
Computer ImmunologyStephanie ForrestySteven A. HofmeyryAnil SomayajiyDept. of Computer ScienceUniversity of New MexicoAlbuquerque, NM 87131-1386forrest@cs.unm.eduCommunications of the ACM (to appear)March 21, 1996Natural immune systems protect animals from dangerous foreign pathogens, includingbacteria, viruses, parasites, and toxins. Their role in the body is analogous to that of com-puter security systems in computing. Although there are many di�erences between livingorganisms and computer systems, this article argues that the similarities are compellingand could point the way to improved computer security. Improvements can be achieved bydesigning computer immune systems that have some of the important properties illustratedby natural immune systems. These include multi-layered protection, highly distributed de-tection and memory systems, diversity of detection ability across individuals, inexact match-ing strategies, and sensitivity to most new foreign patterns. We �rst give an overview ofhow the immune system relates to computer security. We then illustrate these ideas withtwo examples.The immune system is comprised of cells and molecules.1 Recognition of foreign protein,called antigen, occurs when immune system detectors, including T cells, B cells, and anti-yCurrently on leave at the MIT Arti�cial Intelligence Laboratory.1A good source for basic immunology is [6] and a computer scientist's overview of immunology is givenin http://www.cs.unm.edu/~steveah/imm-html/immune-system.html.1



Infect Recognize DestroyFigure 1: An Overview of the Immune System. Infections, shown in red, (bacteria, viruses,or parasites) are recognized by immune system detectors (T cells, B cells, and antibodies),shown in blue and green, when molecular bonds form between them. Infections are eliminatedby general-purpose scavenger cells (macrophages), indicated by the thin line surrounding thedetector/antigen complex.bodies, bind to antigen. Binding between detector and antigen is determined by the physicaland chemical properties of their binding regions. Binding is highly speci�c, such that eachdetector recognizes only a limited set of structurally related antigen. When a detector andantigen bind, a complex set of events takes place, usually resulting in the elimination ofthe antigen by scavenger cells called macrophages (the details of how antigen is bound andcleared depend on the type of detectors involved). Figure 1 illustrates this highly simpli�edview of the immune system. A striking feature of the immune system is that the processes bywhich it generates detectors, identi�es and eliminates foreign material, and remembers thepatterns of previous infections are all highly parallel and distributed. This is one reason thatthe immune system mechanisms are so complicated, but it also makes them highly robust,both to failure of individual components and to attacks on the immune system itself.The analogy between computer security problems and biological processes was recognized2



as early as 1987, when the term \computer virus" was introduced by Adelman [1]. Later,Spa�ord argued that computer viruses are a form of arti�cial life [12], and several authorsinvestigated the analogy between epidemiology and the spread of computer viruses acrossnetworks [10, 7]. However, current methods for protecting computers, both against virusesand many other kinds of intrusions, have largely failed to take advantage of what is knownabout how natural biological systems protect themselves from infection. Some initial workin this direction included a virus-detection method based on T cell censoring in the thymus[5] and an integrated approach to virus detection incorporating ideas from several di�erentbiological systems [8]. However, these early e�orts are regarded largely as novelties, and theprinciples they illustrate have yet to be widely adopted.Immunologists have traditionally described the problem solved by the immune system asthe problem of distinguishing \self" from dangerous \other" (or \nonself") and eliminatingother.2 Self is taken to be the internal cells and molecules of the body, and nonself is anyforeign material, particularly bacteria, parasites, and viruses. The problem of protectingcomputer systems from malicious intrusions can similarly be viewed as the problem of dis-tinguishing self from nonself. In this case nonself might be an unauthorized user, foreigncode in the form of a computer virus or worm, unanticipated code in the form of a Trojanhorse, or corrupted data.Distinguishing between self and nonself in natural immune systems is di�cult for severalreasons. First, the components of the body are constructed from the same basic buildingblocks as nonself, particularly proteins. Proteins are an important constituent of all cells, andthe immune system processes them in various ways, including in fragments called peptides,which are short sequences of amino acids. Second, the size of the problem to be solved islarge with respect to the available resources. For example, it has been estimated that thevertebrate immune system needs to be able to detect as many as 1016 di�erent patterns,yet it only has about 105 di�erent genes, out of which it must construct the entire immune2The modern view emphasizes the immune system's role in eliminating infection in addition to its toleranceof self, an emphasis that is similarly important in the computer-security problem.3



system (as well as everything else in the body). The di�culty of this discrimination taskis shown by the fact that the immune system occasionally makes mistakes. Autoimmunediseases provide many examples of the immune system confusing self with other.The computer security problem is also di�cult. There are many legitimate changes to self(new users, new programs, etc.), many paths of intrusion, and the periphery of a networkedcomputer is not as clearly de�ned as the periphery of an individual animal. Firewalls attemptto construct such a periphery, often with limited success.The natural immune system has several distinguishing features that we believe provideimportant clues about how to construct robust computer security systems. These featuresinclude multi-layered protection, distributed detection, diversity across di�erent systems,and inexact detection:� Multi-layered protection. The body provides many layers of protection against foreignmaterial, including passive barriers such as the skin and mucus membranes, physiolo-gical conditions such as pH and temperature, generalized in
ammatory responses, andadaptive responses, including both the humoral (B cell) and cellular (T cell) mechan-isms. Many computer security systems are monolithic in the sense that they de�ne aperiphery inside which all activity is trusted. Once the basic defense mechanism is vi-olated there is rarely any backup mechanism to detect the violation. A good exampleis a computer security system that relies on encryption to protect data but has nomechanism for noticing if the encryption system has been broken.� Detection is distributed. The immune system's detection and memory systems arehighly distributed, and there is no centralized control that initiates or manages a re-sponse. Its success arises from highly localized interactions among individual detectorsand e�ectors, variable cell division and death rates that allow the immune system toallcoate resources (cells) where they are most needed, and the ability to tolerate manykinds of failures, including the deletion of entire organs such as the spleen.� Each copy of the detection system is unique. Each individual in a population has a4



unique set of protective cells and molecules. Computer security often involves protect-ing multiple sites (multiple copies of software, multiple computers on a network, etc.).In these environments, once a way is found to avoid detection at one site, then all sitesbecome vulnerable. A better approach would be to provide each protected locationwith a unique set of detectors or even a unique version of software. Thus, if one sitewere compromised, other sites would likely remain secure.� Detection of previously unseen foreign material. An immune system that protected usonly from those diseases against which we had been vaccinated would be much lesse�ective than one which noticed new forms of infection. Immune systems rememberprevious infections and mount a more agressive response against those that have beenseen before. Immunologists call this a secondary response. However, in the case of anovel infection, the immune system initiates a primary response, evolving new detectorsthat are specialized for the infection. This process is slower than a secondary response,yet it provides an essential capability lacking in many computer security systems.Many virus and intrusion detection methods scan only for known patterns (e.g., virussignatures), which leaves systems vulnerable to attack by novelmeans. Some exceptionsinclude anomaly intrusion detection systems [2] and cryptographic checksums.� Detection is imperfect, i.e., not all antigen are well matched by a preexisting detector.The immune system uses two strategies to confront this problem|learning (during theprimary response) and distributed detection (both within a single individual and acrosspopulations of individuals). Thus, high system-wide reliability is achieved at relativelylow cost (in time and space) and with minimal communication among components.What would it take to build a computer immune system with some or all of the abovefeatures? Such a system would have much more sophisticated notions of identity and pro-tection than those a�orded by current operating systems, and it would provide a general-purpose protection system to augment current computer security systems. It would haveat least the following basic components: a stable de�nition of self, prevention or detection5



and subsequent elimination of dangerous foreign activities (infections), memory of previousinfections, a method of recognizing new infections, and a method of protecting the immunesystem itself from attack.If we want to cast the problem of computer security into the framework of distinguishingself from nonself, then the �rst task is to de�ne what we mean by self and what we meanby nonself. Do we want to de�ne self in terms of memory access patterns on a single host,TCP/IP packets entering and leaving a single host, the collective behavior of a local networkof computers, network tra�c through a router, instruction sequences in an executing orstored program, user behavior patterns, or even keyboard typing patterns? The immunesystem has evolved its recognition machinery to focus on peptides (protein fragments). Yet,it must consider many di�erent paths of intrusion. For example, there are two quite di�erentrecognition systems in the immune system, the cell-mediated response aimed at virusesand other intra-cellular infections and the humoral response which is primarily directed atbacteria and other extra-cellular material. For computers, it is likely that self will also needto be presented in multiple ways to provide comprehensive protection.We want our de�nition of self to be tolerant of many legitimate changes, including edit-ing �les, new software, new users, changes in user habits, and routine activities of systemadministrators. At the same time, we want it to notice unauthorized changes to �les, viralsoftware, unauthorized users, and insider attacks. In computer security parlance, we desirea system with low false positive rates and few false negatives. It is generally not possible toget perfect discrimination between legitimate and illegitimate activities. Given our bias to-wards multi-layered protection and adaptive responses, we are more willing to tolerate falsenegatives than false positives, because false negatives for one layer might be true positivesfor another.Two examples of how we are applying ideas from immunology to today's computer se-curity problems are an intrusion-detection method and a distributable change-detection al-gorithm. The examples highlight an important question about how analogies between biologyand computer science can be applied. In one case the analogy is much more direct than in6



the other. Yet, both examples incorporate the basic principles elucidated earlier and supportthe overall vision that guides our work. The analogy between immunology and computersecurity is a rich one and goes well beyond the two examples presented here. For example,Kephart et al. [8] exploit the same analogy in completely di�erent ways. The analogy withimmunology contributes an important point of view about how to achieve computer security,one that can potentially lead to systems built with quite di�erent sets of assumptions andbiases than in the past.Intrusion Detection for System ProcessesAs an initial step towards de�ning self in a realistic computing environment, we aredeveloping an intrusion-detection system for networked computers [4]. Discrimination mustbe based on some characteristic structure that is both compact and universal in the protectedsystem. The immune system's \choice" to base discrimination on patterns of peptides limitsits e�ectiveness. For example, it cannot protect the body against radiation. However,proteins are a component of all living matter and generally di�er between self and nonself,so they provide a good distinguishing characteristic.What is the most appropriate way to de�ne self in a computer? Most earlier workon intrusion detection monitors the behavior of individual users, but we have decided toconcentrate on system processes [9]. Our \peptide" for a computer system is de�ned interms of short sequences of system calls executed by privileged processes in a networkedoperating system. Preliminary experiments on a limited testbed of intrusions and otheranomalous behavior show that short sequences of system calls (currently sequences of length6) provide a compact signature for self that distinguishes normal from abnormal behavior.The strategy for our intrusion-detection system is to build up a database of normalbehavior for each program of interest. Each database is speci�c to a particular architecture,software version and con�guration, local administrative policies, and usage patterns. Once astable database is constructed for a given program in a particular environment, the database7



can be used to monitor the program's behavior. The sequences of system calls form theset of normal patterns for the database, and sequences not found in the database indicateanomalies. In terms of the immune system, one host (or small network of hosts) would havemany di�erent databases de�ning self. This is analogous to the many types of tissue in thebody, each of which expresses a somewhat di�erent set of proteins. That is, the patternscomprising self are not uniformly distributed throughout the protected system.There are two stages to the proposed system. In the �rst stage, we scan traces of normalbehavior and build up a database of characteristic normal patterns (observed sequencesof system calls). [SHOWN IN SIDEBAR.] Parameters to system calls are ignored, andwe trace forked subprocesses individually. In the second stage, we scan traces that mightcontain abnormal behavior, matching the trace against the patterns stored in the database.If a pattern is seen that does not occur in the normal database, it is recorded as a mismatch(see SIDEBAR). In our current implementation, tracing and analysis are performed o�-line. Mismatches are the only observable that we use to distinguish normal from abnormal.We observe the number of mismatches encountered during a test trace and aggregate theinformation in several ways. For example, Figure 2 shows the mismatch rate through timeduring a successful exploit.Do the normal databases discriminate between normal and abnormal behavior? Todate, we have constructed databases of normal behavior for three di�erent UNIX programs:sendmail, wu.ftpd (a Linux version of ftpd), and lpr. When comparing the normal data-base for one program (e.g., sendmail) against traces of normal behavior of a di�erent pro-gram (e.g., ls), we observe 40 - 80 % mismatches over the length of the foreign (e.g., ls)trace. We also observe clear detection of several common intrusions for the three programs(mismatch rates are generally in the range of 1 to 20 % over the length of the trace). Theseresults suggest that short sequences of system calls do provide a compact signature for normalbehavior and that the signature has a high probability of being perturbed during intrusions.Although this method does not provide a cryptographically strong or completely reliablediscriminator between normal and abnormal behavior, it is much simpler than other proposed8



0

2

4

6

8

10

12

14

16

18

20

0 200 400 600 800 1000 1200 1400 1600 1800

Position in Trace

N
u

m
b

er
 o

f 
M

is
se

s 
in

 L
o

ca
lit

y 
F

ra
m

e

Figure 2: Anomalous signature for successful syslog exploit of sendmail under SunOS4.1.4.The normal database was generated with sequences of length 6. The x-axis measures theposition in the anomalous trace in units of system calls. The y-axis shows how many mis-matches were recorded when the anomalous trace was compared with the normal database.The y-axis unit of measure is total number of mismatches over the past 20 system calls inthe trace (called the locality frame). That is, for position i in the trace, the locality framerecords how many mismatches were observed in positions i� 19 through i.
9



methods and could potentially provide a lightweight, real-time tool for continuously checkingexecuting code. Another appealing feature is that code that runs frequently will be checkedfrequently, and code that is seldom executed will be infrequently checked. Thus, systemresources are devoted to protecting the most relevant code segments. Finally, given thelarge variability in how individual systems are currently con�gured, patched, and used, weconjecture that databases at di�erent sites would likely di�er enough to meet the principle ofuniqueness stated earlier. This is important for another reason|it could provide a behavioralsignature, or identity, for a computer that is much harder to falsify than, for example, an IPaddress. Our results, however, are quite preliminary, and a great deal of additional testingand development are needed before a system built on these ideas could be deployed.Distributed Change DetectionThe second example borrows more closely from mechanisms used in the immune system.T cells are an important class of detector cells in the immune system. There are severaldi�erent kinds of T cells, each of which plays its own role in the immune response. All Tcells, however, have binding regions that can detect antigen fragments (peptides). Thesebinding regions are created through a pseudo-random genetic process, which we can think ofanalogously to generating random strings. Given that the binding regions, called receptors,are created randomly, there is a high probability that some T cells will detect self peptides.The immune system solves this problem by sending nonfunctional T cells to an organ calledthe thymus to mature. There are several stages of T-cell maturation, one of which is acensoring process in which T cells that bind with self proteins circulating through the thymusare destroyed. T cells that fail to bind to self are allowed to mature, leave the thymus,and become part of the active immune system. This process, called negative selection,is illustrated in Figure 3. Once in circulation, if a T cell binds to antigen in su�cientconcentration, a recognition event can be said to have occurred, triggering the complex setof events that leads to elimination of the antigen.10



Immature T-cells
in the thymus

Self proteins Those that bind, die

self-tolerant

T-cell death

Figure 3: Censoring T cells in the thymus.The T cell censoring process can be thought of as de�ning a protected collection ofdata (the self proteins) in terms of its complementary patterns (the nonself proteins). Wecan use this principle to design a distributable change-detection algorithm with interestingproperties. Suppose we have some collection of digital data, which we will call self, that wewish to monitor for changes. This might be an activity pattern, as in the intrusion-detectionalgorithm described above, a compiled program, or a �le of data. The algorithm works asfollows:1. Generate a set of detectors that fail to match self.2. Use the detectors to monitor the protected data.3. Whenever a detector is activated, a change must have occurred, and the location ofthe change is known.There are several details that must be speci�ed before we have an implementable algorithm:(1) how are the detectors represented? (2) How is a match de�ned? (3) how are detectorsgenerated? (4) How e�cient is the algorithm? These questions are explored in detail in[5, 3], but we give some highlights here. 11



In our computer immune system, binding between detectors and foreign patterns ismodeled as string matching between pairs of strings. Self is de�ned as a set of equal-length strings (e.g., by logically segmenting the protected data into equal-size substrings),and each detector is de�ned to be a string of the same length as the substring. A perfectmatch between two strings of equal length means that at each location in the string, thesymbols are identical. However, perfect matching is rare in the immune system. Partialmatching in symbol strings can be de�ned using Hamming distance, edit distance, or a moreimmunologically plausible rule called r-contiguous bits [11]. This rule is based on regionsof contiguous matches. It looks for r contiguous matches between symbols in correspondingpositions. Thus, for any two strings x and y, we say that match(x; y) is true if x and y agreeat at least r contiguous locations.Detectors can be generated in several ways. A general method (one that works for anymatching rule) is also the one apparently used by the immune system. Simply generatedetectors at random, compare them against self, eliminating those that match self. For the\r-contiguous bits" rule de�ned above, the random generating procedure is quite ine�cient|roughly exponential in the size of self.3 However, more e�cient algorithms based on dynamicprogrammingmethods allow us to generate detectors in linear time for certain matching rules[3]. The total number of detectors that are required to detect nonself (using the r-contiguousbits matching rule) is the same order of magnitude as the size of self.4The algorithm has several interesting properties. First, it can be easily distributed be-cause each detector covers a small part of nonself. A set of negative detectors can be splitup over multiple sites, which will reduce the coverage at any given site but provide goodsystem-wide coverage. To achieve similar system-wide coverage with positive detection is3It is interesting to note that only 2% of the immatureT cells entering the thymus complete the maturationprocess and become functioning T cells. It is not known how much of this deletion can be attributed tonegative selection, but it is thought to be sizable.4This is a gross simpli�cation. The actual number is heavily dependent on how the self set is organized,what false-negative rate we are willing to tolerate, and choice of matching rule. See [5, 3] for a more carefulanalysis. 12



much more expensive: either a nearly complete set of positive detectors will be needed atevery site, resulting in multiple copies of the detection system, or the sites must commu-nicate frequently to coordinate their results. A second point about this algorithm is that itcan tolerate noise, depending on the details of how the matching function is de�ned. Con-sequently, the algorithm is likely to be more applicable to dynamic or noisy data like theintrusion-detection example than, for instance, in cryptographic applications where e�cientchange-detection methods already exist. The algorithm's feasibility was originally shown onthe problem of computer virus detection in DOS environments [5]. In this work, the protec-ted data were DOS system �les, the self set was generated by logically segmenting .com �lesinto equal-size substrings of 32 (binary) characters, detectors (32-bit strings) were generatedrandomly, the r-contiguous bits matching rule was used with thresholds ranging from 8 to13, and infections were generated by various �le-infector viruses. For example, one self setconsisted of 655 self strings and was protected with essentially 100% reliability by as few as10 detectors. Similar results were later obtained with boot-sector viruses.ConclusionReturning to the four principles that we discussed earlier, the intrusion-detection systemcould be part of a multi-layered system, for example, sitting behind cryptographic and userauthentication systems. It could be distributed among sites, for example, using the negative-selection algorithm. Because the databases of normal behavior are generated empirically,based on local operating conditions, each di�erent site will have unique protection. Finally,by focusing on anomaly intrusion detection, it trivially meets the requirement to be sensitiveto new forms of attack.We have given two concrete illustrations of how principles of immunology can be incor-porated into a computer security framework. These examples represent some initial stepstowards the larger intellectual vision of robust and distributed protection systems for com-puters. We have ignored many important complexities of the immune system, some of which13



will have to be incorporated before we achieve our goal. For example, it is hard to imaginehow we could implement truly distributed protection without adopting the immune systemstrategy of self-replicating components or some of the complex molecular signaling mechan-isms (e.g., interleukins) used to control the immune response. Another aspect of the analogythat has not yet been speci�ed involves the circulation pathways by which immune cellsmigrate through the body. More generally, many other biological mechanisms have beenincorporated into computational systems, including evolution, neural models, viruses, andparasites, many of which might be relevant to the computer security problem. In the nearfuture, we hope to integrate the negative-selection algorithm with our intrusion-detectionwork, and then begin augmenting the system with other immune system features.Although this article has stressed the similarities, there are also many important di�er-ences between computers and living systems. The success of the analogy will ultimately reston our ability to identify the correct level of abstraction, preserving what is essential froman information-processing perspective and discarding what is not. This is complicated bythe fact that natural immune systems process cells and molecules, but computer immunesystems would be handling other kinds of data. In the case of a computer-vision or speech-recognition system, the input data to the system is in principle the same as that processedby the natural system|photons or sound waves. Thus, deciding exactly how to draw theanalogy is a di�cult task, and there are certainly many di�erent strategies that could betried. We have chosen to model peptides as sequences of system calls and to model bindingas string matching. There are many other possible choices, some of which we hope to explorein future work.
14



Building

open, read, mmap, mmap, open, read, mmap

open, read, mmap
read, mmap, mmap
mmap, mmap, open
mmap, open, read

Checking

open, read, mmap, mmap, open, mmap, mmap

mmap, open, mmap
open, mmap, mmap

(2 misses out of 5 = 40%)Figure 4: Sequence databases for system calls in UNIX processes. This trace of sevensystem calls produces a database of normal patterns that contains four unique sequences.An example anomalous trace is constructed by replacing one read with a mmap (shown inread). This is detected in the checking phase because the anomalous trace contains twosubsequences that do not appear in the normal database.Sidebar|Database of Normal PatternsTo build a database of normal patterns, we �rst collect a trace of system calls emittedby a normally running process. We then slide a window of size k across the trace, recordingeach unique k-symbol sequence. This technique goes by various names, including \time-delay embedding" and \n-gram analysis." It is illustrated in Figure 4 on a trace of sevensystem calls and a window size of three, resulting in a database of four unique sequences.This method di�ers slightly from that described in [4] and gives signi�cantly better results.Once the database of normal behavior has been constructed, new behavior can be mon-itored for anomalies, by tracing the system calls and checking them against the existingdatabase (Figure 4). Here, a one-symbol change (read to mmap) in one position causes twomismatches in the checking procedure.An important consideration is how to choose the normal behavior that is used to de�nethe normal database. We have experimented with two methods, synthetic and actual. In the�rst case, we trace a running process while we exercise it via a set of synthetic commands. Forexample, we have a suite of 112 arti�cial email messages that we use to exercise sendmail,which results in a highly compact database of 891 di�erent sequences, each of length 6.15



This test suite is very useful for replicating results, comparing performance in di�erentsettings and other kinds of controlled experiments. We are also actively collecting traces ofnormal behavior in live user environments. These data are di�cult to collect and hard toevaluate, but they provide important information about how our system is likely to performin realistic settings, including data on false-positive rates. For example, in initial studiesof lpr in a \live" environment, we observed some growth in database size but less than weanticipated (over a four month trial the database roughly doubled in size, from 171 distinctsequences after one month to 354 after four, mostly due to network access errors underloaded conditions).AcknowledgmentsThe authors gratefully acknowledge support from the National Science Foundation (grantIRI-9157644), the O�ce of Naval Research (grant N00014-95-1-0364), Defense AdvancedResearch Projects Agency N00014-96-1-0680), Interval Research Corp., the MIT Arti�cialIntelligence Laboratory, and the Santa Fe Institute. Many people have contributed importantideas and suggestions for this paper, including D. Ackley, R. Brooks, P. D'haeseleer, A.Kosoresow, N. Minar, M. Opera, A. Perelson, B. Sanchez, H. Shrobe, and D. Smith. Figure1 was prepared by R. Hightower. The data presented in Figure 2 were generated with thehelp of L. Rogers and T. Longsta� of the Computer Emergency Response Team (CERT).References[1] F. Cohen. Computer viruses. Computers & Security, 6:22{35, 1987.[2] D. E. Denning. An intrusion-detection model. IEEE Transactions on Software Engin-eering, (2):222, February 1987. 16



[3] P. D'haeseleer, S. Forrest, and P. Helman. An immunological approach to change detec-tion: algorithms, analysis and implications. In Proceedings of the 1996 IEEE Symposiumon Computer Security and Privacy. IEEE Press, 1996.[4] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longsta�. A sense of self for unix processes.In Proceedings of the 1996 IEEE Symposium on Computer Security and Privacy. IEEEPress, 1996.[5] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri. Self-nonself discrimination ina computer. In Proceedings of the 1994 IEEE Symposium on Research in Security andPrivacy, Los Alamitos, CA, 1994. IEEE Computer Society Press.[6] C. A. Janeway and P. Travers. Immunobiology: the immune system in health anddisease. Current Biology Ltd., London, 2nd edition, 1996.[7] J. O. Kephart, S. R. White, and D. M. Chess. Computers and epidemiology. IEEESpectrum, 30(5):20{26, 1993.[8] J. O. Kephart, G. B. Sorkin, W. C. Arnold, D. M. Chess, G. J. Tesauro, and S. R. White.Biologically inspired defenses against computer viruses. In IJCAI '95. InternationalJoint Conference on Arti�cial Intelligence, 1995.[9] C. Ko, G. Fink, and K. Levitt. Automated detection of vulnerabilities in priviledgedprograms by execution monitoring. In Proceedings of the 10th Annual Computer SecurityApplications Conference, pages 134{144, December 5{9 1994.[10] W. H. Murray. The application of epidemiology to computer viruses. Computers &Security, 7:139{150, 1988.[11] J. K. Percus, O. Percus, and A. S. Perelson. Predicting the size of the antibody com-bining region from consideration of e�cient self/non-self discrimination. Proceedings ofthe National Academy of Science, 90:1691{1695, 1993.17



[12] E. H. Spa�ord. Computer viruses|a form of arti�cial life? In C. G. Langton, C. Taylor,J. D. Farmer, and S. Rasmussen, editors, Arti�cial Life II, pages 727{745. Addison-Wesley, Redwood City, CA, 1992.

18


