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Abstract

This paper is dedicated to Anatoly Libgober on his 60-th birthday.

1 Introduction

In this paper we give a quantum statistical interpretation for the bracket polynomial state sum

〈K〉 and for the Jones polynomial VK(t).We use this quantum mechanical interpretation to give
a new quantum algorithm for computing the Jones polynomial. This algorithm is useful for its

conceptual simplicity and it applies to all values of the polynomial variable that lie on the unit

circle in the complex plane. Letting C(K) denote the Hilbert space for this model, there is a
natural unitary transformation

U : C(K) −→ C(K)

such that

〈K〉 =< ψ|U |ψ >

where |ψ〉 is a sum over basis states for C(K). The quantum algorithm comes directly from this
formula via the Hadamard Test. We then show that the framework for our quantum model for

the bracket polynomial is a natural setting for Khovanov homology. The Hilbert space C(K) of
our model has basis in one-to-one correspondence with the enhanced states of the bracket state

summmation and is isomorphic with the chain complex for Khovanov homology with coefficients

in the complex numbers. We show that for the Khovanov boundary operator ∂ : C(K) −→ C(K),
we have the relationship ∂U + U∂ = 0. Consequently, the operator U acts on the Khovanov

homology, and we therefore obtain a direct relationship between Khovanov homology and this

quantum algorithm for the Jones polynomial.
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Step #1:
from the 2x2 matrix
to the 4x4 matrix :
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application of on the
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Jones Polynomial
“Trefoil":

Jones Polynomial
“Figure-Eight":

Jones Polynomial
“Borromean rings":
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A is defined as a closed, non-self-intersecting curve
that is embedded in three dimensions.

knot

example: “construction” of the Trefoil knot:

make a
“knot”

fuse the
free ends

make it
“look nice”

start with a rope end up with a Trefoil

J. W. Alexander proved, that any knot can be represented
as a closed braid (polynomial time algorithm)

1 &1 &2
&1
-1 &2

-1

generators of the 3 strand braid group:

radie +%$

It is well known in knot theory, how to obtain the unitary matrix representation
of all generators of a given braid goup (see “Temperley-Lieb algebra” and “path
model representation”). The unitary matrices U and U , corresponding to the

generators and of the 3 strand braid group are shown on the left, where the

variable “ ” is related to the variable “ ” of the Jones polynomial by: .

The unitary matrix representations of and are given by U and U .

The knot or link that was expressed as a product of braid group generators can
therefore also be expressed as a product of the corresponding unitary matrices.

1 2

1 2& &
+

& &
A A

-1 - - -1 1 1

1 2 1 2

Instead of applying the unitary matrix we apply it’s controlled variant .
This matrix is especially suited for NMR quantum computers [4] and other
thermal state expectation value quantum computers: you only have to apply

to the NMR product operator and measure and in order to obtain
the trace of the original matrix .

U, cU

cU I I I
U

1x 1x 1y

.

Independent of the dimension of matrix you only need ONE extra qubit for the
implementation of as compared to the implementation of itself.

U
cU U

The measurement of I I1x 1yand can be accomplished in one single-scan experiment.

All knots and links can be expressed as a product of braid group generators (see
above). Hence the corresponding NMR pulse sequence can also be expressed as
a sequence of NMR pulse sequence blocks, where each block corresponds to the
controlled unitary matrix of one braid group generator.cU .

This modular approach allows for an easy optimization of the NMR pulse
sequences: only a small and limited number of pulse sequence blocks have to
be optimized. .

Comparison of experimental results, theoretical predictions, and simulated ex-
periments, where realisitic inperfections like relaxation, B field inhomogeneity,
and finite length of the pulses are included.

1

.

The Jones Polynomials can be reconstructed out of the NMR experiments by:

For each data point, four single-scan NMR experiments have been performed:
measurement of I I I I1x 1y 1x 1y, measurement of , reference for , and reference for .
If necessary each data point can also be obtained in one single-scan experiment
by measuring amplitude and phase in a referenced setting. .

V (A)=( A ) ( { } A [( A A ) 2])- +tr U - - -
3 ( ) ( ) 2 2 2- -w L I L

L

where: ( ) is the writhe of the knot or link
{ } is determined by the NMR experiments

( ) is the sum of exponents in the braid word
corresponding to the knot or link
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Abstract In this paper, we give a precise and workable definition of a quantum knot
system, the states of which are called quantum knots. This definition can be viewed as
a blueprint for the construction of an actual physical quantum system. Moreover, this
definition of a quantum knot system is intended to represent the “quantum embodi-
ment” of a closed knotted physical piece of rope. A quantum knot, as a state of this
system, represents the state of such a knotted closed piece of rope, i.e., the particular
spatial configuration of the knot tied in the rope. Associated with a quantum knot sys-
tem is a group of unitary transformations, called the ambient group, which represents
all possible ways of moving the rope around (without cutting the rope, and without
letting the rope pass through itself.) Of course, unlike a classical closed piece of rope,
a quantum knot can exhibit non-classical behavior, such as quantum superposition and
quantum entanglement. This raises some interesting and puzzling questions about the
relation between topological and quantum entanglement. The knot type of a quantum
knot is simply the orbit of the quantum knot under the action of the ambient group.
We investigate quantum observables which are invariants of quantum knot type. We
also study the Hamiltonians associated with the generators of the ambient group, and
briefly look at the quantum tunneling of overcrossings into undercrossings. A basic
building block in this paper is a mosaic system which is a formal (rewriting) system of
symbol strings. We conjecture that this formal system fully captures in an axiomatic
way all of the properties of tame knot theory.
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1 Introduction

The objective of this paper is to set the foundation for a research program on quantum
knots.1

For simplicity of exposition, we will throughout this paper frequently use the term
“knot” to mean either a knot or a link.2

In part 1 of this paper, we create a formal system (K, A) consisting of

(1) A graded set K of symbol strings, called knot mosaics, and
(2) A graded subgroup A, called the knot mosaic ambient group, of the group of all

permutations of the set of knot mosaics K.

We conjecture that the formal system (K, A) fully captures the entire structure of
tame knot theory.

Three examples of knot mosaics are given below:

Each of these knot mosaics is a string made up of the following 11 symbols

called mosaic tiles.
An example of an element in the mosaic ambient group A is the mosaic Reidemeister

1 move illustrated below:

1 A PowerPoint presentation of this paper can be found at http://www.csee.umbc.edu/~lomonaco/Lectures.
html.
2 For references on knot theory, see for example [4,10,13,20].

123

Each mosaic is a tensor product of
elementary tiles.
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Quantum knots and mosaics

Here is yet another way of finding quantum knot invariants:

Theorem 3 Let Q
(
K(n), A(n)

)
be a quantum knot system, and let ! be an observable

on the Hilbert space K(n). Let St (!) be the stabilizer subgroup for !, i.e.,

St (!) =
{
U ∈ A(n) : U!U−1 = !

}
.

Then the observable
∑

U∈A(n)/St(!)

U!U−1

is a quantum knot n-invariant, where
∑

U∈A(n)/St(!) U!U−1 denotes a sum over a
complete set of coset representatives for the stabilizer subgroup St (!) of the ambient
group A(n).

Proof The observable
∑

g∈A(n) g!g−1is obviously an quantum knotn-invariant, since

g′
(∑

g∈A(n) g!g−1
)

g′−1 = ∑
g∈A(n) g!g−1 for all g′ ∈ A(n). If we let |St (!)|

denote the order of |St (!)|, and if we let c1, c2, . . . , cp denote a complete set of
coset representatives of the stabilizer subgroup St (!), then

∑p
j=1 cj!c−1

j = 1
|St(!)|∑

g∈A(n) g!g−1 is also a quantum knot invariant. $%

We end this section with an example of a quantum knot invariant:

Example 2 The following observable ! is an example of a quantum knot 4-invariant:

Remark 6 For yet another approach to quantum knot measurement, we refer the reader
to the brief discussion on quantum knot tomography found in item (11) in the conclu-
sion of this paper.

4 Conclusion: Open questions and future directions

There are many possible open questions and future directions for research. We mention
only a few.
(1) What is the exact structure of the ambient group A(n) and its direct limit

A = lim−→ A(n).

Can one write down an explicit presentation for A(n)? for A? The fact that the
ambient group A(n) is generated by involutions suggests that it may be a Coxeter
group. Is it a Coxeter group?

123

This observable is a quantum knot invariant 
for 4x4 tile space. Knots have characteristic 

invariants in nxn tile space. 

Superpositions of combinatorial knot 
configurations are seen as quantum 

states.
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Quantum Mechanics in a Nutshell

1. (measurement free) Physical processes  
are modeled by unitary transformations

 applied to the state vector: |S> -----> U|S> 

0.  A state of a physical system corresponds to a unit 
vector |S> in a complex vector space.

2. If |S> = z  |1> + z  |2> + ... + z   |n>

in a measurement basis {|1>,|2>,...,|n>}, then
measurement of |S> yields |i> with probability

 |z|^2.

U

1 2 n   



|0> |1>
|0>

|0> |1>
|0>

|0>

|1>
-|1>

|0> |1>

|0>

|0>|1>

-|1>

Mach-Zender Interferometer

H = [     ]1 1

1 -1
/Sqrt(2) M = [     ]1

1

0

0

HMH = [     ]1 0

0 -1



U

H|0>

|phi>

Measure

Hadamard Test

|0>

|0> occurs with probability
1/2 + Re[<phi|U|phi>]/2.

H





  

Figure 1 - A knot diagram.

I

II

III

Figure 2 - The Reidemeister Moves.

That is, two knots are regarded as equivalent if one embedding can be ob-
tained from the other through a continuous family of embeddings of circles

4

Reidemeister Moves 
reformulate knot theory in 

terms of graph 
combinatorics.



[16], and Bar-Natan’s emphasis on tangle cobordisms [2]. We use similar considera-

tions in our paper [10].

Two key motivating ideas are involved in finding the Khovanov invariant. First

of all, one would like to categorify a link polynomial such as 〈K〉. There are many
meanings to the term categorify, but here the quest is to find a way to express the link

polynomial as a graded Euler characteristic 〈K〉 = χq〈H(K)〉 for some homology
theory associated with 〈K〉.

The bracket polynomial [7] model for the Jones polynomial [4, 5, 6, 17] is usually

described by the expansion

〈 〉 = A〈 〉 + A−1〈 〉 (4)

and we have

〈K ©〉 = (−A2 − A−2)〈K〉 (5)

〈 〉 = (−A3)〈 〉 (6)

〈 〉 = (−A−3)〈 〉 (7)

Letting c(K) denote the number of crossings in the diagramK, if we replace 〈K〉
by A−c(K)〈K〉, and then replace A by −q−1, the bracket will be rewritten in the fol-
lowing form:

〈 〉 = 〈 〉 − q〈 〉 (8)

with 〈©〉 = (q+q−1). It is useful to use this form of the bracket state sum for the sake
of the grading in the Khovanov homology (to be described below). We shall continue

to refer to the smoothings labeled q (or A−1 in the original bracket formulation) as

B-smoothings. We should further note that we use the well-known convention of en-
hanced states where an enhanced state has a label of 1 or X on each of its component

loops. We then regard the value of the loop q + q−1 as the sum of the value of a circle

labeled with a 1 (the value is q) added to the value of a circle labeled with an X (the

value is q−1).We could have chosen the more neutral labels of +1 and −1 so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ X,

but, since an algebra involving 1 and X naturally appears later, we take this form of

labeling from the beginning.
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The Khovanov Complex



View the previous slide of states of the bracket 
expansion as a CATEGORY.

The cubical shape of this category suggests 
making a homology theory.

In order to make a non-trivial homology theory
we need a functor from this category of states

to a module category. Each state loop will 
map to a module V. Unions of loops will map to 

tenor products of this module.

We will describe how this comes about after 
looking at the bracket polynomial in more detail.

CATEGORIFICATION



Module V

m

The Functor from the cubical category to the module 
category demands multiplication and comultiplication in 

the module.



Let c(K) = number of crossings on link K.

Form A          <K> and replace A by -q    .
-c(K) -2

Then the skein relation for <K> will 
be replaced by:
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Reformulating the Bracket



Use enhanced states by labeling each loop with
 +1 or  -1.

= +

+1 -1

q  +  q
-1



with a 1 (the value is q) added to the value of a circle labeled with anX (the value is q−1).We could have
chosen the more neutral labels of +1 and −1 so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ X,

but, since an algebra involving 1 and X naturally appears later, we take this form of labeling from the

beginning.

To see how the Khovanov grading arises, consider the form of the expansion of this version of the

bracket polynonmial in enhanced states. We have the formula as a sum over enhanced states s :

〈K〉 =
∑

s

(−1)nB(s)qj(s)

where nB(s) is the number of B-type smoothings in s, λ(s) is the number of loops in s labeled 1 minus
the number of loops labeled X, and j(s) = nB(s) + λ(s). This can be rewritten in the following form:

〈K〉 =
∑

i ,j

(−1)iqjdim(Cij)

where we define Cij to be the linear span (over k = Z/2Z as we will work with mod 2 coefficients) of
the set of enhanced states with nB(s) = i and j(s) = j. Then the number of such states is the dimension
dim(Cij).

We would like to have a bigraded complex composed of the Cij with a differential

∂ : Cij −→ Ci+1 j .

The differential should increase the homological grading i by 1 and preserve the quantum grading j. Then
we could write

〈K〉 =
∑

j

qj
∑

i

(−1)idim(Cij) =
∑

j

qjχ(C• j),

where χ(C• j) is the Euler characteristic of the subcomplex C• j for a fixed value of j.

This formula would constitute a categorification of the bracket polynomial. Below, we shall see how the

original Khovanov differential ∂ is uniquely determined by the restriction that j(∂s) = j(s) for each
enhanced state s. Since j is preserved by the differential, these subcomplexes C• j have their own Euler

characteristics and homology. We have

χ(H(C• j)) = χ(C• j)

where H(C• j) denotes the homology of the complex C• j . We can write

〈K〉 =
∑

j

qjχ(H(C• j)).

The last formula expresses the bracket polynomial as a graded Euler characteristic of a homology theory

associated with the enhanced states of the bracket state summation. This is the categorification of the

bracket polynomial. Khovanov proves that this homology theory is an invariant of knots and links (via the

Reidemeister moves of Figure 1), creating a new and stronger invariant than the original Jones polynomial.

6
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Enhanced States

For reasons that will soon become apparent, we 
let -1 be denoted by X and +1 be denoted by 1.

(The module V will be generated by 1 and X.)
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and

j(∂|s〉) = j(|s〉)

for each enhanced state s. In the next section, we shall explain how the boundary operator
is constructed.

2. Lemma. By defining U : C(K) −→ C(K) as in the previous section, via

U |s〉 = (−1)i(s)qj(s)|s〉,

we have the following basic relationship between U and the boundary operator ∂ :

U∂ + ∂U = 0.

Proof. This follows at once from the definition of U and the fact that ∂ preserves j and
increases i to i + 1. //

3. From this Lemma we conclude that the operator U acts on the homology of C(K). We
can regard H(C(K)) = Ker(∂)/Image(∂) as a new Hilbert space on which the unitary
operator U acts. In this way, the Khovanov homology and its relationship with the Jones

polynomial has a natural quantum context.

4. For a fixed value of j,
C•,j = ⊕iCi,j

is a subcomplex of C(K) with the boundary operator ∂. Consequently, we can speak of
the homology H(C•,j). Note that the dimension of Cij is equal to the number of enhanced

states |s〉 with i = i(s) and j = j(s). Consequently, we have

〈K〉 =
∑

s

qj(s)(−1)i(s) =
∑

j

qj
∑

i

(−1)idim(Cij)

=
∑

j

qjχ(C•,j) =
∑

j

qjχ(H(C•,j)).

Here we use the definition of the Euler characteristic of a chain complex

χ(C•,j) =
∑

i

(−1)idim(Cij)

and the fact that the Euler characteristic of the complex is equal to the Euler characteristic

of its homology. The quantum amplitude associated with the operator U is given in terms

of the Euler characteristics of the Khovanov homology of the linkK.

〈K〉 = 〈ψ|U |ψ〉 =
∑

j

qjχ(H(C•,j(K))).

7

Enhanced State Sum Formula for the Bracket



A Quantum Statistical Model for the Bracket 
Polynonmial.

Let C(K) denote a Hilbert space
with basis |s> where s runs over the 

enhanced states of a knot or link diagram K.

One advantage of the expression of the bracket polynomial via enhanced states is that it is

now a sum of monomials. We shall make use of this property throughout the rest of the paper.

3 Quantum Statistics and the Jones Polynomial

We now use the enhanced state summation for the bracket polynomial with variable q to give a
quantum formulation of the state sum. Let q be on the unit circle in the complex plane. (This is
equivalent to letting the original bracket variable A be on the unit circle and equivalent to letting

the Jones polynmial variable t be on the unit circle.) Let C(K) denote the complex vector space
with orthonormal basis {|s〉 }where s runs over the enhanced states of the diagramK. The vector
space C(K) is the (finite dimensional) Hilbert space for our quantum formulation of the Jones

polynomial. While it is customary for a Hilbert space to be written with the letter H, we do not
follow that convention here, due to the fact that we shall soon regard C(K) as a chain complex
and take its homology. One can hardly avoid usingH for homology.

With q on the unit circle, we define a unitary transformation

U : C(K) −→ C(K)

by the formula

U |s〉 = (−1)i(s)qj(s)|s〉

for each enhanced state s. Here i(s) and j(s) are as defined in the previous section of this paper.

Let

|ψ〉 =
∑

s

|s〉.

The state vector |ψ〉 is the sum over the basis states of our Hilbert space C(K). For convenience,
we do not normalize |ψ〉 to length one in the Hilbert space C(K).We then have the

Lemma. The evaluation of the bracket polynomial is given by the following formula

〈K〉 = 〈ψ|U |ψ〉.

Proof.

〈ψ|U |ψ〉 =
∑

s′

∑

s

〈s′|(−1)i(s)qj(s)|s〉 =
∑

s′

∑

s

(−1)i(s)qj(s)〈s′|s〉

=
∑

s

(−1)i(s)qj(s) = 〈K〉,

since

〈s′|s〉 = δ(s, s′)

where δ(s, s′) is the Kronecker delta, equal to 1 when s = s′ and equal to 0 otherwise. //
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q  is chosen on the unit circle in the 
complex plane.

We define a unitary transformation.
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4

This gives a new quantum algorithm for the 
Jones polynomial (via Hadamard Test).



Khovanov Homology - Jones Polynomial as an
Euler Characteristic[16], and Bar-Natan’s emphasis on tangle cobordisms [2]. We use similar considera-

tions in our paper [10].

Two key motivating ideas are involved in finding the Khovanov invariant. First

of all, one would like to categorify a link polynomial such as 〈K〉. There are many
meanings to the term categorify, but here the quest is to find a way to express the link

polynomial as a graded Euler characteristic 〈K〉 = χq〈H(K)〉 for some homology
theory associated with 〈K〉.

The bracket polynomial [7] model for the Jones polynomial [4, 5, 6, 17] is usually

described by the expansion

〈 〉 = A〈 〉 + A−1〈 〉 (4)

and we have

〈K ©〉 = (−A2 − A−2)〈K〉 (5)

〈 〉 = (−A3)〈 〉 (6)

〈 〉 = (−A−3)〈 〉 (7)

Letting c(K) denote the number of crossings in the diagramK, if we replace 〈K〉
by A−c(K)〈K〉, and then replace A by −q−1, the bracket will be rewritten in the fol-
lowing form:

〈 〉 = 〈 〉 − q〈 〉 (8)

with 〈©〉 = (q+q−1). It is useful to use this form of the bracket state sum for the sake
of the grading in the Khovanov homology (to be described below). We shall continue

to refer to the smoothings labeled q (or A−1 in the original bracket formulation) as

B-smoothings. We should further note that we use the well-known convention of en-
hanced states where an enhanced state has a label of 1 or X on each of its component

loops. We then regard the value of the loop q + q−1 as the sum of the value of a circle

labeled with a 1 (the value is q) added to the value of a circle labeled with an X (the

value is q−1).We could have chosen the more neutral labels of +1 and −1 so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ X,

but, since an algebra involving 1 and X naturally appears later, we take this form of

labeling from the beginning.

5

We will formulate Khovanov 
Homology

in the context of our quantum 
statistical model for the bracket 

polynomial.
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The Khovanov Complex



We will construct the differential in this complex first for mod-2 coefficients. The differential is based
on regarding two states as adjacent if one differs from the other by a single smoothing at some site. Thus

if (s, τ) denotes a pair consisting in an enhanced state s and site τ of that state with τ of type A, then
we consider all enhanced states s′ obtained from s by smoothing at τ and relabeling only those loops that
are affected by the resmoothing. Call this set of enhanced states S′[s, τ ]. Then we shall define the partial
differential ∂τ (s) as a sum over certain elements in S′[s, τ ], and the differential by the formula

∂(s) =
∑

τ

∂τ (s)

with the sum over all type A sites τ in s. It then remains to see what are the possibilities for ∂τ (s) so that
j(s) is preserved.

Note that if s′ ∈ S′[s, τ ], then nB(s′) = nB(s) + 1. Thus

j(s′) = nB(s′) + λ(s′) = 1 + nB(s) + λ(s′).

From this we conclude that j(s) = j(s′) if and only if λ(s′) = λ(s) − 1. Recall that

λ(s) = [s : +] − [s : −]

where [s : +] is the number of loops in s labeled +1, [s : −] is the number of loops labeled −1 (same as
labeled with X) and j(s) = nB(s) + λ(s).

Proposition. The partial differentials ∂τ (s) are uniquely determined by the condition that j(s′) = j(s)
for all s′ involved in the action of the partial differential on the enhanced state s. This unique form of the
partial differential can be described by the following structures of multiplication and comultiplication on

the algebra A = k[X]/(X2) where k = Z/2Z for mod-2 coefficients, or k = Z for integral coefficients.

1. The element 1 is a multiplicative unit andX2 = 0.

2. ∆(1) = 1 ⊗ X + X ⊗ 1 and ∆(X) = X ⊗ X.

These rules describe the local relabeling process for loops in a state. Multiplication corresponds to the

case where two loops merge to a single loop, while comultiplication corresponds to the case where one

loop bifurcates into two loops.

(The proof is omitted.)

Partial differentials are defined on each enhanced state s and a site τ of typeA in that state. We consider
states obtained from the given state by smoothing the given site τ . The result of smoothing τ is to produce
a new state s′ with one more site of type B than s. Forming s′ from s we either amalgamate two loops to
a single loop at τ , or we divide a loop at τ into two distinct loops. In the case of amalgamation, the new
state s acquires the label on the amalgamated circle that is the product of the labels on the two circles that
are its ancestors in s. This case of the partial differential is described by the multiplication in the algebra.
If one circle becomes two circles, then we apply the coproduct. Thus if the circle is labeled X , then the
resultant two circles are each labeledX corresponding to∆(X) = X⊗X . If the orginal circle is labeled 1
then we take the partial boundary to be a sum of two enhanced states with labels 1 andX in one case, and

labels X and 1 in the other case, on the respective circles. This corresponds to ∆(1) = 1 ⊗ X + X ⊗ 1.

7

The boundary is a sum of partial differentials
corresponding to resmoothings on the states.

Each state loop
is a module.

A collection of state 
loops corresponds to
 a tensor product of 

these modules.
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For d^2 =0, want partial boundaries to commute.

to produce reliable computation. Nevertheless, one has the freedom to create spaces and opera-

tors on the mathematical level and to conceptualize these in a quantum mechanical framework.

The resulting structures may be realized in nature and in present or future technology. In the case

of our Hilbert space associated with the bracket state sum and its corresponding unitary trans-

formation U, there is rich extra structure related to Khovanov homology that we discuss in the
next section. One hopes that in a (future) realization of these spaces and operators, the Khovanov

homology will play a key role in quantum information related to the knot or linkK.

There are a number of conclusions that we can draw from the formula 〈K〉 = 〈ψ|U |ψ〉.
First of all, this formulation constitutes a quantum algorithm for the computation of the bracket

polynomial (and hence the Jones polynomial) at any specialization where the variable is on the

unit circle. We have defined a unitary transformation U and then shown that the bracket is an

evaluation in the form 〈ψ|U |ψ〉. This evaluation can be computed via the Hadamard test [24]
and this gives the desired quantum algorithm. Once the unitary transformation is given as a

physical construction, the algorithm will be as efficient as any application of the Hadamard test.

The present algorithm requires an exponentially increasing complexity of construction for the

associated unitary transformation, since the dimension of the Hilbert space is equal to the 2c(K)

where c(K) is the number of crossings in the diagram K. Nevertheless, it is significant that the
Jones polynomial can be formulated in such a direct way in terms of a quantum algorithm. By

the same token, we can take the basic result of Khovanov homology that says that the bracket is

a graded Euler characteristic of the Khovanov homology as telling us that we are taking a step in

the direction of a quantum algorithm for the Khovanov homology itself. This will be discussed

below.

4 Khovanov Homology and a Quantum Model for the Jones

Polynomial

In this section we outline how the Khovanov homology is related with our quantum model. This

can be done essentially axiomatically, without giving the details of the Khovanov construction.

We give these details in the next section. The outline is as follows:

1. There is a boundary operator ∂ defined on the Hilbert space of enhanced states of a link
diagramK

∂ : C(K) −→ C(K)

such that ∂∂ = 0 and so that if Ci,j = Ci,j(K) denotes the subspace of C(K) spanned by
enhanced states |s〉 with i = i(s) and j = j(s), then

∂ : Cij −→ Ci+1,j.

That is, we have the formulas

i(∂|s〉) = i(|s〉) + 1

6

to produce reliable computation. Nevertheless, one has the freedom to create spaces and opera-

tors on the mathematical level and to conceptualize these in a quantum mechanical framework.

The resulting structures may be realized in nature and in present or future technology. In the case

of our Hilbert space associated with the bracket state sum and its corresponding unitary trans-

formation U, there is rich extra structure related to Khovanov homology that we discuss in the
next section. One hopes that in a (future) realization of these spaces and operators, the Khovanov

homology will play a key role in quantum information related to the knot or linkK.

There are a number of conclusions that we can draw from the formula 〈K〉 = 〈ψ|U |ψ〉.
First of all, this formulation constitutes a quantum algorithm for the computation of the bracket

polynomial (and hence the Jones polynomial) at any specialization where the variable is on the

unit circle. We have defined a unitary transformation U and then shown that the bracket is an

evaluation in the form 〈ψ|U |ψ〉. This evaluation can be computed via the Hadamard test [24]
and this gives the desired quantum algorithm. Once the unitary transformation is given as a

physical construction, the algorithm will be as efficient as any application of the Hadamard test.

The present algorithm requires an exponentially increasing complexity of construction for the

associated unitary transformation, since the dimension of the Hilbert space is equal to the 2c(K)

where c(K) is the number of crossings in the diagram K. Nevertheless, it is significant that the
Jones polynomial can be formulated in such a direct way in terms of a quantum algorithm. By

the same token, we can take the basic result of Khovanov homology that says that the bracket is

a graded Euler characteristic of the Khovanov homology as telling us that we are taking a step in

the direction of a quantum algorithm for the Khovanov homology itself. This will be discussed

below.

4 Khovanov Homology and a Quantum Model for the Jones

Polynomial

In this section we outline how the Khovanov homology is related with our quantum model. This

can be done essentially axiomatically, without giving the details of the Khovanov construction.

We give these details in the next section. The outline is as follows:

1. There is a boundary operator ∂ defined on the Hilbert space of enhanced states of a link
diagramK

∂ : C(K) −→ C(K)

such that ∂∂ = 0 and so that if Ci,j = Ci,j(K) denotes the subspace of C(K) spanned by
enhanced states |s〉 with i = i(s) and j = j(s), then

∂ : Cij −→ Ci+1,j.

That is, we have the formulas

i(∂|s〉) = i(|s〉) + 1

6

to produce reliable computation. Nevertheless, one has the freedom to create spaces and opera-

tors on the mathematical level and to conceptualize these in a quantum mechanical framework.

The resulting structures may be realized in nature and in present or future technology. In the case

of our Hilbert space associated with the bracket state sum and its corresponding unitary trans-

formation U, there is rich extra structure related to Khovanov homology that we discuss in the
next section. One hopes that in a (future) realization of these spaces and operators, the Khovanov

homology will play a key role in quantum information related to the knot or linkK.

There are a number of conclusions that we can draw from the formula 〈K〉 = 〈ψ|U |ψ〉.
First of all, this formulation constitutes a quantum algorithm for the computation of the bracket

polynomial (and hence the Jones polynomial) at any specialization where the variable is on the

unit circle. We have defined a unitary transformation U and then shown that the bracket is an

evaluation in the form 〈ψ|U |ψ〉. This evaluation can be computed via the Hadamard test [24]
and this gives the desired quantum algorithm. Once the unitary transformation is given as a

physical construction, the algorithm will be as efficient as any application of the Hadamard test.

The present algorithm requires an exponentially increasing complexity of construction for the

associated unitary transformation, since the dimension of the Hilbert space is equal to the 2c(K)

where c(K) is the number of crossings in the diagram K. Nevertheless, it is significant that the
Jones polynomial can be formulated in such a direct way in terms of a quantum algorithm. By

the same token, we can take the basic result of Khovanov homology that says that the bracket is

a graded Euler characteristic of the Khovanov homology as telling us that we are taking a step in

the direction of a quantum algorithm for the Khovanov homology itself. This will be discussed

below.

4 Khovanov Homology and a Quantum Model for the Jones

Polynomial

In this section we outline how the Khovanov homology is related with our quantum model. This

can be done essentially axiomatically, without giving the details of the Khovanov construction.

We give these details in the next section. The outline is as follows:

1. There is a boundary operator ∂ defined on the Hilbert space of enhanced states of a link
diagramK

∂ : C(K) −→ C(K)

such that ∂∂ = 0 and so that if Ci,j = Ci,j(K) denotes the subspace of C(K) spanned by
enhanced states |s〉 with i = i(s) and j = j(s), then

∂ : Cij −→ Ci+1,j.

That is, we have the formulas

i(∂|s〉) = i(|s〉) + 1

6

to produce reliable computation. Nevertheless, one has the freedom to create spaces and opera-

tors on the mathematical level and to conceptualize these in a quantum mechanical framework.

The resulting structures may be realized in nature and in present or future technology. In the case

of our Hilbert space associated with the bracket state sum and its corresponding unitary trans-

formation U, there is rich extra structure related to Khovanov homology that we discuss in the
next section. One hopes that in a (future) realization of these spaces and operators, the Khovanov

homology will play a key role in quantum information related to the knot or linkK.

There are a number of conclusions that we can draw from the formula 〈K〉 = 〈ψ|U |ψ〉.
First of all, this formulation constitutes a quantum algorithm for the computation of the bracket

polynomial (and hence the Jones polynomial) at any specialization where the variable is on the

unit circle. We have defined a unitary transformation U and then shown that the bracket is an

evaluation in the form 〈ψ|U |ψ〉. This evaluation can be computed via the Hadamard test [24]
and this gives the desired quantum algorithm. Once the unitary transformation is given as a

physical construction, the algorithm will be as efficient as any application of the Hadamard test.

The present algorithm requires an exponentially increasing complexity of construction for the

associated unitary transformation, since the dimension of the Hilbert space is equal to the 2c(K)

where c(K) is the number of crossings in the diagram K. Nevertheless, it is significant that the
Jones polynomial can be formulated in such a direct way in terms of a quantum algorithm. By

the same token, we can take the basic result of Khovanov homology that says that the bracket is

a graded Euler characteristic of the Khovanov homology as telling us that we are taking a step in

the direction of a quantum algorithm for the Khovanov homology itself. This will be discussed

below.

4 Khovanov Homology and a Quantum Model for the Jones

Polynomial

In this section we outline how the Khovanov homology is related with our quantum model. This

can be done essentially axiomatically, without giving the details of the Khovanov construction.

We give these details in the next section. The outline is as follows:

1. There is a boundary operator ∂ defined on the Hilbert space of enhanced states of a link
diagramK

∂ : C(K) −→ C(K)

such that ∂∂ = 0 and so that if Ci,j = Ci,j(K) denotes the subspace of C(K) spanned by
enhanced states |s〉 with i = i(s) and j = j(s), then

∂ : Cij −→ Ci+1,j.

That is, we have the formulas

i(∂|s〉) = i(|s〉) + 1

6

1 1

2

2



A
A
-1

d

A
A
-1

A
-1

A

!

m

Figure 2: SaddlePoints and State Smoothings

the relationships between Frobenius algebras and the surface cobordism category. The

proof of invariance of Khovanov homology with respect to the Reidemeister moves

(respecting grading changes) will not be given here. See [12, 1, 2]. It is remarkable

that this version of Khovanov homology is uniquely specified by natural ideas about

adjacency of states in the bracket polynomial.

Remark on Integral Differentials. Choose an ordering for the crossings in the link

diagram K and denote them by 1, 2, · · ·n. Let s be any enhanced state of K and let

∂i(s) denote the chain obtained from s by applying a partial boundary at the i-th site
of s. If the i-th site is a smoothing of type A−1, then ∂i(s) = 0. If the i-th site is

!m

F G H

Figure 3: Surface Cobordisms
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The commutation of the partial boundaries leads to a 
structure of Frobenius algebra for the algebra 

associated to a state circle.
In our context this means that the qubit space V 

spanned by 1 and X is a Frobenius algebra.



It turns out that one can take the algebra
generated by 1 and X with

X   = 0   and  
 

that the existence of a bigraded complex of this type allows us to further
write:

〈K〉 =
X

j

qj
X

i

(−1)idim(Cij) =
X

j

qjχ(C• j),

where χ(C• j) is the Euler characteristic of the subcomplex C• j for a fixed
value of j. Since j is preserved by the differential, these subcomplexes have
their own Euler characteristics and homology. We can write

〈K〉 =
X

j

qjχ(H(C• j)),

where H(C• j) denotes the homology of this complex. Thus our last for-
mula expresses the bracket polynomial as a graded Euler characteristic of a
homology theory associated with the enhanced states of the bracket state
summation. This is the categorification of the bracket polynomial. Kho-
vanov proves that this homology theory is an invariant of knots and links,
creating a new and stronger invariant than the original Jones polynomial.

We explain the differential in this complex for mod-2 coefficients and
leave it to the reader to see the references for the rest. The differential
is defined via the algebra A = k[X]/(x2) so that X2 = 0 with coproduct
∆ : A −→ A⊗A defined by ∆(X) = X ⊗ X and ∆(1) = 1 ⊗ X + X ⊗ 1.
Partial differentials (which are defined on an enhanced state with a chosen
site, whereas the differential is a sum of these mappings) are defined on
each enhanced state s and a site κ of type A in that state. We consider
states obtained from the given state by smoothing the given site κ. The
result of smoothing κ is to produce a new state s′ with one more site of
type B than s. Forming s′ from s we either amalgamate two loops to a
single loop at κ, or we divide a loop at κ into two distinct loops. In the case
of amalgamation, the new state s acquires the label on the amalgamated
circle that is the product of the labels on the two circles that are its
ancestors in s. That is, m(1⊗X) = X and m(X⊗X) = 0. Thus this case
of the partial differential is described by the multiplication in the algebra.
If one circle becomes two circles, then we apply the coproduct. Thus if
the circle is labelled X, then the resultant two circles are each labelled X
corresponding to ∆(X) = X ⊗ X. If the orginal circle is labelled 1 then
we take the partial boundary to be a sum of two enhanced states with
labels 1 and X in one case, and labels X and 1 in the other case on the
respective circles. This corresponds to ∆(1) = 1 ⊗ X + X ⊗ 1. Modulo
two, the differential of an enhanced state is the sum, over all sites of type
A in the state, of the partial differential at these sites. It is not hard
to verify directly that the square of the differential mapping is zero and
that it behaves as advertised, keeping j(s) constant. There is more to say
about the nature of this construction with respect to Frobenius algebras
and tangle cobordisms. See [Kh, BN, BN2]

Here we consider bigraded complexes Cij with height (homological
grading) i and quantum grading j. In the unnormalized Khovanov complex
[[K]] the index i is the number of B-smoothings of the bracket, and for
every enhanced state, the index j is equal to the number of components

8

The chain complex is then generated by 
enhanced states with loop labels 1 and X.
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of our Hilbert space associated with the bracket state sum and its corresponding unitary trans-

formation U, there is rich extra structure related to Khovanov homology that we discuss in the
next section. One hopes that in a (future) realization of these spaces and operators, the Khovanov

homology will play a key role in quantum information related to the knot or linkK.

There are a number of conclusions that we can draw from the formula 〈K〉 = 〈ψ|U |ψ〉.
First of all, this formulation constitutes a quantum algorithm for the computation of the bracket

polynomial (and hence the Jones polynomial) at any specialization where the variable is on the

unit circle. We have defined a unitary transformation U and then shown that the bracket is an

evaluation in the form 〈ψ|U |ψ〉. This evaluation can be computed via the Hadamard test [24]
and this gives the desired quantum algorithm. Once the unitary transformation is given as a

physical construction, the algorithm will be as efficient as any application of the Hadamard test.

The present algorithm requires an exponentially increasing complexity of construction for the

associated unitary transformation, since the dimension of the Hilbert space is equal to the 2c(K)

where c(K) is the number of crossings in the diagram K. Nevertheless, it is significant that the
Jones polynomial can be formulated in such a direct way in terms of a quantum algorithm. By
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4 Khovanov Homology and a Quantum Model for the Jones

Polynomial

In this section we outline how the Khovanov homology is related with our quantum model. This

can be done essentially axiomatically, without giving the details of the Khovanov construction.

We give these details in the next section. The outline is as follows:

1. There is a boundary operator ∂ defined on the Hilbert space of enhanced states of a link
diagramK

∂ : C(K) −→ C(K)

such that ∂∂ = 0 and so that if Ci,j = Ci,j(K) denotes the subspace of C(K) spanned by
enhanced states |s〉 with i = i(s) and j = j(s), then
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That is, we have the formulas
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with a 1 (the value is q) added to the value of a circle labeled with anX (the value is q−1).We could have
chosen the more neutral labels of +1 and −1 so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ X,

but, since an algebra involving 1 and X naturally appears later, we take this form of labeling from the

beginning.

To see how the Khovanov grading arises, consider the form of the expansion of this version of the

bracket polynonmial in enhanced states. We have the formula as a sum over enhanced states s :

〈K〉 =
∑

s

(−1)nB(s)qj(s)

where nB(s) is the number of B-type smoothings in s, λ(s) is the number of loops in s labeled 1 minus
the number of loops labeled X, and j(s) = nB(s) + λ(s). This can be rewritten in the following form:

〈K〉 =
∑

i ,j

(−1)iqjdim(Cij)

where we define Cij to be the linear span (over k = Z/2Z as we will work with mod 2 coefficients) of
the set of enhanced states with nB(s) = i and j(s) = j. Then the number of such states is the dimension
dim(Cij).

We would like to have a bigraded complex composed of the Cij with a differential

∂ : Cij −→ Ci+1 j .

The differential should increase the homological grading i by 1 and preserve the quantum grading j. Then
we could write

〈K〉 =
∑

j

qj
∑

i

(−1)idim(Cij) =
∑

j

qjχ(C• j),

where χ(C• j) is the Euler characteristic of the subcomplex C• j for a fixed value of j.

This formula would constitute a categorification of the bracket polynomial. Below, we shall see how the

original Khovanov differential ∂ is uniquely determined by the restriction that j(∂s) = j(s) for each
enhanced state s. Since j is preserved by the differential, these subcomplexes C• j have their own Euler

characteristics and homology. We have

χ(H(C• j)) = χ(C• j)

where H(C• j) denotes the homology of the complex C• j . We can write

〈K〉 =
∑

j

qjχ(H(C• j)).

The last formula expresses the bracket polynomial as a graded Euler characteristic of a homology theory

associated with the enhanced states of the bracket state summation. This is the categorification of the

bracket polynomial. Khovanov proves that this homology theory is an invariant of knots and links (via the

Reidemeister moves of Figure 1), creating a new and stronger invariant than the original Jones polynomial.
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to produce reliable computation. Nevertheless, one has the freedom to create spaces and opera-

tors on the mathematical level and to conceptualize these in a quantum mechanical framework.

The resulting structures may be realized in nature and in present or future technology. In the case

of our Hilbert space associated with the bracket state sum and its corresponding unitary trans-

formation U, there is rich extra structure related to Khovanov homology that we discuss in the
next section. One hopes that in a (future) realization of these spaces and operators, the Khovanov

homology will play a key role in quantum information related to the knot or linkK.

There are a number of conclusions that we can draw from the formula 〈K〉 = 〈ψ|U |ψ〉.
First of all, this formulation constitutes a quantum algorithm for the computation of the bracket

polynomial (and hence the Jones polynomial) at any specialization where the variable is on the

unit circle. We have defined a unitary transformation U and then shown that the bracket is an

evaluation in the form 〈ψ|U |ψ〉. This evaluation can be computed via the Hadamard test [24]
and this gives the desired quantum algorithm. Once the unitary transformation is given as a

physical construction, the algorithm will be as efficient as any application of the Hadamard test.

The present algorithm requires an exponentially increasing complexity of construction for the

associated unitary transformation, since the dimension of the Hilbert space is equal to the 2c(K)

where c(K) is the number of crossings in the diagram K. Nevertheless, it is significant that the
Jones polynomial can be formulated in such a direct way in terms of a quantum algorithm. By

the same token, we can take the basic result of Khovanov homology that says that the bracket is

a graded Euler characteristic of the Khovanov homology as telling us that we are taking a step in

the direction of a quantum algorithm for the Khovanov homology itself. This will be discussed

below.

4 Khovanov Homology and a Quantum Model for the Jones

Polynomial

In this section we outline how the Khovanov homology is related with our quantum model. This

can be done essentially axiomatically, without giving the details of the Khovanov construction.

We give these details in the next section. The outline is as follows:

1. There is a boundary operator ∂ defined on the Hilbert space of enhanced states of a link
diagramK

∂ : C(K) −→ C(K)

such that ∂∂ = 0 and so that if Ci,j = Ci,j(K) denotes the subspace of C(K) spanned by
enhanced states |s〉 with i = i(s) and j = j(s), then

∂ : Cij −→ Ci+1,j.

That is, we have the formulas

i(∂|s〉) = i(|s〉) + 1
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A Quantum Statistical Model for Khovanov Homolgy
and the Bracket Polynonmial.

Let C(K) denote a Hilbert space
with basis |s> where s runs over the 

enhanced states of a knot or link diagram K.

One advantage of the expression of the bracket polynomial via enhanced states is that it is

now a sum of monomials. We shall make use of this property throughout the rest of the paper.

3 Quantum Statistics and the Jones Polynomial

We now use the enhanced state summation for the bracket polynomial with variable q to give a
quantum formulation of the state sum. Let q be on the unit circle in the complex plane. (This is
equivalent to letting the original bracket variable A be on the unit circle and equivalent to letting

the Jones polynmial variable t be on the unit circle.) Let C(K) denote the complex vector space
with orthonormal basis {|s〉 }where s runs over the enhanced states of the diagramK. The vector
space C(K) is the (finite dimensional) Hilbert space for our quantum formulation of the Jones

polynomial. While it is customary for a Hilbert space to be written with the letter H, we do not
follow that convention here, due to the fact that we shall soon regard C(K) as a chain complex
and take its homology. One can hardly avoid usingH for homology.

With q on the unit circle, we define a unitary transformation

U : C(K) −→ C(K)

by the formula

U |s〉 = (−1)i(s)qj(s)|s〉

for each enhanced state s. Here i(s) and j(s) are as defined in the previous section of this paper.

Let

|ψ〉 =
∑

s

|s〉.

The state vector |ψ〉 is the sum over the basis states of our Hilbert space C(K). For convenience,
we do not normalize |ψ〉 to length one in the Hilbert space C(K).We then have the

Lemma. The evaluation of the bracket polynomial is given by the following formula

〈K〉 = 〈ψ|U |ψ〉.

Proof.

〈ψ|U |ψ〉 =
∑

s′

∑

s

〈s′|(−1)i(s)qj(s)|s〉 =
∑

s′

∑

s

(−1)i(s)qj(s)〈s′|s〉

=
∑

s

(−1)i(s)qj(s) = 〈K〉,

since

〈s′|s〉 = δ(s, s′)

where δ(s, s′) is the Kronecker delta, equal to 1 when s = s′ and equal to 0 otherwise. //
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C(K) = HilbertSpace(K) 
is the direct sum

of the spaces V(S) where S ranges over the
orginal bracket states of the knot K.

Each V(S) is a tensor product of single qubit
spaces V.

Each single qubit space is endowed with a
Frobenius algebra structure.
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This gives a new quantum algorithm for the 
Jones polynomial (via Hadamard Test).



With

and

j(∂|s〉) = j(|s〉)

for each enhanced state s. In the next section, we shall explain how the boundary operator
is constructed.

2. Lemma. By defining U : C(K) −→ C(K) as in the previous section, via

U |s〉 = (−1)i(s)qj(s)|s〉,

we have the following basic relationship between U and the boundary operator ∂ :

U∂ + ∂U = 0.

Proof. This follows at once from the definition of U and the fact that ∂ preserves j and
increases i to i + 1. //

3. From this Lemma we conclude that the operator U acts on the homology of C(K). We
can regard H(C(K)) = Ker(∂)/Image(∂) as a new Hilbert space on which the unitary
operator U acts. In this way, the Khovanov homology and its relationship with the Jones

polynomial has a natural quantum context.

4. For a fixed value of j,
C•,j = ⊕iCi,j

is a subcomplex of C(K) with the boundary operator ∂. Consequently, we can speak of
the homology H(C•,j). Note that the dimension of Cij is equal to the number of enhanced

states |s〉 with i = i(s) and j = j(s). Consequently, we have

〈K〉 =
∑

s

qj(s)(−1)i(s) =
∑

j

qj
∑

i

(−1)idim(Cij)

=
∑

j

qjχ(C•,j) =
∑

j

qjχ(H(C•,j)).

Here we use the definition of the Euler characteristic of a chain complex

χ(C•,j) =
∑

i

(−1)idim(Cij)

and the fact that the Euler characteristic of the complex is equal to the Euler characteristic

of its homology. The quantum amplitude associated with the operator U is given in terms

of the Euler characteristics of the Khovanov homology of the linkK.

〈K〉 = 〈ψ|U |ψ〉 =
∑

j

qjχ(H(C•,j(K))).
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This means that the unitary transformation
U acts on the homology so that

U: H(C(K) -----> H(C(K))

To see how the Khovanov grading arises, consider the form of the expansion of this

version of the bracket polynonmial in enhanced states. We have the formula as a sum

over enhanced states s :
〈K〉 =

∑

s

(−1)nB(s)qj(s)

where nB(s) is the number of B-type smoothings in s, λ(s) is the number of loops in
s labeled 1 minus the number of loops labeledX, and j(s) = nB(s) + λ(s). This can
be rewritten in the following form:

〈K〉 =
∑

i ,j

(−1)iqjdim(Cij)

where we define Cij to be the linear span (over k = Z/2Z as we will work with mod

2 coefficients) of the set of enhanced states with nB(s) = i and j(s) = j. Then the
number of such states is the dimension dim(Cij).

We would like to have a bigraded complex composed of the Cij with a differential

∂ : Cij −→ Ci+1 j .

The differential should increase the homological grading i by 1 and preserve the quan-
tum grading j. Then we could write

〈K〉 =
∑

j

qj
∑

i

(−1)idim(Cij) =
∑

j

qjχ(C• j),

where χ(C• j) is the Euler characteristic of the subcomplex C• j for a fixed value of j.

This formula would constitute a categorification of the bracket polynomial. Below,

we shall see how the original Khovanov differential ∂ is uniquely determined by the

restriction that j(∂s) = j(s) for each enhanced state s. Since j is preserved by the
differential, these subcomplexes C• j have their own Euler characteristics and homol-

ogy. We have

χ(H(C• j)) = χ(C• j)

whereH(C• j) denotes the homology of the complex C• j . We can write

〈K〉 =
∑

j

qjχ(H(C• j)).

The last formula expresses the bracket polynomial as a graded Euler characteristic of

a homology theory associated with the enhanced states of the bracket state summation.

This is the categorification of the bracket polynomial. Khovanov proves that this ho-

mology theory is an invariant of knots and links (via the Reidemeister moves of Figure

1), creating a new and stronger invariant than the original Jones polynomial.

6



This means that the Khovanov Homology itself is
a natural Hilbert space for the Jones polynomial.

U: H(C(K) -----> H(C(K))
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This shows how <K> as a quantum amplitude 
contains information about the homology.



Eigenspace Picture

be a unitary operator that satisfies the equation U∂+∂U = 0.We do not assume a second grading
j as occurs in the Khovanov homology. However, since U is unitary, it follows [22] that there is a

basis for C in which U is diagonal. Let B = {|s〉} denote this basis. Let λs denote the eigenvalue

of U corresponding to |s〉 so that U |s〉 = λs|s〉. Let αs,s′ be the matrix element for ∂ so that

∂|s〉 =
∑

s′
αs,s′|s′〉

where s′ runs over a set of basis elements so that i(s′) = i(s) + 1.

Lemma. With the above conventions, we have that for |s′〉 a basis element such that αs,s′ "= 0
then λs′ = −λs.

Proof. Note that

U∂|s〉 = U(
∑

s′
αs,s′|s′〉) =

∑

s′
αs,s′λs′|s′〉

while

∂U |s〉 = ∂λs|s〉 =
∑

s′
αs,s′λs|s′〉.

Since U∂+∂U = 0, the conclusion of the Lemma follows from the independence of the elements
in the basis for the Hilbert space. //

In this way we see that eigenvalues will propagate forward from C0 with alternating signs ac-

cording to the appearance of successive basis elements in the boundary formulas for the chain

complex. Various states of affairs are possible in general, with new eigenvaluues starting at some

Ck for k > 0. The simplest state of affairs would be if all the possible eigenvalues (up to multi-
plication by −1) for U occurred in C0 so that

C0 = ⊕λC0
λ

where λ runs over all the distinct eigenvalues of U restricted to C0, and C0
λ is spanned by all

|s〉 in C0 with U |s〉 = λ|s〉. Let us take the further assumption that for each λ as above, the
subcomplexes

C•
λ : C0

λ −→ C1
−λ −→ C2

+λ −→ · · · Cn
(−1)nλ

have C = ⊕λC•
λ as their direct sum. With this assumption about the chain complex, define

|ψ〉 =
∑

s |s〉 as before, with |s〉 running over the whole basis for C. Then it follows just as in the
beginning of this section that

〈ψ|U |ψ〉 =
∑

λ

λχ(H(C•
λ)).

Here χ denotes the Euler characteristic of the homology. The point is, that this formula for

〈ψ|U |ψ〉 takes exactly the form we had for the special case of Khovanov homology (with eigen-
values (−1)iqj), but here the formula occurs just in terms of the eigenspace decomposition of the

unitary transformation U in relation to the chain complex. Clearly there is more work to be done

here and we will return to it in a subsequent paper.
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∂|s〉 =
∑

s′
αs,s′|s′〉

where s′ runs over a set of basis elements so that i(s′) = i(s) + 1.

Lemma. With the above conventions, we have that for |s′〉 a basis element such that αs,s′ "= 0
then λs′ = −λs.

Proof. Note that

U∂|s〉 = U(
∑

s′
αs,s′|s′〉) =

∑

s′
αs,s′λs′|s′〉

while

∂U |s〉 = ∂λs|s〉 =
∑

s′
αs,s′λs|s′〉.

Since U∂+∂U = 0, the conclusion of the Lemma follows from the independence of the elements
in the basis for the Hilbert space. //

In this way we see that eigenvalues will propagate forward from C0 with alternating signs ac-

cording to the appearance of successive basis elements in the boundary formulas for the chain

complex. Various states of affairs are possible in general, with new eigenvaluues starting at some

Ck for k > 0. The simplest state of affairs would be if all the possible eigenvalues (up to multi-
plication by −1) for U occurred in C0 so that

C0 = ⊕λC0
λ

where λ runs over all the distinct eigenvalues of U restricted to C0, and C0
λ is spanned by all

|s〉 in C0 with U |s〉 = λ|s〉. Let us take the further assumption that for each λ as above, the
subcomplexes

C•
λ : C0

λ −→ C1
−λ −→ C2

+λ −→ · · · Cn
(−1)nλ

have C = ⊕λC•
λ as their direct sum. With this assumption about the chain complex, define

|ψ〉 =
∑

s |s〉 as before, with |s〉 running over the whole basis for C. Then it follows just as in the
beginning of this section that

〈ψ|U |ψ〉 =
∑

λ

λχ(H(C•
λ)).

Here χ denotes the Euler characteristic of the homology. The point is, that this formula for

〈ψ|U |ψ〉 takes exactly the form we had for the special case of Khovanov homology (with eigen-
values (−1)iqj), but here the formula occurs just in terms of the eigenspace decomposition of the

unitary transformation U in relation to the chain complex. Clearly there is more work to be done

here and we will return to it in a subsequent paper.
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We have interpreted the bracket polynomial as a 
quantum amplitude by making a Hilbert space C(K) 

whose basis is the collection of enhanced states of the 
bracket.

This space C(K) is naturally intepreted as the 
chain space for the Khovanov homology 
associated with the bracket polynomial. 

The homology and the unitary transformation U
speak to one another via the formula

One advantage of the expression of the bracket polynomial via enhanced states is that it is

now a sum of monomials. We shall make use of this property throughout the rest of the paper.

3 Quantum Statistics and the Jones Polynomial

We now use the enhanced state summation for the bracket polynomial with variable q to give a
quantum formulation of the state sum. Let q be on the unit circle in the complex plane. (This is
equivalent to letting the original bracket variable A be on the unit circle and equivalent to letting

the Jones polynmial variable t be on the unit circle.) Let C(K) denote the complex vector space
with orthonormal basis {|s〉 }where s runs over the enhanced states of the diagramK. The vector
space C(K) is the (finite dimensional) Hilbert space for our quantum formulation of the Jones

polynomial. While it is customary for a Hilbert space to be written with the letter H, we do not
follow that convention here, due to the fact that we shall soon regard C(K) as a chain complex
and take its homology. One can hardly avoid usingH for homology.

With q on the unit circle, we define a unitary transformation

U : C(K) −→ C(K)

by the formula

U |s〉 = (−1)i(s)qj(s)|s〉

for each enhanced state s. Here i(s) and j(s) are as defined in the previous section of this paper.

Let

|ψ〉 =
∑

s

|s〉.

The state vector |ψ〉 is the sum over the basis states of our Hilbert space C(K). For convenience,
we do not normalize |ψ〉 to length one in the Hilbert space C(K).We then have the

Lemma. The evaluation of the bracket polynomial is given by the following formula

〈K〉 = 〈ψ|U |ψ〉.

Proof.

〈ψ|U |ψ〉 =
∑

s′

∑

s

〈s′|(−1)i(s)qj(s)|s〉 =
∑

s′

∑

s

(−1)i(s)qj(s)〈s′|s〉

=
∑

s

(−1)i(s)qj(s) = 〈K〉,

since

〈s′|s〉 = δ(s, s′)

where δ(s, s′) is the Kronecker delta, equal to 1 when s = s′ and equal to 0 otherwise. //

4

and

j(∂|s〉) = j(|s〉)

for each enhanced state s. In the next section, we shall explain how the boundary operator
is constructed.

2. Lemma. By defining U : C(K) −→ C(K) as in the previous section, via

U |s〉 = (−1)i(s)qj(s)|s〉,

we have the following basic relationship between U and the boundary operator ∂ :

U∂ + ∂U = 0.

Proof. This follows at once from the definition of U and the fact that ∂ preserves j and
increases i to i + 1. //

3. From this Lemma we conclude that the operator U acts on the homology of C(K). We
can regard H(C(K)) = Ker(∂)/Image(∂) as a new Hilbert space on which the unitary
operator U acts. In this way, the Khovanov homology and its relationship with the Jones

polynomial has a natural quantum context.

4. For a fixed value of j,
C•,j = ⊕iCi,j

is a subcomplex of C(K) with the boundary operator ∂. Consequently, we can speak of
the homology H(C•,j). Note that the dimension of Cij is equal to the number of enhanced

states |s〉 with i = i(s) and j = j(s). Consequently, we have

〈K〉 =
∑

s

qj(s)(−1)i(s) =
∑

j

qj
∑

i

(−1)idim(Cij)

=
∑

j

qjχ(C•,j) =
∑

j

qjχ(H(C•,j)).

Here we use the definition of the Euler characteristic of a chain complex

χ(C•,j) =
∑

i

(−1)idim(Cij)

and the fact that the Euler characteristic of the complex is equal to the Euler characteristic

of its homology. The quantum amplitude associated with the operator U is given in terms

of the Euler characteristics of the Khovanov homology of the linkK.

〈K〉 = 〈ψ|U |ψ〉 =
∑

j

qjχ(H(C•,j(K))).
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SUMMARY

making H(C(K)) a natural setting for the quantum 
information.



Questions
We have shown how Khovanov homology fits

into the context of quantum information related to
the Jones polynomial and how the polynomial is

replaced in this context by a unitary transformation U
on the Hilbert space of the model.  This transformation U
acts on the homology, and its eigenspaces give a natural
decomposition of the homology that is related to the 

quantum amplitude corresponding to the Jones polynomial.

The states of the model are intensely 
combinatorial, related to the 

representation of the knot or link.
How can this formulation be used in 
quantum information theory and in 

statistical mechanics?!


