Physics with Polarized Beams

A tutorial for experimenters,

accelerator physicists, and students

Werner Vogelsang

RIKEN-BNL Research Center / BNL Nuclear Theory

BNL, Nov./Dec. 2002 Sponsored by the Center for Accelerator Physics (CAP)

Polarized Proton Collisions at BNL

POLARized BEAms at RHIC

A guide to further reading :

- C. Bourrely, J. Soffer, E. Leader, *Polarization Phenomena in Hadronic Reactions*, Phys. Rept. **59** (1980) 95
- N. Craigie, K. Hidaka, M. Jacob, F. Renard, *Spin Physics at Short Distances*, Phys. Rept. **99** (1983) 69
- E. Leader, Spin in Particle Physics, Cambridge University Press 2001.
- G. Bunce, N. Saito, J. Soffer, W. Vogelsang, *Prospects for Spin Physics at RHIC*, Annu. Rev. Nucl. Part. Sci. **50** (2000) 525.
- A. Manohar, An introduction to spin-dependent deep inelastic scattering, hep-ph/9204208
- B.W. Filippone, Xiangdong Ji, The spin structure of the nucleon, hep-ph/0101224
- Hai-Yang Cheng, Status of the Proton Spin Puzzle Int. J. Mod. Phys. A11 (1996) 5109 (hep-ph/9607254)

- M. Anselmino, A. Efremov, E. Leader, *The Theory and Phenomenology* of Polarized Deep-Inelastic Scattering, Phys. Rept. **261** (1995) 1 (hep-ph/9501369)
- B. Lampe, E. Reya, *Spin Physics and Polarized Structure Functions*, Phys. Rept. **332** (2000) 1 (hep-ph/9810270)
- V. Barone, A. Drago, P.G. Ratcliffe, *Transverse Polarization of Quarks in Hadrons*, Phys. Rept. **359** (2002) 1 (hep-ph/0104283)

If you haven't been to Spin Caffé yet, look what you've been missing!

What's on the Menu ?

Some (of many possible) appetizers . .

Several generations of beautiful fixed-target experiments at SLAC, CERN, DESY

measure a spin asymmetry

in DIS :

$$A = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

- we'll see : they tell us about polarization of quarks in the nucleon
- What carries the nucleon spin ?
- simple quark model : 3 constituent quarks, $s_i = \frac{1}{2}$, $\mu_i = e_i \frac{e}{2m_i}$

$$|P\rangle = \frac{1}{\sqrt{18}} \left[2u^{\uparrow} u^{\uparrow} d^{\downarrow} - u^{\uparrow} u^{\downarrow} d^{\uparrow} - u^{\downarrow} u^{\uparrow} d^{\uparrow} + \mathsf{perm.} \right]$$

$$\Rightarrow \begin{cases} \mu_n/\mu_p = -2/3 \quad \text{vs.} \quad (\mu_n/\mu_p)_{\text{exp}} = -0.685 \quad \checkmark \\ g_A = 5/3 \quad \text{vs.} \quad (g_A)_{\text{exp}} = 1.267 \pm 0.0035 \quad \times \\ 2 S_u = 4/3 \quad , 2 S_d = -1/3 \quad \rightsquigarrow \quad \boxed{S_q = S_u + S_d = \frac{1}{2}} \end{cases}$$

- nucleons have a rich internal structure: quarks, antiquarks and gluons
- relation between nucleon and parton spins ? How can we find out ?
- What do we learn about QCD ?

In coming run : $\vec{p}\vec{p} \rightarrow \pi^0 X$ Phenix

$(\pm 30\%$ normalization unc.)

Parity violation :

• we'll see : window to interesting QCD dynamics in nucleon structure

Today :

- Some Fundamentals About Spin
- Polarized Scattering Processes
- Lepton-Nucleon Scattering (Part I)

I. Some Fundamentals About Spin

1.1 **Spin in non-relativistic quantum mechanics**

• spin of particle introduced as additional angular momentum. Introduce three spin operators :

$$ec{\mathcal{S}} \ = \ (\, \mathcal{S}_x \, , \ \mathcal{S}_y \, , \ \mathcal{S}_z \,)$$

angular momentum algebra

$$[\mathcal{S}_i, \mathcal{S}_j] = i\epsilon_{ijk}\mathcal{S}_k \qquad \epsilon_{123} = +1$$

• find

$$\left[\vec{\mathcal{S}}^{2},\,\mathcal{S}_{j}\right] = 0$$

 $\rightsquigarrow \vec{S}^2, S_z$ have set of simultaneous eigenvectors; use to label states $|S, m\rangle$

$$\vec{\mathcal{S}}^2 | S, m \rangle = S(S+1) \hbar^2 | S, m \rangle \qquad S = 0, \frac{1}{2}, 1, \frac{3}{2}, \dots$$
$$\mathcal{S}_z | S, m \rangle = m \hbar | S, m \rangle \qquad -S \le m \le S$$

• spin degree of freedom decoupled from kinematic d.o.f. :

$$\Psi \mathsf{Schr}(\vec{r}) \longrightarrow \Psi \mathsf{Schr}(\vec{r}) \times \chi_m$$

where χ_m is a (2S+1) – component "spinor"

- 1.2 **Example : Spin**-1/2
 - 2-component spinors

$$\chi = \left(\begin{array}{c} a \\ b \end{array}\right)$$

• operators may be represented by Pauli-matrices :

$$\mathcal{S}_x = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \mathcal{S}_y = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \mathcal{S}_z = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• eigenstates to
$$\vec{S}^2$$
 and S_z :
 $\chi_z^{\uparrow} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\chi_z^{\downarrow} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

• eigenvalues $S_z \chi_z^{\uparrow} = +\frac{1}{2}\chi_z^{\uparrow} \qquad S_z \chi_z^{\downarrow} = -\frac{1}{2}\chi_z^{\downarrow}$

particles in such states are "polarized in z-direction"

• general superposition $\chi = \begin{pmatrix} a \\ b \end{pmatrix} = a \chi_z^{\uparrow} + b \chi_z^{\downarrow} \qquad (\chi^{\dagger} \chi = 1)$

$$\Rightarrow \langle \mathcal{S}_z \rangle = \chi^{\dagger} \mathcal{S}_z \chi = \left(+\frac{1}{2} \right) |a|^2 + \left(-\frac{1}{2} \right) |b|^2 = \frac{1}{2} \left[|a|^2 - |b|^2 \right]$$

• Example : $a = b = 1/\sqrt{2}$

$$\chi = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \Rightarrow \langle \mathcal{S}_z \rangle = 0$$

- why ? Because this χ is eigenstate to \mathcal{S}_x (with eigenvalue +1/2)
- in other words,

$$\chi_x^{\uparrow} = \frac{1}{\sqrt{2}} \left[\chi_z^{\uparrow} + \chi_z^{\downarrow} \right]$$
 "polarized in *x*-dir."

• arbitrary direction \vec{n} with $|\vec{n}| = 1$:

$$\vec{n} \cdot \vec{S} = n_x S_x + n_y S_y + n_z S_z = \frac{1}{2} \begin{pmatrix} n_z & n_x - in_y \\ n_x + in_y & -n_z \end{pmatrix}$$

- state that is an eigenstate to this : "polarized in \vec{n} -direction" \vec{n} - "polarization vector"
- eigenvalues $\pm 1/2$

• how to find these eigenstates : use projection operators note that /

$$\left(\vec{n}\cdot\vec{S}\right)^2 = \frac{1}{4}\mathbbm{1} = \frac{1}{4}\left(\begin{array}{cc}1&0\\0&1\end{array}\right)$$

Therefore,

$$(\vec{n}\cdot\vec{S})\left[\begin{pmatrix}\underline{1}\\2 + \vec{n}\cdot\vec{S}\end{pmatrix} \begin{pmatrix}1\\0\end{pmatrix}\right] = +\frac{1}{2}\left[\begin{pmatrix}\underline{1}\\2 + \vec{n}\cdot\vec{S}\end{pmatrix} \begin{pmatrix}1\\0\end{pmatrix}\right]$$

Hence,

$$\left(\frac{1}{2} + \vec{n} \cdot \vec{S}\right) \left(\begin{array}{c} 1\\ 0 \end{array}\right) \qquad \text{is an}$$

Projection operators are $\frac{1}{2} \pm \vec{n} \cdot \vec{S}$

n eigenstate

• physical significance : for the eigenstate with eigenvalue +1/2

$$2 \langle \mathcal{S}_x \rangle = n_x = \mathcal{P}(\uparrow_x) - \mathcal{P}(\downarrow_x)$$
$$2 \langle \mathcal{S}_y \rangle = n_y = \mathcal{P}(\uparrow_y) - \mathcal{P}(\downarrow_y)$$
$$2 \langle \mathcal{S}_z \rangle = n_z = \mathcal{P}(\uparrow_z) - \mathcal{P}(\downarrow_z)$$

• all this information contained in

$$\rho = \frac{1}{2} \begin{pmatrix} 1+n_z & n_x - in_y \\ n_x + in_y & 1-n_z \end{pmatrix}$$

- this is the "spin density matrix" for the state
- its importance : describes also the spin of a more complex system for example, an ensemble of particles that is not in a pure state

1.3 A little more on the density matrix . . .

• pure state \leftrightarrow state vector – a superposition of eigenstates, say, to \mathcal{S}_z

take
$$|\Psi
angle = \sum_{m=-S}^{S} c_m |S,m
angle$$

• expectation value of any operator in this state :

$$\langle \mathcal{O} \rangle_{\Psi} = \sum_{m,m'} c_{m'}^* \langle S, m' | \mathcal{O} | S, m \rangle c_m = \sum_{m,m'} \underbrace{c_m c_{m'}^*}_{\rho_{m,m'}} \mathcal{O}_{m',m}$$

 $\equiv \operatorname{Tr}\left[\mathcal{O}\rho\right]$

- $\rho \ \leftrightarrow$ state \leftrightarrow expectation value for any operator
- \bullet for spin-1/2 and polarization in \vec{n} :

$$\rho = \frac{1}{2} \left(\begin{array}{cc} 1+n_z & n_x - in_y \\ n_x + in_y & 1-n_z \end{array} \right)$$

• non-pure state : state is one of statistical ensemble of possibilities \rightarrow incoherent mixture of i pure states with probabilities $p^{(i)}$

• define

$$\rho_{mm'} = \sum_{i} p^{(i)} c_m^{(i)} \left(c_{m'}^{(i)} \right)^*$$

• mean value of operator over *ensemble*

$$\langle \mathcal{O} \rangle_{\mathsf{ensemble}} = \sum_{i} p^{(i)} \sum_{m,m'} c_m^{(i)} \left(c_{m'}^{(i)} \right)^* \mathcal{O}_{m',m} = \operatorname{Tr} \left[\mathcal{O} \rho \right]$$

$$\text{for spin} - 1/2 \text{ find} \qquad \rho = \frac{1}{2} \left(\begin{array}{cc} 1 + \eta_z & \eta_x - i\eta_y \\ \eta_x + i\eta_y & 1 - \eta_z \end{array} \right)$$

$$\text{where} \quad \eta_i = \langle n_i \rangle = 2 \operatorname{Tr} \left[\mathcal{S}_i \rho \right] \qquad \qquad \vec{\eta}^2 \leq 1$$

• we'll see that for nucleon $\eta_z \sim \Delta q(x)/q(x)$, $\eta_{x,y} \sim \delta q(x)/q(x)$!

1.4 Spin in the relativistic theory

- physics invariant under Lorentz boosts, rotations, and translations in space and time
- \rightarrow Poincaré group, has 10 generators :

 ${\cal P}^{\mu}\,,\,\,\,\,\,{\cal M}^{\mu
u}$

- pure rotations $J_i = -\frac{1}{2} \epsilon_{ijk} \mathcal{M}^{jk}$ pure boosts $\mathcal{K}_i = \mathcal{M}^{i0}$
- find $[J_i, J_j] = i \epsilon_{ijk} J_k$ total angular momentum

Spin ?

• two group invariants (~> fundamental observables) :

$$\mathcal{P}_{\mu} \mathcal{P}^{\mu} = \mathcal{P}^2 = m^2$$

 $\mathcal{W}_{\mu} \mathcal{W}^{\mu}$ where $\mathcal{W}_{\mu} = -\frac{1}{2} \epsilon_{\mu
u
ho\sigma} \mathcal{M}^{
u
ho} \mathcal{P}^{\sigma}$ Pauli-Lubanski

- \mathcal{W}_{μ} satisfies $[\mathcal{W}_{\mu}, \mathcal{W}_{\nu}] = i \epsilon_{\mu\nu\rho\sigma} \mathcal{W}^{\rho} \mathcal{P}^{\sigma}$
- if acting on states at rest : $\left[\mathcal{W}^{i}, \mathcal{W}^{j} \right] = i m \epsilon_{ijk} \mathcal{W}^{k} \qquad \checkmark$
- then : identify $S_i \equiv \frac{1}{m} \mathcal{W}^i = J_i$

 \rightsquigarrow particle at rest with non-zero angular momentum !

- $\mathcal{W}_{\mu} \mathcal{W}^{\mu}$ has eigenvalues $m^2 S \left(S+1
 ight)$
- procedure : start with rest states and apply Lorentz transformations

1.5 Example : back to spin-1/2 !

• relativistic case : free spin-1/2 particle obeys Dirac equation

$$(i \partial_{\mu} \gamma^{\mu} - m) \Psi(x) = 0$$

- the γ^{μ} are the Dirac matrices. They are 4×4 matrices.
- \rightarrow solutions are 4-component spinors

$$\Psi(x) = \begin{cases} e^{-ip \cdot x} u(p) & \text{positive energy} \to \text{particle} \\ e^{+ip \cdot x} v(p) & \text{negative energy} \to \text{antiparticle} \end{cases}$$

each with two solutions - "spin up/down"

- recall : previously constructed eigenstates to $\vec{\mathcal{S}}^2$ and $\vec{n} \cdot \vec{\mathcal{S}}$
- Dirac solutions eigenstates to

$$\mathcal{W}_{\mu} \mathcal{W}^{\mu} | p, S \rangle = m^{2} S(S+1) | p, S \rangle \qquad S = \frac{1}{2}$$
$$-\frac{W \cdot n}{m} | p, S \rangle = \pm \frac{1}{2} | p, S \rangle$$

• $\Pi \equiv -\frac{W \cdot n}{m}$ "polarization operator"

- n "covariant polarization vector" $n^2 = -1$, $n \cdot p = 0$
- find for particle solutions

$$\Pi = \frac{1}{2} \gamma_5 \not h \qquad (\not h = \gamma_{\mu} n^{\mu})$$

• \rightsquigarrow projection operators $\frac{1}{2} (1 \pm \gamma_5 n)$

Two important cases :

(a) longitudinal polarization : $\vec{n} = \vec{p}/|\vec{p}|$

• find $\Pi = \frac{1}{2} \gamma_5 \not h = \frac{\vec{J} \cdot \vec{p}}{|\vec{p}|}$

• eigenvalues
$$\pm 1/2$$

$$\frac{\vec{J} \cdot \vec{p}}{|\vec{p}|} u_{\pm}(p) = \pm \frac{1}{2} u_{\pm}(p) \equiv \frac{\lambda}{2} u_{\pm}(p) \longrightarrow \lambda \text{ "helicity"}$$

• states labelled as $|\vec{p}, \lambda\rangle$

• massless particles :
$$\frac{\vec{J} \cdot \vec{p}}{|\vec{p}|} \rightarrow \gamma_5$$
 helicity = chirality

• $m \rightarrow 0$: helicity becomes Lorentz-invariant

(b) transverse polarization : $n = (0, \vec{n}_{\perp}, 0)$ (for \vec{p} in z direction)

• find after some work

$$\Pi = \gamma_0 \ \vec{J} \cdot \vec{n} = \gamma_0 \ J_\perp$$

- this is not the same as J_{\perp} !
- hence, "transversity", not "transverse spin"
- eigenvalues $\pm 1/2$

$$\gamma_0 J_{\perp} u_{\uparrow\downarrow}(p) = \pm \frac{1}{2} u_{\uparrow\downarrow}(p)$$

• as in non-relativistic theory :

$$u_{\uparrow}^{(x)} = \frac{1}{\sqrt{2}} \left[u_{+} + u_{-} \right]$$

 \bullet transverse polarization invariant under boosts along \vec{p}

Note :

- by "tuning n" can create general polarization with longitudinal and transverse components $s_{\parallel}\sim\lambda$, $s_{\perp}\sim n_{\perp}$
- at high energies find : $n^{\mu} \ = \ s_{\parallel} \ \frac{p^{\mu}}{m} \ + \ s_{\perp}^{\mu}$
- appears as if transverse spin unimportant at high energies
- however, not true : in high-energy processes only

$$\frac{1}{2} \not p \left[1 - s_{\parallel} \gamma_5 + \gamma_5 \not s_{\perp} \right]$$

• density matrix :

$$\rho = \frac{1}{2} \begin{pmatrix} 1+s_{\parallel} & s_x - is_y \\ s_x + is_y & 1-s_{\parallel} \end{pmatrix}$$

II. Polarized Scattering Processes

2.1 Some general remarks . . .

- measurements of spin phenomena may
 - help explore & understand a theory
 - test a theory
 - deduce nature of new dynamics & constrain a new theory
- in all cases : need to separate properties that are
 - "generic"
 - specific to the theory

2.2 An example : the process $\vec{e} \vec{\mu} \rightarrow e \mu$

- let's look at it in terms of helicity states $|\vec{p_1}, \lambda\rangle$ etc.
- amplitude for given helicity configuration : $\begin{aligned} H_{\lambda\lambda';\Lambda\Lambda'}(\theta,\,\varphi) \\ 16 \text{ ``helicity amplitudes''} \end{aligned}$
- \bullet helicity states have definite properties under rotations by α around φ :

 $|\vec{p_1}, \lambda\rangle \rightarrow e^{i \alpha \lambda/2} |\vec{p_1}, \lambda\rangle$ etc.

• tied to angular-momentum conservation

• this leads to :

$$H_{\lambda\lambda';\Lambda\Lambda'}(\theta,\varphi) = e^{\frac{i\varphi}{2}(\lambda-\lambda')} h_{\lambda\lambda';\Lambda\Lambda'}(\theta)$$

• from this, we can construct cross section for arbitrary polarization. Recall,

$$\chi_{\boldsymbol{x}}^{\uparrow} = \frac{1}{\sqrt{2}} \left[\chi_{\boldsymbol{z}}^{\uparrow} + \chi_{\boldsymbol{z}}^{\downarrow} \right]$$
 etc.

• note, cross section

$$rac{d\sigma}{d\Omega} \propto \left| H_{\dots}(heta, arphi)
ight|^2$$

• for simplicity, let's sum over final-state polarizations $\Lambda,\,\Lambda'$

• find most general form :

$$\frac{d\sigma}{d\Omega} \propto \left(1 + s_{\parallel} s_{\parallel}'\right) R_{1} + \left(1 - s_{\parallel} s_{\parallel}'\right) R_{1}' + \left(s_{\parallel} + s_{\parallel}'\right) R_{2} + \left(s_{\parallel} - s_{\parallel}'\right) R_{2}' + s_{\perp} \left\{\cos(\varphi) R_{3} - \sin(\varphi) R_{4}\right\} + s_{\perp}' \left\{\cos(\varphi) R_{3}' + \sin(\varphi) R_{4}'\right\} + s_{\parallel}' s_{\perp} \left\{\cos(\varphi) R_{5} - \sin(\varphi) R_{6}\right\} + s_{\parallel} s_{\perp}' \left\{\cos(\varphi) R_{5}' + \sin(\varphi) R_{6}'\right\} + s_{\perp} s_{\perp}' \left\{R_{7} + \cos(2\varphi) R_{8} - \sin(2\varphi) R_{9}\right\}$$

• has all the azimuthal-angular dependence !

• all $R_i \equiv R_i(\theta)$ are given in terms of the $h_{\lambda\lambda';\Lambda\Lambda'}$

Here they are . . .

$$R_1 = \sum_{\Lambda,\Lambda'} \left[|h_{++;\Lambda\Lambda'}|^2 + |h_{--;\Lambda\Lambda'}|^2 \right] \qquad R_1' = \sum_{\Lambda,\Lambda'} \left[|h_{+-;\Lambda\Lambda'}|^2 + |h_{-+;\Lambda\Lambda'}|^2 \right]$$

$$R_{2} = \sum_{\Lambda,\Lambda'} \left[|h_{++;\Lambda\Lambda'}|^{2} - |h_{--;\Lambda\Lambda'}|^{2} \right] \qquad R_{2}' = \sum_{\Lambda,\Lambda'} \left[|h_{+-;\Lambda\Lambda'}|^{2} - |h_{-+;\Lambda\Lambda'}|^{2} \right]$$

$$R_{\frac{3}{4}} = \sum_{\Lambda,\Lambda'} 2 \left\{ \begin{array}{c} \operatorname{Re} \\ \operatorname{Im} \end{array} \right\} \left[h_{++;\Lambda\Lambda'} h_{-+;\Lambda\Lambda'}^* \pm h_{--;\Lambda\Lambda'} h_{+-;\Lambda\Lambda'}^* \right]$$

$$R_{\frac{5}{6}} = \sum_{\Lambda,\Lambda'} 2 \left\{ \begin{array}{c} \operatorname{Re} \\ \operatorname{Im} \end{array} \right\} \left[h_{++;\Lambda\Lambda'} h_{-+;\Lambda\Lambda'}^* \mp h_{--;\Lambda\Lambda'} h_{+-;\Lambda\Lambda'}^* \right]$$

$$R_7 = 2 \sum_{\Lambda,\Lambda'} \operatorname{Re} \left[h_{++;\Lambda\Lambda'} h_{--;\Lambda\Lambda'}^* \right] \qquad R_8 = 2 \sum_{\Lambda,\Lambda'} \operatorname{Re} \left[h_{+-;\Lambda\Lambda'} h_{-+;\Lambda\Lambda'}^* \right]$$

$$R_9 = 2 \sum_{\Lambda,\Lambda'} \operatorname{Im} \left[h_{+-;\Lambda\Lambda'} h_{-+;\Lambda\Lambda'}^* \right]$$

What more can we say ?

• now use properties of the underlying theory (here, QED)

• Parity invariance : helicity $\vec{J} \cdot \vec{p}/|\vec{p}|$ is pseudoscalar under space reflection

 $\hat{P} | \vec{p}, \lambda \rangle = \eta | -\vec{p}, -\lambda \rangle$ ($\eta = \text{intrinsic parity} \times \text{phase}$)

• one can show that for our amplitudes :

$$h_{-\lambda,-\lambda';-\Lambda,-\Lambda'}(\theta) = (-1)^{(\lambda-\lambda'-\Lambda+\Lambda')/2} h_{\lambda\lambda';\Lambda,\Lambda'}(\theta)$$

- therefore, $h_{--;--} = h_{++;++}(\theta)$ $h_{-+;-+} = h_{+-;+-}(\theta)$ $h_{-+;--} = -h_{+-;++}(\theta)$ etc.
- $16 \rightarrow 8$ helicity amplitudes

Careful inspection reveals :

$$R_2 = R'_2 = R_3 = R'_3 = R_6 = R'_6 = R_9 = 0$$

Therefore,

$$\frac{d\sigma}{d\Omega} \propto \left(1 + s_{\parallel} s_{\parallel}'\right) R_{1} + \left(1 - s_{\parallel} s_{\parallel}'\right) R_{1}' + \left(s_{\parallel} + s_{\parallel}'\right) R_{2} + \left(s_{\parallel} - s_{\parallel}'\right) R_{2}' + s_{\perp} \left\{\cos(\varphi) R_{3} - \sin(\varphi) R_{4}\right\} + s_{\perp}' \left\{\cos(\varphi) R_{3}' + \sin(\varphi) R_{4}'\right\} + s_{\parallel}' s_{\perp} \left\{\cos(\varphi) R_{5} - \sin(\varphi) R_{6}\right\} + s_{\parallel} s_{\perp}' \left\{\cos(\varphi) R_{5}' + \sin(\varphi) R_{6}'\right\} + s_{\perp} s_{\perp}' \left\{R_{7} + \cos(2\varphi) R_{8} - \sin(2\varphi) R_{9}\right\}$$

- Time reversal invariance : relates $A + B \rightarrow C + D$ to $C + D \rightarrow A + B$ Here we have elastic reaction $A + B \rightarrow A + B$
- one can show that for our amplitudes :

$$h_{\Lambda,\Lambda';\lambda,\lambda'}(\theta) = (-1)^{(\lambda-\lambda'-\Lambda+\Lambda')/2} h_{\lambda\lambda';\Lambda,\Lambda'}(\theta)$$

• therefore,

$$h_{+-;--} = -h_{--;+-}(\theta)$$

 $h_{+-;++} = -h_{++;+-}(\theta)$

• $8 \rightarrow 6$ helicity amplitudes

Chirality (or helicity-conservation) :

• saw that at high energies helicity = chirality

$$\Psi_{\boldsymbol{R},\boldsymbol{L}} = \frac{1}{2} \left[\mathbb{1} \pm \gamma_5 \right] \Psi$$

- preserved in all vector and axial-vector current interactions
- preserved by all perturbative QCD and electroweak interactions

$$\gamma, W^{\pm}, Z^{0}: \begin{cases} \bar{\Psi}\gamma^{\mu}\Psi = \bar{L}\gamma^{\mu}L + \bar{R}\gamma^{\mu}R\\ \bar{\Psi}\gamma^{\mu}\gamma^{5}\Psi = \bar{L}\gamma^{\mu}L - \bar{R}\gamma^{\mu}R\end{cases}$$

$$g: \qquad \bar{\Psi}\gamma^{\mu}\frac{\lambda}{2}\Psi = \bar{L}\gamma^{\mu}\frac{\lambda}{2}L + \bar{R}\gamma^{\mu}\frac{\lambda}{2}R$$

• violated for non-standard ((pseudo)scalar,tensor) interactions

• Feynman diagram for $e \mu$ scattering :

 \bullet requires $\,\Lambda\,=\,\lambda,\,\Lambda'\,=\,\lambda'$, or

$$h_{\lambda\lambda';\Lambda\Lambda'} \longrightarrow h_{\lambda\lambda';\lambda\lambda'}$$

This gives :

$$R_4 = R'_4 = R_5 = R'_5 = R_7 = R_8 = 0$$

Therefore (with parity),

- However, note : before using chirality, we had assumed nothing about specifics of the reaction !
- For $e^-e^+ \rightarrow \mu^-\mu^+$ things would be different :

 \bullet requires $\lambda' = -\lambda$, $\Lambda' = -\Lambda$, or

$$h_{\lambda\lambda';\Lambda\Lambda'} \longrightarrow h_{\lambda,-\lambda;\Lambda,-\Lambda}$$

In this case :

$$R_1 = R_4 = R'_4 = R_5 = R'_5 = R_7 = 0$$

Therefore (with parity),

The upshot is :

- Parity invariance (if it holds) forbids
 - single-longitudinal spin asymmetries of the form

$$A_L = \frac{\sigma_{\rightarrow} - \sigma_{\leftarrow}}{\sigma_{\rightarrow} + \sigma_{\leftarrow}} \equiv \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

- certain azimuthal-angular dependences for transverse polarization
- single-transverse spin asymmetries of the form

$$A_N = rac{\sigma_\uparrow - \sigma_\downarrow}{\sigma_\uparrow + \sigma_\downarrow}$$

are allowed, but require helicity flips and complex amplitudes (actually, require "Im{ non-flip \times single-flip* }")

• double-longitudinal spin asymmetries,

$$A_{LL} = \frac{\sigma_{++} + \sigma_{--} - \sigma_{+-} - \sigma_{-+}}{\sigma_{++} + \sigma_{--} + \sigma_{+-} + \sigma_{-+}}$$

are allowed. Reduce under parity to

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

• double-transverse spin asymmetries,

$$A_{TT} = \frac{\sigma_{\uparrow\uparrow} - \sigma_{\uparrow\downarrow}}{\sigma_{\uparrow\uparrow} + \sigma_{\uparrow\downarrow}}$$

are allowed, but require helicity flip or annihilating fermion lines

• [occasionally may use symmetry constraints for identical particles (e.g., $pp \rightarrow pp$)]

We'll encounter all this . . .

III. Lepton-Nucleon Scattering

 $l N \rightarrow l' X$: standard 'microscope' to explore nucleon structure !

$$Q \equiv \sqrt{-q^2} \rightarrow \text{"Resolution"} \qquad \frac{\hbar}{Q} = \frac{2 \times 10^{-16} \,\mathrm{m}}{Q/\text{GeV}} \qquad r_N \sim 10^{-15} \,\mathrm{m}$$

"inelasticity"
$$x \equiv \frac{Q^2}{2P \cdot q} \equiv \frac{Q^2}{2m\nu} = \frac{Q^2}{Q^2 + M_X^2 - m^2} \qquad \text{Bjorken var.}$$

3.1 Elastic lepton-nucleon scattering (brief . . .)

- x = 1 for elastic case
- if proton had no structure : would be same as $e \mu \rightarrow e \mu$!

• amplitude

$$\mathcal{M} = -e^2 \left(\frac{ig_{\mu\nu}}{Q^2}\right) \bar{u}(k') \gamma^{\nu} u(k) \langle P' \mid J^{\mu}(0) \mid P \rangle$$

• find structure

$$\langle P' \mid J^{\mu}(0) \mid P \rangle = \bar{u}(P') \left[\gamma^{\mu} \mathcal{F}_1(Q^2) + \frac{i \sigma_{\mu\nu} q^{\nu}}{2m} \mathcal{F}_2(Q^2) \right] u(P)$$

• $\mathcal{F}_1(Q^2)$, $\mathcal{F}_2(Q^2)$ "nucleon elastic form factors"

• Sachs form factors :

$$G_E(Q^2) = \mathcal{F}_1(Q^2) - \frac{Q^2}{4m^2} \mathcal{F}_2(Q^2)$$
$$G_M(Q^2) = \mathcal{F}_1(Q^2) + \mathcal{F}_2(Q^2)$$

- cross section measures G_E^2 , G_M^2
- \rightarrow access to nucleon properties, e.g.

$$G_E(0) = e_N \qquad G_M(0) = \kappa_N$$

$$\langle r^2 \rangle_E = -6 \frac{dG_E(Q^2)}{dQ^2} \Big|_{Q^2=0} \qquad \text{``charge radius''}$$

• with spin : different combinations of G_E , G_M in cross section

Toward increasing masses $W = M_X$:

