
Immunity by Design: An Artificial Immune System

Steven A. Hofmeyr and Stephanie Forrest
Dept. of Computer Science
University of New Mexico

Albuquerque, NM 87131-1386fsteveah,forrestg@cs.unm.edu

Abstract

We describe an artificial immune system (AIS)
that is distributed, robust, dynamic, diverse and
adaptive. It captures many features of the ver-
tebrate immune system and places them in the
context of the problem of protecting a network
of computers from illegal intrusions.

1 INTRODUCTION

The immune system is highly complicated and appears to
be precisely tuned to the problem of detecting and eliminat-
ing infections. We believe that it also provides a compelling
example of a distributed information-processing system,
one which we can study for the purpose of designing bet-
ter artificial adaptive systems. A important and natural ap-
plication domain for adaptive systems is that of computer
security. A computer security system should protect a ma-
chine or set of machines from unauthorized intruders and
foreign code, which is similar in functionality to the im-
mune system protecting the body (self ) from invasion by
inimical microbes (nonself ). Because of this compelling
similarity, we have designed an “artificial immune system”
(AIS) to protect computer networks based on immunologi-
cal principles, algorithms and architecture.

In designing this system, we wish to adhere to certain
principles which we have extracted from our study of im-
munology: The immune system isdiverse, which greatly
improves robustness, on both a population and individual
level, for example, different people are vulnerable to dif-
ferent microbes; it isdistributed, consisting of many com-
ponents that interact locally to provide global protection,
so there is no central control and hence no single point of
failure; it is error tolerant in that a few mistakes in classifi-
cation and response are not catastrophic; it isdynamic, i.e.
individual components are continually created, destroyed,
and are circulated throughout the body, which increases the

temporal and spatial diversity of the immune system allow-
ing it to discard components that are useless or dangerous
and improve on existing components; it isself-protecting,
i.e. the same mechanisms that protect the body also protect
the immune system itself; and it isadaptable, i.e. it can
learn to recognize and respond to new microbes, and retain
a memory of those microbes to facilitate future responses.

We regard these principles as general guidelines for design.
Sometimes we can incorporate these principles by using al-
gorithms or mechanisms copied directly from immunology,
but at other times new algorithms are required. We are not
primarily concerned with mimicking the immune system in
all its details; rather, we are trying to capture those aspects
of the immune system that are most relevant to constructing
a robust distributed adaptive system.

In earlier papers we presented results from this research
program in the context of computer security (e.g., [4]),
deemphasizing more general considerations. The goal of
this paper is to rectify that, making the biological connec-
tions more concrete and emphasizing the adaptive systems
framework. In the next section (2) we describe the organi-
zation of our AIS, in the context of a specific application;
most of what is described has been implemented, but some
of the ideas are still speculative. The results of testing the
system out in a real environment are described in Section
3, and the paper concludes with a discussion of the AIS,
including its relation to classifier systems [9].

2 ARCHITECTURE

Before outlining the architecture and algorithms of our
adaptive immune system (AIS), we must first consider the
environment in which the AIS will exist. To preserve gen-
erality, we represent both the protected system (self) and
infectious agents (nonself) as dynamically changing sets of
bit strings. In cells of the body the profile of expressed
proteins (self) changes over time, and likewise, we expect
our set of protected strings to vary over time. Similarly,



the body is subjected to different kinds of infections over
time; we can view nonself as a dynamically changing set
of strings.

Although we can, in principle, completely specify our im-
mune system architecture based on this abstract represen-
tation of self and nonself as sets of bit strings, it is perhaps
helpful to have a specific example in mind—one that guides
specific implementation decisions in order to make the sys-
tem concrete enough to test in a real environment.

2.1 APPLICATION DOMAIN: NETWORK
SECURITY

The most natural domain in which to begin applying im-
mune system mechanisms is computer security, where the
analogy between protecting the body and protecting a nor-
mally operating computer is evident. Within this do-
main, we have studied several problems, including com-
puter virus detection [6], host-based intrusion detection [5],
and network security [8]. In this paper we concentrate
on the latter—protecting a local-area broadcast network
(LAN) from network-based attacks. Broadcast LANs have
the convenient property that every location (computer) sees
every packet passing through the LAN.

In this domain, we define self to be the set of normal pair-
wise connections (at the TCP/IP level) between computers,
including connections between two computers in the LAN
as well as connections between one computer in the LAN
and one external computer (Figure 1). A connection is de-
fined in terms of its “data-path triple”—the source IP ad-
dress, the destination IP address, and the service (or port)
by which the computers communicate. In our representa-
tion, this information is compressed to a single 49-bit string
which unambiguously defines the connection. Self is then
the set of normally occurring connections observed over
time on the LAN, each connection being represented by a
49-bit string. Similarly, nonself is also a set of connections
(using the same 49-bit representation), the difference being
that nonself consists of those connections, potentially an
enormous number, that are not normally observed on the
LAN.

2.2 MAPPING IMMUNOLOGY TO
COMPUTATION

Natural immune systems consist of many different kinds of
cells and molecules—lymphocytes (B-lymphocytes and T-
lymphocytes), macrophages, dendritic cells, natural killer
cells, mast cells, interleukins, interferons, and many others.
Although these components have been identified and stud-
ied experimentally, it is not always well-understood what
role they play in the overall immune response. In our AIS,
we will simplify by introducing one basic type of detector

cell which combines useful properties from several differ-
ent immune cells. This detector cell will have several dif-
ferent possible states, roughly corresponding to thymocytes
(immature T-lymphocytes undergoing negative selection
in the thymus), naive B-lymphocytes (which have never
matched foreign material), and memory B-lymphocytes
(which are long-lived and easily stimulated). The natural
immune system also has many different types of effector
cells, which implement different immune responses (e.g.,
macrophage, mast-cell response, etc.), which we do not
currently include in our model.

Each detector cell is represented by a single bit string of
lengthl = 49 bits, and a small amount of state (see Figure
1). In effect, we are representing only the receptor region
on the surface of a lymphocyte. It is this region thatbinds to
foreign material, a process that we call recognition. There
are many ways of implementing the detectors, for example,
a detector could be a production rule, or a neural network,
or an agent. We chose to implement detection (binding) as
string matching, where each detector is a stringd, and de-
tection of a strings occurs when there is a match betweens
andd, according to amatching rule. We use string match-
ing because it is simple and efficient to implement, and easy
to analyze and understand. Obvious matching rules include
Hamming distance or edit distance, but we have adopted a
more immunologically plausible rule, calledr-contiguous
bits [13].

Two stringsd ands match under ther-contiguous bits rule
if d ands have the same symbols in at leastr contiguous
bit positions. The valuer is a threshold and determines
the specificity of the detector, which is an indication of the
number of strings covered by a single detector. For exam-
ple, if r = l, the matching is completely specific, that is, the
detector will detect only a single string (itself; recall thatl
is the length of the detector bit string). A consequence of a
partial matching rule with a threshold, such asr-contiguous
bits, is that there is a trade-off between the number of de-
tectors used, and their specificity: As the specificity of the
detectors increases, so the number of detectors required to
achieve a certain level of coverage also increases.

The detectors are grouped into sets, one set per machine,
or host, on the LAN; each host loosely corresponds to a
different location in the body1. Because of the broadcast
assumption, each detector set is constantly exposed to the
current set of connections in the LAN, which it uses as a
dynamic definition of self (i.e., the observed connections in
a fixed time period are analogous to the set of proteins ex-
pressed in the thymus during some period of time). Within1The ability of immune system cells to circulate throughout
the body is an important part of the immune system that we are
currently ignoring. In our system, detectors remain in one location
for their lifetime.



activation
threshold

detector

cytokine

permutation
mask

level

set

immature memory activated # matches

0100111010100011101110...01110

external host

broadcast LAN

internal host

datapath triple
(20.20.20.5, 31.14.21.37, ftp)

port: 21
ip: 20.20.20.5

port: 1700
ip: 31.14.21.37

Detector

Host

Figure 1: The Architecture of the AIS.

each detector set, new detectors, or thymocytes, are cre-
ated randomly and asynchronously on a continual sched-
ule, similar to the natural immune system. These new de-
tectors remainimmature for some period of time, during
which they have the opportunity to match any current net-
work connections. If a detector matches when it is imma-
ture, it is killed (deleted). This process is callednegative
selection [6], and closely resembles the negative selection
of immature T-lymphocytes (thymocytes) in the thymus. A
potential problem with this scheme is that a nonself packet
arriving during negative selection could cause immature
detectors to be erroneously eliminated. However, if we as-
sume that nonself packets are rare (a reasonable assump-
tion), there are likely to be other mature detectors around
to detect the foreign packet. We thus have a small loss of
efficiency, from needlessly deleting a valid detector, but no
appreciable loss of function.

Detectors that survive this initial testing phase are
promoted to mature detectors (analogous to mature
T-lymphocytes leaving the thymus and mature B-
lymphocytes leaving the bone marrow). Each mature de-
tector is now a valid detector that acts independently. If a
mature detectord matches a sufficient number of packets
(see activation threshold below), an alarm is raised. The
time for whichd is a naive B-lymphocyte can be thought
of as a learning phase. At the end of the learning phase,

if d has failed to match a packet it is deleted, but if it
has matched a sufficient number of nonself packets, it be-
comes a memory detector with a greatly extended lifetime.
Memory detectors have a lower threshold of activation (see
below), thus implementing a “secondary response” that is
more sensitive and responds more aggressively than naive
detectors to previously seen strings. Although these mem-
ory detectors are desirable, a large fraction of naive detec-
tors must always be present, because the naive detectors
are necessary for the detection of novel foreign packets,
i.e. they are essential to anomaly detection.

2.3 INCOMPLETE SELF SETS

Both the natural immune system and our AIS face the prob-
lem of “incomplete self sets.” When T lymphocytes un-
dergo negative selection in the thymus, they are exposed
to most but not all of the proteins in the body. Conse-
quently, the negative selection process can be incomplete
in the sense that a lymphocyte could survive negative se-
lection but still be reactive against a legitimate self protein
(one that was not presented in the thymus) potentially lead-
ing to an auto-immune reaction. In our AIS, such an auto-
immune reaction is called afalse positive. False positives
arise if we train the system on an incomplete description of
self, and then encounter new but legitimate patterns. We
would like the system to be tolerant of such minor, legiti-



mate new patterns, but still detect abnormal activity, and we
have implemented two methods designed to overcome this
problem: Activation thresholds and adaptive thresholds.

Activation thresholds are similar in function to avidity
thresholds in lymphocytes. A lymphocyte is covered with
many identical receptors, and it is only activated when suf-
ficiently many receptors are bound to pathogens, i.e. when
the avidity threshold for binding is exceeded. Analogously,
each detector in the AIS must match multiple times before
it is activated. Each detector records the number of times
it matches, and it raises an alarm only when the number of
matches exceeds the activation threshold, which is stored
locally for each detector set. Once a detector has raised an
alarm, it returns its match count to zero. This mechanism
has a time horizon: Over time the count of matches slowly
returns to zero. Thus, only repeated occurrences of struc-
turally similar and temporally clumped strings will trigger
the detection system.

However, some attacks may be launched from many dif-
ferent machines, in which case the first method is unlikely
to be successful. To detect such distributed coordinated at-
tacks, we introduce a second method, calledadaptive acti-
vation (labeledcytokine level in Figure 1). Whenever the
match count of a detector goes from 0 to 1, the local acti-
vation threshold is reduced by one. Hence, each different
detector that matches for the first time “sensitizes” the de-
tection system, so that all detectors on that machine are
more easily activated in future. This mechanism also has
a time horizon; over time, the activation threshold gradu-
ally returns to its default value. Thus, this method will de-
tect diverse activity from many different sources, provided
that activity happens within a certain period of time. This
mechanism roughly captures the role that inflammation, cy-
tokines, and other molecules play in increasing or decreas-
ing the sensitivity of individual immune system lympho-
cytes within a physically local region.

2.4 LEARNING MECHANISMS

Negative-selection and the maturation of naive cells into
memory cells are two simple learning mechanisms used by
the immune system. A third form of immune-system learn-
ing, one that resembles a genetic algorithm (without cross-
over), is incorporated into our model—affinity maturation.
In its simple form, detectors compete against one another
for foreign packets, just as lymphocytes compete to bind
foreign antigen. In the case where two detectors simultane-
ously match the same packet, the one with the closest match
(greatest fitness) wins. This introduces pressure for more
specific matching into the system, causing the system to
discriminate more precisely between self and nonself. We
propose, although we have not yet implemented this, that
successful detectors (those that bind many foreign packets)

will undergo proliferation (making copies and migrating to
other computers) and somatic hypermutation (copying with
a high mutation rate).

The concept of asecond signal, known asco-stimulation,
is often used to explain certain immunological responses.
One example of a second signal is a T-helper lympho-
cyte. When a B-lymphocyte (that is possibly a mutated
descendant of an earlier lymphocyte that survived nega-
tive selection) binds a foreign peptide (the first signal), it
requires a T-helper lymphocyte (that has been censored
against self in the thymus) in order to trigger an immune
response. This second-signal system prevents mutating B-
lymphocyte lines from incorrectly reacting against self. In
our system, we use a human as the second signal. When
a detector raises an alarm, there is some chance that it is a
false alarm (auto-immune reaction). Before taking action,
the AIS waits a fixed amount of time (say 24 hours) for
a co-stimulatory signal, which in the current implementa-
tion is an email message from a human. If the signal is
received (confirming the anomaly), the detector enters the
competition to become a memory detector, but if it loses
the competition, it remains naive and has its match count
reset to 0. If the second signal is not received, the AIS as-
sumes that it was a false alarm and destroys the detector (as
in the natural immune system).

It might seem more natural to send messages to the AIS
in the case of false alarms instead of true anomalies, so
that the AIS can adjust itself appropriately by immedi-
ately deleting the auto-reactive detectors. Unfortunately,
this would create a vulnerability, because a malicious ad-
versary could send signals to the AIS, labeling true foreign
packets as false alarms, thus tolerizing the AIS against cer-
tain forms of attack. The form of co-stimulation that we
have used is much more difficult to subvert. Because false
alarms are generally much more frequent than true anoma-
lies, our co-stimulation method has the additional advan-
tage action by the human operator is required in the less
frequent case.

Figure 2 summarizes the lifecycle of a detector. A detector
is initially randomly created, and then remains immature
for a certain period of time, which is the tolerization pe-
riod. If the detector matches any string a single time during
tolerization, it is replaced by a new randomly generated de-
tector string. If a detector survives immaturity, it will exist
for a finite lifetime. At the end of that lifetime it is replaced
by a new random detector string, unless it has exceeded its
match threshold and becomes a memory detector. If the
activation threshold is exceeded for a mature detector, it is
activated. If an activated detector does not receive costim-
ulation, it dies (the implicit assumption is that its activation
was a false positive). However, if the activated detector re-
ceives costimulation, it enters the competition (see above)



no match during
tolerization period

match anything
during tolerization
period don’t exceed activation

threshold during lifetime

randomly created

mature & naive

immature

death

activated

exceed activation
threshold

no costimulation

costimulation

memory

match

01101011010110...110101

Figure 2: The Lifecycle of a Detector.

to become a memory detector with an indefinite lifespan.
Memory detectors need only match once to become acti-
vated.

2.5 DISTRIBUTION AND DIVERSITY

Each of the mechanisms described above can be imple-
mented with a single detector set running on a single lo-
cation. We can trivially gain efficiency advantages by dis-
tributing the single detector set across all locations on the
LAN, thus distributing the computational cost of intrusion
detection. Such distribution will give linear speedup, be-
cause there are no communication costs (apart from the
signaling of alarms and costimulation). However, we take
advantage of another immune system feature to implement
a more powerful form of distribution.

The protein major histocompatibility complex (MHC)
plays an important role in immune systems, because it
transports protein fragments (called peptides) from the in-
terior regions of a cell to its surface,presenting these pep-
tides on the cell’s surface. This mechanism enables roving
immune system cells to detect infections in cells without
penetrating the cell membrane. There are many variations
of MHC, each of which binds a slightly different class of
peptides. Each individual in a population is genetically ca-
pable of making a small set of these MHC types (about ten),

but the set of MHC types varies in different individuals.
Consequently, individuals in a population are capable of
recognizing different profiles of peptides, providing an im-
portant form of population-leveldiversity2. Our AIS uses
permutation masks to achieve a similar kind of diversity.
A permutation mask defines a permutation of the bits in
the string representation of the network packets. Each de-
tector set has a different, randomly-generated, permutation
mask. One limitation of the negative-selection algorithm as
originally implemented is that it can result in undetectable
abnormal patterns called holes, which limit detection rates
[3, 2]. Holes can exist for any symmetric, fixed-probability
matching rule, but by using permutation masks, we effec-
tively change the match rule on each host, and so overcome
the hole limitation. Thus, the permutation mask controls
how the network packet is presented to the detection sys-
tem, which is analogous to the way different MHC types
present different sets of peptides on the cell surface.

The discussion thus far has concentrated on the detection
side of our AIS and ignored questions of immune response.
When stimulated by lymphocytes bound to the cell surface,
immune system cells secrete a wide variety of molecules2For example, there are some viruses, such as the Epstein-
Barr virus, that have evolved dominant peptides which cannot be
bound by particular MHC types, leaving individuals who have
those MHC types vulnerable to the disease [10].



known collectively ascytokines. These cytokines diffuse
from the site where they were secreted, and in turn play
a role in stimulating or suppressing other immune sys-
tem cells. Thus, cells that detect pathogens can commu-
nicate using these molecular signals with cells that assist in
eliminating the pathogens (e.g., mast cells, macrophages,
etc.). Although we plan to extend our model in the future
to include this kind of signaling and response, the current
model eliminates this complication (except for the adaptive
threshold).

3 RESULTS

The AIS described in Section 2 has been implemented and
tested out on a subnet of the Computer Science department
at the University of New Mexico, consisting of 50 ma-
chines on a switched segment. All analysis reported here
was conducted off-line, although an on-line prototype has
developed and tested. All results described here used a sys-
tem with 100 detectors per host, with a match length of 12
(i.e. r = 12 in the r-contiguous bits match rule), and the
49-bit detectors described earlier.

3.1 DATA SETS

Two data sets were collected: A self set consisting of nor-
mal traffic, and a nonself set consisting of traffic generated
during intrusive activity. The self set was collected over 50
days, during which a total of 2.3 million TCP connections
were logged, each of which is a datapath triple. These 2.3
million datapaths were filtered down to 1.5 million datap-
aths. The filtering removed several classes of noisy traffic
sources, such as web servers and ftp servers, because these
are continually communicating with new hosts, and so have
no stable definition of normal in terms of datapaths. The
1.5 million datapaths were mapped to 49-bit binary strings,
using a mapping that grouped unassigned ports, to give a
total of 3900 observed unique strings. The self set was di-
vided into two parts: a training set (the first 43 days), and
a test set (the last 7 days). During the test period, 137 new
datapaths were logged, out of a total of 183000 datapaths.
Each new triple occurred an average of 4 times. Thus the
worst case false-positive rate would be 78 per day. Without
threshold activation and co-stimulation, we observe 74 per
day in our experiments, which is slightly less than expected
because there are not enough detectors to give 100% detec-
tion. Adding a threshold of 10 reduces the false positives
to 8 per day, and adding co-stimulation on top of this re-
duces the false positives further, to 4 per day. The human
was given a day to respond, and it was assumed that in all
false alarm cases the human did not respond. Given that
each false alarm consists of a small set of anomalous pack-
ets, this rate is extremely good, especially when compared
to state-of-the-art systems that are in current use [12].

Table 1: Detection of the 8 Incidents.

TP BASIC TP PERMUTATION
Average 0.28 0.43
Max. Possible 0.61 0.61
Incidents Detected 7/8 8/8

The nonself set was comprised of eight different intrusive
incidents. Seven of these are faithful logs of real incidents
that occurred on the network being studied, and one inci-
dent was synthetically generated to simulate an attack from
many different locations. This simulated intrusion con-
sisted of 200 random connections between internal hosts
(the supposition was that the attackers had already pene-
trated at least one machine on the LAN). Most of the real
attacks consisted of probing of one sort or another, partic-
ularly of services with recently reported vulnerabilities. At
least one incident involved compromise of an internal ma-
chine. The traffic tested for each incident consisted of all
datapaths from the first nonself datapath (the start of the
incident), to the last nonself datapath. Thus, each incident
reproduces the timing of the attack, as well as including all
normal traffic that was interspersed throughout the attack.

3.2 EXPERIMENTAL RESULTS

Results averaging detection over all eight incidents are re-
ported in table 3.2. All results use an activation threshold
of 10. The first row reports the average true positive (TP)
rate, the second row reports the maximum possible TP rate
(the TP rate is limited because the incidents include self
strings which will not be detectable), and the third row re-
ports the number of incidents actually detected. To identify
an incident, only some of the nonself strings need to be de-
tected, so in a practical sense, the third row gives the effec-
tive true positive rate. The detection system clearly detects
all 8 incidents when using permutation masks, even with an
activation threshold of 10.

The effects of memory were tested out by simulation. The
detection system was presented with the synthetic incident
at time zero in the simulation, during which the true posi-
tive rate was0:23 (averaged over 30 runs of the simulation).
The system retained memory detectors from this incident
and the simulation was continued. After simulating the net-
work running for another 3 months, the detection system
was again presented with the same synthetic incident. Dur-
ing the 3 months the memory detectors from the “primary
response” were retained, but the other detectors were con-
stantly dying and being reborn. Thus after three months the
set of non-memory detectors had changed. Consequently,
the true positive rate for the incident after 3 months was



0.76, suggesting that memory implemented in this manner
is very useful for the “secondary response.”

4 DISCUSSION

In the previous sections we described an architecture for an
adaptive artificial system based on the immune system. It
incorporates several forms of adaptation on different time
scales, and it addresses an important problem of practical
significance (network intrusion detection). Most of the fea-
tures described in this paper have been incorporated into
our software prototype that is currently running in real time
on our departmental network. It routinely discovers outside
attacks as well as interesting anomalies that are generated
internally.

The AIS that we outlined in Section 2 resembles the ar-
chitecture of a classifier system[9], although most of the
details are different. Each detectord corresponds to the
condition part of a classifier, where the match rule isr-
contiguous bits instead of the traditional1; 0; ] alphabet
used in classifier systems. Our parameterr is a measure
of the specificity of our detectors, much like the number of
don’t cares in a classifier condition is a measure of its gen-
erality. If we concatenate some bits to each detector which
specify what the proper response is (analogous to different
antibodyisotypes), then each immune cell (detector plus
response bits) corresponds directly to the condition/action
rule format of classifier systems. In place of the message
list we have a continuous flux of datapath triples that rep-
resent the current state of the environment. Currently, the
only connections generated by our AIS (analagous to inter-
nally generated messages in a classifier system) are those
resulting from alarms being sent to the human operator.

There is no direct analog of our negative-selection algo-
rithm in classifier systems, except the learning rules (such
as genetic algorithm and trigger conditions) under which
new rules are generated. Bidding for messages in classifier
systems is analogous to immune cells competing to bind
to foreign datapaths. Likewise, we introduce pressure for
specificity, which is reminiscent of classifier systems, by
allowing the more specific match to win the competition.

The role of the bucket brigade (credit assignment) and
the genetic algorithm is played by our affinity maturation
model of learning, although ours is simpler in the sense
that we assign credit directly from the environment to the
detectors, and do not pass strength among immune cells.
A more direct analog of the bucket brigade would occur
if we tried to build up idiotypic networks of immune cell
in which immune cells stimulate and repress other immune
cells, as Jerne proposed [11]. Although this is appealing
from an adaptive design perspective, there is little if any
experimental evidence that such networks exist in natural

immune systems. Our plan is to incorporate internal feed-
backs and self-regulation by extending the cytokine system
(we saw a primitive form of this in the adaptive threshold).
Permutation masks have no direct analog in classical clas-
sifier systems. Although the mapping is not1 � 1, we be-
lieve that the AIS we have described in this paper captures
many of the important properties of classifier systems and
provides an interesting point of comparison.

Our starting point for this line of research was a collection
of pressing unsolved problems in computer security. Over
the past several years we have designed and built several
successful solutions to real computer security problems.
Armed with that experience, we have shown here how to
embed an architecture for adaptive behavior in a real-time
environment with live agents (computers and the humans
who operate them). We follow Brooks and others [7, 1] in
believing that it is fruitless to design intelligent systems in
isolation from the environments in which they exist, and
we believe that research on classifier systems has suffered
from too loose a coupling with live environments. Situ-
ated intelligent artifacts are perhaps more complex to think
about (because they cannot be neatly separated from their
environments), but they can in some cases use their envi-
ronments in ways that simplify their computations.

Moving beyond the computer network intrusion-detection
application that we have described, the AIS might be ap-
plied to other classes of networks, including social net-
works, organizations, networks of markets, neurological
networks, or ecological networks. Like our LAN with ex-
ternal connections, these networks consist of many compo-
nents that are sparsely connected, in which there are some
ordered and some random components, and in which the
exact set of connections is not static. There are important
computations associated with each of these networks, and
they would provide an important test of the generality of
our architecture in its ability to discriminate normal and
abnormal activity and to respond appropriately.

Acknowledgments

The authors acknowledge the support of the Defense
Advanced Research Projects Agency (grant N00014-96-
1-0680), the National Science Foundation (grant IRI-
9711199), the Office of Naval Research (grant N00014-99-
1-0417), the IBM Partnership award, and the Intel Corpo-
ration.

References

[1] H. J. Chiel and R. D. Beer. The brain has a body:
Adaptive behavior emerges from interactions of ner-



vous system, body and environment.Trends in Neu-
rosciences, 20:553–557, 1997.

[2] P. D’haeseleer. An immunological approach to
change detection: Theoretical results. InProceed-
ings of the 9th IEEE Computer Security Foundations
Workshop, Los Alamitos, CA, 1996. IEEE Computer
Society Press.

[3] P. D’haeseleer, S. Forrest, and P. Helman. An im-
munological approach to change detection: Algo-
rithms, analysis and implications. InProceedings of
the 1996 IEEE Symposium on Research in Security
and Privacy, Los Alamitos, CA, 1996. IEEE Com-
puter Society Press.

[4] S. Forrest, S. Hofmeyr, and A. Somayaji. Com-
puter immunology. Communications of the ACM,
40(10):88–96, 1997.

[5] S. Forrest, S. A. Hofmeyr, and A. Somayaji. A sense
of self for unix processes. InProceedings of the 1996
IEEE Symposium on Research in Security and Pri-
vacy, Los Alamitos, CA, 1996. IEEE Computer Soci-
ety Press.

[6] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri.
Self-nonself discrimination in a computer. InPro-
ceedings of the 1994 IEEE Symposium on Research in
Security and Privacy, Los Alamos, CA, 1994. IEEE
Computer Society Press.

[7] H. Hendriks-Jansen.Catching Ourselves in the Act.
MIT Press, Cambridge, MA, 1996.

[8] Steven A. Hofmeyr.A Immunological Model of Dis-
tributed Detection and its Application to Computer
Security. PhD thesis, Department of Computer Sci-
ences, University of New Mexico, April 1999.

[9] J. H. Holland, K. J. Holyoak, R. E. Nisbett, and
P. Thagard.Induction: Processes of Inference, Learn-
ing, and Discovery. MIT Press, 1986.

[10] C. A. Janeway and P. Travers.Immunobiology: The
Immune System in Health and Disease, 3rd Edition.
Current Biology Ltd., London, 1996.

[11] N. K. Jerne. Towards a network theory of the immune
system.Annals of Immunology, 125:373–389, 1974.

[12] R. Lippman. Lincoln Laboratory intrusion detection
eval-
uation. http://www.ll.mit.edu/IST/ideval/index.html,
1999.

[13] J. K. Percus, O. E. Percus, and A. S. Perelson. Pre-
dicting the size of the antibody-combining region

from consideration of efficient self/nonself discrim-
ination. In Procedings of the National Academy of
Science 90, pages 1691–1695, 1993.


