

Public Meeting

June 26, 2012

Please have a seat.

We will start the presentation shortly.

Thank You!

Manning Crevice Project Team

 Cooperative effort between Western Federal Lands Highway Division (WFLHD), Idaho County, and the U.S. Forest Service.

WFLHD Project Manager:

Greg Gifford

Consultant Project Manager:

Alex Whitney

Sub-consultant Project Manager:

Bryan Foote

Roadway Design:

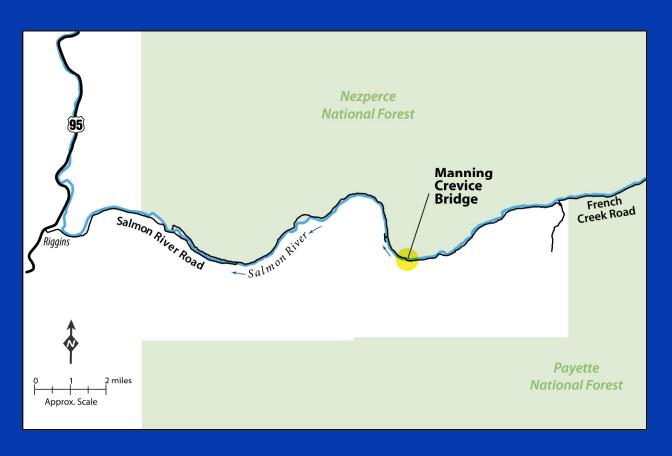
Kelly Hoopes

Public Involvement Specialist:

Kristin Lang

WFLHD Environmental Specialist:

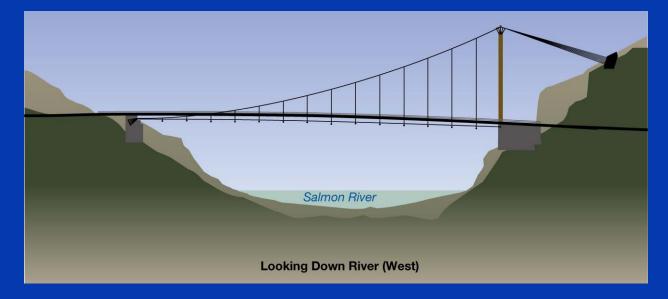
Mike Schurke


Agenda

- Project Overview
- Selected Alternative
- Design Considerations
- Impacts and Mitigations
- Project Delivery and Next Steps
- How to Stay Involved
- Questions/Comments

Project Overview

• Manning Crevice bridge is a 248-foot long one-lane suspension bridge built in 1934 that carries Salmon River Road over the Salmon River.

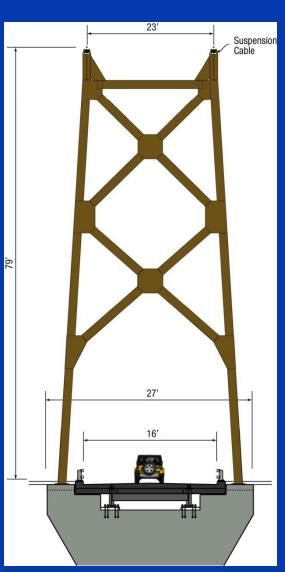

Project Overview

- The Manning Crevice Bridge has reached 70 years of service and is in need of upgrading to:
 - Ensure another 70 years of service life
 - Increase the deck width and load capacity
 - Improve the approach road turning radii and structure width to allow larger vehicles to cross the bridge
- Project funding included in the Idaho Transportation Department (ITD) Statewide Transportation Improvement Program (STIP) and the Idaho Forest Highway program.

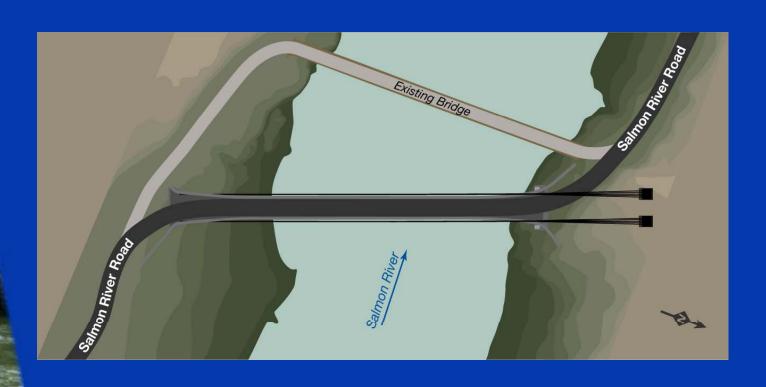
Selected Alternative:Asymmetrical One-Tower Bridge

- The three final alternatives were presented to the public and stakeholders including the Bureau of Land Management (BLM) and National Forest Service (NFS).
- Based on the public and stakeholder input, design and construction challenges, the single tower asymmetric suspension bridge alternative was selected for this project.

Why Asymmetrical One-Tower Bridge?



- Construction from the north side (Limited crane access on the south)
- Improved access and constructability
- Lower construction costs
- Eliminates tower and anchorage on the south hill side
- The tower aesthetically blends in with the surrounding environment



Design Considerations

- Maximum vehicle size crossing the bridge
- Construction access and staging
- Construction materials
- Erection methods
- Removal and salvage of existing bridge
- Accelerated bridge construction

Temporary Impacts and Mitigations

Temporary Impacts	Proposed Mitigation
Traffic Delays and Potential Road Closures during construction	 Provide public with advance warning of any potential road closures due to construction Restrict potential road closures to low traffic times (evenings, weekdays, etc.) Maintain traffic during construction
	 Existing bridge remains open until construction is complete No interruptions to river use Minimal construction delays
Site Impacts	 No permanent construction in river Recommended alternatives minimize temporary construction impacts to the river Restore existing site to its original or enhanced state Trail access will be constructed with the bridge

What Happens Next?

Milestone	Timeframe
Complete Environmental Documentation	Summer 2012
Geotechnical Testing	Summer 2012
Selection of Construction Management General Contractor (CMGC)	Fall 2012
Finalize Design	2012 – 2013
Begin Construction	Early 2014

How to Stay Involved?

Website

 Join our online mailing list to receive e-mail updates on major milestones and construction delays.

www.wfl.fhwa.dot.gov/projects/id/manning-crevice

Email

- manningcrevice@atkinsglobal.com

Mail

Manning Crevice Project Team
 Atkins
 4601 DTC Boulevard, Suite 700
 Denver, CO 80237

Questions/Comments?