

Meeting the Challenge

Our annual water quality report, as presented, covers testing performed between January 1 and December 31, 2011. We dedicate ourselves to producing, and seeking new methods for delivering to you, the best quality drinking water meeting state and federal standards. We remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users.

Community Participation

You are invited to participate in our board meetings and voice your concerns about your drinking water. Please contact Cheryl Murray at (252) 466-5151 for information related to meeting opportunities.

Where Does My Water Come From?

The source of Cherry Point's drinking water is groundwater from the Castle Hayne Aquifer, which extends from southern Virginia to Wilmington, North Carolina. Water is removed from depths of 195 feet to 329 feet below the surface by 23 wells and then pumped to a state-of-the-art water treatment plant. The Cherry Point Water Treatment Plant provides, on average, 4.1 million gallons per day of drinking water to 18,181 customers who live and work at MCAS Cherry Point.

Water Conservation Tips

- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak. Fix it and you save more than 30,000 gallons a year.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Water Main Flushing

Distribution mains (pipes) convey water to homes, businesses, and hydrants within the Air Station. The water entering distribution mains is of very high quality; however, water quality can deteriorate in areas of the distribution mains over time. Water main flushing is the process of cleaning the interior of water distribution mains by sending a rapid flow of water through the mains.

Flushing maintains water quality by removing iron and manganese, which pose no health concerns but affect taste, clarity, and color. Additionally, sediments can shield microorganisms from the disinfecting power of chlorine, contributing to the growth of microorganisms. Flushing helps remove stale water and ensures the presence of fresh water with sufficient dissolved oxygen, disinfectant levels, and an acceptable taste and smell.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

What's Your Water Footprint?

The water footprint of an individual, community, or business is the total volume of freshwater that is used to produce goods and provide services. For example, 11 gallons of water are needed to irrigate and wash the fruit in one half-gallon container of orange juice. Thirty-seven gallons of water are used to grow, produce, package, and ship the beans in that morning cup of coffee. Two hundred and sixty-four gallons of water are required to produce one quart of milk, and 4,200 gallons of water are required to produce two pounds of beef.

According to the U.S. EPA, the average American uses about 100 gallons of water daily. In fact, in the developed world, one flush of a toilet uses as much water as the average person in the developing world allocates for an entire day's cooking, washing, cleaning, and drinking. The annual American per capita water footprint is about 8,000 cubic feet; twice the global per capita average. With water use increasing six-fold in the past century, our demands for freshwater are rapidly outstripping what the planet can replenish.

To check out your own water footprint, go to www.h2oconserve.org or visit www.waterfootprint. org to see how the water footprints of other nations compare.

QUESTIONS?

For more information about this report, or questions relating to your drinking water, please call Steve Reavis, Facilities Maintenance Department, at (252) 466-6850 or Cheryl Murray, Environmental Affairs Department, at (252) 466-5151.

How Does Cherry Point Treat and Purify Its Water?

R aw water is pumped to the treatment plant from 23 wells located on the air station. After arriving at the water treatment plant, the water is processed by certified operators in a treatment involving multiple steps. The first two steps involve aeration and the addition of a precise amount of chemicals for precipitant softening; this prepares the water for ozone treatment. Then the water is pumped through an ozone contact chamber. Ozonation disinfects and removes color from the water and aids oxidation of iron, organics, and manganese. The water is then filtered through thick beds of anthracite coal and sand to remove remaining particles. The final step involves the addition of chlorine for further disinfection. The treated water is subsequently distributed through 140 miles of piping.

What's a Cross-Connection?

A cross-connection is formed at any point where a drinking water line connects to equipment (boilers), systems containing chemicals (air conditioning systems, fire sprinkler systems, irrigation systems), or water sources of questionable quality. Cross-connection contamination can occur when the pressure in the equipment or system is greater than the pressure inside the drinking water line (backpressure). Contamination can also occur when the pressure in the drinking water line drops due to fairly routine occurrences (main breaks, heavy water demand), causing contaminants to be sucked out from the equipment and into the drinking water line (backsiphonage).

The garden hose creates a hazard when submerged in a swimming pool or when attached to a chemical sprayer for weed killing. Garden hoses that are left lying on the ground may be contaminated by fertilizers, cesspools, or garden chemicals. Improperly installed valves in your toilet could also be a source of cross-connection contamination.

Community water supplies are jeopardized by cross-connections unless appropriate valves, known as backflow prevention devices, are installed and maintained. We have surveyed all industrial, commercial, and institutional facilities in the service area to make sure that all potential cross-connections are identified and eliminated or protected by a backflow preventer. We also inspect and test each backflow preventer to make sure that it is providing maximum protection.

For more information, review the Cross-Connection Control Manual from the U.S. EPA's Web site at http://water.epa.gov/infrastructure/ drinkingwater/pws/crossconnectioncontrol/index.cfm. You can also call the Safe Drinking Water Hotline at (800) 426-4791.

What Are PPCPs?

Recent studies are generating a growing concern over pharmaceuticals and personal care products (PPCPs) entering water supplies. PPCPs include human and veterinary drugs (prescription or over-thecounter) and consumer products, such as cosmetics, fragrances, lotions, sunscreens, and house cleaning products. Between 2005 and 2010, the number of U.S. prescriptions increased 12 percent to a record 3.7 billion, while nonprescription drug purchases held steady around 3.3 billion. Many of these drugs and personal care products do not biodegrade and may persist in the environment for years.

The best and most cost-effective way to ensure safe water at the tap is to keep our source waters clean. Never flush unused medications down the toilet or sink. Instead, check to see if the pharmacy where you made your purchase accepts medications for disposal, or contact your local health department for information on proper disposal methods and drop-off locations. You can also go on the Web at www. Earth911.com to find more information about disposal locations in your area.

Who uses the most water?

On a global average, most freshwater withdrawals are used for agriculture, while industry accounts for 23 percent and municipal use (drinking water, bathing and cleaning, and watering plants and grass) just 8 percent.

How long does it take a water supplier to produce one glass of drinking water?

It can take up to 45 minutes to produce a single glass of drinking water.

How much emergency water should I keep?

Typically, 1 gallon per person per day is recommended. For a family of four, that would be 12 gallons for 3 days. Humans can survive without food for 1 month, but can only survive 1 week without water.

Information on the Internet

The U.S. EPA Office of Water (www.epa.gov/watrhome) and the Centers for Disease Control and Prevention (www.cdc.gov) Web sites provide a substantial amount of information on many issues relating to water resources, water conservation, and public health. Also, the North Carolina Department of Environment and Natural Resources maintains the following Web sites: Division of Water Resources (http:// www.ncwater.org), Division of Water Quality (http://portal.ncdenr.org/web/wq), and Public Water Supply (http://www.ncwater.org/pws/). The sites provide complete and current information on water issues in North Carolina, including valuable information about our watershed.

SWAP

The North Carolina Department of Environment and Natural Resources (DENR), Public Water Supply (PWS) Section, Source Water Assessment Program (SWAP) conducted assessments for all drinking water sources across North Carolina. The purpose of the assessments was to determine the susceptibility of each drinking water source (well or surface water intake) to potential contaminant sources (PCSs). The results of the assessments are available in SWAP reports that include maps, background information, and a relative susceptibility rating of higher, moderate, or lower. This susceptibility rating does not imply poor water quality, but rather the system's potential to become contaminated by PCSs in the assessment area.

The relative susceptibility rating of each source for MCAS Cherry Point was determined by combining the contaminant rating (number and location of PCSs within the assessment area) and the inherent vulnerability rating (i.e., characteristics or existing conditions of the well or watershed and its delineated assessment area). The SWAP report dated March 11, 2010, indicates a susceptibility rating of moderate for potable wells #3, #8, #21 and a susceptibility rating of lower for all other source water wells.

The complete SWAP report for MCAS Cherry Point may be viewed at http://swap. deh.enr.state.nc.us/swap/. Please note that because SWAP results and reports are periodically updated by the PWS Section, the results available on this Web site may differ from the results that were available at the time this Consumer Confidence Report was prepared. To obtain a printed copy of the SWAP report, please mail a written request to Source Water Assessment Program–Reports Request, 1634 Mail Service Center, Raleigh, NC 27699-1634, or e-mail a request to swap@ncmail.net. Please indicate your system name, PWSID, and your name, mailing address, and phone number. If you have any questions about the SWAP report, please contact the Source Water Assessment staff by phone at (919) 715-2633.

Sampling Results

Hundreds of water samples have been taken in order to determine the presence of any radiological, biological, inorganic, volatile organic, or synthetic organic contaminants. The table below shows only those contaminants that were detected in the water. Some contaminants require less than annual monitoring because the concentrations of these substances do not often change. In these cases, the most recent data is indicated along with the year in which it was sampled.

REGULATED SUBSTANCES

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Chlorine (ppm)	2011	[4]	[4]	2.1	0.08–2.1	No	Water additive used to control microbes
Fluoride (ppm)	2011	4	4	0.21	NA	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Haloacetic Acids [HAA] (ppb)	2011	60	NA	33.4	19–50	No	By-product of drinking water disinfection
TTHMs [Total Trihalomethanes] (ppb)	2011	80	NA	65.8	43–98	No	By-product of drinking water disinfection

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH%TILE)	SITES ABOVE AL/ TOTAL SITES	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2010	1.3	1.3	0.115	0/30	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead (ppb)	2010	15	0	6	1/30	No	Corrosion of household plumbing systems; Erosion of natural deposits

UNREGULATED SUBSTANCES

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE			
Bromide (ppm)	2011	0.046	ND-0.046	Naturally occurring (raw water sample)			
Sodium (ppm)	2011	66.4	NA	Naturally occurring			
Sulfate (ppm)	2011	28.5	NA	Naturally occurring			

INITIAL DISTRIBUTION SYSTEM EVALUATION (IDSE)¹

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE
Haloacetic Acids [HAA]–IDSE Results (ppb)	2009	31	14-43	By-product of drinking water disinfection
TTHMs [Total Trihalomethanes]–IDSE Results (ppb)	2009	79	53–104	By-product of drinking water disinfection

¹We were required by the U.S. EPA to conduct an evaluation of our distribution system. This is known as an Initial Distribution System Evaluation (IDSE) and is intended to identify locations in our distribution system that have elevated disinfection by-product concentrations. Disinfection by-products (e.g., HAAs and TTHMs) result from continuous disinfection of drinking water and form when disinfectants combine with organic matter that naturally occurs in the source water.

Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant Level):

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level

Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual

Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual

Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not Detected): Indicates that the substance was not found by laboratory analysis.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).