

Public Meeting

September 21, 2010

Please have a seat. We will be starting the presentation shortly.

Agenda

Project Team Introductions
Project Overview
Project Criteria and Requirements
Alternatives Analysis
Next Steps and How to Stay Involved
Questions/Comments

Manning Crevice Project Team

- Cooperative effort between Western Federal Lands Highway Division (WFLHD), Idaho County, and the U.S. Forest Service.
 - WFLHD Project Manager
 - Greg Gifford
 - Subconsultant Project Manager
 - Bryan Foote
 - Public Involvement Specialist
 - Kristin Lang

Project Overview

 Manning Crevice bridge is a 248-foot long one-lane suspension bridge built in 1934 that carries Salmon River Road over the Salmon River.

Project Overview

- Manning Crevice Bridge Deficiencies:
 - Not up to current bridge design standards
 - Limited width and load capacity
 - Limited vertical clearance
 - Inadequate turning radii for larger vehicles
- Draft concept study completed in early September 2010 to evaluate potential upgrades.
- Project funding included in the Idaho Transportation Department (ITD) Statewide Transportation Improvement Program (STIP) and the Idaho Forest Highway program.
- Scheduled for construction in 2013.

Project Criteria and Requirements

- Meet current bridge design standards
- Provide sufficient headroom for river use
- Approach road and structure must accommodate recreational vehicles, buses, and logging trucks
- No permanent construction in the river
- Structure outside the 100-year floodplain
- Traffic must be maintained during construction
- River use must not be interrupted during construction

Screening Process

- The screening process criteria:
 - Constructability
 - Site and river impacts
 - Traffic impacts
 - Cost effectiveness
 - Long-term performance
 - Aesthetics

Alternatives Analysis

- In addition to rehabilitating the existing structure, four potential bridge alternatives were identified:
 - Steel girder bridge
 - Steel arch bridge
 - Cable-stayed bridge
 - Suspension bridge

 Of these five alternatives, three were carried forward for further analysis.

Alternatives Analysis: Cable-Stayed Bridge Alternative

Alternatives Analysis: Suspension Bridge

Three variations were considered:

Alternatives Analysis: Suspension Bridge Alternative

Asymmetrical One-Tower Bridge

Alternatives Analysis: Suspension Bridge Alternative

Symmetrical A - Suspension with Towers Bridge

Alternatives Analysis: Bridge Alternative Screening Summary

	Screening Criteria								
Alternative	Constructability	Site Impacts	Temporary River Impacts	Traffic Impacts	Cost Effectiveness	Long-Term Performance	Aesthetics	Total	Notes
Rehabilitate existing bridge	N	3	З	1	1	2	3	N	Structures are not feasible due to site
Steel girder bridge	1	1	1	2	1	3	1	10	and project restraints and constructability problems.
Steel arch bridge	1	2	1	2	2	3	2	13	
Symmetrical A - suspension with towers	2	2	3	2	3	3	3	18	Long-term performance is rated high due to lower and more accessible anchorages. Aesthetics is rated high due to the similarity to the existing bridge and other suspension bridges over the river
Symmetrical B - suspension without towers	1	2	3	2	1	2	3	14	Aesthetics is rated good due to the elimination of the towers, which will cause the bridge to blend well into the environment
Asymmetrical one tower suspension bridge	3	3	3	2	3	3	3	20	Constructability, site impacts, cost- effectiveness, and long-term performance rated good due to the single tower and lower north anchorage. This structure is well suited to the site constraints and topography
Cable-stayed bridge	2	3	З	2	2	2	З	17	Site impacts rated good due to the use of single anchorage
■ Not feasible 1 = Poor 2 = Satisfactory/Neutral 3 = Good									

Alternatives Analysis: Recommended Structures

Cable-Stayed Bridge

- Constructed from the north side
- Single anchorage minimizes site impacts
- No pylons (towers) to construct
- Minimal temporary river impacts

Alternatives Analysis: Recommended Structures

Asymmetrical One-Tower Bridge

- Constructed from the north side
- Improved access and constructability
- Lower construction costs
- Eliminates tower and anchorage on the south hill side

Alternatives Analysis: Recommended Structures

Symmetrical A - Suspension with Towers Bridge

- Lower anchorages are more easily maintained
- Similar aesthetics to existing bridge

Selmon River R

Temporary Impacts and Mitigation

Temporary Impacts	Proposed Mitigation
Traffic Delays and Potential Road Closures during construction	Provide public with advance warning of any potential road closures due to construction
	Restrict potential road closures to low traffic times (evenings, weekdays, etc.)
	Maintain traffic during construction
	Existing bridge remains open until construction is complete
	No interruptions to river use
	Minimal construction delays
Site Impacts	No permanent construction in river
	Recommended alternatives minimize temporary construction impacts to the river
	Restore existing site to its original or enhanced state

Additional Benefits

- Safety Improved operational and safety design features while meeting current design standards.
- Accessibility Easier access to accommodate recreational vehicles, buses, and logging trucks.
- Aesthetics Incorporate design standards that minimize visual impacts and enhance aesthetics.
- Maintenance Long-term maintenance costs would be considerably less than the costs to maintain existing bridge.

What Happens Next?

Milestone	Timeframe
Address Comments from Public Meeting and Stakeholders	October – November 2010
Final Alternatives Analysis Report	February 2011
Design	February 2011 – 2013
Construction	2013

How to Stay Involved

Website

 Join our online mailing list to receive e-mail updates on major milestones and construction delays.

www.wfl.fhwa.dot.gov/projects/id/manningcrevice

Email

manningcrevice@pbsj.com

Mail

 Mail your comments to the Project Team Manning Crevice Project Team PBS&J 4601 DTC Boulevard, Suite 700 Denver, CO 80237

Questions/Comments?