

MODIS Geolocation Status

MODIS Science Team Meeting Calibration Breakout Session

May 9, 2012

Robert Wolfe, Mash Nishihama and James Kuyper

MODIS Geolocation Team

NASA GSFC Code 619

Geolocation C5 results

Terra

- Excellent results C5 Root Mean Square (RMS) error in nadir equivalent units is better than accuracy goal
- Sun angle fit corrects for most of northern/southern hemisphere differences
- Large errors occur ~1.5 hr after maneuvers (about 12 per year)
 - accuracy in following orbit suspect

ect	Terra	Aqua
Along-track RMS error (m)	43	48
Along-scan RMS error (m)	44	53
Years of Data	12.1	9.8
Ground Control Point Match-ups/day	264	228

Aqua

- Good results C5 RMS error is better than goal in track direction but slightly over goal in scan direction (but much better than specification – 150 m)
- Small remaining northern/ southern hemisphere difference
- Definitive ephemeris is used for best results – causes up to 24 hr processing delay

3

Note: These results are for MODIS Band 1, which is used in the control point matchup. Other bands must be offset by the band-offsets published by the MODIS calibration team.

Ground Control Points (GCPs)

Terra trend and update details

Terra long-term trend (w/o correction)

MODE

Actual Terra C5 residuals

Expected Terra C6 residuals

Terra Sun angle Correction

May 9, 2011 - Wolfe et al.

Small overcorrect in C5 - will be corrected in C6

Terra C6 geometric parameter changes

- Change in geometric biases and scan mirror rate
 - Based on global hierarchical maximum decent search
 - Main changes in track direction are in split between spacecraft to instrument pitch and telescope tilt values
 - Small changes to mirror parameters (alpha, beta and gamma)
 - Sample time bias (delta added to nominal 0.333333 sec)

Bias	Units	C5	C6	Diff
s/c to inst – roll	arcsec	251.8	251.8	0.0
s/c to inst – pitch	arcsec	83.4	129.4	46.0
s/c to inst – yaw	arcsec	97.9	97.9	0.0
mirror – alpha	arcsec	-4.1	-3.3	0.8
mirror – beta	arcsec	38.0	40.0	2.0
mirror – gamma	arcsec	-0.6	-0.7	-0.1
telescope – tilt	arcsec	-180.6	-218.7	-38.1
sample time (delta)	nsec	0.0	3.1	3.1

Aqua trend and update details

Aqua Long-term Trend (w/o Correction)

Actual Aqua C5 residuals

Expected Aqua C6 residuals

Aqua Sun angle Correction

Track and Scan sun-angle effects

- no correction in C5
- will be corrected in C6

Aqua C6 geometric parameter changes

- Change in geometric biases and scan mirror rate
 - Based on global hierarchical maximum decent search
 - Small changes to telescope tilt and mirror parameters (alpha, beta and gamma)
 - Sample time bias (delta added to nominal 0.333333 sec)

Bias	Units	C5	C6	Diff
s/c to inst – roll	arcsec	409.6	409.6	0.0
s/c to inst – pitch	arcsec	582.1	582.1	0.0
s/c to inst – yaw	arcsec	-76.3	-76.3	0.0
mirror – alpha	arcsec	-5.6	-6.2	-0.6
mirror – beta	arcsec	37.1	37.0	-0.1
mirror – gamma	arcsec	-6.4	-5.9	0.5
telescope – tilt	arcsec	-422.2	-420.6	1.6
sample time (delta)	nsec	0.0	6.6	6.6

Maneuver Handling and C6 Changes

Maneuver Handling

- Definitive maneuver lists (for both Aqua and Terra) are being obtained regularly from FOT
- LDOPE routinely screens data near maneuvers to exclude this data from daily and higher level products
- Atmosphere hides L2+ products when geolocation errors exceed 1km
- For C6 the geolocation team will continue to work with the Terra and Aqua FOTs to find a better solution (no real progress yet)

Observation weighted terrain correction

Scan

direction

The first order approximation of the observation weighted point is:

$$b = \frac{(a_1 + a_3 + a_4 + a_6)w_1 + (a_2 + a_5)w_2}{4w_1 + 2w_2}$$

where $w_1 = 1$ and $w_2 = 2$. These weights approximate the triangular time-integrated weighting function in the scan direction and the rectangular weighting function in the track direction.

May 9, 2011 - Wolfe et al.

Example: Terra - Middle east

2001/199.0840

Geolocation Elevation (black: -27m, white: 2069m) Geolocation difference current minus obs. weighted (black: 0m, white: 52m)

New for C6: 500m geolocation (pierce point) is also available, stored as offsets from 1km geolocation (observation weighed)

New C6 DEM

Current C5 DEM

- SRTM based gap filled
- Uncertain about the heritage of the approach to reducing resolution and gap filling
- Only available at 30 arc-sec (~1km) DEM
- New C6 DEM (Source: USGS and NGA, Danielson et al.)
 - Being used at 15 arc-sec (~500m)
 - Better data is now available for gap filling
 - Using best available approach to reducing resolution and gap filling

SRTM Voids

- Causes for SRTM voids:
 - Limited duty cycle aboard the sensor (large area blocks)
 - High relief areas (shadow and layover)
 - Poor correlation of radar images in desert landscapes due to sand surface texture

May 9, 2011 - Wolfe et al.

Incomplete Partial Cells (1,287)

Old vs. New DEM

MODIS Geolocation Height (data-day 2010/221)

C5

New Land Water Mask in C6 MOD03

Terra Granule 19:25, Day 2003-193

Shallow Ocean Land Coastline/shoreline Shallow Inland Water Ephemeral Water Deep Inland Water Moderate Ocean Deep Ocean C6

Water present method at 1km

The water present value b (range 0 to 8) is

$$b = (a_1 + a_3 + a_4 + a_6) + 2(a_2 + a_5)$$

These weights approximate the triangular time-integrated weighting function in the scan direction and the rectangular weighting function in the track direction.

May 9, 2011 - Wolfe et al.

New Water Present in C6 MOD03

Land Water Mask

Water Present

Shallow Ocean Land Coastline/shoreline Shallow Inland Water Ephemeral Water Deep Inland Water Moderate Ocean Deep Ocean

Terra granule subset 2003/193 16:20

C6 Changes - Algorithm (Science)

- 1. Update error analysis: use C5 residuals to update long-term trend, sunangle corrections and geometric parameter biases
- 2. Incorporate new ancillary data
 - a. Improved 500m Shuttle Radar Terrain Mission (SRTM) Digital Elevation Model data
 - b. Improved Land/water mask (500m) developed by UMD
- 3. Compute 500m geolocation and provide in the form of 8-bit offsets from a bilinear-interpolation of the 1 km data
- 4. Enhanced 1 km terrain correction (area based)
 - synergistic with 500m geolocation, since weighted average of 500m pixel centers is used to approximate 1km time-integrated weighting function
- 5. Updated ground control points based on improved GeoCover Landsat 7 products (in conjunction with VIIRS Geolocation activity)

C6 Changes - Other Changes

- Solar elevation correction (roll, pitch and yaw) written to geolocation product – for transfer to the Control Point Residual files
- 7. Added scan metadata reporting the quality and type of the ephemeris/attitude data used in the calculations
- 8. For some users (DB and Oceans): Added file level metadata indicating whether or not terrain correction was performed. *(Terrain correction is always used in MODAPS.)*
- 9. For DB users: Correct the setting of *attitQuat* when ephemeris source is "MODIS Packet". When that source is used, the *attitQuat* is currently set to a constant value indicating nominal orientation (roll, pitch, and yaw are all zero). *attitQuat* is used only in the calculation of the solar "elevation" angle correction.

Questions?