TABLE OF PRIMARY CONTAMINANTS

PRIMARY STANDARDS		MWWSSB	Rolling Hills
Bacteriological	MCL	Highest Detected Level	Highest Detected Level
Total Coliform Bacteria	<5%	coliform absent	coliform absent
Radiological*	MCL	Highest Single Measurement	Highest Single Measurement
Radium 228	5 pCi/L	ND	2.22

^{*} The radiological results are from the most recent testing done in 2003 in accordance with applicable regulations.

Turbidity	MCL	Highest Single Measurement	Highest Single Measurement -	
Turbidity	TT	0.30		
Inorganic Chemicals	MCL	Highest Detected Level	Highest Detected Level	
Antimony	6 ppb	ND	ND	
Arsenic	10 ppb	ND	ND	
Barium	2 ppm	0.089	ND	
Beryllium	4 ppb	ND	ND	
Cadmium	5 ppb	ND	ND	
Chromium	100 ppb	ND	ND	
Copper	AL = 1.3 ppm	90th percentile value = 0.158		
Cyanide	200 ppb	ND	ND	
Fluoride	4 ppm	1	ND	
Lead	AL = 15 ppb	90th percentile value = ND		
Mercury	2 ppb	ND	ND	
Nitrate	10 ppm	0.2	ND	
Nitrite	1 ppm	0.05	ND	
Selenium	50 ppb	ND	ND	
Thallium	2 ppb	ND	ND	

LEGEND FOR TABLES:

AL action level

MCL maximum contaminant level

MCLG maximum contaminant level goal

MWWSSB Montgomery Water Works & Sanitary Sewer Board

n/a not applicable

ND not detected

NS no standard exists

NTU nephelometric turbidity unit

ppb parts per bi

nnm narte nor milli

ppm parts per millio

ppt parts per trillion

TT treatment technique

uS/cm micromhos per centimeter

Este informe contiene informacion muy importante sobre su aqua beber. Traduzcalo o hable con alguien que lo entienda bien.

DIOXIN & ASBESTOS MONITORING STATEMENT

Based on a study conducted by ADEM with the approval of the EPA a statewide wair for the monitoring of asbestos and dioxin was issued. Thus, monitoring for these contaminants was not required.

PRIMARY STANDARDS		MWWSSB	Rolling Hills
Organic Chemicals	MCL	Highest Detected Level	Highest Detected Level
2,4-D	70 ppb	ND ND	ND ND
2,4,5-TP (Silvex)	50 ppb	ND	ND
Alachlor	2 ppb	ND ND	ND ND
Atrazine	3 ppb	ND	ND
Benzo(a)pyrene (PAHs)	200 ppt	ND	ND
Carbofuran	40 ppb	ND ND	ND
Chlordane	2 ppb	ND	ND
Dalapon	200 ppb	ND	ND
Di(2-ethylhexyl)adipate	400 ppb	ND	ND
Di(2-ethylhexyl)phthlate	6 ppb	ND	ND
Dinoseb	7 ppb	ND ND	ND ND
Diquat	20 ppb	ND ND	ND ND
Endothall	100 ppb	ND ND	ND
Endrin	2 ppb	ND ND	ND
Glyphosate	700 ppb	ND ND	ND
	400 ppb	ND ND	ND ND
Heptachlor Heptachlor epoxide	200 ppt	ND ND	ND
Hexachlorobenzene	1 ppb	ND	ND
Lindane	200 ppt	ND	ND ND
Methoxychlor	40 ppb	ND	ND
Oxamyl (Vydate)	200 ppb	ND	ND
PCBs	500 ppt	ND	ND
Pentachlorophenol	1 ppb	ND	ND
Picloram	500 ppb	ND	ND
Simazine	4 ppb	ND	ND
Toxaphene	3 ppb	ND	ND
Benzene	5 ppb	ND	ND
Carbon Tetrachloride	5 ppb	ND	ND
Chlorobenzene	100 ppb	ND	ND
o-Dichlorobenzene	600 ppb	ND	ND
p-Dichlorobenzene	75 ppb	ND	ND
1,2-Dichloroethane	5 ppb	ND	ND
1,1-Dichloroethylene	7 ppb	ND	ND
cis-1,2-Dichloroethylene	70 ppb	ND	ND
trans-1,2-Dichlorethylene	100 ppb	ND	ND
Dichloromethane	5 ppb	ND	ND
1,2-Dichloropropane	5 ppb	ND	ND
Ethylbenzene	700 ppb	ND	ND
Haloacetic Acids	60 ppb	34	8
Styrene	100 ppb	ND	ND
Tetrachloroethylene	5 ppb	ND	ND
1,2,4-Trichlorobenzene	70 ppb	ND	ND
1,1,1-Trichloroethane	200 ppb	ND	ND
1,1,2-Trichloroethane	5 ppb	ND	ND
Trichloroethylene	5 ppb	ND	ND
Total Trihalomethanes	80 ppb	33	
Toluene	1 ppm	ND	ND
Vinyl Chloride	2 ppb	ND ND	ND
Xylenes	10 ppm	ND ND	ND ND
Total Organic Carbon	TT	1.8	-
Chlorine Dioxide	800 ppb	600	
		0.85	
Chlorite	1 ppm	0.85	

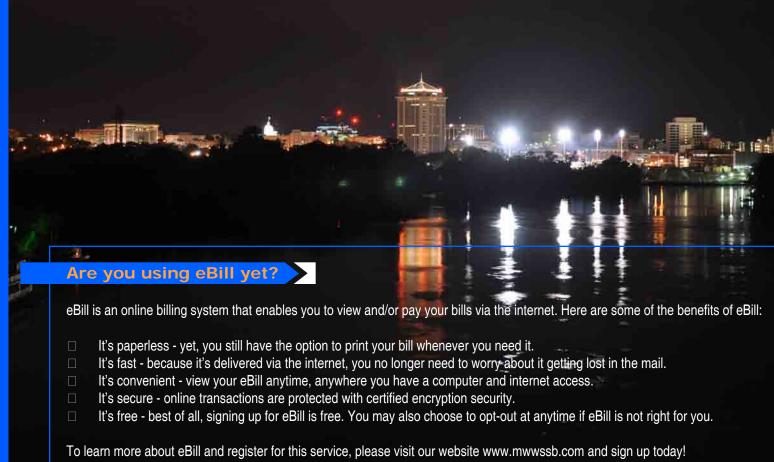
CONTACT INFORMATION 22 Bibb Street Montgomery, AL 36104 (334) 206-1600 www.mwwssb.com Thomas R. Morgan General Manager **BOARD OF DIRECTORS** Richard E. Hanan, Chairman Bobby W. Bledsoe, Vice-Chairr Anthony V. Dumas, Secretary Louie E. Blankenship Hugh M. Cole Reverend Al Dixon Bernice Robertson Ray L. Roton Mildred J. Wort **BOARD MEET** Regular Board of I meetings are held Tuesday of every p.m. in the at 22 Bibb

Presorted Std
U.S. Postage
Permit No. 456
Montgomery, AL

Vater. One sin

2009

Photography by Jojo Serquina


Water

One simple word that can mean so many different things to many people depending on the time and situation. From the drought we faced a couple of years ago to the recent flooding we witnessed and experienced recently. Both extremes brought added attention to just how vital a role water plays in our lives.

We need it in our homes, our businesses, our schools, and for recreation. At the Montgomery Water Works and Sanitary Sewer Board our mission is to provide you with the highest quality water and sewer service in harmony with the environment. You depend on us to provide it, and we take this responsibility seriously. We take all necessary steps to ensure that the water you receive is clean and safe for your use. Remember our employees work and live here with you. They expect these same high standards for their drinking water too.

In this brochure is information about the quality of water we deliver. We've included information about the sources of water in Montgomery, treatment processes used to clean the water, and the results from laboratory testing for over 150 potential contaminants. Please take some time to read this report. And we'll continue to provide the high quality water that you depend on.

Buddy Morgan
General Manager
Montgomery Water Works
& Sanitary Sewer Board

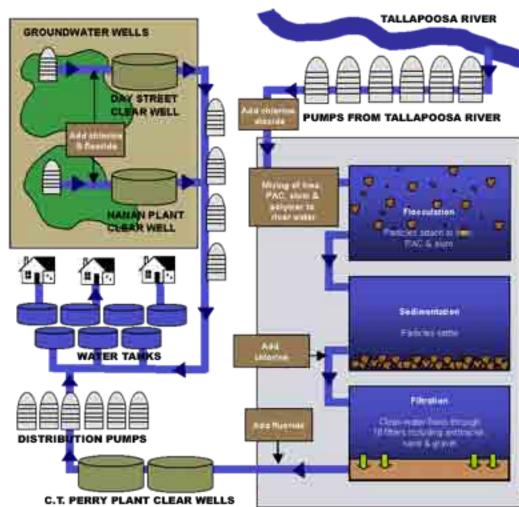
SOURCE OF MONTGOMERY'S WATER

For years, Montgomery's only source of water was its well fields in West and North Montgomery. These well fields, withdrawing groundwater from several underground aquifers, provide high quality, clean water that requires less treatment than surface water. However, the cost of transporting and maintaining the wells is also higher than using surface water. Considering this fact and Montgomery's growing population, in 1965 the C.T. Perry Water Purification Plant was built on the Tallapoosa River. Today, this plant has a capacity of 60 million gallons of water per day (MGD) and accounts for 60% of Montgomery's water supply. The Court Street Pump Station (10 MGD), the Day Street Pump Station (20 MGD), and the Hanan Water Treatment Plant (12.5 MGD), all well fields, account for the remaining 40%. Together, our water sources provide water for Montgomery and surrounding areas.

A source water assessment was conducted for the water supply of Montgomery Water Works including both the surface water and groundwater. An investigation of potential sources of contamination located within our water supply area was conducted. Each source was examined individually to determine the possible impact on the raw water supply. The majority of sources identified during the investigation pose little or no significant threat to our water supply. For more information about the source water assessment or to view a copy of the reports resulting from this investigation, please contact us at (334) 206-1600.

CRYPTOSPORIDIUM AND GIARDIA

Cryptosporidium and Giardia are microscopic organisms that are relatively widespread in the environment. Surface waters, such as lakes and rivers, that contain a high amount of sewage contamination or animal wastes are more susceptible to increased numbers of these parasites. The Montgomery Water Works and Sanitary Sewer Board is taking steps to make sure that these organisms do not pose a problem in your drinking water. Current protection measures taken at the C.T. Perry Water Purification Plant include chlorination, filtration, and monitoring turbidity levels and particle sizes. Additionally, routine backwashing of the filters helps to eliminate the chances of finding these organisms in treated water. Occasionally, we have found these organisms in the raw water, but neither Crytosporidium nor Giardia has ever been detected in the finished water. We will continue to monitor for these and other contaminants and take all necessary precautions to ensure that your water is safe for your use.


ADDITIONAL INFORMATION

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or from human activity.

Some people may be more vulnerable to contaminants in drinking water than the general population. People who are immunocompromised, such as cancer patients undergoing chemotherapy, organ transplant recipients, HIV / AIDS positive or other immune system disorders, some elderly, and infants can be particularly at risk from infections. People at risk should seek advice about drinking water from their health care providers. EPA / CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

To ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water.

DEFINITIONS

Primary Standards – Used as guides to protect public health.
Primary standards include maximum contaminant levels, maximum contaminant level goals, action levels, and treatment techniques.

Secondary Standards – Guidelines to assure good aesthetic quality of water. Secondary standards apply to contaminants that affect the taste, odor or color of water, stain sinks or bathtubs, or interfere with treatment processes.

Maximum Contaminant Level Goal (MCLG) – The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant Level (MCL) – The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Treatment Technique – A required process intended to reduce the level of a contaminant in drinking water.

Action Level – The concentration of a contaminant that triggers treatment or other requirement a water system shall follow.

Water Purification Process

TABLE OF DETECTED CONTAMINANTS

PRIMARY STANDAR	DS				WSSB		ng Hills	
Radiological	Units	MCL	MCLG	Highest Detected Level	Range of Detected Levels	Highest Detected Level	Range of Detected Levels	Likely Sources
Radium 228	pCi/L	5	0	ND	ND	2.22	2.22	Erosion of natural deposits
* The radiological resul		n the mo	st recent	testing done in 2003	3 in accordance with a	pplicable regulation	ns.	
Turbidity	Units	MCL	MCLG	Highest Single Measurement	Samples Meeting Limits	Highest Single Measurement	Samples Meeting Limits	Likely Sources
Turbidity	NTU	TT	n/a	0.30	100%			Soil runoff
* Turbidity is a measure	e of the cl	oudiness	of the wa	ater. We monitor it b	pecause it is a good in	dicator of the effec	tiveness of our filtration	ı system.
Inorganic Chemicals	Units	MCL	MCLG	Highest Detected Level	Range of Detected Levels	Highest Detected Level	Range of Detected Levels	Likely Sources
Barium	ppm			0.089	ND - 0.089	ND	ND	Discharge of drilling wastes; discharge
		AL 40	4.0	2011 13				from metal refineries; erosion of natural deposits
Copper	ppm	AL = 1.3	1.3	90th percentile value = 0.158	Zero sites above action level			Corrosion of household plumbing system erosion of natural deposits; leaching from wood preservatives
Fluoride	ppm				ND - 1	ND	ND	Water additive which promotes strong
								teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories
Lead	ppb	AL = 15	0	90th percentile value = ND	Zero sites above action level			Corrosion of household plumbing systemerosion of natural deposits
Nitrate	ppm	10	10	0.2	ND - 0.2	ND	ND	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Nitrite	ppm			0.05	ND - 0.05	ND	ND	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Organic Chemicals	Units	MCL	MCLG	Highest Detected Level	Range of Detected Levels	Highest Detected Level	Range of Detected Levels	Likely Sources
Chlorine Dioxide	ppb	800	800	600	10 - 600			Water additive used to control microbes
Chlorite	ppm	1	0.8	0.85	0.29 - 0.85	-		Byproduct of drinking water disinfectant
Disinfection Byprodu	ctel Inite	MCL	MCLG	Highest Annual Average	Range of Detected Levels	Highest Annual Average	Range of Detected Levels	Likely Sources
Haloacetic Acids	ppb	60	0	33	32 - 34	6	4 - 8	Byproduct of drinking water chlorination
Total Trihalomethanes	ppb	80	0	33	32 - 33	1	1 - 2	Byproduct of drinking water chlorination
Total Illiaioillothalioo	PPS				02 00		- · · · -	Dyproduct of diffining fraction contained
SECONDARY STAND	ARDS			MW\	WSSB	Rollir	ng Hills	
Inorgania Chamicale	Units	MCL	MCLG		Range of Detected Levels	Highest Detected Level	Range of Detected Levels	Likely Sources
Inorganic Chemicals Chloride		250	MICLG	Level 22	7 - 22	14	14	Water additive used to control microbes
Color	ppm Units	15		20	ND - 20	 ND	ND	water additive used to control microbes
Iron	ppb	300		128	ND - 128	ND ND	ND ND	Erosion of natural deposits
Mangenese		500		29	ND - 29	ND ND	ND ND	Erosion of natural deposits; Runoff from
Mangenese	ppm	50		25	ND - 29	NO	שויו	landfills
Sulfate	ppm	250		22	4 - 22	18	18	Erosion of natural deposits
Total Dissolved Solids	ppm	500	-	232	62 - 232	200	200	Erosion of natural deposits
Inorganic Chemicals (unregulated)*	Units	MCL	MCLG	Avg. Detected Levels	Range of Detected Levels	Avg. Detected Levels	Range of Detected Levels	Likely Sources
Alkalinity, Total	ppm	NS	NS	116	19 - 179	155	155	Alkalinity comes from the bicarbonate, hydroxide components of a natural or treate water supply
Calcium	ppm	NS	NS	12	1 - 35	8	8	Erosion of natural deposits
Carbon Dioxide	ppm	NS	NS	0.4	ND - 1			Erosion of natural deposits
Conductivity	uS/cm	NS	NS	126	45 - 192	175	175	
Hardness. Total	ppm	NS	NS	33	4 - 102	24	24	Calcium carbonate occurs as erosion of natural deposits
Magnesium	ppm	NS	NS		0.1 - 3.8	1.0	1.0	Erosion of natural deposits
THE RESERVE OF THE PERSON NAMED IN COLUMN 1	std units	NS	NS	8.4	7.8 - 9.3	8.0	8.0	pH identifies the presence of acid or base in water
pH								
Sodium Organic Chemicals	ppm Units	NS MCL	NS MCLG	33 Avg. Detected	4 - 69 Range of Detected	60 Avg. Detected	60 Range of Detected	Erosion of natural deposits

* Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinkir water and whether future regulation is warranted.