Interim 1: 07/2007

# ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs)

LEWISITE L-1 (CAS Reg. No. 541-25-3) CICH=CHAsCl<sub>2</sub>

LEWISITE L-2 (CAS Reg. No. 40334-69-8) (CICH=CH)<sub>2</sub> AsCl

LEWISITE L-3 (CAS Reg. No. 40334-70-1) (ClCH=CH)<sub>3</sub>As

1

#### PREFACE

Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 1972, the
 National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances
 (NAC/AEGL Committee) has been established to identify, review and interpret relevant toxicologic and
 other scientific data and develop AEGLs for high priority, acutely toxic chemicals.

6 AEGLs represent threshold exposure limits for the general public and are applicable to 7 emergency exposure periods ranging from 10 minutes to 8 hours. Three levels — AEGL-1, AEGL-2 and 8 AEGL-3 — are developed for each of five exposure periods (10 and 30 minutes, 1 hour, 4 hours, and 8 9 hours) and are distinguished by varying degrees of severity of toxic effects. The three AEGLs are defined 10 as follows:

AEGL-1 is the airborne concentration (expressed as parts per million or milligrams per cubic meter [ppm or mg/m<sup>3</sup>]) of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic, non-sensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL-2 is the airborne concentration (expressed as ppm or mg/m<sup>3</sup>) of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL-3 is the airborne concentration (expressed as ppm or mg/m<sup>3</sup>) of a substance above which it
 is predicted that the general population, including susceptible individuals, could experience
 life-threatening health effects or death.

22 Airborne concentrations below the AEGL-1 represent exposure levels that could produce mild 23 and progressively increasing but transient and nondisabling odor, taste, and sensory irritation or certain 24 asymptomatic, non-sensory effects. With increasing airborne concentrations above each AEGL, there is a 25 progressive increase in the likelihood of occurrence and the severity of effects described for each corresponding AEGL. Although the AEGL values represent threshold levels for the general public, 26 27 including susceptible subpopulations, such as infants, children, the elderly, persons with asthma, and 28 those with other illnesses, it is recognized that individuals, subject to unique or idiosyncratic responses, 29 could experience the effects described at concentrations below the corresponding AEGL.

| 1                                                                                            | TABLE OF CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                            |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 2                                                                                            | PREFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 3                                                                                                        |
| 3                                                                                            | LIST OF TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 5                                                                                                        |
| 4                                                                                            | LIST OF FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 5                                                                                                        |
| 5                                                                                            | SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 6                                                                                                        |
| 6                                                                                            | 1. INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 8                                                                                                        |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                              | <ul> <li>2. HUMAN TOXICITY DATA</li> <li>2.1. Acute Lethality</li> <li>2.2. Nonlethal Toxicity</li> <li>2.2.1. Individual Studies</li> <li>2.2.2. Case Report</li> <li>2.3. Developmental/Reproductive Effects</li> <li>2.4. Genotoxicity</li> <li>2.5. Carcinogenicity</li> <li>2.6. Summary</li> </ul>                                                                                                                                               | 11<br>11<br>11<br>13<br>13<br>13<br>13<br>13<br>13                                                         |
| 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31 | <ul> <li>3. ANIMAL TOXICITY DATA</li> <li>3.1.1. Acute Lethality</li> <li>3.1.1. Rats</li> <li>3.1.2. Mice</li> <li>3.1.3. Dogs</li> <li>3.1.4. Rabbits</li> <li>3.1.5. Guinea Pigs</li> <li>3.1.6. Goats</li> <li>3.2. Nonlethal Toxicity</li> <li>3.2.1. Rats</li> <li>3.2.2. Dogs</li> <li>3.2.3. Rabbits</li> <li>3.2.4. Pigs</li> <li>3.3. Developmental/Reproductive Effects</li> <li>3.4. Genotoxicity</li> <li>3.5. Carcinogenicity</li> </ul> | 15<br>15<br>15<br>15<br>15<br>15<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>19<br>19<br>20   |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39                                                 | <ul> <li>3.6. Summary</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>20</li> <li>22</li> <li>22</li> <li>23</li> <li>24</li> <li>24</li> <li>24</li> <li>24</li> </ul> |

| 1  | 5. DATA ANALYSIS FOR AEGL-1                                  | 25 |
|----|--------------------------------------------------------------|----|
| 2  | 5.1. Human Data Relevant to AEGL-1                           | 25 |
| 3  | 5.2. Animal Data Relevant to AEGL-1                          | 25 |
| 4  | 5.3. Derivation of AEGL-1                                    | 25 |
| 5  |                                                              |    |
| 6  | 6. DATA ANALYSIS FOR AEGL-2                                  | 25 |
| 7  | 6.1. Human Data Relevant to AEGL-2                           | 25 |
| 8  | 6.2. Animal Data Relevant to AEGL-2                          | 25 |
| 9  | 6.3. Derivation of AEGL-2                                    | 25 |
| 10 |                                                              |    |
| 11 | 7. DATA ANALYSIS FOR AEGL-3                                  | 26 |
| 12 | 7.1. Human Data Relevant to AEGL-3                           | 26 |
| 13 | 7.2. Animal Data Relevant to AEGL-3                          | 26 |
| 14 | 7.3. Derivation of AEGL-3                                    | 26 |
| 15 |                                                              |    |
| 16 | 8. SUMMARY OF AEGLs                                          | 27 |
| 17 | 8.1. AEGL Values and Toxicity Endpoints                      | 27 |
| 18 | 8.2. Comparisons with Other Standards and Guidelines         | 27 |
| 19 | 8.3. Data Adequacy and Research Needs                        | 28 |
| 20 | 9. REFERENCES                                                | 29 |
| 21 | APPENDIX A: Derivation of AEGL Values for Lewisite Compounds | 33 |
| 22 | APPENDIX B: Derivation Summary Tables for Lewisite Compounds | 37 |
| 23 | APPENDIX C: Category Plot for Lewisite                       | 41 |
|    |                                                              |    |

| 1        |        | LIST OF TABLES                                                                                        |
|----------|--------|-------------------------------------------------------------------------------------------------------|
| 2<br>3   | Summ   | hary of Proposed AEGL Values for Lewisite-1 and the Mixture of Lewisite-1, Lewisite-2, and Lewisite-3 |
| 4        | 1.     | Nomenclature of Lewisite Agents                                                                       |
| 5        | 2.     | Physical and Chemical Data for Lewisite Compounds                                                     |
| 6        | 3.     | Average Lewisite Concentration Causing Blistering on Human Forearm Skin 12                            |
| 7        | 4.     | Summary of Data for Humans Exposed to Lewisite Vapor                                                  |
| 8        | 5.     | Summary of Skin Effects for Humans Exposed to Lewisite Liquid                                         |
| 9        | 6.     | Dogs Exposed to Lewisite for 7.5 to 240 Minutes                                                       |
| 10       | 7.     | Summary of Inhalation Data for Animal Species Exposed to Lewisite                                     |
| 11<br>12 | 8.     | Summary of Acute Oral, Dermal, Subcutaneous, and IV Data for Animal Species<br>Exposed to Lewisite    |
| 13       | 9.     | AEGL-1 Values for Lewisite-1 (L-1) Lewisite-2 (L-2) and Lewisite-3 (L-3)25                            |
| 14<br>15 | 10.    | AEGL-2 Values for Lewisite-1 and the Mixture of Lewisite-1, Lewisite-2, and Lewisite-3                |
| 16<br>17 | 11.    | AEGL-3 Values for Lewisite-1 and the Mixture of Lewisite-1, Lewisite-2, and Lewisite-3                |
| 18       | 12.    | Summary/Relationship of AEGL Values                                                                   |
| 19<br>20 |        | LIST OF FIGURES                                                                                       |
| 21<br>22 | 1. Dog | LC <sub>50</sub> data-Lewisite                                                                        |

1

#### SUMMARY

Because of the nature of the chemicals under review, military literature is a major source 2 of the relevant toxicity data. Consequently, much of the data sources possess "limited 3 4 distribution", which is a separate issue from "classification". For various reasons, sources may possess a restricted distribution because of treaty restrictions on data access with allies, concerns 5 regarding distribution of engineering information characterizing agent dissemination or 6 generation in other sections of the same document, and related issues. To ensure public access to 7 8 pertinent toxicity data originating from "limited distribution" materials, pertinent data from those sources have been incorporated into the technical support document. 9

10 Lewisite-1 (L-1; 2-chlorovinyldichloroarsine) is an organic arsenical with vesicant 11 properties. It can exist as a *trans*-isomer or a *cis*-isomer; in aqueous solutions, the *cis*-isomer undergoes photoconversion to the trans-isomer. Lewisite causes local corrosive damage and 12 may cause systemic poisoning after absorption through skin or mucous membranes. Exposure to 13 14 lewisite causes almost immediate irritation and burning sensation in the eyes, skin, upper respiratory tract, and lungs. Death may result from direct pulmonary damage or circulatory 15 failure due to fluid loss and arrythmia. Death that occurs within 24 hours of exposure is likely 16 due to pulmonary damage (Lindberg et al., 1997). 17

Lewisite-2 (L-2; *bis*-(2-chlorovinyl)chloroarsine) and lewisite-3 (L-3; *tris*-(2chlorovinyl)arsine) are co-products concurrently formed with lewisite-1(Trammel, 1992). Lewisite-1 yield is >65%, and approximate yields of L-2 and L-3 are 7-10% and 4-12%, respectively (Lindberg et al., 1997). L-2 and L-3, because of smaller quantities and comparatively low volatility, will be less toxicologically significant than L-1.

Appropriate data were not available for derivation of AEGL-1 values for lewisite-1 (L-1), lewisite-2 (L-2), or lewisite-3 (L-3). Odor cannot be used as a warning for potential exposure. For lewisite-1, the odor threshold is reported to be between 14-23 mg/m<sup>3</sup>, a value above highly irritating concentrations and above proposed AEGL-2 and AEGL-3 values. Therefore, AEGL-1 values are not recommended.

28 No inhalation data consistent with the definition of AEGL-2 with both concentration and 29 duration parameters were available. Therefore, the AEGL-2 values for lewisite-1, were based 30 upon a 3-fold reduction in the AEGL-3 values for L-1; this is considered an estimate of a 31 threshold for irreversible effects and is considered appropriate given the extremely steep concentration-response curve (10-min mouse  $LC_{50} = 200 \text{ mg/m}^3$ , 10-min 100% mortality in mice 32 = 240 mg/m<sup>3</sup>; no mortality in dogs at 126 mg/m<sup>3</sup> for 7.5-min,  $LC_{50} = 176$  mg/m<sup>3</sup>). Additionally, 33 34 a modifying factor of 2 was applied to account for the sparse data set for effects defined by 35 AEGL-2.

Appropriate chemical-specific data were not available for derivation of AEGL-2 values for lewisite-2 (L-2) or lewisite-3 (L-3). However, L-2 and L-3 exist as a small fraction of total lewisite and have comparatively low volatilites. Because of these chemical characteristics, AEGL-2 values for L-1 were adopted as AEGL-2 values for the mixture of L-1, L-2, and L-3.

The AEGL-3 values for lewisite-1 (L-1) were based on dog lethality data (Armstrong, 1 1923). Points-of-departure were the calculated  $LC_{01}$  values: 38.7 mg/m<sup>3</sup> for the 10-minute value, 2 14.0 mg/m<sup>3</sup> for the 30-minute value, 7.4 mg/m<sup>3</sup> for the 1-hr value, 2.1 mg/m<sup>3</sup> for the 4-hour 3 value, and 1.1 mg/m<sup>3</sup> for the 8-hr AEGL-3 value. The  $LC_{01}$  values are considered estimates of 4 lethality thresholds. Interspecies and intraspecies uncertainty factors of 3 each were applied. 5 The interspecies uncertainty factor of 3 is supported by the fact that data suggest little species 6 variability with regard to lethality from inhalation exposure to lewisite; c x t values are relatively 7 constant across species, except for the guinea pig, and the interspecies uncertainty factor of 3 8 encompasses the 2- to 3-fold difference in sensitivity between guinea pigs and rats, mice, rabbits, 9 dogs, and goats. The intraspecies uncertainty factor of 3 is supported by the steep concentration-10 response curve with regard to lethality, which implies limited intraspecies variation (10-min 11 mouse  $LC_{50} = 200 \text{ mg/m}^3$ , 10-min 100% mortality in mice = 240 mg/m<sup>3</sup>; no mortality in dogs at 12 126 mg/m<sup>3</sup> for 7.5-min,  $LC_{50} = 176$  mg/m<sup>3</sup>). Thus, the total uncertainty factor is 10. 13

14 Appropriate chemical-specific data were not available for derivation of AEGL-3 values for lewisite-2 (L-2) or lewisite-3 (L-3). However, L-2 and L-3 exist as a small fraction of total 15 lewisite and have comparatively low volatilites. Because of these chemical characteristics, 16

AEGL-3 values for L-1 were adopted as AEGL-3 values for the mixture of L-1, L-2, and L-3. 17

The derived AEGL values for these lewisite compounds are shown in the following table. 18

| 19       | Summary of AEGL Values for Lewisite-1 and the Mixture of Lewisite-1, Lewisite-2, and Lewisite-3 |                        |                        |                        |                         |                         |                                                   |  |
|----------|-------------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|-------------------------|-------------------------|---------------------------------------------------|--|
| 20       | Classification                                                                                  | 10-minute              | 30-minute              | 1-hour                 | 4-hour                  | 8-hour                  | Endpoint (Reference)                              |  |
| 21<br>22 | AEGL-1<br>(Nondisabling)                                                                        | NR                     | NR                     | NR                     | NR                      | NR                      | Insufficient data for derivation of AEGL-1 values |  |
| 23       | AEGL-2 (Disabling)                                                                              | 0.65 mg/m <sup>3</sup> | 0.23 mg/m <sup>3</sup> | 0.12 mg/m <sup>3</sup> | 0.035 mg/m <sup>3</sup> | 0.018 mg/m <sup>3</sup> | <sup>1</sup> ∕₃ of AEGL-3 values                  |  |
| 24       | AEGL-3 (Lethal)                                                                                 | 3.9 mg/m <sup>3</sup>  | 1.4 mg/m <sup>3</sup>  | 0.74 mg/m <sup>3</sup> | 0.21 mg/m <sup>3</sup>  | 0.11 mg/m <sup>3</sup>  | Dog LC <sub>01</sub> values (Armstrong, 1923)     |  |

25 NR = Not recommended.

26 <sup>a</sup> Absence of an AEGL-1 does not imply that exposure below the AEGL-2 is without adverse effects.

27 References

28 Armstrong, G.C. 1923. The toxicity of M-1 by inhalation for dogs. Chapter II, In: The toxicity, pathology, chemistry, mode of

29 action, penetration, and treatment for M-1 and its mixtures with arsenic trichloride. Part 1.Edgewood Arsenal, Aberdeen Proving 30

Ground, MD. August 13, 1923. ADB954935. Unclassified Report/ Limited Distribution.

31 Lindberg, G., Runn, P, Winter, S., and Fallman, A. 1997. Basic information on lewisite- a chemical warfare agent with effects 32 similar to mustard gas. Defense Research Establishment, Division of NBC Defense, S-901 82 UMEA, Sweden.

33 Trammel, G.L. 1992. Toxicodynamics of organoarsenical chemical warfare agents. In: Somani, S.M., Ed. Chemical Warfare

34 Agents. Academic Press, Inc.: New York, pp. 255-270.

#### 1 1. INTRODUCTION

2 Lewisite (2-chlorovinyldichloroarsine; CAS Registry No. 541-25-3) is an organic arsenical with

3 vesicant properties. It can exist as a *trans*-isomer or a *cis*-isomer; in aqueous solutions, the *cis*-

4 isomer undergoes photoconversion to the *trans*-isomer. Pure lewisite is a colorless, odorless oily

- 5 liquid; however, synthesized agent is an amber to dark brown liquid with a geranium-like odor
  6 (Munro et al., 1999). Lewisite causes local corrosive damage and may cause systemic poisoning
- after absorption through skin or mucous membranes. Exposure to lewisite causes almost
- immediate irritation and burning sensation of the eyes, skin, upper respiratory tract, and lungs.
- 9 Death may result from direct pulmonary damage or circulatory failure due to fluid loss and

10 arrythmia. Death that occurs within 24 hours of exposure is likely due to pulmonary damage

11 (Lindberg et al., 1997).

12 Lewisite was developed as a chemical warfare blister agent during the latter part of World War I

13 and was named after its inventor Captain W. Lee Lewis. When the first ship loaded with lewisite

- 14 reached Europe in 1918, the war ended, and the cargo was dumped into the sea. During the period
- 15 between World War I and World War II, few studies on lewisite were conducted; however, when
- 16 World War II began, the research efforts intensified. Results of those studies suggested that
- 17 lewisite had limited utility as a war gas because of hydrolysis to a nonvolatile and water insoluble
- 18 oxide, poor penetration of protective clothing, and difficulty in attaining lethal concentrations on
- 19 the battle field (Lindberg et al., 1997). Also, lewisite is so immediately highly irritating at low
- 20 concentrations (estimated 6-8 mg/m<sup>3</sup>) that troops would be warned of the presence of gas, even
- 21 before detection of the geranium-like odor at 14-23 mg/m<sup>3</sup>, and take protective action by deploying
- 22 gas masks or retreating from the toxic atmosphere (Gates et al., 1946).
- 23 Lewisite -1 (L or L-1) is formed by the reaction of acetylene with arsenic trichloride using
- aluminum trichloride as a catalyst. Arsenic trichloride, lewisite-2 [(ClCH=CH)<sub>2</sub> AsCl] and
- 25 lewisite-3 [(ClCH=CH)<sub>3</sub>As] are co-products concurrently formed with lewisite-1
- 26 (ClCH=CHAsCl<sub>2</sub>) (Trammel, 1992). Lewisite-1 yield is >65%, and approximate yields of arsenic
- 27 trichloride, L-2, and L-3 are 16-21%, 7-10%, and 4-12%, respectively (Lindberg et al., 1997).
- 28 Therefore, an accidental release from storage tanks of L-1 will likely be the release of a mixture of
- 29 L-1, L-2, L-3, and arsenic trichloride. Exposure will be to these compounds and to potential
- 30 hydrolysis products, sodium arsenite and arsenic acid. Toxicological data on arsenic trichloride
- are very limited; however, qualitatively, effects are similar to those of L-1 (corrosiveness, damage
- to skin, eyes, and mucous membranes). Quantitatively with regard to lethality, arsenic trichloride
- appears to be approximately 2 to 3 times less toxic than L-1 (LCt<sub>50</sub> for arsenic trichloride: 4000-5000 mg·min/m<sup>3</sup>; LCt<sub>50</sub> for L-1:1200-1500 mg·min/m<sup>3</sup>) (Flury, 1921). L-2 and L-3 will be less
- 5000 mg·min/m<sup>3</sup>; LCt<sub>50</sub> for L-1:1200-1500 mg·min/m<sup>3</sup>) (Flury, 1921). L-2 and L-3 will be less significant because of smaller quantities and comparatively low volatility. However, the toxicity
- of L-2 and L-3 is reportedly comparable to L-1 (Lindberg et al., 1997). Because of these chemical
- 37 characteristics, AEGL values for L-1 should be protective for L-2, L-3, and the mixture.
- 38 A summary of nomenclature for the chemicals of concern is presented in Table 1 and
- 39 chemical/physical data are summarized in Table 2.

| 1 | TABLE 1. Nomenclature of Lewisite Agents |                        |                                                                                                                                                                                        |                     |  |  |  |
|---|------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|
| 2 | Common name                              | Military<br>Designator | Chemical name/Synonyms                                                                                                                                                                 | CAS Registry<br>No. |  |  |  |
| 3 | Lewisite-1                               | L (L-1)                | 2-chlorovinyldichloroarsine/<br>(2-chlorovinyl)arsenous dichloride;<br>beta-chlorovinyldichloroarsine;<br>Dichloro( 2-chlorovinyl) arsine;<br>Chlorovinylarsine dichloride;<br>EA 1034 | 541-25-3            |  |  |  |
| 4 | Lewisite-2                               | L-2                    | bis-(2-chlorovinyl)chloroarsine                                                                                                                                                        | 40334-69-8          |  |  |  |
| 5 | Lewisite-3                               | L-3                    | tris-(2-chlorovinyl)arsine                                                                                                                                                             | 40334-70-1          |  |  |  |

6 NDRC (1946); Cookson and Nottingham (1969); USACHPPM (1996)

| т                                                                                                  | TABLE 2. Chemical And Physical Data for Lewisite Compounds                                                                                                                    |                                                    |  |  |  |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|
| Parameter                                                                                          | Value                                                                                                                                                                         | Reference                                          |  |  |  |  |
| Molecular formula<br>Lewisite-1 (L or L-1)<br>Lewisite-2 (L -2)<br>Lewisite-3 (L -3)               | CICH=CHAsCl <sub>2</sub><br>(CICH=CH) <sub>2</sub> AsCl<br>(CICH=CH) <sub>3</sub> As                                                                                          | NRDC, 1946<br>NRDC, 1946<br>NRDC, 1946             |  |  |  |  |
| Molecular weight<br>Lewisite-1 (L or L-1)<br>Lewisite-2 (L -2)<br>Lewisite-3 (L -3)                | 207.32<br>233.32<br>259.35                                                                                                                                                    |                                                    |  |  |  |  |
| Physical state<br>Lewisite-1 (L or L-1)<br>Lewisite-2 (L -2)<br>Lewisite-3 (L -3)                  | oily liquid for all forms                                                                                                                                                     | Lindberg et al., 1997                              |  |  |  |  |
| Color<br>Lewisite-1 (L or L-1)<br>Lewisite-2 (L -2)<br>Lewisite-3 (L -3)                           | Mixture: amber to brown<br>colorless (pure)<br>-<br>-                                                                                                                         | Munro et al., 1999<br>Munro et al., 1999           |  |  |  |  |
| Solubility<br>Lewisite-1 (L or L-1)<br>Lewisite-2 (L -2)<br>Lewisite-3 (L -3)                      | insoluble in water; soluble in most organic<br>solvents<br>insoluble in water; soluble in most organic<br>solvents<br>insoluble in water; soluble in most organic<br>solvents | USACHHPM, 1996<br>USACHHPM, 1996<br>USACHHPM, 1996 |  |  |  |  |
| Vapor pressure<br>Lewisite-1 (L or L-1)<br>Lewisite-2 (L -2)<br>Lewisite-3 (L -3)                  | 0.34 mm Hg @ 25EC; 0.22 mm Hg @ 20EC<br>-<br>-                                                                                                                                | USACHHPM, 1996                                     |  |  |  |  |
| Specific gravity<br>(water = 1)<br>Lewisite-1 (L or L-1)<br>Lewisite-2 (L -2)<br>Lewisite-3 (L -3) | 1.888 @ 20EC<br>-<br>-                                                                                                                                                        | HSDB, 2004                                         |  |  |  |  |
| Density (air = 1)<br>Lewisite-1 (L or L-1)<br>Lewisite-2 (L -2)<br>Lewisite-3 (L -3)               | 7.1<br>-<br>-                                                                                                                                                                 | Trammel, 1992                                      |  |  |  |  |
| Melting point<br>Lewisite-1 (L or L-1)<br>Lewisite-2 (L -2)<br>Lewisite-3 (L -3)                   | 0.1EC<br>-<br>-                                                                                                                                                               | HSDB, 2004                                         |  |  |  |  |
| Boiling point<br>Lewisite-1 (L or L-1)<br>Lewisite-2 (L -2)<br>Lewisite-3 (L -3)                   | 190EC<br>-<br>-                                                                                                                                                               | Trammel, 1992                                      |  |  |  |  |
| Flammability limits<br>Lewisite-1 (L or L-1)<br>Lewisite-2 (L -2)                                  |                                                                                                                                                                               |                                                    |  |  |  |  |

| 1<br>2<br>3<br>4 | Conversion factors<br>Lewisite-1 (L or L-1)<br>Lewisite-2 (L -2)<br>Lewisite-3 (L -3) | NA- aerosol atmosphere<br>NA- aerosol atmosphere<br>NA- aerosol atmosphere |                                                     |
|------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------|
| 5<br>6<br>7<br>8 | Volatility<br>Lewisite-1 (L or L-1)<br>Lewisite-2 (L -2)<br>Lewisite-3 (L -3)         | 0.77- 2.5 g/m <sup>3</sup> at 20EC<br>0.043 g/m <sup>3</sup> at 20EC<br>-  | Lindberg et al., 1997<br>Lindberg et al., 1997<br>- |

#### 9 2. HUMAN TOXICITY DATA

## 10 **2.1. Acute Lethality**

Gates et al. (1946) estimated (based on animal data in Table 8) that the inhalation  $LC_{50}$  for lewisite vapor in humans may be 120 mg/m3 for 10 minutes and 50 mg/m<sup>3</sup> for 30 minutes. Gates et al. (1946) also estimated an  $LC_{50}$  of 3300 mg/m<sup>3</sup> for 30 minutes for lewisite vapor absorption through the bare skin. This estimate is based on animal data and assumes that absorption of lewisite through skin is a function of the ratio of surface exposed to body volume. A dermal  $LD_{50}$ of >40 mg/kg was also estimated by Gates et al. (1946) based on data in Table 9.

#### 18 2.2. Nonlethal Toxicity

#### 19 2.2.1. Individual Studies

Lewisite is immediately highly irritating at estimated concentrations of 6-8 mg/m<sup>3</sup>. The geranium-like odor is reportedly detectable at 14-23 mg/m<sup>3</sup> (Gates et al., 1946).

Inhalation of 10 mg/m<sup>3</sup> lewisite for 30 minutes reportedly results in severe intoxication and incapacitation that lasts for several weeks, and inhalation of 10 mg/m<sup>3</sup> for 15 minutes causes inflammation of the eyes and swelling of the eyelids (Ottinger et al., 1973). No further details were available.

In order to select "men of average resistance" for a dermal vapor study, pin-point drops of 26 27 0.1% or 2% solutions of liquid lewisite in alcohol were applied to the forearms of 52 male volunteers at Edgewood Arsenal (Eldridge, 1923). If a subject showed no reaction to the 2% 28 solution, he was classified as "resistant" and not used in the dermal vapor study. If a subject 29 showed a marked reaction to the 0.1% solution, he was classified as "sensitive" and not used in the 30 dermal vapor study. Out of the 52 men, 14 were found to be resistant, and 3 were found to be 31 sensitive. Further dermal liquid tests were done on the sensitive and resistant subjects ; these tests 32 showed that the sensitive subjects showed no effect when treated with a 0.01% lewisite solution, 33 and the resistant subjects showed blistering with a 5% solution. Dermal effects included blanching 34 or graying of the skin, followed by severe erythema within 15-30 minutes. Vesication, 35 accompanied by some edema, occurred within 12 hours, and within less that 24-hours, a raised 36 area of redness measuring 2 x 2.5 inches in diameter, appeared accompanied by a 1.5 inch 37 diameter blister surrounded by hundreds of minute vesicles. Forty-eight hours later, the raised 38

area of redness had increased to 6 x 3.5 inches in diameter, and fluid seeped from the blister. The 1 smaller vesicles also ruptured as the severity of burns continued to increase up to the forth day. 2 No change was noted from days 4 to 7, and from day seven onward, improvement was noted, with 3 complete healing by the end of week 4. The men described a "stinging sensation" that lasted for 4 two minutes and occurred within 2.5 minutes of exposure. No further sensation was noted until 5 approximately 20 minutes later, when the stinging sensation was again reported; this stinging 6 lasted for approximately 2 hours. Five hours later, a "continuous feeling of discomfort" was 7 reported; this burning lasted until the blister ruptured 22.5 hours after lewisite administration. 8 Intermittent stinging and burning followed and the area became sore to the touch. By the end of 9 day 6, the pain was more severe and occurred at shorter time intervals. By day nine, all pain had 10 resolved. 11 12 The arms of groups of 1 to 7 men (from the 35 male volunteers of average sensitivity 13

described above) were exposed to varying concentrations of lewisite vapor for periods ranging 14 from 10-minutes to three hours in order to determine the concentration of lewisite in air necessary 15 to produce blistering (Eldridge, 1923). The exposure apparatus allowed for a constant stream of 16 air-lewisite mixture to pass over a square centimeter area of the subject's forearm under 17 atmospheric pressure. The lewisite concentrations were determined by dividing the loss in weight 18 of the gas container by the total volume of air passing through the apparatus during the test. The 19 burns ranged in severity from reddish discoloration to a clear watery blister over the entire burned 20 area, accompanied by reddening, swelling, and hardening of the surrounding skin. The burns 21 reached maximum severity in 36 to 48 hours, and healing was complete in six days to two weeks. 22 The men reported that the healed skin remained sensitive for several weeks after the healing was 23 complete. Data are summarized in Table 3. 24

| Length of Exposure (min) | Average Blistering Concentration (mg/m <sup>3</sup> ) |
|--------------------------|-------------------------------------------------------|
| 5                        | 2090                                                  |
| 10                       | 1040                                                  |
| 30                       | 340                                                   |
| 60                       | 150                                                   |
| 120                      | 62                                                    |
| 180                      | 26.2                                                  |

33 \*Eldridge, 1923

Lewisite liquid at doses of 3.5, 7, and 14 µg produced erythema and vesication of human skin, and doses of 22, 32, and 40 µg produced vesication (NDRC, 1944).

Davis (1943) analyzed fluid from human lewisite blisters and found 0.8 to 1.3 mg
 arsenic/mL, equivalent to 2.5 to 4.0 mg of original lewisite

39

36

#### 1 **2.2.2. Case Report**

A male worker at Pine Bluff Arsenal experienced lewisite burns over 20% of the body surface, the majority of burns being on the legs. He showed an anemia 10 to 15 days after the burn, but had no signs of systemic arsenic poisoning (Gates et al., 1946). No further information was available on this incident.

#### 6 2.3. Developmental/Reproductive Effects

- Human developmental/reproductive toxicity data concerning lewisite were not located.
- 7 8

9 2.4. Genotoxicity

10 Human genotoxicity toxicity data concerning lewisite were not located.

#### 11 **2.5. Carcinogenicity**

In 1940, a World War II German soldier was accidentally exposed to lewisite on his lower right leg. The blistered lesion never healed, and in 1948, was diagnosed as malignant. Bowen's disease (intraepidermal squamous cell carcinoma) was diagnosed 38 years later (Krause and Grussendorf, 1978).

16

Wada et al (1962) reported increased incidences of cancer mortality (respiratory tract: 17 14%; digestive tract: 9.6%) in workers from the Okuno-Jima poison gas factory. When cancer 18 rates were correlated with job classification, the frequency of respiratory and gastrointestinal tract 19 neoplasms were highest in the workers who were involved in the production of mustard gas or 20 lewisite, followed by those who worked indirectly with mustard gas or lewisite, and the lowest 21 frequency was noted in those that had no direct contact with mustard or lewisite (Yamakido et al., 22 1985). However, this information is confounded by the fact that workers were also exposed to 23 mustard gas in addition to lewisite, and the factory also produced hydrocyanic acid, 24 diphenylcyanarsine, chloroacetophenone, and phosgene. 25

#### 26 **2.6. Summary**

27 Lewisite vapor and liquid causes immediate irritation, burning, and corrosive damage to eyes and exposed skin, and vapor may also effect the upper airway and lungs. Human exposure 28 data are dated and studies are, in many cases, not well described. No information concerning 29 developmental/reproductive toxicity or genotoxicity with regard to lewisite exposure in humans 30 was identified. Information suggesting an increased cancer incidence in workers from a Japanese 31 poison gas factory is confounded because workers were exposed to numerous chemicals. Selected 32 human vapor (inhalation) data are summarized in Table 4, and selected human liquid exposure 33 data are summarized in Table 5. 34

| 1        | Table 4. Summary of Data for Humans Exposed to Lewisite Vapor |                                   |                                          |                                                    |                       |  |  |
|----------|---------------------------------------------------------------|-----------------------------------|------------------------------------------|----------------------------------------------------|-----------------------|--|--|
| 2        | Effect                                                        | Exposure<br>duration (min)        | Concentration (mg/m <sup>3</sup> )       | C x T<br>(mg·min/m <sup>3</sup> )                  | Reference             |  |  |
| 3        | Odor perception                                               | threshold                         | 14-23                                    | -                                                  | Gates et al., 1946    |  |  |
| 4        | Nasal irritation-mild                                         | threshold                         | 0.8                                      | -                                                  | Prentis, 1937         |  |  |
| 5        | Irritation-pronounced                                         | threshold                         | 2.0                                      | -                                                  | Cherkes et al., 1964  |  |  |
| 6<br>7   | Irritation-<br>highly irritating                              | threshold                         | 6-8                                      | -                                                  | Gates et al., 1946    |  |  |
| 8        | Irritation- severe                                            | threshold                         | 10-30                                    | -                                                  | Cherkes et al., 1964  |  |  |
| 9<br>10  | Eye<br>inflammation/swelling                                  | 15                                | 10                                       | 150                                                | Ottinger et al., 1973 |  |  |
| 11       | Incapacitation                                                | 30                                | 10                                       | 300                                                | Ottinger et al., 1973 |  |  |
| 12<br>13 | Skin lesions<br>(Skin exposure)                               | 5<br>10<br>30<br>60<br>120<br>180 | 2090<br>1040<br>340<br>150<br>62<br>26.2 | 10,450<br>10,400<br>10,200<br>9000<br>7440<br>4716 | Eldridge, 1923        |  |  |
| 14<br>15 | Estimated<br>Inhalation LC <sub>50</sub>                      | 10                                | 120                                      | 1200                                               | Gates et al., 1946    |  |  |
| 16<br>17 | Estimated<br>Inhalation LC <sub>50</sub>                      | 30                                | 50                                       | 1500                                               | Gates et al., 1946    |  |  |
| 18<br>19 | Estimated<br>Percutaneous LC <sub>50</sub>                    | 30                                | 3300                                     | 100,000                                            | Gates et al., 1946    |  |  |

| 20       | Table 5. Summary of Skin Effects for Humans Exposed to Lewisite Liquid |        |                |            |  |  |  |
|----------|------------------------------------------------------------------------|--------|----------------|------------|--|--|--|
| 21       | Effect                                                                 | Dose   | Incidence      | Reference  |  |  |  |
| 22<br>23 | Erythema<br>Vesication                                                 | 3.5 µg | 24/29<br>21/29 | NRDC, 1944 |  |  |  |
| 24<br>25 | Erythema<br>Vesication                                                 | 7μg    | 30/30<br>30/30 | NRDC, 1944 |  |  |  |
| 26<br>27 | Erythema<br>Vesication                                                 | 14 µg  | 26/26<br>26/26 | NRDC, 1944 |  |  |  |
| 28       | Vesication                                                             | 22 µg  | 10/10          | CWS, 1944  |  |  |  |
| 29       | Vesication                                                             | 32 µg  | 7/9            | CWS, 1944  |  |  |  |
| 30       | Vesication                                                             | 40 µg  | 100%           | CWS, 1944  |  |  |  |

## 31 **3. ANIMAL TOXICITY DATA**

#### 1 **3.1. Acute Lethality**

Several inhalation  $LC_{50}$  values were identified in the literature. In some cases no detailed methods were presented; however, only data from studies where concentrations were reported to be analytically determined are presented in this report. These data are summarized in Table 7. Oral, dermal, subcutaneous, and intravenous  $LD_{50}$  values were also identified in a variety of

6 species. These data are summarized in Table 8.

## 7 **3.1.1. Rats**

| A 9-minute $LC_{50}$ of 100 mg/m <sup>-</sup> was reported for rats (Gales et al., 1 | rats (Gates et al., 1946). |
|--------------------------------------------------------------------------------------|----------------------------|
|--------------------------------------------------------------------------------------|----------------------------|

9 An oral  $LD_{50}$  of 50 mg/kg (U.S. Army, 1974), dermal  $LD_{50}$  of 24 mg/kg (Cameron et al., 10 1946), and subcutaneous  $LD_{50}$  of 1 mg/kg (Cameron et al., 1946) were reported for rats.

11 Olajos et al. (1998) exposed groups of 6 male and 6 female Sprague-Dawley rats head-only

12 to product solution (waste stream) from the chemical neutralization of Chemical Agent

13 Identification Sets (CAIS). The CAIS waste stream contained chloroform (vehicle) and *t*-butanol

14 (vehicle) and lewisite. Exposures were to 6000, 12,000, 18,000, or 24,000 ppm CAIS waste

15 stream or to 24,000 ppm chloroform/butanol solvent for 1 hour. The concentration of lewisite in

the test atmospheres was 0, 0.17, 0.67, 0.96, or 0.31 mg/m<sup>3</sup>, respectively, for the vehicle control, 17 (000, 12,000, 18,000, an 24,000 mm, CAUS test and Taria single superior equivalent with

17 6000, 12,000, 18,000, or 24,000 ppm CAIS test groups. Toxic signs were consistent with

chloroform/butanol and were noted in control (vehicle) and waste stream-exposed animals. Ocular
 effects (corneal opacity and erosion) and pulmonary function effects (decreased minute volume)

20 were similar in control and waste stream groups. The authors concluded that effects were due to

20 were similar in control and waste stream groups. The authors concluded tha21 chloroform and butanol, not lewisite.

## 22 **3.1.2. Mice**

Silver and McGrath (1943) exposed groups of 20 male CF-1 mice to varying 23 concentrations of cis- or trans- lewisite for 10 minutes. Animals were exposed in a 386 liter 24 25 continuous flow chamber. The lewisite was vaporized by passing 20-30 liters of air per minute through the lewisite in a bubbler at room temperature. Chamber airflow was maintained at 250 26 L/min. Lewisite concentrations in the chamber were measured analytically using a wet test meter. 27 No animals were placed in the chamber until the chamber atmosphere had reached equilibrium 28 (approximately 10 minutes). Ten-minute mouse  $LC_{50}$  values of 190 and 200 mg/m<sup>3</sup> were 29 determined for the cis- and trans-isomers, respectively. All mice exposed to 240 mg/m<sup>3</sup> lewisite 30 for 10 minutes died 31

## 33 **3.1.3. Dogs**

32

In an acute inhalation toxicity study, Armstrong (1923) exposed groups of dogs (sex not reported) to varying concentrations of lewisite (purity 99%) for 7.5, 15, 30, 60, 120, or 240 minutes. The dogs were exposed in an air-tight glass chamber 74.9 x 69.6 x 71.2 cm with a sliding front and entrance and exit ports for the air-lewisite mixture. The affluent air was supplied by an air pump and was passed through a series of drying bottles. The dried air was then passed through a flowmeter in order to regulate the amount entering the exposure chamber. This metered stream then entered a bubbler containing the lewisite; the bubbler was immersed in a water bath so that it

- 1 could be heated or cooled. The temperature of the bath and flow rate was then adjusted to
- 2 predetermined points (from blank runs) in order to obtain the desired chamber concentrations. The
- 3 concentration of lewisite in the exposure chamber was determined analytically from samples
- 4 aspirated from the chamber during exposures.

Clinical signs in dogs exposed for 7.5 or 15-minutes included detection of lewisite within 5 30 seconds, as evidenced by continual eye blinking, followed by excessive nasal secretion, 6 lacrymation, and sneezing (Armstrong, 1923). In some cases, ocular inflammation was noted 7 before the end of exposure. Vomiting was also noted before the end of the 7.5- and 15-min 8 9 exposures. In dogs exposed for 30-minutes or longer, frequent retching, vomiting, extreme salivation, labored breathing, inflammation of the entire respiratory tract were noted, in addition 10 to signs noted for shorter exposure durations. At necropsy in animals dying from lewisite 11 exposure, a thick membrane in the nostrils, larynx, and trachea, accompanied by purulent 12 bronchitis, hemorrhage, pneumonia, edema, and congestion of the lungs were noted. Liver and 13 kidney congestion were also noted. Generally, all clinical signs and pathology increased in 14 severity with increasing exposure duration and concentration. Calculated  $LC_{01}$  values for AEGL 15 time points are: 38.7 mg/m<sup>3</sup> for 10-minutes, 14.0 mg/m<sup>3</sup> for 30-minutes, 7.4 mg/m<sup>3</sup> for 1-hr, 2.1 16  $mg/m^3$  for 4-hours, and 1.1 mg/m<sup>3</sup> for 8-hours (ten berge et al., 1986). Data are summarized in 17

18 Table 6.

| 1      | Table 6. Dogs Exposed to Lewisite for 7.5 to 240 Minutes (Armstrong, 1923) |                                       |           |                                          |                                         |
|--------|----------------------------------------------------------------------------|---------------------------------------|-----------|------------------------------------------|-----------------------------------------|
| 2<br>3 | Exposure<br>Duration                                                       | Concentration<br>(mg/m <sup>3</sup> ) | Mortality | LC <sub>50</sub><br>(mg/m <sup>3</sup> ) | Comments                                |
| 4      | 7.5 minutes                                                                | 126                                   | 0/2       | 176                                      | -                                       |
|        |                                                                            | 176                                   | 7/12      |                                          | Dogs died 15 to 69 hours post-exposure  |
|        |                                                                            | 231                                   | 10/17     |                                          | Dogs died 13 to 57 hours post-exposure  |
|        |                                                                            | 274                                   | 4/4       |                                          | Dogs died 12 to 37 hours post-exposure  |
|        |                                                                            | 330                                   | 1/1       |                                          | Dog died 14 hours post-exposure         |
| 5      | 15 minutes                                                                 | 68.7                                  | 1/4       | 100                                      | Dog died 12 hours post-exposure         |
|        |                                                                            | 87.7                                  | 2/5       |                                          | Dogs died 28 and 40 hours post-exposure |
|        |                                                                            | 96                                    | 3/5       |                                          | Dogs died 24 to 60 hours post-exposure  |
|        |                                                                            | 102                                   | 2/3       |                                          | Dogs died 36 and 84 hours post-exposure |
|        |                                                                            | 125                                   | 6/12      |                                          | Dogs died 12 to 96 hours post-exposure  |
|        |                                                                            | 233                                   | 3/3       |                                          | Dogs died 10 to 24 hours post-exposure  |
| 6      | 30 minutes                                                                 | 11.5                                  | 0/1       | 48                                       | -                                       |
|        |                                                                            | 24.5                                  | 0/4       |                                          | -                                       |
|        |                                                                            | 30.6                                  | 0/2       |                                          | -                                       |
|        |                                                                            | 41.5                                  | 0/2       |                                          | -                                       |
|        |                                                                            | 48                                    | 2/3       |                                          | Dogs died 14 and 44 hours post-exposure |
|        |                                                                            | 58.6                                  | 4/4       |                                          | Dogs died 24 to 84 hours post-exposure  |
| 7      | 60 minutes                                                                 | 5.8                                   | 0/2       | 25.7                                     | -                                       |
|        |                                                                            | 8                                     | 0/5       |                                          | -                                       |
|        |                                                                            | 25                                    | 5/9       |                                          | Dogs died 18 to 56 hours post-exposure  |
|        |                                                                            | 35                                    | 5/9       |                                          | Dogs died 4 to 36 hours post-exposure   |
|        |                                                                            | 43                                    | 5/7       |                                          | Dogs died 17 to 20 hours post-exposure  |
|        |                                                                            | 53                                    | 1/1       |                                          | Dog died 12 hours post-exposure         |
| 8      | 120 minutes                                                                | 4.8                                   | 0/4       | 11.8                                     | -                                       |
|        |                                                                            | 12.5                                  | 2/3       |                                          | Dogs died 47 and 72 hours post-exposure |
|        |                                                                            | 17.9                                  | 4/6       |                                          | Dogs died 12 to 24 hours post-exposure  |
|        |                                                                            | 24.5                                  | 4/5       |                                          | Dogs died 24 to 84 hours post-exposure  |
|        |                                                                            | 34.5                                  | 3/3       |                                          | Dogs died 12 to 29 hours post-exposure  |
| 9      | 240 minutes                                                                | 2.1                                   | 0/3       | 6.6                                      | -                                       |
|        |                                                                            | 6.2                                   | 5/9       |                                          | Dogs died 16 to 76 hours post-exposure  |
|        |                                                                            | 10                                    | 10/17     |                                          | Dogs died 2 to 78 hours post-exposure   |
|        |                                                                            | 16.9                                  | 2/2       |                                          | Dogs died 48 and 37 hours post-exposure |

Harrison et al.(1946) exposed dogs to 50 mg/m<sup>3</sup> lewisite for 30 minutes (8 dogs), 61 mg/m<sup>3</sup>
for 30-minutes (9 dogs), or 121 mg/m<sup>3</sup> for 10 minutes(5 dogs). Clinical signs included vomiting,
urination, defecation, salivation, and respiratory distress; 80% of the dogs died 3 to 48 hours after
exposure. No other information was available.

5 A dermal  $LD_{50}$  of 15 mg/kg (Cameron et al., 1946) and subcutaneous  $LD_{50}$  of 2 mg/kg 6 (Cameron et al., 1946) were reported for dogs.

#### 7 **3.1.4. Rabbits**

- 8 A 7.5-minute  $LC_{50}$  of 160 mg/m<sup>3</sup> and a 60-minute  $LC_{50}$  of 25 mg/m<sup>3</sup> were reported for 9 rabbits (Gates et al., 1946).
- 10 A dermal  $LD_{50}$  of 6 mg/kg (Cameron et al., 1946) and intravenous  $LD_{50}$  of 0.5 mg/kg 11 (Cameron et al., 1946) were reported for rabbits.
- 12 **3.1.5. Guinea Pigs**
- 13 A 9-minute  $LC_{50}$  of 111 mg/m<sup>3</sup> and a 60-minute  $LC_{50}$  of 8 mg/m<sup>3</sup> were reported for guinea 14 pigs (Gates et al., 1946).
- 15 A dermal  $LD_{50}$  of 12 mg/kg (Cameron et al., 1946) and subcutaneous  $LD_{50}$  of 1 mg/kg 16 (Cameron et al., 1946) were reported for guinea pigs.

#### 17 **3.1.6. Goats**

- 18 A 100-minute  $LC_{50}$  of 12.5 mg/m<sup>3</sup> was reported for goats (Gates et al., 1946).
- 19 A dermal  $LD_{50}$  of 15 mg/kg was reported for goats (Cameron et al., 1946).
- 21 **3.2. Nonlethal Toxicity**

#### 22 **3.2.1. Rats**

20

No treatment-related deaths were noted in rats exposed to 6000 or 12,000 CAIS waste stream containing chloroform (vehicle) and *t*-butanol (vehicle) and lewisite. The concentration of lewisite in these test atmospheres was 0.17 mg/m<sup>3</sup> for the 6000 ppm group, and 0.96 mg/m<sup>3</sup> for the 12,000 ppm group. This study is discussed in more detail in Section 3.1.1.

#### 27 **3.2.2. Dogs**

Eye lesions, but no deaths, were reported in dogs exposed to 20 mg/m<sup>3</sup> lewisite for 30 minutes (Gates et al., 1946).

## 3031 3.2.3. Rabbits

Eye lesions, but no deaths, were reported in rabbits exposed to 1 mg/m<sup>3</sup> lewisite for 30 minutes (Gates et al., 1946).

#### 1

## 2 **3.2.4. Pigs**

Lindsay et al. (2004) dermally exposed three large white pigs to 0.3 mg/cm<sup>2</sup> lewisite. While 3 under anaesthesia, an area of dorsal skin (35 cm x 25 cm) was shaved. Exposures were then 4 conducted using inverted glass chambers; lewisite (in hexane) was pipetted onto 10 cm<sup>2</sup> glass-fiber 5 discs fitted tightly in the roof of each circular, glass chamber. The heat from the animals 6 vaporized the lewisite so that the skin was exposed to vapor, but not lewisite liquid. The animals 7 were monitored in their pens for 24 hours and were then scarificed. Full skin thickness samples 8 from control (non-exposed) and lewisite-treated skin were excised to examine the degradative 9 processes in connective tissue components of skin, especially glycoproteins, using immunostaining 10 and gel electrophoresis. There was no evidence of cross linking of laminin or of type III or IV 11 collagen in lewisite-treated pigs. There was evidence of degradation of laminin and type IV 12 collagen only. 13

## 14 **3.3. Developmental/Reproductive Effects**

Hackett et al. (1987) administered lewisite to CD rats and New Zealand white rabbits by 15 gastric intubation. Rats were dosed daily from days 6 through 15 of gestation with 0, 0.5, 1.0, 2.0, 16 or 2.5 mg/kg lewisite in a range-finding study and with 0, 0.5, 1.0, and 1.5 mg/kg in the teratology 17 study. Rabbits were dosed from gestation days 6 through 19 with 0, 0.5, 1.0, 1.5, and 2.0 mg/kg in 18 a range-finding study and 0, 0.07, 0.2, and 0.6 mg/kg in the teratology study. In rats, no maternal 19 of fetal effects were noted at 1.5 mg/kg. At 2.0 mg/kg, maternal mortality (10%), decreased 20 maternal and fetal body weight, and decreased numbers of viable fetuses were noted. In rabbits, 21 maternal mortality was noted and ranged from 13% in the 0.07 mg/kg group to 100% in the 2.0 22 mg/kg group. This mortality rate limited the sample size and made identification of other potential 23 fetal or maternal effects difficult. However, at 0.07 mg/kg, only maternal mortality was noted, and 24 at 0.6 mg/kg (highest teratology study dose) effects included 86% maternal mortality, decreased 25 maternal body weight gain, an increased incidence of fetal stunting, and a tendency toward 26 decreased fetal body weight (Hackett et al., 1987). 27

In a 42-week, two-generation reproductive study in rats, parental males and females were 28 administered lewisite in sesame oil by gastric intubation at concentrations of 0, 0.10, 0.25, or 0.60 29 mg/kg/day, 5 days/week prior to mating, during mating, and after mating until the birth of 30 31 offspring. Dams continued to receive lewisite during lactation. After weaning, male and female offspring were selected to continue on the study and similarly received lewisite. There were no 32 treatment-related effects on reproductive performance, fertility, or reproductive organ weights of 33 male or female rats through two consecutive generations. There were no treatment-related effects 34 35 in offspring (Sasser et al., 1989).

## 36 **3.4. Genotoxicity**

<sup>37</sup> Lewisite did not induce mutations in *Salmonella typhimurium* strains TA97, TA98, TA100 <sup>38</sup> or TA102 with or without metabolic activation up to concentrations limited by toxicity (1.0 <sup>39</sup>  $\mu$ g/plate) (Stewart et al., 1989). Lewisite was negative for mutation at the HGPRT locus in <sup>40</sup> Chinese hamster ovary (CHO) cells at concentrations ranging from 0.12 to 2.0  $\mu$ M (Jostes et al. <sup>41</sup> 1989). However, lewisite did induce chromosomal aberrations in CHO cells at concentrations of <sup>42</sup> 0.50, 0.75, and 1.0  $\mu$ M (Jostes et al., 1989). Lewisite was negative in the *Drosophilla* 

- melanogaster sex-linked recessive lethal assay (Auerbach and Robson, 1946, 1947) and negative 1
- 2 in a dominant lethal assay in CD rats at concentrations of 0.375, 0.75, or 1.5 mg/kg (Bucci et al., 1993). 3

#### 3.5. Carcinogenicity 4

5 No data were located regarding the carcinogenicity of lewisite in animals.

#### 3.6. Summary 6

- 7 Animal data are limited but suggest that lewisite is highly irritating and corrosive, causing both dermal and ocular lesions by liquid or vapor contact. Inhalation  $LC_{50}$  values were identified 8 in several species, and the weight-of-evidence of these data suggest limited interspecies variability 9
- (C x T is relatively constant across species). There is no evidence that lewisite is a reproductive 10
- or developmental toxicant in rats or rabbit in the absence of maternal toxicity. Genotoxicity assay 11
- results were generally negative, the only positive being in chromosome aberrations in CHO cells. 12
- 13 No information concerning carcinogenicity in animals was located.

| 1  |            | Table 7. Summar            | y of Inhalation Dat                | ta for Animal Sp                  | nal Species Exposed to Lewisite (L) |                          |  |  |
|----|------------|----------------------------|------------------------------------|-----------------------------------|-------------------------------------|--------------------------|--|--|
| 2  | Species    | Exposure<br>duration (min) | Concentration (mg/m <sup>3</sup> ) | C x T<br>(mg·min/m <sup>3</sup> ) | Effect                              | Reference                |  |  |
| 3  |            |                            | Le                                 | thal Effects                      |                                     |                          |  |  |
| 4  | Rat        | 9                          | 166                                | 1494                              | LC <sub>50</sub>                    | Gates et al., 1946       |  |  |
| 5  | Mouse      | 10                         | 190                                | 1900                              | LC <sub>50</sub>                    | Silver and McGrath, 1943 |  |  |
| 6  | Mouse      | 10                         | 200                                | 2000                              | LC <sub>50</sub>                    | Silver and McGrath, 1943 |  |  |
| 7  | Mouse      | 10                         | 240                                | 2400                              | 100% mortality<br>(10/10)           | Silver and McGrath, 1943 |  |  |
| 8  | Guinea pig | 9                          | 111                                | 999                               | LC <sub>50</sub>                    | Gates et al., 1946       |  |  |
| 9  | Guinea pig | 60                         | 8                                  | 480                               | LC <sub>50</sub>                    | Gates et al., 1946       |  |  |
| 10 | Rabbit     | 7.5                        | 160                                | 1200                              | LC <sub>50</sub>                    | Gates et al., 1946       |  |  |
| 11 | Rabbit     | 60                         | 25                                 | 1500                              | LC <sub>50</sub>                    | Gates et al., 1946       |  |  |
| 12 | Dog        | 7.5                        | 176                                | 1320                              | LC <sub>50</sub>                    | Armstrong, 1923          |  |  |
| 13 | Dog        | 15                         | 100                                | 1500                              | LC <sub>50</sub>                    | Armstrong, 1923          |  |  |
| 14 | Dog        | 30                         | 48                                 | 1440                              | LC <sub>50</sub>                    | Armstrong, 1923          |  |  |
| 15 | Dog        | 60                         | 25.4                               | 1542                              | LC <sub>50</sub>                    | Armstrong, 1923          |  |  |
| 16 | Dog        | 120                        | 11.8                               | 1416                              | LC <sub>50</sub>                    | Armstrong, 1923          |  |  |
| 17 | Dog        | 240                        | 6.24                               | 1584                              | LC <sub>50</sub>                    | Armstrong, 1923          |  |  |
| 18 | Goat       | 100                        | 12.5                               | 1250                              | LC <sub>50</sub>                    | Gates et al., 1946       |  |  |
| 19 |            |                            | Non-                               | lethal Effects                    |                                     |                          |  |  |
| 20 | Rabbit     | 30                         | 1                                  | 30                                | Eye lesions, no death               | Gates et al., 1946       |  |  |
| 21 | Dog        | 30                         | 20                                 | 600                               | Eye lesions, no death               | Gates et al., 1946       |  |  |

| 1<br>2 | Table 8. Summa             | rry of Acute Oral, Dermal, | Subcutaneous, and IV Data f<br>Lewisite | for Animal Species Exposed to |
|--------|----------------------------|----------------------------|-----------------------------------------|-------------------------------|
| 3<br>4 | Route of<br>Administration | Species                    | LD <sub>50</sub> (mg/kg)                | Reference                     |
| 5      | Oral                       | Rat                        | 50                                      | U.S. Army, 1974               |
| 6      | Dermal                     | Rat                        | 24                                      | Cameron et al., 1946          |
|        |                            | Guinea Pig                 | 12                                      | Cameron et al., 1946          |
|        |                            | Rabbit 6                   | 6                                       | Cameron et al., 1946          |
|        |                            | Dog                        | 15                                      | Cameron et al., 1946          |
|        |                            | Goat                       | 15                                      | Cameron et al., 1946          |
| 7      | Subcutaneous               | Rat                        | 1                                       | Cameron et al., 1946          |
|        |                            | Guinea Pig                 | 1                                       | Cameron et al., 1946          |
|        |                            | Rabbit                     | 2                                       | Cameron et al., 1946          |
|        |                            | Dog                        | 2                                       | Cameron et al., 1946          |
| 8      | Intravenous                | Rabbit                     | 0.5                                     | Cameron et al., 1946          |

9

#### 10 4. SPECIAL CONSIDERATIONS

#### 4.1. Metabolism and Disposition 11

12 Lewisite is readily absorbed through the mucous membranes, and because of its lipophilicity, is also readily absorbed through the skin (HSDB, 2004). 13

#### 4.2. Mechanism of Toxicity 14

15

Dermal or intravenous exposure to lewisite leads to local skin edema and pulmonary edema 16 due to increased capillary permeability. There is no evidence of edema or capillary permeability 17 in any other part of the body. The increased capillary permeability results in blood plasma loss 18 and leads to sequence of physiological events termed "Lewisite Shock" which is similar to shock 19 observed in severe burn cases. Functional changes in the lungs, kidneys, respiratory tract, 20 cardiovascular, and lymphatic systems may be the result of a disturbance of osmotic equilibrium 21 22 (Goldman and Dacre, 1989).

23

24 The vesicant and other toxicological effects of lewisite are ultimately due to the ability to 25 combine with thiol groups necessary for activity of a number of enzyme systems (Goldman and Dacre, 1989). The interaction with enzyme sulfhydryl groups may lead to inhibition of enzyme 26 function by forming stable cyclic structures with arsenic. This is as a result of the arsenic reacting 27 with the sulfhydryl groups of organic compounds, such as those present in dihydrolipoic acid and 28 in reduced keratin (Young, 1999). Dihydrolipoic acid is a dithiol cofactor in several enzyme 29 systems required for cellular respiration, and lewisite combines with dihydrolipoic acid to form 30 stable six member ring structures. It is these ring structures that inactivate the enzymes. The 31 ultimate result of these thiol interactions is energy depletion which results in cell death (Young, 32 33 1999).

#### 1 **4.3. Structure-Activity Relationships**

2 Toxicological data on arsenic trichloride, lewisite-2 and lewisite-3, co-products

- 3 concurrently formed with lewisite-1, are limited. However, qualitatively, effects are similar to
- 4 those of L-1 (corrosiveness, damage to skin, eyes, and mucous membranes). Quantitatively with
- 5 regard to lethality, arsenic trichloride appears to be approximately 2 to 3 times less toxic than L-1
- $6 \qquad (LCt_{50} \text{ for arsenic trichloride: } 4000\text{-}5000 \text{ mg} \cdot \text{min/m}^3 \text{ ; } LCt_{50} \text{ for L-1:1200-1500 mg} \cdot \text{min/m}^3) \text{ (Flury, the second second$
- 7 1921), and the toxicity of L-2 and L-3 is reportedly comparable to L-1 (Lindberg et al., 1997).
- 8 Silver and McGrath (1943) found no substantial difference in 10-minute  $LC_{50}$  values (190 and 200
- 9  $mg/m^3$ ) for the cis- and trans- isomers of lewisite.

10 Inhalation data for sodium arsenite, a hydrolysis product of lewisite-1, are not available; however, Inns et al. (1988) compared the acute intravenous toxicity of lewisite and sodium 11 arsenite in New Zealand white rabbits. The LD<sub>50</sub> of lewisite was 1.8 mg/kg, and at 5 minutes after 12 injection, rapid panting was noted, followed by prostration and death within 4 hours. By 24-hours 13 after injection, surviving rabbits appeared normal. The LD<sub>50</sub> for sodium arsenite was 7.6 mg/kg, 14 with hypoactivity noted 20 minutes after injection. On the basis of trivalent arsenic content, 15 lewisite was 6.5 times more toxic than the inorganic sodium arsenite, and the clinical signs and 16 times of death and recovery differed between the compounds. Severe pulmonary damage was 17 18 noted (gross and histopathological) in the lewisite-injected animals, but not in the sodium arsenite-19 injected animals. Also, arsenic levels in liver, kidney, brain, stomach, duodenum, spleen, and 20 bladder were much greater in sodium arsenate-treated rabbits than in lewisite-treated rabbits. However, arsenic content in the lungs was similar. These data suggest different mechanisms of 21 22 toxicity for lewisite and inorganic trivalent arsenic, and that arsenite is not an appropriate 23 surrogate for lewisite.

#### 1 **4.4. Other Relevant Information**

#### 2 4.4.1. Species Variability

The selected animal mortality data presented in Table 8 show that the concentration x time products from  $LC_{50}$  data sets are relatively constant across species, except for the two guinea pig data points. This suggests that there is relatively little species variability with respect to lethal response to lewisite inhalation exposure, as would be expected for such a corrosive substance.

#### 7 4.4.2. Concentration-Exposure Duration Relationship

8 The concentration-exposure time relationship for many irritant and systemically-acting

9 vapors and gases has been described by the relationship  $c^n x t = k$ , where the exponent, n, ranges

10 from 0.8 to 3.5 (ten Berge et al., 1986). When dog (the most robust data set)  $LC_{50}$  data (from

Table 8) ranging from 7.5 minutes to 4-hours exposure duration are utilized, an 'n' value of 1.03 is
 derived (Figure 1).





Figure 1. Dog LC<sub>50</sub> data-

### 1 **5. DATA ANALYSIS FOR AEGL-1**

#### 2 5.1. Human Data Relevant to AEGL-1

No human data were relevant for establishing AEGL-1 values for lewisite (L-1), lewisite-2
(L-2), or lewisite-3 (L-3).

5

23

## 6 5.2. Animal Data Relevant to AEGL-1

No animal data were relevant for establishing AEGL-1 values for lewisite (L-1), lewisite-2
(L-2), or lewisite-3 (L-3).

#### 9 **5.3.** Derivation of AEGL-1

Appropriate data were not available for derivation of AEGL-1 values for lewisite-1 (L-1), lewisite-2 (L-2), or lewisite-3 (L-3). Odor cannot be used as a warning for potential exposure. The odor threshold for L-1 is reported to be between 14-23 mg/m<sup>3</sup>, a value above highly irritating concentrations and above proposed AEGL-2 and AEGL-3 values. Therefore, AEGL-1 values are not recommended.

| 15 | TABLE 9. AEGL-1 Values For Lewisite-1 (L-1), Lewisite-2 (L-2), and Lewisite-3 (L-3) |        |        |      |      |      |  |  |  |
|----|-------------------------------------------------------------------------------------|--------|--------|------|------|------|--|--|--|
|    |                                                                                     | 10-min | 30-min | 1-hr | 4-hr | 8-hr |  |  |  |
| 16 | AEGL-1(Nondisabling)                                                                | NR*    | NR     | NR   | NR   | NR   |  |  |  |

<sup>a</sup> NR: Not recommended. Numeric values for AEGL-1 are not recommended because data are not available. The fact
 that AEGL-1 values are not recommended does not imply that concentrations below AEGL-2 are without effect.

## 19 6. DATA ANALYSIS FOR AEGL-2

#### 20 6.1. Human Data Relevant to AEGL-2

21 No human data were available for establishing AEGL-2 values for lewisite (L-1), lewisite-22 (L-2), or lewisite-3 (L-3).

## 24 6.2. Animal Data Relevant to AEGL-2

No animal data were available for establishing AEGL-2 values for lewisite (L-1), lewisite 2 (L-2), or lewisite-3 (L-3).

#### 27 **6.3. Derivation of AEGL-2**

No inhalation data consistent with the definition of AEGL-2 with both concentration and duration parameters were available. Therefore, the AEGL-2 values for lewisite-1, were based upon a 3-fold reduction in the AEGL-3 values for L-1; this is considered an estimate of a threshold for irreversible effects and is considered appropriate given the extremely steep concentrationresponse curve (10-min mouse  $LC_{50} = 200 \text{ mg/m}^3$ , 10-min 100% mortality in mice = 240 mg/m<sup>3</sup>;

no mortality in dogs at 126 mg/m<sup>3</sup> for 7.5-min,  $LC_{50} = 176$  mg/m<sup>3</sup>). Additionally, a modifying 1

factor of 2 was applied to account for the sparse data set for effects defined by AEGL-2. 2

3 Appropriate chemical-specific data were not available for derivation of AEGL-2 values for

lewisite-2 (L-2) or lewisite-3 (L-3). However, L-2 and L-3 exist as a small fraction of total 4

lewisite and have comparatively low volatilites. Because of these chemical characteristics, AEGL-5

6 2 values for L-1 were adopted as AEGL-2 values for the mixture of L-1, L-2, and L-3.

7 The AEGL-2 values for Lewisite are presented in Table 10, and the calculations for these AEGL-2 8 values are presented in Appendix A.

9 10

11 12

| TABLE 10. A    | AEGL-2 Values Fo       | r Lewisite-1 and th    | e Mixture of Lewisite  | e-1, Lewisite-2, an     | d Lewisite-3            |
|----------------|------------------------|------------------------|------------------------|-------------------------|-------------------------|
| Classification | 10-min                 | 30-min                 | 1-hr                   | 4-hr                    | 8-hr                    |
| AEGL-2         | 0.65 mg/m <sup>3</sup> | 0.23 mg/m <sup>3</sup> | 0.12 mg/m <sup>3</sup> | 0.035 mg/m <sup>3</sup> | 0.018 mg/m <sup>3</sup> |

#### 13 7. DATA ANALYSIS FOR AEGL-3

#### 14 7.1. Human Data Relevant to AEGL-3

15 No human data with reported concentration and duration parameters consistent with the definition of AEGL-3 were available. 16

#### 7.2. Animal Data Relevant to AEGL-3 17

18

A 9-min rat  $LC_{50}$  of 166 mg/m<sup>3</sup> was reported by Gates et al. (1946). Gates et al. (1946) 19 also reported a 9-min  $LC_{50}$  of 111 mg/m<sup>3</sup> and a 60-min  $LC_{50}$  of 8 mg/m<sup>3</sup> in guinea pigs; a 7.5-min 20  $LC_{50}$  of 160 mg/m<sup>3</sup> and a 60-min  $LC_{50}$  of 25 mg/m<sup>3</sup> in rabbits; and a 100-min  $LC_{50}$  of 12.5 mg/m<sup>3</sup> 21 22 in goats. Silver and McGrath (1943) reported ten-minute mouse LC<sub>50</sub> values of 190 and 200 mg/m<sup>3</sup> for cis- and trans-isomers of lewisite, respectively. Armstrong (1923) reported the 23 following LC<sub>50</sub> values for dogs: 176 mg/m<sup>3</sup> for 7.5 min, 100 mg/m<sup>3</sup> for 15 min, 48 mg/m<sup>3</sup> for 30 24 min, 25.4 mg/m<sup>3</sup> for 60 min, 11.8 mg/m<sup>3</sup> for 120 min, and 6.24 mg/m<sup>3</sup> for 240 min. The mouse 25 study (Silver and McGrath, 1943) and dog study (Armstrong, 1923) are well-conducted, well-26 27 described studies. The data of Gates et al. (1946) are not well-described.

#### 28 7.3. Derivation of AEGL-3

29 The dog lethality study (Armstrong, 1923) will be used as the basis of AEGL-3 values. Points-of-departure will be the calculated  $LC_{01}$  values: 38.7 mg/m<sup>3</sup> for the 10-minute value, 14.0 30 mg/m<sup>3</sup> for the 30-minute value, 7.4 mg/m<sup>3</sup> for the 1-hr value, 2.1 mg/m<sup>3</sup> for the 4-hour value, and 31 1.1 mg/m<sup>3</sup> for the 8-hr AEGL-3 value. The  $LC_{01}$  values are considered estimates of lethality 32 thresholds. Interspecies and intraspecies uncertainty factors of 3 each will be applied. The 33 34 interspecies uncertainty factor of 3 is supported by the fact that data suggest little species variability with regard to lethality from inhalation exposure to lewisite; c x t values are relatively 35 constant across species, except for the guinea pig, and the interspecies uncertainty factor of 3 36 encompasses the 2- to 3-fold difference in sensitivity between guinea pigs and rats, mice, rabbits, 37

dogs, and goats. The intraspecies uncertainty factor of 3 is supported by the steep concentration-1

response curve with regard to lethality, which implies limited intraspecies variation (10-min mouse 2

 $LC_{50} = 200 \text{ mg/m}^3$ , 10-min 100% mortality in mice = 240 mg/m<sup>3</sup>; no mortality in dogs at 126 3

mg/m<sup>3</sup> for 7.5-min,  $LC_{50} = 176 \text{ mg/m}^3$ ). Thus, the total uncertainty factor is 10. 4

Appropriate chemical-specific data were not available for derivation of AEGL-3 values for 5 lewisite-2 (L-2) or lewisite-3 (L-3). However, L-2 and L-3 exist as a small fraction of total 6 lewisite and have comparatively low volatilites. Because of these chemical characteristics, AEGL-7 3 values for L-1 will be adopted as AEGL-3 values for the mixture of L-1, L-2, and L-3. The 8 AEGL-3 values for Lewisite are presented in Table 11, and the calculations for these AEGL-3 9 10 values are presented in Appendix A.

| 11 | TABLE 11. AE   | GL-3 Values For L    | ewisite-1 (L-1) and  | the Mixture of Lewi   | site-1, Lewisite-2,    | and Lewisite-3         |
|----|----------------|----------------------|----------------------|-----------------------|------------------------|------------------------|
| 12 | Classification | 10-min               | 30-min               | 1-hr                  | 4-hr                   | 8-hr                   |
| 13 | AEGL-3         | $3.9 \text{ mg/m}^3$ | $1.4 \text{ mg/m}^3$ | $0.74 \text{ mg/m}^3$ | 0.21 mg/m <sup>3</sup> | 0.11 mg/m <sup>3</sup> |

14

#### 15 8. SUMMARY OF AEGLs

#### 8.1. AEGL Values and Toxicity Endpoints 16

A summary of the AEGL values for lewisite compounds is presented in Table 12. Data 17 18 were insufficient for derivation of AEGL-1 values for lewisite compounds. AEGL-2 values are based on a 3-fold reduction in AEGL-3 values, and AEGL-3 values are based on lethality data in 19 20 dogs.

| 21       |                      | TABLE 12.              | Summary/Relation       | onship of AEGL V       | alues                   |                         |
|----------|----------------------|------------------------|------------------------|------------------------|-------------------------|-------------------------|
| 22       | Classification       | 10-min                 | 30-min                 | 1-hr                   | 4-hr                    | 8-hr                    |
| 23<br>24 | AEGL-1(Nondisabling) | NR                     | NR                     | NR                     | NR                      | NR                      |
| 25       | AEGL-2 (Disabling)   | 0.65 mg/m <sup>3</sup> | 0.23 mg/m <sup>3</sup> | 0.12 mg/m <sup>3</sup> | 0.035 mg/m <sup>3</sup> | 0.018 mg/m <sup>3</sup> |
| 26       | AEGL-3 (Lethal)      | 3.9 mg/m <sup>3</sup>  | 1.4 mg/m <sup>3</sup>  | 0.74 mg/m <sup>3</sup> | 0.21 mg/m <sup>3</sup>  | 0.11 mg/m <sup>3</sup>  |

27 NR: Not recommended. Absence of an AEGL-1 does not imply that exposure below the AEGL-2 is without adverse 28 effects.

29

#### 8.2. Comparisons with Other Standards and Guidelines 30

31

No other extant standards were located for lewisite-1, lewisite-2, or lewisite-3.

#### 1 8.3. Data Adequacy and Research Needs

Human data were not sufficient for deriving AEGL values. Most animal studies are dated; however, mouse and dog lethality studies are well conducted and are not inconsistent with the limited lethality data in other species. Data were available only for lewisite-1 (L-1); however, given the low volatility and small volume of lewisite-2 and lewisite-3 in total lewisite, AEGL-

6 values derived for lewisite-1 should be protective.

7 8

#### 1 9. REFERENCES

- 2 Because of the nature of the chemicals under review, military literature is a major source of the relevant
- 3 toxicity data.. Consequently, much of the data sources possess "limited distribution", which is a separate
- 4 issue from "classification". For various reasons, sources may possess a restricted distribution because
- 5 of treaty restrictions on data access with allies, concerns regarding distribution of engineering
- 6 information characterizing agent dissemination or generation in other sections of the same document,
- 7 and related issues. To ensure public access to pertinent toxicity data originating from ''limited
- 8 distribution'' materials, pertinent data from those sources have been incorporated into the technical
- 9 support document.
- 10 Armstrong, G.C. 1923. The toxicity of M-1 by inhalation for dogs. Chapter II, In: The toxicity,
- 11 pathology, chemistry, mode of action, penetration, and treatment for M-1 and its mixtures with
- 12 arsenic trichloride. Part 1.Edgewood Arsenal, Aberdeen Proving Ground, MD. August 13, 1923.
- 13 ADB954935. Unclassified Report/ Limited Distribution.
- Auerbach, C. and Robson, J.M., letter to the Editor. 1946. Chemical production of munitions.
- 15 Nature. 157: 302.

22

- Auerbach, C. and Robson, J.M. 1947. Tests of chemical substances for mutagenic action. Proc.
   R. Soc. Edinburgh. 62B: 284-291.
- Bucci, T.R., Parker, J.C., and Denny, K.H. 1993. Dominant lethal study of lewisite in male rats.
  NCTR Technical Report. Experiment No. 6579.
- Cameron, G.R., Carleton, H.M., and Short, R.D.H. 1946. Pathological changes induced by
  lewisite and allied compounds. J. Pathol. Bacteriol. 58: 411-422.
- Cookson, J., Nottingham, J. 1969. A survey of chemical and biological warfare. Sheed and Ward
   Ltd., London.
- 25 CWS. 1944. Technical Command Chemical Warfare Center, Edgewood Arsenal, MD. Medical
- Division Status Summaries, CWS-FLM-1-4-5, August, 1944. Unclassified Report/Limited
   Distribution. (Cited in Reutter et al., 2003)
- Davis, M.I., Jr. 1943. Clinical and laboratory evidence of the nontoxic effect of lewisite vesicle
  fluid on the skin. Memorandum Report 82, Edgewood Arsenal, MD. (Cited in Goldman and
  Dacre, 1989)
- Eldridge, W.A. 1923. Blistering concentrations of M-1 vapors for exposures from five minutes to three hours. Chapter IV, In: The toxicity, pathology, chemistry, mode of action, penetration, and treatment for M-1 and its mixtures with arsenic trichloride. Part 1.Edgewood Arsenal, Aberdeen Proving Ground, MD. August 13, 1923. ADB954935. Unclassified Report/Limited Distribution.
- Flury, F. 1921. Uber kampfgasvergiftungen. IX. Lokal reizende arsenverbindungen. Zeichschrift
   fur die Gesomte Experimentelle Medizin 13: 527-528.

- 1 Gates, M., Williams, J.W., and Zapp, J.A. 1946. Arsenicals (Chapter 7). In: NDRC (National
- 2 Defense Research Committee). Chemical warfare agents and related chemical problems. Volume I,
- 3 Parts I-VI. Summary Technical Report of Division 9, NRDC. Office of Scientific Research and
- 4 Development, National Defense Research Committee. U.S. Department of Commerce National
- 5 Technical Information Service. PB158507 and PB158508.
- Goldman, M. and Dacre, J.C. 1989. Lewisite: Its chemistry, toxicology, and biological effects.
  Rev. Environ. Contam. Toxicol. 110: 76-115.
- 8 Hackett, P.L., Sasser, L.B., Rommereim, R.L., Cusing, J.A., Buschbom, R.L., and Kalkwarf, D.R.
- 9 1987. Teratology studies of lewisite and sulfur mustard agents.: Effects of lewisite in rats and
- 10 rabbits. Final Report. AD A198423. Pacific Northwest Laboratory, Richland, WA, for the U.S.
- 11 Army Medical Research and Development Command, Fort Detrick, MD.
- 12 Harrison, H.E., Ordway, H.K., Durlacher, S.H., Albrink, W.S., and Bunting, H. 1946. Poisoning
- 13 from inhalation of vapors of lewisite and phenyldichloroarsine; its pathology in the dog and
- 14 treatment with 2,3-dimercaptopropanol (BAL). J Pharmacol. Exp. Therap. 87:76-80.
- 15 HSDB (Hazardous Substances Data Bank). 2004. Lewisite. National Library of Medicine.
- 16 Retrived online March 15, 2004. National Institutes of Health.
- Inns, R.H., Bright, J.E., and Marrs, T.C. 1988. Comparative acute systemic toxicity of sodium
  arsenite and dichloro(2-chlorovinyl)arsine in rabbits. Toxicol. 51: 213-222.
- 19 Jostes, R.F, Sasser, L.B., and Rausch, R.J. 1989. Toxicology studies on lewisite and sulfur
- 20 mustard agents: Genetic toxicity of lewisite in Chinese hamster ovary cells. Final Report. PNL-
- 21 6922. Pacific Northwest Laboratory, Richland, WA, for the U.S. Army Medical Research and
- 22 Development Command, Fort Detrick, MD.
- Krause, H., and Grussendorf, 1978. Syntopy of Bowen's disease and lewisite scar. Haurarzt. 29:
  490-493.
- Lindberg, G., Runn, P, Winter, S., and Fallman, A. 1997. Basic information on lewisite- a chemical warfare agent with effects similar to mustard gas. Defense Research Establishment, Division of NBC Defense. S. 001.82 UMEA. Sweden
- 27 Division of NBC Defense, S-901 82 UMEA, Sweden.
- Lindsay, C.D., Hambrook, J.L., Brown, R.F., Platt, J.C., Knoght, R., and Rice, P. 2004.
- Examination of changes in connective tissue macromolecular components of large white pig skin following application of lewisite vapor. J. Appl. Toxicol. 24: 37-46.
- 31 Munro, N.B., Talmage, S.S., Griffun, G.D., Waters, L.C., Watson, A.P., King, J.F., and Hauschild,
- 32 V. 1999. The sources, fate, and toxicity of chemical warfare agent degradation products.
- 33 Environ. Health. Perspect. 107: 933-974.
- 34 NDRC (National Defense Research Committee). 1944. (Geiling, E.M.K., Cannan, R.K., and
- Bloom, W.), Toxicity of chemical warfare agents. NDRC-IMPR-9-4-1-17. June, 1944. (Cited in
- 36 Reutter et al., 2003) Unclassified Report/ Limited Distribution.

- 1 NDRC (National Defense Research Committee). 1946. Chemical warfare agents and related
- 2 chemical problems. Volume I, Parts I-VI. Summary Technical Report of Division 9, NRDC.
- 3 Office of Scientific Research and Development, National Defense Research Committee. U.S.
- 4 Department of Commerce National Technical Information Service. PB158507 and PB158508.
- 5 Olajos, E.J., Morgan, E.W., Renne, R.A., Salem, H., McVeety, B., Johnson, R., and Phelps, R.L.
- 6 1998. Acute inhalation toxicity of neutralized chemical agent identification sets (CAIS)
- 7 containing agent in chloroform. J. Appl. Toxicol. 18: 363-371.
- 8 Ottinger, R.S., Blumenthal, J.L., Dal Porto, D.F., Gruber, G.I., Santy, M.J., and Shih, C.C. 1973.
- 9 Recommended methods of reduction, neutralization, recovery, or disposal of hazardous wastes.
- 10 Volume VII. Propellants, explosives, chemical warfare. Report EPA-670/2-73-052-8. U.S.
- 11 Environmental Protection Agency. Washington, DC. (AD 419921). (Cited in Goldman and
- 12 Dacre, 1989)
- Prentiss, A.M. 1937. Chemicals in war: A treatise on chemical warfare. McGraw-Hill Book
  Company, Inc. New York. Vesicant Agents. Chapter 9. pp. 177-300.
- 15 Reutter, S.A., Sommerville, D.R., and Miller, L.L., Jr. 2003. Review and recommendations for
- 16 human toxicity estimates for FM 3-11.9. Edgewood Chemical Biological Center, U.S. Army
- 17 Soldier and Biological Chemical Command. ECBC-TR-349, September, 2003. Unclassified
- 18 Report/ Limited Distribution.
- 19 Sasser, L.B., Miller, R.A., Kalkwarf, D.R., Buschbom, R.L., and Cusing, J.A. 1989. Toxicology
- 20 studies on lewisite and sulfur mustard agents.:Two-generation reproduction study of lewisite in
- 21 rats. Final Report. PNL-6978. Pacific Northwest Laboratory, Richland, WA, for the U.S. Army
- 22 Medical Research and Development Command, Fort Detrick, MD.
- 23 Silver, S.D. and McGrath, F.P. 1943. Lewisite (M-1): The stereoisomers. Investigation of
- discrepancies between nominal and analytical concentrations; redtermination of  $LC_{50}$  for mice.
- Chemical Warfare Serice, January 29, 1943. AD-B960457L. Unclassified Report/Limited
   Distribution
- 26 Distribution.
- 27 Stewart, D.L., Sass, E.J., Fritz, L.K., and Sasser, L.B. 1989. Toxicology studies on lewisite and
- 28 sulfur mustard agents: Mutagenicity of lewisite in the Salmonella histidine reversion assay. Final
- 29 Report. PNL-6972. Pacific Northwest Laboratory, Richland, WA, for the U.S. Army Medical
- 30 Research and Development Command, Fort Detrick, MD.
- ten Berge, W.F., Zwart, A. and Appelman, L.M. 1986. Concentration-time mortality response
   relationship of irritant and systemically acting vapours and gases. J. Hazardous Materials 13: 301 309.
- Trammel, G.L. 1992. Toxicodynamics of organoarsenical chemical warfare agents. In: Somani,
   S.M., Ed. Chemical Warfare Agents. Academic Press, Inc.: New York, pp. 255-270.
- USACHPPM (U.S. Army Center for Health Promotion and Preventive Medicine). 1996. Detailed
   and General Facts About Chemical Agents TG 218. USACHPPM, Aberdeen Proving Ground,
- 38 MD. USACHPPM TG No. 218. October 1996.

- 1 U.S. Army. 1974. Chemical agent data sheets. Volume 1, Report EO-SR-74001, Development
- and Engineering Directorate, Edgewood Arsenal, MD. pp. 65-72 (ADB028222L). Limited
- 3 Distribution report.
- 4 Wada, S., Nishimoto, Y., Miyanishi, S., Katsuta, S., Nagai, M., Tokuoka, S., Umisa, H., and
- 5 Yamada, A. 1962. Review of Okumo-Jima poison gas factory regarding occupational
- 6 environment. Hiroshima J. Med. Sci. 11: 75-80.
- 7 Yamakido, M., Nishimoto, Y., Shigenobu, T., Onari, K., Satoh, C., Goriki, K., and Fugita, M.
- 8 1985. Study of the genetic effects of sulfur mustard gas on former workers on Okuno-jima poison
- 9 gas factory and their offspring. Hiroshima J. Med. Sci. 24: 311-322.
- 10 Young, R.A. 1999. Health Risk Assessment for Lewisite. In: Health Risk Assessments for Oral
- Exposure to Six Chemical-Warfare Agents. National Research Council. National Academy Press,
   Washington, DC. Appendix F.
- 13

1

APPENDIX A: Derivation of AEGL Values for Lewisite Compounds

1

#### **Derivation of AEGL-1 for Lewisite Compounds**

#### 2 **LEWISITE-1 (L-1) (2-chlorovinyldichloroarsine)**:

Data were insufficient for derivation of AEGL-1 values for L-1. AEGL-1 values for L-1
are not recommended.

#### 5 <u>LEWISITE-2 (L-2) (*bis*-(2-chlorovinyl)chloroarsine)</u>

Data were insufficient for derivation of AEGL-1 values for L-2. AEGL-1 values for L-2
 are not recommended.

8

#### 9 **LEWISITE-3** (L-3) (*tris-*(2-chlorovinyl)arsine)

Data were insufficient for derivation of AEGL-1 values for L-3. AEGL-1 values for L-3
 are not recommended.

1

#### **Derivation of AEGL-2 for Lewisite Compounds**

- 2 Key study: Armstrong, 1923
- 3 Toxicity endpoint: <sup>1</sup>/<sub>3</sub> of the AEGL-3 values
- 4 Modifying Factor: 2: Sparse data set for AEGL-2 effects

5 Appropriate chemical-specific data were not available for derivation of AEGL-2 values for

- 6 lewisite-2 (L-2) or lewisite-3 (L-3). However, L-2 and L-3 exist as a small fraction of total
- 7 lewisite (7 to 10% for L-2 and 4 to 12% for L-3) and have comparatively low volatilities.
- 8 Because of these chemical characteristics, AEGL-2 values for L-1 will also be adopted as AEGL-2
- 9 values for the mixture of L-1, L-2, and L-3.

| 10 | <u>10-min AEGL-2</u> | 10-min AEGL-2 = $3.9 \div 3 \div 2 = 0.65 \text{ mg/m}^3$ |
|----|----------------------|-----------------------------------------------------------|
| 11 | <u>30-min AEGL-2</u> | 30-min AEGL-2 = $1.4 \div 3 \div 2 = 0.23 \text{ mg/m}^3$ |
| 12 | 1-hr AEGL-2          | 1-hr AEGL-2 = $0.74 \div 3 \div 2 = 0.12 \text{ mg/m}^3$  |
| 13 | 4-hr AEGL-2          | 4-hr AEGL-2 = $0.21 \div 3 \div 2 = 0.035 \text{ mg/m}^3$ |
| 14 | <u>8-hr AEGL-2</u>   | 8-hr AEGL-2 = $0.11 \div 3 \div 2 = 0.018$ ppm            |

15

16

17

1

## **Derivation of AEGL-3 for Lewisite Compounds**

| 2                          | Key study:                                                                                                  | Armstrong, 1                                                           | 923                                                                                                                                                                                                                                                                      |
|----------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                          | Toxicity endpoint:                                                                                          | Calculated LO                                                          | $C_{01}$ values (Estimated lethality thresholds)                                                                                                                                                                                                                         |
| 4                          |                                                                                                             | 10-min:                                                                | 38.7 mg/m <sup>3</sup>                                                                                                                                                                                                                                                   |
| 5                          |                                                                                                             | 30-min:                                                                | $14.0 \text{ mg/m}^3$                                                                                                                                                                                                                                                    |
| 6                          |                                                                                                             | 1-hr:                                                                  | $7.4 \text{ mg/m}^3$                                                                                                                                                                                                                                                     |
| 7                          |                                                                                                             | 4-hr:                                                                  | $2.1 \text{ mg/m}^3$                                                                                                                                                                                                                                                     |
| 8                          |                                                                                                             | 8-hr:                                                                  | $1.1 \text{ mg/m}^3$                                                                                                                                                                                                                                                     |
| 9                          | Uncertainty factors:                                                                                        | 3 for interspe                                                         | cies variability                                                                                                                                                                                                                                                         |
| 10                         | -                                                                                                           | 3 for intraspe                                                         | ecies variability                                                                                                                                                                                                                                                        |
| 11<br>12<br>13<br>14<br>15 | Appropriate chemica<br>2) or Lewisite-3 (L-3<br>and 4 to 12% for L-3<br>characteristics, AEG<br>2, and L-3. | l-specific data<br>). However, L<br>) and have com<br>L-3 values for I | were not available for derivation of AEGL-3 values for lewisite-2 (L-2 and L-3 exist as a small fraction of total lewisite (7 to 10% for L-2 paratively low volatilities. Because of these chemical L-1 will also be adopted as AEGL-3 values for the mixture of L-1, L- |
| 16<br>17                   | Calculations:                                                                                               |                                                                        |                                                                                                                                                                                                                                                                          |
| 17                         | 10-minute AEGL-3                                                                                            | 38.7 mg/m <sup>3</sup> $\div$                                          | $10 = 0.39 \text{ mg/m}^3$                                                                                                                                                                                                                                               |
| 19                         | 30-minute AEGL-3                                                                                            | 14.0 mg/m <sup>3</sup> $\div$                                          | $10 = 1.4 \text{ mg/m}^3$                                                                                                                                                                                                                                                |
| 20                         | 1-hour AEGL-3                                                                                               | 7.4 mg/m <sup>3</sup> ÷ 1                                              | $10 = 0.74 \text{ mg/m}^3$                                                                                                                                                                                                                                               |
| 21                         | 4-hour AEGL-3                                                                                               | $2.1 \text{ mg/m}^3 \div 1$                                            | $10 = 0.21 \text{ mg/m}^3$                                                                                                                                                                                                                                               |
| 22                         | 8-hour AEGL-3                                                                                               | 1.1 mg/m <sup>3</sup> $\div$ 1                                         | $10 = 0.11 \text{ mg/m}^3$                                                                                                                                                                                                                                               |

1

## **APPENDIX B: Derivation Summary Tables for Lewisite Compounds**

1

| 10 minute                                      | 30 minute                | 1 hour                     | 4 hour               | 8 hour           |
|------------------------------------------------|--------------------------|----------------------------|----------------------|------------------|
| Not<br>Recommended                             | Not<br>Recommended       | Not<br>Recommended         | Not<br>Recommended   | Not<br>Recommen  |
| Key Reference: NA                              |                          |                            |                      |                  |
| Test Species/Strain/N                          | lumber: NA               |                            |                      |                  |
| Exposure Route/Cond                            | centrations/Durations: N | ЛА                         |                      |                  |
| Effects: NA                                    |                          |                            |                      |                  |
| Endpoint/Concentrati                           | on/Rationale: NA         |                            |                      |                  |
| Uncertainty Factors/F<br>Total uncertainty fac | Rationale: NA<br>ctor:   |                            |                      |                  |
| Modifying Factor: NA                           | A                        |                            |                      |                  |
| Animal to Human Do                             | osimetric Adjustment: N  | IA                         |                      |                  |
| Time Scaling: NA                               |                          |                            |                      |                  |
| Data Quality and Res                           | earch Needs: Data were   | e insufficient for derivat | ion of AEGL-1 values | for Lewisite-1 ( |

19

Ľ,

| 10 minute                                                                     | 30 minute                                                                   | 1 hour                                                                                          | 4 hour                                                                                                   | 8 hour                                                     |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 0.65 mg/m <sup>3</sup>                                                        | 0.23 mg/m <sup>3</sup>                                                      | <b>0.12 mg/m<sup>3</sup></b>                                                                    | 0.035 mg/m <sup>3</sup>                                                                                  | 0.018 mg/m <sup>3</sup>                                    |
| Key Reference: Arms<br>mode of action, penetra<br>Ground, MD. August 1        | trong, G.C. 1923. The titon, and treatment for M 3, 1923. ADB954935.        | toxicity of M-1 by inhalation<br>I-1 and its mixtures with arse<br>Unclassified Report/ Limited | for dogs. Chapter II, In: The<br>enic trichloride. Part 1.Edgev<br>Distribution.                         | e toxicity, pathology, chemi<br>wood Arsenal, Aberdeen Pro |
| Test Species/Strain/N                                                         | Jumber: See AEGL-3                                                          | Derivation summary table                                                                        | 2                                                                                                        |                                                            |
| Exposure Route/Con                                                            | centrations/Durations:                                                      | See AEGL-3 Derivation                                                                           | summary table                                                                                            |                                                            |
| Effects: See AEGL-3                                                           | 3 Derivation summary                                                        | table                                                                                           |                                                                                                          |                                                            |
| Endpoint/Concentrat<br>Approach supported<br>mice = 240 mg/m <sup>3</sup> ; n | ion/Rationale: 3-fold r<br>by steep concentratior<br>o mortality in dogs at | eduction of AEGL-3 value<br>n-response curve (10-min r<br>126 mg/m <sup>3</sup> for 7.5-min, L0 | es. Considered threshold ;<br>nouse $LC_{50} = 200 \text{ mg/m}^3$ ,<br>$C_{50} = 176 \text{ mg/m}^3$ ). | for the inability to escape<br>10-min 100% mortality i     |
| Uncertainty Factors/I<br>Total uncertainty fa<br>Interspecies<br>Intraspecies | Rationale: See AEGL-<br>ctor:<br>:                                          | 3 Derivation summary tab                                                                        | le                                                                                                       |                                                            |
| Modifying Factor: 2-                                                          | Sparse data base for e                                                      | effects defined by AEGL-2                                                                       | 2                                                                                                        |                                                            |
|                                                                               |                                                                             |                                                                                                 |                                                                                                          |                                                            |
| Animal to Human Do                                                            | osimetric Adjustment:                                                       | NA                                                                                              |                                                                                                          |                                                            |
| Animal to Human Do<br>Time Scaling: See Al                                    | osimetric Adjustment:<br>EGL-3 Derivation sun                               | NA<br>1mary table.                                                                              |                                                                                                          |                                                            |

| 10 minute                                                                                                                                                                                     | 30 minute                                                                                                                                                                                                      | 1 hour                                                                                                                                                     | 4 hour                                                                                                                                                                        | 8 hour                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| <b>3.9 mg/m<sup>3</sup></b>                                                                                                                                                                   | <b>1.4 mg/m<sup>3</sup></b>                                                                                                                                                                                    | <b>0.74 mg/m<sup>3</sup></b>                                                                                                                               | <b>0.21 mg/m<sup>3</sup></b>                                                                                                                                                  | 0.11 mg/n                                                                                          |
| Key Reference: Armst<br>pathology, chemistry,<br>1.Edgewood Arsenal,<br>Distribution.                                                                                                         | trong, G.C. 1923. Th<br>mode of action, pene<br>Aberdeen Proving Gr                                                                                                                                            | ne toxicity of M-1 by inhal<br>tration, and treatment for 1<br>round, MD. August 13, 19                                                                    | lation for dogs. Chapter<br>M-1 and its mixtures wit<br>923. ADB954935. Unc                                                                                                   | II, In: The toxicity,<br>h arsenic trichloride<br>lassified Report/ Lin                            |
| Test Species/Strain/Nu                                                                                                                                                                        | umber: Dog/ strain no                                                                                                                                                                                          | ot reported/1-17 per group                                                                                                                                 |                                                                                                                                                                               |                                                                                                    |
| Exposure Route/Conc<br>Inhalation/ 126, 176, 2<br>Inhalation/ 68.7, 87.7,<br>Inhalation/ 11.5, 24.5,<br>Inhalation/ 5.8, 8, 25,<br>Inhalation/ 4.8, 12.5, 1<br>Inhalation/ 2.1, 6.2, 10       | entrations/Durations:<br>231, 274, 330 mg/m <sup>3</sup> /<br>96, 102, 125, 233 mg<br>30.6, 41.5, 48, 58.6 n<br>35, 43, 53 mg/m <sup>3</sup> / 1<br>17.9, 24.5, 34.5 mg/m<br>0, 16.9 mg/m <sup>3</sup> / 4 hou | / 7.5 minutes<br>g/m <sup>3</sup> / 15 minutes<br>ng/m <sup>3</sup> / 30 minutes<br>hour<br><sup>3</sup> / 2 hours<br>urs                                  |                                                                                                                                                                               |                                                                                                    |
| Effects:<br>7.5 minute $LC_{50:}$ 176 r<br>15 minute $LC_{50:}$ 100 n<br>30 minute $LC_{50:}$ 48 mg<br>1-hour $LC_{50:}$ 25.7 mg/<br>2-hour $LC_{50:}$ 11.8 mg/<br>4-hour $LC_{50:}$ 6.6 mg/m | ng/m <sup>3</sup><br>ng/m <sup>3</sup><br>g/m <sup>3</sup><br>m <sup>3</sup><br>m <sup>3</sup><br>n <sup>3</sup>                                                                                               |                                                                                                                                                            |                                                                                                                                                                               |                                                                                                    |
| 10 minute $LC_{01:}$ 38.7 r<br>30 minute $LC_{01:}$ 14.0 r<br>1-hour $LC_{01:}$ 7.4 mg/m<br>4-hour $LC_{01:}$ 2.1 mg/m<br>8-hour $LC_{01:}$ 1.1 mg/m                                          | ng/m <sup>3</sup><br>ng/m <sup>3</sup><br>n <sup>3</sup><br>n <sup>3</sup>                                                                                                                                     |                                                                                                                                                            |                                                                                                                                                                               |                                                                                                    |
| Endpoint/Concentration                                                                                                                                                                        | on/Rationale: Calcula                                                                                                                                                                                          | ted LC <sub>01</sub> values/ considere                                                                                                                     | d a threshold for lethalit                                                                                                                                                    | у                                                                                                  |
| Uncertainty Factors/R<br>Total uncertainty fac<br>Interspecies:<br>Intraspecies:                                                                                                              | ationale:<br>tor: 10<br>3- data suggest 1<br>lewisite-1; c x t<br>interspecies unco<br>between guinea<br>3- Steep concent<br>variation (10 mi                                                                  | ittle species variability wit<br>values are relatively consta<br>ertainty factor of 3 encomp<br>pigs and rats, mice, rabbits<br>ration-response curve with | th regard to lethality from<br>ant across species, except<br>passes the 2 to 3-fold dif<br>s, dogs, and goats.<br>h regard to lethality impl<br>$3^{3}$ 10 min 100% mortality | n inhalation exposur<br>t for the guinea pig,<br>ference in sensitivity<br>lies limited intraspect |
|                                                                                                                                                                                               | mortality in dog                                                                                                                                                                                               | s at 126 mg/m <sup>3</sup> for 7.5-mir                                                                                                                     | $LC_{50} = 176 \text{ mg/m}^3$                                                                                                                                                |                                                                                                    |
| Modifying Factor: NA                                                                                                                                                                          | <b>1</b> -                                                                                                                                                                                                     |                                                                                                                                                            |                                                                                                                                                                               |                                                                                                    |
| Animal to Human Dos                                                                                                                                                                           | simetric Adjustment:                                                                                                                                                                                           | NA                                                                                                                                                         |                                                                                                                                                                               |                                                                                                    |
| Time Scaling: Points-                                                                                                                                                                         | of-departure were tim                                                                                                                                                                                          | e-specific LC <sub>01</sub> values                                                                                                                         |                                                                                                                                                                               |                                                                                                    |
| Data Adequacy:<br>Appropriate chemical-<br>(L-3). However, L-2                                                                                                                                | -specific data were no<br>and L-3 exist as a sma                                                                                                                                                               | ot available for derivation of all fraction of total lewisite                                                                                              | of AEGL-3 values for le<br>e (7 to 10% for L-2 and 4                                                                                                                          | wisite-2 (L-2) or lev<br>4 to 12% for L-3) an                                                      |

Appendix C: Category Plot for Lewisite



1