable. A future climate change scenario of severe, prolonged drought could result in regional losses of seasonal wetlands and a concomitant change in the occupancy dynamics of aquatic amphibians.

graphs showing projected changes in climatic variables for site in Colorado
Hay LE  
This is an ARMI Product. Integrated Watershed-Scale Response to Climate Change for Selected Basins Across the United States
Authors: Markstrom SL, Hay LE, Ward-Garrion CD, Risley JC, Battaglin WA, Bjerklie DM, Chase KJ, Christiansen DE, Dudley RW, Hunt RJ, Koczot KM, Mastin MC, Regan RS, Viger RJ, Vining KC, Walker JF | Date: 2012-03-16 | Outlet: U.S. Geological Survey Scientific Investigations Report 2011-5077 | Format: URL
A study by the U.S. Geological Survey (USGS) evaluated the hydrologic response to different projected carbon emission scenarios of the 21st century using a hydrologic simulation model. This study involved five major steps: (1) setup, calibrate and evaluated the Precipitation Runoff Modeling System (PRMS) model in 14 basins across the United States by local USGS personnel; (2) acquire selected simulated carbon emission scenarios from the World Climate Research Programme’s Coupled Model Intercomparison Project; (3) statistical downscaling of these scenarios to create PRMS input files which reflect the future climatic conditions of these scenarios; (4) generate PRMS projections for the carbon emission scenarios for the 14 basins; and (5) analyze the modeled hydrologic response. This report presents an overview of this study, details of the methodology, results from the 14 basin simulations, and interpretation of these results.<br />
<br />
A key finding is that the hydrological response of the different geographical regions of the United States to potential climate change may be different, depending on the dominant physical processes of that particular region. Also considered is the tremendous amount of uncertainty present in the carbon emission scenarios and how this uncertainty propagates through the hydrologic simulations.

Content image.
Calhoun D  
This is an ARMI Product. Analysis of the herbicide diuron, three diuron degradates, and six neonicotinoid insecticides in water- Method details and application to two Georgia Streams
Authors: Hladik ML, Calhoun DL | Date: 2012-10-05 | Outlet: U.S. Geological Survey Scientific Investigations Report 2012-5206 | Format: URL
A method for the determination of the widely used herbicide diuron, three degradates of diuron, and six neonicotinoid insecticides in environmental water samples is described. Filtered water samples were extracted by using solid-phase extraction (SPE) with no additional cleanup steps. Quantification of the pesticides from the extracted water samples was done by using liquid chromatography with tandem mass spectrometry (LC/MS/MS).<br />
<br />
Recoveries in test water samples fortified at 20 nanograms per liter (ng/L) for each compound ranged from 75 to 97 percent; relative standard deviations ranged from 5 to 10 percent. Method detection limits (MDLs) in water ranged from 3.0 to 6.2 ng/L using LC/MS/MS. The method was applied to water samples from two streams in Georgia, Sope Creek and the Chattahoochee River. Diuron and 3,4-dichloroaniline (3,4-DCA) were detected in 100 and 80 percent, respectively, of the samples from the Chattahoochee River, whereas Sope creek had detection frequencies of 15 percent for diuron and 31 percent for 3,4-DCA. Detection frequencies for the neonicotinoid insecticide, imidacloprid, were 60 percent for the Chattahoochee River and 85 percent for Sope Creek. Field matrix-spike recoveries for each compound, when averaged over four water samples, ranged from 79 to 100 percent. The average percentage difference between replicate pairs for all compounds detected in the field samples was 10.1 (± 4.5) percent.

Content image.
 
This is an ARMI Product. Simulating the Potential Effects of Climate Change in Two Colorado Basins and at Two Colorado Ski Areas
Authors: Battaglin WA, Hay LE, Markstrom S | Date: 2011-01-28 | Outlet: Earth Interactions 15(22): 1-23 | Format: URL
The mountainous areas of Colorado are used for tourism and recreation, and they provide water storage and supply for municipalities, industries, and agriculture. Recent studies suggest that water supply and tourist industries such as skiing are at risk from climate change. In this study, a distributed-parameter watershed model, the Precipitation-Runoff Modeling System (PRMS), is used to identify the potential effects of future climate on hydrologic conditions for two Colorado basins, the East River at Almont and the Yampa River at Steamboat Springs, and at the subbasin scale for two ski areas within those basins.<br />
<br />
Climate-change input files for PRMS were generated by modifying daily PRMS precipitation and temperature inputs with mean monthly climate-change fields of precipitation and temperature derived from five general circulation model (GCM) simulations using one current and three future carbon emission scenarios. All GCM simulations of mean daily minimum and maximum air temperature for the East and Yampa River basins indicate a relatively steady increase of up to several degrees Celsius from baseline conditions by 2094. GCM simulations of precipitation in the two basins indicate little change or trend in precipitation, but there is a large range associated with these projections. PRMS projections of basin mean daily streamflow vary by scenario but indicate a central tendency toward slight decreases, with a large range associated with these projections.<br />
<br />
Decreases in water content or changes in the spatial extent of snowpack in the East and Yampa River basins are important because of potential adverse effects on water supply and recreational activities. PRMS projections of each future scenario indicate a central tendency for decreases in basin mean snow-covered area and snowpack water equivalent, with the range in the projected decreases increasing with time. However, when examined on a monthly basis, the projected decreases are most dramatic during fall and spring. Presumably, ski area locations are picked because of a tendency to receive snow and keep snowpack relative to the surrounding area. This effect of ski area location within the basin was examined by comparing projections of March snow-covered area and snowpack water equivalent for the entire basin with more local projections for the portion of the basin that represents the ski area in the PRMS models. These projections indicate a steady decrease in March snow-covered area for the basins but only small changes in March snow-covered area at both ski areas for the three future scenarios until around 2050. After 2050, larger decreases are possible, but there is a large range in the projections of future scenarios. The rates of decrease for snowpack water equivalent and precipitation that falls as snow are similar at the basin and subbasin scale in both basins. Results from this modeling effort show that there is a wide range of possible outcomes for future snowpack conditions in Colorado. The results also highlight the differences between projections for entire basins and projections for local areas or subbasins within those basins.

Site in Colorado
Battaglin WA  
This is an ARMI Product. Occurrence of Pesticides in Water and Sediment Collected from Amphibian Habitats Located Throughout the United States, 2009-2010
Authors: Smalling KL, Orlando JL, Calhoun D, Battaglin WA, Kuivila KM | Date: 2012-08-22 | Outlet: U.S. Geological Survey Data Series 707 | Format: URL
Water and bed-sediment samples were collected by the U.S. Geological Survey (USGS) in 2009 and 2010 from 11 sites within California and 18 sites total in Colorado, Georgia, Idaho, Louisiana, Maine, and Oregon, and were analyzed for a suite of pesticides by the USGS. Water samples and bed-sediment samples were collected from perennial or seasonal ponds located in amphibian habitats in conjunction with research conducted by the USGS Amphibian Research and Monitoring Initiative and the USGS Toxic Substances Hydrology Program. Sites selected for this study in three of the states (California, Colorado, and Orgeon) have no direct pesticide application and are considered undeveloped and remote. Sites selected in Georgia, Idaho, Louisiana, and Maine were in close proximity to either agricultural or suburban areas. Water and sediment samples were collected once in 2009 during amphibian breeding seasons. In 2010, water samples were collected twice. The first sampling event coincided with the beginning of the frog breeding season for the species of interest, and the second event occurred 10–12 weeks later when pesticides were being applied to the surrounding areas. Additionally, water was collected during each sampling event to measure dissolved organic carbon, nutrients, and the fungus, Batrachochytrium dendrobatidis, which has been linked to amphibian declines worldwide. Bed-sediment samples were collected once during the beginning of the frog breeding season, when the amphibians are thought to be most at risk to pesticides. Results of this study are reported for the following two geographic scales: (1) for a national scale, by using data from the 29 sites that were sampled from seven states, and (2) for California, by using data from the 11 sampled sites in that state.<br />
<br />
Water samples were analyzed for 96 pesticides by using gas chromatography/mass spectrometry. A total of 24 pesticides were detected in one or more of the 54 water samples, including 7 fungicides, 10 herbicides, 4 insecticides, 1 synergist, and 2 pesticide degradates. On a national scale, aminomethylphosphonic acid (AMPA), the primary degradate of the herbicide glyphosate, which is the active ingredient in Roundup®, was the most frequently detected pesticide in water (16 of 54 samples) followed by glyphosate (8 of 54 samples). The maximum number of pesticides observed at a single site was nine compounds in a water sample from a site in Louisiana. The maximum concentration of a pesticide or degradate observed in water was 2,880 nanograms per liter of clomazone (a herbicide) at a site in Louisiana. In California, a total of eight pesticides were detected among all of the low and high elevation sites; AMPA was the most frequently detected pesticide, but glyphosate was detected at the highest concentrations (1.1 micrograms per liter).<br />
<br />
Bed-sediment samples were analyzed for 94 pesticides by using accelerated solvent extraction, gel permeation chromatography for sulfur removal, and carbon/alumina stacked solid-phase extraction cartridges to remove interfering sediment matrices. In bed sediment, 22 pesticides were detected in one or more of the samples, including 9 fungicides, 3 pyrethroid insecticides, p,p’-dichlorodiphenyltrichloroethane (p,p’-DDT) and its major degradates, as well as several herbicides. Pyraclostrobin, a strobilurin fungicide, and bifenthrin, a pyrethroid insecticide, were detected most frequently. Maximum pesticide concentrations ranged from less than their respective method detection limits to 1,380 micrograms per kilogram (tebuconazole in California). The number of pesticides detected in samples from each site ranged from zero to six compounds. The sites with the greatest number of pesticides were in Maine and Oregon with six pesticides detected in one sample from each state, followed by Georgia with four pesticides in one sample. For California, a total of 10 pesticides were detected among all sites, and 4 pesticides were detected at both low and high elevation sites; tebuconazole and pyraclostrobin were the two most frequently detected pesticides in California. For the other six selected states, the most frequently detected pesticides in bed sediment were pyraclostrobin (detected in 17 of 42 samples), bifenthrin (detected in 14 of 42 samples), and tebuconazole (detected in 10 of 42 samples).<br />
<br />
The fungus, Batrachochytrium dendrobatidis (Bd), was detected in water samples in sites from four of the seven states during 2009 and 2010, and the number of zoospore equivalents per liter of water in samples where Bd was detected ranged from 1.6 to 343. Bd was not detected in water samples from sites in Georgia, Louisiana, and Oregon.

Rural stream
Battaglin WA  
This is an ARMI Product. Occurrence of Azoxystrobin, Propiconazole, and Selected other Fungicides in US Streams, 2005-2006
Authors: Battaglin WA, Sandstrom MW, Kuivila KM, Kolpin DW, Meyer MT | Date: 2011-02-01 | Outlet: Water Air and Soil Pollution 218:307-322 | Format: URL
This study documents the occurrence of fungicides in select U.S. streams soon after the first documentation of soybean rust in the U.S. and prior to the corresponding increase in fungicide use to treat this problem. Water samples were collected from 29 streams in 13 States in 2005 and/or 2006, and analyzed for 12 target fungicides. Nine of the 12 fungicides were detected in at least one stream sample and at least one fungicide was detected in 20 of 29 streams. At least one fungicide was detected in 56% of the 103 samples, as many as 5 fungicides were detected in an individual sample, and mixtures of fungicides were common. Azoxystrobin was detected most frequently (45% of 103 samples) followed by metalaxyl (27%), propiconazole (17%), myclobutanil (9%), and tebuconazole (6%). Fungicide detections ranged from 0.002 to 1.15 ug/L. There was indication of a seasonal pattern to fungicide occurrence, with detections more common and concentrations higher in late summer and early fall than in spring. At a few sites, fungicides were detected in all samples collected suggesting the potential for season-long occurrence in some streams. Fungicide occurrence appears to be related to fungicide use in the associated drainage basins, however, current use information is generally lacking and more detailed occurrence data are needed to accurately quantify such a relation. Maximum concentrations of fungicides were typically one or more orders of magnitude less than current toxicity estimates for fresh-water aquatic organisms or humans however gaps in current toxicological understandings of the effects of fungicides in the environment limit these interpretations.

This is an ARMI Product. The state of the amphibians in the United States
Authors: Muths E, Adams MJ, Ball LC, Grant EHC, Corn PS | Format: URL
More than 25 years ago, scientists began to identify unexplained declines in amphibian populations around the world. Much has been learned since then, but amphibian declines have not abated and the interactions among the various threats to amphibians are not clear. Amphibian decline is a problem of local, national, and international scope that can affect ecosystem function, biodiversity, and commerce. This fact sheet provides a snapshot of the state of the amphibians and introduces examples to illustrate the range of issues in the United States.

This is an ARMI Product. Relaxing the closure assumption in occupancy models: staggered arrival and departure times
Authors: Kendall WL, Hines JE, Nichols JD, Grant EHC | Date: 2012 | Outlet: Ecology
Occupancy statistical models which account for imperfect detection have proven very useful in several areas in ecology, including species distribution and spatial dynamics, disease ecology, and ecological responses to climate change. These models are based on the collection of multiple samples at each of a number of sites within a given season, during which it is assumed the species is either absent or present and available for detection while each sample is taken. However, for some species individuals are only present or available for detection seasonally. We present a statistical model that relaxes the closure assumption within a season by permitting staggered entry and exit times for the species of interest at each site. Based on simulation, our open model eliminates bias in occupancy estimators and in some cases increases precision. The power to detect the violation of closure is high if detection probability is reasonably high. In addition to providing more robust estimation of occupancy, this model permits comparison of phenology across sites, species, or years, by modeling variation in arrival or departure probabilities. In a comparison of four species of amphibians in Maryland we found that two toad species arrived at breeding sites later in the season than a salamander and frog species, and departed from sites earlier.

This is an ARMI Product. Disease in a dynamic landscape: Host behavior and wildfire reduce amphibian chytrid infection
Authors: Hossack BR, Lowe WH, Ware JL, Corn PS | Date: 2013 | Outlet: Biological Conservation 157: 293-299 | Format: .PDF
Disturbances are often expected to magnify effects of disease, but these effects may depend on the ecology, behavior, and life history of both hosts and pathogens. In many ecosystems, wildfire is the dominant natural disturbance and thus could directly or indirectly affect dynamics of many diseases. To determine how probability of infection by the aquatic fungus Batrachochytrium dendrobatidis (Bd) varies relative to habitat use by individuals, wildfire, and host characteristics, we sampled 404 boreal toads (Anaxyrus boreas boreas) across Glacier National Park, Montana (USA). Bd causes chytridiomycosis, an emerging infectious disease linked with widespread amphibian declines, including the boreal toad. Probability of infection was similar for females and the combined group of males and juveniles. However, only 9% of terrestrial toads were infected compared to >30% of aquatic toads, and toads captured in recently burned areas were half as likely to be infected as toads in unburned areas. We suspect these large differences in infection reflect habitat choices by individuals that affect pathogen exposure and persistence, especially in burned forests where warm, arid conditions could limit Bd growth. Our results show that natural disturbances such as wildfire and the resulting diverse habitats can influence infection across large landscapes, potentially maintaining local refuges and host behaviors that facilitate evolution of disease resistance.

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://armi.usgs.gov/recent.php
Page Contact Information: ARMI Webmaster
Page Last Modified: Thursday, February 14, 2013