Water Resources Data Iowa Water Year 1999

Volume 2. Surface Water-Missouri River Basin, and Ground Water

By G.M. Nalley, J.G. Gorman, R.D. Goodrich, V.E. Miller, M.J. Turco, and S.M. Linhart

Water-Data Report IA-99-2

Prepared in cooperation with the Iowa Department of Natural Resources (Geological Survey Bureau), Iowa Department of Transportation, and with Federal agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

For information on the water program in Iowa, write to:

District Chief, Water Resources Division U.S. Geological Survey P.O. Box 1230 Iowa City, Iowa 52244

2000

WATER RESOURCES DATA FOR IOWA, 1999

PREFACE

This volume of the annual hydrologic data report of Iowa is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by local, State, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines.

Personnel in charge of the field units are:

Joseph G. Gorman, Western Field Unit

Robert D. Goodrich, Eastern Field Unit

The data was collected, computed and processed by the following personnel:

K.D Becher	J.W. Harms	J.A
J.A. Bjorholm	L.C. Kerr	M.J
J.F. Cerveny	A.C. Koehler	E.N
D.T. Conell	R.L. Kopish	T.R
A.R. Conkling	R.L. Kuzniar	D.J
J.J. Copa	B.D. Lanning	P.K
J.L. Dyke	S.M. Linhart	J.R
D.A. Eash	P.D. Lustgraaf	W.,
J.D. Eash	J.C. McVay	S.A
E.E. Fischer	V.E. Miller	M
J.A. Handel	J.F. Nania	

J.A. Noe M.J. Noon E.M. Sadorf T.R. Schmidt D.J. Schnoebelen P.K. Smith J.R. Sondag W.A. Taylor S.A. Thul M.J. Turco

This report was prepared in cooperation with the State of Iowa and with other agencies under the general supervision of Greg M. Nalley, Chief Hydrologic Surveillence Section, and Robin G. Middlemis-Brown, District Chief, Iowa.

REPORT D	Form Approved OMB No. 0704-0188		
Public reporting burden for this collection of infor gathering and maintaining the data needed, and collection of information, including suggestions fi Davis Highway, Suite 1204, Arlington, VA 22202	mation is estimated to average 1 hour pe completing and reviewing the collection or reducing this burden, to Washington H- 2-4302, and to the Office of Management	r response, including the time for review of information. Send comments regardin adquarters Services, Directorate for Inf and Budget, Paperwork Reduction Proj	ring instructions, searching existing data sources, ig this burden estimate or any other aspect of this ormation Operations and Reports, 1215 Jefferson ect (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	DATES COVERED 98 - 30 Sept. 1999		
4. TITLE AND SUBTITLE	5. FUNDING NUMBERS		
Water Resources Data, Iowa, V Surface Water - Missouri Rive	Water Year 1999, Volume r Basin, and Ground Wate	2: r	
6. AUTHOR(S) G.M. Nalley, J.G. Gorman, R. S.M. Linhart	D. Goodrich, V.E. Miller, I	M.J. Turco, and	
7. PERFORMING ORGANIZATION NAME(S	S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
U.S. Geological Survey, Wate	r Resources Division		REPORT NUMBER
P.O. Box 1230			USGS-WRD-IA-99-2
Iowa City, IA 52244			
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
P.O. Box 1230	r Resources Division		USGS WED IA 00 2
Iowa City, IA 52244			0505-WND-IA-77-2
12a. DISTRIBUTION / AVAILABILITY STAT	EMENT . This report may be purch	ased from:	12b. DISTRIBUTION CODE
National Technical Informatio Springfield, VA 22161	n Service		
13. ABSTRACT (Maximum 200 words)			
Water resources data for Iowa streams; stage, and/or contents This report volume contains di 1 stream-gaging station, and se partial record stations and grou but are not part of the systema miscellaneous water-quality ar	for the 1999 water year co of lakes and reservoirs; gro scharge records for 31 gagi diment records for 3 stream ind-water levels for 176 we tic data collection program nalyses.	nsists of records of stage, ound water levels and wate ng stations; stage or conte a-gaging stations. Also inc ells. Additional water data and are published as miso	discharge, and water quality of r quality of ground-water wells. nts for 3 lakes; water quality for cluded are data for 34 crest-stage a were collected at various sites, cellaneous discharge and
14. SUBJECT TERMS			15. NUMBER OF PAGES
*S wai *Hvdrological data	274		
stations Lakes Reservoirs Ch	iemical analyses Nedimen	Water temneratures	
stations, Lakes, Reservoirs, Ch Sampling sites, Water levels, V	Vater analyses, Data collect	t, water temperatures,	16. PRICE CODE
stations, Lakes, Reservoirs, Ch Sampling sites, Water levels, V 17. SECURITY CLASSIFICATION OF REPORT	Water analyses, Sedimen Water analyses, Data collect B. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	t, water temperatures, etion. 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	16. PRICE CODE 20. LIMITATION OF ABSTRACT

²⁹⁸⁻¹⁰² Prescribed by ANSI Std 239-18

WATER RESOURCES DATA FOR IOWA, 1999

CONTENTS

Durafage	Page
Surface-water stations in downstream order for which records are published in this volume	111 vii
Introduction	1
Cooperation	2
Summary of hydrologic conditions	3
Surface Water	3
Suspended Sediment	
Ground-Water-Level Observation Network	10
Surface-Water Quality	10
Ground-Water Quality	1/
Ground Water Monitoring Network	
Trends in Ground Water Quality	
Special networks and programs	
	10
Explanation of the feedbases	19
	19
	19
	20
	20
Records of Stage and Water Discharge	21
	21
	23
Identifying Estimated Daily Discharge	26
	26
Other Records Available	27
Records of Surface-Water Quality	27
Classification of Records	27
Arrangement of Records	27
On-Site Measurements and Sample Collection	28
Water Temperature and Specific Conductance	28
Sediment	28
Laboratory Measurements	29
Data Presentation	29
Remarks Codes	30
Water Quality-Control Data	30
Dissolved Trace-Element Concentrations	31
Change in National Trends Network Procedures	32
Records of Ground-Water Levels	32
Data Collection and Computation	32
Data Presentation	32
Records of Ground-Water Quality	33
Data Presentation	34
Access to USGS water data	35
Definition of terms	36
Publications on Techniques of Water-Resources Investigations of the U.S. Geological Survey	45
Station records. surface water	50
Crest-stage partial-record stations	146
Miscellaneous water-quality data	150
Station records ground-water levels	155
Quality of ground-water data	155
Quality of precipitation data	250
Index	254

ILLUSTRATIONS

Pa	ge
Figure 1. Precipitation record for the National Weather Service's designated Climatological Districts for water year 1999	3
Figure 2. Annual runoff for period of record at index stations.	5
Figure 3. Location of active continuous-record gaging stations in Iowa, water year 1999	6
Figure 4. Location of active crest-stage gaging stations in Iowa, water year 1999	7
Figure 5. Location of active sediment and surface-water quality stations in Iowa, water year 1999	8
Figure 6. Comparison of annual sediment discharge for water year 1999 with mean, previous maximum,	
and previous minimum annual sediment discharges for periods of record at four long-term	
daily sediment stations in Iowa.	9
Figure 7. Location of wells in the ground-water-level observation network in Iowa, water year 1999	11
Figure 8. Location of active ground-water-quality monitoring wells in Iowa.	15
Figure 9. Trends in herbicide detection frequencies.	17
Figure 10. Latitude-longitude well number.	20
Figure 11. Local well-numbering system.	21

TABLES

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

{Letter after station name designates types of data: (d) discharge, (c) chemical, (p) precipitation, (s) sediment, (t) temperature, (e) elevations, gage heights, or contents}

	Station Number	Page
MISSOURI RIVER BASIN		
Missouri River:		
(Map of Big Sioux River basin gaging stations)		50
BIG SIOUX RIVER BASIN		
Big Sioux River:		
Rock River near Rock Valley (d)	06483500	. 52
Big Sioux River at Akron (d)	06485500	. 54
(Map of Missouri, Perry, and Floyd River, and Monona-Harrison Ditch basins gaging st	ations)	56
Missouri River at Sioux City (dts)	06486000	. 58
Perry Creek at 38th Street, Sioux City (d)	06600000	. 64
FLOYD RIVER BASIN		
Flovd River at Alton (d)	06600100	. 66
Flovd River at James (d)	06600500	. 68
Missouri River at Decatur, Nebraska (d)	06601200	. 70
MONONA-HARRISON DITCH BASIN		
West Fork ditch (head of Monona-Harrison ditch) at Hornick (d)	06602020	. 72
Monona-Harrison ditch near Turin (d)	06602400	. 74
(Map of Little Sioux and Soldier River basins gaging stations)		
LITTLE SIOUX RIVER BASIN		
Little Sioux River:		
Milford Creek:		
Spirit Lake near Orleans (e)	06604000	. 78
West Okoboji Lake at Lakeside Laboratory near Milford (e)	06604200	. 80
Ochevedan River near Spencer (d)	06605000	. 82
Little Sioux River at Linn Grove (d)	06605850	. 84
Little Sioux River at Correctionville (d)	06606600	. 86
Maple River at Mapleton (d)	06607200	. 88
Little Sioux River near Turin (d)	06607500	. 90
Soldier River at Pisgah (d)	06608500	92
(Map of Bover River basin and Missouri River main stem gaging stations)		. 92
BOYER RIVER BASIN		,.
Bover River at Logan (d)	06609500	96
Missouri River at Omaha Nebraska (dcts)	06610000	. 98
Missouri River at Nehraska City Nehraska (dts)	06807000	. 90
(Man of Nichnahotna and Nodaway River basins and Missouri River main stem gaging s	tations)	. 120
NISHNABOTNA RIVER BASIN		. 120
West Nishnabotna River at Hancock (d)	06807410	. 128
West Nishnabotna River at Randolph (d)	06808500	. 130
East Nishnabotna River near Atlantic (d)	06809210	. 132
East Nishnabotna River at Red Oak (d)	06809500	. 134
Nishnabotna River above Hamburg (d)	06810000	. 136

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

	Station	
	Number	Page
MISSOURI RIVER BASINContinued		
Missouri River at Rulo, Nebraska (d)	06813500	138
NODAWAY RIVER BASIN		
Nodaway River at Clarinda (d)	06817000	140
(Map of Platte, Grand, and Chariton River basins gaging stations)		142
PLATTE RIVER BASIN (Iowa-Missouri)		
Platte River:		
One Hundred and Two River:		
East Fork One Hundred and Two River at Bedford (d)	06819185	144
GRAND RIVER BASIN		
Grand River:		
Thompson River at Davis City (d)	06898000	146
CHARITON RIVER BASIN		
Chariton River near Chariton (d)	06903400	148
South Fork Chariton River near Promise City (d)	06903700	150
Rathbun Lake near Rathbun (d)	06903880	152
Chariton River near Rathbun (d)	06903900	154
Chariton River near Moulton (d)	06904010	156

ADAMS COUNTY
410247094324801 Local number, 72-32-09 CBCC
410248094324801 Local number, 72-32-09 CCBB
APPANOOSE COUNTY
404103092404001 Local number, 68-16-15 DDAD
AUDUBON COUNTY
413044094565601 Local number, 78-36-35 ADCC1
413958094544501 Local number, 79-35-10 CABB
415023094593801 Local number, 81-36-12 CBCA
BENTON COUNTY
420731092083801 Local number, 85-11-33 CCBC1
420731092083803 Local number, 85-11-33 CCBC3
420731092083802 Local number, 85-11-33 CCBC
BREMER COUNTY
424224092133901 Local number, 91-12-11 DBB
BUCHANAN COUNTY
422836092034401 Local number, 89-10-32 BCC
BUENA VISTA COUNTY
424023095571401 Local number, 91-35-26 BCCC
425233094545001 Local number, 93-35-13 ADAA
CALHOUN COUNTY
422812094383501 Local number, 88-33-01 BACD
422339094375101 Local number, 88-33-36 ADAA
CARROLL COUNTY
420230094455101 Local number, 84-34-35 DAAA
420233094475901 Local number, 83-35-34 BCDC
420643094403701 Local number, 84-33-03 CADA
420705094394501 Local number, 84-33-02 BDBA
421058094582701 Local number, 85-35-07 CCCC
CASS COUNTY
411900094530101 Local number, 75-35-07 BBAB
412832095033501 Local number, 77-37-13 BBBB
CERRO GORDO COUNTY
430757093131801 Local number, 96-20-17 DAAD
430806093164501 Local number, 96-21-13 BCCB
CHEROKEE COUNTY
423833095365701 Local number, 90-40-06 BDCD
424132095480211 Local number, 91-42-16 DDDD11
424348095231601 Local number, 91-39-01 ADAD1
424348095231602 Local number, 91-39-01 ADAD2
CLAYTON COUNTY
424023091291201 Local number, 91-05-30 BBBB
425433091285002 Local number, 94-05-31 DACC2
430156091182901 Local number, 95-04-22 BCBD
425736091260303 Local number, 94-05-03 A
CLINTON COUNTY
414921090450401 Local number, 81-02-17 ACC
414806090212301 Local number, 81-05-22 DDD
CRAWFORD COUNTY
415514095312001 Local number, 82-40-17 AABB

]	Page
Pleistocene														155
Pleistocene		•			•	•	•		•	•	•			155
Cambrian/Ordovician		•	•											155
Cretaceous														156
Cretaceous (h)														156
Cretaceous		•				•	•		•	•	•			157
Devonian (h)														157
Devonian														158
Silurian														158
Silurian	• •	•	•		•	•	•		•	•	•	·	•	158
Silurian		•	•			•	•				•	•		159
Cretaceous														159
Cretaceous (h)	· ·	•	•	· ·	•	•	•	· ·	•	•	•	•	•	160
Pleistocene														161
Cambrian/Ordovician		•	•		•	•	•		•	•	•	•	•	161
Quaternary														161
Cretaceous														162
Pleistocene														162
Cretaceous (h)														163
Cretaceous		•			•	•	•		•	•	•			163
Cretaceous														164
Pennsylvanian (h)														164
														1.65
Cambrian/Ordovician (h).	•••	·	·	• •	·	·	•	• •	•	·	·	·	·	165
Devonian	• •	•	•	• •	•	•	•		•	•	•	•	·	165
Cretaceous														166
Cretaceous														166
Cambrian/Ordovician (h).														167
Cretaceous					•	•	•		•	•	•			167
Pleistocene (h)														168
Cambrian/Ordovician													·	168
Cambrian/Ordovician													·	169
Cambrian/Ordovician													·	169
· · · · · · · · ·									-	-			,	
Silurian							•							170
Silurian		•	•		•	•	•		•	•	•	•	•	170
Cretaceous														171

CRAWFORD COUNTY-Continued
420608095111701 Local number, 84-37-08 BCCB
421005095342801 Local number, 85-41-13 CCCC
421031095225601 Local number, 85-39-16 ADDD1
421031095225602 Local number, 85-39-16 ADDD2
421106095125501 Local number, 85-38-12 DCBA
DALLAS COUNTY
413613093530401 Local number, 79-26-33 CDBA
DECATUR COUNTY
404422093445602 Local number, 69-25-29 DDDD
DELAWARE COUNTY
422029091144302 Local number, 87-03-18 CBCD2
DUBUOUE COUNTY
422901090471901 Local number, 89-01-36 ABC
FLOYD COUNTY
430200092435301 Local number, 95-16-22 BCA1
430200092435303 Local number, 95-16-22 BCA3
430200092435304 Local number, 95-16-22 BCA4
430200092435305 Local number, 95-16-22 BCA5
430200092435306 Local number, 95-16-22 BCA6
430800092540301 Local number, 95-10-22 DEFIG
GREENE COUNTY
420116094363001 Local number 83-32-08 BBBC
420146094272301 Local number, 83-31-04 ADDB
420140094272501 Local number, 85 51 04 ADDD
420149094334701 Local number, 82-22-18 DDAA
420149094944701 Local number, 85-52-04 ACCC 420507094141901 Local number, 84 29 16 CBAB
GPUNDY COUNTY
422611092552501 Local number 88-18-14 BCCB
GUTHRIE COUNTY
413223094150801 Local number 78-30-24 CAAB
413223094130801 Local number, 78-30-24 CAAD
413240094314301 Local number, 76-52-21 AAAA
414821004271301 Local number, 81-31-22 CCCC
HADDIN COUNTV
422210002022802 Local number 80 10 02 RDAC2
425510055052802 Local humber, 85-15-02 DDAC2
412024005252001 Local number 78 41 21 DDDD
413024093333901 Local number, 78-41-51 DDDD
413525095465101 Local number, 78-43-05 ACDD
415524095490001 Local number, 78-45-05 BCDD
413636093402001 Local number, 79-42-19 AADD
414/000955/5001 Local humber, 81-41-55 CAAA
105010001424001 Local number 70 07 20 BCDD
403010091424901 Local number, 70-07-50 BCDD
410852091594501 Local humber, 75-07-09 AADD
122159002065901 Level number 00 11 26 DCA
452150092005001 Local number, 99-11-20 BCA
124020004102601 Local number 01 22 20 CAAA
424059094105001 Local number, 91-28-20 CAAA
422215005200911 Local number 97 41 05 CCCC11
422213073370011 Local Humber, 87-41-03 CCCC11

(h)—10-year hydrograph included with data	

]	Page
Pleistocene																				171
Cretaceous																				171
Cretaceous																				172
Mississippian (h)																				172
Pleistocene		•		•	•	•	•	•	•	•		•			•	•	•	•	•	173
Cambrian/Ordovic	cian				•	•	•	•	•	•		•			•	•	•	•		173
Cambrian/Ordovic	cian			•	•	•	•	•	•	•	•	•			•	•	•	•	•	173
Silurian (h)				•	•	•	•	•	•	•		•	•		•	•	•	•	•	174
Cambrian/Ordovic	cian		•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	174
Devonian (h)																				175
Devonian																				175
Devonian																				176
Devonian																				176
Devonian					•	•	•	•	•	•					•	•	•			177
Devonian		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	177
Pleistocene																				178
Cretaceous																				178
Pleistocene																				178
Cretaceous																				179
Pleistocene		•			•	•	•	•	•	•		•			•	•	•	•		179
Cambrian					•	•	•	•	•	•					•	•	•			180
Cretaceous																				180
Cretaceous																				180
Cretaceous																				181
Cretaceous				•	•	•	•	•	•	•		·	•		•	•	•	•	•	181
Mississippian (h)				•	•	•	•	•	•	•		•			•	•	•	•	•	182
Pleistocene																				183
Cretaceous																				183
Holocene (h)																				184
Mississippian																				185
Cretaceous (h) .				•	•	•	•	•	•	•		·	•		•	•	•	•	•	185
Mississinnian																				186
Plaistocono		·	·	·	·	·	·	·	·	·	•	·	·	·	·	·	·	·	·	186
		•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	100
Cambrian/Ordovic	cian	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	186
Pleistocene				•	•	•	•	•	•	•		•		•	•	•	•	•	•	187
Cretaceous					•		•		•								•			187

IDA COUNTYContinued	rage
423107095383201 Local number, 89-41-13 CCCC	Mississippian
JACKSON COUNTY	11
420842090165701 Local number, 85-06-29 ACAD1	Cambrian
420842090165702 Local number, 85-06-29 ACAD2	Cambrian/Ordovician
420842090165703 Local number, 85-06-29 ACAD3	Cambrian/Ordovician
420433090502401 Local number, 84-01-22	Devonian/Silurian
420842090165704 Local number, 85-06-29 ACAD4	Cambrian/Ordovician
JASPER COUNTY	
414147093035401 Local number, 80-19-33 ACAC	Cambrian/Ordovician (h)
414210092592001 Local number, 80-18-31 ABBB	Pleistocene
JOHNSON COUNTY	
413925091324001 Local number, 79-06-09 DDBC	Silurian (h)
414132091345501 Local number, 80-06-31 ADAC1	Silurian
414132091345502 Local number, 80-06-31 ADBC1	Silurian
414107091322901 Local number, 79-06-04 AAAA	Silurian 193
414132091345503 Local number, 80-06-31 ADBD1	Silurian 194
414145091350101 Local number, 80-06-31 ADC	Cambrian 194
414315091252001 Local number, 80-05-22 CBCB1	Pleistocene 194
414221091361101 Local number, 80-07-25 DBAC1	Silurian 195
414221091361102 Local number, 80-07-25 DBAC2	Devonian/
413950091322402 Local number, 79-06-10 BCCD	Cambrian/Ordovician 196
413929091322401 Local number, 79-06-10 CCCB	Cambrian 196
414221091361103 Local number, 80-07-25 DBAD1	Pleistocene (h) 197
414315091252002 Local number, 80-05-22 CBCB2	Devonian (h) 198
IONES COUNTY	
415808091160501 Local number 83-04-25 CBBB	Silurian 200
KEOKUK COUNTY	5
412030092121601 Local number 76-12-35 DBDC	Mississippian 200
LEE COUNTY	
404306091270201 Local number. 68-05-05 DAAC	Cambrian
LINN COUNTY	
415343091360101 Local number, 82-07-25 AAAB	Silurian
420200091363001 Local number, 83-07-01 BADC	Cambrian 201
420219091344101 Local number, 84-06-32 BCBC	Cambrian/Ordovician 201
415422091422601 Local number, 82-07-18 CDCD	Pleistocene 202
415725091410101 Local number, 82-07-32 ACDC	Silurian (h) 202
415834091351601 Local number, 83-06-30 ABBA	Devonian/Silurian 203
420300091325801 Local number, 84-06-33 ABBB	Silurian 203
420508091395811 Local Number, 84-07-16 DBBB	Silurian (h)
420526091370701 Local number 84-07-13 BCBB	Pleistocene (h) 205
420730091490401 Local number, 85-08-31 DDCD1	Silurian 205
420730091490402 Local number, 85-08-31 DDCD2	Devonian 206
421149091403301 Local Number, 85-07-04 CCCC	Devonian/Silurian 206
421207091312201 Local number 85-06-03 DARB	Silurian 206
LYON COUNTY	200
431812096302701 Local number 98-48-16 DDAD	Cretaceous 207
432140095595301 Local number, 99-44-26 DDDD	Pleistocene (h) 207
432553096105701 Local number, 99-45-05 ABAC	Cretaceous (h) 208
432601096335511 Local number, 100-48-31 CCCC11	Cretaceous 708
MADISON COUNTY	
411727093483001 Local number. 75-26-23 AAAC	Mississippian
· · · · · · · · · · · · · · · · · · ·	

xi

MAHASKA COUNTY
411912092273601 Local number, 75-14-10 BAAC
411914092274701 Local number, 75-14-10 BABC
412020092471002 Local number, 76-17-35 CADB
MARION COUNTY
411323093142601 Local number, 74-21-11 DBCB1
411328093143503 Local number, 74-21-11 CAAD3
411329093142902 Local number, 74-21-11 DBBB2
MARSHALL COUNTY
420355092534701 Local number, 84-18-24 CDCA
MILLS COUNTY
405641095365101 Local number, 71-42-24 AAAA
405813095433201 Local number, 71-42-07 BBCD
MITCHELL COUNTY
432156092484101 Local number, 95-17-23 DAA1
432156092484102 Local number, 95-17-23 DAA2
432156092484103 Local number, 95-17-23 DAA3
432156092484104 Local number, 95-17-23 DAA4
432156092484105 Local number, 95-17-23 DAA5
MONONA COUNTY
415456095414101 Local number, 82-42-14 ADCA
420004095451501 Local number, 83-42-17 ACDD
420139095155701 Local number, 83-43-04 CBCB
421018095591301 Local number, 85-44-17 DCAA
MONTGOMERY COUNTY
405841095012702 Local number, 71-36-06 DADA2
410057095075101 Local number, 72-37-29 BABA
MUSCATINE COUNTY
412120091080401 Local number, 76-02-30 CBAA1
412120091080402 Local number, 76-02-30 CBAA
412120091080403 Local number, 76-02-30 CBAA
412740090503201 Local number, 77-01-22 BCBC
412833090482001 Local number, 77-01-14 ADAD
412952090501101 Local number, 77-01-03 CDBD
413520091013701 Local number, 78-02-01 ACCD
O'BRIEN COUNTY
425610095250611 Local number, 94-39-26 BADB11
430930095350401 Local number, 96-40-05 DDDA1
OSCEOLA COUNTY
431613095251801 Local number, 98-39-26 CDCC
431620095250501 Local number, 98-39-26 CDAD1
431620095250511 Local number, 98-39-26 CDAD11
432828095283611 Local number, 100-39-17 DCCB11
PAGE COUNTY
404257095150801 Local number, 68-38-07 CCAA

Page
Mississippian
Mississippian
Cambrian/Ordovician
Pleistocene
Pleistocene
Pleistocene
Pleistocene
Pleistocene
Pleistocene
Pleistocene
Devonian
Devonian
Devonian
Devonian
Crotocoous 215
Cleiaceous
Preistocene 215 Crotacoous 215
Dekote (h) 216
Dakota (ii)
Pleistocene 216
Pleistocene (h)
Holocene
Devonian/Silurian
Quaternary
Silurian
Devonian/Silurian
Devonian/Silurian
Silurian
Cretaceous
Cretaceous
Cretaceous
Cambrian/Ordovician (h)
Cretaceous
Cretaceous
Disistence (h)
Pielstocene (II)

PLYMOUTH COUNTY
424833096324701 Local number, 92-48-06 DDDA
424850096074801 Local number, 92-45-02 CBCB
425249096125001 Local number, 93-46-12 DDDD
POTTAWATTAMIE COUNTY
411359095171901 Local number, 74-39-01 CCCC
412407095391201 Local number, 76-42-10 ADBC
SCOTT COUNTY
413544090212901 Local number, 78-05-03 AADA
SHELBY COUNTY
413255095070401 Local number, 78-37-17 DDDD
413359095182701 Local number, 78-39-11 CCBC
413953095302601 Local number, 79-40-09 DBCA
414624095252301 Local number, 80-39-06 AADC
414856095160101 Local number, 81-38-21 ADAD
SIOUX COUNTY
430140095573101 Local number, 95-43-07 AAAA
430913096033201 Local number, 96-44-08 ADAA
STORY COUNTY
420129093273701 Local number, 83-22-06 CDBD
420137093361501 Local number, 83-24-02 DABC
TAMA COUNTY
420957092181801 Local number, 85-13-24 ABAC
VAN BUREN COUNTY
404150091483001 Local number, 68-08-08 CDD
WASHINGTON COUNTY
411300091320701 Local number, 74-06-15 BDAC
412037091564701 Local number, 76-09-31 CBBC
412750091495201 Local number, 77-09-24 AADA
421829091304701 Local number, 75-06-14 ABBB
411813091411202 Local number, 75-07-17 ACBC
411813091411001 Local number, 75-07-17 ABCA
411812091412601 Local number, 75-07-17 BCCC
WEBSTER COUNTY
421837094083601 Local number, 87-28-29 CCCD
423018094214701 Local number, 89-30-23 CCBB
WOODBURY COUNTY
422058095573701 Local number, 87-44-15 CBBB
422830096000511 Local number, 88-44-16 BAAB11

Cambrian/Ordovician (h)	226
Cretaceous	226
Pleistocene	227
Cambrian	227
Cambrian/Ordovician (h)	228
Cretaceous	229
Pleistocene	229
Pleistocene	230
Cretaceous	230
Pleistocene	230
Cretaceous	231
	231
	231
Cambrian/Ordovician	231
Pleistocene	232
Cambrian/Ordovician	232
Mississippian (h)	233
Mississippian	233
Mississippian.	234
Mississippian.	234
Pleistocene	234
Cambrian/Ordovician	235
Cambrian/Ordovician	235
Cambrian/Ordovician	235
Plaistoanna (h)	<u></u>
	230
	230
Cretaceous	237
Cretaceous	237

xiii

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Iowa have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

	Drainage area					
Station name	Station number	(mi ²)	Period of record			
Upper Iowa River at Decorah, Ia. (d)	05387500	511	1952-83			
Upper Iowa River near Decorah, Ia. (d)	05388000	568	1913-14; 1919-27, 1933-51			
Paint Creek at Waterville, Ia. (d)	05388500	42.8	1952-73			
Yellow River at Ion, Ia. (d)	05389000	221	1934-51			
Turkey River at Spillville, Ia. (d)	05411600	177	1957-73; 1978-91			
Big Springs near Elkader, Ia. (d)	05411950	103	1938; 1982-83; 1988-95			
Turkey River at Elkader, Ia. (d)	05412000	891	1932-42			
Unnamed Creek near Luana, Ia. (d)	05412056	1.15	1986-92			
Silver Creek near Luana, Ia (d)	05412060	4.39	1986-98			
Little Maquoketa River near Durango, Ia. (d)	05414500*	130	1934-82			
Maquoketa River near Manchester, Ia. (d)	05417000	305	1933-73			
Maquoketa River near Delhi, Ia. (d)	05417500	347	1933-40			
Bear Creek near Monmouth, Ia. (d)	05417700	61.3	1957-76			
Maquoketa River above North Fork Maquoketa River near Maquoketa, Ia. (d)	05418000	938	1913-14			
North Fork Maquoketa River at Fulton, Ia. (d)	05418450	516	1977-91			
Elk River near Almont, Ia. (d)	05420300	55.9	1995-97			
Wapsipinicon River near Elma, Ia. (d)	05420560	95.2	1958-92			
Wapsipinicon River near Tripoli, Ia (d)	05420860	343	1996-98			
Wapsipinicon River at Stone City, Ia. (d)	05421500	1,324	1903-14			
Crow Creek at Eldridge, Ia. (d)	05422420	2.20	1977-82			
Crow Creek at Mt. Joy, Ia. (d)	05422450	6.90	1977-82			
Pine Creek near Muscatine, Ia. (d)	05448150	38.9	1975-82			
Eagle Lake Inlet near Britt, Ia. (e)	05448285	3.83	1975-80			
Eagle Lake Outlet near Britt, Ia. (e)	05448290	11.3	1975-80			
West Branch (West Fork) Iowa River near Klemme, Ia. (d)	05448500	112	1948-58			
East Branch (East Fork) Iowa River near Klemme, Ia. (d)	05449000	133	1948-76; 1977-95			
Iowa River near Iowa Falls, Ia. (d)	05450000	665	1911-14			
Upper Pine Lake at Eldora, Ia. (e)	05450500	14.9	1936-70			
Lower Pine Lake at Eldora, Ia. (e)	05451000	15.9	1936-70			
Iowa River near Belle Plaine, Ia. (d)	05452500	2,455	1939-59			
Lake Macbride near Solon, Ia. (e)	05453500	27.0	1937-71			
Ralston Creek at Iowa City, Ia. (d)	05455000	3.01	1924-87			
Cedar River at Mitchell, Ia. (d)	05457500	826	1933-42			
Shell Rock River near Northwood, Ia. (d)	05459000	300	1945-86			
Shell Rock River at Marble Rock, Ia. (d)	05460500	1,318	1933-53			
Shell Rock River at Greene, Ia. (d)	05461000	1,357	1933-42			
Flood Creek near Powersville, Ia (d)	05461390	127	1996-98			
Shell Rock River near Clarksville, Ia. (d)	05461500	1,626	1915-27; 1932-34			
Black Hawk Creek at Hudson, Ia. (d)	05463500	303	1952-95			
Fourmile Creek near Lincoln, Ia. (d)	05464130	13.8	1962-67; 1969-74; 1976-80			
Half Mile Creek near Gladbrook, Ia. (d)	05464133	1.33	1962-67; 1969-74; 1976-80			
Fourmile Creek near Traer, Ia. (d)	05464137	19.5	1962-74; 1975-80			
Wolf Creek near Dysart, Ia (d)	05464220	299	1996-98			
Prairie Creek at Fairfax, Ia. (d)	05464640	178	1966-82			
Lake Keomah near Oskaloosa, Ia. (e)	05472000	3.06	1936-71			
Skunk River at Coppock, Ia. (d)	05473000	2,916	1913-44			

[(d), discharge station; (e), elevation (stage only) station; *, currently operated as crest-stage partial-record station]

WATER RESOURCES DATA FOR IOWA, 1999

Discontinued Surface-Water Discharge or Stage-Only Stations—Continued

	Drainage area					
Station name	Station number	(mi ²)	Period of record			
Big Creek near Mount Pleasant, Ia. (d)	05473500	106	1955-79			
Des Moines River at Estherville (d)	05476500*	1,372	1951-95			
East Fork Des Moines River near Burt, Ia. (d)	05478000	462	1951-74			
Des Moines River near Fort Dodge, Ia. (d)	05479500	3,753	1911-13			
Lizard Creek near Clare, Ia. (d)	05480000	257	1940-82			
Des Moines River near Boone, Ia. (d)	05481500	5,511	1920-68			
North Raccoon River near Newell, Ia. (d)	05482135*	233	1982-95			
Storm Lake at Storm Lake, Ia. (e)	05482140	28.3	1970-75			
Big Cedar Creek near Varina, Ia. (d)	05482170	80.0	1960-91			
East Fork Hardin Creek near Churdan, Ia. (d)	05483000	24.0	1953-91			
Hazelbrush Creek near Maple River, Ia. (d)	05483343	9.22	1990-94			
Springbrook Lake near Guthrie Center, Ia. (e)	05483460	5.18	1936-71			
Raccoon River at Des Moines, Ia. (e)	05485000	3,628	1902-03			
Lake Ahquabi near Indianola, Ia. (e)	05487000	4.93	1936-71			
White Breast Creek near Knoxville, Ia. (d)	05488000	380	1945-62			
Muchakinock Creek near Eddyville, Ia. (d)	05489190	70.2	1975-79			
Lake Wapello near Drakesville, Ia. (e)	05490000	7.75	1936-71			
Sugar Creek near Keokuk, Ia. (d)	05491000	105	1922-31; 1958-73			
Fox River at Cantril, Ia. (d)	05494500	161	1940-51			
Rock River at Rock Rapids, Ia. (d)	06483270	788	1959-74			
Dry Creek at Hawarden, Ia. (d)	06484000	48.4	1948-69			
West Branch Floyd River near Struble, Ia. (d)	06600300*	108	1955-95			
Monona-Harrison Ditch near Blencoe, IA (d)	06602410	4,440	1939-42			
Loon Creek near Orleans, Ia. (d)	06603920	31.0	1971-74			
Spirit Lake Outlet at Orleans, Ia. (e)	06604100	75.6	1971-74			
Milford Creek at Milford, Ia. (d)	06604400	146	1971-74			
Little Sioux River at Spencer, Ia. (d)	06605100	990	1936-42			
Little Sioux River at Gillett Grove, Ia. (d)	06605600	1,334	1958-73			
Little Sioux River near Kennebeck, Ia. (d)	06606700	2,738	1939-69			
Odebolt Creek near Arthur, Ia. (d)	06607000	39.3	1957-75			
Maple River at Turin, Ia. (d)	06607300	725	1939-41			
Little Sioux River near Blencoe, Ia. (d)	06607510	4,440	1939-42			
Steer Creek near Magnolia, Ia. (d)	06609200	9.26	1963-69			
Thompson Creek near Woodbine, Ia. (d)	06609590	6.97	1963-69			
Willow Creek near Logan, Ia. (d)	06609600	129	1972-75			
Indian Creek at Council Bluffs, Ia. (d)	06610500	6.92	1954-76			
Mosquito Creek near Earling, Ia. (d)	06610520	32.0	1965-79			
Waubonsie Creek near Bartlett, Ia. (d)	06806000	30.4	1946-69			
West Nishnabotna River at Harlan, Ia. (d)	06807320	316	1977-82			
West Nishnabotna River at (near) White Cloud, Ia. (d)	06807500	967	1918-24			
Mule Creek near Malvern, Ia. (d)	06808000	10.6	1954-69			
Spring Valley Creek near Tabor, Ia. (d)	06808200	7.6	1955-64			
Davids Creek near Hamlin, Ia. (d)	06809000	26.0	1952-73			
Tarkio River at Stanton, Ia. (d)	06811840*	49.3	1958-91			
Tarkio River at Blanchard, Ia. (d)	06812000	200	1934-40			
West Nodaway River at Villisca, Ia. (d)	06816500	342	1918-25			
Platte River near Diagonal, Ia. (d)	06818750*	217	1969-91			
East Fork One Hundred and Two River near Bedford, Ia. (d)	06819190	92.1	1959-83			
Elk River near Decatur City, Ia. (d)	06897950*	52.5	1968-94			
Weldon River near Leon, Ia. (d)	06898400	104	1959-91			

WATER RESOURCES DATA FOR IOWA, 1999

Station name	Station number	Drainage area (mi ²)	Period of record
Honey Creek near Russell, Ia. (d)	06903500	13.2	1952-62
Chariton River near Centerville, Ia. (d)	06904000	708	1938-59

Discontinued Surface-Water Discharge or Stage-Only Stations-Continued

WATER RESOURCES DATA - IOWA, 1999

DISCONTINUED SURFACE-WATER-QUALITY STATIONS

The following water-quality stations have been discontinued in Iowa. Continuous daily records of water temperature, specific conductance, or sediment and monthly or periodic samples of chemical quality or biological data were collected and published for the period of record shown for each station.

[Type of record: Chem.–chemical quality, Cond.–specific conductance, Temp.–water temperature, Sed.–sediment, Bio.–biological; *, periodic data available subsequent to period of daily record]

		Drainage area		
Station name	Station number	(mi ²)	Type of record	Period of record
Upper Iowa River at Decorah, Ia.	05387500	511	Sed. Temp.	1963-68 1963-83
Upper Iowa River near Dorchester, Ia.	05388250	770	Sed., Temp.*, Cond.*	1975-81
Paint Creek at Waterville, Ia.	05388500	42.8	Temp. Sed.	1952-56 1952-57
Unnamed Creek near Luana	05412070	1.15	Chem.	1986-92
Turkey River at Garber, Ia.	05412500	1,545	Temp.*, Sed.*	1957-62
Mississippi River at Dubuque, Ia.	05414700	81,600	Chem.	1969-73
Maquoketa River near Maquoketa, Ia	05418500	1,553	Sed., Temp., Cond.	1978-82; 1995-97
Elk River near Almont, Ia	05420300	55.9	Sed., Temp., Cond.	1995-97
Mississippi River at Clinton, Ia	05420500	85,600	Sed.	1995-97
Wapsipinicon River near Tripoli, Ia	05420860	343	Chem.	1996-98
Wapsipinicon River at Independence, Ia.	05421000	1,048	Cond.*	1968-70
			Temp.*, Sed.*	1967-70
Crow Creek at Bettendorf, Ia.	05422470	17.8	Cond.*, Temp.*, Sed.	1978-82
Iowa River near Rowan, Ia.	05449500	429	Temp.*, Sed.* Chem.	1957-62 1996-98
Iowa River at Marshalltown, Ia	05451500	1,532	Temp., Sed.	1988-95
Iowa River at Iowa City, Ia.	05454500	3,271	Chem Temp.*, Sed. Cond.	1906-07; 1944-54 1944-87 1968-87
Ralston Creek at Iowa City, Ia.	05455000	3.01	Cond Sed. Temp.	1968-87 1952-87 1967-87
Flood Creek near Powersville, Ia	05461390	127	Chem.	1996-98
Shell Rock River at Shell Rock, Ia.	05462000	1,746	Temp.*	1953-68
Cedar River at Cedar Falls, Ia	05463050	4,734	Chem.	1975-79; 1984; 1986-1995
Cedar River near (at) Gilbertville, Ia.	05464020	5,234	Chem.	1971; 1975-81
Fourmile Creek near Lincoln, Ia.	05464130	13.78	Chem., Temp., Sed.	1969-74
Half Mile Creek near Gladbrook, Ia.	05464133	1.33	Chem., Temp., Sed.	1969-74
Fourmile Creek near Traer, Ia.	05464137	19.51	Chem., Temp., Sed.	1969-74
Wolf Creek near Dysart, Ia	05464220	299	Chem.	1996-98
Cedar River near Palo, Ia.	05464450	6,380	Chem.	1975-79
Cedar River at Cedar Rapids, Ia.	05464500	6,510	Chem.* Temp.* Sed.	1906-07; 1944-54 1944-54 1943-54
Cedar River near Bertram, Ia.	05464760	6,955	Chem.	1975-81
Iowa River at Wapello, Ia	05465500	12, 499	Chem.	1977-95
Mississippi River at Burlington, Ia.	05469720	114,000	Chem.	1969-73
South Skunk River at Colfax, Ia	05471050	803	Cond.*, Temp.*, Sed.	1989-93
Skunk River at Augusta, Ia	05474000	4,303	Chem.	1977-95
Mississippi River at Keokuk, Ia.	05474500	119,000	Chem.	1974-87
Des Moines River at Fort Dodge, Ia.	05480500	4,190	Chem.	1972-73
Des Moines River at 2nd Avenue at Des Moines, Ia.	05482000	6,245	Chem. Temp.*, Sed.	1954-55 1954-61
East Fork Hardin Creek near Churdan. Ia.	05483000	24.0	Temp.*, Sed.*	1952-57
Hazelbrush Creek near Maple River, Ia	05483343	9.22	Cond., Temp., Sed.	1991-94

Drainage area									
Station name	Station number	(mi ²)	Type of record	Period of record					
Middle Raccoon River near Bayard, Ia.	05483450	375	Cond.*, Temp.*, Sed.	1979-85					
Middle Raccoon River at Panora, Ia.	05483600	440	Cond.*, Temp.*, Sed.	1979-85					
Raccoon River at Van Meter, Ia	05484500	3,441	Chem. Bio.	1974-79; 1986-94 1974-79					
Raccoon River at Des Moines, Ia.	05485000	3,590	Chem., Temp.	1945-47					
Des Moines River below Raccoon River at Des Moines, Ia.	05485500	9,879	Chem.* Temp.*, Sed.	1944-45 1944-47					
Des Moines River below Des Moines, Ia.	05485520	9,901	Chem.	1971; 1974-81					
Middle River near Indianola, Ia.	05486490	503	Temp.*, Sed.	1962-67					
White Breast Creek near Dallas, Ia.	05487980	342	Chem. Temp.*, Sed.	1969-73 1967-73					
Big Sioux River at Sioux City, Ia.	06485950	9,410	Chem.	1969-73					
Missouri River at Sioux City, Ia.	06486000	314,600	Chem.	1972-86					
Floyd River at James, Ia.	06600500	886	Temp.*, Sed., Cond.*	1968-73					
Floyd River at Sioux City, Ia.	06600520	921	Chem.	1969-73					
Missouri River at Decatur, Neb.	06601200	316,160	Chem.	1974-81					
Spirit Lake near Orleans, Ia.	06604000	75.6	Temp.	1968-75					
Little Sioux River at Correctionville, Ia.	06606600	2,500	Chem.* Temp.* Sed.	1954-55 1951-62 1950-62					
Little Sioux River near Kennebec, Ia.	06606700	2,738	Temp. Sed.	1951-55 1950-57					
Little Sioux River at River Sioux, Ia.	06607513	3,600	Chem.	1969-73					
Soldier River near Mondamin, Ia.	06608505	440	Chem.	1970-73					
Steer Creek near Magnolia, Ia.	06609200	9.26	Temp., Sed., Cond.	1963-69					
Thompson Creek near Woodbine, Ia.	06609590	6.97	Temp., Sed., Cond.	1963-69					
Willow Creek near Logan, Ia.	06609600	129	Cond., Temp. Sed.	1972-75 1971-75					
Missouri River at Omaha, Nebr.	06610000	322,800	Cond.*	1969-86					
Mule Creek near Malvern, Ia.	06808000	10.6	Temp. Sed.	1958-69 1954-69					
Davids Creek near Hamlin, Ia.	06809000	26.0	Temp.* Sed.	1952-53; 1965-68 1952-68					
East Nishnabotna River at Red Oak, Ia.	06809500	894	Temp.*, Sed., Cond.*	1962-73					
Nishnabotna River above Hamburg, Ia.	06810000	2,806	Chem. Temp.*, Cond. Bio.	1979-93 1979-81 1979-81					
Nodaway River at Clarinda	06817000	762	Cond.*, Temp.*, Sed.	1976-92					
Platte River near Diagonal, Ia.	06818750	217	Chem.	1969-73					
Elk Creek near Decatur City, Ia.	06897950	52.5	Bio. Chem.	1970-72 1968-94					
Thompson River at Davis City, Ia.	06898000	701	Chem. Temp.*, Sed., Cond.*	1967-73 1968-73					
Weldon River near Leon, Ia.	06898400	104	Chem.	1968-73					
Chariton River near Chariton, Ia.	06903400	182	Temp.*, Sed., Cond.*	1969-73					
Honey Creek near Russell, Ia.	06903500	13.2	Sed.	1952-62					
Chariton River near Rathbun Ia	06903900	549	Temp * Sed * Cond *	1962-69					

Discontinued Surface-Water Quality Stations-Continued

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled "Water Resources Data - Iowa" as part of the National Water Data System.

Water resources data for water year 1999 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 123 gaging stations; stage or contents records for 10 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 12 gaging stations; and water levels for 175 ground-water observation wells. Also included are peak-flow data for 93 crest-stage partial-record stations, water-quality data from 67 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.

Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they were published in 5-year series. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States, or they may be purchased from Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225.

For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a Stateboundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water is published in official U.S. Geological Survey reports on a State-boundary basis. These official reports carry an identification number consisting of the two-letter State postal abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as "U.S. Geological Survey Water-Data Report IA-99-1." These water-data reports are for sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

Additional information for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone, (319) 337-4191.

COOPERATION

The U.S. Geological Survey and organizations in the State of Iowa have had cooperative agreements for the systematic collection of streamflow records since 1914, for ground-water levels since 1935, and for water-quality records since 1943. Organizations that assisted in collecting data through cooperative agreements with the U.S. Geological Survey in Iowa during water year 1999 are:

Iowa Department of Natural Resources (Geological Survey Bureau) Iowa Department of Transportation Iowa Highway Research Board

Iowa State University University of Iowa, Institute of Hydraulic Research University of Iowa, Hygienic Laboratory University of Iowa

Appanoose County Board of Supervisors Davis County Board of Supervisors Freemont County Board of Supervisors Van Buren County Board of Supervisors

City of Ames City of Bettendorf City of Bloomfield City of Burlington City of Cedar Rapids City of Charles City City of Clear Lake City of Clinton City of Coralville City of Davenport City of Des Moines City of Des Moines Water Works City of Fort Dodge City of Iowa City City of Marshalltown City of Milford City of Mt. Pleasant City of Ottumwa Water and Hydro Plant City of Sioux City City of Waterloo Water Pollution Control Plant City of West Des Moines

Assistance in the form of funds or services was given by the U.S. Army Corps of Engineers in collecting streamflow records for 72 stream gaging stations. Assistance also was furnished by NOAA-National Weather Service, U.S. Department of Commerce, and Biological Resources Division (BRD) of U.S. Geological Survey.

The following organizations aided in collecting records: Milford Municipal Utilities, Central Iowa Energy Cooperative, Union Electric Company.

Organizations that supplied data are acknowledged in the station descriptions.

SUMMARY OF HYDROLOGIC CONDITIONS

Surface Water

For water year 1999 (October 1, 1998 to September 30, 1999) climatological conditions were wetter than normal and warmer than normal. Recorded precipitation for the year ranged from 1.50 inches above normal in the Northwest Iowa Climatological District to 8.95 inches greater than normal in the Northeast Iowa Climatological District (fig. 1). Precipitation recorded for the State averaged 37.38 inches, which was 4.27 inches greater than normal, or 113 percent of the normal 33.11 inches for 1961-90 (table 1). Overall, water year 1999 was the 17th wettest and the 21st warmest for 126 years of record. [In this summary of hydrologic conditions, all data and statistics pertaining to precipitation and temperature in Iowa were provided by Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship, (oral and written commun., 1999)]

October was the wettest in 126 years of record. Statewide average precipitation was 4.98 inches, which was 197 percent of normal. Climatological Districts reported above average precipitation, ranging from 261 percent of normal in the East-central District to 150 percent of normal in the West-central District. For the three index surface-water stations in Iowa, mean monthly discharge for 05464500 Cedar River at Cedar Rapids was above normal (East-central District), while 05480500

Figure 1. Precipitation record for the National Weather Service's designated Climatological Districts for water year 1999 (source: Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship, written commun., 1999).

National Weather													
Service Climatological		1998						1999					
District	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Annual
Northwest	211	155	36	179	63	44	202	84	150	125	26	26	105
North-central	186	55	23	181	77	45	230	172	130	212	53	39	127
Northeast	210	64	18	201	89	38	187	162	96	247	93	38	127
West-central	150	82	34	147	137	46	246	88	136	122	94	32	110
Central	200	67	24	147	78	50	182	133	131	102	94	40	110
East-central	261	59	39	175	106	48	173	102	105	116	71	54	106
Southwest	122	142	26	94	159	42	170	157	116	90	103	58	116
South-central	190	139	46	82	158	57	167	130	104	65	86	67	106
Southeast	231	124	67	201	101	54	159	100	102	61	79	88	108
Statewide	197	96	35	159	105	147	198	125	121	129	78	49	113

Table 1. Monthly and annual precipitation during the 1999 water year as a percentage of normal precipitation
(1961-90).[Source: Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship, written

commun., 1999]

Des Moines River at Fort Dodge (Central District) and 06810000 Nishnabotna River above Hamburg (Southwest District) was in the normal range (fig. 2). For the remainder of this section, these stations will be referred to as "Cedar Rapids," "Fort Dodge," and "Hamburg," respectively. The location of all active continuous-record gaging stations in Iowa is shown in figure 3, and the location of all active crest-stage gaging stations is shown in figure 4.

Precipitation for November averaged 96 percent of normal. Climatological District reports ranged from 155 percent of normal in the Northwest District to 55 percent of normal in the North-central District. Mean monthly discharge at Cedar Rapids and Fort Dodge was above normal, but was in the normal range for Hamburg.

December was the 11th driest reported for 126 years of record. Precipitation for the month was 35 percent of normal at 0.45 inches. All Climatological Districts reported precipitation below normal. Average snowfall for the month was 5.5 inches. Cedar Falls and Fort Dodge index stations had a mean monthly discharge above normal, but Hamburg experienced normal mean monthly discharge.

Increases of precipitation during January were 159 percent of normal, with total precipitation of 1.37 inches. This was the 8th consecutive January with precipitation at or above normal. Precipitation ranged from 201 percent of normal in the Northeast Climatological District to 82 percent of normal in the South-central District. Snowfall for the month was 12.5 inches, making this the 12th snowiest January in 112 years of record. Index stations reported mean daily discharge above normal for the month at Cedar Rapids and within the normal range at Fort Dodge and Hamburg.

Near normal precipitation was experienced during February with the average precipitation of 0.97 inches, being 105 percent of normal. Average precipitation was 159 percent of normal in the Southwest and 63 percent of normal in the Northwest Climatological District. Snowfall for the month was 6.3 inches, while above average temperatures made this the 9th warmest February for 127 years of record. Above normal monthly mean discharge was experienced at Cedar Rapids and Fort Dodge, while Hamburg reported a monthly mean discharge in the normal range.

Figure 2. Annual runoff for period of record at index stations.

Figure 3. Location of active continuous-record gaging stations in Iowa, water year 1999. [See indicated volume and page number for gaging-station identification.]

Statewide average precipitation fell below normal for March, with 1.04 inches that was 47 percent of normal. All Climatological Districts reported precipitation below normal. For the month snowfall was 9.0 inches. This month, index stations at Fort Dodge and Hamburg had normal mean monthly discharge, but mean monthly discharge for Cedar Rapids was above normal.

April precipitation rebounded to 198 percent of normal, after the average statewide precipitation of 6.25 inches was recorded. This resulted in April being the wettest for 127 years of record. Precipitation ranged from 246 percent of normal in the West-central District to 159 percent of normal in the Southeast District. Average snowfall for the state was 0.2 inches. Mean monthly discharge for the index station at Cedar Rapids was in the normal range and in the above normal range for Fort Dodge and Hamburg.

The statewide average precipitation for May was 4.96 inches, which was 125 percent of normal. Range of precipitation was 172 percent in the North-central District to 84 percent of normal in the Northwest District. Mean monthly discharge was above normal at index stations Cedar Rapids and Hamburg and normal at Fort Dodge.

For June, statewide average precipitation was 5.33 inches or 121 percent of normal. Differences for Climatological Districts were 150 percent of normal in the Northwest District to 96 percent of normal in the Northeast District. All index stations were in the above normal range for the month.

Figure 4. Location of active crest-stage gaging stations in Iowa, water year 1999. [See indicated volume and page number for gaging-station identification.]

Total July statewide precipitation averaged 5.33 inches or 121 percent of normal. However, heavy rains in the Northcentral and Northeast Climatological Districts resulted in record flooding, while all other reporting Districts experienced below normal or slightly above normal precipitation. Range of precipitation was 247 percent of normal in the Northeast District and 61 percent of normal in the Southeast District. This was the warmest July in 127 years of record. Index stations at Cedar Rapids, Fort Dodge, and Hamburg all reported a mean monthly discharge above normal.

The Southwest Climatological District reported monthly mean precipitation 103 percent of normal for August, but the remaining eight districts ranged from 94 percent of normal in the West-central and Central Districts to 26 percent of normal in the Northwest District. Average statewide precipitation in the state was 4.03 inches. Mean monthly discharge at index stations Cedar Rapids and Hamburg was above normal, while Fort Dodge experienced mean monthly discharge in the normal range.

Dry conditions continued into September, with average statewide precipitation of 1.87 inches, which was 49 percent of normal. Climatological District precipitation ranged from 88 percent of normal in the Southeast District to 26 percent of normal in the Northwest District. This was the 19th driest September for 127 years of record. Above average mean monthly discharge was experienced at Cedar Rapids and Hamburg and in the normal range at Fort Dodge.

The water-year 1999 runoff at Cedar Rapids was 6,119,000 acre-feet, which is greater than the mean annual runoff for the period of record, 2,724,000 acre-feet. The water-year 1999 runoff at Fort Dodge was 2,238,000 acre-feet, which is greater

than the mean for the period of record, 1,293,000 acre-feet. The water-year 1999 runoff at Hamburg was 1,947,000 acre-feet, which is greater than the mean for the period of record, 926,500 acre-feet.

Suspended Sediment

Daily suspended-sediment discharge data (hereafter referred to as sediment discharge in this report) were collected at 12 streamflow-gaging stations in Iowa during the 1999 water year. Four stations have 21 years or more of record: 05389500 Mississippi River at McGregor, 05465500 Iowa River at Wapello, 05474000 Skunk River at Augusta, and 05481650 Des Moines River near Saylorville; three stations on the Missouri River have 13 years of record: 06486000 Missouri River at Sioux City, Iowa, 06610000 Missouri River at Omaha, Nebraska, and 06807000 Missouri River at Nebraska City, Nebraska; two stations in northeast Iowa have 8 years of record: 05389400 Bloody Run Creek near Marquette and 05411400 Sny Magill Creek near Clayton; and three stations in central Iowa have 4 years of record: 05471040 Squaw Creek near Colfax, 05487540 Walnut Creek near Prairie City, and 05487550 Walnut Creek near Vandalia. The locations of active sediment and surface water-quality stations are shown in figure 5.

The peak daily sediment discharge on 5 of 12 stations occurred between April 16-24, after a significant rain event. Four others peaked between May 12-17.

Figure 5. Location of active sediment and surface-water quality stations in Iowa, water year 1999.

Mississippi River at McGregor, which has most of its drainage basin in Minnesota and Wisconsin, had an annual sediment discharge of 878,000 tons, which was the fifth lowest sediment discharge in 24 years of record, and 51.1 percent of the average mean sediment discharge (fig. 6).

The sediment station on the Des Moines River near Saylorville in central Iowa is downstream from a major flood-control reservoir (Saylorville Reservoir). The annual sediment discharge at this station for water year 1999 was 294,000 tons. This represents 115 percent of the 22-year mean sediment discharge. The mean annual sediment discharge since dam completion is 256,000 tons (fig. 6).

Sediment discharges for Iowa River at Wapello and Skunk River at Augusta in southeast Iowa were indicative of the above-normal precipitation in central and eastern Iowa. The Iowa River basin drainage includes parts of the Southeast, East-central, Central, Northeast, and North-central Climatological Districts, and drains an area nearly three times as large as the Skunk Basin. These districts had about 116 percent of normal precipitation. Wapello had an annual sediment discharge of 2.47 million tons. This represents 89 percent of the 21-year mean sediment discharge of 2.77 million tons (fig. 6). The headwaters of the Skunk River basin are in central Iowa, and flow is southeasterly to the confluence with the Mississippi River. A substantial part of the drainage basin is located in the Southeast Climatological District. The annual precipitation for this district was 111 percent of normal for water year 1999. The 1999 annual sediment discharge for Skunk River at Augusta was 2.74 million tons, which is 97 percent of the 24-year mean sediment discharge of 2.83 million tons (fig. 6).

Figure 6. Comparison of annual sediment discharge for water year 1999 with mean, previous maximum, and previous minimum annual sediment discharges for periods of record at four long-term daily sediment stations in Iowa.

The 1999 annual sediment discharge for the two small drainage area stations located in northeast Iowa reflect the effect of precipitation patterns on small drainage basins. The annual sediment discharge for Bloody Run Creek near Marquette (05489400) was 2,635 tons, of which approximately 59 percent was measured during the month of May. The annual runoff was 56 percent of the 8-year mean sediment discharge of 4,726 tons. The annual sediment discharge for Sny Magill Creek near Clayton (05411400) was 6,028 tons. This runoff represents 119 percent of the 8-year mean sediment discharge of 5,062 tons. Sixty-seven percent of Sny Magill's annual sediment discharge was measured in May, and approximately 65 percent of the yearly total was measured on May 16-17. These stations are paired in a study on sediment-reduction techniques, with the Sny Magill Basin having the techniques implemented and the Bloody Run Basin not implemented.

The annual sediment discharge for the three stations located in central Iowa with less than approximately 20 square miles of drainage reflect precipitation patterns on small drainage basins. The 1999 sediment discharge for Squaw Creek near Colfax (05471040) was 8,007 tons. The 1999 sediment discharge for Walnut Creek near Prairie City (05487540) was 1,688 tons, while Walnut Creek near Vandalia (05487550) was 8,779 tons of annual sediment discharge. Vandalia has a drainage area approximately three times the size of Prairie City, but had about 5.2 times the amount of sediment discharge of Prairie City.

The three Missouri River stations (fig. 5) have large drainage areas, which the sediment discharges reflect. The annual sediment discharge at Sioux City was 9.5 million tons, which was 75 percent of the 13-year mean of 12.8 million tons. The sediment discharge at Omaha was 17.4 million tons, which was 77 percent of the 13-year mean of 22.6 million tons. The annual sediment discharge at Nebraska City was 31.5 million tons, which was 90 percent of the 13-year mean of 35.1 million tons.

Ground-Water-Level Observation Network

The ground-water monitoring network in Iowa provides a historical record of the water-level changes in the Nation's most important aquifers. The locations of the 175 wells monitored on a quarterly, monthly, or intermittent basis in Iowa during water year 1999 are shown in figure 7.

In this report, records of water levels are presented for a network of observation wells. However, many other water levels are measured through Federal, State, and local agency cooperative projects and entered into computer storage. Information for specific projects may be obtained from the District Chief, Iowa District, or via the world wide web using the following universal resource locator address: <URL: http://ia.water.usgs.gov/>.

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The principal identification number for a given well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the local well number, an alphanumeric number, derived from the township-range location of the well.

Water-level records are obtained from direct measurements with a steel tape or from an airline. The water-level measurements in this report are given in feet with reference to land-surface datum. Land-surface datum is a datum plane that is approximately at land surface at each well. The measuring point is the height above or below the land-surface datum and the point where the water level is measured. Both the measuring point and land-surface datum are provided for each well.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement to a depth of water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given to a tenth of a foot or a larger unit.

Ground-water supplies in Iowa are withdrawn from unconsolidated and bedrock aquifers. There are three types of unconsolidated aquifers: (1) alluvial aquifers, which consist of sand-and-gravel deposits associated with present-day fluvial systems; (2) glacial-drift aquifers, which consist of shallow, discontinuous, permeable lenses of sand and gravel interbedded with less-permeable glacial drift; and (3) buried-channel aquifers. Buried-channel aquifers were formed in areas where coarse sand and gravel were deposited in bedrock valleys and overlain by a thick layer of glacial drift.

Six wells completed in an unconsolidated aquifer recorded a new historic water levels during the 1999 water year. Three wells recorded new historic high water levels (table 2) and three wells recorded new historic low water levels (table 3).

Table 2. Historical high-water levels measured during water year 1999 in wells completed in unconsolidated aquifers.

[Values in feet below land surface]								
County	New historical Previous Aquifer high water Date historical high Well number type level measured water level n							
Johnson	414221091361103	Buried Channel	121.61 01/2	/20/1999	123.39	11/20/1996		
Pottawattamie	411359095171901	Buried Channel	123.19 08/	/11/1999	124.45	05/05/1994		
Washington	421829091304701	Glacial-drift	1.29 04/	/16/1999	1.53	05/23/1984		

Figure 7. Location of wells in the ground-water-level observation network in Iowa, water year 1999.

Country	Wall suggest	New historical low water	Date	Previous historical Date low water Dat		
County	well number	type	level	measured	level	measured
Crawford	420608095111701	Buried Channel	217.70	02/11/1999	212.90	01/09/1991
Crawford	421106095125501	Buried Channel	66.41	08/09/1999	65.18	08/05/1997
Shelby	413953095302601	Glacial Drift	19.38	11/04/1998	19.28	11/06/1992

 Table 3. Historical low-water levels measured during water year 1999 in wells completed in unconsolidated aquifers.

 [Values in feet below land surface]

The five major bedrock-aquifer units in Iowa are the Cambrian-Ordovician, Silurian-Devonian, Mississippian, Pennsylvanian, and Dakota. The Cambrian-Ordovician aquifer system consists of aquifers in sandstone of Early Cambrian age and dolomite and sandstone of Late Cambrian to Early Ordovician age. The Dresbach is the basal aquifer of the Cambrian-Ordovician aquifer system and is present locally in northeastern and east-central Iowa. Overlying the Dresbach aquifer is the more areally extensive Jordan-St. Peter aquifer. A confining shale unit separates the Jordan-St. Peter aquifer from the Galena aquifer, the uppermost aquifer in the Cambrian-Ordovician aquifer system. Overlying the Cambrian-Ordovician aquifer system is the Silurian-Devonian aquifer, which yields water from fractures in Silurian dolomite and Devonian limestone. Overlying the Silurian-Devonian aquifer is the Mississippian aquifer, which is composed of limestone and dolomite of Mississippian age and underlies about 60 percent of Iowa. Overlying the Mississippian aquifer are discontinuous lenses of sandstone in the Cherokee and Kansas City Groups of Pennsylvanian age, which form small, localized aquifers. The Dakota aquifer is the youngest bedrock-aquifer unit in the State and yields water from sandstone of Cretaceous age in northwest and western Iowa.

Forty wells completed in bedrock aquifers recorded new historical water levels during the 1999 water year. Twelve wells recorded historical high water levels (table 4), and 28 wells recorded historical low water levels (table 5).

					-	
County	Well number	Aquifer type	New historical high water level	Date measured	Previous historical high water level	Date measured
Bremer	424224092133901	Silurian-Devonian	86	10/05/1998	89	08/07/1997
Clinton	414806090212301	Silurian-Devonian	19.99	02/09/1999	27.67	08/06/1997
Ida	423108095383201	Mississippian	180.25	08/09/1999	180.97	07/27/1994
Jackson	420433090502401	Silurian-Devonian	59.74	05/03/1999	62.89	08/06/1997
Linn	420730091490401	Silurian-Devonian	20.73	05/03/1999	84.17	04/05/1976
Linn	421207091312201	Silurian-Devonian	10	08/09/1999	12	05/04/1998
Plymouth	424833096324701	Dakota	135.73	02/10/1999	136.54	05/05/1998
Story	420129093273701	Cambrian-Ordovician	295	02/08/1999	370	05/08/1997
Washington	412750091495201	Mississippian	+.59	11/04/1998	+.57	05/05/1997
Washington	411822091411001	Cambrian-Ordovician	249	05/10/1999	304	04/24/1997
Washington	411812091412601	Cambrian-Ordovician	240	11/04/1998	247	04/25/1997
Woodbury	422830096000511	Dakota	198.70	08/10/1999	199.06	05/11/1995

 Table 4. Historical high water levels measured during water year 1999 in wells completed in bedrock aquifers.

 {Values in feet below land surface; readings above land surface indicated by "+"]

		New Aquifer historical low Date			Previous historical low water	Date
County	Well number	type	water level	measured	level	measured
Appanoose	404103092404001	Cambrian-Ordovician	389.00	02/08/1999	382.42	08/06/1997
Buena Vista	424023095571401	Dakota	96.16	08/04/1999	95.30	12/12/1978
Calhoun	422339094375101	Cambrian-Ordovician	287	02/10/1999	237	08/06/1997
Cherokee	424348095231601	Cambrian-Ordovician	196.17	10/02/1998	194.73	02/03/1993
Clayton	425433091285002	Cambrian-Ordovician	10.86	08/25/1999	10.38	07/20/1989
Clinton	414806090212301	Silurian-Devonian	30.50	05/03/1999	27.67	08/06/1997
Decatur	404422093445602	Cambrian-Ordovician	442.66	08/12/1999	441.28	10/04/1997
Dubuque	422901090471901	Cambrian-Ordovician	248.02	05/04/1999	242.45	08/05/1997
Floyd	430800092540301	Cambrian-Ordovician	198	08/03/1999	186	05/05/1997, 02/12/1997
Grundy	422611092552501	Cambrian-Ordovician	296	08/02/1999	297	08/04/1997
Howard	432158092065801	Cambrian-Ordovician	340	08/02/1999	320	02/12/1997, 08/02/1997
Ida	422215095390811	Dakota	206.69	10/03/1998	206.50	05/07/1982
Jackson	420433090502401	Silurian-Devonian	64.22	02/09/1999	63.19	08/04/1998
Johnson	414132091345503	Silurian-Devonian	309	07/28/1999	301	08/16/1996
Johnson	414145091350101	Cambrian-Ordovician	411	07/08/1999, 08/12/1999, 09/09/1999	395	07/03/1996
Johnson	413950091322402	Cambrian-Ordovician	360	05/12/1999	340	04/30/1998
Lee	404306091270201	Cambrian-Ordovician	266.61	08/06/1999	264.74	08/06/1998
Linn	420200091363001	Cambrian-Ordovician	325	08/19/1999	293	07/24/1998
Linn	420219091344101	Cambrian-Ordovician	384	08/18/1999	351	08/10/1998
Madison	411727093483001	Mississippian	280.26	08/19/1999	279.45	08/04/1997
Mahaska	411912092273601	Mississippian	107.51	02/08/1999	103.61	03/05/1990- 03/08/1990
Mahaska	411914092274701	Mississippian	106.03	05/05/1999	103.20	10/26/1989
Muscatine	412833090482001	Silurian-Devonian	269	07/06/1999, 08/03/1999	260	04/07/1998
Muscatine	412952090501101	Silurian-Devonian	161	08/03/1999	160	09/01/1998
Osceola	431620095250511	Dakota	197.03	05/05/1999	195.05	08/06/1992
Plymouth	425249096125001	Dakota	124.71	11/02/1998	124.25	07/02/1991
Story	420957092181801	Cambrian-Ordovician	367	11/02/1998	350	01/03/1997
Washington	411300091320701	Mississippian	78.09	08/05/1999	77.04	11/27/1990

 Table 5. Historical low-water level measured during water year 1999 in wells completed in bedrock aquifers.

 [Values in feet below land surface]

Surface-Water Quality

Surface-water-quality data were collected in Iowa during water year 1999 at two National Stream-Quality Accounting Network (NASQAN) stations. The NASQAN stations in Iowa are the Mississippi River at Clinton (station number 05420500) and Missouri River at Omaha (06610000) (fig. 5). The combined drainage area of the two stations is approximately 408,000 sq. miles. Land use throughout the two drainage basins is primarily agricultural. Fifteen water samples were collected at Missouri River at Omaha, and 13 water samples were collected at Mississippi River at Clinton during the 1999 water year.

Nearly all the samples collected at the two stations contained detectable concentrations of agricultural chemicals. Detections of dissolved nitrite plus nitrate as nitrogen (hereafter referred to as nitrate) were common during the 1999 water year, with all samples containing concentrations greater than the detection level of 0.05 mg/L (milligrams per liter). Nitrate concentrations at Clinton ranged from 1.21 mg/L on September 9 to 3.88 mg/L, April 28 and at Omaha from 0.285 mg/L September 7 to 3.58 mg/L, April 20 at Omaha. Nitrate concentrations in water samples did not exceed 10 mg/L, which is the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) for public drinking water (USEPA, 1990 Maximum contaminant levels, subpart B of part 141, National primary drinking-water regulations: U.S. Code of Federal Regulations, Title 40, Parts 100 to 149, revised as of July 1, 1990, p. 553-677).

Pesticide analyses were completed for 28 water samples collected at the two NASQAN stations. Atrazine and metolachlor, two of the most commonly used herbicides in Iowa, were detected throughout the year at both NASQAN stations. Acetochlor and cyanazine were detected at least nine times at both sites. The largest herbicide concentration was 2.44 ug/L (micrograms per liter) of atrazine in the water sample collected from the Mississippi River on May 21. The largest overall concentration of acetochlor, alachlor, atrazine, cynazine, and metolachlor in a single event was also on the Mississippi River on May 21. This water sample had 1.66 ug/L of acetochlor, 0.105 ug/L of alachlor, 2.44 ug/L of atrazine, 0.172 ug/L of cyanazine, and 1.27 ug/L of metolachlor. No concentrations for any herbicide exceeded USEPA MCL's (USEPA,1992, Fact sheet: EPA 570/9-91-012FS, December 1992). Herbicide concentrations were generally larger in samples collected during May, June, and July than in samples collected at other times during water year 1999. Water samples collected in September through February had the lowest overall concentrations of the five herbicides during the 1999 water year.

Ground-Water Quality

The Iowa ground-water-quality monitoring program has been operated since 1982 by the U.S. Geological Survey in cooperation with the University of Iowa Hygienic Laboratory and the Iowa Department of Natural Resources, Geological Survey Bureau. The purpose of the program is twofold: (1) provide consistent and representative data describing the chemical water quality of the principal aquifers of the State; and (2) determine possible trends in both water quality and spatial distribution of water quality.

The ground-water-quality monitoring program was initiated to continue a program begun in 1950 by the State Health Department that consisted of periodic, nonspecific sampling of untreated water from municipal supply wells. Each year, approximately 250 wells, primarily municipal supply, were randomly-selected for sampling between April and November. Between 1985 and 1989, the emphasis of the program was on the analysis of nitrate and herbicide concentrations in samples from wells less than 200 feet in depth. Because of the random pattern of sampling both spatially (different wells each year) and seasonally (different times during the year), trends in ground-water quality were difficult to determine from the data. Therefore, in 1990, to provide year-to-year continuity of data and a more statistically sound basis for the study of long-term water-quality trends, a sampling strategy based on a random selection of wells weighted by aquifer vulnerability was implemented. Aquifer vulnerability was determined by the frequency of atrazine detections in water samples collected from wells in the respective aquifers. In 1990 and 1991, a fixed network of 50 wells was selected to be sampled annually, and approximately 200 wells continued to be selected on a rotational basis.

In 1992, the investigation of water-quality trends became the primary focus of the program, and a 10-year work plan was designed to eliminate spatial and seasonal variance, yet allow flexibility within the schedule to address additional data needs. For sampling site selection in 1992, the well inventory was divided into categories based on aquifer type and again on well depth for surficial aquifers, and into categories designated "vulnerable to contamination" and "not vulnerable to

contamination" based on the map *Groundwater Vulnerability Regions of Iowa* (Hoyer, B.E., and Hallberg, G.R., 1991, Special Map Series 11: Iowa Department of Natural Resources, scale 1:500,000) for bedrock aquifers. Vulnerability was determined by the combination and interpretation of factors including geologic and soil data, thickness of Quaternary cover, proximity to agricultural injection wells and sinkholes through which contaminants can be introduced to the aquifer, and evaluation of historical ground water and well contamination. A total of 90 sites were selected for sampling from a well inventory comprising approximately 1,640 public supply wells. From the 90 sites in the fixed network, 45 wells from two surficial aquifer types were selected to be sampled annually. The other 45 wells (from the bedrock aquifers) were selected to be sampled on a rotational schedule based on aquifer vulnerability to contamination. The wells determined to be vulnerable to contamination would be sampled every 2 years and those wells categorized as not vulnerable to contamination would be sampled every 2 years and those wells categorized as not vulnerable to contamination began in 1994. The sampling effort during the 1999 water year is the eighth year of this 10-year program to determine possible ground-water-quality trends.

Ground-Water Monitoring Network

During the 1999 water year, a total of 67 ground-water samples were collected from municipal wells located in four vunerable bedrock aquifers and two types of surficial aquifers throughout the State (fig. 8). These wells were sampled as part of the Iowa ground-water-quality monitoring (GWM) program to determine water-quality trends. Aquifer types include: (1)

Figure 8. Location of active ground-water-quality monitoring wells in Iowa.

alluvial aquifers comprising sand and gravel associated with present-day fluvial systems; (2) glacial drift and buried-channel aquifers associated with previous glaciation; (3) cretaceous aquifer comprised of fine- to course-grained sandstones of the Dakota group; (4) carboniferous aquifer composed primarily of porous limestones and dolomites of the Mississippian age; (5) Silurian-Devonian aquifer comprised of porous and fractured limestones and dolomites; and (6) Cambrian-Ordovician aquifer comprised of the Jordan sandstone. Samples were collected during June, July, and August 1999. All samples were analyzed by the University of Iowa Hygienic Laboratory. All samples were analyzed for common ions, nutrients, and herbicides. In addition, samples from wells less than 300 feet deep were analyzed for volatile organic compounds (VOC's), and samples from wells greater than 300 feet deep were analyzed for radio chemicals. Results for all constituent analyses are published in this report. Discussion of analytical results will be limited to the nitrogen species nitrate and ammonia, and herbicides.

A summary of results for nutrient and herbicide analyses are listed by compound in table 6. Nitrate or ammonia was detected in 57 of the 67 samples analyzed for these compounds, and one or more herbicides were detected in 8 of the 66 samples. The laboratory minimum reporting level (MRL) for ammonia and nitrate is 0.10 mg/L. The MRL's for the herbicides listed below are $0.10 \mu g/L$. The MRL is the lowest concentration reliably measured by the laboratory.

[µg/L, microgra	ams per liter; r	ng/L, milligrams p	per liter; <, less th	an detection limit]
Compound	Number of samples analyzed	Number of samples in which compound was detected	Median value	Maximum concentration detected
Acetochlor	66	0	$<\!\!0.10\mu g/L$	<0.10 µg/L
Ammonia	67	28	< .10 mg/L	6.6 mg/L
Alachlor	66	0	$< .10 \ \mu g/L$	$< .10 \mu g/L$
Atrazine	66	5	$< .10 \ \mu g/L$.31 µg/L
Butylate	66	0	$< .10 \ \mu g/L$	$< .10 \mu g/L$
Cyanazine	66	0	$< .10 \ \mu g/L$	$< .10 \mu g/L$
Deethylatrazine	66	2	$< .10 \ \mu g/L$.25 µg/L
Deisopropylatrazine	66	1	$< .10 \mu g/L$.19 µg/L
Metolachlor	66	4	$< .10 \mu g/L$	1.40 µg/L
Metribuzin	66	0	$< .10 \ \mu g/L$	$< .10 \mu g/L$
Nitrate	67	31	< .10 mg/L	18.0 mg/L
Prometone	66	0	$<~.10~\mu\text{g/L}$	$< .10 \ \mu g/L$
Trifluralin	66	0	$<~.10~\mu\text{g/L}$	$< .10 \ \mu g/L$

Table 6.	Summary	of nitrogen	species ar	nd herbicide	s detected in	n samples	from the	Ground	d-Water-Q	uality
			Monito	oring project	, water year	1999				

100 feet deep. The maximum nitrate concentration was 18.0 mg/L. Twenty-eight samples had detectable ammonia concentrations. Of these samples, 25 percent were collected from alluvial aquifers, 36 percent were from glacial drift and buried-channel aquifers, and 39 percent were from vunerable bedrock aquifers.

Nine commonly used herbicides and two atrazine degradation products were sampled for during the 1999 water year. Water from 8 of the 66 wells sampled for herbicides contained detectable concentrations of one or more herbicides or herbicide degradation products. No sample contained herbicide concentrations that exceeded the MCL or proposed MCL of any of the analytes. Six of the eight samples contained atrazine or its degradates, deethylatrazine and deisopropylatrazine. Metolachlor and/or prometone were also detected in four of the samples. No detectable amounts of cyanazine, metribuzin, butylate, trifluralin, alachlor, or acetochlor were found in any of the samples. Five samples with detectable herbicide concentrations were from wells completed in alluvial aquifers, one sample was from the glacial drift aquifers, and two were from vulnerable bedrock aquifers.

Trends in Ground-Water Quality

In 1999, the herbicide detection frequency in all wells less than 100 feet deep was 17 percent. The detection frequency in the previous seven years is shown in figure 9. Variance in detection frequency may reflect several factors including changes in agricultural practices concerning use of herbicides, and climatic conditions.

Figure 9. Trends in herbicide detection frequencies.

SPECIAL NETWORKS AND PROGRAMS

<u>Hydrologic Benchmark Network</u> is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities.

National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within four of the Nation's largest river basins--the Mississippi, Columbia, Colorado, and Rio Grande. The network consists of 39 stations. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and remobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical climate of precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to accomplish the following objectives: (1) provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 191 precipitation chemistry monitoring sites. (2) provide the mechanism to evaluate the effectiveness of the significant reduction in SO2 emissions that began in 1995 as implementation of the Clean Air Act Amendments (CAAA) occurred. (3) provide the scientific basis and nationwide evaluation mechanism for implementation of the Phase II CAAA emission reductions for SO2 and NOx scheduled to begin in 2000.

Data from the network, as well as information about individual sites, are available through the world wide web at:

http://nadp.nrel.colostate.edu/NADP

<u>The National Trends Network</u> (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of wet atmospheric deposition, which includes snow, rain, sleet, and hail. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

<u>The National Water-Quality Assessment (NAWQA) Program</u> of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 53 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees
typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies.

Additional information about the NAWQA Program is available through the world wide web at:

http://wwwrvares.er.usgs.gov/nawqa/nawqa_home.html

<u>Radiochemical Programs</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

<u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1999 water year that began October 1, 1998, and ended September 30, 1999. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data was collected are shown in figures 3-5, 7, 9, 10. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report was collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations, and the "latitude-longitude" system is used for wells.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary, with respect to the stream to which it is immediately tributary, is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 05388250, which appears just to the left of the station name, includes the two-digit Part number "05" plus the six-digit downstream-order number "388250." The Part number designates the major river basin; for example, Part "05" is the Mississippi River Basin.

Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure below.)

Latitude and longitude coordinates for wells:

Figure 10. Latitude-longitude well number.

Numbering System For Wells

Each well is identified by means of (1) a 15-digit number that is based on the grid system of latitude and longitude, and (2) a local number that is provided for continuity with older reports and for other use as dictated by local needs. For maximum utility, latitude and longitude code numbers are determined to seconds in order that each well may have a unique number. The first six digits denote degrees, minutes, and seconds of north latitude; the next seven digits are degrees, minutes, and seconds of west longitude; and the last two numbers are a sequential number assigned in the order in which the wells are located in a 1-second quadrangle.

The local well numbers are in accordance with the Bureau of Land Management's system of land subdivision. Each well number is made up of three segments. The first segment indicates the township, the second the range, and the third the section

in which the well is located (fig. 11). The letters after the section number, which are assigned in a counter-clockwise direction (beginning with "A" in the northeast quarter), represent subdivisions of the section. The first letter denotes a 160-acre tract, the second a 40-acre tract, the third a 10-acre tract, and the fourth a 2.5 acre tract. Numbers are added as suffixes to distinguish wells in the same tract. Thus, the number 96-20-3CDBD1 designates the well in the SE 1/4 NW 1/4 SE 1/4 SW 1/4 sec.3, T.96 N., R.20 W.

Figure 11. Local well-numbering system.

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations." Location of all complete-record surface water stations which are given in this report are shown in figure 3.

Partial records are obtained through discrete measurements without using a continuous stage-recording device, and generally pertain only to a characteristic of either high, medium or low flow. The location of all active, crest-stage gaging stations are shown in figure 4.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consists of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. This data, together with supplemental information, such as weather records, are

used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consists of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. This data is used with stage-capacity curves or tables to compute lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations, the stage-discharge relation is affected by changing stage; at these stations, the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relation changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relation. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed using stage-discharge relations.

For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For these periods, the daily discharges are estimated from the recorded range in stage, discharge computed before and after the missing record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table, and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preference.

The records published for each continuous-record surface-water discharge station (gaging station) consist of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

Station Manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.-- Because of new information, published records occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage sea level (see "Definition of Terms"), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES FOR PERIOD OF RECORD.--Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Extremes are published only for stations with significant flow regulation and where extremes occurred in pre-regulation periods. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data for a discontinued station were obtained by computer retrieval, the data would be current, and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, and EXTREMES FOR CURRENT YEAR have been deleted, and the information contained in these paragraphs is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. EXTREMES FOR PERIOD OF RECORD are now presented only for stations with significant flow regulation and where extremes occurred in pre-regulation periods. No changes have been made to the data presentations of lake contents or reservoir storage.

Data Table of Daily Mean Values

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations, monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Statistics of Monthly Mean Data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The

designated period will be expressed as "FOR PERIOD OF RECORD, BY WATER YEAR (WY)," for unregulated streams for the water years listed in the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. For significantly regulated streams, the first and last water years of the range of years will be given for the post-regulation period.

Summary Statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year, but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "PERIOD OF RECORD," for unregulated streams, will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. For significantly regulated streams, the period selected will be designated as "WATER YEARS ______," for the post regulation period. All of the calculations for the statistical characteristics designated ANNUAL (See line headings below.), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

- ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations, the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.
- ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations, the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN .-- The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN .-- The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.

ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1 - March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

- INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.)
- INSTANTANEOUS PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.
- INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.
- ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:
- Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.
- Cubic feet per second per square mile (CSFM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.
- Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.
- 10 PERCENT EXCEEDS .-- The discharge that is exceeded 10 percent of the time for the designated period.
- 50 PERCENT EXCEEDS.--The discharge that is exceeded 50 percent of the time for the designated period.
- 90 PERCENT EXCEEDS .-- The discharge that is exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified by listing the dates of the estimated record in the REMARKS paragraph of the station description, and are flagged "e" in tables.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft 3 /s the nearest tenth between 1.0 and 10 ft 3 /s; to whole numbers between 10 and 1,000 ft 3 /s; and to 3 significant figures for more than 1,000 ft 3 /s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published.

Other Records Available

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables is on file in various field offices of the Iowa District. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near streamgaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data is collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where limited water-quality data is collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data is obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 5.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

WATER RESOURCES DATA FOR IOWA, 1999

On-Site Measurements and Sample Collection

In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, alkalinity and dissolved oxygen, are made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures are followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures of onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. C2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. All of these references are listed on p. 54-56 of this report. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey District Office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain the representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals depends on flow conditions and other factors, which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis.

Water Temperature and Specific Conductance

Water temperatures are measured at most of the water-quality stations. The measurement of temperature and specific conductance is performed during each regular site visit (usually at a six week interval) to streamgaging stations. Records of stream temperature indicate significant thermal characteristics of the stream when analyzed over a long period of record. Large streams have small daily temperature variations, while shallow streams may have a daily range of several degrees and may closely follow the changes in air temperature. Furthermore, some streams may be affected by waste-heat discharge.

Specific conductance can be used as a general indicator of stream quality. This determination is easily made in the field with a portable meter, and the results are very useful as general indicators of dissolved-solids concentration or as a base for extrapolating other analytical data. Records for temperature and specific conductance appear in the section "Analyses of samples collected at miscellaneous sites".

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samples. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily, or in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended-sediment, records of the periodic measurements of the particlesize distribution of the suspended-sediment and bed material are included. Miscellaneous suspended-sediment samples were collected during flood events have been included with the station's water quality data or in the section "Analyses of samples at miscellaneous sites".

Laboratory Measurements

Sediment samples, samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the U.S. Geological Survey laboratory in Arvada, Colorado and the University of Iowa Hygienic Laboratory. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the U.S. Geological Survey laboratories are given in TWRI, Book 1, Chap. D2, Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remarks Codes

The following remarks codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK
E	Estimated value
>	Actual value is know to be greater than the value shown
<	Actual value is known to be less than the value shown
Κ	Results based on colony count outside the acceptance range (non-ideal colony count)
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted)
D	Biological organism count equal to or greater than 15 percent (dominant)
&	Biological organism estimated as dominant
V	Analyte was detected in both the environmental sample and the associated blank

Water Quality-Control Data

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this district are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples.

Blank Samples

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this District are:

Field blank - a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

Trip blank - a blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

Equipment blank - a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office).

Sampler blank - a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

Filter blank - a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

Splitter blank - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

Preservation blank - a blank solution that is treated with the sampler preservatives used for an environmental sample.

Reference Samples

Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

Replicate Samples

Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this District are:

Sequential samples - a type of replicate sample in which the samples are collected one after the other, typically over a short time.

Split sample - a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space.

Spike Samples

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

Dissolved Trace-Element Concentrations

NOTE.--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (µg/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the µg/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994.

Change in National Trends Network Procedures

Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study is available from the NADP/NTN Coordination Office, Colorado State University, Fort Collins, CO 80523 (Telephone: 303-491-5643).

Records of Ground-Water Levels

Ground-water level data from a network of observation wells in Iowa is published in this report. This data provides a limited historical record of water-level changes in the State's most important aquifers. Locations of the observation wells in this network in Iowa are shown in figure 6. Information about the availability of the data in the water-level files and reports of the U.S. Geological Survey may be obtained from the Iowa District Office (see address on back of title page).

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensures that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are arranged alphabetically by counties. The site identification number, based on latitude and longitude, for a given well is the 15-digit numeric value that appears in the upper left corner of the station description. The secondary identification number is the local well number, an alphanumeric value, derived from the township, range, and section location of the well (fig. 7).

Water-level records are obtained from direct measurements with a chalked steel tape, electric line, airline, or from the graph of a water-level recorder. The water-level measurements in this report are in feet with reference to land-surface datum. Land-surface datum is a plane that is approximately at land surface at each well. The elevation of the land-surface datum is given in the well description. The height of the measuring point above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (EOM).

Water-level measurements are reported to the nearest hundredth of a foot. Estimates, indicated by an "e" may be reported in tenths of a foot. Adjustments to the water level recorder chart are indicated by an "a". The error of water-level measurements may be, at most, a few hundredths of a foot.

Data Presentation

Each well record consists of two parts: the station description, and the table of water levels observed during the water year. The description of the well is presented by headings preceding the tabular data. The following explains the information presented under each heading.

LOCATION.--This paragraph follows the well identification number and includes the latitude and longitude (given in degrees, minutes, and seconds), the hydrologic unit number, the distance and direction from a geographic point of reference, and the well owner's name.

AQUIFER.--This entry is the aquifer(s) name (if one exists) and geologic age of the strata open to the well.

WELL CHARACTERISTICS.--This entry describes the well depth, casing diameter, casing depth, opening or screened interval(s), method of construction, and use of water from the well.

INSTRUMENTATION .-- This paragraph provides information on the frequency of measurement and the collection method used.

DATUM.--This entry includes the land-surface elevation and the measuring point at the well. The elevation of the landsurface datum is described in feet above (or below) sea level; it is reported with a precision depending on the method of determination. The measuring point is described physically and in relation to land surface.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level, and any information not presented in the other parts of the station description but considered useful.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the beginning of publication of water-level records by the U.S. Geological Survey.

REVISED RECORDS.--If any revisions of previously published data were made for water-levels, the Water Data Report in which they appeared and year published would appear here.

EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest water levels for the period of record, below land-surface datum, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum. For wells equipped with recorders, only abbreviated tables are published. The highest and lowest water levels of the water year and the dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level.

Hydrographs are included for 59 wells which are representative of hydrologic conditions in the important aquifers in Iowa.

Only water-level data from a national network of observation wells are given in this report. This data is intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in Iowa are shown in figure 7.

Records of Ground-Water Quality

Records of ground-water quality in this report differ from other types of records in that for most sampling sites, they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general purposes: one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.

The records of ground-water quality in this report were obtained as a part a statewide ground-water quality monitoring network operated by the Iowa District. All samples were obtained from municipal wells throughout Iowa. This program is conducted in cooperation with the University of Iowa Hygienic Laboratory (UHL) and the Iowa Department of Natural Resources (Geological Survey Bureau). All samples are collected by USGS personnel, field-preserved and submitted to UHL for analysis. Chemical analyses include common constituents (major ions), nutrients, organic compounds, radionuclides and pesticides. Approximately 10 percent of the samples receive additional analyses for about 90 organic priority pollutants; however, these analyses are not presented in this report, but are on file in the Iowa District Office.

Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigations" manuals listed on a following page. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis.

All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material comprising the casings. The samples collected represent raw water.

Data Presentation

The records of ground-water quality are published in a section titled GROUND-WATER QUALITY DATA immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by county, and are identified by station number. The prime identification number for wells sampled is the 15-digit station number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the station number, date and time of sampling, depth of well, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

Explanation of Quality of Ground-Water Data Tables -- Descriptive Headings

STATION NUMBER: 15-digit number based on grid system of latitude and longitude.

LOCAL WELL NUMBER: Refers to the Bureau of Land Management System of land subdivision.

DATE: The date that construction on the well was completed.

LOCAL WELL NAME: Name used by community to identify well.

COUNTY: The name of the county where the well is located.

SAMPLE DATE: Date the well was sampled.

SAMPLE TIME: Time the sample was collected.

AQUIFER CODE: Refers to the lithologic unit in which the well is completed. Derived from two digits of the GEOLOGIC UNIT, the principal unit which provides the majority of water to the well.

11 - Quaternary	33- Mississippian	36 - Ordovician
21 - Cretaceous	34 - Devonian	37 - Cambrian
32 - Pennsylvanian	35 - Silurian	

The third digit and remaining alphabetic characters refer to the more specific lithologic unit which the well is tapping. The following examples are commonly used units:

General	<u>Specific</u>
Quaternary	(alluvium)
Cretaceous	(Dakota sandstone)
Devonian	(Cedar Valley limestone)
	<u>General</u> Quaternary Cretaceous Devonian

DEPTH OF WELL, TOTAL (FT): Total depth of well in feet.

WATER RESOURCES DATA FOR IOWA, 1999

ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (WWW). This data may be accessed at:

http://www.usgs.gov

Some water-quality and ground-water data also are available through the WWW. In addition, data can be provided in various machine-readable formats on magnetic tape or 3-1/2 inch floppy disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (See address on the back of the title page.)

The Iowa District maintains a web site highlighting many of the District's activities. Many of the continuous stream gages presented in these reports have near-real-time data available, and all gages have historic data available. This data may be accessed at:

http://ia.water.usgs.gov

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters.

Alkalinity is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.

Annual runoff is the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters

Cubic foot per second per square mile [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.

Inch (IN., in.) as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Enterococcus bacteria are commonly found in the feces of humans and other warm-blooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis, Streptococcus feacium, Streptococcus avium,* and their variants.

Escherichia coli (E. coli) are bacteria present in the intestine and feces of warm-blooded animals. *E. coli* are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium. Their concentrations are expressed as number of colonies per 100 mL of sample.

Base flow is flow in a channel sustained by ground-water discharge in the absence of direct runoff.

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Bottom material: See "Bed material."

Chlorophyll refers to the green pigments of plants. Chlorophyll a and b are the two most common green pigments in plants.

Colloid is any substance with particles in such a fine state of subdivision dispersed in a medium (for example, water) that they do not settle out; but not in so fine a state of subdivision that they can be said to be truly dissolved.

Color unit is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases the water level can rise above the ground surface, yielding a flowing well.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuous-record station is a site that meets either of the following conditions:

- 1. Stage or streamflow are recorded at some interval on a continuous basis. The recording interval is usually 15 minutes, but may be less or more frequent.
- 2. Water-quality, sediment, or other hydrologic measure-ments are recorded at least daily.

Control designates a feature in the channel downstream from a gaging station that physically influences the water-surface elevation and thereby determines the stage-discharge relation at the station. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

Cubic foot per second (CFS, ft^3/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second, 448.8 gallons per minute, or 0.02832 cubic meters per second.

Cubic foot per second-day (CFS-DAY, Cfs-day, $[(ft^3/s)/d]$) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.9835 acre-feet, 646,317 gallons, or 2,447 cubic meters.

Daily record is a summary of streamflow, sediment, or water-quality values computed from data collected with sufficient frequency to obtain reliable estimates of daily mean values.

Daily record station is a site for which daily records of streamflow, sediment, or water-quality values are computed.

Datum, as used in this report, is an elevation above mean sea level to which all gage height readings are referenced.

Discharge, or flow, is the volume of water (or more broadly, volume of fluid including solid- and dissolved-phase material), that passes a given point in a given period of time.

Annual 7-day minimum is the lowest mean discharge for 7 consecutive days in a year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

Instantaneous discharge is the discharge at a particular instant of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Dissolved refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

Dissolved oxygen (DO) content of water in equilibrium with air is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved solids, with small temperature changes having the more significant offset. Photosynthesis and respiration may cause diurnal variations in dissolved-oxygen concentration in water from some streams.

Dissolved-solids concentration of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During that analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to reflect the change. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60.

Drainage area of a site on a stream is that area, measured in a horizontal plane, that has a common outlet at the site for its surface runoff. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Drainage basin is a part of the Earth's surface that is occupied by a drainage system with a common outlet for its surface runoff (see "Drainage area").

Flow-duration percentiles are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.

Gage datum is the elevation of the zero point of the reference gage from which gage height is determined as compared to sea level (see "Datum"). This elevation is established by a system of levels from known benchmarks, by approximation from topographic maps, or by geographical positioning system.

Gage height (G.H.) is the water-surface elevation referenced to the gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained. When used in connection with a discharge record, the term is applied only to those gaging stations where a continuous record of discharge is computed.

Ground-water level is the elevation of the water table or another potentiometric surface at a particular location.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate ($CaCO_3$).

Hydrologic benchmark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a benchmark station may be used to separate effects of natural from human-induced changes in other basins that have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped benchmark basin.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the U.S. Geological Survey. Each hydrologic unit is identified by an 8-digit number.

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Measuring point (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.

Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.

Micrograms per gram (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per kilogram (UG/KG, μ g/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter.

Microsiemens per centimeter (US/CM, μ S/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.

Miscellaneous site, or miscellaneous station, is a site where streamflow, sediment, and/or water-quality data are collected once, or more often on a random or discontinuous basis.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place. *See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88*

Nephelometric turbidity unit (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of Formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample.

Open or screened interval is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.

Organic carbon (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediments. May be reported as dissolved organic carbon (DOC), suspended organic carbon (SOC), or total organic carbon (TOC).

Organism is any living entity.

Organochlorine compounds are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.

Parameter Code is a 5-digit number used in the U.S. Geological Survey computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.

Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.

Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes Law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, Sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Classification	Size (mm)	Method of analysis
Clay	0.00024 - 0.004	Sedimentation
Silt	0.004 - 0.062	Sedimentation
Sand	0.062 - 2.0	Sedimentation/sieve
Gravel	2.0 - 64.0	Sieve

Particle-size classification used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Percent composition or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, or volume.

Periodic station is a site where stage, discharge, sediment, chemical, or other hydrologic measurements are made one or more times during a year, but at a frequency insufficient to develop a daily record.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

pH of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7 are termed "acidic," and solutions with a pH greater than 7 are termed "basic." Solutions with a pH of 7 are neutral. The presence and concentration of many dissolved chemical constituents found in water are, in part, influenced by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms are also influenced, in part, by the hydrogen-ion activity of water.

Picocurie (PC, pCi) is one trillionth (1×10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

Polychlorinated biphenyls (PCB's) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Polychlorinated naphthalenes (PCN's) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCB's) and have been identified in commercial PCB preparations.

Radioisotopes are isotopic forms of an element that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight, but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or non-exceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual

times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day 10-year low flow (7Q₁₀) is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the non-exceedances of the 7Q₁₀ occur less than 10 years after the previous non-exceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous non-exceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the 7Q₁₀.

Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

River mile is the distance of a point on a river measured in miles from the river's mouth along the low-water channel.

River mileage is the linear distance along the meandering path of a stream channel determined in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council.

Runoff in inches (IN., in.) is the depth, in inches, to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sea level refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929. *See: http://www.co-ops.nos.noaa.gov/glossary/gloss_n.html#NGVD*

Sediment is solid material that is transported by, suspended in, or deposited from water. It originates mostly from disintegrated rocks; it also includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along or very close to the bed. In this report, bed load is considered to consist of particles in transit from the bed to an elevation equal to the top of the bed-load sampler nozzle (usually within 0.25 ft of the streambed).

Bed-load discharge (tons per day) is the quantity of sediment moving as bed load, reported as dry weight, that passes a cross section in a given time.

Suspended sediment is the sediment that is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The entire sample is used for the analysis.

Mean concentration of suspended sediment is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

Suspended-sediment discharge (tons/day) is the quantity of sediment moving in suspension, reported as dry weight, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft^3/s) x 0.0027.

Suspended-sediment load is a term that refers to material in suspension. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration.

Seven-day 10-year low flow (7Q10, $7Q_{10}$) is the minimum flow averaged over 7 consecutive days that is expected to occur on average, once in any 10-year period. The 7Q10 has a 10-percent chance of occurring in any given year.

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage: See "Gage height."

Stage-discharge relation is the relation between the water-surface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Surface area of a lake or impoundment is that area encompassed by the boundary of the lake or impoundment as shown on USGS topographic maps, or on other available maps or photographs. The computed surface areas reflect the water levels of the lakes or impoundments at the times when the information for the maps or photographs was obtained.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative suspended-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Synoptic Studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

Tons per acre-foot is the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY, tons/d) is the rate representing a mass of 1 ton of a constituent in streamflow passing a cross section in 1 day. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day.

Total is the total amount of a given constituent in a representative suspended-sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a suspended-sediment mixture and that the analytical method determined all of the constituent in the sample.)

Total discharge is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.

Total recoverable is the amount of a given constituent that is in solution after a representative suspended-sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Turbidity is a measurement of the collective optical properties of a water sample that cause light to be scattered and absorbed rather than transmitted in straight lines; the higher the intensity of scattered light, the higher the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU) or Formazin turbidity units (FTU) depending on the method and equipment used.

Volatile organic compounds (VOC's) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOC's are manmade chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens (U.S. Environmental Protection Agency, 1996).

Water level is the water-surface elevation or stage of the free surface of a body of water above or below any datum (see "Gage height"), or the surface of water standing in a well, usually indicative of the position of the water table or other potentiometric surface.

Water table is the surface of a ground-water body at which the water is at atmospheric pressure.

Water-table aquifer is an unconfined aquifer within which is found the water table.

Water year in U.S. Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1999, is called the "1999 water year."

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

Well is an excavation (pit, hole, tunnel), generally cylindrical in form and often walled in, drilled, dug, driven, bored, or jetted into the ground to such a depth as to penetrate water-yielding geologic material and allow the water to flow or to be pumped to the surface.

Wet weight refers to the weight of animal tissue or other substance including its contained water.

WSP is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports

WATER RESOURCES DATA FOR IOWA, 1999

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY

The U.S.G.S. publishes a series of manuals describing procedures for planning and conducting specialized work in waterresources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S.G.S., Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be made in the form of a check or money order payable to the "U.S. Geological Survey." Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations."

Book 1. Collection of Water Data by Direct Measurement

Section D. Water Quality

- 1-D1. Water temperature—influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J.F. Ficke, and G. F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 pages.
- 1-D2. *Guidelines for collection and field analysis of ground-water samples for selected unstable constituents*, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 pages.
- Book 2. Collection of Environmental Data
- Section D. Surface Geophysical Methods
- 2-D1. *Application of surface geophysics to ground-water investigations,* by A.A. R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 pages.
- 2-D2. *Application of seismic-refraction techniques to hydrologic studies*, by F.P. Haeni: USGS–TWRI book 2, chap. D2. 1988. 86 pages.
- Section E. Subsurface Geophysical Methods
- 2-E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS– TWRI book 2, chap. E1. 1971. 126 pages.
- 2-E2. *Borehole geophysics applied to ground-water investigations*, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 pages.
- Section F. Drilling and Sampling Methods
- 2-F1. *Application of drilling, coring, and sampling techniques to test holes and wells,* by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 pages.
- Book 3. Applications of Hydraulics
- Section A. Surface-Water Techniques
- 3-A1. *General field and office procedures for indirect discharge measurements,* by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 pages.
- 3-A2. *Measurement of peak discharge by the slope-area method*, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 pages.
- 3-A3. *Measurement of peak discharge at culverts by indirect methods,* by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 pages.
- 3-A4. *Measurement of peak discharge at width contractions by indirect methods,* by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 pages.
- 3-A5. *Measurement of peak discharge at dams by indirect methods*, by Harry Hulsing: USGS–TWRI book 3. chap. A5. 1967. 29 pages.

WATER RESOURCES DATA FOR IOWA, 1999

- 3-A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 pages.
- 3-A7. *Stage measurement at gaging stations,* by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 pages.
- 3-A8. *Discharge measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 pages.
- 3-A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 pages.
- 3-Al0. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A10. 1984. 59 pages.
- 3-A11. *Measurement of discharge by the moving-boat method*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 pages.
- 3-A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 pages.
- 3-A13. *Computation of continuous records of streamflow*, by E.J. Kennedy: USGS–TWRI book 3, chap. A13. 1983. 53 pages.
- 3-A14. Use of flumes in measuring discharge, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984.
 48 pages.
- 3-A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 pages.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 pages.
- 3-A18. *Determination of stream reaeration coefficients by use of tracers,* by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 pages.
- 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A19. 1990. 31 pages.
- 3-A20. *Simulation of soluable waste transport and buildup in surface waters using tracers*, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 pages.
- 3-A21 *Stream-gaging cableways*, by C. Russell Wagner: USGS–TWRI book 3, chap. A21. 1995. 56 pages.
- Section B. Ground-Water Techniques
- 3-B1. *Aquifer-test design, observation, and data analysis,* by R.W. Stallman: USGS–TWRI book 3, chap. B1. 1971. 26 pages.
- 3-B2. *Introduction to ground-water hydraulics, a programed text for self-instruction*, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 pages.
- 3-B3. *Type curves for selected problems of flow to wells in confined aquifers*, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 pages.
- 3-B4. *Regression modeling of ground-water flow*, by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 pages.
- 3-B4. Supplement 1. Regression modeling of ground-water flow --Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS–TWRI book 3, chap. B4. 1993. 8 pages.
- 3-B5. *Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction*, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 pages.
- 3-B6. *The principle of superposition and its application in ground-water hydraulics,* by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 pages.
- 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 pages.
- Section C. Sedimentation and Erosion Techniques

46

- 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI book 3, chap. C1. 1970. 55 pages.
- 3-C2. *Field methods for measurement of fluvial sediment*, by H.P. Guy and V.W. Norman: USGS–TWRI book 3, chap. C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI book 3, chap. C3. 1972. 66 pages.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

- 4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI book 4, chap. A1. 1968. 39 pages.
- 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 pages.

Section B. Surface Water

- 4-B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI book 4, chap. B1. 1972. 18 pages.
- 4-B2. *Storage analyses for water supply*, by H.C. Riggs and C.H. Hardison: USGS–TWRI book 4, chap. B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS-TWRI book 4, chap. B3. 1973. 15 pages.
- Section D. Interrelated Phases of the Hydrologic Cycle
- 4-D1. *Computation of rate and volume of stream depletion by wells*, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 pages.
- Book 5. Laboratory Analysis

Section A. Water Analysis

- 5-A1. *Methods for determination of inorganic substances in water and fluvial sediments*, by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS-TWRI book 5, chap. A2. 1971. 31 pages.
- 5-A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 pages.
- 5-A4. *Methods for collection and analysis of aquatic biological and microbiological samples,* by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 pages.
- 5-A5. *Methods for determination of radioactive substances in water and fluvial sediments*, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 pages.
- 5-A6. *Quality assurance practices for the chemical and biological analyses of water and fluvial sediments*, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 pages.

Section C. Sediment Analysis

- 5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS-TWRI book 5, chap. C1. 1969. 58 pages.
- Book 6. Modeling Techniques
- Section A. Ground Water
- 6-A1. *A modular three-dimensional finite-difference ground-water flow model*, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 pages.
- 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 pages.
- 6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 pages.
- 6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS–TWRI book 6, chap. A4. 1992. 108 pages.
- 6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5, 1993. 243 pages.

- 6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler. 1996. 125 pages.
- Book 7. Automated Data Processing and Computations

Section C. Computer Programs

- 7-C1. *Finite difference model for aquifer simulation in two dimensions with results of numerical experiments,* by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 pages.
- 7-C2. *Computer model of two-dimensional solute transport and dispersion in ground water*, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 pages.
- 7-C3. *A model for simulation of flow in singular and interconnected channels,* by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 pages.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

- 8-A1. *Methods of measuring water levels in deep wells*, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 pages.
- 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 pages.

Section B. Instruments for Measurement of Discharge

- 8-B2. *Calibration and maintenance of vertical-axis type current meters,* by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 pages.
- Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

- 9-A1. *National Field Manual for the Collection of Water-Quality Data: Preparations for Water Sampling*, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p.
- 9-A2. *National Field Manual for the Collection of Water-Quality Data: Selection of Equipment for Water Sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p.
- 9-A3. *National Field Manual for the Collection of Water-Quality Data: Cleaning of Equipment for Water Sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p.
- 9-A4. *National Field Manual for the Collection of Water-Quality Data: Collection of Water Samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p.
- 9-A5. *National Field Manual for the Collection of Water-Quality Data: Processing of Water Samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p.
- 9-A6. *National Field Manual for the Collection of Water-Quality Data: Field Measurements*, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated.
- 9-A7. *National Field Manual for the Collection of Water-Quality Data: Biological Indicators*, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated.
- 9-A8. National Field Manual for the Collection of Water-Quality Data: Bottom-material samples, by D.B. Radtke: USGS– TWRI book 9, chap. A8. 1998. 48 pages.
- 9-A9. *National Field Manual for the Collection of Water-Quality Data: Safety in Field Activities*, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 pages.

THIS PAGE IS INTENTIONALLY BLANK

Gaging Stations

06483500	Rock River near Rock Valley, IA
06485500	Big Sioux River at Akron, IA

Crest Stage Gaging Stations

06483440	Dawson Creek near Sibley, IA	146
06483495	Burr Oak Creek near Perkins, IA	146

06483500 ROCK RIVER NEAR ROCK VALLEY, IA

LOCATION.--Lat 43°12'52", long 96°17'39", in SW¹/4 SW¹/4 SW¹/4 sec.16, T.97 N., R.46 W., Sioux County, Hydrologic Unit 10170204, on left bank 3 ft upstream from bridge on county highway K30, 0.3 mi north of Rock Valley, and at mile 19.1.

DRAINAGE AREA.--1,592 mi².

PERIOD OF RECORD.--June 1948 to current year.

REVISED RECORDS.--WSP 1439: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,222.54 ft above sea level. Prior to Aug. 13, 1952, nonrecording gage with supplementary water-stage recorder operating above 6.2 ft gage height. June 4, 1949 to Aug. 12, 1952 and Aug. 13, 1952 to May 4, 1976, water-stage recorder, at site 3.2 mi downstream at datum 10.73 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1897 reached a stage of 17.0 ft, former site and datum, discharge not determined, from information by State Highway Commission.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	92	746	1060	e270	e420	547	654	1550	957	960	313	96
2	96	650	1000	e340	e460	608	638	1390	1120	964	292	99
3	105	588	944	e320	e500	553	624	1300	1220	997	275	100
4	148	538	902	e250	e600	503	617	1250	1180	1000	261	115
5	229	500	864	e230	e550	530	640	1240	1100	1070	247	129
6	271	471	825	e200	e600	484	958	1210	1100	982	227	112
7	290	448	786	e213	e700	425	1560	1210	1040	855	216	105
8	271	436	740	e210	e750	303	1720	1270	964	762	203	100
9	238	448	711	e180	e1200	e270	2270	1280	908	682	191	95
10	204	e600	684	e195	e1600	362	4430	1250	1270	612	180	90
11	187	e800	651	e200	e2500	474	4330	1210	1390	560	168	88
12	173	1060	643	e200	e3100	454	3940	1160	1720	519	165	88
13	164	1670	640	e180	2840	429	3280	1110	1600	481	153	84
14	162	1980	631	e190	2230	423	2730	1050	1390	449	146	82
15	157	2030	619	e180	1940	432	2590	1020	1260	438	143	81
16	160	2150	607	e210	1450	507	2350	1010	1220	404	137	80
17	202	2310	592	e250	1030	1160	2090	1010	1160	383	137	76
18	313	2320	592	e225	694	1950	1820	989	1080	381	131	75
19	417	2550	e360	e210	563	1420	1640	931	1070	466	121	74
20	425	2540	e280	e220	508	992	1490	917	1110	732	117	73
21	370	2010	e380	e250	468	854	1370	1080	1150	864	111	73
22	334	1690	e360	e240	425	770	1310	1740	1110	848	110	73
23	310	1560	e340	e250	e320	715	1250	1470	1060	839	113	75
24	291	1530	e300	e300	443	669	1180	1290	973	825	107	71
25	277	1510	e300	e270	442	625	1090	1180	894	673	104	70
26 27 28 29 30 31	270 329 401 628 851 870	1390 1310 1200 1140 1100	e320 e340 e400 e360 e340 e320	e250 e340 e320 e340 e360 e380	472 488 513 	596 583 601 639 675 665	1110 1310 1830 2120 1800	1080 1010 929 874 839 915	828 825 922 1010 977 	559 487 440 404 372 345	102 97 92 88 95 96	68 69 70 70
TOTAL	9235	39275	17891	7773	27806	20218	$54741 \\ 1825 \\ 4430 \\ 617 \\ 108600 \\ 1.15 \\ 1.28$	35764	33608	20353	4938	2550
MEAN	298	1309	577	251	993	652		1154	1120	657	159	85.0
MAX	870	2550	1060	380	3100	1950		1740	1720	1070	313	129
MIN	92	436	280	180	320	270		839	825	345	88	68
AC-FT	18320	77900	35490	15420	55150	40100		70940	66660	40370	9790	5060
CFSM	.19	.82	.36	.16	.62	.41		.72	.70	.41	.10	.05
IN.	.22	.92	.42	.18	.65	.47		.84	.79	.48	.12	.06
STATIST	TICS OF	MONTHLY N	MEAN DATA	FOR WATER	YEARS 19	49 - 1999	, BY WATEF	R YEAR (WY	()			
MEAN	240	268	147	82.2	228	1042	1296	697	953	610	271	240
MAX	1232	2039	676	434	1059	4646	6507	3728	6495	9088	2251	2135
(WY)	1993	1980	1983	1996	1966	1997	1969	1993	1993	1993	1993	1986
MIN	2.39	9.70	3.22	.037	.30	35.1	35.9	44.4	46.3	21.9	6.79	3.26
(WY)	1959	1959	1959	1977	1959	1959	1959	1968	1964	1976	1976	1955

06483500 ROCK RIVER NEAR ROCK VALLEY, IA--Continued

SUMMARY STATISTICS	FOR 1998 CALEND	DAR YE	AR	FOR 1999 WA	TER YE	EAR	WATER	YEARS	1949) _	1999
ANNUAL TOTAL	188989			274152							
ANNUAL MEAN	518			751			506				
HIGHEST ANNUAL MEAN							2656				1993
LOWEST ANNUAL MEAN							31	.0			1968
HIGHEST DAILY MEAN	2550	Nov	19	4430	Apr	10	35400		Apr	7	1969
LOWEST DAILY MEAN	50	Jan	13	68	Sep	26		.00	Feb	20	1959b
ANNUAL SEVEN-DAY MINIMUM	59	Jan	12	70	Sep	24		.00	Feb	27	1959
INSTANTANEOUS PEAK FLOW				5000	Apr	10	40400		Apr	7	1969
INSTANTANEOUS PEAK STAGE				10.10	Apr	10	17	.32	Apr	7	1969
INSTANTANEOUS LOW FLOW				67	Sep	25a			-		
ANNUAL RUNOFF (AC-FT)	374900			543800			366700				
ANNUAL RUNOFF (CFSM)	.33			.47				.32			
ANNUAL RUNOFF (INCHES)	4.42			6.41			4	.32			
10 PERCENT EXCEEDS	1290			1560			1150				
50 PERCENT EXCEEDS	340			563			135				
90 PERCENT EXCEEDS	95			105			16				

Also Sep 26-30 Many days during winter periods in 1959 & 1977 Estimated

a b e

06485500 BIG SIOUX RIVER AT AKRON, IA

- LOCATION.--Lat 42°50'14", long 96°33'41", in SW¹/4 SE¹/4 SW¹/4 sec.30, T.93 N., R.48 W., Plymouth County, Hydrologic Unit 10170203, on left bank 15 ft downstream from Iowa Highway 403 bridge, 0.5 mi northwest of Akron, and 2.9 mi upstream from Union Creek.
- DRAINAGE AREA.--8,424 mi², of which 1,487 mi² usually is noncontributing (213 mi² of the noncontributing area contributed runoff in the 1994-99 water years).

PERIOD OF RECORD. -- October 1928 to current year.

- REVISED RECORDS.--WSP 1309: 1929(M), 1931-33(M), 1936(M), 1938(M), 1940(M). WSP 1389: Drainage area. WDR SD-84-1: Drainage area. WDR SD-94-1 only: Drainage area.
- GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,118.90 ft above sea level. Prior to Dec. 3, 1934, nonrecording gage at bridge 0.5 mi downstream at same datum. From Dec. 3, 1934, to Oct. 31, 1985, water-stage recorder at site 0.6 mi downstream at same datum.
- REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers satellite data-collection platform at station. Water temperature and specific conductance measured during the year are compiled in the Miscellaneous Temperature Measurements and Field Determinations section.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	429	2050	3320	e850	e800	1910	2370	4730	3230	2850	1520	751
2	461	1940	3260	e820	e810	1950	2360	4470	3380	3560	1430	769
3	455	1790	3180	e800	e870	2090	2350	4220	3500	3990	1350	718
4	497	1690	3070	e780	e950	2110	2340	4040	3500	3510	1290	724
5	627	1620	2970	e760	e1000	1990	2370	3930	3410	3390	1240	742
6	791	1540	2850	e740	e1040	e2090	2620	3900	3680	3300	1250	763
7	1100	1470	2720	e730	e1100	e2170	3210	4160	3220	3160	1260	769
8	1030	1440	2600	e720	e1230	e2020	4150	4700	2970	2910	1210	733
9	1020	1420	2490	e710	e1600	e1780	5000	4620	2770	2700	1160	754
10	959	1670	2380	e700	e2000	e1520	5930	4500	3080	2480	1110	808
11	883	1950	2300	e690	e3000	e1470	7910	4460	3480	2260	1060	871
12	820	2250	2180	e690	e3500	1620	9790	4540	3470	2080	1040	884
13	797	2080	2070	e680	e3500	1700	10300	4620	3620	1930	995	824
14	756	2550	2060	e680	e3400	1710	10100	4520	3710	1800	950	775
15	723	3060	2090	e670	e3300	1710	8430	4290	3830	1690	917	727
16	700	3420	2070	e660	3180	1840	7600	4060	3830	1640	897	695
17	721	3830	2050	e670	2790	e2120	7310	3880	3630	1590	866	675
18	785	4260	2020	e690	2510	3220	7060	3770	3350	1700	854	647
19	1130	4600	1950	e710	2280	4860	6430	3600	3180	1580	816	630
20	1270	4870	e1500	e730	2050	4640	5830	3450	3070	3450	792	606
21	1340	4910	e1200	e730	1900	3950	5370	3420	3080	3920	775	611
22	1270	4450	e900	e730	1830	3680	5020	3920	3110	3200	764	609
23	1240	4020	e1000	e740	1420	3420	4770	4500	3090	3100	762	584
24	1250	3850	e1200	e750	1410	3090	4590	4120	3000	3270	757	576
25	1230	3900	e1280	e740	1700	2820	4410	3800	2890	3530	748	584
26 27 28 29 30 31	1180 1200 1230 1460 1610 1920	3950 3810 3670 3560 3440	e1300 e1250 e1200 e1150 e1050 e950	e740 e740 e760 e760 e770 e780	1790 1740 1840 	2620 2470 2380 2330 2360 2380	4200 4100 4310 4770 4980	3580 3400 3240 3080 2900 3160	2740 2960 2870 2850 2890	2870 2460 2170 1930 1770 1640	732 716 701 695 775 724	582 568 568 555 548
TOTAL	30884	89060	61610	22720	54540	76020	159980	123580	97390	81430	30156	20650
MEAN	996	2969	1987	733	1948	2452	5333	3986	3246	2627	973	688
MAX	1920	4910	3320	850	3500	4860	10300	4730	3830	3990	1520	884
MIN	429	1420	900	660	800	1470	2340	2900	2740	1580	695	548
AC-FT	61260	176700	122200	45070	108200	150800	317300	245100	193200	161500	59810	40960
STATIST	TICS OF	MONTHLY I	MEAN DATA	FOR WATER	YEARS 19	29 - 1999	, BY WATE	R YEAR (W	Y)			
MEAN	536	528	353	209	518	2419	3294	1793	2157	1490	763	680
MAX	4039	3022	1987	920	2399	8866	20690	9499	15820	21740	6200	7313
(WY)	1987	1980	1999	1996	1966	1983	1969	1993	1984	1993	1993	1986
MIN	32.9	47.9	32.1	6.68	12.1	124	139	73.3	100	50.7	45.2	36.4
(WY)	1959	1959	1977	1977	1936	1931	1931	1934	1933	1931	1976	1976

e Estimated
06485500 BIG SIOUX RIVER AT AKRON, IA--Continued

SUMMARY STATISTICS	FOR 1998 CALENDA	AR YEAR	ર	FOR 1999 WATE	R YEA	AR.	WATER YEARS	1929		1999
ANNUAL TOTAL	635448			848020						
ANNUAL MEAN	1741			2323			1229a			
HIGHEST ANNUAL MEAN							6271			1993
LOWEST ANNUAL MEAN							120			1931
HIGHEST DAILY MEAN	6850	Apr 1	LO	10300	Apr	13	77500	Apr	9	1969
LOWEST DAILY MEAN	300	Feb	5	429	Oct	1	4.0	Jan	17	1977
ANNUAL SEVEN-DAY MINIMUM	311	Feb	1	569	Sep	24	4.4	Jan	15	1977
INSTANTANEOUS PEAK FLOW				10400	Apr	13	80800	Apr	9	1969b
INSTANTANEOUS PEAK STAGE				17.90	Apr	13	23.05	May	10	1993c
ANNUAL RUNOFF (AC-FT)	1260000			1682000			890300			
10 PERCENT EXCEEDS	3820			4300			2920			
50 PERCENT EXCEEDS	1410			1950			390			
90 PERCENT EXCEEDS	430			719			70			

Median of annual mean discharges, 820 ft³/s Gage height, 22.99 ft From floodmark; discharge, 66,700 ft³/s a b c

Gaging Stations

06486000	Missouri River at Sioux City, IA
06600000	Perry Creek at 38th Street, Sioux City, IA
06600100	Floyd River at Alton, IA
06600500	Floyd River at James, IA
06601200	Missouri River at Decatur, NE
06602020	West Fork Ditch at Hornick, IA
06602400	Monona-Harrison Ditch near Turin, IA

Crest Stage Gaging Stations

06599800	Perry Creek near Merrill, IA
06599950	Perry Creek near Hinton, IA
06600030	Little Floyd River near Sanborn, IA
06600036	Sweeney Creek Tributary near Sheldon, IA
06600300	West Branch Floyd River near Struble, IA
06601480	Big Whiskey Slough near Remsen, IA
06602190	Elliott Creek at Lawton, IA

MISSOURI RIVER MAIN STEM

06486000 MISSOURI RIVER AT SIOUX CITY, IA

LOCATION.--Lat. 42°29'09", long 96°24'49", in NW¹/₄ SE¹/₄ sec.16, T.29 N., R.9 E., sixth prinicipal meridian, Dakota County, Nebraska, Hydrologic Unit 10230001, on right bank on upstream side of bridge on U.S. Highway 20 and 77 at South Sioux City, Nebraska, 1.9 mi downstream from Big Sioux River, and at mile 732.2.

DRAINAGE.--314,600 mi², approximately. The 3,959 mi² in Great Divide basin are not included.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1897 to current year in reports of the U.S. Geological Survey. Prior to October 1928 and October 1931 to September 1938, monthly discharges only, published in WSP 1310. January 1879 to December 1890, monthly discharges only, in House Document 238, 73rd Congress, 2d session, Missouri River. Gage height records collected in this vicinity September 1878 to December 1899 are contained in reports of Missouri River Commission and since July 1889 are contained in reports of U.S. Weather Bureau.

REVISED RECORDS. -- WSP 716: 1929-30. WSP 876: Drainage area.

- GAGE.--Water-stage recorder. Datum of gage is 1,056.98 ft above sea level. Sept. 2, 1878 to Dec. 31, 1905, nonrecording gages at various locations within 1.7 mi of present site and at various datums. Jan. 1, 1906 to Feb. 14, 1935, nonrecording gage, and Feb. 15, 1935 to Sept. 30, 1969, water-stage recorder at site 227 ft downstream at datum 19.98 ft higher, and Oct. 1, 1969 to Sept. 30, 1970 at datum 20.00 ft higher. Oct. 1, 1970 to Jan. 30, 1981, water-stage recorder at site 227 ft downstream at present datum.
- REMARKS.--Records good. Flow regulated by upstream main-stem reservoirs. Fort Randall Dam was completed in July 1952, with storage beginning in December 1952. Gavins Point Dam was completed in July 1955, with storage beginning in December 1955. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 441,000 ft³/s Apr. 14, 1952, gage height, 24.28 ft, datum then in use; minimum, 2,500 ft³/s Dec. 29, 1941; minimum gage height, 7.02 ft Jan. 19, 1996.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	33000 32700	40000 40400	46000 45800	25000 24400	26700 28400	30100 30200	36000 36100	34300 35700	48100 48000	39200 43300	44700 44400	48300 48200
3	33000	40400	45800	23700	29400	31200	35800	36000	42600	46400	44000	48200
4	33500	40100	44000	22600	29600	32500	36300	36200	42700	45500	42500	48600
5	34900	40000	42500	23800	29100	32600	36400	36600	46300	46800	43300	48500
6	32000	41200	40200	25700	29300	32400	37700	35600	44000	49000	44600	49000
7	29500	42900	38400	24500	29300	32500	37000	33200	43300	49600	45200	49700
8	30300	42800	36900	23800	29500	32500	37100	33600	45800	50000	42500	49700
9	30600	42400	36400	23800	30000	33600	37400	33900	44900	49800	39500	49600
10	32800	45400	36000	23700	30200	34100	36800	33600	46000	48700	40700	49100
11	33500	43200	35600	23800	30700	33900	34900	33100	48400	47700	41600	48800
12	33600	42200	35200	25700	29800	33500	35800	32200	39800	47000	42400	48800
13	33100	43200	34700	24100	29700	33400	37200	34600	37400	46100	42500	48500
14	33000	43600	34400	23200	31600	33500	38600	35000	40400	45200	42900	48200
15	33100	44300	34200	24500	31100	33800	40800	35800	45500	44300	43100	48000
16	33400	45100	34100	27000	31100	34200	38900	37300	40900	43900	43600	48200
17	33700	45600	33800	28000	30800	35500	32600	39200	42000	43400	43200	48500
18	33600	46500	33700	26000	30700	35700	31500	38800	45800	43600	42800	48300
19	33300	47300	33400	24900	30700	36500	33300	36200	42100	42400	42700	48100
20	33600	47600	32600	25400	30500	33100	34400	37400	42900	43800	42400	48000
21	35400	48300	29100	25400	29900	38600	36200	40400	45900	53300	41900	48100
22	35800	48600	24100	25700	29500	37200	35000	42000	46000	54500	41200	48100
23	36000	48200	20600	26500	29200	36700	31900	44700	45800	48200	40900	48300
24	36000	47800	20500	27200	30000	35800	28900	45200	46200	46700	40800	48600
25	36000	47900	21700	26400	30000	35600	32500	44300	45700	47000	39700	48500
26	36300	47400	24000	27200	30200	35200	35700	43700	45200	47600	41900	48400
27	36100	47100	24300	27600	30600	35200	36300	43600	49500	46500	44300	48200
28	36700	46700	25200	27200	30300	35600	35400	43400	51800	46100	46800	48000
29	38700	46500	24800	26900		35100	32700	44300	41900	45900	47800	48200
30	40100	46200	24100	26500		35000	31700	45800	37200	45600	48100	48200
31	39500		24800	26400		35500		45900		45200	48000	
TOTAL	1062800	1338900	1016900	786600	837900	1060300	1060900	1191600	1332100	1442300	1340000	1454900
MEAN	34280	44630	32800	25370	29920	34200	35360	38440	44400	46530	43230	48500
MAX	40100	48600	46000	28000	31600	38600	40800	45900	51800	54500	48100	49700
MIN	29500	40000	20500	22600	26700	30100	28900	32200	37200	39200	39500	48000
AC-FT	2108000	2656000	2017000	1560000	1662000	2103000	2104000	2364000	2642000	2861000	2658000	2886000
CFSM	.11	.14	.10	.08	.10	.11	.11	.12	.14	.15	.14	.15
IN.	.13	.16	.12	.09	.10	.13	.13	.14	.16	.17	.16	.17
STATIS	STICS OF	MONTHLY N	IEAN DATA	FOR WATER	YEARS 19	53 - 1999	, BY WATE	ER YEAR (W	IY)			
MEAN	36110	31090	18850	16040	17340	23440	33400	34010	35840	36490	36890	37040
MAX	69300	71600	39880	27720	31120	47020	88040	78720	66400	65550	65360	66400
(WY)	1998	1998	1998	1987	1997	1997	1997	1997	1997	1997	1997	1997
MIN	14350	6951	8271	7316	6293	9135	17450	23820	23270	26890	24270	25790
(WY)	1962	1962	1962	1964	1963	1957	1957	1962	1960	1958	1993	1962

06486000 MISSOURI RIVER AT SIOUX CITY, IA--Continued

MISSOURI RIVER BASIN

06486000 MISSOURI RIVER AT SIOUX CITY, IA--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- October 1971 to current year. Daily sediment loads October 1954 to September 1971 in reports of U.S. Army Corps of Engineers.

PERIOD OF DAILY RECORD. -

SPECIFIC CONDUCTANCE: October 1972 to September 1976, November 1977 to September 1981, October 1991 to current year. WATER TEMPERATURES: October 1971 to September 1976, November 1977 to September 1981, October 1991 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1971 to September 1976, October 1991 to current year.

REMARKS. -- Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD. --

NETER TEMPERATURES: Maximum daily, 985 microsiemens Apr. 19, 1999; minimum daily, 410 microsiemens Mar. 22, 1978. WATER TEMPERATURES: Maximum daily, 28.0°C July 30, 1976, Aug. 7, 1979, and July 28, 1997; minimum daily, 0.0°C on many days during winter periods. SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,690 mg/L July 17, 1996; minimum daily mean, 42 mg/L Dec. 29, 1975. SEDIMENT LOADS: Maximum daily, 370,000 tons July 17, 1996; minimum daily, 2,150 tons Nov. 20, 1991.

EXTREMES FOR CURRENT YEAR .--

REMES FOR CORRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 985 microsiemens Apr. 19; minimum daily, 745 microsiemens Oct. 5. WATER TEMPERATURES: Maximum daily, 27.5°C July 26; minimum daily, 0.0°C Jan. 19. SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,440 mg/L Apr. 21; minimum daily mean, 102 mg/L Aug. 9. SEDIMENT LOADS: Maximum daily, 141,000 tons Apr. 21; minimum daily, 9,540 tons Oct. 19.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	TIME	NUMBER OF SAM- PLING POINTS (COUNT) (00063)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)
OCT	0905	2	0	12	91	95	0.9	00	100	
NOV	0205	5	0	15	01	25	50		100	
02 JAN	1110	3	0	12	88	97	97	97	98	100
19 FEB	1100	3	0	4	40	76	91	97	100	
02 MAR	1205	3	0	18	92	100				
02 APR	0915	3	0	3	43	69	85	92	97	100
02 MAY	1200	3	0	6	63	84	94	98	99	100
03 JUN	1125	3	0	5	61	86	95	99	100	
07 JUL	0920	3	0	4	65	96	99	100		
06 AUG	1220	3	0	8	74	97	99	100		
02 SEP	0936	3	0	9	73	96	99	100		
10	1050	2	0	16	85	98	99	100		

MISSOURI RIVER BASIN

06486000 MISSOURI RIVER AT SIOUX CITY, IA--Continued

Specific conductance microsiemens/cm at 25 deg C, water year october 1998 to september 1999 daily instantaneous values

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									923		934	
2	775	791			792	794	799			933		
3								891	952			856
4												
5	745	776										
6										936	935	
7								910	941			826
8					789				940	952		
9	766	772									929	
10						789		928				815
11									876			
12							914			975		
13	750	653									921	820
14								930	940			
15			836									
16	751	790			763	801	908			975	906	
17								910	945			830
18												
19	770			851			985			960		
20		818									897	816
21						801		896	936			
22												
23	765	819					963			883	889	
24								912				818
25		814			776				935			
26	785					812	940			848	883	
27												813
28								905	866			
29												
30	788	823				805	923			915	868	
31												

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY INSTANTANEOUS VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17.0 15.0	8.0 9.5	 	 	.5 	3.0	9.0 	 12.0 	17.0 18.5 	21.5 	25.0 	25.0
6 7 8 9 10	 13.0	 5.0 	 	 	 3.0 	 1.0	 	11.5 16.5	22.5 22.0 	24.0 25.5 	23.5 25.0 	23.0 20.0
11 12 13 14 15	 14.5 	 4.5 	 4.0	 	 	 	8.5 	 15.5 	21.0 22.5 	23.5	 22.5 	 18.0
16 17 18 19 20	16.0 14.0 	4.5 5.0	 	 . 0 	1.0	4.5 	7.0 11.0 	16.0 	17.0 	25.0 26.5 	23.0 24.0	17.0 18.0
21 22 23 24 25	13.0 	 6.0 5.0	 	 	 1.5	1.0	9.0 	17.0 17.0 	21.0 23.5	27.0 	23.5 	 19.0
26 27 28 29 30 31	15.0 14.0	 7.5 	 	 	 	7.5 8.0	10.5 14.5 	 18.0 	22.0 	27.5 26.5 	24.0 25.5 	17.0

MISSOURI RIVER BASIN

06486000 MISSOURI RIVER AT SIOUX CITY, IA--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OCTC	BER	NOVEME	ER	DECEMB	ER	JANUA	RY	FEBRUA	RY	MARC	н
1 2 3 4 5	172 155 181 220 255	15300 13600 16200 20000 24100	143 121 120 123 127	15500 13200 13100 13300 13700	296 291 286 281 276	36700 36000 35400 33300 31600	265 267 269 271 273	17800 17600 17200 16600 17500	358 358 337 315 294	25800 27400 26800 25200 23100	219 203 211 223 235	17800 16600 17800 19500 20800
6 7 8 9 10	236 210 187 172 179	20400 16700 15300 14200 15900	138 151 165 183 213	15400 17500 19100 21000 26200	271 266 262 257 253	29400 27600 26000 25200 24500	275 277 279 282 284	19100 18300 18000 18100 18200	275 257 244 252 264	21800 20300 19400 20400 21500	249 263 278 294 306	21700 23100 24400 26700 28100
11 12 13 14 15	190 202 212 205 196	17200 18400 18900 18300 17600	249 291 333 348 359	29000 33200 38900 41000 43000	248 244 240 236 233	23900 23200 22500 21900 21500	286 288 290 293 295	18400 20000 18900 18400 19600	276 289 303 318 333	22900 23300 24300 27100 28000	292 275 260 245 231	26700 24900 23400 22100 21000
16 17 18 19 20	184 152 124 106 117	16500 13900 11300 9540 10600	372 390 410 431 441	45300 48100 51500 55200 56700	234 236 238 239 241	21500 21500 21600 21600 21200	297 300 302 304 308	21700 22600 21200 20400 21100	347 346 344 342 339	29100 28800 28500 28300 27900	222 236 255 276 298	20500 22600 24600 27200 26600
21 22 23 24 25	134 153 168 156 142	12800 14800 16300 15100 13900	398 353 322 330 339	51900 46400 41800 42600 43900	243 245 247 249 251	19100 15900 13700 13800 14700	312 316 320 324 328	21400 21900 22900 23800 23400	337 334 332 329 323	27200 26600 26200 26600 26200	317 311 301 292 283	33000 31200 29800 28200 27200
26 27 28 29 30 31	135 150 170 193 209 176	13200 14600 16900 20200 22600 18800	332 324 316 309 301 	42600 41200 39900 38800 37600	253 255 257 259 261 263	16400 16700 17500 17300 16900 17600	332 336 340 345 349 353	24400 25000 25000 25000 24900 25200	295 267 242 	24100 22100 19800 	270 238 207 180 160 168	25700 22600 19900 17000 15100 16100
TOTAL		503140		1036600		705700		643600		698700		721900
DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
DAY	MEAN CONCEN- TRATION (MG/L) APR	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L) MAY	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L) JUNE	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L) JULY	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L) AUGUS	LOAD (TONS/ DAY) T	MEAN CONCEN- TRATION (MG/L) SEPTEM	LOAD (TONS/ DAY) BER
DAY 1 2 3 4 5	MEAN CONCEN- TRATION (MG/L) APR 180 194 208 224 242	LOAD (TONS/ DAY) IL 17500 18900 20100 22000 23700	MEAN CONCEN- TRATION (MG/L) 210 186 170 188 213	LOAD (TONS/ DAY) 19400 17900 16500 18400 21000	MEAN CONCEN- TRATION (MG/L) JUNE 171 170 163 170 195	LOAD (TONS/ DAY) 22200 22100 18800 19800 24500	MEAN CONCEN- TRATION (MG/L) JULY 342 259 240 231 222	LOAD (TONS/ DAY) 36000 30300 30100 28400 28100	MEAN CONCEN- TRATION (MG/L) AUGUS 126 129 135 142 148	LOAD (TONS/ DAY) T 15200 15500 16000 16300 17400	MEAN CONCEN- TRATION (MG/L) SEPTEM 165 166 166 166 162 157	LOAD (TONS/ DAY) BER 21500 21600 21600 21200 20600
DAY 1 2 3 4 5 6 7 8 9 10	MEAN CONCEN- TRATION (MG/L) APR 180 194 208 224 242 242 242 242 259 267 274 406 639	LOAD (TONS/ DAY) .IL 17500 18900 20100 22000 23700 26400 26400 26400 26500 41300 63700	MEAN CONCEN- TRATION (MG/L) 210 186 170 188 213 241 267 270 268 265	LOAD (TONS/ DAY) 19400 17900 16500 18400 21000 23100 24000 24600 24600 24100	MEAN CONCEN- TRATION (MG/L) JUNE 171 170 163 170 195 141 117 241 393 623	LOAD (TONS/ DAY) 22200 22100 18800 19800 24500 16700 13800 29800 47600 77800	MEAN CONCEN- TRATION (MG/L) JULY 342 259 240 231 222 206 156 158 118 114 114	LOAD (TONS/ DAY) 36000 30300 30100 28400 28100 27300 20900 15900 15400 15200	MEAN CONCEN- TRATION (MG/L) AUGUS 126 129 135 142 148 151 132 148 151 132 114 102 109	LOAD (TONS/ DAY) T 15200 16300 16300 17400 18100 16200 13200 10900 12000	MEAN CONCEN- TRATION (MG/L) SEPTEM 165 166 166 166 166 162 157 152 152 175 206 232	LOAD (TONS/ DAY) BER 21500 21600 21200 21200 20600 20200 20400 23500 27700 30800
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	MEAN CONCEN- TRATION (MG/L) APR 180 194 208 224 242 242 242 242 242 242 259 267 274 406 639 586 605 573 573 556	LOAD (TONS/ DAY) .IL 17500 18900 22000 23700 26400 26400 26400 26400 27500 41300 63700 55200 58500 59300 59700 61200	MEAN CONCEN- TRATION (MG/L) 210 186 170 188 213 241 267 270 268 265 252 238 265 252 238 266 217 227	LOAD (TONS/ DAY) 19400 17900 16500 18400 21000 23100 24500 24500 24600 24600 24600 24100 24500 24100 20800 21900	MEAN CONCEN- TRATION (MG/L) JUNE 171 170 163 170 195 141 117 241 393 623 822 485 255 5151 191	LOAD (TONS/ DAY) 22200 22100 18800 19800 24500 16700 13800 29800 47600 77800 108000 52400 25800 16400 23400	MEAN CONCEN- TRATION (MG/L) JULY 342 259 240 231 222 206 156 156 118 114 116 118 119 117 115 114	LOAD (TONS/ DAY) 360000 303000 284000 284000 284000 281000 159000 154000 154000 155000 151000 155000 141000 141000 136000	MEAN CONCEN- TRATION (MG/L) AUGUS 126 129 135 142 148 151 132 148 151 132 109 120 132 143 142 143	LOAD (TONS/ DAY) T 15200 15500 16300 16300 17400 18100 16200 13200 12000 13200 12000 13500 15200 16500 16500 16300	MEAN CONCEN- TRATION (MG/L) SEPTEM 165 166 166 166 166 162 157 152 152 152 152 152 206 232 214 191 176 183 195	LOAD (TONS/ DAY) BER 215000 21600 21200 20600 20200 20400 23600 23600 23800 25200 23800 23800 23800
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	MEAN CONCENT TRATION (MG/L) APR 180 194 208 224 242 242 259 267 274 406 639 586 605 591 573 556 591 573 556 591 573 556	LOAD (TONS/ DAY) IL 17500 18900 22000 23700 26400 26400 26700 41300 63700 55200 58500 59300 59700 61200 56300 44300 39900 443700 92600	MEAN CONCEN- TRATION (MG/L) 210 186 170 188 213 241 267 270 268 265 252 238 265 252 238 265 252 238 265 252 238 265 252 238 265 252 238 265 252 238 265 252 238 265 252 238 265 252 238 265 252 238 265 252 238 265 252 238 265 252 238 265 252 238 265 252 237 240 255 252 238 265 252 237 240 255 252 237 240 255 255 252 252 252 252 252 255 252 255 252 252 255 252 252 252 252 255 252 252 252 252 252 252 252 255 252 25 25	LOAD (TONS/ DAY) 19400 17900 16500 18400 21000 24500 24500 24600 24600 24600 24600 24100 20500 21900 21900 24200 26500 26500 26000 26000 23800 24000	MEAN CONCEN- TRATION (MG/L) JUNE 171 170 195 141 117 241 393 623 822 485 255 151 191 271 346 307 262 224	LOAD (TONS/ DAY) 22200 22100 18800 19800 24500 16700 13800 29800 47600 77800 108000 25800 16400 23400 23400 29900 39300 39300 29900	MEAN CONCEN- TRATION (MG/L) JULY 342 259 240 231 222 206 156 156 118 114 116 118 119 117 115 114 126 141 166 269	LOAD (TONS/ DAY) 36000 30300 28400 28100 27300 20900 15900 15400 15200 15100 15000 15400 15000 14600 14100 13600 14800 16600 19000 32000	MEAN CONCEN- TRATION (MG/L) AUGUS 126 129 135 142 148 151 132 148 151 132 143 142 143 142 140 139 144 151 158 164	LOAD (TONS/ DAY) T T 152000 163000 163000 17400 18100 16200 132000 132000 132000 132000 132000 164000 16500 163000 16400 16800 174000 18200 18200 18700	MEAN CONCEN- TRATION (MG/L) SEPTEM 165 166 166 166 162 157 152 152 152 206 232 214 191 176 183 195 207 199 137 150 172	LOAD (TONS/ DAY) BER 21500 21600 21200 20600 20400 23600 23600 23800 23800 23800 23800 23800 23800 23800 25200 27000 26100 17900 25200
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	MEAN CONCENT TRATION (MG/L) APF 180 194 208 224 242 259 267 274 406 639 586 605 591 573 556 536 503 470 485 992 1440 1320 1020 284 208	LOAD (TONS/ DAY) IL 17500 22000 23700 26400 26700 26700 41300 63700 55200 55200 55300 59300 59300 59700 61200 56300 44300 39900 443700 92600 141000 124000 88600 22000 18200	MEAN CONCEN- TRATION (MG/L) 210 186 170 188 213 241 267 270 268 265 252 238 266 217 227 240 251 240 251 248 243 238 243 238 246 60 303 333 306	LOAD (TONS/ DAY)) 194000 17900 16500 184000 24000 24000 24500 24600 24600 24100 24600 24100 20500 21900 24200 26500 24200 26500 24000 24000 24000 24000 24000 26500 24000 26500 24000 265000 265000 265000 2650000000000	MEAN CONCEN- TRATION (MG/L) JUNE 171 170 163 170 195 141 117 241 393 623 822 485 255 151 191 271 346 307 262 224 195 186 880 175 187	LOAD (TONS/ DAY) 22200 22100 18800 19800 24500 13800 29800 47600 77800 108000 52400 52400 52400 25800 16400 23400 29900 39300 29900 38000 29800 25900 24100 23000 21800 23000	MEAN CONCEN- TRATION (MG/L) JULY 342 259 240 231 222 206 156 156 118 114 114 116 118 119 117 115 114 114 126 269 417 405 358 282 219	LOAD (TONS/ DAY) 36000 30300 28400 28100 27300 15900 15400 15200 15400 15000 15400 15000 14600 14100 13600 14800 14800 14800 14800 14800 19000 32000 59600 59600 27800	MEAN CONCEN- TRATION (MG/L) AUGUS 126 129 135 142 148 151 132 114 102 109 120 132 143 142 140 139 144 140 139 144 151 158 164 165 165 165	LOAD (TONS / DAY) T T T 15200 16300 16300 17400 18100 16200 13200 13200 13200 13200 13200 13200 13200 16400 16500 16400 16400 16400 16800 17400 18200 18700 18700 1800 1800 1800 18100	MEAN CONCEN- TRATION (MG/L) SEPTEM 165 166 166 166 162 157 152 152 175 206 232 214 191 176 183 195 207 199 137 150 172 178 182 217	LOAD (TONS/ DAY) BER 21500 21600 21600 21200 20600 20400 23800 23800 23800 23800 23800 23800 23800 23800 23800 23800 23800 23800 23800 23800 23800 24000 24000 24000 24400 24400
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 29 30 31	MEAN CONCEN- TRATION (MG/L) APR 180 194 204 242 242 242 242 242 242 242 242 24	LOAD (TONS/ DAY) IL 17500 18900 22000 23700 26400 26700 27500 27500 55200 58500 59700 61200 59300 59700 61200 59300 59700 61200 59300 2000 124000 88600 22000 124000 88600 22000 18900 20500 19900 	MEAN CONCEN- TRATION (MG/L) MAY 2100 186 170 188 213 241 267 270 268 265 252 252 238 266 217 227 240 251 248 243 238 238 238 238 238 238 238 238 241 245 251 248 243 238 238 238 238 241 245 251 248 245 251 248 248 248 248 248 248 248 248 248 248	LOAD (TONS/ DAY) 19400 17900 16500 18400 21000 24500 24500 24500 24500 24500 24500 24500 24500 24500 24500 24500 20500 21900 25000 26000 23800 24000 36500 36500 36500 36500 36500 36500 24000 25900 25900 22400	MEAN CONCEN- TRATION (MG/L) JUNE 171 170 163 170 195 141 117 241 393 623 822 485 255 151 191 271 346 307 262 224 195 186 180 175 187 300 504 761 628 463 	LOAD (TONS/ DAY) 22200 22100 18800 19800 24500 13800 29800 47600 77800 108000 52400 25800 16400 23400 23400 23800 2400 23900 2400 25900 24100 23000 25900 24100 23000 23000 21800 23000 21800 23000 21800 21800 21800 21800 21800 21800 21800 21800 219000 219000 219000 219000 219000 219000 2190000 2190000000000	MEAN CONCEN- TRATION (MG/L) JULY 342 259 240 231 222 206 156 156 156 156 118 114 114 114 114 126 269 117 115 114 126 141 166 269 417 405 358 282 219 175 172 174 174	LOAD (TONS/ DAY) 36000 30300 28400 28100 28100 15900 15900 15900 15900 15900 15900 15900 15900 15900 15900 15900 14600 14600 14600 14600 14600 14600 14600 14600 2000 2000 27800 27800 21700 22500 21500 18000	MEAN CONCEN- TRATION (MG/L) AUGUS 126 129 135 142 148 151 132 114 102 109 120 132 143 144 151 158 164 155 165 165 164 154 142 139 144	LOAD (TONS / DAY) T 15200 16000 16300 17400 18100 16200 13200 12000 13200 16400 16500 16400 16500 16400 16500 16400 16800 18400 19500 19500 19500 1900 1900 1900 1900	MEAN CONCEN- TRATION (MG/L) SEPTEM 165 166 166 162 157 152 152 152 175 206 232 214 191 176 183 195 207 707 199 137 150 172 178 183 151 158 183 151 158	LOAD (TONS/ DAY) BER 21500 21600 21600 21600 21200 20400 23600 27700 23800 23800 25200 23000 23800 25200 23800 25200 23800 25200 23800 25200 23800 25200 23800 25200 23800 25200 24000 19500 24000 19500 23700 24400 23700 24400 24400 19800 27700 24400 24400 27700 24400 27700 23700 24400 27700 23700 24400 277000 27700 27700 27700 27700 27700 27700 27700 27
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 TOTAL	MEAN CONCENT TRATION (MG/L) APPR 180 194 208 224 242 259 267 274 406 639 586 605 591 573 556 536 503 470 825 592 1440 1320 1020 1320 1320 1320 1320 1320 132	LOAD (TONS/ DAY) IL 17500 18000 22000 23700 26400 26400 26700 41300 63700 55200 58500 59300 59700 61200 58500 59300 59700 61200 56300 44300 26000 141000 124000 88600 20000 18200 18200 18900 20500 19900 19900 19900 19900	MEAN CONCEN- TRATION (MG/L) 210 186 170 188 213 241 267 270 268 265 252 238 266 217 227 240 251 248 243 238 266 303 333 306 274 245 221 245 221 245 221 245 221 245 221 245 221 245 221 245 221 245 221 245 221 245 221 245 221 245 221 245 221 245 221 245 221 246 255 252 252 252 252 255 252 255 252 255 2	LOAD (TONS/ DAY)) 194000 17900 16500 184000 241000 245000 245000 246000 246000 246000 241000 205000 219000 242000 265000 265000 242000 265000 278000 265000 278000 278000 265000 278000 278000 2770000 2770000 27700000000	MEAN CONCEN- TRATION (MG/L) JUNE 171 170 163 170 195 141 117 241 393 623 822 485 255 151 191 271 346 307 262 224 195 186 180 175 187 300 504 761 628 463 	LOAD (TONS/ DAY) 22200 22100 18800 19800 24500 16700 13800 29800 47600 77800 108000 52400 25800 16400 23400 23900 29900 39300 29900 39300 29900 39300 29800 25900 24100 23100 23100 23000 24100 23000 24100 23000 24100 23000 24100 23000 24100 23000 24100 2400 2400 2400 2400 2400 200 200 200	MEAN CONCEN- TRATION (MG/L) JULY 342 259 240 231 222 206 156 156 118 114 114 116 118 119 117 115 114 114 126 269 417 405 358 282 219 175 172 174 174 174	LOAD (TONS/ DAY) 360000 303000 284000 281000 273000 159000 159000 159000 154000 150000 150000 150000 146000 141000 136000 146000 146000 190000 320000 20000 20000 278000 215000 200000 200000 200000 200000 20000 200000 200000 2000000	MEAN CONCEN- TRATION (MG/L) AUGUS 126 129 135 142 148 151 132 142 148 151 132 142 140 139 144 140 139 144 151 158 164 155 164 154 155 164 155 164 155 162 164 	LOAD (TONS / DAY) T T T 15200 15500 16300 17400 18100 16400 16200 13200 13200 13200 13200 16400 16400 16400 16400 16400 16400 16400 16400 18200 18400 18400 18400 18400 18400 15300 15200 16700 15300 15300 15300 15300 15400 21100 21100 21100 21100	MEAN CONCEN- TRATION (MG/L) SEPTEM 165 166 166 162 157 152 152 175 206 232 214 191 176 183 195 207 199 137 150 172 178 183 151 158 170 167 163 151 158 170 163 151 158 170	LOAD (TONS/ DAY) BER 21500 21600 21600 20600 20600 20400 23600 23800 25200 23800 25200 23800 25200 23800 25200 23800 25200 23800 25200 23800 25200 23700 24000 19500 24000 24000 19800 24000 25200 25200 27700 24000 25200 25000 25000 25000 25000 25000 25000 25000 25000 2500000000

06486000 MISSOURI RIVER AT SIOUX CITY, IA--Continued

PERRY CREEK BASIN

06600000 PERRY CREEK AT 38th STREET, SIOUX CITY, IA

LOCATION.--Lat 42°32'08", long 96°24'39", in SE¹/4 SE¹/4 SE¹/4 SE.8, T.89 N., R.47 W., Woodbury County, Hydrologic Unit 10230001, on left bank at downstream side of bridge on 38th Street in Sioux City, 1.9 mi downstream from West Branch, and 4.2 mi. upstream from mouth.

DRAINAGE AREA.--65.1 mi².

PERIOD OF RECORD. -- October 1945 to September 1969, June 1981 to current year.

REVISED RECORDS.--WSP 1440: Drainage area. WDR IA-95-1: River mile.

GAGE.--Water-stage recorder. Datum of gage is 1,112.04 ft above sea level (City of Sioux City benchmark). Prior to May 20, 1954, nonrecording gage with supplementary water-stage recorder in operation above 5.0 ft gage height and May 20, 1954 to Sept. 30, 1969, water-stage recorder at present site at datum 5.0 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 7, 1944 reached a stage of about 30.5 ft from floodmarks, present datum, discharge, 9,600 ft³/s, on basis of contracted-opening measurement of peak flow by U.S. Army Corps of Engineers.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16	19	26	e21	23	51	22	28	138	41	19	16
2	21	19	26	e21	25	42	21	28	86	110	19	15
3	26	18	26	e20	56	27	21	29	47	77	19	14
4	69	18	25	e16	70	27	21	48	81	45	18	18
5	52	18	26	e21	35	26	35	54	47	38	18	16
6 7 8 9 10	22 19 18 17 16	e17 e17 e18 25 109	25 23 23 23 23 23	e27 e26 e25 e25 e26	52 39 51 34 32	24 24 e23 e18 25	39 28 54 92 48	38 35 33 31 32	41 36 36 34 57	35 33 33 31 28	19 21 20 19 18	15 16 17 15 15
11	16	43	e27	e29	32	24	40	34	47	28	19	15
12	17	54	e28	e26	e23	23	33	30	38	27	20	15
13	17	39	e27	e22	e19	23	33	29	34	26	18	14
14	17	40	e25	e24	26	24	40	28	31	25	18	14
15	17	49	e25	e25	25	29	52	29	91	24	18	14
16 17 18 19 20	18 20 18 18 18	45 36 e35 33 30	25 25 26 23 e16	e28 32 30 e24 e25	22 22 22 21 21	48 33 27 25 25	43 40 36 34 34	32 29 26 25 31	87 55 48 50 47	25 24 47 26 29	18 17 17 17 17	14 14 13 14
21	19	29	e14	26	e19	24	35	30	43	128	17	14
22	18	30	e20	26	e18	24	39	48	41	44	17	14
23	18	28	e19	24	e20	24	34	67	48	33	19	15
24	19	28	e18	23	e19	23	32	30	37	29	17	14
25	19	28	e19	e20	e26	23	32	26	35	26	17	14
26 27 28 29 30 31	22 31 22 29 20 19	26 26 27 28 26	e19 e22 e21 e20 e18 e17	e21 e22 e21 e20 e20 e21	23 28 44 	25 23 25 22 22 22 22	34 35 33 30 28	25 24 23 22 24 27	33 159 72 47 43	25 24 23 21 21 20	16 15 15 26 64 19	14 14 14 14 15
TOTAL	688	958	700	737	847	825	1098	995	1689	1146	611	440
MEAN	22.2	31.9	22.6	23.8	30.2	26.6	36.6	32.1	56.3	37.0	19.7	14.7
MAX	69	109	28	32	70	51	92	67	159	128	64	18
MIN	16	17	14	16	18	18	21	22	31	20	15	13
AC-FT	1360	1900	1390	1460	1680	1640	2180	1970	3350	2270	1210	873
CFSM	.34	.49	.35	.37	.46	.41	.56	.49	.86	.57	.30	.23
IN.	.39	.55	.40	.42	.48	.47	.63	.57	.97	.65	.35	.25
STATIST	ICS OF	MONTHLY MEA	AN DATA FO	OR WATER	YEARS 194	6 - 1999,	BY WATER	YEAR (WY))			
MEAN	8.46	8.46	6.81	7.20	20.3	45.0	25.9	24.1	32.1	22.8	13.6	13.0
MAX	29.5	31.9	22.6	47.5	78.4	188	123	140	125	99.6	85.5	147
(WY)	1993	1997	1999	1952	1948	1962	1985	1990	1984	1952	1951	1949
MIN	.38	.81	.48	.33	1.31	2.62	2.30	2.91	.94	.35	.30	.083
(WY)	1959	1982	1959	1982	1959	1964	1959	1968	1956	1946	1965	1958

06600000 PERRY CREEK AT 38th STREET, SIOUX CITY, IA--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR Y	/EAR	FOR 1999 WAT	ER YEAR	WATER YEARS	1946 -	1999
ANNUAL TOTAL	9564.5		10734				
ANNUAL MEAN	26.2		29.4		19.0		
HIGHEST ANNUAL MEAN					38.6		1984
LOWEST ANNUAL MEAN					2.38		1968
HIGHEST DAILY MEAN	296 May	7 30	159	Jun 27	2260	May 19	1990
LOWEST DAILY MEAN	5.2 Jar	n 13	13	Sep 19	.00	Jul 14	1946a
ANNUAL SEVEN-DAY MINIMUM	6.9 Jar	n 12	14	Sep 13	.00	Sep 24	1958
INSTANTANEOUS PEAK FLOW			390	Jul 21	8670	May 19	1990b
INSTANTANEOUS PEAK STAGE			9.34	Jul 21	28.54	May 19	1990
INSTANTANEOUS LOW FLOW			10	Feb 11		-	
ANNUAL RUNOFF (AC-FT)	18970		21290		13790		
ANNUAL RUNOFF (CFSM)	.40		.45		.29		
ANNUAL RUNOFF (INCHES)	5.47		6.13		3.97		
10 PERCENT EXCEEDS	44		47		33		
50 PERCENT EXCEEDS	19		25		6.6		
90 PERCENT EXCEEDS	8.9		16		.90		

Many days 1946, 1958-1960 From rating curve extended above 1,700 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow Estimated a b e

06600100 FLOYD RIVER AT ALTON, IA

LOCATION.--Lat 42°58'55", long 96°00'03", in NE¹/4 NE¹/4 sec.11, T.94 N., R.44 W., Sioux County, Hydrologic Unit 10230002, on left bank 270 ft downstream from South County Road at east edge of Alton, 34.3 mi upstream from West Branch Floyd River, and at mile 58.1.

DRAINAGE AREA.--268 mi².

PERIOD OF RECORD. --October 1955 to current year. Prior to December 1955, monthly discharge only, published in WSP 1730.

REVISED RECORDS.--WDR IA-82-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,269.55 ft above sea level.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1953 reached a discharge of about 45,500 ft³/s, from information by U. S. Army Corps of Engineers.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

1 2 3 4 5 6 7	e12 e12 e14 e20 e18 e16 e16 e14 e14	e16 e15 14 13 13 13	39 38 38 38 37 34	e17 e17 e16 e14 e17	e23 e30 e41 e39 e50	55 65 44 58	61 56 52	203 189	147 222	176 195	57 51	7.6 7.0
2 3 4 5 6 7	e12 e14 e20 e18 e16 e16 e14 e14	e15 14 13 13 13 13	38 38 38 37 34	e17 e16 e14 e17	e30 e41 e39 e50	44 58	56	189	222	195	51	/.0
3 4 5 6 7	e14 e20 e18 e16 e16 e14 e14	14 13 13 13 13	38 38 37 34	el6 el4 el7	e41 e39 e50	44 58	52					
4 5 6 7	e20 e18 e16 e16 e14 e14	13 13 13 13	38 37 34	e14 e17	e39 e50	58		182	237	186	46	7.6
5 6 7	e18 e16 e16 e14 e14	13 13 13	37 34	e17	e50		52	180	216	176	41	11
6 7	e16 e16 e14 e14	13 13	34			55	64	174	225	159	36	15
7	e16 e14 e14	13		e20	e70	50	163	169	309	144	32	14
	e14 e14		31	e18	76	42	212	166	307	134	29	12
8	e14	14	27	e16	84	26	205	173	258	127	27	11
9		17	e28	e16	93	25	273	180	226	115	27	e9.0
10	e13	88	e27	e17	104	71	338	180	434	101	24	e8.0
11	e13	130	e31	e21	e100	62	290	176	403	91	21	e7.5
12	e12	192	e32	e19	e75	49	249	164	315	83	20	e7.5
13	e13	140	e31	e16	e55	44	223	156	290	82	18	e7.5
14	e12	123	28	e17	e70	44	212	153	256	59	19	e7.0
15	e12	130	27	e20	e65	46	203	152	242	59	16	e7.0
16	e13	130	26	e23	e55	64	194	149	240	56	15	e6.8
17	e14	112	24	e25	e55	98	187	148	224	52	13	e6.7
18	e13	97	26	e23	e60	107	181	143	208	56	12	e6.5
19	e13	88	16	e22	e50	87	176	138	201	65	11	e6.5
20	e14	75	15	e22	e50	78	169	142	191	160	11	e6.3
21	e13	65	e20	e23	e46	75	165	145	182	311	11	e6.2
22	e13	65	e19	e22	e46	71	163	141	175	310	10	e6.4
23	e13	61	e17	e21	e50	67	154	142	170	237	10	e6.4
24	e14	53	e16	e20	e48	64	145	138	161	187	11	e6.4
25	e14	52	e18	e18	e65	60	142	134	152	154	9.5	e6.3
26	e16	48	e18	e20	e58	57	157	130	146	134	9 1	еб 3
27	e23	46	e20	e21	e57	56	196	128	161	113	8 4	e6 2
28	e19	45	e19	e20	e55	67	249	123	215	98	7.8	e6 2
29	e16	45	e17	e20		63	246	117	209	85	83	e6 0
30	e21	43	e16	e20		57	220	113	186	74	9 4	e6 0
31	e17		e15	e21		62		113		66	8.5	
ጥርጥል፣.	457	1956	788	602	1670	1869	5397	4741	6908	4045	629 0	233 9
MEAN	14 7	65 2	25 4	19 4	59 6	60 3	180	153	230	130	20.3	7 80
MAX	23	192	39	25	104	107	338	203	434	311	57	15
MIN	12	13	15	14	23	25	52	113	146	52	78	6 0
	906	3880	1560	1190	3310	3710	10700	9400	13700	8020	1250	464
CECM	06	24	1300	1100	2220	2710	10700	57	13700	10	1250	101
TN	.00	.24	.05	.07	.22	. 22	.07	.57	.00	. 10	.00	.03
110.	.00	. 27		.00	.25	.20	.75	.00	.90	.50	.09	.05
STATIST	ICS OF M	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 1950	5 - 1999,	BY WATER	YEAR (WY)			
MEAN	43.6	43.2	28.2	18.7	46.2	172	182	119	185	91.8	45.6	31.2
MAX	234	287	128	109	252	605	906	454	973	878	369	175
(WY)	1993	1980	1983	1973	1971	1979	1969	1995	1984	1993	1995	1993
MIN	.058	.30	.074	.048	.15	1.77	3.67	2.92	2.36	3.29	.37	.080
(WY)	1957	1959	1959	1959	1977	1959	1959	1968	1968	1958	1968	1958

SUMMARY STATISTICS	FOR 1998 CALEND	AR YE	AR	FOR 1999 WAT	ER YI	EAR	WATER	YEARS	1956	; _	1999
ANNUAL TOTAL	23551.5			29295.9							
ANNUAL MEAN	64.5			80.3			84	. 0			
HIGHEST ANNUAL MEAN							323				1993
LOWEST ANNUAL MEAN							2	.66			1968
HIGHEST DAILY MEAN	355	Apr	16	434	Jun	10	7160		Apr	4	1969
LOWEST DAILY MEAN	7.5	Sep	30	6.0	Sep	29,30		.00	Oct	14	1956a
ANNUAL SEVEN-DAY MINIMUM	8.4	Sep	16	6.2	Sep	24		.00	Oct	27	1956
INSTANTANEOUS PEAK FLOW				532	Jun	10	16300		Jun	20	1983b
INSTANTANEOUS PEAK STAGE				8.34	Jun	10	18	.54	Jun	20	1983c
ANNUAL RUNOFF (AC-FT)	46710			58110			60860				
ANNUAL RUNOFF (CFSM)	.24			.30				.31			
ANNUAL RUNOFF (INCHES)	3.27			4.07			4	.26			
10 PERCENT EXCEEDS	178			198			191				
50 PERCENT EXCEEDS	27			50			23				
90 PERCENT EXCEEDS	11			11			1	. 4			

a No flow at times in 1956, 1958-59, 1965, 1968, 1977 b From rating curve extended above 8,500 ft³/s c From floodmark e Estimated

06600500 FLOYD RIVER AT JAMES, IA

LOCATION.--Lat 42°34'36", long 96°18'43", in SE¹/4 SE¹/4 sec.30, T.90 N., R.46 W., Plymouth County, Hydrologic Unit 10230002, on left bank at upstream side of bridge on county highway C70, 0.2 mi east of James, 14.3 mi downstream from West Branch Floyd River, and at mile 7.5.

DRAINAGE AREA.--886 mi².

PERIOD OF RECORD.--December 1934 to current year.

REVISED RECORDS.--WSP 1240: 1935 (M), 1936, 1937-38 (M), 1942, 1945. WSP 1440: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,092.59 ft above sea level. Prior to Sept. 11, 1938, June 9 to Nov. 5, 1953, and Oct. 1, 1955, to May 22, 1957, nonrecording gage and May 23, 1957, to Sept. 30, 1970, water-stage recorder at same site at datum 10.0 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage and discharge since 1892, that of June 8, 1953, from information by U. S. Army Corps of Engineers.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	100	192	324	e115	e187	e310	269	e781	458	773	417	143
2	109	184	319	e109	e225	e340	263	e586	631	975	397	138
3	123	177	314	e101	e275	e270	250	e572	725	1780	379	134
4	143	175	308	e107	e330	e308	244	e570	743	1060	360	136
5	192	174	303	e130	e368	e320	263	e565	700	920	333	143
6	173	171	294	e156	e387	e300	333	542	1130	823	315	134
7	149	171	284	e146	e418	e270	486	523	1060	758	303	132
8	138	174	275	e137	e475	e230	592	510	938	716	292	129
9	131	178	271	e129	e588	e220	884	510	845	666	278	119
10	126	320	269	e143	e475	e260	965	514	1280	606	268	117
11	121	423	265	e164	e425	e341	988	517	1750	568	257	117
12	117	524	265	e139	349	e327	901	499	1290	537	252	115
13	116	576	264	e130	261	e270	830	470	1160	503	237	111
14	115	545	262	e150	355	e270	795	456	1050	473	222	109
15	113	564	257	e170	382	e270	783	455	1030	439	213	106
16	113	593	254	e191	334	e303	732	453	1090	412	206	105
17	126	553	251	e188	293	e340	692	453	1010	393	197	104
18	125	514	251	e165	308	e376	664	437	934	400	191	102
19	121	481	e230	e159	280	e360	642	419	891	395	183	102
20	125	431	e92.0	e172	271	e337	630	413	847	556	179	99
21	124	405	e140	e178	260	314	613	430	809	1360	171	98
22	125	417	e125	e174	275	303	623	425	767	1260	167	99
23	124	401	e111	e175	e290	298	608	435	743	977	171	100
24	124	393	e105	e173	e280	292	585	413	700	910	164	98
25	124	e380	e110	e162	e270	280	e550	402	659	783	159	97
26 27 28 29 30 31	127 153 176 228 229 207	e360 e360 e361 344 331 	e118 e128 e141 e130 e119 e105	e173 e171 e170 e175 e179 e178	e340 e320 e320 	275 272 273 270 266 263	e530 e550 e572 e595 e638 	390 380 375 365 354 362	623 868 993 891 831 	667 609 557 518 481 443	156 151 145 155 196 152	94 94 94 90 91
TOTAL	4317	10872	6684.0	4809	9341	9128	18070	14576	27446	22318	7266	3350
MEAN	139	362	216	155	334	294	602	470	915	720	234	112
MAX	229	593	324	191	588	376	988	781	1750	1780	417	143
MIN	100	171	92	101	187	220	244	354	458	393	145	90
MED	125	370	254	164	320	292	610	453	880	609	206	106
AC-FT	8560	21560	13260	9540	18530	18110	35840	28910	54440	44270	14410	6640
CFSM	.16	.41	.24	.18	.38	.33	.68	.53	1.03	.81	.26	.13
IN.	.18	.46	.28	.20	.39	.38	.76	.61	1.15	.94	.31	.14
STATIST	ICS OF N	MONTHLY MI	EAN DATA F	OR WATER	YEARS 193	6 - 1999,	BY WATER	YEAR (WY)			
MEAN	113	111	82.5	60.2	174	541	448	331	535	310	165	138
MAX	617	804	366	359	970	2080	2715	1393	2897	2196	1151	1353
(WY)	1993	1980	1980	1973	1952	1979	1969	1984	1984	1993	1951	1951
MIN	4.55	4.54	3.05	1.63	1.62	21.5	18.7	15.1	14.4	7.32	6.12	3.40
(WY)	1959	1959	1959	1959	1959	1964	1959	1968	1968	1936	1958	1958

06600500 FLOYD RIVER AT JAMES, IA--Continued

SUMMARY STATISTICS	FOR 1998 CALENE	AR YEAR	FOR 1999 WAT	ER YEAR	WATER YEARS	3 1936 - 1999
ANNUAL TOTAL	121336.0		138177.0			
ANNUAL MEAN	332		379		251	
HIGHEST ANNUAL MEAN					958	1983
LOWEST ANNUAL MEAN					19.9	1956
HIGHEST DAILY MEAN	1430	Apr 27	1780	Jul 3	32400	Jun 8 1953
LOWEST DAILY MEAN	65	Jan 13	90	Sep 29	.90	Jan 10 1977a
ANNUAL SEVEN-DAY MINIMUM	72	Jan 12	94	Sep 24	.90	Jan 10 1977
INSTANTANEOUS PEAK FLOW			2430	Jul 3	71500	Jun 8 1953b
INSTANTANEOUS PEAK STAGE			14.41	Jul 3	35.30	Jun 8 1953c
INSTANTANEOUS LOW FLOW			89	Sep 29,30		
ANNUAL RUNOFF (AC-FT)	240700		274100		181600	
ANNUAL RUNOFF (CFSM)	.38		.43		.28	
ANNUAL RUNOFF (INCHES)	5.09		5.80		3.84	
10 PERCENT EXCEEDS	688		783		550	
50 PERCENT EXCEEDS	216		293		83	
90 PERCENT EXCEEDS	106		117		12	

Also Jan 11-22, 1977 From rating curve extended above 16,000 ft³/s on basis on contracted-opening and flow-over-embankment measurement of peak flow From floodmarks, current datum Estimated a b c e

06601200 MISSOURI RIVER AT DECATUR, NE

LOCATION.--Lat 42°00'26", long 96°14'29", in NE¹/4 SW¹/4 sec.36, T.24 N., R.10 E., Burt County, Hydrologic Unit 10230001, on right bank 0.1 mi upstream from Iowa Highway 175 bridge at Decatur, and at mile 691.0.

DRAINAGE AREA.--316,200 mi², approximately. The 3,959 mi² in Great Divide basin are not included.

PERIOD OF RECORD.--October 1987 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,010.00 ft above sea level, supplementary adjustment of 1954.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by upstream main-stem reservoirs. Fort Randall Dam was completed in July 1952, with storage beginning in December 1952. Gavins Point Dam was completed in July 1955, with storage beginning in December 1955. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	34500	41300	46700	25900	27600	30900	37000	34500	48600	41200	45300	48900
2	34500	41800	46400	26000	28400	30900	37200	36700	50500	46500	44800	48800
2	24600	41000	46200	20000	20400	21200	37200	20000	45000	40000	44000	40400
3	34600	41800	46300	25500	29700	31200	30800	36900	45800	48900	44800	48400
4	35100	41600	45300	24900	30500	32400	37100	37000	43400	50300	43000	48800
5	36600	41000	42900	25500	30200	32700	37300	37400	49400	48400	42700	49000
б	35100	41000	41800	26200	30300	32400	38000	37200	46100	51000	43900	48900
7	31300	42600	38900	27200	30400	32800	38900	34900	44900	50900	45200	49300
8	31100	43000	37400	25400	30500	32900	39100	34600	47200	50200	44500	49900
9	31900	43400	36200	25700	30700	33200	39600	35400	47400	50000	40200	50000
10	32500	44700	35800	25300	31000	33900	40500	35500	47500	49200	41000	50200
11	24000	45000	25600	05400	21100	22600	27200	25600	50500	40000	40100	50000
11	34000	45200	35600	25400	31100	33600	37200	35600	52500	48000	42100	50000
12	33800	42900	35400	25700	31000	33500	37500	33900	45900	47200	43400	49700
13	33400	44000	34900	26400	30300	33500	38600	35300	40900	46600	43800	49300
14	33300	44500	34500	24900	e31900	33600	40000	36400	40600	46200	43800	48900
15	33300	45200	34400	25200	31300	33900	42100	36700	47300	45700	43500	48300
16	33800	46100	34300	26300	30900	34200	41800	38300	44700	45200	43400	48200
17	24100	46700	22000	20200	20200	25000	25000	40000	42400	112200	12100	~10200
10	34100	40700	33900	20200	20200	35000	33900	40000	42400	44000	42000	E40000
18	34200	4/500	33600	27500	30700	36100	33400	41400	46500	45700	43200	48400
19	34100	48000	33300	26000	30600	36400	33900	39400	44400	43800	42700	48400
20	33900	48000	32500	25800	30500	35400	35500	39500	42800	43900	42800	48200
21	35000	48800	30600	26000	30100	36900	37400	42800	45700	51000	42500	48400
2.2	36300	49500	27400	26000	30100	39100	38200	44500	46600	56600	42400	48300
23	36300	49200	25000	26600	29600	37900	35400	45500	46300	53300	42400	48300
24	36400	48500	24100	27200	30200	37200	31000	46100	46400	48700	42400	48500
27	30400	40300	24100	27200	30200	37200	31000	40100	40400	40700	41000	40000
25	30500	48300	24500	27300	30300	36300	32500	44900	46400	48700	41900	48800
26	36800	47800	25600	27000	30500	36400	35300	44200	46300	49000	41700	49000
27	37300	47500	26400	27900	31100	36200	37600	44100	49900	48200	44800	49000
28	36900	47500	26800	27900	31100	36300	36900	44300	55500	46800	47100	48800
29	39200	47600	26500	27600		36300	34900	44700	48700	46500	48900	48600
30	41100	47200	26200	27400		35800	33300	46700	41400	45900	50300	48700
21	41200	1/200	26000	27200		36200	55500	47100	11 100	45500	49000	10700
21	41200		20000	27300		30200		4/100		45500	49000	
TOTAL	1088100	1362200	1049200	817200	851400	1073100	1109900	1231500	1392000	1483900	1360900	1466800
MEAN	35100	45410	33850	26360	30410	34620	37000	39730	46400	47870	43900	48890
MAX	41200	49500	46700	28200	31900	39100	42100	47100	55500	56600	50300	50200
MIN	31100	41000	24100	24900	27600	30900	31000	33900	40600	41200	40200	48200
AC-FT	2158000	2702000	2081000	1621000	1689000	2128000	2201000	2443000	2761000	2943000	2699000	2909000
CECM	11	14	11	08	10	11	12	13	15	15	14	15
TN	12	.14	12	10	10	12	12	.13	.15	.13	16	.13
TTN .	.13	.10	.12	.10	.10	.13	.13	.14	.10	. 1 /	.10	.1/
STATI	STICS OF	MONTHLY I	MEAN DATA	FOR WATER	YEARS 19	88 - 1999	, BY WATE	R YEAR (W	TY)			
MEAN	38090	32440	22210	19140	21140	26340	37230	38840	40060	40590	38350	39870
MAX	70150	72350	41350	26850	32380	49450	90050	80690	67970	66520	66170	67290

(WY)	1998	1998	1998	1998	1997	1997	1997	1997	1997	1997	199	97		1997
MIN	24250	10470	12070	12360	12210	11580	24410	26130	28240	27680	2570	00	2	6750
(WY)	1993	1991	1991	1990	1991	1991	1991	1991	1991	1991	199	93		1993
SUMMARY	STATISI	TICS	FOR	1998 CALE	NDAR YEAR		FOR 1999	WATER YEAR	ર	WATER	YEARS 1	988	-	1999
ANNUAL	TOTAL		1	2236100			14286200							
ANNUAL	MEAN			33520			39140			32900				
HIGHEST	ANNUAL	MEAN								57440				1997
LOWEST	ANNUAL M	IEAN								21450				1991
HIGHEST	DAILY M	IEAN		49500	Nov 22		56600	Jul 22	2	99900	I	Apr 1	15	1997
LOWEST	DAILY ME	CAN		23600	Jan 11		24100	Dec 24	1	7130	Ι	Dec 1	22	1990
ANNUAL	SEVEN-DA	Y MINIMUM		24700	Jan 10		25500	Jan 9	9	9660	I	Dec 1	12	1990
INSTANT	ANEOUS F	PEAK FLOW					57000	Jul 22	2	100000	I	lpr 1	15	1997
INSTANI	ANEOUS F	PEAK STAGE					28	.21 Jul 22	2	32	.31 J	Jul 1	18	1996
INSTANT	ANEOUS L	LOW FLOW					24000	Dec 24	1					
ANNUAL	RUNOFF (AC-FT)	2	4270000			28340000			23830000				
ANNUAL	RUNOFF (CFSM)		.1	.1			.12			.10			
ANNUAL	RUNOFF (INCHES)		1.4	4		1	.68		1	.41			

48800

39100

27500

1.41

56200

31000

14000

1.44

41000

33200 27800

e Estimated

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

MONONA-HARRISON DITCH BASIN

06602020 WEST FORK DITCH AT HORNICK, IA

LOCATION.--Lat 42°13'37", long 96°04'40", in SW¹/4 SW¹/4 sec.27, T.86 N., R.45 W., Woodbury County, Hydrologic Unit 10230004, on left bank at upstream side of State Highway 141 bridge, 1.0 mi east of Hornick, 9.2 mi upstream from Wolf Creek, and 13.5 mi north of Onawa.

DRAINAGE AREA.--403 mi².

PERIOD OF RECORD.-- April 1939 to September 1969 (published as "Holly Springs"), July 1974 to current year (revised).

GAGE.--Water-stage recorder. Datum of gage is 1,045.82 ft above sea level.

REMARKS.--Records good except those for estimated daily discharges, which are poor. West Fork ditch is a dredged channel which diverts flow of West Fork Little Sioux River at Hornick 5.5 mi south, then southeast 6.5 mi to a point 1.2 mi west of Kennebec, where Wolf Creek enters from left. From this point, ditch roughly parallels the Little Sioux River and is known as Monona-Harrison ditch. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	73 75 83	97 97 97	122 118 119	e85 e80 e75	e135 e135 e190	132 139 143	116 114 114	209 206 205	188 216 212	338 686 656	157 151 147	86 75 73
4 5	91 100	95 95	118 117	e70 e105	151 150	134 130	115 117	204 202	743 527	351 286	142 137	77 85
6 7 8 9 10	100 92 88 87 86	95 97 99 100 123	117 116 115 115 117	e110 e100 e98 e95 e105	158 167 185 224 214	125 122 119 106 134	144 185 185 226 281	194 188 186 179 176	279 237 222 210 600	258 240 232 245 216	138 146 135 130 125	77 73 e70 e68 e67
11 12 13 14 15	84 84 83 84 84	151 161 178 169 173	115 115 114 113 112	e120 e100 e90 e105 e120	204 172 121 161 181	133 121 117 116 119	256 235 224 220 231	173 167 162 160 160	895 411 335 299 316	199 192 185 178 172	120 122 115 111 108	66 66 64 64
16 17 18 19 20	84 84 86 84 84	169 159 151 146 141	110 109 110 e95 e60	e140 e130 e120 e110 e125	142 127 131 124 121	128 162 181 153 143	219 212 204 199 195	183 198 171 160 164	433 374 337 323 315	176 169 342 280 205	103 100 101 95 92	62 61 60 60
21 22 23 24 25	84 84 84 83	140 137 135 133 129	e100 e90 e83 e75 e80	e130 e125 e130 e135 e110	117 116 e75 106 133	139 136 133 130 127	223 382 218 202 194	166 202 212 167 158	296 281 275 256 239	210 325 335 499 256	90 88 87 86 84	59 60 59 58 59
26 27 28 29 30 31	83 90 104 108 104 99	128 127 126 125 123	e85 e90 e105 e93 e90 e75	e120 e125 e125 e120 e130 e130	132 125 125 	126 127 125 124 125 119	197 218 227 227 217 	153 150 147 144 141 141	226 394 585 438 366 	221 207 194 184 174 166	82 80 77 81 358 166	57 57 58 57 58
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2723 87.8 108 73 5400 .22 .25	3896 130 178 95 7730 .32 .36	3193 103 122 60 6330 .26 .29	3463 112 140 70 6870 .28 .32	4122 147 224 75 8180 .37 .38	4068 131 181 106 8070 .33 .38	6097 203 382 114 12090 .50 .56	5428 175 212 141 10770 .43 .50	10828 361 895 188 21480 .90 1.00	8377 270 686 166 16620 .67 .77	3754 121 358 77 7450 .30 .35	1963 65.4 86 57 3890 .16 .18
STATIST	ICS OF M	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 194	0 - 1999,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	62.0 369 1993 2.08 1957	55.8 281 1980 4.06 1959	45.3 199 1985 2.60 1959	36.5 127 1952 2.26 1959	109 522 1994 2.41 1940	226 813 1962 8.41 1957	180 837 1969 9.80 1957	157 585 1983 11.5 1943	283 2131 1984 7.71 1956	152 561 1993 11.5 1956	105 605 1951 2.92 1956	71.2 422 1951 2.23 1956

06602020 WEST FORK DITCH AT HORNICK, IA--Continued

06602400 MONONA-HARRISON DITCH NEAR TURIN, IA

LOCATION.--Lat 41°57'52", long 95°59'30", in NW¹/4 NE¹/4 sec.32, T.83 N., R.44 W., Monona County, Hydrologic Unit 10230004, on left bank at upstream side of bridge on county highway E54, 1.0 mi west of gaging station on Little Sioux River near Turin, 4 mi southwest of Turin, 5.2 mi northeast of Blencoe, and 12.5 mi upstream from mouth.

DRAINAGE AREA.--900 mi².

PERIOD OF RECORD.--May 1942 to current year. Records for May 1942 to January 1958 not equivalent owing to diversion from Little Sioux River through equalizer ditch 1.5 mi upstream. Records prior to 1950 not equivalent owing to diversion to Little Sioux River through diversion ditch 10.2 mi upstream.

REVISED RECORDS: WSP 1440: Drainage area. WSP 1560: Drainage area. WDR IA-95-1: Period of record.

GAGE.--Water-stage recorder. Datum of gage is 1,015.00 ft above sea level (U.S. Army Corps of Engineers bench mark). May 7, 1942 to Oct. 13, 1953, nonrecording gage and Oct. 14, 1953 to Sept. 30, 1975, recording gage at same site at datum 5.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Monona-Harrison ditch is a dug channel and is a continuation of West Fork ditch, paralleling the Little Sioux River, and discharging into the Missouri River 1.5 mi upstream from the mouth of the Little Sioux River. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

OCT SEP DAY NOV DEC FEB MAR APR MAY JUN AUG JAN JUL e115 e105 e100 e95 e144 e150 e140 e135 e130 e140 e160 e140 e120 e138 e160 e250 e220 e90 e140 e130 e115 e105 e110 e115 e120 e140 e130 ____ e120 ___ ___ e100 ___ ___ ---___ TOTAL MEAN MAX MTN AC-FT . 27 .75 CFSM .31 .20 .33 .21 .18 .63 .42 .93 .31 .24 IN. .24 .37 .24 .21 .32 .31 .71 .49 1.04 .87 .36 .27 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1959 - 1999, BY WATER YEAR (WY) MEAN 95.4 MAX (WY) 16.0 18.0 10.5 13.9 41.1 43.7 71.8 MIN 11.4 46.9 46.1 30.6 30.8 (WY)

06602400 MONONA-HARRISON DITCH NEAR TURIN, IA--Continued

SUMMARY STATISTICS	FOR 1998 CALEND	AR YE	lar	FOR 1999 WAT	ER YI	EAR	WATER Y	ZEARS	1959	-	1999a
ANNUAL TOTAL	131269			131015							
ANNUAL MEAN	360			359			280				
HIGHEST ANNUAL MEAN							798				1993
LOWEST ANNUAL MEAN							55.5	5			1968
HIGHEST DAILY MEAN	4240	Jun	24	3520	Apr	22	18000	1	Feb 3	19	1971
LOWEST DAILY MEAN	65	Mar	12	90	Dec	20	8.5	5 1	Jan	3	1959b
ANNUAL SEVEN-DAY MINIMUM	75	Mar	10	109	Dec	29	8.5	5 1	Jan	3	1959
INSTANTANEOUS PEAK FLOW				4280	Apr	22	19900	1	Feb 3	19	1971
INSTANTANEOUS PEAK STAGE				15.11	Apr	22	28.0)3 1	Feb 3	19	1971
ANNUAL RUNOFF (AC-FT)	260400			259900	-		203000				
ANNUAL RUNOFF (CFSM)	.40			.40			.3	31			
ANNUAL RUNOFF (INCHES)	5.43			5.42			4.2	23			
10 PERCENT EXCEEDS	612			611			526				
50 PERCENT EXCEEDS	238			250			129				
90 PERCENT EXCEEDS	114			148			38				

Post closure of diversion from Little Sioux River Also Jan 4-11, 1959 Estimated

a b e

Gaging Stations

06604000	Spirit Lake near Orleans, IA			•				.78
06604200	West Okoboji Lake at Lakeside Lab near M	Milford, IA						.80
06605000	Ocheyedan River near Spencer, IA							.82
06605850	Little Sioux River at Linn Grove, IA							.84
06606600	Little Sioux River at Correctionville, I.	IA						.86
06607200	Maple River at Mapleton, IA							.88
06607500	Little Sioux River near Turin, IA							.90
06608500	Soldier River at Pisgah, IA		•	•		 •	•	.92

Crest Stage Gaging Stations

06604510	Ocheyedan River near Ocheyedan, IA
06604584	Dry Run Creek near Harris, IA
06605340	Prairie Creek near Spencer, IA
06605750	Willow Creek near Cornell, IA
06605868	Little Sioux River Tributary near Peterson, IA
06606231	Willow Creek near Calumet, IA
0660683710	Halfway Creek at Schaller, IA

06604000 SPIRIT LAKE NEAR ORLEANS, IA

LOCATION.--Lat 43°28'11", long 95°07'25", in NE¹/₄ NW¹/₄ sec.20, T.100N., R.36W., Dickinson County, Hydrologic Unit 10230003, 2.3 mi upstream from lake outlet, and 2.3 mi northwest of Orleans.

DRAINAGE AREA.--75.6 mi².

PERIOD OF RECORD.--May 1933 to September 1975 (fragmentary prior to 1951), April 1990 to current year. Prior to October 1949, published as "at Orleans".

GAGE.--Water-stage recorder. Datum of gage is 1,387.25 ft above sea level, 90.0 ft above Iowa Lake Survey datum, and 14.2 ft below crest of spillway. Prior to July 6, 1950, non-recording gage or water-stage recorder at various sites near outlet, all at present datum.

REMARKS.--A reliable record of stage was obtained for the year. Lake formed by concrete dam with ungated spillway at elevation 1,401.4 ft. above sea level. Dam constructed in 1969. A previous outlet works had been constructed in 1944. Lake is used for conservation and recreation. U.S. Geological Survey satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 18.79 ft. July 17-20, 1993; minimum observed, 6.75 ft. Oct. 20, 1935.

EXTREMES FOR CURRENT YEAR .-- Maximum gage height, 14.79 ft. June 11-13; minimum, 13.22 ft. Sept. 30.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

OCT DAY NOV DEC JAN FEB MAR APR MAY TUN JUL AUG SEP 13.52 13.65 13.74 13.76 13.90 14.04 14.27 14.68 14.60 14.58 14.24 13.70 1 2 13 51 13.65 13.76 13 80 13 90 14 04 14 27 14 66 14 60 14 58 14 21 13 70 13.76 3 13.90 14.05 14.28 14.59 13.54 13.62 13.82 14.66 14.58 14.18 13.68 4 13.55 13.60 13.77 13.82 13.90 14.06 14.28 14.66 14.58 14.57 14.16 13.70 5 13.52 13.59 13.77 13.82 13.90 14.06 14.35 14.68 14.59 14.56 14.14 13.70 б 13 50 13 59 13 77 13 83 13.91 14 06 14 37 14 69 14 64 14 55 14 11 13 67 7 13.50 13.58 13.76 13.83 13.91 14.07 14.38 14.71 14.63 14.52 14.10 13.64 8 13.49 13.58 13.76 13.83 13.91 14.10 14.43 14.73 14.63 14.49 14.07 13.62 a 13.47 13 61 13.76 13 84 13.92 14.13 14.53 14.73 14.62 14.46 14 04 13 58 10 13.47 13.66 13.75 13.84 13.92 14.14 14.55 14.72 14.71 14.43 14.03 13.55 11 13 46 13 72 13 74 13 84 13 95 14 15 14 55 14 71 14 78 14 41 14 02 13 54 12 13.73 13.44 13.75 13.83 13.96 14.15 14.56 14.70 14.79 14.38 14.00 13.53 13.43 13.73 13.75 13.97 13 13.84 13.96 14.16 14.60 14.69 14.78 14.35 13.49 14 13 43 13.73 13.74 13.75 13 84 13.96 14 16 14 62 14 68 14 76 14 32 13 95 13 47 15 13.42 13.73 13.84 13.97 14.64 14.69 14.74 14.31 13.91 13.46 14.16 16 13 43 13.74 13 75 13 84 13 97 14 17 14 64 14 71 14 73 14 31 13 90 13 45 17 13.48 13.75 13.75 13.85 13.98 14.19 14.63 14.76 14.70 14.30 13.89 13.44 13.47 13.73 13.75 13.98 14.76 14.68 18 13.86 14.20 14.63 14.32 13.88 13.42 13.73 19 13 46 13.74 13 86 13 98 14 21 14 64 14 74 14.71 14 37 13 86 13 41 14.70 20 13.73 14.22 14.64 13.85 13.40 13.45 13.74 13.86 13.99 14.75 14.42 21 13 44 13 73 13 73 13 86 13 99 14 22 14 64 14 76 14 69 14 43 13 85 13 38 22 13.74 13.36 13.43 13.73 13.86 14.00 14.23 14.68 14.75 14.68 14.43 13.83 13.74 13.74 23 13.41 13.72 13.87 14.02 14.24 14.66 14.72 14.68 14.42 13.84 13.35 13 72 24 13 41 13 88 14 02 14 24 14 65 14 70 14 67 14 41 13 83 13 35 25 13.74 13.72 13.41 13.88 14.03 14.24 14.64 14.68 14.65 14.39 13.82 13.32 26 13 41 13 74 13 88 14 03 14 25 14 66 14 66 14 64 14 39 13 81 13 72 13 31 27 13.60 13.74 13.73 14.25 13.89 14.04 14.71 14.64 14.66 14.36 13.81 13.30 28 13.63 13.75 13.73 13.89 14.04 14.25 14.71 14.63 14.65 14.34 13.80 13.28 29 13.65 13.75 13.72 13.89 ----14.26 14.70 14.61 14.62 14.33 13.79 13.26 13.65 13.75 13.74 13.89 14.25 13.76 30 14.69 14.60 14.60 14.31 13.23 31 13.65 13.74 13.89 ___ 14.26 14.58 14.29 13.73 ___ MEAN 13.49 13.70 13.74 13.85 13.96 14.17 14.55 14.69 14.67 14.42 13.95 13.48 MAX 13.65 13.75 13.77 13.72 13.89 14.04 14.26 14.71 14.27 14.76 14.58 14.79 14.58 14.24 13.70 14.29 MIN 13.41 13.58 13.76 13.90 14.04 14.58 13.73 13.23

78

06604000 SPIRIT LAKE NEAR ORLEANS, IA--Continued

06604200 WEST OKOBOJI LAKE AT LAKESIDE LABORATORY NEAR MILFORD, IA

LOCATION.--Lat 43°22'43", long 95°10'52", in NE¹/₄ SW¹/₄ sec.23, T.99 N., R.37 W., Dickinson County, Hydrologic Unit 10230003, at pumping station of Lakeside Laboratory on west shore, 2.3 mi upstream from lake outlet, and 3.8 mi northwest of Milford.

DRAINAGE AREA.--125 mi².

PERIOD OF RECORD.--May 1933 to current year. Published as "Okoboji Lake at Arnold's Park" 1933-37 and as "Okoboji Lake at Lakeside Laboratory near Milford" 1937-66.

GAGE.--Water-stage recorder. Datum of gage is 1,391.76 ft above sea level, 94.51 ft above Iowa Lake Survey datum. Prior to June 17, 1938, nonrecording gage at State Pier at Arnolds Park at same datum.

REMARKS.--A reliable record of stage was obtained for the year. Lake formed by concrete dam with ungated spillway at elevation 1,395.8 ft above sea level. Lake is used for conservation and recreation. Area of lake is approximately 3,900 acres. U.S. Geological Survey satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 8.70 ft July 17, 1993; minimum observed, 0.20 ft Sept. 20, 1959.

EXTREMES FOR CURRENT YEAR. -- Maximum gage height, 5.02 ft June 11-13; minimum, 3.22 ft Sept. 30.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.66 3.65 3.68 3.68 3.67	3.73 3.73 3.71 3.69 3.68	3.76 3.77 3.78 3.78 3.78 3.79	3.73 3.78 3.79 3.80 3.80	3.88 3.88 3.88 3.88 3.88 3.88	4.03 4.04 4.03 4.04 4.04	4.20 4.20 4.20 4.20 4.20	4.58 4.56 4.56 4.56 4.58	4.57 4.56 4.55 4.54 4.56	4.67 4.67 4.67 4.65 4.63	4.21 4.17 4.14 4.13 4.10	3.72 3.71 3.69 3.71 3.70
6 7 8 9 10	3.64 3.64 3.63 3.61 3.60	3.68 3.67 3.67 3.70 3.74	3.79 3.78 3.77 3.77 3.76	3.80 3.81 3.81 3.81 3.81 3.82	3.88 3.89 3.89 3.90 3.91	4.04 4.05 4.07 4.11 4.11	4.31 4.32 4.36 4.45 4.47	4.61 4.63 4.66 4.65 4.65	4.71 4.71 4.72 4.72 4.88	4.61 4.58 4.54 4.51 4.47	4.08 4.06 4.04 4.02 4.00	3.68 3.65 3.63 3.59 3.56
11 12 13 14 15	3.59 3.57 3.57 3.55 3.55	3.77 3.79 3.78 3.78 3.78	3.75 3.76 3.76 3.75 3.75 3.76	3.82 3.82 3.82 3.82 3.82 3.82	3.94 3.95 3.95 3.96 3.98	4.12 4.12 4.12 4.13 4.13	4.47 4.47 4.49 4.52 4.56	4.65 4.64 4.62 4.61 4.63	5.00 5.01 5.01 4.98 4.96	4.44 4.40 4.37 4.35 4.32	3.99 3.97 3.95 3.93 3.90	3.55 3.53 3.50 3.49 3.48
16 17 18 19 20	3.55 3.60 3.59 3.58 3.57	3.79 3.79 3.78 3.77 3.77	3.75 3.75 3.75 3.74 3.73	3.82 3.83 3.84 3.84 3.84 3.84	3.99 3.99 3.99 4.00 4.00	4.15 4.19 4.21 4.21 4.21	4.59 4.58 4.57 4.57 4.57	4.67 4.77 4.78 4.77 4.79	4.95 4.92 4.88 4.91 4.89	4.33 4.31 4.33 4.34 4.43	3.89 3.88 3.87 3.86 3.84	3.46 3.45 3.43 3.42 3.40
21 22 23 24 25	3.56 3.55 3.54 3.53 3.53	3.77 3.77 3.77 3.76 3.76	3.72 3.71 3.70 3.70 3.69	3.84 3.85 3.85 3.86 3.86	4.00 4.00 4.03 4.03 4.04	4.21 4.21 4.21 4.21 4.21 4.20	4.56 4.58 4.55 4.54 4.53	4.81 4.78 4.76 4.73 4.70	4.88 4.85 4.84 4.82 4.79	4.47 4.45 4.44 4.42 4.40	3.83 3.82 3.83 3.82 3.82 3.82	3.38 3.36 3.36 3.35 3.32
26 27 28 29 30 31	3.54 3.70 3.72 3.74 3.74 3.74	3.77 3.77 3.77 3.77 3.78	3.70 3.70 3.71 3.70 3.71 3.71 3.72	3.86 3.87 3.87 3.87 3.87 3.87 3.87	4.03 4.03 4.03 	4.20 4.18 4.19 4.19 4.18 4.18	4.55 4.60 4.60 4.60 4.59	4.66 4.63 4.61 4.58 4.56 4.54	4.76 4.78 4.76 4.72 4.69	4.39 4.35 4.33 4.31 4.29 4.26	3.80 3.80 3.80 3.79 3.77 3.74	3.31 3.30 3.29 3.26 3.24
MEAN MAX MIN	3.61 3.74 3.53	3.75 3.79 3.67	3.74 3.79 3.69	3.83 3.87 3.73	3.96 4.04 3.88	4.14 4.21 4.03	4.47 4.60 4.20	4.66 4.81 4.54	4.80 5.01 4.54	4.44 4.67 4.26	3.93 4.21 3.74	3.48 3.72 3.24

06605000 OCHEYEDAN RIVER NEAR SPENCER, IA

LOCATION.--Lat 43°07'44", long 95°12'37", in SW¹/₄ SW¹/₄ sec.15, T.96N., R.37W., Clay County, Hydrologic Unit 10230003, on left bank 3 ft upstream from bridge on county highway M38, 3.4 mi west by southwest of Spencer, and at mile 4.1.

DRAINAGE AREA.--426 mi².

PERIOD OF RECORD. --October 1977 to current year. Occasional low-flow measurements, water years 1957-61, 1964, 1966-68, 1970, 1971, 1974-77.

GAGE.--Water-stage recorder. Datum of gage is 1,311.66 ft above sea level.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 8, 1953 reached a stage of 12.89 ft, discharge, 26,000 ft³/s on basis of contracted-opening measurement of peak flow.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	20 22 28 28 27	43 41 37 37 35	106 104 102 98 97	e42 e44 e26 e21 e22	e24 e28 e32 e32 e38	e180 e220 e190 e140 134	137 130 128 125 145	457 417 388 364 348	249 466 468 407 409	376 349 349 324 288	94 86 78 74 69	19 18 17 18 22
6 7 8 9 10	21 20 20 20 20	34 33 34 37 64	e93 e90 e85 e82 e85	e23 e22 e21 e20 e21	e44 e50 e65 e80 e110	124 114 e75 e60 e140	301 383 357 658 878	338 342 383 398 387	1590 1310 758 576 618	256 233 218 196 171	64 62 57 53 51	19 18 17 16 16
11 12 13 14 15	19 19 18 18 19	196 216 182 171 171	e80 e78 81 78 78	e24 e23 e21 e21 e22	e100 e150 227 311 338	e130 112 108 108 115	801 723 631 600 570	371 338 317 302 300	1040 993 855 679 572	154 143 131 121 111	48 47 45 42 40	16 16 15 15
16 17 18 19 20	22 24 23 21 20	168 159 158 157 148	77 76 e75 e55 e38	e25 e27 e25 e24 e25	313 273 262 e230 e220	162 270 229 190 179	559 533 498 465 432	299 387 380 337 317	531 479 437 426 440	109 101 103 114 326	38 35 36 34 32	15 14 13 13 14
21 22 23 24 25	23 20 20 20 21	137 138 137 128 126	e48 e46 e44 e42 e42	e25 e24 e25 e25 e23	e140 e150 e150 e155 e150	172 164 159 153 145	412 416 400 377 355	314 314 309 292 276	419 380 357 329 305	535 e477 e330 e252 e205	31 32 30 28 27	13 13 14 13 13
26 27 28 29 30 31	22 34 53 51 47 44	121 116 113 115 113	e44 e50 e46 e42 e42	e24 e23 e24 e23 e24 e23 e24	e160 e170 e160 	141 138 141 140 137 139	351 457 650 605 511	255 241 227 215 208 208	285 294 510 494 421	e175 e150 136 131 117 106	25 24 22 21 21 19	13 13 13 13 14
TOTAL MEAN MAX MIN AC-FT CFSM IN.	784 25.3 53 18 1560 .06 .07	3365 112 216 33 6670 .26 .29	2150 69.4 106 38 4260 .16 .19	763 24.6 44 20 1510 .06 .07	4162 149 338 24 8260 .35 .36	4609 149 270 60 9140 .35 .40	13588 453 878 125 26950 1.06 1.19	10029 324 457 208 19890 .76 .88	17097 570 1590 249 33910 1.34 1.49	6787 219 535 101 13460 .51 .59	1365 44.0 94 19 2710 .10 .12	459 15.3 22 13 910 .04 .04
STATIST	ICS OF 1	MONTHLY MEA	N DATA F	OR WATER Y	EARS 1978	- 1999,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	131 492 1983 9.23 1990	149 796 1980 8.11 1990	82.7 305 1983 1.91 1990	45.9 180 1983 .51 1979	87.7 402 1983 .000 1979	348 1019 1983 14.0 1990	492 1462 1983 20.5 1990	380 912 1993 54.9 1981	496 1973 1993 33.8 1989	334 2243 1993 33.4 1989	147 706 1993 15.3 1989	136 597 1979 14.2 1988
SUMMARY	STATIS	TICS	FOR	1998 CALEN	DAR YEAR	F	OR 1999 WA	TER YEAR		WATER YEA	RS 1978	- 1999
ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL	TOTAL MEAN ANNUAL ANNUAL DAILY DAILY SEVEN-D	MEAN MEAN MEAN EAN AY MINIMUM		38730.4 106 637 5.0 7.1	Apr 27 Jan 14 Jan 13		65158 179 1590 13 13	Jun 6 Sep 18 Sep 21		236 763 33.4 5620 .00 .00	Jul Jan Jan	1993 1989 1 1993 24 1979a 24 1979
INSTANT INSTANT INSTANT ANNUAL ANNUAL	ANEOUS ANEOUS ANEOUS RUNOFF RUNOFF RUNOFF	PEAK FLOW PEAK STAGE LOW FLOW (AC-FT) (CFSM) (INCHES)		76820 .25 3.38			1920 8.68 11 129200 .42 5.69	Jun 6 Jun 6 Sep 28		6450 11.28 170800 .55 7.52	Jun Jul	21 1983 1 1993
10 PERC 50 PERC 90 PERC	ENT EXC ENT EXC ENT EXC	EEDS EEDS EEDS		269 71 13			434 110 20			553 100 15		

a Also Jan 25 to Mar 9, 1979, Dec 22, 1989 to Jan 5, 1990 е Estimated

06605000 OCHEYEDAN RIVER NEAR SPENCER, IA--Continued

06605850 LITTLE SIOUX RIVER AT LINN GROVE, IA

LOCATION.--Lat 42°53'24", long 95°14'30", in SW¹/4 SW¹/4 SW¹/4 SW², T.93 N., R.37 W., Buena Vista County, Hydrologic Unit 10230003, on right bank at downstream side of bridge on County Highway M36, in Linn Grove, and at mile 123.7.

DRAINAGE AREA.--1,548 mi².

PERIOD OF RECORD.--October 1972 to current year.

REVISED RECORDS.--WDR IA-80-1: 1978-79.

GAGE.--Water-stage recorder. Datum of gage is 1,223.60 ft above sea level.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 10, 1953, gage height 20.96 ft; discharge, 22,500 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	83	408	448	e180	e130	638	599	2150	1100	1630	520	97
2	81	373	437	e190	e140	714	584	1970	1250	1520	473	93
3	94	348	428	e150	e160	826	589	1810	1520	1450	425	88
4	109	322	419	e110	e150	649	587	1680	1650	1420	388	86
5	117	300	412	e120	e160	639	594	1570	1590	1380	351	94
6	120	288	401	e130	e180	615	913	1510	1500	1270	325	97
7	118	273	384	e120	e190	542	1420	1600	1800	1160	302	92
8	110	266	368	e110	e220	363	1580	1760	2190	1070	283	87
9	106	268	347	e110	e280	265	1740	1870	2580	988	263	84
10	102	325	350	e120	e370	532	1960	1930	3000	893	245	79
11	99	496	332	e130	e440	579	2140	1880	3120	826	227	74
12	97	717	338	e120	e400	557	2270	1790	3010	757	213	74
13	95	892	347	e110	e650	506	2330	1680	3120	698	202	71
14	93	868	344	e110	e850	472	2290	1580	3940	652	187	69
15	92	811	336	e120	918	466	2250	1530	4640	610	174	68
16	112	772	323	e140	948	504	2240	1520	4210	593	165	68
17	183	741	313	e140	908	846	2280	1540	3320	587	157	66
18	269	708	306	e135	807	1190	2330	1670	2840	592	149	63
19	252	680	243	e130	789	1130	2310	1890	2500	592	146	60
20	232	639	163	e140	e650	1000	2180	1930	2190	620	139	58
21	216	610	201	-140	oE00	050	1000	1700	1000	1060	120	E 7
22	210	520	201	0120	0550	950	1990	1700	1990	1610	152	57
22	104	509	0190	0125	2550	905	2120	1600	1790	1010	164	59
23	102	577	e180	e135	6350	0.04	2130	1690	1,00	1620	140	50
24	103	557	e170	e130	570	804	2190	1640	1000	1000	120	50
25	1/5	530	er /0	eizu	6550	/53	2090	1200	1540	1280	132	54
26	172	516	e180	e130	595	714	1950	1460	1420	1060	124	53
27	192	497	e190	e130	665	692	1890	1370	1610	909	118	51
28	286	482	e210	e125	641	688	1990	1280	1590	805	111	52
29	387	475	e200	e130		652	2140	1200	1620	720	107	56
30	485	466	e180	e125		626	2200	1130	1680	639	104	55
31	454		e170	e130		622		1080		575	100	
TOTAL	5513	15802	9080	4040	13961	21291	53736	50760	67850	31446	6727	2119
MEAN	178	527	293	130	499	687	1791	1637	2262	1014	217	70.6
MAX	485	892	448	190	948	1190	2330	2150	4640	1820	520	97
MIN	81	266	163	110	130	265	584	1080	1100	575	100	51
AC-FT	10940	31340	18010	8010	27690	42230	106600	100700	134600	62370	13340	4200
CFSM	.11	.34	.19	.08	.32	.44	1.16	1.06	1.46	.66	.14	.05
IN.	.13	.38	.22	.10	.34	.51	1.29	1.22	1.63	.76	.16	.05
STATISI	TICS OF M	ONTHLY MEA	AN DATA F	OR WATER Y	YEARS 1973	- 1999	, BY WATER	R YEAR (WY	()			
		·							· 			
MEAN	426	464	285	186	303	1150	1661	1304	1554	1096	495	417
MAX	2070	2050	1122	859	1161	3894	4952	3233	6898	7905	2906	2171
(WY)	1983	1980	1983	1983	1983	1983	1983	1993	1993	1993	1993	1993
MIN	21.3	22.0	6.08	3.12	5.92	75.9		69.4	60.3	36.3	26.4	22.7
(WY)	1977	1977	1990	1977	1977	1990	1990	1977	1977	1977	1976	1976
SUMMARY	STATIST	ICS	FOR	1998 CALEN	NDAR YEAR	1	FOR 1999 V	WATER YEAR	1	WATER YEA	ARS 1973	- 1999
ANNI IAT.	TOTAL			164587			282325					
ANNUAL	MEAN			451			773			779		
HIGHEST	ANNIIAT.	MEAN		101						2763		1993
LOWEST	ANNUAL M	EAN								56.3		1977
HIGHEST	DATLY M	EAN		1620	Jun 25		4640	Jun 15		15000	JUL	2 1993
LOWEST	DATLY ME	AN		27	Jan 4		51	Sep 27		.70	Feb	4 1977
ANNUAL	SEVEN-DA	Y MINIMUM		33	Jan 13		54	Sep 24		1.1	Jan 3	1 1977
INSTANI	TANEOUS P	EAK FLOW					4720	Jun 15		16100	Jul	2 1993
INSTANI	TANEOUS P	EAK STAGE					14.0	62 Jun 15		20.63	Jul	2 1993
ANNUAL	RUNOFF (AC-FT)		326500			560000			564600		
ANNUAL	RUNOFF (CFSM)		. 29	Э		.!	50		.50		
ANNUAL	RUNOFF (INCHES)		3.96	5		6.7	78		6.84		
10 PERC	CENT EXCE	EDS		1150			1940			2000		
50 PERC	CENT EXCE	EDS		322			496			340		
90 PERC	CENT EXCE	EDS		58			97			42		

e Estimated

06606600 LITTLE SIOUX RIVER AT CORRECTIONVILLE, IA

LOCATION.--Lat 42°28'20", long 95°47'49", in NE¹/4 NW¹/4 sec.1, T.88 N., R.43 W., Woodbury County, Hydrologic Unit 10230003 on right bank 50 ft upstream from bridge on State Highway 31, 0.3 mi upstream from Bacon Creek, 0.5 mi west of Correctionville, 0.8 mi downstream from Pierson Creek, and at mile 56.0.

DRAINAGE AREA.--2,500 mi².

PERIOD OF RECORD.--May 1918 to July 1925, October 1928 to July 1932, June 1936 to current year. Monthly discharge only for some periods, published in WSP 1310.

REVISED RECORDS.--WSP 856: 1919. WSP 1240: 1924-25, 1931, 1932 (M), 1937, 1945 (M), 1947 (M), 1949 (M). WSP 1440: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,096.49 ft above sea level. May 28, 1918, to July 1, 1925 and Oct. 29, 1928 to July 15, 1929, nonrecording gage 0.2 mi downstream at datum 1.25 ft lower. July 16, 1929, to July 2, 1932, and June 15, 1936, to Nov. 7, 1938, nonrecording gage at present site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of June 23 or 24, 1891, reached a stage of 29.34 ft, present datum, from levels to floodmark by U.S. Soil Conservation Service (discharge not determined).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	199	747	782	e260	318	950	995	3220	1750	2650	1160	228
2	208	727	768	e270	330	1100	984	3160	1830	2630	1070	222
3	258	681	748	e240	388	1190	967	2990	1920	2550	994	215
4	278	647	735	a220	518	1210	947	2780	2300	2430	927	226
-	210	620	733	0250	510	1170	090	2620	2300	2210	050	220
5	312	620	121	e260	520	11/0	980	2020	2390	2310	858	238
б	321	591	710	e300	597	1080	1160	2480	2370	2220	809	218
7	318	568	685	e280	599	1010	1390	2370	3350	2100	773	207
8	299	565	662	e270	673	930	1920	2350	3040	1970	728	201
9	289	564	639	e260	720	703	2600	2430	3050	1880	683	194
10	279	625	627	e280	838	706	3040	2540	4380	1730	638	186
11	264	706	597	e320	974	842	3150	2620	4860	1610	597	184
12	247	867	616	a290	898	923	3190	2590	5100	1510	570	184
12	230	1060	612	0250	000	015	3240	2460	5020	1420	570	176
14	239	1000	602	- 270	110	915	2240	2400	1700	1240	555	170
14	234	1230	603	e270	1010	869	3270	2330	4/80	1340	505	1/1
15	233	1310	605	e300	1210	834	3280	2250	4950	1270	478	167
16	240	1300	594	e340	1150	867	3250	2300	5330	1250	451	164
17	305	1240	577	e320	1100	988	3190	2410	5460	1210	423	163
18	322	1190	569	e280	1130	1260	3170	2410	5210	1210	400	161
19	355	1140	503	321	1040	1570	3170	2360	4660	1200	377	159
20	159	1000	225	210	1020	1640	2160	2520	4120	1170	250	155
20	400	1090	223	310	1030	1040	3100	2000	4120	11/0	555	100
21	468	1050	158	e290	943	1530	3070	2680	3670	1310	343	148
22	449	1010	280	304	855	1430	3160	2570	3340	1930	329	147
23	427	979	e260	297	736	1370	3020	2490	3120	2720	329	147
24	412	941	e240	e280	857	1300	3050	2410	2940	2700	344	143
25	401	920	e240	288	820	1230	3080	2350	2760	2590	352	140
26	392	890	e270	296	898	1170	3060	2250	2590	2230	328	136
27	433	865	e280	294	853	1120	3020	2140	2540	1880	300	133
28	474	837	e320	302	890	1100	3040	2020	2730	1660	279	131
29	497	823	e300	e290		1090	3160	1910	2710	1500	261	125
30	565	805	e270	319		1050	3200	1800	2630	1380	254	125
31	668		e240	319		1010		1720		1260	241	
TOTAT	10044	26500	16440	0020	22021	24157	77012	75540	104000	E6020	16602	E104
NUAL	10844	20588	15442	8930	23031 000	34157	77913	/5540	104900	1022	10093	5194
MEAN	350	880	498	288	823	1102	2597	2437	3497	1833	538	1/3
MAX	668	1310	782	340	1210	1640	3280	3220	5460	2720	1160	238
MIN	199	564	158	220	318	703	947	1720	1750	1170	241	125
AC-FT	21510	52740	30630	17710	45680	67750	154500	149800	208100	112700	33110	10300
CFSM	.14	.35	.20	.12	.33	.44	1.04	.97	1.40	.73	.22	.07
IN.	.16	.40	.23	.13	.34	.51	1.16	1.12	1.56	.85	.25	.08
STATIS	FICS OF	MONTHLY I	MEAN DATA	FOR WATER	YEARS 19	19 - 1999	, BY WATE	R YEAR (W	Y)			
MEAN	439	438	301	220	472	1480	1905	1401	1806	1243	609	511
MAX	2994	3079	1699	1222	2708	7328	8677	5002	10110	11600	4469	3671
(PLZ)	1000	1000	1000	1000	2/00	1007	1007	1002	1002	1000	1007	1020
(WI)	1703	1280	15 1	1203	19/1	1303 E2 E	1203	1993	1993 E0 1	1223	15 0	1/ /
(TTTT)	0.33	20.3	1050	0.31	1.08	23.5	1021	57.5	30.L	43.4	1021	1050
(WY)	TA2/	1959	TA2A	TA2A	TA2A	TA 7	T23T	1931	1956	TA20	1931	TA28

06606600 LITTLE SIOUX RIVER AT CORRECTIONVILLE, IA--Continued

SUMMARY STATISTICS	FOR 1998 CALEN	DAR YEAR	FOR 1999 WA1	TER YEAR	WATER YEARS	1919 - 1999
bonnanci biniibiicb		Dint innit	1010 1999 1111		WILDIC IDINO	1)1) 1)))
ANNUAL TOTAL	309715		456062			
ANNUAL MEAN	849		1249		915	
HIGHEST ANNUAL MEAN					4304	1993
LOWEST ANNUAL MEAN					53.7	1931
HIGHEST DAILY MEAN	2930	Jun 17	5460	Jun 17	27900	Apr 7 1965
LOWEST DAILY MEAN	55	Jan 4	125	Sep 29,30	2.6	Jul 17 1936k
ANNUAL SEVEN-DAY MINIMUM	86	Jan 13	133	Sep 24	4.6	Oct 4 1956
INSTANTANEOUS PEAK FLOW			5480	Jun 17	29800	Apr 7 1965
INSTANTANEOUS PEAK STAGE			12.66	Jun 17	25.86	Apr 7 1965
INSTANTANEOUS LOW FLOW			123	Dec 20a		-
ANNUAL RUNOFF (AC-FT)	614300		904600		662600	
ANNUAL RUNOFF (CFSM)	.34		.50		.37	
ANNUAL RUNOFF (INCHES)	4.61		6.79		4.97	
10 PERCENT EXCEEDS	1960		3040		2220	
50 PERCENT EXCEEDS	662		858		380	
90 PERCENT EXCEEDS	182		236		54	

Also Sep 28-30 Also July 25, 1956, caused by construction dam upstream Estimated

a b e

06607200 MAPLE RIVER AT MAPLETON, IA

LOCATION.--Lat 42°09'25", long 95°48'35", in SE¹/₄ SE¹/₄ sec.23, T.85 N., R.43 W., Monona County, Hydrologic Unit 10230005, on right bank at downstream side of bridge on State Highway 175, 1.0 mi downstream from Simmons Creek, 1.1 mi southwest of intersection of State Highways 175 and 141 in Mapleton, 2.1 mi upstream from McCleery Creek, and 16.0 mi upstream from mouth.

DRAINAGE AREA.--669 mi².

PERIOD OF RECORD. -- October 1941 to current year.

REVISED RECORDS.--WSP 1310: 1942 (M), 1946 (M), 1948 (M). WSP 1440: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,085.86 ft above sea level. See WSP 1730 for history of changes prior to Sept. 20, 1956.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	188	233	221	e115	e180	289	237	829	769	574	308	171
2	201	236	218	e108	e190	328	235	779	622	1270	297	175
3	243	230	220	e100	e230	344	247	743	593	795	287	166
4	275	226	225	e95	369	320	254	721	1510	604	281	194
5	301	223	219	e140	352	308	277	710	1330	543	273	328
6	313	221	211	e150	378	287	381	686	763	507	295	224
7	272	222	202	e140	406	270	456	657	661	482	422	187
8	245	227	194	e135	434	261	466	639	611	482	365	169
9	234	234	193	e130	549	219	553	620	585	634	305	157
10	225	286	193	e140	519	275	761	604	1160	467	286	151
11	220	289	186	e160	494	288	690	596	1390	445	281	150
12	216	277	189	e140	362	265	613	574	1190	436	300	149
13	213	295	188	e120	286	250	573	546	972	422	275	140
14	213	298	182	e140	332	245	552	532	835	406	262	136
15	213	301	180	e160	370	251	593	533	923	396	254	135
16	221	297	180	e190	323	276	637	829	841	417	244	133
17	292	287	181	e180	277	337	640	1550	744	436	233	130
18	315	276	187	e165	286	394	623	940	698	581	420	127
19	293	261	160	e150	270	364	603	807	668	512	282	125
20	272	247	126	e170	256	331	577	787	654	457	238	119
21	263	248	e65	e180	245	315	606	762	634	444	224	113
22	250	254	e130	e165	224	299	2230	713	615	428	215	116
23	240	249	e115	e170	172	283	1790	763	605	424	209	118
24	231	243	e100	e180	173	273	1360	713	583	404	201	116
25	223	241	e110	e150	257	266	1140	677	554	377	196	114
26 27 28 29 30 31	223 258 265 279 245 230	235 232 231 236 232 	e115 e120 e140 e130 e120 e100	e170 e173 e175 e160 e170 e170	273 268 266 	259 256 265 258 247 236	1040 1040 1070 1010 901	644 620 600 581 566 555	536 813 671 603 570	365 368 359 342 330 318	194 186 179 177 184 188	111 115 118 115 117
TOTAL	7672	7567	5100	4691	8741	8859	22155	21876	23703	15025	8061	4419
MEAN	247	252	165	151	312	286	738	706	790	485	260	147
MAX	315	301	225	190	549	394	2230	1550	1510	1270	422	328
MIN	188	221	65	95	172	219	235	532	536	318	177	111
AC-FT	15220	15010	10120	9300	17340	17570	43940	43390	47010	29800	15990	8770
CFSM	.37	.38	.25	.23	.47	.43	1.10	1.05	1.18	.72	.39	.22
IN.	.43	.42	.28	.26	.49	.49	1.23	1.22	1.32	.84	.45	.25
STATIST	TICS OF M	IONTHLY MEA	N DATA F	OR WATER	YEARS 1942	- 1999,	BY WATER	YEAR (WY)				
MEAN	160	148	118	97.7	230	493	419	402	650	374	259	183
MAX	634	506	548	330	1016	1588	1889	1345	2856	1588	1230	1034
(WY)	1983	1993	1985	1983	1971	1983	1983	1984	1984	1993	1951	1951
MIN	9.36	14.6	5.74	3.25	3.64	25.6	19.9	35.9	48.5	33.3	12.6	5.48
(WY)	1957	1959	1959	1959	1959	1957	1957	1968	1955	1956	1956	1956
SUMMARY	STATIST	TICS	FOR	1998 CALE	NDAR YEAR	F	'OR 1999 W.	ATER YEAR		WATER YE	ARS 1942	- 1999
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE DNNUAL DUNCTER (AC. ETC)			155979 427 6350 50 63 309400	Jun 24 Jan 4 Mar 9		137869 378 2230 65 108 3740 6.5 273500	Apr 22 Dec 21 Dec 21 Jul 2 5 Jul 2		294 983 24.5 14400 2.6 20800 22.10 213300	Jun 2 Sep 2 Feb 1 Sep 1 Jun 1	1983 1956 21 1983 21 1945a 24 1959 22 1978 22 1950	
ANNUAL RUNOFF (ICFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS				.6 8.6 881 263 100	4 7		.5 7.6 716 273 140	6 7		.44 5.98 624 144 30		

a Also Sep 22, 1945; caused by temporary dam upstream

e Estimated

06607200 MAPLE RIVER AT MAPLETON, IA--Continued

06607500 LITTLE SIOUX RIVER NEAR TURIN, IA

LOCATION.--Lat 41°57'52", long 95°58'21", in NW¹/4 NE¹/4 sec.33, T.83 N., R.44 W., Monona County, Hydrologic Unit 10230003, on left bank on downstream side of bridge on county highway E54, 1.0 mi east of gaging station on Monona-Harrison Ditch near Turin, 2.5 mi downstream from Maple River, 3.8 mi south of Turin, 6.2 mi northeast of Blencoe, and at mile 13.5.

DRAINAGE AREA.--3,526 mi².

PERIOD OF RECORD.--May 1942 to September 1957, January 1958 to current year. June 1942 to January 1958 at site 1,200 ft east on old river channel; records not equivalent owing to diversion into Monona-Harrison Ditch through equalizer ditch 1.5 mi upstream 1923 to 1958, and diversion with Monona-Harrison Ditch through diversion ditch 8.3 miles upstream since 1958.

REVISED RECORDS: WSP 1440: Drainage area. WSP 1560: Drainage area. WDR IA-95-1: Period of record.

GAGE.--Water-stage recorder. Datum of gage is 1,019.85 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to July 15, 1958, nonrecording gages near present site at different datums. July 15 to Sept. 3, 1958, nonrecording gage at present site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and and satellite data collection platform at station.

> DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	464	943	1170	e440	e725	1250	1290	4420	2840	3380	1750	517
2	475	1020	1120	e420	e730	1340	1240	4360	2860	4160	1570	487
3	531	1010	1100	e400	e1400	1550	1240	4220	2750	4310	1430	472
4	610	971	1090	e380	e1700	1640	1230	4020	3620	3390	1320	527
5	636	939	1070	e547	e1400	1630	1270	3820	4860	3170	1220	759
6	652	915	1050	e600	e1600	1540	1480	3660	3640	3010	1180	609
7	630	902	1040	e550	e1400	1430	1800	3450	3630	2890	1500	509
8	600	899	1020	e520	e1400	1380	2150	3320	4220	2730	1280	441
9	585	915	1000	e500	1330	1210	2820	3310	3820	2930	1080	419
10	569	1030	986	e550	1420	1040	3610	3380	4650	2540	988	404
11	553	1110	976	e650	1530	1090	3980	3510	6280	2350	923	395
12	535	1130	957	e550	1400	1170	3970	3530	6110	2230	1010	394
13	523	1310	961	e480	1510	1220	4020	3400	6150	2120	870	394
14	525	1540	962	e550	1720	1190	4090	3240	5690	2030	810	388
15	527	1740	947	e650	1690	1170	4200	3120	5620	1950	788	374
16	542	1790	971	e750	1630	1180	4170	3200	6050	1960	746	366
17	602	1760	995	e700	1480	1240	4100	4420	6120	2000	695	368
18	631	1710	969	e650	1530	1470	4050	3780	6090	2130	908	358
19	639	1610	903	e600	1470	1850	4030	3540	5670	2110	780	356
20	646	1550	e360	e675	1400	2110	4020	3520	5120	1960	671	346
21	724	1540	e550	e700	1310	2100	4030	3770	4630	1910	623	342
22	729	1470	e500	e650	1270	1960	6040	3750	4200	2090	602	343
23	722	1390	e440	e700	1080	1870	5570	3760	3930	2790	585	343
24	701	1380	e400	e725	1050	1800	4760	3580	3750	3420	573	337
25	668	1310	e420	e600	1180	1670	4590	3440	3560	3180	574	341
26 27 28 29 30 31	656 723 751 813 799 840	1280 1250 1220 1210 1170	e440 e480 e550 e500 e460 e400	e650 e675 e675 e650 e700 e675	1200 1240 1200 	1570 1510 1470 1420 1470 1380	4520 4510 4480 4470 4470 	3300 3150 3010 2860 2740 2630	3340 3610 3560 3530 3390	2990 2650 2380 2190 2040 1900	584 557 528 512 570 534	332 319 314 311 319
TOTAL MEAN MAX MIN AC-FT CFSM TN	19601 632 840 464 38880 .18 21	38014 1267 1790 899 75400 .36 40	24787 800 1170 360 49170 .23 26	18562 599 750 380 36820 .17 20	37995 1357 1720 725 75360 .38 40	45920 1481 2110 1040 91080 .42 48	106200 3540 6040 1230 210600 1.00 1.12	109210 3523 4420 2630 216600 1.00 1 15	133290 4443 6280 2750 264400 1.26 1.41	80890 2609 4310 1900 160400 .74 85	27761 896 1750 512 55060 .25 29	12184 406 759 311 24170 .12
STATIST	TICS OF	MONTHLY N	MEAN DATA	FOR WATER	YEARS 19	59 - 1999,	BY WATER	r year (w	Y)	100		.15
MEAN	833	843	669	489	864	2407	3209	2419	3021	2102	1074	873
MAX	3625	3612	2424	2250	3353	9054	10790	7938	15080	13110	5181	3980
(WY)	1983	1980	1983	1992	1971	1983	1965	1986	1984	1993	1993	1993
MIN	37.5	48.0	31.2	18.5	25.1	171	157	118	315	181	140	90.2
(WY)	1959	1959	1959	1977	1959	1964	1968	1968	1968	1968	1976	1976
06607500 LITTLE SIOUX RIVER NEAR TURIN, IA--Continued

SUMMARY STATISTICS	FOR 1998 CALEN	DAR YEAR	FOR 1999 W	ATER YEA	AR	WATER	YEARS	1959	- (1999a
ANNUAL TOTAL	550230		654414							
ANNUAL MEAN	1507		1793			1568				
HIGHEST ANNUAL MEAN						5261				1993
LOWEST ANNUAL MEAN						167				1968
HIGHEST DAILY MEAN	8960	Jun 24	6280	Jun 1	11	28700		Jun	22	1996
LOWEST DAILY MEAN	190	Jan 13	311	Sep 2	29	17		Jan	18	1977b
ANNUAL SEVEN-DAY MINIMUM	219	Jan 12	325	Sep 2	24	17		Jan	27	1977
INSTANTANEOUS PEAK FLOW			6500	Apr 2	22	32000		Jun	22	1996
INSTANTANEOUS PEAK STAGE			14.9	0 Apr 2	22	27	.44	Feb	19	1971c
INSTANTANEOUS LOW FLOW			295	Sep 2	29					
ANNUAL RUNOFF (AC-FT)	1091000		1298000	_		1136000				
ANNUAL RUNOFF (CFSM)	.43		.5	1			.44			
ANNUAL RUNOFF (INCHES)	5.81		6.9	0		6	.04			
10 PERCENT EXCEEDS	3180		4030			3740				
50 PERCENT EXCEEDS	1040		1240			808				
90 PERCENT EXCEEDS	416		474			150				

Post closure of diversion to Monona-Harrison Ditch Also Jan 19, 20, Jan 28 to Feb 1, 1977 Ice affected Estimated

a b c e

06608500 SOLDIER RIVER AT PISGAH, IA

LOCATION.--Lat 41°49'50", long 95°55'52", in NW¹/4 NE¹/4 sec.14, T.81 N., R.44 W., Harrison County, Hydrologic Unit 10230001, on right bank at upstream side of bridge on county highway F20, at west edge of Pisgah, 0.4 mi downstream from Cobb Creek, 0.5 mi upstream from Mogger Ditch, and 13.1 mi upstream from mouth.

DRAINAGE AREA.--407 mi².

PERIOD OF RECORD. -- March 1940 to current year.

REVISED RECORDS.--WSP 956: 1940 (M). WSP 1240: 1940, 1941 (M), 1947. WSP 1440: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,036.53 ft above sea level. Prior to Oct. 11, 1954, nonrecording gage at same site and datum with supplementary water-stage recorder operating above 8.2 ft gage height Mar. 2, 1946 to Sept. 24, 1953. Prior to Feb. 1954, on left bank at downstream side of bridge. Prior to June 21, 1989, at site 100 ft downstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	146	171	151	e90	e145	181	169	413	565	512	245	217
2	155	175	157	e85	e145	207	172	395	358	3530	241	200
3	191	175	158	e80	e300	186	207	388	286	1510	242	190
4	188	166	160	e75	374	180	206	386	817	796	235	230
5	248	153	165	e109	267	173	237	401	742	627	226	615
6	212	147	158	e120	287	165	388	482	353	528	258	258
7	178	150	151	e110	224	158	249	401	299	426	795	218
8	169	160	142	e105	222	157	262	362	282	397	365	202
9	170	166	137	e100	225	196	381	333	273	716	286	189
10	168	232	134	e110	206	195	287	323	2190	417	267	186
11	163	209	134	e126	223	174	273	317	648	375	260	185
12	158	178	140	e110	176	173	247	304	641	360	1160	183
13	153	177	138	e95	e150	174	266	291	426	344	381	176
14	151	175	134	e110	187	175	297	284	369	349	306	171
15	148	170	134	e130	191	185	501	297	459	311	284	165
16	151	171	133	e150	175	218	445	316	628	369	275	161
17	277	159	130	e140	153	242	391	1070	402	379	262	164
18	215	154	139	e130	167	213	363	413	359	367	334	164
19	174	153	135	e120	161	194	352	347	338	374	336	164
20	165	155	e70	e134	161	192	340	356	331	920	253	160
21	167	156	e110	e140	148	193	362	632	315	509	240	156
22	158	157	e98	e133	145	192	1890	355	306	443	228	157
23	155	154	e90	e140	153	189	808	520	304	353	230	154
24	157	151	e80	e145	185	185	656	336	283	366	218	152
25	159	154	e85	e120	166	175	577	310	271	314	213	149
26 27 28 29 30 31	160 226 245 213 187 171	150 148 145 153 156	e90 e95 e110 e100 e95 e80	e132 e134 e133 e130 e140 e138	174 169 165 	173 169 176 163 160 164	548 676 615 488 443	292 296 780 296 273 281	261 1750 703 507 472 	308 300 292 274 273 277	209 206 204 200 306 225	148 149 150 143 145
TOTAL	5578	4920	3833	3714	5444	5677	13096	12250	15938	17316	9490	5701
MEAN	180	164	124	120	194	183	437	395	531	559	306	190
MAX	277	232	165	150	374	242	1890	1070	2190	3530	1160	615
MIN	146	145	70	75	145	157	169	273	261	273	200	143
AC-FT	11060	9760	7600	7370	10800	11260	25980	24300	31610	34350	18820	11310
CFSM	.44	.40	.30	.29	.48	.45	1.07	.97	1.31	1.37	.75	.47
IN.	.51	.45	.35	.34	.50	.52	1.20	1.12	1.46	1.58	.87	.52
STATIST	ICS OF N	MONTHLY MEAN	I DATA F	OR WATER	YEARS 1941	- 1999,	, BY WATER	YEAR (WY)				
MEAN	81.2	75.1	67.0	66.3	157	268	169	199	314	204	146	113
MAX	330	274	281	431	653	897	623	555	1233	1607	632	482
(WY)	1994	1994	1985	1952	1971	1993	1983	1984	1991	1993	1993	1978
MIN	9.61	12.8	6.05	3.29	9.43	27.8	12.5	13.6	22.1	22.8	14.4	6.70
(WY)	1957	1959	1959	1959	1956	1957	1957	1957	1956	1970	1971	1956
SUMMARY	STATIST	FICS	FOR	1998 CALE	NDAR YEAR	I	FOR 1999 W	ATER YEAR		WATER YE	ARS 1941	- 1999
ANNUAL ANNUAL HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL 10 PERC 50 PERC	TOTAL MEAN 'ANNUAL M DAILY M SEVEN-DA ANEOUS M RUNOFF (RUNOFF (RUNOFF (ENT EXCH	MEAN MEAN EAN AY MINIMUM PEAK FLOW PEAK STAGE (AC-FT) (CFSM) (INCHES) EEDS EEDS		88870 243 2690 44 51 176300 .6 8.1 451 170	Jul 6 Mar 12 Mar 9 0 2		102957 282 3530 70 86 12200 19.9 204200 .6 9.4 476 194	Jul 2 Dec 20 Dec 29 Jul 2 3 Jul 2 9 1		155 487 27.3 20700 2.0 34700 28.87 112200 .38 5.17 289 72	Jul : Jan Jan Jul : Jul :	1993 1956 17 1996 2 1945a 2 1945 17 1996 17 1996
90 PERC	ENT EXCH	EEDS		78			134			16		

a Also Jan 3-10, 1945

e Estimated

06608500 SOLDIER RIVER AT PISGAH, IA--Continued

Gaging Stations

06609500	Boyer River at	Logan, IA					 •	•	•	 •		.96
06610000	Missouri River	at Omaha, NE.				 •		•	•	 		.98
06807000	Missouri River	at Nebraska Ci	ty,	NE.		 •		•	•	 		108

Crest Stage Gaging Stations

06609482	Boyer River Tributary at Woodbine, IA
06609560	Willow Creek near Soldier, IA
06610510	Moser Creek near Earling, IA
06610581	Mosquito Creek Tributary near Neola, IA
06805849	Keg Creek Tributary near Mineola, IA

06609500 BOYER RIVER AT LOGAN, IA

LOCATION.--Lat 41°38'33", long 95°46'57", in SE¹/₄ NW¹/₄ sec.19, T.79 N., R.42 W., Harrison County, Hydrologic Unit 10230007, on left bank 9 ft downstream from Chicago Central and Pacific Railroad bridge at Logan, 0.4 mi downstream from Elk Grove Creek, 10.5 mi upstream from Willow Creek, and 15.8 mi upstream from mouth.

DRAINAGE AREA.--871 mi².

PERIOD OF RECORD.--May 1918 to November 1924, February 1925 to July 1925, November 1937 to current year. Monthly discharge only for some periods, published in WSP 1310.

REVISED RECORDS.--WSP 956: 1938-39. WSP 1240: 1918-19, 1920 (M), 1921, 1922 (M), 1924-25, 1938 (M), 1945. WSP 1440: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,009.38 ft above sea level (Chicago and Northwestern Railway Company bench mark). See WSP 1918 for history of changes prior to Oct. 18, 1960.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	236	324	306	e130	e210	325	301	1170	799	972	464	351
2	249	324	294	e120	e210	365	301	1120	791	3280	434	330
3	306	319	295	e115	e290	409	419	1070	742	2830	430	314
4	371	302	297	e110	412	382	524	1040	920	1430	424	315
5	524	294	297	e150	513	360	539	1030	2330	1160	405	428
6	474	285	294	e180	433	331	1180	1030	1070	1040	431	402
7	364	293	287	e160	424	309	1070	998	900	957	1370	e310
8	322	302	284	e155	482	301	950	944	811	911	816	e290
9	301	311	287	e150	484	272	1270	902	772	2130	533	e270
10	292	359	291	e160	458	349	1200	868	1550	1100	467	264
11	283	393	285	e190	323	348	1090	855	2020	898	439	258
12	271	359	296	e170	222	317	961	823	1930	835	1060	258
13	264	350	297	e140	218	303	910	785	1180	777	662	256
14	263	354	291	e160	318	302	951	756	1020	741	480	242
15	259	344	294	e190	370	308	1130	759	956	710	426	237
16	260	337	289	e220	e340	337	1260	896	1170	693	402	230
17	293	326	281	e210	e300	410	1210	e1600	961	741	382	226
18	307	322	289	e190	e340	473	1130	1310	881	826	445	224
19	294	313	e170	e180	e301	415	1060	1040	840	876	525	224
20	282	304	e100	e200	291	385	1000	1020	826	1710	388	219
21	281	301	e160	e210	273	369	961	1200	806	941	362	213
22	277	314	e150	e200	e265	358	2370	1040	774	748	345	208
23	272	307	e130	e205	e230	345	2700	1110	790	675	349	220
24	273	294	e120	e210	e340	335	1710	1000	741	645	339	217
25	273	297	e125	e170	e320	322	1450	943	698	598	326	210
26 27 28 29 30 31	276 347 425 378 357 336	306 310 311 314 316 	e130 e140 e160 e150 e140 e115	e198 e200 e200 e190 e210 e200	312 313 314 	309 307 328 335 303 305	1330 1610 1620 1380 1260	886 844 854 830 778 777	677 3000 2020 1200 1020 	579 560 541 518 495 480	326 323 317 317 325 327	206 204 205 198 202
TOTAL	9710	9585	7044	5473	9306	10617	34847	30278	34195	31397	14639	7731
MEAN	313	320	227	177	332	342	1162	977	1140	1013	472	258
MAX	524	393	306	220	513	473	2700	1600	3000	3280	1370	428
MIN	236	285	100	110	210	272	301	756	677	480	317	198
AC-FT	19260	19010	13970	10860	18460	21060	69120	60060	67830	62280	29040	15330
CFSM	.36	.37	.26	.20	.38	.39	1.33	1.12	1.31	1.16	.54	.30
IN.	.41	.41	.30	.23	.40	.45	1.49	1.29	1.46	1.34	.63	.33
STATIST	TICS OF M	ONTHLY MEA	AN DATA H	FOR WATER	YEARS 1919	- 1999	, BY WATEF	R YEAR (WY)				
MEAN	187	170	139	129	320	601	454	510	770	473	312	260
MAX	796	558	565	692	1209	2619	1988	1698	2541	3022	1636	1288
(WY)	1974	1974	1973	1973	1971	1979	1983	1984	1990	1993	1951	1978
MIN	11.1	8.33	6.68	3.06	3.55	40.4	23.3	39.9	33.3	51.0	34.5	11.6
(WY)	1957	1940	1938	1940	1940	1981	1957	1968	1956	1977	1976	1939
SUMMARY	STATIST	ICS	FOR	1998 CALE	NDAR YEAR	:	FOR 1999 V	VATER YEAR		WATER YEA	ARS 1919	- 1999
ANNUAL ANNUAL HIGHEST LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT ANNUAL ANNUAL ANNUAL ANNUAL 0 PER(50 PER(TOTAL MEAN ^ ANNUAL M ANNUAL M DAILY M DAILY M CANEOUS P CANEOUS P CANEOUS L RUNOFF (RUNOFF (RUNOFF (RUNOFF (RUNOFF (CANEOUS CANEOUS) CANEOUS CANEOUS CANEO	MEAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW AC-FT) CFSM) INCHES) EDS EDS		237853 652 7460 80 93 471800 .7 10.1 1280 364	Jun 11 Jan 13 Jan 12 5 6		204822 561 3280 100 126 11800 15.7 61 406300 406300 8.7 1120 340	Jul 2 Dec 20 Dec 29 Jul 2 72 Jul 2 Feb 13 54 75		364 1018 58.7 24600 1.5 2.0 30800 25.22 263800 .42 5.68 763 167	Jul Jul : Jan : Jun : Mar	1993 1956 9 1993 16 1938 13 1940 17 1990 1 1965a

a Ice affected

06609500 BOYER RIVER AT LOGAN, IA--Continued

MISSOURI RIVER MAIN STEM

06610000 MISSOURI RIVER AT OMAHA, NE (National stream-quality accounting network station)

LOCATION.--Lat 41°15'32", long 95°55'20", in SE¹/₄ NW¹/₄ sec.23, T.15 N., R.13 E., Douglas County, Hydrologic Unit 10230006, on right bank on left side of concrete floodwall, at foot of Douglas Street, 275 ft downstream from Interstate 480 Highway bridge in Omaha, and at mile 615.9.

DRAINAGE AREA.--322,800 mi², approximately. The 3,959 mi² in Great Divide basin are not included.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1928 to current year. April 1872 to December 1899 (gage heights only) in reports of the Missouri River Commission and since January 1875, (gage heights only) in reports of the U.S. Weather Bureau.

REVISED RECORDS .-- WSP 761: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 948.24 ft above sea level. See WSP 1730 for history of changes prior to Sept. 30, 1936. Oct. 1, 1936 to Sept. 30, 1982 at datum 10.00 ft higher.

REMARKS.--No estimated daily discharge, records good. Flow regulated by upstream main-stem reservoirs. Fort Randall Dam was completed in July 1952, with storage beginning in December 1952. Gavins Point Dam was completed in July 1955, with storage beginning in December 1955. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 396,000 ft³/s Apr. 18, 1952, gage height, 40.20 ft, present datum; minimum, about 2,200 ft³/s Jan. 6, 1937; minimum gage height, 6.85 ft, present datum, Feb. 5, 1989, result of freezeup.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	35300 35800	46300 46700	50600 50400	29500 29500	29500 29700	34000 34200	39600 40300	43000 44500	54000 60700	50400 51600	48500 48100	53900 53100
3	36100	47400	49700	29000	30400	35000	40600	46100	61800	66300	47700	51900
4	36500	47200	49300	28500	31900	36200	40100	45600	53700	61900	47100	52000
5	37500	46700	47100	28300	32600	37500	40900	45600	59200	57500	45200	54100
б	38200	46600	46100	28800	32100	38100	41700	45500	62600	56300	45900	53700
7	36100	47600	44200	29600	31900	37900	42800	45300	55300	58400	70900	52600
8	33200	48800	42000	30200	32000	38000	43700	42600	52900	58000	65500	52300
9	34100	49200	40600	29000	32400	38100	45900	42200	54700	59400	55700	52300
10	35200	50100	39800	28800	33400	38300	47700	42700	56200	59000	48900	52200
11	36800	53800	39500	28500	34300	38700	47700	42500	61400	55400	48900	52100
12	38400	51500	39300	28400	35100	38300	45200	42300	65200	53200	51400	51800
13	38500	49600	39500	28900	34600	37500	44800	40800	56300	52100	52200	51000
14	37800	50400	39500	29100	34300	36900	47500	42000	50600	51300	49700	50600
15	37200	51400	38900	27900	35700	36600	56100	42800	50700	50900	48600	50700
16	37100	52800	39200	28300	35900	37000	58400	43700	57700	50800	47900	50200
17	37600	53000	39500	30000	35500	37600	52400	47500	56200	51600	47200	49900
18	37700	53400	39000	31400	35600	38600	44200	50600	55300	52500	47100	50300
19	37700	54100	38800	30600	35700	39100	41000	49100	58200	54600	47100	50500
20	37500	54600	37900	29400	35200	39600	41400	46500	55800	54000	46200	50900
21	37400	54600	36800	29300	34700	37600	42800	48300	54400	52900	45500	50900
22	38800	54700	33600	29600	34300	40200	50100	52100	56300	57600	45000	50700
23	39900	54200	30400	29900	33900	40700	55700	54500	56900	60700	44900	50500
24	40000	52900	28800	30100	33800	40000	47200	55700	56100	57600	44900	50500
25	40200	52900	28100	30500	34100	39500	42100	55200	55700	54200	45200	50800
26	40300	52100	28600	30500	33700	39400	43600	52900	55200	53500	44600	50800
27	40800	51800	29800	30400	33500	39400	47400	51300	59400	53200	45200	51100
28	41500	51400	30600	30900	33800	39500	49900	50800	65600	51400	48300	50900
29	42700	51100	30800	30700		39500	47300	50300	64900	50300	50900	51000
30	44800	50900	30500	30000		39000	44300	51100	54300	49700	53400	50900
31	46300		29600	29700		39400		53200		49300	55200	
TOTAL	1187000	1527800	1188500	915300	939600	1181400	1372400	1466300	1717300	1695600	1532900	1544200
MEAN	38290	50930	38340	29530	33560	38110	45750	47300	57240	54700	49450	51470
MAX	46300	54700	50600	31400	35900	40700	58400	55700	65600	66300	70900	54100
MIN	33200	46300	28100	27900	29500	34000	39600	40800	50600	49300	44600	49900
AC-FT	2354000	3030000	2357000	1815000	1864000	2343000	2722000	2908000	3406000	3363000	3041000	3063000
CFSM	.12	.16	.12	.09	.10	.12	.14	.15	.18	.17	.15	.16
IN.	.14	.18	.14	.11	.11	.14	.16	.17	.20	.20	.18	.18
STATIS	STICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	53 - 1999	, BY WATE	ER YEAR (W	Y)			
MEAN	38490	33970	20970	17590	19950	28280	38970	38680	42220	40900	39430	39370
MAX	74070	75040	44260	33250	40410	54660	93840	87620	76120	78560	68890	69770
(WY)	1998	1998	1998	1987	1997	1997	1997	1997	1997	1993	1997	1997
MTN	16920	8324	8296	8425	8162	10170	16480	26450	26890	27150	27280	28290
(WY)	1962	1962	1962	1964	1963	1957	1957	1961	1961	1958	1958	1958

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

nai beream quarrey accounting neework bea

WATER-QUALITY RECORDS

LOCATION.--Water quality samples were collected from Interstate 80 highway bridge 2.0 mi downstream from gaging station.

PERIOD OF RECORD.--July 1969 to 1976, 1978 to current year. Daily sediment loads for April 1939 to September 1971 are in reports of U.S. Army Corps of Engineers.

PERIOD OF DAILY RECORD. -

SPECIFIC CONDUCTANCE: October 1972 to September 1976, January 1978 to September 1981, October 1991 to current year. WATER TEMPERATURES: October 1971 to September 1976, January 1978 to September 1981, October 1991 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1971 to September 1976, October 1991 to current year.

REMARKS .-- Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD .--

MIREMES FOR PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: Maximum daily, 950 microsiemens Dec. 4, 5, 1980; minimum daily, 335 microsiemens Mar. 22, 1978. WATER TEMPERATURES: Maximum daily, 32.0°C July 24, 1972; minimum daily, 0.0°C on many days during winter period. SEDIMENT CONCENTRATIONS: Maximum daily mean, 8,180 mg/L May 19, 1974; minimum daily mean, 71 mg/L Jan. 3, 1993. SEDIMENT LOADS: Maximum daily, 1,470,000 tons Aug. 6, 1996; minimum daily, 2,560 tons Jan. 3, 1993.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CORDUCTANCE: Maximum daily, 949 microsiemens July 15; minimum daily, 746 microsiemens Aug. 7. WATER TEMPERATURES: Maximum daily, 29.0°C July 26, 29; minimum daily, 0.0°C Dec. 28. SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,640 mg/L Aug. 7; minimum daily mean, 198 mg/L Aug. 3. SEDIMENT LOADS: Maximum daily, 316,000 tons Aug. 7; minimum daily, 20,300 tons Jan. 5.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
OCT												
20 DEC	1100	37400	772	8.4	14.5	15.0	23	9.0	90	746	250	60
11 FEB	1330	38200	844	8.4	5.0	13.5	16	12.0	97	744	290	69
08 MAR	1030	32000	798	8.2	2.5	6.5	20	12.7	98	728	260	66
01	1100	34100	791	8.3	3.5	11.5	20	12.5	99	729	270	67
15	1130	36600	789	8.3	3.5	5.5	20	12.7	99	735	270	65
29	1100	39700	801	8.3	8.0	10.5	22	11.1	97	741	280	68
APR												
20 MAY	1000	41300	957	8.2	10.0	13.0	75	10.1	93	732	400	95
11	1030	42600	903	8.3	15.0	13.5	75	8.8	91	734	350	83
17	1100	46900	900	8.3	17.5	16.5	40	8.3	91	733	350	84
JUN												
02	1030	60400	894	8.3	20.0	26.0	38	7.6	87	737	310	74
15	1000	49500	900	8.2	22.5	15.0	120	6.8	81	741	320	79
JUL												
08 AUG	1000	58300	912	8.2	25.0	24.5	110	7.1	90	733	330	82
07	1030	77000	737	8.2	24.0	30.5	200	5.9	73	730	220	56
23 SEP	1000	45000	883	8.4	25.0	21.0	21	7.3	92	733	280	68
07	1100	45400	832	8.4	23.5	22.5	17	7.8	96	730	260	65

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
OCT												
20 DEC	24	64	36	2	6.1	156	0	191	200	12	.46	9.9
11	28	65	33	2	5.6	179	0	217	230	15	.44	11
FEB 08	24	59	32	2	5.0	177	0	216	200	13	.41	11
MAR												
01	26	57	31	2	5.2	177	0	216	200	15	.44	11
15	26	60	32	2	5.2	172	0	210	200	14	.44	10
29 ADP	28	01	31	2	5.4	1/4	U	212	210	15	.41	10
20	40	44	19	1	6.6	201	0	245	270	16	.40	13
MAY												
11	35	54	25	1	6.0	192	0	235	240	16	.42	10
17	35	53	24	1	6.6	186	0	227	250	15	.42	11
0.2	30	66	31	2	6 9	168	0	205	250	17	44	97
15	31	57	27	ĩ	6.7	194	õ	237	240	17	.43	11
JUL												
08	30	63	29	2	6.8	173	0	211	270	14	.42	11
AUG	20	E 4	24	2	E O	120	0	160	200	10	20	0 2
23	20	77	37	2	5.9	166	0	202	200	14	. 39	0.3
SEP	20	. ,	27	-	0.5	100	5	202	200		• • • •	2.5
07	24	71	37	2	5.6	164	0	200	240	13	.41	8.8

DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)
OCT 20 DEC	499	475	.68	50400	.50	.527	<.010	.036	.53	.024	<.050	.118
11	572	536	.78	59000	.48	1.09	<.010	.065	.54	.042	E.034	.083
08 MAR	522	494	.71	45100	.45	1.24	.013	.106	.55	.036	.040	.221
01	527 523	494 489	.72 .71	48500 51700	.40	1.39 1.12	.023 <.010	.042	.44	.030	.032	.202
APR 20	669	619	.91	74600	1.4	3.58	.019	.051	1.5	.069	.078	.503
11 17	615 623	574 580	.84 .85	70700 78900	.97	2.48 2.32	.010 .010	.084 <.020	1.1 .99	.048 .044	.052 .048	.316 .269
02 15	628 618	561 577	.85 .84	102000 82600	.76 4.8	1.60 3.35	.014 .021	.054	.81 4.8	.039 .069	.044 .075	.265 .467
08	624	588	.85	98200		2.09	.016	<.020		.056	.069	.202
07 23	475 585	444 560	.65 .80	98800 71100	2.9	.834 .494	.015 <.010	.111 <.020	3.1 .71	.072 .016	.087 .030	1.64 .188
SEP 07	537	525	.73	65800		.285	<.010	<.020	.51	.021	.041	.267

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

DATE	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVEL (UG/L AS FE) (01046)
OCT												
20 DEC	386	39000	38	2								<10
11	320	33000	22	1	1.1	57	<1.0	<1.0	2.0	<1.0	1.9	<10
08	298	25700	32	2								<10
01	319	29400	23	2								<10
15	299	29500	19	2	<1.0	56	<1.0	<1.0	7.7	<1.0	2.0	<10
29	364	39000	26	2								<10
APR												
20	573	63900	67	3								<10
MAY												
11	342	39300	55	2	1.5	81	<1.0	<1.0	<1.0	<1.0	2.3	<10
1/	288	36500	54	3								<10
0.2	206	10000	10	2								~10
15	484	64700	66	2								<10
	101	01/00	00	2								10
08	427	67200	54	4								<10
AUG												
07	1790	372000	92	4	2.7	99	<1.0	<1.0	<1.0	<1.0	1.9	<10
23 SEP	310	37700	37	2								E5.8
07	309	37900	32	4								<10

DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
OCT 20 DEC		50				1		532	<10			E.009
11	<1.0	47	2.3	2.8	2.2	2	<1.0	512	<10	<1.0	5.1	E.010
D8		47				2		527	<10			E.005
01 15	<1.0	43 46	 3.8	2.8	4.3	3 1	<1.0	525 528	<10 <10	 1.3	4.9	E.004 E.005
29		44				2		543	<10			E.006
20 MAY		43				4		565	<10			E.022
11 17	<1.0	48 49	<1.0	3.4	3.3	2 3	<1.0	568 567	<10 <10	1.2	5.6	E.018 E.029
02		54 49				2 4		566 538	<10 <10			E.020 E.040
JUL 08 AUG		54				4		587	E7			
07 23	<1.0	44 54	19	3.5	2.7	4 2	<1.0	400 580	<10 E8	1.4	4.3	E.038 E.085
SEP 07		52				3		546	<10			E.020

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

DATE	PH WATER WHOLE LAB (STAND- ARD	NITRO- GEN, TOTAL (MG/L	NITRO- GEN DIS- SOLVED (MG/L	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L	NITRO- GEN, NITRATE DIS- SOLVED (MG/L	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L	CARBON, ORGANIC DIS- SOLVED (MG/L	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L	HARD- NESS NONCARB DISSOLV FLD. AS CACO3	HARD- NESS NONCARB DISSOLV LAB AS CACO3	ANTI- MONY, DIS- SOLVED (UG/L
	(00403)	(00600)	(00602)	(00607)	(00618)	(00623)	(00660)	(00681)	(00689)	(00904)	(00905)	(01095)
OCT												
20 DEC	8.3	1.1	.75	.19		.23	.07	3.4	1.8	90	76	
11	8.2	1.6	1.4	.23		.30	.13	3.6	1.3	110	100	<1.0
08	8.1	1.8	1.6	.21	1.23	.31	.11	3.5	.20	88	81	
01	8.1	1.8	1.7	.24	1.37	.28	.09	3.3	.70	96	84	
15 29	8.2 8.2	1.6 1.8	1.4 1.5	.21 .30		.23	.07 .10	3.5 3.6	.90 .60	96 110	84 100	<1.0
APR												
20	8 1	5 0	4 1	50	3 57	55	21	52	4 1	200	190	
MAY	• •											
11	8.2	3.5	2.8	.21	2.47	.29	.15	4.3	3.1	160	150	<1.0
1/	8.3	3.3	2.5		2.31	.19	.13	4.8	2.2	170	150	
JUN												
02	8.3	2.4	2.0	.34	1.59	.39	.12	4.3		140	120	
15	8.2	8.2	3.8	.37	3.33	.40	.21	5.3	4.0	130	130	
JUL												
08	8.3		2.5		2.07	.38	.17	5.0	2.3	160	150	
AUG												
07	8.1	3.9	1.0	.10	.819	.21	.22	3.9		86	79	<1.0
23	8.4	1.2	.77			.28	.05	3.8		110	100	
SEP												
07	8.4	.80	.46			.18	.06	3.6	1.5	98	87	

DATE	PROP- CHLOR, WATER, DISS, REC (UG/L) (04024)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	FONOFOS WATER DISS REC (UG/L) (04095)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	P,P' DDE DISSOLV (UG/L) (34653)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	LINDANE DIS- SOLVED (UG/L) (39341)
OCT	< 007	< 002	< 0.0E	< 019	008	< 0.02	170	< 002	< 006	< 004	< 004
20 DEC	<.007	<.002	<.005	<.018	.008	<.003	170	<.002	<.006	<.004	<.004
11	<.007	<.002	<.005	E.002	.007	<.003	190	<.002	<.006	<.004	<.004
08 MAR	<.007	<.002	<.005	E.002	.005	<.003	180	<.002	<.006	<.004	<.004
01	<.007	<.002	<.005	E.002	E.003	<.003	190	<.002	<.006	<.004	<.004
15	<.007	<.002	<.005	E.002	E.004	<.003	180	<.002	<.006	<.004	<.004
29	<.007	<.002	<.005	<.018	<.004	<.003	180	<.002	<.006	<.004	<.004
APR											
20	<.007	<.002	E.004	E.003	.013	<.003	210	<.002	<.006	<.004	<.004
MAY											
11	<.007	<.002	E.004	E.005	.011	<.003	200	<.002	<.006	<.004	<.004
17	<.007	<.002	.006	E.005	.032	<.003	200	<.002	<.006	<.004	<.004
JUN											
02	<.007	<.002	.011	E.004	.087	<.003	190	<.002	<.006	<.004	<.004
15	<.007	<.002	.001	E.007	.148	<.003	200	<.002	<.006	<.004	<.004
JUL											
08							180				
AUG											
07	<.007	<.002	<.005	E.012	.022	<.003	150	.045	<.006	<.004	.007
23	.106	.105	.106	.099	.110	.101	170	.080	.064	.091	.102
SEP											
07	<.007	<.002	<.005	E.008	.016	<.003	170	<.002	<.006	<.004	<.004

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-guality accounting network station)

DATE	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	MALA- THION, DIS- SOLVED (UG/L) (39532)	PARA- THION, DIS- SOLVED (UG/L) (39542)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS NO2) (71856)
OCT 20	<.001	.013	<.005	<.004	<.002	.032	<.002	<.0020	.05		
11	<.001	.010	<.005	<.004	<.002	.041	<.002	.0172	.08		
08	<.001	.022	<.005	<.004	<.002	.020	<.002	<.0020	.14	5.4	.04
01	<.001	.014	<.005	<.004	<.002	.018	<.002	.0042	.05	6.0	.08
29	<.001	.017	<.005	<.004	<.002	.072	<.002	.0065	.03		
20 MAY	<.001	.158	<.005	<.004	<.002	.126	<.002	.0742	.07	16	.06
11 17	<.001 <.001	.083	<.005 <.005	<.004 <.004	<.002 <.002	.080	.014	.183	.11	11 10	.03
JUN 02	<.001	.153	<.005	<.004	<.002	.367	.008	.182	.07	7.0	.05
15 JUL	<.001	.249	<.005	<.004	<.002	1.08	.011	.107	.03	15	.07
08 AUG										9.2	.05
07 23	.007	.055 .134	<.005 .080	<.004 .068	.015 .102	.173 .233	.021 .110	.0277 .110	.14	3.6	.05
07	<.001	.028	<.005	<.004	<.002	.086	<.002	.0076			
DATE	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	TER- BACIL WATER FLIRD 0.7 U GF, REC (UG/L) (82665)	LIN- URON WATER FLIRD 0.7 U GF, REC (UG/L) (82666)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)
DATE	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	LIN- URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	EPTC WATER FLIRD 0.7 U GF, REC (UG/L) (82668)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)
DATE OCT 20 DEC	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.003	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661) <.002	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.004	PHORATE WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.002	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.007	LIN- URON WATER FLIRD 0.7 U GF, REC (UG/L) (82666) <.002	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668) <.002	PEB- ULATE WATER FILITRD 0.7 U GF, REC (UG/L) (82669) <.004	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.010
DATE OCT 20 DEC 11 FEB 08	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.003 <.003	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661) <.002 <.002	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.004 <.004	PHORATE WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002	TER- BACIL WATER FLIRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007	LIN- URON WATER FLIRD 0.7 U GF, REC (UG/L) (82666) <.002 <.002	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010
DATE OCT 20 DEC 11 FEB 08 MAR 01	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.003 <.003 <.003	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661) <.002 <.002 <.002	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.004 <.004 <.004	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007 <.007	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.002 <.002 <.002	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006	EPTC WATER FLITR 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010 <.010
DATE OCT 20 DEC 11 FEB 08 MAR 01 15	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.003 <.003 <.003 <.003 <.003	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661) <.002 <.002 <.002 <.002 <.002 <.002	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.004 <.004 <.004 <.004 <.004	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007 <.007 <.007 <.007	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.002 <.002 <.002 <.002 <.002 <.002	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006	EPTC WATER FLITRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004	THEBU- THIURON WATER FLIRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010 <.010 <.010 <.010
DATE OCT 20 DEC 11 FEB 08 MAR 01 15 29 ADP	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 <.004	2,6-DI- ETHYL ANILINE WAT FLT GF, REC (UG/L) (82660) <.003 <.003 <.003 <.003 <.003 <.003	TRI- FLUR- ALIN WAT FLT GF, REC (UG/L) (82661) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.004 <.004 <.004 <.004 <.004 <.004	PHORATE WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007 <.007 <.007 <.007 <.007	LIN- URON WATER FLIRD 0.7 U GF, REC (UG/L) (82666) <.002 <.002 <.002 <.002 <.002 <.002 <.002	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006	EPTC WATER FLITRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004	THEBU- THIURON WATER FLIRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010 <.010 <.010 <.010 <.010
DATE OCT 20 DEC 11 FEB 08 MAR 01 15 29 APR 20 MAY	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 <.004	2,6-DI- ETHYL ANILINE WAT FLT 0,7 U GF, REC (UG/L) (82660) <.003 <.003 <.003 <.003 <.003 <.003 <.003	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 E.002	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.004 <.004 <.004 <.004 <.004 <.004 <.004	PHORATE WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	TER- BACIL WATER FLTRD GF, REC (UG/L) (82665) <.007 <.007 <.007 <.007 <.007 <.007 <.007	LIN- URON WATER FLIRD 0.7 U GF, REC (UG/L) (82666) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	METHYL PARA- THION WAT FLT GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 <.006	EPTC WATER FLIRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004	THEBU- THIURON WATER FLIRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010 <.010 <.010 <.010 <.010 <.010
DATE 20 DEC 11 FEB 08 MAR 01 15 29 APR 20 MAY 11 17	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	2,6-DI- ETHYL ANILINE WAT FLT 0,7 U GF, REC (UG/L) (82660) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	TRI- FLUR- ALIN WAT FLT GF, REC (UG/L) (82661) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	ETHAL- FLUR- ALIN WAT FLT GF, REC (UG/L) (82663) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	PHORATE WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	TER- BACIL WATER FLIRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	METHYL PARA- THION WAT FLT GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	EPTC WATER FLIRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	THEBU- THIURON WATER FLIRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010
DATE 20 DEC 11 FEB 08 MAR 01 15 29 APR 20 MAY 11 17 JUN	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	2,6-DI- ETHYL ANILINE WAT FLT GF, REC (UG/L) (82660) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	TRI- FLUR- ALIN WAT FLT GF, REC (UG/L) (82661) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 E.002	ETHAL- FLUR- ALIN WAT FLT GF, REC (UG/L) (82663) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	PHORATE WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	TER- BACIL WATER FLITRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	LIN- URON WATER FLIRD 0.7 U GF, REC (UG/L) (82666) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) (8267)	EPTC WATER FLIRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	THEBU- THIURON WATER FLIRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010
DATE OCT 20 DEC 11 FEB 08 MAR 01 15 29 APR 20 MAY 11 17 JUN 02 15 JUL	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	2,6-DI- ETHYL ANILINE WAT FLT 0,7 U GF, REC (UG/L) (82660) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	TRI- FLUR- ALIN WAT FLT GF, REC (UG/L) (82661) <.002 <.002 <.002 <.002 <.002 <.002 E.002 <.002 E.002 E.003 <.002	ETHAL- FLUR- ALIN WAT FLT GF, REC (UG/L) (82663) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	PHORATE WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	TER- BACIL WATER FLIRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	LIN- URON WATER FLIRD 0.7 U GF, REC (UG/L) (82666) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	METHYL PARA- THION WAT FLT GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 .041 .065 .006 .011 <.002	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	THEBU- THIURON WATER FLIRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010
DATE 20 DEC 11 FEB 08 MAR 01 15 29 APR 20 MAY 11 17 JUN 02 15 JUN 02 15 AUG	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	2,6-DI- ETHYL ANILINE WAT FLT GF, REC (UG/L) (82660) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	TRI- FLUR- ALIN WAT FLT GF, REC (UG/L) (82661) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	ETHAL- FLUR- ALIN WAT FLT GF, REC (UG/L) (82663) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	PHORATE WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	TER- BACIL WATER FLITRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	LIN- URON WATER FLIRD 0.7 U GF, REC (UG/L) (82666) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	EPTC WATER FLIRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	THEBU- THIURON WATER FLIRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010
DATE OCT 20 DEC 11 FEB 08 MAR 01 15 20 MAY 11 JUN 02 JUN 08 JUL 08 AUG 07 23 SED	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	2,6-DI- ETHYL ANILINE WAT FLT 0,7 U GF, REC (UG/L) (82660) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	TRI- FLUR- ALIN WAT FLT GF, REC (UG/L) (82661) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	ETHAL- FLUR- ALIN WAT FLT GF, REC (UG/L) (82663) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	PHORATE WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	TER- BACIL WATER FLIRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	METHYL PARA- THION WAT FLT GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	EPTC WATER FLIRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	THEBU- THIURON WATER FLIRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)
OCT	< 004	< 003	< 002	< 003	< 013	< 003	< 017	< 001	< 004	< 003	< 002
DEC	< 004	< 003	< 002	< 003	< 013	< 003	< 017	< 001	< 004	< 003	< 0.02
FEB	< 004	< 003	< 002	< 003	< 012	< 003	< 017	< 001	< 004	< 003	< 002
MAR	<.004	<.003	<.002	<.003	<.013	<.003	<.017	<.001	<.004	<.003	<.002
15	<.004 <.004	<.003 <.003	<.002 <.002	<.003 <.003	<.013 <.013	<.003 <.003	<.017 <.017	<.001 <.001	<.004 <.004	<.003	<.002 <.002
29 APR	<.004	<.003	<.002	<.003	<.013	<.003	<.017	<.001	<.004	<.003	<.002
20 MAY	<.004	<.003	<.002	<.003	<.013	<.003	<.017	<.001	<.004	<.003	<.002
11	<.004 <.004	<.003	<.002	<.003	<.013	<.003	<.017	<.001	<.004	<.003	<.002
JUN	< 004	< 0.03	< 0.02	< 003	< 012	< 0.03	< 017	< 001	< 004	< 0.02	< 0.02
15	<.004	<.003	<.002	<.003	<.013	<.003	<.017	<.001	<.004	<.003	<.002
08											
AUG 07	<.004	<.003	<.002	<.003	<.013	<.003	<.017	<.001	<.004	E.011	<.002
23 SEP	.093	.090	.065	E.141	.079	.101	.090	.093	.102	E.099	.096
07	<.004	<.003	<.002	<.003	<.013	<.003	<.017	<.001	<.004	<.003	<.002
DATE	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063)	TERBUTH YLAZINE SURROGT WAT FLT 0.7 U GF, REC PERCENT (91064)	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065)	BORON, DIS- SOLVED (UG/L AS B) (01020)
DATE OCT 20	DCPA WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.002	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.013	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095) 765	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063) 98.7	TERBUTH YLAZINE SURROGT WAT FLT 0.7 U GF, REC PERCENT (91064) 101	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065) 90.9	BORON, DIS- SOLVED (UG/L AS B) (01020) 119
DATE OCT 20 DEC 11	DCPA WATER FLIRD 0.7 U GF, REC (UG/L) (82682) <.002 <.002	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003	PRO- PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.013 <.013	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095) 765 807	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063) 98.7 125	TERBUTH YLAZINE SURROGT WAT FLT 0.7 U GF, REC PERCENT (91064) 101 110	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065) 90.9 102	BORON, DIS- SOLVED (UG/L AS B) (01020) 119 109
DATE 20 DEC 11 FEB 08	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.002 <.002 <.002	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003	PRO- PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.013 <.013 <.013	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095) 765 807 767	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063) 98.7 125 87.4	TERBUTH YLAZINE SURROGT WAT FLT 0.7 U GF, REC PERCENT (91064) 101 110 92.8	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065) 90.9 102 82.0	BORON, DIS- SOLVED (UG/L AS B) (01020) 119 109 102
DATE OCT 20 DEC 11 FEB 08 MAR 01	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.002 <.002 <.002 <.002	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003	PRO- PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.013 <.013 <.013	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095) 765 807 767 803	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063) 98.7 125 87.4 86.8	TERBUTH YLAZINE SURROGT WAT FLT 0.7 U GF, REC PERCENT (91064) 101 110 92.8 95.6	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065) 90.9 102 82.0 80.6	BORON, DIS- SOLVED (UG/L AS B) (01020) 119 109 102 104
DATE OCT 20 DEC 11 FEB 08 MAR 01 15 29	DCPA WATER FLIRD 0.7 U GF, REC (UG/L) (82682) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.003	PRO- PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.013 <.013 <.013 <.013 <.013 <.013	METHYL AZIN- PHOS WAT FLT GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001	PER- METHRIN CIS WAT FLT GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095) 765 807 767 803 767 803 791 809	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063) 98.7 125 87.4 86.8 120 99 6	TERBUTH YLAZINE SURROGT WAT FLT 0.7 U GF, REC PERCENT (91064) 101 110 92.8 95.6 123 105	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065) 90.9 102 82.0 80.6 106 97 2	BORON, DIS- SOLVED (UG/L AS B) (01020) 119 109 102 104 97
DATE OCT 20 DEC 11 FEB 08 MAR 01 15 29 APR 20	DCPA WATER FLIRD 0.7 U GF, REC (UG/L) (82682) <.002 <.002 <.002 <.002 <.002 <.002 <.002	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.003 <.003	PRO- PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.013 <.013 <.013 <.013 <.013 <.013 <.013	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 <.005	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095) 765 807 767 803 791 809 951	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063) 98.7 125 87.4 86.8 120 99.6 96.8	TERBUTH YLAZINE SURROGT WAT FLT 0.7 U GF, REC PERCENT (91064) 101 110 92.8 95.6 123 105	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065) 90.9 102 82.0 80.6 106 97.2 88.5	BORON, DIS- SOLVED (UG/L AS B) (01020) 119 109 102 104 97 104 92
DATE OCT 20 DEC 11 FEB 08 MAR 01 15 29 APR 20 MAY 11	DCPA WATER FLIRD 0.7 U GF, REC (UG/L) (82682) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	PRO- PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095) 765 807 765 807 767 803 791 809 951 896	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063) 98.7 125 87.4 86.8 120 99.6 96.8	TERBUTH YLAZINE SURROGT WAT FLT 0.7 U GF, REC PERCENT (91064) 101 110 92.8 95.6 123 105 102	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065) 90.9 102 82.0 80.6 106 97.2 88.5 91 7	BORON, DIS- SOLVEE (UG/L AS B) (01020) 119 109 102 104 97 104 92
DATE OCT 20 DEC 11 FEB 08 MAR 01 15 29 APR 20 MAY 11 17 JUN	DCPA WATER FLIRD 0.7 U GF, REC (UG/L) (82682) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	PRO- PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095) 765 807 767 803 767 803 791 809 951 896 894	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063) 98.7 125 87.4 86.8 120 99.6 96.8 104 92.8	TERBUTH YLAZINE SURROGT WAT FLT 0.7 U GF, REC PERCENT (91064) 101 110 92.8 95.6 123 105 102 114 109	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065) 90.9 102 82.0 80.6 106 97.2 88.5 91.7 96.5	BORON, DIS- SOLVEC (UG/L AS B) (01020) 119 109 102 104 97 104 92 97 102
DATE OCT 20 DEC 11 FEB 08 MAR 01 15 29 APR 20 MAY 11 17 JUN 02 15 ULL	DCPA WATER FLIRD 0.7 U GF, REC (UG/L) (82682) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	PRO- PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	PER- METHRIN CIS WAT FLT UGF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095) 765 807 767 803 767 803 791 809 951 809 951 896 894 888 894	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063) 98.7 125 87.4 86.8 120 99.6 96.8 104 92.8 111 82.5	TERBUTH YLAZINE SURROGT WAT FLT 0.7 U GF, REC PERCENT (91064) 101 110 92.8 95.6 123 105 102 114 109	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065) 90.9 102 82.0 80.6 106 97.2 88.5 91.7 96.5 109 82.9	BORON, DIS- SOLVED (UG/L AS B) (01020) 119 109 102 104 97 104 92 97 102 113 103
DATE OCT 20 DEC 11 FEB 08 MAR 01 15 29 APR 20 MAY 11 17 JUN 02 JUL 08 MIC	DCPA WATER FLIRD 0.7 U GF, REC (UG/L) (82682) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	PRO- PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095) 765 807 767 803 791 809 951 896 894 888 895 890	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063) 98.7 125 87.4 86.8 120 99.6 96.8 104 92.8 111 82.5	TERBUTH YLAZINE SURROGT WAT FLT 0.7 U GF, REC PERCENT (91064) 101 110 92.8 95.6 123 105 102 114 109 	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065) 90.9 102 82.0 80.6 106 97.2 88.5 91.7 96.5 109 82.9 	BORON, DIS- SOLVEE (UG/L AS B) (01020) 119 109 102 104 97 104 92 97 102 113 103
DATE OCT 20 DEC 11 FEB 08 MAR 01 15 29 APR 20 MAY 11 JUN 02 JUL 08 AUG 07 23	DCPA WATER FLIRD 0.7 U GF, REC (UG/L) (82682) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	PRO- PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013	<pre>METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001</pre>	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095) 765 807 767 803 791 809 951 896 894 888 895 890 737 862	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063) 98.7 125 87.4 86.8 120 99.6 96.8 104 92.8 111 82.5 99.7 102	TERBUTH YLAZINE SURROGT WAT FLT 0.7 U GF, REC PERCENT (91064) 101 110 92.8 95.6 123 105 102 114 109 	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065) 90.9 102 82.0 80.6 106 97.2 88.5 91.7 96.5 109 82.9 99.2 96.9	BORON, DIS- SOLVEE (UG/L AS B) (01020) 119 109 102 104 97 104 92 97 102 113 103 108 98 124

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	TIME	NUMBER OF SAM- PLING POINTS (COUNT)	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	BED MAT. SIEVE DIAM. % FINER THAN .125 MM	BED MAT. SIEVE DIAM. % FINER THAN .250 MM	BED MAT. SIEVE DIAM. % FINER THAN .500 MM	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM
		(00063)	(80164)	(80165)	(80166)	(80167)	(80168)	(80169)	(80170)	(80171)	(80172)
OCT											
20	1050	3		0	20	95	100				
09	1210	3		0	16	44	75	94	98	100	
DEC 11	1330	3		0	22	87	97	98	99	99	100
FEB											
08	1030	3	0	1	40	97	99	99	99	100	
MAR 01	1100	з		0	25	91	98	99	99	100	
29	1100	3		õ	30	91	99	100			
MAY											
11	0930	3		0	25	97	99	100			
JUN											
01	1200	3		0	23	90	98	99	100		
JUL											
08	1200	3	0	1	26	87	98	100			
AUG	1020	0		0	25	00	0.0	100			
07 SFD	1020	0		U	20	00	20	100			
07	1100	3		0	30	89	98	100			

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					796	794	806		897	867		
2		783							898			
3								864	875		917	856
4			829									
5							772				919	
б	752	790						856		884		
7			846						889		746	838
8	758				784		767			915		
9		774				794						
10									909		846	824
11								872				
12			832							932	876	
13	747							888				814
14												
15	767					790			903	949		
16		771	830								888	
17					750		851	893	852			822
18												
19				855						934	891	
20	773	808					942	883				823
21									890			
22	784					815	936					
23		821								796	890	818
24						797						
25					787			887	900			
26	778						928			896		
27		820						876			881	
28			834						814			808
29	771					807				836		
30		820					890				879	
31												

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY INSTANTANEOUS VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					2.0	3.5	11.0		20.5	21.0		
2		12.5							20.0			
3								14.5	19.0		26.5	27.0
4			9.5									
5							9.5				26.0	
6	15.0	9.5						14.5		26.0		
7			7.5						23.0		24.0	23.5
8					2.5		11.0			25.0		
9		8.5				4.5						
10									24.0		30.0	23.0
11			5.0					15.0				
12										26.0	26.0	
13	15.5							16.0				21.0
14												
15	15.5					3.5			22.5	26.0		
16		6.5	5.0								28.0	
17					3.0		10.0	17.0	20.0			19.0
18												
19				1.5						26.5	25.0	
20	14.5	4.0					10.0	17.0				18.5
21									19.5			
22	14.0					7.0	12.5					
23		7.0								28.0	24.5	18.5
24						7.0						
25					2.0			17.0	23.0			
26	16.0						12.0			29.0		
27		7.0						17.0			27.0	
28			.0						24.0			18.0
29	14.0					8.0				29.0		
30							13.0				26.0	
31												
MAX												
MIN												

06807000 MISSOURI RIVER AT NEBRASKA CITY, NE

LOCATION.--Lat 40°40'55", long 95°50'48", in NW¹/4 NE¹/4 sec.9, T.8 N., R.14 E., Otoe County, Hydrologic Unit 10240001, on right bank 1.0 mi upstream from Highway 2 Bridge at Nebraska City, and at mile 562.6.

DRAINAGE AREA.--410,000 mi², approximately. The 3,959 mi² in Great Divide basin are not included.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--August 1929 to current year. Gage-height records collected in this vicinity from August 1878 to December 1899 are contained in reports of Missouri River Commission.

REVISED RECORDS .-- WSP 761: Drainage area.

(WY)

GAGE.--Water-stage recorder. Datum of gage is 905.36 ft above sea level, supplementary adjustment of 1954. See WSP 1918 or 1919 for history of changes prior to Apr. 1, 1963.

REMARKS.--Records good. Flow regulated by upstream main-stem reservoirs. Fort Randall Dam was completed in July 1952, with storage beginning in December 1952. Gavins Point Dam was completed in July 1955, with storage beginning in December 1955. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 414,000 ft³/s Apr. 19, 1952; maximum gage height, 27.66 ft Apr. 18, 1952; minimum discharge, 1,600 ft³/s Dec. 31, 1946 (discharge measurement); minimum gage height observed, -0.28 ft Dec. 24, 1960, result of freezeup.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY OCT SEP NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 55200 ____ ---___ ___ TOTAL 1339600 MEAN MAX MTN AC-FT 2657000 .11 .11 .10 CFSM .14 .09 .11 .14 .15 .18 .16 .14 .13 TN. .12 .16 .13 .10 .11 .13 .16 .17 .20 .18 .16 .15 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1953 - 1999, BY WATER YEAR (WY) MEAN MAX (WY) MIN

06807000 MISSOURI RIVER AT NEBRASKA CITY, NE--Continued

DAILY MEAN DISCHARGE, IN CUBIC FEET PER SECOND

06807000 MISSOURI RIVER AT NEBRASKA CITY, NE.--Continued

WATER-OUALITY RECORDS

LOCATION.--Water quality samples were collected from Highway 2 bridge, 2.0 miles downstream of gage.

PERIOD OF RECORD. -- May 1951 to current year. Daily sediment loads August 1957 to September 1971 in reports of U.S. Army Corps of Engineers.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: May 1951 to December 1977, October 1991 to current year. WATER TEMPERATURES: May 1951 to December 1977, October 1991 to current year. SUSPENDED SEDIMENT DISCHARGE: October 1971 to September 1976, October 1991 to current year.

REMARKS. -- Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: Maximum daily, 994 microsiemens Dec. 17, 1962; minimum daily, 273 microsiemens June 17, 1964. WATER TEMPERATURES: Maximum daily, 31°C July 26, 1977, and July 25, 1997; minimum daily, 0.0°C on many days during winter periods. SEDIMENT CONCENTRATIONS: Maximum daily mean, 8,420 mg/L Aug. 7, 1996; minimum daily mean, 115 mg/L Jan. 3, 1993. SEDIMENT LOADS: Maximum daily, 3,120,000 tons June 24, 1996; minimum daily, 4,050 tons Jan. 17, 1972.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 922 microsiemens July 19; minimum daily, 618 microsiemens July 1. WATER TEMPERATURES: Maximum daily, 30.0°C July 29; minimum daily, 1.0°C Jan. 21. SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,750 mg/L Apr. 16; minimum daily, 220 mg/L Mar. 1. SEDIMENT LOADS: Maximum daily, 729,000 tons June 29; minimum daily, 20,400 tons Dec. 25.

DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	NUMBER OF SAM- PLING POINTS (COUNT) (00063)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
OCT 05 13 20 26	1215 1245 1320 1215	17.0 17.0 15.4 14.5	16.0 27.0 15.0 18.0	45300 40900 43000 44800	3 	 627 639 740
03 09 16 24 30	1240 1230 1135 1300 1120	11.0 9.2 7.0 6.5 9.0	4.0 7.5 8.0 15.5 9.0	55700 54500 59700 60400 59100	 3 	756 762 760 778 820
07 15 29	1230 1145 1400	9.3 4.7 .0	5.0 5.8 -7.0	52200 47100 34000	3 	819 828 788
21	1235	1.0	3.0	37000		813
04 09 17	1250 1330 1305	2.1 3.5 3.3	12.0 17.0 3.0	40300 46900 43000	 3 	759 720 752
01 11 18 26 30	1120 1135 1110 1115 1230	4.0 3.0 6.0 8.0 10.5	9.0 2.0 7.0 8.0 22.0	43400 44800 44000 45300 46400	 3 	790 786 801 797 809
APR 06 16 19 26	1220 1115 1330 1250	10.5 9.0 11.0 12.0	12.0 4.0 21.5 15.0	52500 89000 59700 52300	3 	743 690 792 847
04 11 18 25	1015 1045 1215 1205	14.5 16.0 18.0 19.0	17.5 15.0 20.0 20.0	53000 58900 68400 66300	3 	846 774 831 795
01 08 14 22 29	1350 0830 1315 1210 1220	15.0 21.5 21.0 23.0	18.0 19.0 21.0 22.0	64200 72000 67800 62700 104000	3 	834 773 847 580
06 13 19 27	1140 1320 1250 1210	21.5 25.0 27.0 29.5	27.0 25.0 26.0 28.0	75100 58800 56000 58500	3 	760 866 886 831
AUG 02 10 17 26 30	1220 1030 1115 0950 1040	27.0 25.5 24.0 25.5 25.0	24.5 24.5 28.0 26.0 25.0	51500 60400 56200 52900 54500	3 	872 725 844 850 846
08 13 20 28	1110 1200 1405 1220	24.0 21.0 18.5 19.0	21.0 19.5 16.5 15.5	55500 54500 53500 55700	3 	812 780 810 764

06807000 MISSOURI RIVER AT NEBRASKA CITY, NE.--Continued

WATER-OUALITY D	DATA, WATE	R YEAR	OCTOBER	1998	TO	SEPTEMBER	1999

DATE	TIME	NUMBER OF SAM- PLING POINTS (COUNT) (00063)	BED MAT. SIEVE DIAM. % FINER THAN .062 MM (80164)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)
OCT											
05 NOV	1215	3	0	1	20	68	90	97	99	100	
09	1230	3	0	1	28	52	78	92	98	100	
07	1230	3	0	1	31	99	100				
09	1330	3		0	13	61	85	94	98	100	
11	1135	3		0	20	65	90	98	99	100	
06	1220	3	0	1	30	63	76	89	96	100	
04	1015	3		0	14	54	85	98	100		
01	1350	3		0	9	44	74	90	97	100	
06	1140	3	0	1	17	50	76	93	99	100	
02	1220	3		0	11	50	82	94	96	96	100
08	1110	3		0	9	52	81	93	99	100	

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1						778	790		831	618		
2	766										888	
3		785							703			847
4			812					851				
5	713										904	
б		769					747	826		773		
7			825									
8							740					822
9	739				735					879		
10									854		758	811
11						785		794				
12											807	
13	766	724					813	816		897		793
14									784			
15			839							916		
16	778	758					675					
17					750				847		855	810
18						781		834				
19		779					790			922	862	
20	764							826				820
21				823								
22							781		865			
23	787									866		817
24		799				788						
25								831	848		865	
26	767					786	851				870	
27		813						834		855		
28												804
29	757								652	821		
30		810				801	850					806
31												

06807000 MISSOURI RIVER AT NEBRASKA CITY, NE.--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY INSTANTANEOUS VALUES $% \left(\left({{{\left({{D_{\rm{s}}} \right)} \right)}} \right)$

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1						4.0	10.5		15.0	21.5		
2	19.0										28.0	
3		12.0							19.5			27.0
4			9.5					16.0				
5	17.0										27.0	
б		9.0					9.0	14.5		26.0		
7			7.0									
8							12.5					24.0
9	17.0				3.5					26.0		
10									24.5		25.5	23.0
11						3.0		16.0				
12											26.0	
13	17.0						8.5	17.0		25.0		23.0
14									21.5			
15			4.5							26.0		
16	16.5	7.0					9.0					
17					3.5				11.5		25.0	19.0
18						6.0						
19		7.0					11.0			27.0	25.0	
20	15.5							17.0				18.5
21				1.0								
22							13.5		21.0			
23	14.0									28.0		18.5
24		6.5				7.0						
25								19.0	24.0		25.5	
26	14.5					8.0	12.0				25.5	
27		7.0						17.0		29.5		
28												19.0
29	16.5								23.0	30.0		
30		9.0				10.5	12.0					18.0
31												

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

	MEAN		MEAN		MEAN		MEAN		MEAN		MEAN	
	CONCEN-	LOAD	CONCEN-	LOAD	CONCEN-	LOAD	CONCEN-	LOAD	CONCEN-	LOAD	CONCEN-	LOAD
	TRATION	(TONS/	TRATION	(TONS/	TRATION	(TONS/	TRATION	(TONS/	TRATION	(TONS/	TRATION	(TONS/
DAY	(MG/L)	DAY)	(MG/L)	DAY)	(MG/L)	DAY)	(MG/L)	DAY)	(MG/L)	DAY)	(MG/L)	DAY)
	OCTO	DBER	NOVEME	ER	DECEMB	ER	JANUA	RY	FEBRUA	RY	MARC	CH .
1	325	35100	455	64200	366	57900	255	23800	347	34600	220	25800
2	289	31700	453	65600	360	56500	256	24000	354	35700	223	26400
3	448	50700	450	67300	354	54900	257	23800	362	37300	228	27900
4	728	82200	444	65900	352	54200	258	23400	369	40200	234	28600
5	1070	130000	438	64300	378	56400	259	22300	377	43000	239	29600
6	911	110000	434	62800	409	59000	260	22900	385	46000	244	30600
7	704	83700	439	63500	433	61000	261	23400	393	49000	250	31000
8	544	60800	447	65600	408	55800	262	24400	401	50500	256	31200
9	431	46300	454	67000	378	50300	263	23800	409	51600	261	32000
10	384	41200	510	77200	350	46000	264	23600	410	50500	267	32200
11	347	37200	705	118000	324	42000	265	23600	410	49900	274	33000
12	313	34500	743	123000	300	38700	266	23900	410	49500	284	34100
13	290	32000	690	109000	277	35500	267	24400	410	48900	296	34900
14	310	34300	551	86200	256	32800	268	25000	410	47500	307	36000
15	339	37300	426	67300	240	30500	270	24900	410	47500	320	36800
16	363	40400	342	55200	239	30200	271	24800	410	48300	332	38800
17	352	40100	347	57100	240	30400	272	25900	407	47400	345	41000
18	337	38700	366	60200	241	30300	273	27500	389	45200	357	42500
19	322	37200	386	63900	242	30300	274	28300	369	42900	359	43700
20	314	36500	412	68200	243	30000	275	27700	350	40400	361	44600
21	341	39500	440	72800	244	28700	277	27500	332	37900	362	43900
22	378	44000	470	77500	245	25900	282	27900	315	35600	363	43600
23	408	48300	502	83200	246	23200	288	28600	298	33700	365	45900
24	396	47600	524	85400	247	21100	294	29400	283	30900	352	44600
25	380	45800	482	78000	248	20400	300	30200	268	29600	291	36400
26	371	45000	435	69900	249	20500	306	31500	255	28700	247	30300
27	397	49100	398	64000	250	21300	313	32000	242	27700	262	32100
28	430	54100	387	61600	251	22300	319	32700	229	26500	285	35200
29	459	59600	380	60500	252	23000	326	33100			310	37900
30	460	61900	373	59500	253	23300	333	33400			331	41200
31	457	64000			254	23100	340	34000			316	38800
TOTA	L	1598800		2183900		1135500		831700		1156500		1110600

06807000 MISSOURI RIVER AT NEBRASKA CITY, NE.--Continued

SUSPENDED-SEDIMENT,	WATER	YEAR	OCTOBER	1998	TO	SEPTEMBER	1999

DAY	MEAN CONC TRAT (MG/	LOAD (TONS/ DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS/ DAY)	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS/ DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS/ DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS/ DAY)
	А	PRIL	Μ	IAY	JU	NE	JU	ILY	AU	GUST	SEPI	EMBER
1 2 3 4 5 6 7	308 338 375 416 462 502 484	38600 42900 49000 53500 61400 70800 68900	556 554 552 557 591 654 818	78600 77600 78800 80500 87800 98100 130000	738 1200 1840 1540 1460 1810 1460	129000 249000 426000 312000 302000 413000 306000	2520 2160 1820 1540 1300 1080 784	627000 466000 390000 226000 216000 151000	344 357 359 361 360 358 460	49100 49600 49400 49400 48400 47600 88800	413 420 426 429 462 434 361	62400 62400 62800 63000 71100 67000 54100
8 9 10	469 540 645	68500 85500 104000	889 871 853	141000 137000 135000	1080 807 623	209000 147000 112000	559 412 399	104000 76400 75800	681 659 592	157000 128000 96200	313 332 356	46600 49500 53300
11 12 13 14 15	770 920 1120 1550 2180	128000 148000 178000 255000 464000	832 800 773 787 809	132000 128000 121000 122000 130000	648 1250 1370 1300 1020	120000 259000 271000 237000 176000	407 415 421 412 397	72400 69500 67200 63200 59800	518 458 428 401 376	79800 72800 68300 63000 57400	344 325 310 307 306	51500 48200 45500 44800 44600
16 17 18 19 20	2750 2080 1460 1100 1340	655000 449000 266000 179000 207000	831 854 850 709 628	147000 156000 156000 128000 107000	776 615 587 573 559	139000 112000 107000 105000 99600	372 347 324 310 345	54900 51100 47900 46700 53500	353 339 365 392 392	53400 51600 56000 60100 58400	304 308 346 395 441	44200 44100 49600 56900 63900
21 22 23 24 25	1780 2140 2460 1740 1070	271000 364000 447000 288000 158000	786 760 711 732 740	137000 135000 132000 134000 133000	546 539 566 600 624	93600 92000 99800 105000 108000	394 450 495 461 419	62600 73500 83800 77600 67900	388 384 380 376 372	57500 57000 56200 55000 54400	426 402 376 339 303	61200 58100 54300 49100 43900
26 27 28 29 30 31	696 632 605 579 559	99000 96000 95800 90200 83000	632 546 563 594 626 661	112000 93000 93400 96700 102000 114000	607 785 1530 2660 2710	103000 154000 397000 729000 645000	381 348 324 308 318 331	60800 54900 50500 46600 46900 48100	376 382 388 394 400 406	53800 53700 55300 57000 58900 61300	264 230 325 404 383 	38400 33500 47100 58500 54500
TOTAL		5564100		3653500		6757000		3959600		2004400		1584100
1 EAR		31539/00										

NI

WATER YEAR

Gaging Stations

06807410	West Nishnabotna River at Hancock, IA
06808500	West Nishnabotna River at Randolph, IA
06809210	East Nishnabotna River near Atlantic, IA
06809500	East Nishnabotna River at Red Oak, IA
06810000	Nishnabotna River above Hamburg, IA
06813500	Missouri River at Rulo, NE (not plotted on map)
06817000	Nodaway River at Clarinda, IA

Crest Stage Gaging Stations

0680737930	Elm Creek near Jacksonville, IA		•	•	•		•	•	•	•	•	•	148
06807470	Indian Creek near Emerson, IA			•	•		•	•	•	•	•	•	148
06807760	Middle Silver Creek near Oakland, IA			•	•		•	•	•	•	•	•	148
06808880	Bluegrass Creek at Audubon, IA			•	•		•	•	•	•	•	•	148
06811760	Tarkio River near Elliott, IA			•	•		•	•	•	•	•	•	148
06811800	East Tarkio Creek near Stanton, IA .			•	•		•	•	•	•	•	•	148
06811820	Tarkio River Tributary near Stanton,	IA.		•	•		•	•	•	•	•	•	149
06811875	Snake Creek near Yorktown, IA			•	•		•	•	•	•	•	•	149
06816290	West Nodaway River at Massena, IA			•	•		•	•	•	•	•	•	149

NISHNABOTNA RIVER BASIN

06807410 WEST NISHNABOTNA RIVER AT HANCOCK, IA

LOCATION.--Lat 41°23'24",long 95°22'17",in NW¹/4 NE¹/4 sec.18, T.76 N., R.39 W., Pottawattamie County, Hydrologic Unit 10240002, on right bank at upstream side of bridge on county highway G30, 0.6 mi west of Hancock school, 3.0 mi downstream from Jim Creek, 59.6 mi upstream from confluence with East Nishnabotna River, and at mile 75.1 mi upstream from mouth of Nishnabotna River.

DRAINAGE AREA.--609 mi².

PERIOD OF RECORD. -- October 1959 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,085.83 ft above sea level. Prior to Sept. 15, 1980, on downstream end of right pier at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	210	232	212	e125	e202	208	261	1100	709	948	459	287
2	230	244	215	e118	e240	241	255	1030	688	1180	442	288
3	281	246	216	e112	e290	269	295	980	650	3880	440	275
4	284	231	214	e105	398	253	409	949	690	1310	438	288
5	318	226	215	e140	405	241	468	935	1540	1070	423	334
6	327	221	208	e170	326	226	1700	896	856	1030	426	288
7	256	224	205	e160	310	215	1080	853	792	874	896	272
8	234	232	206	e150	270	211	942	789	708	824	612	284
9	226	231	208	e142	263	198	1780	743	778	3150	483	261
10	224	255	207	e155	245	270	1110	715	1100	1390	455	246
11	222	282	205	e180	244	246	959	701	1250	1040	449	244
12	216	259	211	e160	214	242	829	707	863	938	1550	243
13	214	253	209	e129	196	242	780	671	810	868	917	238
14	214	251	206	e152	214	241	847	637	749	812	569	232
15	213	244	205	e175	213	248	1400	642	729	764	511	229
16	223	241	202	e210	196	290	1610	1390	819	725	491	226
17	257	237	199	e200	178	380	1330	1510	791	716	453	223
18	241	237	204	e185	186	405	1190	1050	740	726	453	221
19	219	241	196	e170	180	346	1100	920	711	883	471	220
20	211	238	178	e185	e178	328	1010	888	690	849	422	217
21	211	232	e140	e200	e173	316	975	1180	669	855	400	211
22	209	233	e110	e190	e162	304	2830	992	664	677	385	210
23	207	228	e140	e200	e157	293	1840	1010	960	628	373	209
24	208	222	e112	e210	e184	285	1410	908	746	601	358	206
25	208	225	e118	e180	196	274	1250	845	665	572	346	200
26 27 28 29 30 31	210 217 268 278 284 240	221 220 221 225 222 	e122 e130 e150 e145 e132 e120	e190 e195 e192 e190 e195 e198	192 198 202 	269 273 282 273 264 258	1150 1770 1690 1340 1190	799 765 737 715 708 724	632 1830 2070 1100 983	568 553 530 509 490 483	338 330 320 311 302 292	197 199 197 192 192
TOTAL	7360	7074	5540	5263	6412	8391	34800	27489	26982	30443	15115	7129
MEAN	237	236	179	170	229	271	1160	887	899	982	488	238
MAX	327	282	216	210	405	405	2830	1510	2070	3880	1550	334
MIN	207	220	110	105	157	198	255	637	632	483	292	192
AC-FT	14600	14030	10990	10440	12720	16640	69030	54520	53520	60380	29980	14140
CFSM	.39	.39	.29	.28	.38	.44	1.90	1.46	1.48	1.61	.80	.39
IN.	.45	.43	.34	.32	.39	.51	2.13	1.68	1.65	1.86	.92	.44
STATIST	TICS OF M	ONTHLY MEA	AN DATA	FOR WATER	YEARS 1960	- 1999	, BY WATE	R YEAR (WY)				
MEAN	197	186	161	126	285	533	444	516	617	437	253	304
MAX	998	910	628	625	993	1946	1295	1586	2228	2925	1073	2412
(WY)	1987	1973	1973	1973	1983	1979	1983	1973	1998	1993	1996	1972
MIN	35.3	32.1	17.9	4.58	27.2	40.3	45.6	30.1	26.7	38.4	26.4	14.7
(WY)	1972	1971	1971	1971	1967	1968	1968	1967	1977	1970	1968	1971
SUMMARY	STATIST	ICS	FOR	1998 CALI	ENDAR YEAR	1	FOR 1999	WATER YEAR		WATER YE	ARS 1960	- 1999
ANNUAL ANNUAL HIGHEST LOWEST ANNUAL INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC 90 PERC	TOTAL MEAN ANNUAL M DAILY ME SEVEN-DA CANEOUS P RUNOFF (RUNOFF (RUNOFF (RUNOFF (RUNOFF (ENT EXCE DENT EXCE	MEAN EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) CFSM) INCHES) EDS EDS EDS EDS		231704 635 8210 75 86 459600 1.1 14.2 1090 379 137	Jun 11 Jan 13 Jan 12 04 15		181998 499 3880 105 122 7260 12. 361000 11. 1040 273 185	Jul 3 Jan 4 Dec 30 Jul 3 18 Jul 3 82 12		338 966 42.4 23300 2.2 2.5 30100 23.52 244900 .56 7.54 750 167 36	Sep 1 Feb Feb Jul 1 Jul 1	1993 1968 2 1972 8 1971a 4 1971 0 1993 0 1993

a Also Feb 9, 1971

e Estimated

06807410 WEST NISHNABOTNA RIVER AT HANCOCK, IA--Continued

NISHNABOTNA RIVER BASIN

06808500 WEST NISHNABOTNA RIVER AT RANDOLPH, IA

LOCATION.--Lat 40°52'23", long 95°34'48", in NE¹/4 NE¹/4 sec.17, T.70 N., R.41 W., Fremont County, Hydrologic Unit 10240002, on right bank at upstream side of bridge on State Highway 184, 0.3 mi downstream from Deer Creek, 0.5 mi west of Randolph, and 16.0 mi upstream from confluence with East Nishnabotna River, and at mile 31.5 upstream from mouth of Nishnabotna River.

DRAINAGE AREA.--1,326 mi².

PERIOD OF RECORD. -- June 1948 to current year.

REVISED RECORDS.--WSP 1440: Drainage area. WDR IA-74-1: 1973 (M). WDR IA-76-1: 1975 (P).

GAGE.--Water-stage recorder. Datum of gage is 932.99 ft above sea level, unadjusted. Prior to Aug. 26, 1955, nonrecording gage with supplementary water-stage recorder operating above 8.4 ft. June 30, 1949 to Aug. 25, 1955 at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey satellite data collection platform and rain gage at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1947 reached a stage of about 24 ft, discharge not determined, from information by local residents.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	450	628	639	e290	528	565	574	2570	2030	4190	975	889
2	488	708	631	e270	545	582	559	2430	1930	2420	944	866
3	566	783	636	e260	562	610	573	2330	1820	3980	936	848
4	596	741	636	e250	589	630	601	2250	1750	3190	920	852
5	695	679	634	e320	628	610	985	2250	1860	2290	890	979
6	656	647	628	e380	735	591	2120	2150	2340	3480	856	931
7	631	653	610	e360	663	566	2570	2090	1890	2230	15000	836
8	559	707	599	e340	635	577	1790	1990	1720	1980	21800	1480
9	534	697	596	e320	588	570	2080	1890	1610	2470	4040	958
10	523	752	594	e360	569	552	2380	1840	1740	3910	2400	821
11	509	760	592	e400	561	595	1710	1790	2490	2230	1980	773
12	506	762	592	e360	537	582	1520	1780	2110	1990	2130	752
13	502	764	598	e320	494	561	1400	1740	2690	1870	2870	726
14	499	760	598	e340	484	557	1560	1670	2020	1740	1980	703
15	508	707	589	e380	498	564	4540	1700	1770	1670	1660	684
16	515	700	582	e480	492	591	3970	2050	1780	1610	1540	667
17	614	677	578	e460	466	645	3360	10600	1770	1610	1460	655
18	607	e665	573	e420	450	692	2890	3760	1690	1570	1610	640
19	567	663	568	e400	446	727	2570	2780	1630	1560	1470	631
20	549	657	530	e500	451	680	2360	2790	1590	2360	1350	651
21	550	658	e410	e600	446	653	2200	5100	1550	1680	1270	622
22	553	661	e310	e525	441	648	4430	3110	1550	1500	1210	600
23	557	657	e410	e550	415	642	4320	3250	3220	1330	1160	589
24	563	651	e340	e600	421	625	3010	2690	2170	1270	1120	580
25	571	646	e300	e500	445	608	2700	2430	1770	1200	1080	565
26 27 28 29 30 31	576 586 606 643 656 662	644 641 646 657 657	e320 e340 e370 e340 e300 e260	e600 e650 e575 530 524 519	485 523 561 	596 594 608 603 593 584	2520 3760 3980 3160 2780	2260 2130 2020 1940 1890 2500	1640 2990 4700 2700 2420	1170 1170 1150 1080 1040 1010	1050 1020 994 971 951 924	548 566 558 530 521
TOTAL MEAN MAX MIN AC-FT CFSM IN	17597 568 695 450 34900 .43	20628 688 783 628 40920 .52 58	15703 507 639 260 31150 .38	13383 432 650 250 26550 .33 38	14658 524 735 415 29070 .39	18801 606 727 552 37290 .46	72972 2432 4540 559 144700 1.83 2.05	81770 2638 10600 1670 162200 1.99 2.29	62940 2098 4700 1550 124800 1.58 1.77	61950 1998 4190 1010 122900 1.51 1.74	78561 2534 21800 856 155800 1.91 2 20	22021 734 1480 521 43680 .55 62
STATIST	FICS OF	MONTHLY ME	AN DATA	FOR WATER	YEARS 194	.55 9 - 1999,	BY WATER	R YEAR (W	1.// Y)	1.71	2.20	.02
MEAN	387	356	307	272	554	966	826	1068	1278	905	609	544
MAX	2002	1277	1140	1201	1777	3877	2867	3227	5031	6357	2610	2531
(WY)	1987	1973	1973	1973	1973	1979	1973	1973	1998	1993	1993	1972
MIN	27.1	33.6	20.6	17.4	19.4	67.8	42.7	97.3	65.6	71.2	30.1	41.0
(WY)	1956	1956	1956	1956	1956	1956	1956	1967	1956	1954	1955	1955

06808500 WEST NISHNABOTNA RIVER AT RANDOLPH, IA--Continued

SUMMARY STATISTICS	FOR 1998 CALEND	DAR YE	AR	FOR 1999 WAT	FER YE	lar	WATER YEARS	3 1949) _	1999
ANNUAL TOTAL	564985			480984						
ANNUAL MEAN	1548			1318			673			
HIGHEST ANNUAL MEAN							1985			1993
LOWEST ANNUAL MEAN							111			1968
HIGHEST DAILY MEAN	25800	Jun	15	21800	Aug	8	25800	Jun	15	1998
LOWEST DAILY MEAN	206	Jan	4	250	Jan	4	10	Dec	17	1955a
ANNUAL SEVEN-DAY MINIMUM	233	Jan	10	279	Dec	30	11	Dec	16	1955
INSTANTANEOUS PEAK FLOW				29300	Aug	8	40800	May	26	1987
INSTANTANEOUS PEAK STAGE				23.36	Aug	8	24.80	Mar	5	1949b
ANNUAL RUNOFF (AC-FT)	1121000			954000			487300			
ANNUAL RUNOFF (CFSM)	1.17			.99			.51			
ANNUAL RUNOFF (INCHES)	15.85			13.49			6.89			
10 PERCENT EXCEEDS	3170			2570			1460			
50 PERCENT EXCEEDS	888			677			350			
90 PERCENT EXCEEDS	416			451			90			

a b e

Also Dec 18-21, 1955 From graph based on gage readings, backwater from ice Estimated

WATER YEAR

NISHNABOTNA RIVER BASIN

06809210 EAST NISHNABOTNA RIVER NEAR ATLANTIC, IA

LOCATION.--Lat 41°20'46", long 95°04'36", in NW¹/4 NW¹/4 sec.35, T.76 N., R.37 W., Cass County, Hydrologic Unit 10240003, on left bank at downstream side of bridge on county highway, 1.6 mi upstream from Turkey Creek, 5.2 mi southwest of junction of U.S. Highway 6 and State Highway 83 in Atlantic, 69.1 mi upstream from confluence with West Nishnabotna River, and at mile 84.6 upstream from mouth of Nishnabotna River.

DRAINAGE AREA.--436 mi².

PERIOD OF RECORD. -- October 1960 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,105.83 ft above sea level. Prior to Oct. 1, 1970, at site 2.2 mi upstream at datum 5.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 2, 1958 reached a stage of 22.49 ft, from floodmark, discharge, 34,200 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	121	169	162	e92	e150	269	214	827	652	919	372	160
2	144	191	164	e90	e200	357	206	780	616	990	336	159
3	185	204	162	e85	e300	405	240	735	582	2660	327	155
4	190	185	159	e80	283	348	249	716	782	980	314	163
5	226	172	157	e85	283	314	841	705	1570	899	296	179
6	220	170	153	e95	287	284	2250	665	785	4310	298	173
7	169	177	147	e120	248	260	1080	643	1420	1170	481	168
8	152	193	147	e115	239	252	1070	610	725	888	376	200
9	146	197	148	e105	242	235	2080	575	938	5600	300	167
10	141	265	e145	e100	223	329	1100	560	3200	1790	270	147
11	136	351	e145	e115	237	251	926	551	1880	1120	268	146
12	128	287	e150	e130	194	240	772	616	1050	950	646	141
13	125	267	e145	e100	186	237	721	583	901	844	523	135
14	125	257	e140	e105	202	238	769	542	805	767	320	129
15	124	231	e140	e115	205	252	2050	540	737	708	284	126
16	138	221	e140	e130	179	346	2080	1430	781	667	272	124
17	173	214	e138	e150	161	502	1450	4470	698	654	265	124
18	156	210	139	e140	175	428	1170	1960	646	622	276	123
19	137	196	126	e135	168	345	1030	1240	612	624	320	119
20	131	190	109	e120	186	318	916	1080	588	647	251	119
21	130	192	e95	e130	164	291	846	4170	563	575	232	114
22	125	193	e80	e150	162	267	1730	1720	580	542	218	113
23	121	188	e100	e140	149	255	1270	1500	3830	517	209	112
24	120	185	e80	e150	194	245	1010	1150	1360	508	203	109
25	120	184	e85	e140	186	235	908	1010	944	484	195	107
26 27 28 29 30 31	120 120 145 411 260 182	178 174 173 175 169	e90 e100 e110 e105 e95 e85	e130 e140 e150 e140 e140 e145	197 208 241 	232 235 235 220 212 211	846 1440 1330 1030 900	890 829 769 713 684 688	806 2080 2060 1070 941 	478 464 443 422 394 380	195 189 180 176 173 164	103 110 108 99 97
TOTAL	4921	6158	3941	3762	5849	8848	32524	33951	34202	33016	8929	4029
MEAN	159	205	127	121	209	285	1084	1095	1140	1065	288	134
MAX	411	351	164	150	300	502	2250	4470	3830	5600	646	200
MIN	120	169	80	80	149	211	206	540	563	380	164	97
AC-FT	9760	12210	7820	7460	11600	17550	64510	67340	67840	65490	17710	7990
CFSM	.36	.47	.29	.28	.48	.65	2.49	2.51	2.61	2.44	.66	.31
IN.	.42	.53	.34	.32	.50	.75	2.77	2.90	2.92	2.82	.76	.34
STATIST	ICS OF	MONTHLY MEAN	I DATA H	FOR WATER	YEARS 1961	- 1999,	BY WATER	YEAR (WY)				
MEAN	146	139	114	93.3	210	414	385	431	530	364	184	219
MAX	1069	757	529	529	812	1378	1138	1208	3125	2747	1394	1855
(WY)	1987	1973	1993	1973	1971	1965	1973	1986	1998	1993	1993	1972
MIN	21.0	20.3	10.6	7.68	18.7	28.4	27.9	15.0	23.5	15.6	13.4	14.8
(WY)	1967	1969	1964	1971	1968	1968	1981	1967	1977	1968	1968	1971
SUMMARY	STATIS	TICS	FOR	1998 CALE	NDAR YEAR	F	OR 1999 W	ATER YEAR		WATER YE	ARS 1961	- 1999
ANNUAL 1 ANNUAL 1 HIGHEST LOWEST 1 ANNUAL 1 INSTANT ANNUAL 1 ANNUAL 1 10 PERC: 50 PERC	TOTAL MEAN ANNUAL DAILY DAILY DAILY MSEVEN-D ANEOUS ANEOUS RUNOFF RUNOFF RUNOFF ENT EXC	MEAN MEAN EAN AY MINIMUM PEAK FLOW PEAK STAGE (AC-FT) (CFSM) (INCHES) EEDS EEDS		236970 649 32300 70 80 470000 1.4 20.2 1060 300	Jun 15 Jan 13 Jan 9 9 2		180130 494 5600 80 87 11300 14.1; 357300 1.1; 15.3; 1070 235	Jul 9 Dec 22a Dec 30 Jul 9 8 Jul 9 3 7		269 842 23.7 32300 2.5 7.0 41400 22.81 194800 .62 8.38 591 113	Jun 1 Jul 1 Dec 1 Jun 1 Sep 1	1993 1968 5 1998 0 1977 7 1963 5 1998 2 1972
50 PERC 90 PERC	ENT EXC ENT EXC	EEDS EEDS		300 116			235 119			113 24		

a Also Dec 24 and Jan 4

e Estimated

06809500 EAST NISHNABOTNA RIVER AT RED OAK, IA

LOCATION.--Lat 41°00'31", long 95°14'29", in NW¹/₄ SE¹/₄ sec.29, T.72 N., R.38 W., Montgomery County, Hydrologic Unit 10240003, on upstream side of Coolbaugh Street and 200 ft left of left end of Coolbaugh Street bridge in Red Oak, 0.2 mi upstream from Red Oak Creek, 38.0 mi upstream from confluence with West Nishnabotna River, and at mile 53.6 upstream from mouth of Nishnabotna River.

DRAINAGE AREA.--894 mi².

PERIOD OF RECORD.--May 1918 to November 1924, February 1925 to July 1925, May 1936 to current year. Monthly discharge only for some periods, published in WSP 1310.

REVISED RECORDS.--WSP 1240: 1921, 1922-23 (M), 1924, 1942 (M), 1944 (M), 1946. WSP 1440: Drainage area. WSP 1710: 1957.

GAGE.--Water-stage recorder. Datum of gage is 1,005.45 ft above sea level. Prior to July 5, 1925, nonrecording gage at present site at datum 4.60 ft higher. May 29, 1936 to Nov. 13, 1952, nonrecording gage with supplementary water-stage recorder in operation above 3.2 ft gage height. July 30, 1939 to Nov. 13, 1952, and Nov. 14, 1952 to June 13, 1966, water-stage recorder, all at site 0.5 mi upstream at datum 5.00 ft higher. June 14, 1966 to Sept. 30, 1969, at present site at datum 5.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	215	309	306	e130	e270	394	397	e1660	1540	2620	660	325
2	232	328	301	e160	e290	428	398	e1540	e1400	1810	630	317
3	275	368	305	e150	e320	529	404	e1450	e1350	3790	614	312
4	335	356	304	e142	e360	515	438	e1380	1390	2080	607	328
5	362	323	302	e170	e420	480	655	e1370	2140	1650	585	351
6	419	306	299	e190	447	453	3550	e1310	1590	6110	562	337
7	371	310	291	e175	384	420	2060	e1240	2400	2930	7000	324
8	330	326	284	e168	326	420	1640	e1180	e1650	1930	1770	582
9	312	338	283	e160	320	386	3700	e1150	e1300	7280	959	378
10	305	372	281	e178	309	433	2190	e1120	4080	4640	762	319
11	299	459	277	e200	305	453	1740	e1110	3590	2480	705	298
12	293	467	277	e170	303	408	1450	e1090	e2200	2000	789	289
13	285	421	279	e152	e250	398	1260	e1080	e1800	1750	1280	278
14	284	406	277	e178	264	391	1370	1050	e1700	1580	733	269
15	284	396	274	e210	280	396	3820	1050	e1500	1450	633	265
16	287	376	273	e240	277	432	4600	2140	1420	1340	593	261
17	335	364	269	e220	252	565	3100	12300	1350	1280	572	257
18	351	e356	269	e215	242	683	2370	5600	1220	1220	589	255
19	323	350	269	e200	262	568	2030	3170	1150	1150	583	255
20	300	338	e130	e220	250	519	1820	2670	1100	1320	556	259
21	290	331	e170	e230	259	499	1630	9880	1050	1120	504	251
22	287	335	e160	e222	261	484	2750	e5500	1050	1020	475	245
23	285	333	e140	e230	e230	468	3080	e3400	4580	957	454	244
24	283	323	e130	e240	263	457	2060	e2800	3490	916	436	241
25	284	320	e140	e190	308	442	1810	2220	1920	875	419	236
26 27 28 29 30 31	282 283 289 349 529 372	318 311 310 313 315 	e150 e160 e170 e160 e150 e140	e215 e216 e216 e210 e230 e250	307 339 364 	428 423 426 422 406 400	1700 2240 3100 e2140 e1840	1960 1770 1630 1520 1610 1730	1590 3120 5330 2360 1980	833 829 796 749 709 674	405 396 378 362 350 339	235 246 243 234 228
TOTAL	9730	10478	7220	6077	8462	14126	61342	78680	62340	59888	25700	8662
MEAN	314	349	233	196	302	456	2045	2538	2078	1932	829	289
MAX	529	467	306	250	447	683	4600	12300	5330	7280	7000	582
MIN	215	306	130	130	230	386	397	1050	1050	674	339	228
AC-FT	19300	20780	14320	12050	16780	28020	121700	156100	123700	118800	50980	17180
CFSM	.35	.39	.26	.22	.34	.51	2.29	2.84	2.32	2.16	.93	.32
IN	40	44	30	25	35	59	2.55	3 27	2 59	2 49	1 07	36
STATIST	TICS OF	MONTHLY ME	EAN DATA	FOR WATER	YEARS 191	.9 - 1999,	BY WATE	R YEAR (W	2105 Y)	2119	1.07	.50
MEAN	229	218	172	160	372	683	590	729	925	582	366	366
MAX	1816	1335	1038	1078	1438	2596	2194	2538	5330	6971	2821	3074
(WY)	1987	1973	1993	1973	1973	1965	1973	1999	1998	1993	1993	1972
MIN	16.5	19.9	14.6	12.3	17.2	32.3	30.4	35.2	40.5	24.5	17.0	14.9
(WY)	1938	1940	1938	1940	1940	1938	1956	1939	1968	1936	1936	1937

122

06809500 EAST NISHNABOTNA RIVER AT RED OAK, IA--Continued

SUMMARY STATISTICS	FOR 1998 CALEND	AR YEAR	FOR 1999 WA	TER YEAR	WATER YEARS	1919 -	- 1999
ANNUAL TOTAL	431850		352705				
ANNUAL MEAN	1183		966		453		
HIGHEST ANNUAL MEAN					1842		1993
LOWEST ANNUAL MEAN					54.9		1968
HIGHEST DAILY MEAN	45100	Jun 15	12300	May 17	45100	Jun 1	5 1998
LOWEST DAILY MEAN	130	Dec 20	130	Dec 20	6.0	Aug 18	3 1936
ANNUAL SEVEN-DAY MINIMUM	146	Dec 20	146	Dec 20	8.1	Dec 1	5 1937
INSTANTANEOUS PEAK FLOW			15100	May 17	60500	Jun 1	5 1998
INSTANTANEOUS PEAK STAGE			19.06	May 17	29.39	Jun 1	5 1998
ANNUAL RUNOFF (AC-FT)	856600		699600	-	328500		
ANNUAL RUNOFF (CFSM)	1.32		1.08		.51		
ANNUAL RUNOFF (INCHES)	17.97		14.68		6.89		
10 PERCENT EXCEEDS	2340		2190		984		
50 PERCENT EXCEEDS	544		398		186		
90 PERCENT EXCEEDS	220		220		42		

e Estimated

06810000 NISHNABOTNA RIVER ABOVE HAMBURG, IA

LOCATION.--Lat 40°37'57", long 95°37'32", in SW¹/4 SE¹/4 sec.11, T.67 N., R.42 W., Fremont County, Hydrologic Unit 10240004, on left bank 1.7 mi downstream from confluence of East Nishnabotna and West Nishnabotna Rivers, 2 mi northeast of Hamburg, and at mile 13.8.

DRAINAGE AREA.--2,806 mi².

PERIOD OF RECORD. -- March 1922 to September 1923, October 1928 to current year. Monthly discharge only for some periods published in WSP 1310.

REVISED RECORDS.--WSP 1240: 1923, 1929-37, 1938-40 (M), 1943 (M). WSP 1440: Drainage area. WDR IA-74-1: 1973.

GAGE .-- Water-stage recorder. Datum of gage is 894.17 ft above sea level. See WSP 1730 for history of changes prior to Nov. 16, 1950.

REMARKS .-- Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

discharge, cubic feet per second, water year october 1998 to september 1999 daily mean values

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	846	1080	987	e480	e850	1060	1050	5300	4880	8400	2200	1880
2	887	1220	954	e480	911	1100	1020	4910	4410	5940	2050	1830
3	1020	1380	946	e460	962	1160	1040	4690	4080	5880	1990	1790
4	1090	1350	959	e440	1000	1290	1060	4490	3900	8010	1960	1810
5	1290	1190	964	e550	1070	1260	1600	4450	3790	5010	1900	2050
6	1230	1090	962	e650	1190	1180	4540	4320	5020	6730	1820	2040
7	1220	1100	941	e600	1190	1110	6290	4160	4200	8680	11100	1900
8	1120	1260	920	e570	1100	1110	4650	3970	4650	5120	22500	2170
9	1020	1230	908	e530	1000	1130	4950	3780	3720	5060	12200	1900
10	967	1340	913	e580	969	1040	6330	3640	3830	11500	5920	1340
11	941	1360	940	e700	971	1100	4450	3550	6800	6270	4680	1210
12	923	1400	933	e650	945	1150	3860	3610	5800	4960	4490	1160
13	900	1380	921	e600	881	1060	3460	3530	7640	4440	4930	1150
14	877	1280	918	e700	817	1040	3350	3430	5370	4070	4640	1130
15	841	1230	933	e800	836	1040	7940	3370	4430	3770	3600	1110
16	909	1200	933	e900	871	1070	10700	3560	4070	3550	3250	1080
17	1030	1150	941	e880	842	1160	8390	14800	3970	3410	3060	1050
18	1130	1130	955	e750	803	1340	6670	14100	3770	3320	3090	1030
19	1060	1110	926	e700	802	1530	5860	8350	3510	3170	3210	1010
20	973	1080	856	e800	821	1370	5270	6810	3360	3640	2870	1020
21	922	1070	e650	e950	796	1280	4830	14700	3230	3770	2730	1020
22	892	1060	e500	e900	789	1260	6900	13200	3210	3240	2580	970
23	887	1050	e600	e850	696	1260	8760	10000	4900	2860	2500	946
24	875	1040	e550	e900	693	1200	6470	7960	7790	2750	2390	926
25	871	1010	e550	e850	702	1160	5480	6600	4910	2610	2300	907
26 27 28 29 30 31	878 876 894 941 1000 1230	1000 991 982 998 1010 	e550 e600 e650 e550 e480	e900 e950 e900 e830 e800 e820	853 959 1050 	1140 1120 1130 1130 1120 1090	5070 6810 8120 7060 5850	5880 5330 4900 4550 4340 6170	4050 5760 12100 7940 5590	2500 2460 2450 2330 2220 2560	2240 2200 2140 2090 2010 1930	879 939 948 953 887
TOTAL	30540	34771	24990	22470	25369	36190	157830	$192450 \\ 6208 \\ 14800 \\ 3370 \\ 4690 \\ 381700 \\ 2.21 \\ 2.55 \\$	150680	140680	126570	39035
MEAN	985	1159	806	725	906	1167	5261		5023	4538	4083	1301
MAX	1290	1400	987	950	1190	1530	10700		12100	11500	22500	2170
MIN	841	982	480	440	693	1040	1020		3210	2220	1820	879
MED	941	1120	920	750	876	1130	5380		4420	3770	2580	1100
AC-FT	60580	68970	49570	44570	50320	71780	313100		298900	279000	251100	77430
CFSM	.35	.41	.29	.26	.32	.42	1.87		1.79	1.62	1.46	.46
IN.	.40	.46	.33	.30	.34	.48	2.09		2.00	1.87	1.68	.52
STATIST	ICS OF	MONTHLY ME	EAN DATA	FOR WATER	YEARS 1922	- 1999	, BY WATI	ER YEAR (WY	()			
MEAN	679	678	564	565	1055	1839	1534	1925	2612	1715	1122	1020
MAX	5004	3083	2557	3585	4720	7229	5866	6621	16430	17780	6266	7385
(WY)	1987	1973	1973	1973	1973	1979	1973	1995	1947	1993	1993	1993
MIN	39.5	42.9	27.1	21.3	30.3	115	89.7	68.2	151	52.8	16.8	44.1
(WY)	1938	1938	1938	1940	1940	1931	1956	1934	1956	1936	1934	1937
SUMMARY	STATIS	TICS	FOF	R 1998 CAL	ENDAR YEAR	:	FOR 1999	WATER YEAR	ર	WATER Y	ZEARS 1922	- 1999
ANNUAL ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	TOTAL MEAN ANNUAL DAILY DAILY DAILY DAILY DAILY MEOUS CANEOUS RUNOFF RUNOFF RUNOFF ENT EXC CENT EXC	MEAN MEAN MEAN EAN AY MINIMUR PEAK FLOW PEAK STAGH (AC-FT) (CFSM) (INCHES) EEDS EEDS	M E	1201288 3291 53700 480 569 2383000 1. 15. 6580 1900	Jun 17 Dec 31 Dec 25 17 93		981575 2689 22500 440 491 25800 28 1947000 13 6030 1210	Aug 8 Jan 4 Dec 30 Aug 8 83 Aug 8 .96	3 1 2 3 3	1279 5062 170 53700 65100 926500 2926500 6.1 2940 600	Jun 5 Aug Jun 18 Jun 16	1993 1934 17 1998 30 1934 24 1934 17 1998 17 1998
50 PERC 90 PERC	CENT EXC	EEDS EEDS EEDS		1900 860			1210 803			600 120		

e Estimated

06810000 NISHNABOTNA RIVER ABOVE HAMBURG, IA--Continued

06813500 MISSOURI RIVER AT RULO, NE

LOCATION.--Lat 40°03'13", long 95°25'19", in NW¹/4 NW¹/4 sec.17, T.1 N., R.18 E., Richardson County, Hydrologic Unit 10240005, on right bank at downstream side of bridge on U.S. Highway 159 at Rulo, 3.2 mi upstream from Big Nemaha River, and at mile 498.0.

DRAINAGE AREA.--414,900 mi², approximately. The 3,959 mi² in Great Divide basin are not included.

PERIOD OF RECORD.--October 1949 to current year in reports of U.S. Geological Survey. Gage- height record collected at site 80 ft upstream January 1886 to December 1899 published in reports of Missouri River Commission; September 1929 to September 1950 in files of Kansas City office of U.S. Army Corps of Engineers.

GAGE.--Water-stage recorder. Datum of gage is 837.23 ft above sea level. Oct. 1949 to Sept. 12, 1950, nonrecording gage at site 80 ft upstream and Sept. 13, 1950 to Apr. 19, 1983, recording gage on downstream end of middle pier, all at same datum.

REMARKS.--Records good, except those for estimated daily discharges, which are poor. Flow regulated by upstream main-stem reservoirs. Fort Randall Dam was completed in July 1952, with storage beginning in December 1952. Gavins Point Dam was completed in July 1955, with storage beginning in December 1955. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 358,000 ft³/s Apr. 22, 1952, gage height, 25.60 ft; minimum daily discharge, 4,420 ft³/s Jan. 13, 1957; minimum gage height, -0.19 ft Dec. 25, 1990, result of freezeup.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood in 1881 reached a stage of 22.9 ft, from floodmark, discharge not determined.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	43200 43900 45500	51200 63600 63200	60200 60200 61000	38000 38500 37700	38700 38300 38700	44900 45300 46500	47600 48000 49200	61800 59200 59500	82000 79500 96500	114000 111000 99500	60200 58500 58400	58100 57900 57000
4 5	47200 50800	59000 e57000	60500 60000	37500 35900	40900 42900	48400 48400	49300 52800	60600 63800	94500 84500	99300 95100	58400 57300	56800 58000
6 7	52700 50100	e56000 e55000	58300 57300	35300 36200	45000 47700	49600 49400	68600 62600	65400 65900	91900 93600	89900 91100	54300 63300	62300 60500
8	47600	57800	55500	36700	47300	48900	60000	69200	83800	86000	104000	59100
9	44500	57100	53600	36900	47400	49600	63300	67800	77200	82800	102000	60100
10	43900	60300	51900	35700	47100	49500	66400	67400	76800	89400	79400	60200
11	43600	65100	51200	35500	46500	49300	67300	68300	80800	86600	66300	60400
12	43600	67000	50200	35300	46500	49400	65300	69700	85800	76800	64900	60900
14	44000	61900	49300	35700	46300	48800	60800	65500	95900	67000	65000	60200 60100
15	43500	61200	49300	36200	44700	47800	100000	67700	79200	64300	61900	59500
16	43000	62800	48900	35500	45300	48200	111000	74800	76200	62700	59400	59000
17	45200	65600	48800	36200	45000	49500	99800	94800	79000	63200	59100	57800
18	46400	66200	48900	37900	45200	49500	84800	101000	78400	63400	58900	57000
19	45100	66100	48300	39300	45100	50400	74300	86900	78200	64500	60100	57300
20	44900	66200	47800	38600	45000	51500	68200	77800	76700	65800	58700	57400
21	44600	65600	46700	37600	44200	51900	65400	110000	73500	67900	57500	57300
22	44700	64900	43600	38000	43700	49600	70400	102000	72700	69400	57200	56600
23	44600	64500	39700	38800	43400	52200	81100	90600	78000	69400	56200	56200
24	45600	63900	36800	38800	43100	52400	76900	86400	81400	70500	55700	56100
25	45500	62600	34900	38700	42000	51300	65600	81000	78000	67000	55400	55600
26	46000	62500	34400	39200	43100	50800	58800	78100	74800	64700	55200	55700
27	45900	61600	35000	39300	44100	49800	88600	74700	81100	63200	54100	56600
28	46400	61300	36300	39300	44600	49700	88600	71200	113000	62000	53500	56400
29	46800	60600	37500	39000		49000	74200	69100	122000	60400	54500	55800
30	48100	60400	38200	38/00		48300	66800	58000	119000	59200	55300	55300
21	49000		37700	30000		47600		79900		59700	50000	
TOTAL	1420300	1850200	1492000	1160700	1237100	1526000	2098200	2326700	2575500	2357300	1926500	1741200
MEAN	45820	61670	48130	37440	44180	49230	69940	75050	85850	76040	62150	58040
MAX	52700	6/000	51000	39300	4//00	52400	111000	110000	122000	114000	104000	62300
MIN AC ET	43000	3670000	34400	35300	38300	2027000	4/600	59200	72700 E100000	59200	2021000	2454000
CESM	2017000	15	2959000	2302000	2454000	12	4102000	4015000	21	4070000	30ZIUUU 15	3454000
IN.	.13	.13	.12	.10	.11	.14	.19	.21	.23	.21	.17	.14
STATIS	STICS OF	MONTHLY M	IEAN DATA	FOR WATER	YEARS 19	53 - 1999	, BY WATE	R YEAR (W	Y)			
MEAN	44820	40860	27190	22620	28720	41550	51740	52090	57390	51520	45490	45640
MAX	80050	83880	57380	42280	53140	79590	106100	97280	130600	164800	78730	76410
(WY)	1998	1998	1998	1973	1997	1979	1997	1997	1984	1993	1996	1997
MIN	25580	17000	9953	10800	13220	15380	21820	33790	33710	33860	29820	34140
(WY)	1962	1962	1956	1957	1957	1957	1957	1956	1956	1963	1955	1991
06813500 MISSOURI RIVER AT RULO, NE--Continued

SUMMARY STATISTICS	FOR 1998 CAL	ENDAR YE	AR	FOR 1999	WATE	R YI	EAR	WATER	YEARS	1953	3 –	1999a
ANNUAL TOTAL	19695500			21711700								
ANNUAL MEAN	53960			59480				42500				
HIGHEST ANNUAL MEAN								71880				1997
LOWEST ANNUAL MEAN								26340				1957
HIGHEST DAILY MEAN	129000	Jun	15	122000		Jun	29	289000		Jul	24	1993
LOWEST DAILY MEAN	29800	Jan	16	34400		Dec	26	4420		Jan	13	1957
ANNUAL SEVEN-DAY MINIMUM	30800	Jan	14	35700		Jan	10	5560		Nov	30	1955
INSTANTANEOUS PEAK FLOW				125000		Jun	29	307000		Jul	24	1993
INSTANTANEOUS PEAK STAGE				21.	63	Jun	29	25	.37	Jul	24	1993
INSTANTANEOUS LOW FLOW				34200		Dec	26					
ANNUAL RUNOFF (AC-FT)	39070000			43070000				30790000				
ANNUAL RUNOFF (CFSM)		13			14				.10			
ANNUAL RUNOFF (INCHES)	1.	77		1.	95			1	.39			
10 PERCENT EXCEEDS	69500			84100				67400				
50 PERCENT EXCEEDS	50200			57400				38900				
90 PERCENT EXCEEDS	40600			38800				18500				

Post regulation, revised Estimated a e

06817000 NODAWAY RIVER AT CLARINDA, IA

LOCATION.--Lat 40°44'19", long 95°00'47", in SW¹/₄ NE¹/₄ sec.32, T.69 N., R.36 W., Page County, Hydrologic Unit 10240009, near left abutment on downstream side of bridge on State Highway 2 (city route), 0.5 mi downstream from North Branch, 1.2 mi east of city square of Clarinda, and 7.5 mi upstream from East Nodaway River.

DRAINAGE AREA.--762 mi².

PERIOD OF RECORD.--May 1918 to July 1925, May 1936 to current year. Monthly discharge only for some periods, published in WSP 1310. No winter records 1918-1925.

REVISED RECORDS.--WSP 1240: 1918-20 (M), 1921, 1922-25 (M), 1936-38, 1942, 1943-45 (M), 1948. WSP 1440: Drainage area. WSP 1710: 1958, 1959 (P).

GAGE.--Water-stage recorder. Datum of gage is 955.36 ft above sea level. Prior to July 5, 1925, and May 28, 1936 to Mar. 26, 1957, nonrecording gage at same site, and prior to Oct. 1, 1987, at datum 5.00 ft. higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Clarinda municipal water supply is taken from Nodaway River, 500 ft upstream from station. Average daily pumpage was 1.14 ft³/s. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey and satellite data collection platform at station.

COOPERATION. -- Average pumpage provided by City of Clarinda water works.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in August 1903 reached a stage of 25.4 ft, from floodmarks, discharge not determined.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	88	110	126	e80	e130	296	190	1110	1230	1680	222	116
2	94	158	126	e77	e140	281	172	955	1060	946	172	119
3	108	198	121	e75	217	290	174	865	926	688	163	114
4	121	227	125	e70	273	257	176	844	866	580	171	121
5	130	164	120	e80	297	235	220	863	825	491	162	129
6	140	137	106	e105	256	212	618	803	765	468	149	129
7	135	135	106	e100	260	188	575	777	708	526	4100	122
8	108	162	96	e95	230	165	412	704	668	408	1740	389
9	101	175	95	e90	215	164	1260	637	602	1310	671	204
10	103	279	98	e110	211	194	953	600	783	1810	511	117
11	101	354	91	e140	175	228	631	560	1030	757	431	97
12	92	286	91	e120	162	186	490	716	1070	586	453	86
13	94	225	96	e90	149	178	435	896	2070	513	404	74
14	99	204	95	e105	138	180	460	627	877	469	366	69
15	103	180	95	e115	159	186	5700	657	651	431	334	72
16	103	166	94	e130	142	249	3950	822	598	398	318	72
17	121	159	86	e125	115	361	2750	9660	562	373	301	69
18	130	162	93	e120	116	448	2110	4700	509	366	303	71
19	303	136	81	e110	117	304	1680	2980	476	349	311	66
20	162	129	95	e120	125	273	1320	2130	459	330	283	65
21	131	127	65	e125	134	253	1130	17200	435	340	264	69
22	114	138	89	e120	98	235	2860	6920	435	304	247	70
23	109	131	e80	e125	76	236	2720	4990	1480	280	216	73
24	106	121	e70	e130	127	229	1520	3230	1920	273	179	71
25	113	128	e75	e110	139	211	1200	2430	835	259	179	69
26 27 28 29 30 31	108 113 124 153 134 117	125 124 126 141 131 	e80 e85 e88 e85 e80 e75	e115 e120 e115 e120 e125 e120	172 229 257 	193 199 208 196 184 180	1040 2940 3360 1830 1350	1960 1660 1450 1280 1490 1780	640 942 2030 896 679	235 232 263 229 205 600	175 176 168 148 126 118	62 86 98 87 71
TOTAL	3758	5038	2908	3382	4859	7199	44226	76296	27027	16699	13561	3057
MEAN	121	168	93.8	109	174	232	1474	2461	901	539	437	102
MAX	303	354	126	140	297	448	5700	17200	2070	1810	4100	389
MIN	88	110	65	70	76	164	172	560	435	205	118	62
AC-FT	7450	9990	5770	6710	9640	14280	87720	151300	53610	33120	26900	6060
CFSM	.16	.22	.12	.14	.23	.30	1.93	3.23	1.18	.71	.57	.13
IN.	.18	.25	.14	.17	.24	.35	2.16	3.72	1.32	.82	.66	.15
STATIST	ICS OF	MONTHLY ME	AN DATA F	OR WATER	YEARS 191	9 - 1999,	BY WATER	R YEAR (WY	.)			
MEAN	177	177	140	136	320	569	574	706	775	444	238	322
MAX	1658	1602	1090	853	1857	2456	2450	2489	4779	6778	1953	3019
(WY)	1974	1973	1993	1974	1973	1979	1973	1996	1947	1993	1987	1972
MIN	7.52	8.27	2.10	6.52	11.3	14.0	14.4	10.3	20.0	17.3	9.81	6.83
(WY)	1938	1938	1924	1940	1940	1938	1956	1939	1968	1954	1936	1937

06817000 NODAWAY RIVER AT CLARINDA, IA--Continued

SUMMARY STATISTICS	FOR 1998 CALEN	DAR YEAR	FOR 1999 WAT	TER YEAR	WATER YEARS	s 1919 - 1999
ANNUAL TOTAL	236623		208010			
ANNUAL MEAN	648		570		392	
HIGHEST ANNUAL MEAN					1577	1993
LOWEST ANNUAL MEAN					36.8	1968
HIGHEST DAILY MEAN	20000	Jun 15	17200	May 21	25500	Sep 13 1972
LOWEST DAILY MEAN	46	Jan 13	62	Sep 26	1.0	Dec 9 1923a
ANNUAL SEVEN-DAY MINIMUM	69	Jan 10	68	Sep 20	1.3	Dec 25 1923
INSTANTANEOUS PEAK FLOW			23200	May 21	31100	Jun 13 1947k
INSTANTANEOUS PEAK STAGE			20.82	May 21	25.30	Jun 13 1947c
INSTANTANEOUS LOW FLOW			42	Dec 21		
ANNUAL RUNOFF (AC-FT)	469300		412600		283900	
ANNUAL RUNOFF (CFSM)	.85		.75		.51	
ANNUAL RUNOFF (INCHES)	11.55		10.15		6.99	
10 PERCENT EXCEEDS	1470		1290		850	
50 PERCENT EXCEEDS	237		184		106	
90 PERCENT EXCEEDS	94		88		20	

Also Dec 27-31, 1923 From rating curve extended above 15,000 ft³/s on basis of an overflow profile and extended channel rating From floodmark Estimated a b c e

Gaging Stations

06819185	East Fork 102 River at Bedford, IA				•		•	132
06898000	Thompson River at Davis City, IA							134
06903400	Chariton River near Chariton, IA							136
06903700	South Fork Chariton River near Promise	City, 2	IA.					138
06903880	Rathbun Lake near Rathbun, IA							140
06903900	Chariton River near Rathbun, IA							142
06904010	Chariton River near Moulton, IA							144

Crest Stage Gaging Stations

06818750	Platte River near Diagonal, IA
06819110	Middle Branch 102 River near Gravity, IA
06897858	Sevenmile Creek near Thayer, IA
06897950	Elk Creek near Decatur City, IA

06819185 EAST FORK ONE HUNDRED AND TWO RIVER AT BEDFORD, IA

LOCATION.--Lat 40°39'38", long 94°42'59", in NE¹/4 sec.35, T.68 N., R.34 W., Taylor County, Hydrologic Unit 10240013, on left bank at downstream side of bridge of county highway N44, 0.1 mi south of Bedford, 0.4 mi upstream from concrete stablization dam, and 3.0 mi upstream from Daugherty creek.

DRAINAGE AREA.--85.4 mi².

PERIOD OF RECORD.--October 1983 to current year. September 1959 to September 1983, at site 2 mi downstream published as "near Bedford" (station 06819190) not equivalent because of difference in drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,069.16 ft above sea level.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Slight regulation at low flow by low dam used for water supply in Bedford. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geolocial Survey satellite data collection platform and a U.S. National Weather Service Limited Automatic Remote Collector (LARC) at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.9 5.3 4.4 6.8 4.8	6.7 17 39 16 7.0	7.9 7.9 8.4 8.6 8.9	e1.6 e1.9 e1.7 e1.4 e1.2	e2.8 e3.4 e5.0 e6.5 e8.0	52 43 32 27 25	18 19 25 25 138	57 49 46 53 66	112 71 55 50 46	162 67 54 42 35	187 65 41 29 17	e1.6 e1.5 e1.6 e2.0 e2.5
6 7 8 9 10	3.1 2.7 3.5 3.0 2.6	4.7 6.8 13 27 245	9.8 10 9.7 9.3 9.9	el.1 e1.2 e1.2 e1.1 e1.1	e12 17 19 15 12	19 16 18 31 24	103 52 44 43 33	64 80 58 48 43	39 36 31 28 109	32 25 22 206 57	13 964 108 49 30	e2.1 e1.7 e1.4 e1.2 e1.0
11 12 13 14 15	1.9 1.6 1.5 2.0 2.2	36 18 13 11 9.1	9.3 9.6 11 11 11	el.2 el.1 el.0 el.0 el.1	17 14 10 10 11	22 31 36 47 59	27 20 19 80 1770	42 99 62 48 75	73 164 2290 379 116	37 29 22 19 15	22 42 22 13 9.8	e.90 e.80 e.70 e.60 e.60
16 17 18 19 20	2.9 13 6.0 3.9 3.3	8.9 7.7 7.5 6.4 5.3	11 11 11 11 9.2	el.2 el.4 el.3 el.2 el.3	10 8.2 9.0 11 11	87 60 36 30 29	462 198 107 79 63	69 104 75 54 48	86 68 57 52 49	14 17 14 13 11	7.8 5.9 7.4 6.1 4.7	e.60 e.60 e.70 e.70
21 22 23 24 25	2.7 2.1 2.2 2.3 2.8	5.1 5.9 6.3 5.3 6.2	8.3 5.1 3.4 2.6 2.4	e1.4 e1.4 e1.5 e1.6 e1.5	10 9.1 11 14 15	26 25 28 24 19	56 151 193 84 67	598 164 248 92 68	45 48 906 156 83	10 9.3 7.9 7.8 7.4	5.3 4.8 e4.0 e4.2 e3.8	e.70 e.70 e.70 e.80 e.90
26 27 28 29 30 31	2.6 2.2 3.1 3.0 2.9 3.9	6.1 6.9 7.6 8.8 9.8	2.6 2.7 2.5 2.7 e2.1 e1.8	e1.6 e1.9 e1.8 e2.0 e2.3 e2.5	68 154 95 	18 18 22 18 17 16	61 641 184 95 69	54 46 40 35 74 603	63 57 184 84 72	7.9 8.1 47 13 8.7 1680	e3.2 e2.6 e2.4 e2.2 e2.0 e1.8	e.80 el.0 el.6 el.3 el.0
TOTAL MEAN MAX MIN AC-FT CFSM IN.	107.2 3.46 13 1.5 213 .04 .05	573.1 19.1 245 4.7 1140 .22 .25	231.7 7.47 11 1.8 460 .09 .10	44.8 1.45 2.5 1.0 89 .02 .02	588.0 21.0 154 2.8 1170 .25 .26	955 30.8 87 16 1890 .36 .42	4926 164 1770 18 9770 1.92 2.15	3262 105 603 35 6470 1.23 1.42	5609 187 2290 28 11130 2.19 2.44	2700.1 87.1 1680 7.4 5360 1.02 1.18	1680.0 54.2 964 1.8 3330 .63 .73	32.90 1.10 2.5 .60 65 .01 .01
STATIST	TICS OF M	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 1984	- 1999,	BY WATER Y	TEAR (WY)				
MEAN MAX (WY) MIN (WY)	26.2 159 1987 .26 1992	32.7 202 1993 .78 1991	29.7 181 1993 .47 1989	12.2 50.2 1998 .50 1991	43.1 149 1997 .17 1989	77.2 276 1998 2.13 1989	107 289 1984 .82 1989	156 488 1995 .67 1989	112 255 1995 1.90 1988	127 889 1993 1.97 1988	24.9 173 1987 .63 1991	55.1 260 1993 .31 1991
SUMMARY	STATIST	ICS	FOR	1998 CALEN	NDAR YEAR	F	OR 1999 WAT	ER YEAR		WATER Y	ZEARS 1984	- 1999
ANNUAL ANNUAL HIGHEST LOWEST LOWEST ANNUAL INSTANT	TOTAL MEAN ANNUAL M DAILY M SEVEN-DA CANEOUS P CANEOUS P	MEAN EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE		28691.90 78.6 2420 .7 .82	Mar 30 7 Aug 26 2 Aug 21		20709.80 56.7 2290 .60 .63 6350 22.60	Jun 13 Sep 14a Sep 13 Jul 31 Jul 31	L	67.1 200 12.0 7600 .0 9570 23.8	L Jul 00 Jul 00 Aug Jul 1 35 Jul	1993 1985 5 1993 6 1989b 3 1989 14 1986 5 1993
ANNUAL ANNUAL 10 PERC 50 PERC 90 PERC	RUNOFF (RUNOFF (RUNOFF (CENT EXCE CENT EXCE CENT EXCE	AC-FT) CFSM) INCHES) EDS EDS EDS		56910 .92 12.50 192 17 1.8	2		41080 .66 9.02 89 11 1.4			48590 10.6 110 9.1	79 57 L 72	

a Also Sep 15-18

b Many days between July 6 and Dec 24, 1989

e Estimated

06898000 THOMPSON RIVER AT DAVIS CITY, IA

LOCATION.--Lat 40°38'25", long 93°48'29", in SE¹/4 SE¹/4 sec.35, T.68 N., R.26 W., Decatur County, Hydrologic Unit 10280102, on right bank 15 ft downstream from bridge on U.S. Highway 69 at Davis City, 3.1 mi. upstream from Dickersons Branch, and 5.8 mi. upstream from Iowa-Missouri State line.

DRAINAGE AREA.--701 mi².

PERIOD OF RECORD.--May 1918 to July 1925, July 1941 to current year. Monthly discharge only for some periods, published in WSP 1310. No winter records 1921-25. Prior to October 1918, published as "Grand River".

REVISED RECORDS.--WSP 1240: 1918, 1920-21 (M), 1922-24, 1925 (M), 1946-47 (M). WSP 1440: Drainage area. WSP 1710: 1957.

GAGE.--Water-stage recorder. Datum of gage is 874.04 ft above sea level. May 14, 1918 to July 2, 1925, July 14, 1941 to Feb. 24, 1942, nonrecording gage, and Feb. 25, 1942 to Feb. 8, 1967, water-stage recorder at same site at datum 2.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey satellite data collection platform and U.S. National Weather Service Limited Automatic Remote Collector (LARC) at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 8, 1885, reached a stage of 22.8 ft, datum in use prior to Feb. 9, 1967, from floodmark, discharge, 30,000 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	48	68	97	e32	e50	681	157	733	959	315	142	27
2	62	328	95	e38	e60	500	151	605	823	275	67	26
3	66	429	95	e34	e75	402	167	526	492	248	53	27
4	88	297	96	e29	e110	356	171	488	381	218	46	27
5	320	194	94	e26	e140	337	584	541	340	190	43	30
6	132	159	98	e22	e190	322	2260	466	306	167	41	30
7	112	134	105	e23	e260	280	945	423	271	145	180	45
8	122	234	98	e22	e190	260	648	397	242	198	240	48
9	100	256	95	e20	e220	247	1000	376	220	348	213	275
10	81	1600	96	e21	254	296	842	349	322	305	153	164
11	70	1300	94	e22	515	347	613	336	1870	192	86	72
12	64	551	91	e21	387	365	432	2410	2040	143	89	51
13	59	342	90	e20	233	364	360	1790	1670	121	107	41
14	57	251	90	e21	222	445	343	896	626	110	88	34
15	56	208	90	e20	217	648	4060	705	442	101	65	30
16	55	184	89	e23	211	1190	5670	860	367	94	55	26
17	469	163	88	e27	186	1220	4280	1920	315	89	47	24
18	463	148	87	e25	170	798	2060	4060	280	88	44	23
19	182	135	84	e23	168	545	1240	1790	250	89	40	22
20	126	123	65	e25	172	416	912	1060	225	87	39	22
21	106	116	57	e27	169	360	740	801	208	82	64	21
22	91	113	66	e27	161	317	997	1900	195	76	50	20
23	77	109	e44	e29	146	286	3910	2590	1040	72	39	19
24	69	105	e40	e34	158	260	1930	1210	1760	68	34	20
25	65	104	e36	e32	193	234	1090	818	952	56	33	19
26 27 28 29 30 31	63 63 64 66 62 59	100 96 94 96 100	e40 e42 e44 e38 e36	e30 e36 e32 e36 e42 e45	420 854 907 	214 202 197 190 176 160	810 3590 3060 1640 981	636 525 448 394 354 1300	516 388 335 312 325	52 50 52 49 49 282	32 32 31 29 29 28	18 29 32 37 39
TOTAL MEAN MAX MIN AC-FT CFSM TN	3517 113 469 48 6980 .16	8137 271 1600 68 16140 .39 43	2322 74.9 105 36 4610 .11	864 27.9 45 20 1710 .04	7038 251 907 50 13960 .36 37	12615 407 1220 160 25020 .58 67	45643 1521 5670 151 90530 2.17 2 42	31707 1023 4060 336 62890 1.46 1.68	18472 616 2040 195 36640 .88 98	4411 142 348 49 8750 .20 23	2239 72.2 240 28 4440 .10 12	1298 43.3 275 18 2570 .06 07
STATIST	ICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 19	19 - 1999	, BY WATE	R YEAR (W)	()	.25	.12	.07
MEAN	192	221	154	162	344	655	709	711	665	438	190	342
MAX	2138	1462	1299	1292	1849	2375	2586	3364	4750	7239	2255	5178
(WY)	1974	1962	1983	1960	1973	1979	1973	1996	1947	1993	1987	1992
MIN	1.41	2.07	.94	.62	1.14	10.7	2.55	1.19	3.08	1.98	9.35	4.13
(WY)	1957	1956	1956	1956	1956	1954	1956	1956	1956	1977	1955	1953

134

06898000 THOMPSON RIVER AT DAVIS CITY, IA--Continued

SUMMARY STATISTICS	FOR 1998 CALEND	AR YEAR	FOR 1999 W	ATER YEAR	WATER YEARS	1919	- 1999
ANNUAL TOTAL	182517		138263				
ANNUAL MEAN	500		379		402		
HIGHEST ANNUAL MEAN					1469		1993
LOWEST ANNUAL MEAN					52.3		1956
HIGHEST DAILY MEAN	11900	Mar 31	5670	Apr 16	52900	Sep 1	5 1992
LOWEST DAILY MEAN	36	Dec 25	18	Sep 26	.10	Jun 2	5 1956
ANNUAL SEVEN-DAY MINIMUM	40	Dec 25	20	Sep 20	.36	Jun 1	9 1956
INSTANTANEOUS PEAK FLOW			6080	Apr 16	57000	Sep 1	5 1992
INSTANTANEOUS PEAK STAGE			7.3	6 Apr 16	24.29	Sep 1	5 1992
INSTANTANEOUS LOW FLOW			17	Sep 26		-	
ANNUAL RUNOFF (AC-FT)	362000		274200		291000		
ANNUAL RUNOFF (CFSM)	.71		.5	4	.57		
ANNUAL RUNOFF (INCHES)	9.69		7.3	4	7.78		
10 PERCENT EXCEEDS	1380		948		865		
50 PERCENT EXCEEDS	209		145		85		
90 PERCENT EXCEEDS	58		29		9.8		

e Estimated

06903400 CHARITON RIVER NEAR CHARITON, IA

LOCATION.--Lat 40°57'12", long 93°15'37", in SW¹/4 NE¹/4 sec.15, T.71 N., R.21 W., Lucas County, Hydrologic Unit 10280201, on right bank 15 ft downstream from bridge on County Highway S43, 0.1 mi downstream from Wolf Creek, and 5.0 mi southeast of Chariton.

DRAINAGE AREA.--182 mi².

PERIOD OF RECORD. -- October 1965 to current year. Occasional low-flow measurements, water years 1958-60, 1962, 1964.

GAGE.--Water stage recorder. Datum of gage is 917.90 ft above sea level (U.S. Army Corps of Engineers bench mark).

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1960 reached a stage of about 23 ft, discharge, about 15,000 ft³/s and flood of June 5, 1947 reached a stage of 21.65 ft, from floodmark, discharge, 11,000 ft³/s. A discharge of 0.08 ft³/s was measured on Oct. 30, 1963.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.8 3.2 3.8 5.8 506	29 534 777 449 197	26 24 24 24 22	e11 e12 e13 e12 e11	e60 e67 e72 e71 e64	158 85 61 49 44	26 e25 162 109 85	139 85 68 61 82	416 576 201 190 270	22 21 18 17 17	144 69 18 8.5 5.6	2.7 2.7 2.5 2.0 1.9
6 7 8 9 10	85 28 16 9.0 6.6	97 68 121 348 1080	23 35 37 37 44	e20 e18 e17 e17 e19	e58 e54 67 80 59	44 41 52 52	172 156 102 418 250	63 59 55 50 46	71 47 38 28 141	16 e11 e8.0 e12 e50	5.0 62 458 262 48	1.7 1.7 1.7 1.4 1.3
11 12 13 14 15	5.6 6.2 6.0 5.9	678 377 118 79 63	48 42 37 34 32	e19 e18 e17 e17 e19	80 378 331 85 64	53 54 58 67 135	121 69 52 46 791	58 1730 1730 956 499	1040 441 215 292 112	e44 e32 22 13 8.5	30 57 83 56 25	1.1 1.3 1.3 1.2 1.2
16 17 18 19 20	5.8 722 2140 923 226	55 48 44 41 37	32 33 31 26 20	e21 e22 e21 e22 e21	56 47 41 42 45	781 1170 572 164 87	2160 2030 1670 676 143	282 1230 1340 839 198	58 42 34 28 23	6.4 5.8 5.1 4.5 7.1	10 5.6 4.0 3.0 3.2	1.2 1.3 1.2 1.2 1.1
21 22 23 24 25	79 55 45 39 35	34 33 31 30 28	e16 e14 e12 e14 e16	e26 e42 e85 e70 e55	45 42 44 42 46	64 53 46 42 37	95 114 649 536 187	87 67 55 46 39	19 16 75 176 173	5.3 3.9 3.6 4.2 5.1	3.0 2.4 2.7 3.5 3.5	1.1 1.1 e1.2 e1.1 e1.2
26 27 28 29 30 31	31 29 26 37 35 28	26 24 23 25 26	e18 e17 e18 e15 e13 e12	e44 e55 e70 e55 e50 e48	133 334 348 	e34 e33 32 30 27	104 1120 2030 1230 623	33 25 21 17 13 191	51 34 25 22 19	4.9 5.2 6.1 6.3 5.2 7.5	3.9 3.7 3.2 2.9 2.7 2.7	e1.2 e1.9 e2.3 e2.6 e2.3
TOTAL MEAN MAX MIN CFSM IN.	5151.9 166 2140 2.8 .91 1.05	5520 184 1080 23 1.01 1.13	796 25.7 48 12 .14 .16	947 30.5 85 11 .17 .19	2855 102 378 41 .56 .58	4198 135 1170 27 .74 .86	15951 532 2160 25 2.92 3.26	10164 328 1730 13 1.80 2.08	4873 162 1040 16 .89 1.00	397.7 12.8 50 3.6 .07 .08	1391.1 44.9 458 2.4 .25 .28	47.7 1.59 2.7 1.1 .01 .01
STATIS	TICS OF M	ONTHLY MEA	n data fo	OR WATER Y	EARS 1966	- 1999,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	83.4 568 1974 .005 1990	61.5 294 1993 .003 1990	63.3 408 1983 .000 1990	37.5 340 1974 .23 1977	89.4 403 1997 .22 1989	183 761 1979 6.40 1989	255 1093 1991 .068 1989	240 1097 1995 3.91 1977	159 856 1967 .38 1988	167 1711 1993 .000 1988	72.3 618 1987 .10 1989	130 1704 1992 .086 1991
SUMMAR	Y STATIST	ICS	FOR 2	1998 CALEN	DAR YEAR	F	'OR 1999 W#	ATER YEAR		WATER Y	EARS 1966	- 1999
ANNUAL ANNUAL HIGHES LOWEST	TOTAL MEAN T ANNUAL I ANNUAL M	MEAN EAN		79904.2 219			52292.4 143			128 345 9.7	1	1993 1989
HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL	T DAILY ME DAILY ME SEVEN-DA TANEOUS PI TANEOUS PI RUNOFF (0	EAN AN Y MINIMUM EAK FLOW EAK STAGE CFSM)		3130 1.4 2.4 1.20	May 7 Aug 4 Jul 29		2160 1.1 2460 17.41 .79	Apr 16 Sep 11a Sep 18 Oct 18 Oct 18		24600 .0 37700 29.3 .7	Sep 1 0 Aug 0 Jun 2 Sep 1 2 Sep 1 1	5 1992 1 1977 1 1988 5 1992 5 1992
ANNUAL 10 PER 50 PER 90 PER	RUNOFF (CENT EXCE CENT EXCE CENT EXCE	INCHES) EDS EDS EDS		16.33 687 37 4.8			10.69 393 37 3.0	9		9.5 294 14 .6	9	

a Also Sep 20-22, 24

e Estimated

06903400 CHARITON RIVER NEAR CHARITON, IA--Continued

06903700 SOUTH FORK CHARITON RIVER NEAR PROMISE CITY, IA

LOCATION.--Lat 40°48'02", long 93°11'32", in SW¹/4 SW¹/4 sec.5, T.69 N., R.20 W., Wayne County, Hydrologic Unit 10280201, on right bank 20 ft downstream from bridge on County Highway S50, 1.3 mi downstream from Jordan Creek, and 4.3 mi northwest of Promise City.

DRAINAGE AREA.--168 mi².

PERIOD OF RECORD.--October 1967 to current year. Occasional low-flow measurements, water years 1958-66, published as "near Bethlehem". Monthly discharge measurements for March 1965 to September 1967 available in files of Iowa City District Office.

GAGE .-- Water-stage recorder. Datum of gage is 913.70 ft above sea level (U.S. Army Corps of Engineers bench mark).

REMARKS.--Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 21, 1965, reached a stage of 25.5 ft, from floodmarks, discharge, about 18,000 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

OCT MAR SEP DAY NOV DEC JAN FEB APR MAY JUN JUL AUG .79 2.3 23 101 33 72 2070 27 1 34 e10 e55 29 1.1 2 31 29 1340 28 e65 54 1770 9.5 e11 78 1.1 3 4.0 1130 e12 e77 44 220 19 1.1 27 67 352 5.6 4 28 356 26 e11 e65 56 197 89 611 14 4 3 1 1 5 1120 129 25 e10 e55 57 121 262 501 11 3.5 1.3 6 162 78 27 e19 e48 119 213 79 115 8.3 3.1 1.4 59 53 87 59 71 9.9 43 e17 98 83 6.7 1.4 e16 8 21 168 49 155 74 72 50 50 4.9 15 2.1 6.5 9 9.6 437 49 e16 84 117 335 41 36 15 1.5 10 5.6 1240 58 e18 68 94 143 35 721 24 3.6 1.2 247 247 89 85 31 11 1.1 11 6.6 51 e18 575 6.5 7.0 12 5.8 110 44 e17 300 98 62 1970 113 26 1.4 13 14 93 71 52 52 677 179 5.3 4.0 87 40 e16 103 470 12 1.3 126 4.9 3.2 76 37 1.3 e16 100 15 3.4 63 34 67 339 1750 160 53 3.4 3.3 1.3 e18 33 58 1570 2940 804 2.6 2.7 16 3.1 54 e20 40 1.3 1870 2.6 17 46 31 e21 49 917 1190 1960 32 2.3 1.4 345 175 18 3840 41 32 e20 46 197 708 26 2.3 2.6 1.4 2.1 2.2 1.5 19 273 39 29 e21 51 111 22 163 20 115 34 e20 e23 53 87 109 90 20 1.8 2.0 1.6 21 72 31 e15 e28 52 72 80 17 2.1 1.9 1.4 64 22 51 30 e13 e42 48 61 220 53 16 2.3 1.7 1.5 23 37 29 e12 e80 50 55 1070 42 194 2.3 1 7 1.4 26 e13 105 2.3 1.1 24 32 54 48 202 e65 36 1.6 25 28 25 e15 e50 66 43 107 29 37 2.2 1.6 .95 79 1.0 26 24 25 e17 e42 254 39 23 21 2.0 1.6 27 21 23 e50 548 38 1640 20 17 2.1 e16 1.5 2.7 3 0 28 20 22 e17 e65 188 41 787 18 17 2 0 1 4 29 31 24 e55 223 2.0 1.3 2.3 e14 40 15 18 ---30 33 31 e12 e48 ___ 35 107 15 20 2.0 1.2 1.2 31 23 ___ e11 e44 ___ 34 ___ 3750 ____ 10 1.1 ---43.45 TOTAL 7892.39 6023 882 899 3054 5004 12855 11592 8078 234.5 169.1 MEAN 255 201 28.5 29.0 109 161 428 374 269 7.56 5.45 1.45 MAX 3840 1340 58 80 548 1570 2940 3750 2070 29 27 3.0 MTN 79 2.2 11 10 46 34 31 15 16 1.8 1.1 .95 11950 22990 16020 AC-FT 15650 1750 1780 6060 9930 25500 86 465 335 2.55 .05 CFSM 1.20 .03 1.52 .17 .17 .65 .96 2.23 1.60 .01 TN. 1.75 1.33 .20 .20 .68 1.11 2.85 2.57 1.79 .05 .04 .01 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 1999, BY WATER YEAR (WY) MEAN 103 61.6 65.8 38.3 92.9 185 249 235 156 192 49.7 146 MAX 498 357 440 335 360 853 730 1043 580 2351 300 2227 (WY) 1978 1993 1983 1974 1997 1979 1991 1995 1980 1993 1993 1992 .88 3.21 1.21 5.14 1.18 .76 MIN 15 . 39 .40 .19 .24 53 1977 1989 1990 1977 1989 1989 1989 1980 1988 1977 1984 1991 (WY) SUMMARY STATISTICS FOR 1998 CALENDAR YEAR FOR 1999 WATER YEAR WATER YEARS 1968 - 1999 ANNUAL TOTAL 74351.19 56726.44 ANNUAL MEAN 204 155 131 HIGHEST ANNUAL MEAN 446 1993 LOWEST ANNUAL MEAN 10.7 1989 Sep 15 1992 Jul 6 1977a HIGHEST DAILY MEAN 5810 3840 Oct 18 34700 May 7 .00 .79 79 LOWEST DAILY MEAN Oct 1 Oct 1 ANNUAL SEVEN-DAY MINIMUM 7 Aug 29 Aug 16 1989 1.1 1.3 Sep .00 INSTANTANEOUS PEAK FLOW 5940 Oct 18 70600 Sep 15 1992 19.03 34.84 INSTANTANEOUS PEAK STAGE Oct 18 Sep 15 1992 INSTANTANEOUS LOW FLOW .72 Oct 1 147500 112500 95100 ANNUAL RUNOFF (AC-FT) 93 78 1 21 ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 12.56 10.62 16.46 10 PERCENT EXCEEDS 438 266 211 50 PERCENT EXCEEDS 43 32 15 90 PERCENT EXCEEDS 1.7 .98 2.3

a Also July 7, 21-24, 28 to Aug 1, 1977, July 9-10, and Aug 14, 18-22, 1989

e Estimated

06903880 RATHBUN LAKE NEAR RATHBUN, IA

LOCATION.--Lat 40°49'30", long 92°53'33", in NW¹/₄ NE¹/₄ sec.35, T.70 N., R.18 W., Appanoose County, Hydrologic Unit 10280201, at control tower of Rathbun Dam, 1.8 mi north of Rathbun, 3.9 mi upstream from Walnut Creek, and at mile 142.3.

DRAINAGE AREA.--549 mi².

PERIOD OF RECORD. -- October 1969 to current year.

GAGE .-- Water-stage recorder. Datum of gage is sea level.

REMARKS.--Reservoir is formed by earthfill dam completed in 1969. Storage began in November 1969. Release is controlled by two hydraulically controlled slide gages, 6 ft wide and 12 ft high, into forechamber of an 11-ft diameter horseshoe conduit through the dam. No dead storage. Maximum design discharge through gates is 5,000 ft³/s. Uncontrolled notch spillway is concrete overflow section 500 ft in length, located about 3,000 ft west of the right abutment of the dam and provides emergency discharge into the adjacent drainage area of Little Walnut Creek. Uncontrolled notch spillway is a elevation 926 ft, contents 545,621 acre-ft, surface area, 20,974 acres. Conservation pool level is at elevation 904.0 ft, contents 199,830 acre-ft, surface area, 10,989 acres. Reservoir is used for flood control, low-flow augumentation, conservation and recreation.

COOPERATION. -- Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 570,000 acre-ft July 28, 1993; maximum elevation, 927.16 ft July 28, 1993; minimum daily contents, 100 acre-ft Oct. 1- 15, Nov. 17-21, 1969; minimum elevation, 855.40 ft Oct. 6-10, 1969.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 329,000 acre-ft June 14; maximum elevation 913.95 ft June 14; minimum daily contents, 198,000 acre-ft Jan.7-21; minimum elevation, 903.80 ft Jan. 8-13.

Capacity table (elevation in feet, contents in acre-feet)

865 950 880 31,900 895 115,600 910 272,600 925 524,90	860	150	870	5,870	885	52,700	900	158,800	915	345,000
	862	226	875	17,000	890	80,300	905	211,000	920	428,900
	865	950	880	31,900	895	115,600	910	272,600	925	524,900

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAILY OBSERVATION AT 0800 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	229000	253000	255000	203000	203000	207000	201000	275000	301000	307000	238000	205000
2	228000	253000	255000	203000	202000	207000	201000	275000	311000	305000	235000	205000
3	228000	259000	255000	202000	201000	207000	201000	274000	314000	303000	233000	205000
4	227000	264000	256000	201000	201000	206000	203000	272000	314000	301000	231000	204000
5	236000	266000	256000	201000	201000	205000	203000	273000	321000	299000	228000	204000
6	241000	266000	256000	199000	201000	205000	206000	274000	323000	297000	226000	204000
7	241000	265000	257000	198000	201000	204000	206000	273000	323000	294000	223000	204000
8	242000	265000	256000	198000	201000	203000	206000	272000	323000	291000	221000	204000
9	241000	265000	255000	198000	201000	203000	208000	270000	321000	290000	219000	204000
10	240000	269000	253000	198000	200000	203000	209000	269000	319000	289000	217000	203000
11	239000	273000	251000	198000	200000	202000	211000	268000	323000	287000	215000	203000
12	238000	274000	248000	198000	201000	202000	211000	271000	326000	285000	214000	203000
13	237000	275000	246000	198000	202000	201000	211000	279000	328000	283000	215000	203000
14	235000	275000	243000	198000	202000	200000	211000	283000	329000	280000	214000	202000
15	234000	274000	241000	198000	202000	200000	213000	285000	328000	277000	214000	202000
16	233000	273000	238000	198000	202000	201000	224000	286000	327000	274000	213000	202000
17	232000	272000	235000	198000	202000	208000	236000	294000	325000	272000	213000	201000
18	249000	270000	232000	198000	201000	212000	242000	303000	323000	270000	212000	201000
19	260000	270000	230000	198000	201000	213000	247000	307000	322000	267000	212000	201000
20	263000	269000	227000	198000	201000	212000	249000	308000	320000	265000	211000	201000
21	264000	267000	225000	198000	200000	211000	249000	307000	318000	263000	210000	201000
22	264000	265000	222000	199000	200000	208000	248000	307000	317000	261000	210000	200000
23	263000	264000	219000	200000	200000	207000	252000	305000	317000	259000	209000	200000
24	262000	263000	217000	201000	201000	206000	256000	304000	316000	257000	209000	200000
25	260000	262000	215000	201000	201000	206000	257000	303000	315000	254000	208000	199000
26 27 28 29 30 31	259000 258000 257000 256000 255000 254000	260000 259000 258000 256000 256000	213000 211000 208000 207000 205000 204000	201000 201000 202000 202000 203000 203000	201000 204000 206000 	205000 204000 203000 203000 202000 201000	257000 258000 266000 271000 274000	301000 299000 297000 295000 293000 295000	314000 313000 311000 309000 308000	253000 250000 248000 246000 243000 240000	208000 208000 207000 207000 206000 205000	199000 200000 201000 201000 200000
MEAN MAX MIN CAL YR	246000 264000 227000 1998	265000 275000 253000 MEAN 27800	235000 257000 204000	200000 203000 198000 99000 MII	201000 206000 200000	205000 213000 200000	230000 274000 201000	288000 308000 268000	319000 329000 301000	275000 307000 240000	216000 238000 205000	202000 205000 199000

WTR YR 1999 MEAN 240000 MAX 329000 MIN 198000

06903880 RATHBUN LAKE NEAR RATHBUN, IA--Continued

06903900 CHARITON RIVER NEAR RATHBUN, IA

LOCATION.--Lat 40°49'22", long 92°53'22", in SE¹/4 NE¹/4 Sec.35, T.70 N., R.18 W., Appanoose County, Hydrologic Unit 10280201, on left bank 600 ft downstream from outlet of Rathbun Dam, 1.8 mi north of Rathbun, 3.7 mi upstream from Walnut Creek, and at mile 142.1.

DRAINAGE AREA.--549 mi².

PERIOD OF RECORD. -- October 1956 to current year. Monthly discharge only for some periods, published in WSP 1730.

REVISED RECORDS. -- WSP 1560: Drainage area.

- GAGE.--Water-stage recorder. Datum of gage is 847.92 ft above sea level. Prior to Nov. 16, 1960, nonrecording gage and Nov. 17, 1960 to Sept. 30, 1969, recording gage, at site 3.1 mi downstream at datum 4.65 ft lower.
- EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 21,800 ft³/s Mar. 31, 1960, gage height, 25.3 ft from floodmark, site and datum then in use.
- REMARKS.--Records good except for those periods of estimated daily discharge, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform with telephone modem at station. Flow regulated by Rathbun Lake (station 06903880) since Nov. 21, 1969. Records of discharge include diversion of:

Diversions October 1, 1998 to September 30, 1999 10 ft³/s

The diversion goes from the reservoir through fish ponds on left bank downstream from dam. Diverted flow returns to stream 0.1 mi downstream from gage. Rathbun Regional Water Association permit No. 0400900 allows withdrawal from Rathbun Dam discharge immediately downstream from gage for maximum rate of 4,200 gpm (9.36 ft³/s). In the 1999 water year 1.66 billion gallons were withdrawn from the river.

> DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	228	646	21	516	e330	210	121	609	106	746	1180	59
2	229	421	22	515	e330	533	21	610	314	1020	1170	59
3	229	38	21	512	e330	636	21	707	686	1020	1170	60
4	227	24	21	515	e330	635	21	740	585	1020	1170	59
5	e230	227	21	515	327	636	22	220	21	1010	1170	59
6	e21	514	21	e510	327	636	21	517	360	1080	1170	59
7	24	641	171	e510	328	636	21	704	702	1150	1170	59
8	231	641	619	e21	328	637	21	822	813	1120	1160	60
9	428	640	1050	e21	327	636	21	821	811	388	1150	58
10	538	e640	1320	e21	328	637	21	588	509	1040	1150	59
11 12 13 14 15	611 614 614 615 618	e160 e44 e450 e640 e640	1400 1400 1390 1390 1430	e21 e21 e21 e21 e21	329 328 329 329 329	636 636 637 622	20 20 20 20 31	718 769 662 824 820	184 514 619 684 816	1220 1220 1210 1210 1210	807 304 204 205 205	60 60 58 34 21
16	521	e750	1510	e21	329	254	e21	513	814	1230	205	21
17	e410	777	1510	e21	331	259	e21	e21	814	1250	204	21
18	e21	778	1500	e21	330	653	21	198	816	1240	204	22
19	63	778	1500	e21	329	1010	285	607	814	1240	205	23
20	195	775	1490	e21	328	1220	612	826	812	1220	203	24
21	540	771	1300	e21	328	1210	613	825	824	987	203	24
22	626	772	1110	e21	181	1070	513	824	703	1040	203	22
23	626	771	1110	e21	22	595	112	821	419	1220	201	22
24	627	770	1110	e21	22	414	218	820	613	1230	201	22
25	628	769	1110	e330	22	413	340	817	809	1220	150	23
26 27 28 29 30 31	630 634 639 646 650 643	768 766 762 766 367	1110 1100 1100 820 511 514	e330 e330 e330 e330 e330 e330	22 22 22 	413 412 413 412 412 323	421 460 457 431 505 	818 855 877 875 872 686	806 806 807 803 787	1220 1220 1210 1200 1200 1190	105 105 104 104 79 56	24 23 22 21 22
TOTAL	13556	17506	28702	6260	7217	18482	5452	21386	19171	34781	15917	1160
MEAN	437	584	926	202	258	596	182	690	639	1122	513	38.7
MAX	650	778	1510	516	331	1220	613	877	824	1250	1180	60
MIN	21	24	21	21	22	210	20	21	21	388	56	21
AC-FT	26890	34720	56930	12420	14310	36660	10810	42420	38030	68990	31570	2300
STATIST	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 197	70 - 1999,	BY WATER	R YEAR (WY	()			
MEAN	288	301	437	257	340	457	352	436	484	583	518	331
MAX	1790	1828	1364	1546	1550	1271	1132	1281	1573	1162	1826	1707
(WY)	1994	1994	1993	1993	1993	1993	1993	1973	1973	1991	1993	1993
MIN	11.5	9.97	5.54	8.98	5.60	9.40	6.74	19.3	16.6	6.53	9.10	11.0
(WY)	1975	1975	1970	1970	1970	1970	1970	1977	1988	1970	1970	1974

06903900 CHARITON RIVER NEAR RATHBUN, IA--Continued

SUMMARY STATISTICS	FOR 1998 CALEN	DAR YEAR	FOR 1999 WAT	FER YEAR	WATER YEARS	1970 - 1999a
ANNUAL TOTAL	245773		189590			
ANNUAL MEAN	673		519		399	
HIGHEST ANNUAL MEAN					1164	1993
LOWEST ANNUAL MEAN					20.4	1989
HIGHEST DAILY MEAN	1510	Dec 16	1510	Dec 16b	1950	Oct 17 1993
LOWEST DAILY MEAN	21	Oct 6	20	Apr 11c	.00	Oct 26 1977
ANNUAL SEVEN-DAY MINIMUM	43	Dec 1	20	Apr 8	1.0	Apr 1 1970
INSTANTANEOUS PEAK FLOW			1520	Dec 15d	2780	Dec 14 1993
INSTANTANEOUS PEAK STAGE			11.54	Dec 15d	14.94	Dec 14 1993
ANNUAL RUNOFF (AC-FT)	487500		376100		289400	
10 PERCENT EXCEEDS	1200		1170		1200	
50 PERCENT EXCEEDS	639		512		90	
90 PERCENT EXCEEDS	123		21		16	
a Post regulation b Also Dec 17						

c d e Also Apr 12-14 Also Dec 16, 17 Estimated

06904010 CHARITON RIVER NEAR MOULTON, IA

LOCATION.--Lat 40°41'30", long 92°46'15", in SE¹/₄ NE¹/₄ sec.14, T.68 N., R.17 W., Appanoose County, Hydrologic Unit 10280201, on right bank 6 ft downstream from bridge on County Highway J45 (543rd St.), 0.7 mi downstream from Hickory Creek, 5.0 mi west of Moulton, 8.0 mi upstream from Iowa-Missouri border, 20.8 mi downstream from Rathbun Dam, and at mile 121.5.

DRAINAGE AREA.--740 mi².

PERIOD OF RECORD--August 1979 to current year.

GAGE--Water stage recorder. Datum of gage is 800.00 ft above sea level (U.S. Army Corps of Engineers bench mark).

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by Rathbun Reservoir (station 06903880) 20.8 mi upstream. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey satellite and telephone modem data collection platform and U.S. Army Corps of Engineers rain gage at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1947 reached a stage of about 45 ft, discharge unknown, from information by U.S. Army Corps of Engineers.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

a Also June 23, 27, and July 9, 1988

e Estimated

06904010 CHARITON RIVER NEAR MOULTON, IA--Continued

CREST-STAGE PARTIAL-RECORD STATIONS

The following table contains annual maximum discharge for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuousrecord stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, but is not published herein. The years given in the period of record represent water years up to the current year for which the annual maximum has been determined.

MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS

[+--Not determined, a--peak stage did not reach bottom of gage, b--ice affected, c--old gage datum, d--estimate, e--peak affected by backwater]

			Water y	ear 1999	maximum	Period of record maximum		
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	BIG	SIOUX RI	VER BASIN	T				
Dawson Creek near Sibley, IA (06483440)	Lat 43°23'23", long 95°42'53", near NW corner sec.20, T.99 N., R.41 W., Osceola County, Hydrologic Unit 10170204, at culvert on County Highway A30, 2 mi southeast of Sibley. Drainage area 4.35 mi ² .	1952-	04-09-99	4.58	(+)	06-29-93	8.84	(+)
Burr Oak Creek near Perkins, IA (06483495)	<pre>Lat 43°14'43", long 96°10'38", in SEL/4, sec.5, T.97 N., R.45 W., Sioux County, Hydrologic Unit 10170204, at bridge on U.S. Highway 75, 4 mi north of Perkins. Drainage area 30.9 mi².</pre>	1966-	1999	(a)	<78.3	06-20-83	88.37	(+)
	PE	RRY CREE	K BASIN					
Perry Creek near Merrill, IA (06599800)	<pre>Lat 42°43'15", long 96°20'33", in NW1/4, sec.12, T.91, N., R.47 W., Plymouth County, Hydrologic Unit 10230001, at bridge on County Highway C44, 5 mi west of Merrill. Drainage area 8.17 mi².</pre>	1953- 1995 1996-	11-10-98	5.94	73.3	03-27-62	12.22	(+)
Perry Creek near Hinton, IA (06599950)	Lat 42°37'11", long 96°22'20", in NE1/4, sec.15, T.90 N., R.47 W., Plymouth County, Hydrologic Unit 10230001, at bridge on county highway, 4 mi west of Hinton. Drainage area 33.1 mi ² .	1953-	06-27-99	18.80	(+)	06-14-81	38.68	d5,500
	FL	OYD RIVE	R BASIN					
Little Floyd River near Sanborn, IA (06600030)	Lat 43°11′10", long 95°43′30", in NE1/4, sec.31, T.97 N., R.41 W., O'Brien County, Hydrologic Unit 10230002, at bridge on U.S. Highway 18, 3.5 mi west of Sanborn. Drainage area 8.44 mi ² .	1966-	1999	(a)	<104	03-02-70	89.04	(+)
Sweeney Creek tributary near Sheldon, IA	<pre>Lat 43°11'10", long 95°44'38", in SW1/4, sec.25, T.97 N., R.42 W., O'Brien County, Hydrologic Unit 10230002, at culvert on U.S. Highway 18, 4.8 mi east of Sheldon. Drainage area 0.62 mi².</pre>	1991-	06-10-99	95.01	(+)	07-14-93	99.27	(+)
West Branch Floyd River near Struble, IA (06600300)	Lat 42°55'26", long 96°10'36", in SE1/4, sec.29, T.94 N., R.45 W., Sioux County, Hydrologic Unit 10230002, at bridge on county highway B62, 0.1 mi west of U.S. Highway 75, 2.2 mi northeast of Struble. Drainage area 180 mi ²	1996-0	07-21-99	13.25	2,620	03-04-94	15.86	8,920
	MONONA-	HARRISON	DITCH BA	SIN				
Big Whiskey Slough near Remsen, IA (06601480)	Lat 42°48'28", long 95°53'21", in NW1/4, sec.11, T.92 N., R.43 W., Plymouth County, Hydrologic Unit 10230004, at bridge on State Highway 3, 4.2 mi east of Remsen. Drainage area 12.9 mi ² .	1966-	1999	(a)	(+)	03-22-79	94.87	(+)

			Water y	year 1999 m	naximum	Period of record maximum		
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	MONONA-HARRIS	ON DITCH	I BASIN	continued	l			
Elliott Creek at Lawton, IA (06602190)	<pre>Lat 42°28'30", long 96°11'22", in NW1/4, sec.3, T.88 N., R.46 W. Woodbury County, Hydrologic Unit 10230004, at bridge on U.S. Highway 20, at west edge of Lawton. Drainage area 34.8 mi².</pre>	1966-	1999	(a)	<356	06-12-84	86.14	3,150
	LITTLE	SIOUX F	RIVER BAS	IN				
Ocheyedan River near Ocheyedan, IA (06604510)	<pre>Lat 43°25'58", long 95°36'41", in NE1/4, sec.6, T.99 N., R.40 W., Osceola County, Hydrologic Unit 10230003, at bridge on State Highway 9, 4 mi northwest of Ocheyedan. Drainage area 73.5 mi².</pre>	1966-	1999	(a)	<350	06-29-93	86.79	2,200
Dry Run Creek near Harris, IA (06604584)	Lat 43 [°] 26'42", long 95 [°] 27'21", in NE1/4, sec.33, T.100 N., R.39 W., Osceola County, Hydrologic Unit 10230003, at culvert on county highway M12, 1 mi west of Harris. Drainage area 4.30 mi ² .	1990-	07-21-99	11.76	10.1	06-29-93	16.44	419
Prairie Creek near Spencer, IA (06605340)	Lat 43 ⁰ 05'16", long 95 ⁰ 09'40", in SE1/4, sec.36, T.96 N., R.37 W., Clay County, Hydrologic Unit 10230003, at bridge on U.S. Highway 71, 4 mi south of Spencer. Drainage area 22.3 mi ² .	1966-	06-06-99	88.05	297	07-04-71	90.77	2,200
Willow Creek near Cornell, IA (06605750)	Lat 42 ⁰ 58'21", long 95 ⁰ 09'40", in SE1/4, sec.12, T.94 N., R.37 W., Clay County, Hydrologic Unit 10230003, at bridge on U.S. Highway 71, 2 mi northwest of Cornell. Drainage area 78.6 mi ² .	1966-	06-06-99	84.97	386	03-22-79	91.49	4,200
Little Sioux River tributary near Peterson, IA (06605868)	Lat 42°55'25", long 95°21'55", in NW1/4, sec.32, T.94 N., R.38 W., Clay County, Hydrologic Unit, 10230003, at culvert on State Highway 10, 1.2 mi northwest of Peterson. Drainage area 0.29 mi ² .	1991-	1999	(a)	(+)	05-31-93	91.81	(+)
Willow Creek near Calumet, IA (06606231)	Lat 42 ^o 58'05", long 95 ^o 32'56" in NE1/4, sec. 15, T.94 N., R.40 W., Sac County, Hydrologic Unit 10230003, at culvert on State Highway10, 1.2 mi north of Calumet. Drainage area 4.13 mi ² .	1991-	06-06-99	98.78	(+)	07-14-93	100.92	(+)
Halfway Creek at Schaller, IA (0660683710)	Lat 42 ⁰ 30'18", long 95 ⁰ 17'19", in SW1/4, sec.24, T.89 N., R.38 W., Sac County, Hydrologic Unit 10230005, at culvert on State Highway 110, 0.1 mi north of Schaller. Drainage area 1.74 mi ² .	1990-	06-11-99	>94.13	(+)	07-14-92	94.11	(+)
	BOJ	ER RIVE	R BASIN					
Boyer River tributary at Woodbine, IA (06609482)	Lat 41 ⁰ 43'58", long 95 ⁰ 43'19", in SE1/4, sec.15, T.80 N., R.42 W., Harrison County, Hydrologic Unit 10230007, at culvert on county highway F32, 0.5 mi west of Woodbine. Drainage area 0.67 mi ² .	1990-	05-16-99	84.59	(+)	05-18-91	90.84	(+)
Willow Creek near Soldier, IA (06609560)	Lat 41 ⁰ 55'17", long 95 ⁰ 42'05", near S1/4 corner sec.11, T.82 N., R.42 W., Monona County, Hydrologic Unit 10230001, at bridge on State Highway 37, 6 mi southeast of Soldier. Drainage area 29.1 mi ² .	1966-	07-02-99	76.88	2,280	07-09-93	84.66	6,840

		Water year 1999 maximum			Period of record maximum			
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	MOSÇ	UITO CRI	EEK BASIN					
Moser Creek near Earling, IA (06610510)	Lat 41°46'35", long 95°26'55", in NE1/4, sec.1, T.80 N., R.40 W., Shelby County, Hydrologic Unit 10230006, at bridge on State Highway 37, 1.5 mi west of Earling. Drainage area 21.6 mi ² .	1966-	07-02-99	78.60	2,830	06-15-84	87.89	(+)
Mosquito Creek tributary near Neola, IA (06610581)	Lat 41°30'06", long 95°35'44", in NE1/4, sec.6, T.77 N., R.41 W., Pottawattamie County, Hydrologic Unit 10230006, at culvert on State Highway 191, 3.8 mi north of Neola, Drainage area 3.22 mi ² .	1991-	08-07-99	82.44	(+)	08-07-99	82.44	(+)
Keg Creek tributary near Mineola, IA (06805849)	Lat 41 ⁰ 07'53", long 95 ⁰ 43'31", in SW1/4, sec.7, T.73 N., R.42 W., Mills County, Hydrologic Unit 10240001, at culvert on county highway H12, 2.4 mi southwest of Mineola. Drainage area 2.01 mi ² .	1991-	07-10-99	82.97	602	07-10-99	82.97	602
	NISHN	ABOTNA R	IVER BASI	N				
Elm Creek near Jacksonville, IA (0680737930)	Lat 41 ⁰ 38'44", long 95 ⁰ 12'18", in SW1/4, sec.18, T.79 N., R.37 W., Shelby County, Hydrologic Unit 10240002, at culvert on State Highway 44, 2.8 mi west of Jacksonville. Drainage area 9.43 mi ² .	1990-	07-09-99	90.83	(+)	06-17-90	95.01	(+)
Indian Creek near Emerson, IA (06807470)	Lat 41°01'50", long 95°22'51", in NW1/4, sec.19, T.72 N., R.39 W., Montgomery County, Hydrologic Unit 10240002, at bridge on U.S. State Highway 34, 1 mi east of Emerson. Drainage area 37.3 mi ² .	1966-	08-07-99	94.32	13,600	06-15-82 08-07-99	92.63 94.32	15,800 13,600
Middle Silver Creek near Oakland, Ia (06807760)	<pre>Lat 41°19'28", long 95°33'19", in E1/4 corner, sec.4, T.75 N., R.41 W., Pottawattamie County, Hydrologic Unit 10240002, at bridge on county highway, 8.5 mi northwest of Oakland. Drainage area 25.7 mi².</pre>	1953-	08-07-99	14.00	1,790	07-04-73	14.73	2,110
Bluegrass Creek at Audubon, IA (06808880)	Lat 41°42'46", long 94°44'46", in NW1/4, sec.28, T.80 N., R.35 W., Audubon County, Hydrologic Unit 10240003, at bridge on U.S. Highway 71, near south edge of Audubon. Drainage area 15.4 mi ² .	1966-	07-09-99	80.68	1,310	07-09-93	88.55	(+)
	TAR	KIO RIVI	ER BASIN					
Tarkio River near Elliott, IA (06811760)	Lat 41°06′06″, long, 95°06′09″, near NE corner sec.28, T.73 N., R.37 W., Montgomery County, Hydrologic Unit 10240005, at bridge on county highway, 4.5 mi southeast of Elliott. Drainage area 10.7 mi ² .	1952-	08-07-99	11.59	1,860	08-29-93	12.98	4,640
East Tarkio Creek near Stanton, IA (06811800)	<pre>Lat 41⁰04'48", long 95⁰05'34", in W1/2 sec.34, T.73 N., R.37 W., Montgomery County, Hydrologic Unit 10240005, at bridge on county highway H24, 7 mi north of Stanton. Drainage area 4.66 mi².</pre>	1952-	06-10-99	9.75	979	06-09-67	13.74	4,790
Tarkio River tributary near Stanton, IA (06811820)	Lat 41 ⁰ 02'38", long 95 ⁰ 05'55", in NE1/4 sec.16, T.72 N., R.37 W., Montgomery County, Hydrologic Unit 10240005, at box culvert on county highway H63, 4 mi north of Stanton. Drainage area 0.67 mi ² .	1952-	06-23-99	5.56	1,070	06-23-99	5.56	1,070

			Water y	ear 1999	maximum	Period o	of record	maximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	TARKIO R	IVER BAS	IN conti	nued				
Snake Creek near Yorktown, IA (06811875)	Lat 40 [°] 44'33", long 95 [°] 07'46", in NW1/4, sec.32, T.69 N., R.37 W., Page County, Hydrologic Unit 10240005, at bridge on State Highway 2, 1.5 mi northeast of Yorktown. Drainage area 9.10 mi ² .	1966- 1991 1997-	1999	(a)	(+)	07-09-87	95.24	3,080
	NODA	AWAY RIV	ER BASIN					
West Nodaway River at Massena, IA (06816290)	Lat 41°14'44", long 94°45'27", in SE1/4, sec.33, T.75 N., R.34 W., Cass County, Hydrologic Unit 10240009, at bridge on State Highway 148, at southeast corner of Massena. Drainage area 23.4 mi ² .	1966-	06-23-99	75.09	658	02-01-73	82.39	(+)
	PLA	TTE RIVE	ER BASIN					
Platte River near Diagonal, IA (06818750)	Lat 40°46'02", long 94°24'46", in NW1/4, sec. 22, T.69 N., R.31 W., Ringgold County, Hydrologic Unit 10240012, at bridge on county highway, 2.2 mi upstream from Turkey Creek, 4.6 mi. southwest of Diagonal, and 4.9 mi downstream from Gard Creek. Drainage area 217 mi ² .	1968- 1991 1997-	06-12-99	17.80	4,200	09-09-89	23.60	8,630
Middle Branch 102 River near Gravity, IA (06819110)	Lat 40 [°] 49'40", long 94 [°] 44'18", in SE1/4, sec.27, T.70 N., R.34 W., Taylor County, Hydrologic Unit 10240013, at bridge on State Highway 148, 4.8 mi north of Gravity. Drainage area 34.5 mi ² .	1966-	06-13-99	64.68	1,172	02-01-73 07-05-93	c83.65 76.83	(+) d4,790
	GR	AND RIVE	R BASIN					
Sevenmile Creek, near Thayer, IA (06897858)	Lat 41°01'37", long 94°00'03", in SE1/4, sec.18, T.72 N., R.27 W., Clarke County, Hydrologic Unit 10280102, at culvert on U.S. Highway 34, 2.6 mi east of Thayer Drainage area 6.61 mi ² .	1991-	04-15-99	16.70	(+)	09-15-92	24.92	d1,330
Elk Creek near Decatur City, IA (06897950)	Lat 40 ^o 43'18", long 93 ^o 56'12", in SE1/4, sec. 34, T.69 N., R.27 W., Decatur County, Hydrologic Unit 10280102, at bridge on county Highway, 1,000 ft. downstream from West Elk Creek, 5.8 mi. upstream from mouth, and 5.5 mi. (Revised) west of Decatur City. Drainage area 52.5 mi ² .	1968-	04-16-99	18.08	3,190	07-05-93	29.93	32,800

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
			064835	00 Rock	River near Rock Valley, IA				
ОСТ 07	1005	293	10.5	643	MAY 05	1120	1220	15.0	820
NOV 24	1120	1530	3.5	864	JUN 16	0925	1230	14.6	881
JAN 07	1020	213	2	925	JUL 29	1120	407	28.0	837
FEB 19	0930	578	4.2	660	SEP 08	1135	104	18.0	583
MAR 24	1105	676	6.5	826					
		0	6600000 P	erry Cree	k at 38th Street, Sioux City	, IA			
OCT					МАҮ				
08 NOV	1130	17	9.2	793	03 JUN	1310	29	13.0	790
19 JAN	1350	31	3.0	764	14 JUL	1155	31	16.0	809
08 FEB	0930	25	.0	818	27 SEP	1125	24	21.7	802
08 MAR	1330	39	4.3	622	07	1100	14	18.5	797
22	1500	25	6.5	866					
			06	600100 F	loyd River at Alton, IA				
OCT 07	1335	15	13 1	848	MAY 05	1435	172	15 0	856
NOV 18	1350	96	5.9	854	JUN 16	1320	242	13.5	859
JAN 07	1400	17	.0	999	JUL 29	1100	90	28.0	863
FEB 09	1220	95	.4	699	SEP 07	1725	12	23.5	938
MAR 24	1450	62	6.0	847					
			06	600500 F	land Dimon at Tamon TA				
OCT			00	600300 F	MAY				
09	1150	133	12.5	967	06	1000	531	12.5	925
18 JAN	1140	519	2.8	948	16	1555	1050	16.0	893
07 FEB	1635	146	.0	1010	27 SEP	1530	581	28.0	835
09 11	1025 1035	588 425	.5 1.5	744 817	07	1310	132	21.5	944
MAR 22	1200	303	7.0	958					
0.77			06601	200 Miss	ouri River at Decatur, NE				
13	1530	33500	14.0	772	15	1315	42200	10.0	869
NOV	1240	37500	15.1	755	20 MAY	1120	34900	14 5	1020
24	1045	45700	6.0	820	26	1240	44300	14.5	871
08	1225	37400	5.5	844	07	1215	43300 46500	21.5	906 906
19 FEB	1350	25800	1.0	844	JUL 06	1130	50500	25.5	912
05	1100 1230	30200 30800	1.0	786 745	19 AUG	1240	43700	26.0	940
MAR 04	1305	31400	5.0	839	05	1335 1030	42800 41200	26.5 24.0	916 890
16 30	1330 1215	34200 33900	9.0	 796	SEP 02	0920	47100	25.0	863
					13	1225	49300	20.0	775

The following water temperature and specific conductance measurements were made at the indicated sites during water year 1999.

D	ATE TIN	DI CHAR INS CUE FE 4E PE SEC (000	S- GE, T. ST. SET TEMPER- ET ATURE R WATER COND (DEG C) 661) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)		DATE TI	DIS- CHARGH INST CUBIC FEE" ME PER SECOL (0006)	- E, C TEMPER- F ATURE WATER WD (DEG C) 1) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
			06602	020 West	Fork Ditch at Horn	ick, IA			
OCT 01	085	50 73	12.0	757	MAY 20	13	50 160	15 0	757
NOV 09	. 15	20 99	5.0	773	JUL 07	10	35 239	20.0	806
DEC 29	134	10 93	0	799	AUG 02	11	05 150	22 0	789
FEB 18	. 090)5 128	.0	767	SEP 17	10	35 63	14.0	726
APR 05	. 115	50 115	9.0	739					
			06602400	Monona-	Harrison Ditch near	Turin, IA			
NOV					МАҮ	•			
09 JAN	. 105	50 199	6.0	790	19 JUN	12	50 337	18.0	776
05 FEB	. 163	30 144	.0	778	28 AUG	15	45 1870	21.0	346
18 APR	. 115	50 241	1.0	754	02 SEP	15	50 274	23.0	789
07 22	. 113 . 119	30 343 50 4270	12.0 11.0	727 204	15	13	10 154	16.0	764
			066050	000 Ochey	edan River near Spe	ncer, IA			
OCT	1.03	20 20	12 1	790	MAY	15	10 255	15 6	702
NOV	. 16	5 162	5.1	803	JUN	15	40 562	14 4	910
JAN	. 10.	10 23		432	JUL 28	10	15 135	31 0	779
FEB	. 100	10 23	.0	516	SEP	12	25 17	21 0	646
MAR 23	. 155	50 155	10.5	788	05	15	25 17	21.0	010
			06605850	Little	Sloux River at Linn	Grove, IA			
OCT 06	. 094	10 118	12.1	666	MAY 04	11	.55 1670	15.0	724
NOV 17	. 145	55 740	5.0	770	JUN 15	10	55 4580	18.9	615
JAN 06	. 130	00 129	.0	710	JUL 28	16	30 795	29.5	650
FEB 10	. 142	25 371	.5	617	SEP 09	13	00 84	21.8	542
MAR 23	. 134	15 843	8.0	765					
			06606600 I	ittle Sic	ux River at Correct	ionville, IA			
ОСТ 05	. 14	30 314	14.0	677	MAY 04	10	35 2880	15.0	728
NOV 17	. 11(0 1240	4.7	740	JUN 15	11	15 5020	19.5	579
JAN 06	. 094	10 297	.0	846	JUL 27	17	30 1810	28.9	676
FEB 18.	.]6	30 1150	2.6	669	SEP 09	09	15 194	17.5	592
MAR 23	. 100	0 1340	6.2	705	00	. 05		1	
			0000	7200 -	lo Divon et Marlata	- 13			
NOV			0660	7200 Ma <u>r</u>	Die River at Mapleto	n, IA			
09	. 130)5 236	5.0	734	MAY 20	11	.50 768	16.0	679
08	. 123	30 135	.0	768	JUL 07	13	10 487	21.0	723
17	. 160)5 283	.5	680	AUG 02	13	20 300	24.0	710
арк 05	. 134	10 278	9.5	657	SEP 17	12	50 131	18.0	695

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)		DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
			0660750	00 Little	Sioux River ne	ear Turin, IA	4			
NOV	1105	1110	3 0	714		MAY 19	1115	3600	16 0	666
JAN 05	1415	547	.0	832		JUN 28	1345	3510	23.0	558
FEB 16	1350	1640	2.0	669		AUG 05	1040	1230	24.0	685
APR 07	1100	1790	11.5	663		SEP 15	1120	373	16.0	630
			0660	08500 Sol	dier River at 1	Pisgah, IA				
NOV 13	1050	176	4.0	728		APR 07	1420	241	15.0	658
DEC 22	1215	98	.0	650		22	1340 1400	2500 2240	10.0 10.0	308 308
28 JAN	1520	110	.0	756		MAY 24	1135	332	17.0	661
05 11	1230	109	.0	735		27	1450	3080	20.0	258
20 FEB	1155	134	1.0	735		AUG 04	1050	232	22.0	702
05 18	1245	243 170	3.0	580 694		23	1135	152	15.0	719
			06	5609500 B	oyer River at 1	Logan, IA				
NOV					-	MAY				
13 JAN	1335	352	5.5	714		24 JUN	1500	1000	19.0	642
05 FEB	1005	150	.0	774		27 AUG	1700	4860	22.0	348
19 APR	1405	301	1.5	680		04 SEP	1330	425	24.0	677
08	1050	929	12.5	630		23	1435	219	19.0	674
			06807410	West Nis	hnabotna River	at Hancock,	IA			
OCT 08	1255	232	12.0	670		MAY 10	1130	712	16.0	586
NOV 17	0930	234	5.0	653		JUN 28	1025	1900	20.0	307
JAN 13	1220	129	.0	648		AUG 03	1115	442	17.0	656
FEB 18	1145	184	.0	618		SEP 14	0940	232	14.0	650
MAR 31	1100	255	12.0	609						
			06808500	West Nis	hnabotna River	at Randolph,	IA			
OCT	1415	633	15 0	600		MAY	1240	1020	15 0	F 0 2
NOV	1005	632	15.0	609		12	1215	13700	17.0	213
JAN	1025	058	6.0	000		JUL	1315	12800	17.0	213
FEB	1150	338	.0	644		AUG	1145	4270	19.0	334
APR	1015	450	15.0	602		SEP	1000	652	14 0	601
01	1215	5/4	15.0	800		10	1000	000	14.0	031
			06809210	East Nish	nabotna River 1	near Atlantic	2, IA			
OCT 08	1055	154	10.0	558		MAY 10	1015	562	16.0	486
NOV 17	1110	215	6.0	527		JUN 23	1225	6900	19.5	195
J'AN 13	1055	99	1	536		AUG 03	0920	329	19.0	516
FEB 18	0930	178	1.0	516		SEP 14	1145	132	15.0	554
MAR 29	1240	223	13.0	500						

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)		DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
			06809500	East Ni	shnabotna River	at Red Oak, IA				
OCT	1005	404	10.0	100		MAY	0005	11100		
NOV	1235	434	13.0	496		17	0905	12900		
20 FEB	0930	340	3.0	516		JUN 29	1050	2230		
17 MAR	1230	254	2.0	492		AUG 06	0920	550	23.0	510
29	1015	411	10.0	486		SEP 15	1320	268	17.0	521
			06810000	Nishna	botna River abc	ove Hamburg, IA				
OCT						MAY				
07	0905	1160	12.0	525		12 18	1120 1025	3560 16000	15.0 13.0	470 239
19	1110	1090	7.0	546		18	1030	15100	13.0	239
14	1000	709	.0	467		01	0955	8780	18.0	386
FEB 19	1040	814	.0	508		AUG 05	1235	1900	28.0	410
APR 01	1005	1070	14.0	502		SEP 15	0945	1120	16.0	536
			068	13500 M	lissouri River a	t Rulo, NE				
OCT						MAY				
05	1225	49800	16.5	750		05	1100	63800	16.0	832
21	1155	42600	15.5	762		19	1215	87000	18.5	757
28 NOV	1140	46400	16.0	739		24 JUN	1130	86000	20.0	730
04	1135 1115	59400 62000	11.0	766 710		04	1230 1220	95600 77100	21.0 25.0	675 759
17	1425	65900	7.0	752		14	1240	90800	22.5	665
25 DEC	1110	62800	6./	/92		24 JUL	1315	80700	22.5	790
01	1430 1150	60400 53900	9.0 7.0	808 830		01	1050 1110	112000 82800	19.0 27.0	671 825
14	1200	49300	5.0	840		14	1135	67000	26.0	853
20	1100	38700	1.5	834		20	1150	62000	30.0	878
FEB 03	1145	38700	2.0	778		AUG 04	1200	58800	27.0	869
09	1100	47300	3.5	724		11	1000	66400	25.0	732
18 26	1220	45300 43100	3.5	749		18 27	1010	59000 54400	27.0	834 847
MAR	1140	42600	E O	702		31	1135	56500	27.0	854
10	1235	49600	4.0	780		09	1000	60200	24.0	794
17	1130 1000	49600 52300	6.0 8 0	782 807		14	1020 1120	60300 56300	21.0 19 0	777 812
APR	1000	52500	0.0			30	1130	55500	18.0	803
01	1230 1120	45800 62200	12.0 11.0	784 708						
14	1150	57100	12.0	795						
21 29	1135 1120	65900 74200	12.0 13.0	810 777						
			06817	000 Nod	away Biyon at (larinda TA				
0.00			00017	000 1000	anay niver at (ADD				
06	0955	124	12.0	406		арк 15		6790		
NOV 17	1500	176	9.0	435		15 MAY	1450	7470	8.0	253
JAN 12	1/55	126	0	207		13	1100	1050	15.0	464
⊥∠ FEB	1455	⊥∠b	.0	38/		30	1650	671	22.0	410
17 MAR	0900	106	.0	416		AUG 02	1435	176	25.0	408
31	0825	174	11.0	404		SEP 14	1445	87	14.0	417

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SE C1 TEMPER- CC ATURE DU WATER AN (DEG C) (US (00010) (00	PE- FIC NT- ICT- ICE \$/CM) 0095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
			06819185	East Fork 102 River	at Bedford, I	A			
OCT 05	1240	4.4	15.0	445	MAY 11	1330	44	17.0	346
NOV 17	1400	7.0	9.0	362	JUN 23	1430	1390	20.5	143
JAN 12	1225	1.1	3.0	573	30 AUG	1345	64	20.0	324
FEB 16	1600	8.5	5.0	387	02 SEP	1415	58	25.0	230
MAR 30	1300	13	14.0	351	13	1340	.70	23.0	404
15 15 15	1135 1155 1210	2360 2140 2290	7.0 	220 					
			06898000	Thompson River at 1	Davis City, IA				
OCT 05	1105	376	16.0	233	APR 27	1325	4090	13.0	238
NOV 17	1115	154	8.0	460	MAY 11	1050	340	19.0	444
JAN 11	0945	21	1	620	JUN 30	1110	338	22.0	398
FEB 16	1300	209	4.0	444	AUG 02	1125	69	24.0	393
MAR 30	1025	168	13.0	459	SEP 13	1050	42	17.0	327
			06903400	Chariton River nea	r Chariton, IA				
OCT	0945	83	11 4	334	APR 03	1430	308	16 3	324
NOV 10	0913	1280	7 5	199	28	1247	2180	12.4	163
DEC 15	1004	33	1.4	443	09 JUL	0935	29	24.1	565
FEB 03	0826	72	.0	388	21 AUG	0640	5.4	27.2	328
MAR 16	0940	662	2.7	240	31 SEP	0950	2.8	21.0	338
					30	0810	2.9	20.0	421
		0690	3700 South H	Fork Chariton River	near Promise C	ity, IA			
OCT 14	1245	3.6	11.4	413	APR 16	1448	2680	4.7	231
10	0700	1790	7.9	227	28 JUN	1120	572	12.3	267
15	0802	35	2.0	454	JUL	1005	35	24.5	378
03 MAR	1450	77	.4	407	AUG 31	0810	1 1	27.5	497
16	0832	1410	2.1	227	51	0010	1.1	20.5	197
			06903900	Chariton River nea	r Rathbun, IA				
NOV 09	1240	606	11.1	229	APR 02	0725	11	7.9	252
DEC 14	1452	1380	7.8	228	29 JUN	0930	430	11.4	260
FEB 04	1030	316	2.2	253	10 JUL	0640	787	19.5	256
MAR 15	1330	627	3.6	243	22 AUG	0615	825	23.7	255
					30	1300	52	24.3	253
0.077			06904010	Chariton River nea	r Moulton, IA				
01	0841	261	18.3	258	арк 29	0745	969	11.6	275
09	1510	1000	8.8	323	09	1400	892	21.6	271
14 FEB	1704	1400	8.1	243	21 AUG	1205	1210	25.7	251
04 MAR	0730	427	1.8	430	30	1555	124	24.8	269
15	1650	867	4.6	296					

ADAMS COUNTY

410247094324801. Local number, 72-32-09 CBCC. LOCATION.--Lat 41°02'48", long 94°32'48", Hydrologic Unit 10240010, on the east side of county road, approximately 4 mi northeast of the City of Prescott. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift of Pleistocene age (might be in Albany buried-channel). WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 276 ft, screened 266-276 ft, gravel

packed

DATUM.--Elevation of land-surface datum is 1,220 ft above sea level, from topographic map. Measuring point: Top of casing, 1.40 ft above land-surface datum. REMARKS.--Well SW-78. PERIOD OF RECORD.--October 1987 to November 1987, June 1990, and November 1992 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured,1.38 feet below land-surface datum, May 09, 1996; lowest measured, 3.08 ft below land-surface datum, December 06, 1996.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
10V 05	2.52	FEB 12	2.38	MAY 14	2.19	AUG 12	2.41
	WATER YEAR	1999 HIGH	EST 2.19	MAY 14, 1999	LOWEST	2.52 NOV 05	, 1998

410248094324801. Local number, 72-32-09 CCBB. LOCATION.--Lat 41°02'48", long 94°32'48", Hydrologic Unit 10240010, on the east side of county road, approximately 4 mi northeast of the City of Prescott. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 136 ft, screened 130-136 ft, gravel

packed.

INSTRUMENTATION. --Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,220 ft above sea level, from topographic map. Measuring point: Top of casing,

2.65 ft above land-surface datum.

NO

REMARKS.--Well SW-83. PERIOD OF RECORD.--August 1988, June 1990, and November 1992 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.72 feet below land-surface datum, February 3, 1994; lowest measured, 5.30 ft below land-surface datum, August 4, 1997.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 05	5.07	FEB 12	5.08	MAY 14	4.84	AUG 12	5.10
	WATER YEAD	R 1999 HI	GHEST 4.84	MAY 14, 1999	LOWEST	5.10 AUG 12	, 1999

APPANOOSE COUNTY

404103092404001. Local number, 68-16-15 DDAD. LOCATION.--Lat 40°41'03", long 92°40'40", Hydrologic Unit 10280201, located approximately 4 mi south of State Highway 2 on State Highway 202 beneath water tower in the Town of Moulton. Owner: Town of Moulton. AQUIFER.--Cambrian/Ordovician.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 8 and 12.75 in., depth 2377 ft, screened 1713-1736 ft.

INSTRUMENTATION.-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 992.00 ft above sea level, by unknown method. Measuring point: Top of well

cover, 1.07 ft above land-surface datum. REMARKS.-- Moulton Town Well. PERIOD OF RECORD.--October 1996 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 381.37 feet below land surface datum, October 10, 1996; lowest measured, 389.00 feet below land-surface datum February 08, 1999.

DATE	WATER <u>E LEVEL DATE</u>		WATER LEVEL DATE		WATER <u>LEVEL</u>	DATE	WATER ATE LEVEL		
NOV 04	384.31 FEB 08		389.00	MAY 05	383.82 AUG 0		385.03		
	WATER YEAR 1999	HIGHES	T 383.82	MAY 05, 1999	LOWEST	389.00 FEB	08, 1999		

AUDUBON COUNTY

413044094565601. Local number, 78-36-35 ADCC1. LOCATION.--Lat 41°30'44", long 94°56'56", Hydrologic Unit 10240003, 2.5 mi south of the Town of Brayton on Highway 71, and 0.3 mi west on the north side of County Road F-67. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 115 ft, screened 94-101 ft, open

hole 101-115 ft., gravel-packed.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,230 ft above sea level, from topographic map. Measuring point: Top of casing, 2.37 ft above land-surface datum. REMARKS.--Well WC-69. PERIOD OF RECORD.--June 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 29.43 ft below land-surface datum, August 11, 1993; lowest measured, 53.55 ft below land-surface datum, April 12, 1990.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	42.44	FEB 12	45.83	MAY 14	43.15	AUG 09	37.83
	WATER YEAR	1999 HIGHI	EST 37.83	AUG 09, 1999	LOWEST	45.83 FEB 12	, 1999

413958094544501. Local number, 79-35-10 CABB. LOCATION.--Lat 41°39'58", long 94°54'45", Hydrologic Unit 10240003, approximately 0.3 mi west of the Town of Hamlin, on the south side of Highway 44. Owner: Geological Survey Bureau/DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS. --Drilled observation artesian water well, diameter 2 in., depth 221 ft, screened 168-188 ft, open hole 210-221 ft, gravel-packed.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,280 ft above sea level, from topographic map. Measuring point: Top of casing, 5.37 ft above land-surface datum. REMARKS.--Well WC-17.

EXTREMENS. Werl Werl, August 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 34.66 ft below land-surface datum, November 6, 1997 and May 09, 1995; lowest measured, 42.40 ft below land-surface datum, November 8, 1991.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 04	35.47	FEB 12	35.39	MAY 14	35.12	AUG 09	35.41
	WATER YEAR	а 1999 н	IGHEST 35.12	MAY 14, 1999	LOWEST	35.47 NOV 0	4, 1998

413958094544501

AUDUBON COUNTY--Continued

415023094593801. Local number, 81-36-12 CBCA

LOCATION.--Lat 41°50'23", long 94°59'38", Hydrologic Unit 10240002, approximately 0.5 mi west of the Town of Gray on the east side

of County Road N-14, south of the Gray Cemetery. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS .-- Drilled observation artesian water well, diameter 2 in., depth 315 ft, screened 279-295 ft, gravelpacked.

INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,393 ft above sea level, from topographic map. Measuring point: Top of casing, 1.40 ft above land-surface datum. REMARKS.--Well WC-18.

PERIOD OF RECORD.--August 1981 to current year. REVISION.--Measuring point revised February 13, 1990 to August 4, 1992. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 159 ft below land-surface datum, August 05, 1998; lowest measured, 168.52 ft below land-surface datum, October 6, 1987.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	160.06	FEB 11	159.91	MAY 10	159.84	AUG 09	160.25

WATER YEAR 1999 HIGHEST 159.84 MAY 10, 1999 LOWEST 160.25 AUG 09, 1999

BENTON COUNTY

420731092083801. Local number, 85-11-33 CCBC1. LOCATION.--Lat 42°07'31", long 92°08'38", Hydrologic Unit 07080205, approximately 1 mi south of the Town of Garrison, just east of County Road V-56. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Devonian: Cedar Valley limestone of Middle Devonian age.

Agorrak.--Devolution: Cedar Varley filestone of middle Devolution age.
WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 0.75 in., depth 237 ft, cement plug 97-100 ft, screened below cement plug, open hole 170-237 ft.
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 905 ft above sea level, from topographic map. Measuring point: Top of 6 in. casing, 2.20 ft above land-surface datum.

REMARKS.--Garrison 170 well; Garrison wells 109 and 340 also in this hole. PERIOD OF RECORD.--June 1977 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 60.18 ft below land-surface datum, April 19, 1983; lowest

measured, 87.50 ft below land-surface datum, August 2, 1994.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 02	62.56	FEB 10	62.91	MAY 03	62.27	AUG 09	63.24
	WATED VEAD	5 1000 U	TCUEST 62 27	MAY 02 1000	IOWEST	62 24 AUC 0	1000

WATER YEAR 1999 HIGHEST 62.27 MAY 03, 1999 LOWEST 63.24 AUG 09, 1999

BENTON COUNTY--Continued

420731092083803. Local number, 85-11-33 CCBC3.
 LOCATION.--Lat 42°07'31", long 92°08'38", Hydrologic Unit 07080205, approximately 1 mi south of the Town of Garrison, just east of County Road V-56. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.
 AQUIFER.--Devonian: Cedar Valley limestone of Middle Devonian age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in., depth 97 ft, open hole 90-97 ft, cement plug 97-100 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 905 ft above sea level, from topographic map. Measuring point: Top of 6 in.

Casing, 2.20 ft above land-surface datum.
 REMARKS.--Garrison 109 well; Garrison wells 170 and 340 also in this hole.
 PERIOD OF RECORD.--June 1977 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 60.63 ft below land-surface datum, March 23, 1979; lowest measured, 66.87 ft below land-surface datum, August 4, 1997.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 02	62.59	FEB 10	63.02	MAY 03	65.48	AUG 09	63.03
	WATER YEAR	1999 HIGH	HEST 62.59	NOV 02, 1998	LOWEST	65.48 MAY 0	3, 1999

420731092083802. Local number 85-11-33 CCBC.

LOCATION.--Lat 42°07'31", long 92°08'38", Hydrologic Unit 07080205, approximately 1 mi south of the Town of Garrison, just east of County Road V-56. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian

WELL CHARACTERISTCS.-- Drilled observation artesian water well, diameter 6in., depth 538 ft, casing information unknown IINSTRUMENTATION.-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 905 ft above sea level, from topographic map. Measuring point: Top of 6 in.

casing, 2.20 ft above

land-surface datum.

REMARKS.--Garrison 340 well; Garrison wells 170 and 109 also in this hole.

EXTREMES FOR PERIOD OF RECORD.--October 1975 to March 1981; November 1982 to November 1990; November 1993 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 67.50 ft below land-surface datum, August 4 1997; lowest measured, 104.94 ft below land-surface datum, August 21, 1985.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WAT LEV	TER TEL	DATE	WATER LEVEL	DAT	ГЕ	W L	ATER EVEL
NOV 02	82.54	FEB 10	85.	47	MAY 03	86.24	AUG	09	8	86.27
	WATER YEA	AR 1999	HIGHEST	82.54	NOV 02, 19	998 LOWEST	86.27	AUG	09,	1999

BREMER COUNTY

424224092133901. Local number, 91-12-11 DBB. LOCATION.--Lat 42°42'15", long 92°13'29", Hydrologic Unit 07080102, located in the town of Readlyn, approximately 0.5 mi south of State Highway 3, in the northwest corner of town limits. Owner: Town of Readlyn. AQUIFER.--Silurian, Alexanderian Series dolomite. WELL CHARACTERISTICS.--Drilled public-use well, diameter 16 in, depth 154 ft, casing open from 99-154 ft. INSTRUMENTATION.--Quarterly measurement with airline by USGS personnel DATUM.--Elevation of land-surface is 1038 feet above sea level, by topographic map.

REMARKS.--Readlyn No. 2 PERIOD OF RECORD. -- August 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 86 feet below land-surface datum, November 05, 1998, lowest measured, 92 feet below land-surface datum, May 05, 1998.

	WATER LEVELS,	IN FEET BELOW	LAND SURFACE	DATUM, WATER	YEAR OCTOBER	1998 TO SEPTI	EMBER 1999	
	WATER		WATER		WATER		WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	
NOV 05	86	FEB 08	88	MAY 04	89	AUG 02	89	
WAT	ER YEAR 1999	HIGHEST 86	NOV 05.	1998 I.OV	IEST 89	MAY 04, 1999	AUG 02, 199	99

BUCHANAN COUNTY

422836092034401. Local number, 89-10-32 BCC.

LOCATION.--Lat 42°28'36", long 92°03'44", Hydrologic Unit 07080205, approximately 1.7 miles north of U.S. Highway 20 in the east central section of the Town of Jesup. Owner: Town of Jesup. AQUIFER.--Silurian.

WELL CHARACTERISTICS.--Drilled public supply well, diameter 10 in., depth 365 ft, steel casing to 206 ft, open interval 206-365 ft.

INSTRUMENTATION. -- Quarterly measurement with airline by USGS personnel. DATUM.--Elevation of land-surface datum is 995 ft above sea level, from topographic map.

PENDAR DEVELOP No.4 PERIOD OF RECORD. - August 1997 to current year.

WAT

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 85 ft below land-surface datum, August 4,1997; lowest measured, 185 ft below land-surface datum, November 25, 1997.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

	WATER LEVEL	DATE	WATER LEVEL	DATE	R	WATEI LEVEI	DATE	
	140	MAY 05	140	FEB 19		143	NOV 08	
NOV 08, 1998	LOWEST 143	19, 1999	1999 FEB	MAY 05,	140	HIGHEST	ER YEAR 1999	ER

BUENA VISTA COUNTY

424023095571401. Local number, 91-35-26 BCCC LOCATION.--Lat 42°40'09", long 94°57'15", Hydrologic Unit 07100006, approximately 2.7 mi west and 0.5 mi north of the village of Varina. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in., depth 357 ft, cased tp 357 ft. screened interval 338-347 ft. Paleozoic rock present at 347 ft.

INSTRUMENTATION. --Quarterly measurement with chalked tape by U.S.G.S. personnel. DATUM.--Elevation of land-surface datum is 1,291 ft above sea level, from topographic map. Measuring point: Top of casing, DATUM.--Elevation of land-surface datum is 1,291 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. REMARKS.--Well D-24. PERIOD OF RECORD.--December 1978 to August 1994, November 1996 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.04 ft below land-surface datum, January 7,1980; lowest

measured, 96.16 ft below land-surface datum, August 04, 1999.

	WATER LEVE	ELS, 1	IN FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPI	EMBER	1999
	WATER				WAT	ER			WAT	ER				WATE	ER
DATE	<u>LEVEL</u>		DA	ГE	LEV	EL	DAT	ГE	LEV	EL	D	ATE	Ξ	LEVE	EL
NOV 03	95.85		FEB	09	95.5	59	MAY	7 05	95.1	9	AU	JG ()4	96.10	б
	WATER	YEAR	1999	HIG	IEST	95.19	MAY 05	, 1999	1	LOWEST	96.1	6 1	AUG 0	4, 199	99

BUENA VISTA COUNTY--Continued

425233094545001. Local number, 93-35-13 ADAA.
LOCATION.--Lat 42°52′33″, long 94°54′50″, Hydrologic Unit 07100006, south of the Chicago, Rock Island and Pacific Railroad track, approximately 3.5 mi east and 0.75 mi north of the Town of Marathon. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.
AQUIFER.--Dakota: sandstone of Cretaceous age.
WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 1.50 in., depth 381 ft, screened 350-360 ft.
INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel.
DATUM --Florentian and Land-our face dotum in 1.220 ft abuve one level from toprographic man Monouring point: Top of caping

DATUM. --Elevation of land-surface datum is 1,330 ft above sea level, from topographic map. Measuring point: Top of casing, 3.00 ft above land-surface datum.
 REMARKS.--Well D-36.
 PERIOD OF RECORD.--February 1980 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 115.06 ft below land-surface datum, January 31, 1994; lowest measured, 137.37 ft below land-surface datum, August 10, 1995.

DATE	WATER <u>LEVEL</u>	DATE	WATI LEVI	ER EL	DATE	WATER <u>LEVEL</u>	DA	<u>ГЕ</u>	WATER <u>LEVEL</u>
NOV 03	133.67	FEB 09) 133.4	19	MAY 05	133.22	AUG	604	133.96
	WATER	YEAR 1999	HIGHEST	133.22	MAY 05, 199	DOWEST	133.96	AUG	04, 1999

425233094545001

CALHOUN COUNTY

422812094383501. Local number, 88-32-01 BACD.

LOCATION.--Lat 42°28'12", long 94°38'35", Hydrologic Unit 07100006, located approximately 4.5 mi north of Rockwell City, in a trailer park at the south end of North Twin Lake in Twin Lakes State Park. Owner: Pauline Goins. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Dug unused water-table well, diameter 24 in., depth 35 ft, casing interval unknown. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,222 ft above sea level, from topographic map. Measuring point: Top of casing, 1.12 ft above land-surface datum.

1.12 It above land-surface datum. REMARKS.--Twin Lakes (33F2) well. PERIOD OF RECORD.--May 1989 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.86 ft below land-surface datum, April 19, 1991; lowest measured, 16.96 ft below land-surface datum, February 28, 1990.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>'E LEVEL DATE</u>		WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	
NOV 03	8.51	FEB 10	6.48	MAY 06	5.2	AUG 04	8.44	
	WATER YEAR	1999 HIG	HEST 5.2	MAY 06, 1999	LOWEST	8.51 NOV 03	3, 1998	

422339094375101. Local number, 88-33-36 ADAA. LOCATION.-- Lat 42°23'47", long 94°37'57", Hydrologic Unit 07100006, located at the corner of main and 3rd street, three blocks south of U.S. Highway 20. Owner: City of Rockwell. AQUIFER.-- Cambrian/Ordovician: Prairie du Chen Formation dolomite

WELL CHARACTERISTICS.-- Drilled public supply well, diameter 16 in., depth 1970 ft., casing interval 1592-1970? ft, gravel packed. INSTRUMENTATION.-- Quarterly measurements with airline by USGS personnel.

DATUM.-- Elevation of land-surface datum is 1,227 ft above sea level, from topographic map. REMARKS.--Rockwell City Well No. 4 PERIOD OF RECORD.--February 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 199 ft below land-surface datum, Oct. 07, 1997 and Feb. 10, 1998; lowest measured, 287 ft below land-surface datum, February 10, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	217	FEB 10	287	MAY 06	262	AUG 04	252
	WATER YEAF	к 1999 на	IGHEST 217	NOV 03, 1998	LOWEST	287 FEB	10, 1999

CARROLL COUNTY

420230094455101. Local number, 84-34-35 DAAA. LOCATION.--Lat 42°02'30", long 94°45'51", Hydrologic Unit 07100007, on the south side of county road, approximately 1 mi east of Arthur N. Neu County Airport. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Alluvial and glacial drift: Middle Raccoon River sand and gravel and glacial drift of Quaternary age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 40 ft, screened 28-40 ft, gravel packed.

Glacial till 31-36 ft and 37-40 ft.

INSTRUMENTATION. --Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,185 ft above sea level, from topographic map. Measuring point: Top of casing, 2.35 ft above land-surface datum. REMARKS.--Well WC-146.

PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.50 feet below land-surface datum, May 10, 1995; lowest measured, 8.27 ft below land-surface datum, November 07, 1995.

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 03	6.09	FEB 10	6.05	MAY06	3.47	AUG 04	4.33
	WATER YEAR	1999 HIC	SHEST 3.47	MAY 06, 1999	LOWEST	6.09 NOV 0	3, 1998

CARROLL COUNTY--Continued

420233094475901. Local number, 83-35-34 BCDC.

LOCATION.--Lat 42°02'33", long 94°47'59", Hydrologic Unit 07100007, approximately 3.5 mi west and 1.5 mi south of the Town of Glidden near the airport, west of County Road N-38. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS. --Drilled observation artesian water well, diameter 2 in., depth 100 ft, screened 72-76 ft; gravel packed, open hole 99-100 ft. Pennsylvanian rock 80-100 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,225 ft above sea level, from topographic map. Measuring point: Top of casing, 2.85 ft above land-surface datum.
 REMARKS.--Well WC-148.
 PERIOD OF RECORD.--October 1982 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.56 ft below land-surface datum, May 4, 1983; lowest measured, 23.72 ft below land-surface datum, November 07, 1995.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 03	21.63	FEB 10	22.20	MAY 06	18.09	AUG 04	19.26
	WATER YEA	R 1999 HI	GHEST 18.09	MAY 06, 1999	LOWEST	22.20 FEB 3	10, 1999

420643094403701. Local number, 84-33-03 CADA. LOCATION.--Lat 42°06'43", long 94°40'37", Hydrologic Unit 07100006, 3.5 mi north and 2.5 mi east of the Town of Glidden, on the west side of County Road N-50. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Alluvial: North Raccon River sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 15 ft, screened 13-15 ft, gravel-packed. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel.

INVERVENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,090 ft above sea level, from topographic map. Measuring point: Top of casing, 2.31 ft above land-surface datum. REMARKS.--Well WC-131. PERIOD OF RECORD.--September 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.06 ft below land-surface datum, July 10, 1990; lowest measured, 11.99 ft below land-surface datum, May 07, 1996.

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL		DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	10.63	FEB 10	11.35		MAY 06	8.02	AUG 04	8.99
	WATER YEAR	R 1999	HIGHEST	8.02	MAY 06, 1999	LOWEST	11.35 FEB 1	.0, 1999
CARROLL COUNTY--Continued

420705094394501. Local number, 84-33-02 BDBA. LOCATION.--Lat 42°07'05", long 94°39'45", Hydrologic Unit 07100006, 3.75 mi north and 3.25 mi east of the Town of Glidden, east of County Road N-50 and the Kendal Bridge. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 76 ft., screened 73-76 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,110 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum.

REMARKS.--Well WC-132. PERIOD OF RECORD.--September 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 46.93 ft below land-surface datum, August 3, 1994; lowest measured, 57.30 ft below land-surface datum, February 13, 1990.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	52.89	FEB 10	53.48	MAY 06	52.90	AUG 04	52.19

WATER YEAR 1999 HIGHEST 52.19 AUG 04, 1999 LOWEST 53.48 FEB 10, 1999

421058094582701. Local number, 85-35-07 CCCC. LOCATION.--Lat 42°10'58", long 94°58'27", Hydrologic Unit 07100006, approximately 1 block north of Iowa Highway 217, next to the town maintenance building, Breda. Owner: Town of Breda. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS. -- Drilled municipal artesian water well, diameter 10 in., depth 340 ft, screened 320-340 ft. Original depth 349 ft.

DATUM.--Elevation of land-surface datum is 1,362 ft above sea level, from topographic map. Measuring point: Vent pipe,

DATOM: --Elevation of fand-surface datum.
 1.60 ft above land-surface datum.
 REMARKS.--City of Breda Well No. 3, previously referred to as Town Well No. 2.
 PERIOD OF RECORD.--March 1942 to August 1966, March 1968 to November 1971, June 1975 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 187.70 ft below land-surface datum, March 25, 1948; lowest measured, 250.40 ft below land-surface datum, May 24, 1977.

	WATER LEVELS,	IN FEET BELOW	LAND SURFACE	DATUM, WATER	YEAR OCTOBER	R 1998 TO SE	EPTEMBER 1999
DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	202.45	FEB 10	201.74	MAY 06	201.45	AUG 04	210.86
	WATER YEAR	1999 HIG	JEST 201.45	MAY 06, 1999	LOWEST	210.86 AUG	04. 1999

CASS COUNTY

411900094530101. Local number, 75-35-07 BBAB. LOCATION.--Lat 41°19'00", long 94°53'01", Hydrologic Unit 10240003, approximately 3 mi north and 2.9 mi west of the Town of Cumberland, 2 mi south of County Road G-35 and 2.9 mi west of County Road N-28. Owner: Geological Survey Bureau/ DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in., depth 218 ft, screened 189-209 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,295 ft above sea level, from topographic map. Measuring point: Top of casing,

2.35 ft above land-surface datum.
 REMARKS.--Well SW-17.
 PERIOD OF RECORD.--July 1986 to October 1987, February 1990 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 111.65 ft below land-surface datum, August 5, 1993; lowest measured, 125.75 ft below land-surface datum, March 14, 1990.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 05	115.68	FEB 12	117.91	MAY 14	116.39	AUG 09	114.71

WATER YEAR 1999 HIGHEST 114.71 AUG 09, 1999 LOWEST 117.91 FEB 12, 1999

412832095033501. Local number, 77-37-13 BBBB. LOCATION.--Lat 41°28'32", long 95°03'35", Hydrologic Unit 10240003, approximately 1 mi south of U.S. Interstate 80, and east of Highway 173. Approximately 2 mi north and 3 mi east of the Town of Marne. Owner: Geological Survey Bureau/DNR and U.S. Geological Survey. AQUIFER.--Pennsylvanian: limestone of Pennsylvanian age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in., depth 201 ft, screened 196-201 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,298 ft above sea level, from topographic map. Measuring point: Top of casing,

2.20 ft above land-surface datum. REMARKS.--Well SW-18.

PERIOD OF RECORD.--July 1986 to October 1987, February 1990 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 113.50 ft below land-surface datum, November 4, 1993; lowest measured, 128.40 ft below land-surface datum, March 14, 1990.

	WATER LEVELS,	IN FEET BELOW	LAND SURFACE	DATUM, WATER	YEAR OCTOBER	2 1998 TO S	EPTEMBER 1999
DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	116.88	FEB 12	117.93	MAY 14	115.86	AUG 09	115.03
	WATER YEAR	R 1999 HIG	HEST 115.03	AUG 09, 1999	LOWEST	117.93 FEE	в 12, 1999

CERRO GORDO COUNTY

430757093131801. Local number,96-20-17 DAAD.

LOCATION.--Lat 43°07'57", long 93 13'18", Hydrologic Unit 07080203, in southwest Mason City, 1 mi west of Highway 65 and south of the Iowa Terminal Rail-yard. Owner: AMPI Creamery (formerly State Brand Creameries). AQUIFER.--Cambrian-Ordovician: sandstone of Late Cambrian age and sandy dolomite of Early Ordovician age.

WELL CHARACTERISTICS. --Unused drilled industrial artesian water well, diameter 10 to 6 in. from 0-1080 ft, depth 1,336 ft, open hole from 1,080-1,336 ft. INSTRUMENTATION.--Quarterly measurement with electric line by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,162 ft above sea level, from topographic map. Measuring point: Top of casing, 1.50 ft above land-surface datum. REMARKS.--State Brand Creameries Well #1. Records for 1968-1971 and 1973-1989 are unpublished and available in the files

of the Iowa District Office.

PERIOD OF RECORD.--October 1968 to March 1971, and March 1973 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 170.80 ft below land-surface datum, August 4, 1977; lowest

measured, 298.80 ft below land-surface datum, October 22, 1968.

WATER LEVELS	IN	FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMBER	1999
--------------	----	------	-------	------	---------	--------	-------	------	---------	------	----	-----------	------

DATE	WATER <u>LEVEL</u>	DATE	WAT <u>LEV</u>	ER EL	DATE	WATER <u>LEVEL</u>	DAT	<u>re</u>	WATER <u>LEVEL</u>
NOV 04	280.9	FEB 09	283.	.03	MAY 04	283.92	AUC	i 03	286.35
	WATER YEAR	1999 B	HIGHEST	280.9	NOV 04, 1998	LOWEST	286.35	AUG	03, 1999

430757093131801

430806093164501. Local number, 96-21-13 BCCB. LOCATION.--Lat 43°08′06″, long 93°16′45″, Hydrologic Unit 07080203, south of the County Home, just north of Iowa Highway 106, east of the City of Clear Lake. Owner: Mason City and Clear Lake Railroad. AQUIFER.--Devonian: Cedar Valley limestone of Middle Devonian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 5 in., depth 198 ft. Casing information is not

available.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,165 ft above sea level, from topographic map. Measuring point: Top of well curb, 1.30 ft above land-surface datum.

PERIOD OF RECORD.--November 1940 to August 1971, March 1973 to current year. REMARKS:--Mason City and Clear Lake Railroad well. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.44 ft below land-surface datum, February 12, 1982; lowest measured, 17.26 ft below land-surface datum, November 18, 1955.

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>		DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	6.57	FEB 09	6.83		MAY 04	4.73	AUG 03	4.72
	WATER YEAR	R 1999 I	HIGHEST	4.72	AUG 03, 1999	LOWEST	6.83 FEB ()9, 1999

CHEROKEE COUNTY

423833095365701. Local number, 90-40-06 BDCD. LOCATION.--Lat 42 38'33", long 95°36'57", Hydrologic Unit 10230003, approximately 3.1 mi west of U.S. Highway 59 and 0.55 mi north of Iowa Highway 31 along the Illinois Central Railroad track. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AOUIFER. -- Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS. -- Drilled observation artesian water well, diameter 1.25 in., depth 253 ft, sandpoint 252-253 ft.

REMARKS.--Well D-6.

REMARKS.--Weil D-0. PERIOD OF RECORD.--December 1978 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 28.38 ft below land-surface datum, August 27, 1983; lowest measured, 40.85 ft below land-surface datum, January 15, 1991.

	WATER	LEVELS,	IN	FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMBER	1999
	WA	TER				WAT	ER			WATE	IR			WATE	R
DATE	LE	VEL		DAT	<u>'E</u>	LEV	EL	DAT	<u>'E</u>	LEVE	L	<u>D</u>	ATE	LEVE	<u>'L</u>
NOV 02	33	3.05		FEB	09	32.4	40	MAY	7 10	31.1	3	AU	JG 0	9 31.4	4

WATER YEAR 1999 HIGHEST 31.13 MAY 10, 1999 LOWEST 33.05 NOV 02, 1998

424132095480211. Local number, 91-42-16 DDDD11. LOCATION.--Lat 42°41'32", long 95°48'02", Hydrologic Unit 10230004, approximately 2 mi north of the Village of Fielding at the junction of County Roads L-36 and C-44. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 390 ft, screened 386-390 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,320 ft above sea level, from topographic map. Measuring point: Top of casing, DATUM.--Elevation of land-surface datum is 1,320 ft above sea level, from topographic map. Measuring point, top of casing, 1.50 ft above land-surface datum. REMARKS.--Well D-11. PERIOD OF RECORD.--March 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 141.67 ft below land-surface datum, May 5, 1993; lowest measured, 156.20 ft below land-surface datum, January 10, 1990.

:	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
Ν	OV 02	155.64	MAY 11	155.22	AUG 09	155.22	
WATER YE	EAR 1999	HIGHEST	155.22 MAY 1	1, 1999 AUG 09,	1999	LOWEST 155.64	NOV 02, 1998

CHEROKEE COUNTY--Continued

424348095231601. Local number, 91-39-01 ADAD1. LOCATION.--Lat 42°43'48", long 95°23'16", Hydrologic Unit 10230005, approximately 2 mi east and 0.5 mi north of the Town of Aurelia at the Larson Lake County Park. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Cambrian-Ordovician: sandstone of Cambrian age and dolomite of Ordovician age. WELL CHARACTERISITICS.--Drilled observation artesian water well, diameter 6 in. to 236 ft, 5 in. to 486 ft, 2 in. to 1,126 ft

ft, depth 1,545 ft, open hole 1,126 to 1,545 ft. INSTRUMENTATION.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,370 ft above sea level, from topographic map. Measuring point: Top of casing,

1.55 ft above land-surface datum.
 REMARKS.--Well D-28.
 PERIOD OF RECORD.--September 1979 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 189.65 ft below land-surface datum, December 19, 1984; lowest measured, 196.17 ft below land-surface datum, November 02, 1998.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATE <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 02	196.17	FEB 10	194.55	MAY 10	194.40	AUG 09	194.75
	WATER YEAR	1999 н	IGHEST 194.40	MAY 10, 1999	LOWEST	196.17 NOV 0	2, 1998

424348095231601

424348095231602. Local number, 91-39-01 ADAD2.

LOCATION.--Lat 42°43′48", long 95°23′16", Hydrologic Unit 10230005, approximately 2 mi east and 0.5 mi north of the Town of Aurelia at the Larson Lake County Park. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 4 in., depth 340 ft, screened 235-240 ft. INSTRUMENTATION.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,370 ft above sea level, from topographic map. Measuring point: Top of casing, 1.75 ft above land-surface datum. REMARKS.--Well D-29. PERIOD OF RECORD.--September 1979 to current year. PYTPEMES FOR DEFICID OF RECORD.--Highest water level measured 188 65 ft below land-surface datum. April 20, 1988: lowest

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 188.65 ft below land-surface datum, April 20, 1988; lowest measured, 194.15 ft below land-surface datum, August 24, 1982.

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 02	191.87	FEB 09	191.92	MAY 10	191.62	AUG 09	191.79
	WATER YEAR	1999 HIG	HEST 191.62	MAY 10, 1999	LOWEST	191.92 FEB ()9, 1999

CLAYTON COUNTY

424023091291201. Local number, 91-05-30 BBBB. LOCATION.--Lat 42°40'23", long 91°29'12", Hydrologic Unit 07060006, 5 mi northwest of the City of Edgewood, or 2 mi northwest of the junction of Iowa Highways 3 and 13, east of Strawberry Point. Owner: Harold Knight. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Dug unused water-table well, diameter 36 in., depth 36 ft. Casing information not available. INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,233 ft above sea level, from topographic map. Measuring point: Hole in pump base at land-surface datum. PERIOD OF RECORD.--June 1957 to current year. REMARKS:--Harold Knight well.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.68 ft below land-surface datum, August 7, 1991; lowest measured, 30.68 ft below land-surface datum, January 12, 1959.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
OCT 21	16.91	FEB 03	19.75	MAY 19	12.23	AUG 23	19.13
NOV 04	17.75	MAR 15	20.14	JUN 04	17.19		
DEC 15	19.30	APR 19	18.56	JUL 12	18.65		

WATER YEAR 1999 HIGHEST 12.23 MAY 19, 1999 LOWEST 20.14 MAR 15, 1999

425433091285002. Local number, 94-05-31 DACC2. LOCATION.--Lat 42°54'33", long 91°28'50", Hydrologic Unit 07060004, located at entrance to Big Spring Fish Hatchery 4.5 mi west and 1.25 mi south of the Town of St. Olaf. Owner: Geological Survey Bureau, DNR, and U.S. Geological Survey. AQUIFER.--Cambrian-Ordovician: Galena dolomite of Middle Ordovician age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 85 ft, open hole 61-85 ft. INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel.

INSTRUMENTION. --Information of land-surface datum is 855 ft above sea level, from topographic map. Measuring point: Top of recorder platform, 2.23 ft above land-surface datum.
 REMARKS.--Well BSI-B. Historical water-level data published in OFR 91-63 and OFR 92-67.
 PERIOD OF RECORD.--December 1988 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 0.62 ft above land-surface datum, August 20, 1993 (revised); lowest water level recorded 10.86 ft below land-surface datum, August 25, 1999.

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DAT	W <u>E L</u>	IATER JEVEL
NOV 04	5.15	FEB 04	5.69	MAY 19	7.56	AUG	25 1	10.86
	WATER YEAR	1999 HIG	HEST 5.15	NOV 04, 1998	LOWEST	10.86	AUG 25,	1999

CLAYTON COUNTY--Continued

430156091182901. Local number, 95-04-22 BCBD.

LOCATION.--Lat 43°01'56", long 91°18'29", Hydrologic Unit 07060001, approximately 2 mi north of the junction of U.S. Highway 18 and U.S. Highway 52-Iowa Highway 13, near Spook Cave. Owner: Gerald Mielke. AQUIFER.--Cambrian-Ordovician: St. Peter sandstone of Middle Ordovician age.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 6 in., depth 49 ft. Casing information not available. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 940 ft above sea level, from topographic map. Measuring point: Top of casing,

1.00 ft above land-surface datum. PERIOD OF RECORD.--October 1957 to current year. REMARKS.--USGS 22E1

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.98 ft below land-surface datum, December 7, 1983; lowest measured, 27.88 ft below land-surface datum, March 4, 1968.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 03	23.28	FEB 04	24.44	MAY 19	17.74	AUG 25	23.11

HIGHEST 17.74 MAY 19, 1999 LOWEST 24.44 FEB 04, 1999 WATER YEAR 1999

425736091260303. Local Number 94-05-03 A.

Location. --Lat 42°57'36", long 91°26'03", Hydrologic Unit 07060004, approximately 100 feet south of Robert's Creek on County Highway X16 Aquifer.--Cambrian-Ordovician: St. Peter Sandstone

Well Characteristics. --Drilled observation well, diameter 4 in.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Datum. -- Elevation of land-surface datum is 1030 ft above sea level, from topographic map. Measuring point: Top of casing, 2.50 ft above land-surface datum.

PERIOD OF RECORD.--January 1989 to April 1989, May 1997 to current year. REMARKS.--BS2-G

EXTREMES OF PERIOD OF RECORD.--Highest water level measured, 183.04 ft below land surface datum, May 18, 1998, lowest measured, 185.21 ft below land-surface datum, February 1, 1989.

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	183.77	FEB 04	183.88	MAY 19	183.04	AUG 25	182.82
	WATER YEAR 1	999 HIGHI	EST 182.82	AUG 25, 1999	LOWEST	183.88 FEB 04	l, 1999

CLINTON COUNTY

414921090450401. Local number 81-02E-17 ACA. LOCATION.--Lat 41°49'32", long 90°45'08", Hydrologic Unit 07080103, located below water tower near sub-station in the Town of Claims. Owner: Town of Calamus. AQUIFER. -- Silurian

WELL CHARACTERISTICS .-- Drilled pumping well, diameter 12 in. to 90 ft, 10 in. to 190 ft, depth 278 ft.

WELL CHARACTERISTICS.--Drilled pumping well, diameter 12 in. to 90 ft, 10 in. to 190 ft, depth 276 ft. INSTRUMENTATION.--Quarterly measurements with airline by USGS personnel. DATUM.--Elevation of land-surface datum is 712 feet above sea level, by topographic map. PERIOD OF RECORD.--August 1997 to current year. REMARKS.--Calamus No.1 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 43 feet below land-surface datum, August 06, 1997; lowest measured, 95 ft below land-surface datum, August 07, 1998.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	WATER DATE <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	47	FEB 09	47	MAY 03 47	AUG 09	47

HIGHEST 47 NOV 03, 1998 FEB 09, 1999 MAY 03, 1999 AUG 09, 1999 WATER YEAR 1999 LOWEST 47 NOV 03, 1998 FEB 09, 1999 MAY 03, 1999 AUG 09, 1999

414806090212301. Local number 81-05E-22 DDD.

LOCATION.--Lat 41°48'03", long 90°21'26", Hydrologic Unit 07080101, approximately 1 mile south of the intersection of U.S. Interstate 30 and county road 36, on the northwest corner of intersection. Owner: Town of Low Moor. AQUIFER.--Silurian, Alexanderian Series

WELL CHARACTERISTICS.--Drilled public-use well, diameter 12 in. to 62 ft, 8 in. to 62 ft, depth 322 ft, open hole from 85-322 ft.

322 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 651 feet above sea level, by topographic map. PERIOD OF RECORD.--August 1997 to current year REMARKS.--Low Moor No.2

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 19.99 feet below land-surface datum, February 09, 1999; lowest measured, 30.50 ft below land-surface datum, May 03, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 03	20.40	FEB 09	19.99	MAY 03	30.50	AUG 06	27.98

WATER YEAR 1999 HIGHEST 19.99 FEB 09, 1999 LOWEST 30.50 MAY 03, 1999

CRAWFORD COUNTY

415514095312001. Local number, 82-40-17 AABB. LOCATION.--Lat 41°55'14", long 95°31'20", Hydrologic Unit 10230007, approximately 1.5 mi west of the Town of Dow City on the south side of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AOUIFER.--Dakota: sandstone of Cretaceous age

WELL CHARACTERISTICS .-- Drilled observation artesian water well, diameter 2 in., depth 141 ft, screened 123-141 ft, gravelpacked

DATUM.--Elevation of land-surface datum is 1,150 ft above sea level, from topographic map. Measuring point: Top of casing, 2.50 ft above land-surface datum.

REMARKS -- Well WC-9. PERIOD OF RECORD.--June 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 38.15 ft below land-surface datum, May 3, 1983; lowest measured, 43.86 ft below land-surface datum, June 11, 1981.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

	WATER		WATE	R		WATER			WATER
DATE	<u>LEVEL</u>	DATE	LEVE	L	DATE	LEVEL	DAT	E	LEVEL
NOV 03	42.24	FEB 09	41.98	5	MAR 12	41.00	AUG	11	41.61
	WATER YEAD	R 1999	HIGHEST	41.00	MAR 12, 1999	LOWEST	42.24	NOV	03, 1998

420608095111701. Local number, 84-37-08 BCCB.

LOCATION.--Lat 42°06'08", long 95°11'17", Hydrologic Unit 10230007, approximately 3 mi north of the Town of Vail on the east side of County Road E-25. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Fremont buried channel: sand and gravel of Pleistocene age.

WELL CHARACTERISTICS .-- Drilled observation artesian water well, diameter 2 in., depth 541 ft, screened 527-541 ft, gravelpacked.

INSTRUMENTATION .-- Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,380 ft above sea level, from topographic map. Measuring point: Top of casing, 1.65 ft above land-surface datum. REMARKS.--Well WC-226.

EXTREMES FOR PERIOD OF RECORD.--August 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 208.35 ft below land-surface datum, July 17, 1988; lowest measured, 217.70 ft below land-surface datum, February 11, 1999.

	WATER LEVELS,	IN FEET BELOW	LAND SURFACE	E DATUM, WATER	YEAR OCTOBER	1998 TO S	SEPTEMBER 1999
DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	212.96	FEB 11	217.70	MAY 10	212.72	AUG 09	213.16
	WATER YEAR	1999 HIGH	EST 212.72	MAY 10, 1999	LOWEST 2	17.70 FE	CB 11, 1999

421005095342801. Local number, 85-41-13 CCCC. LOCATION.--Lat 42°10'05", long 95°34'28", Hydrologic Unit 10230001, approximately 7 mi west of the Town of Schleswig, northeast of the junction of County Roads L-51 and E-16. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER. -- Dakota and glacial drift: sandstone of Cretaceous age and sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 361 ft, screened 307-322 ft, gravel-packed. Open to Dakota 320-361 ft.

INSTRUMENTATION .-- Quarterly measurement with electric line or chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,375 ft above sea level, from topographic map. Measuring point: Top of casing, 3.49 ft above land-surface datum.

EXAMPLE Cashing, 5.49 fe above fand-sufface datum. REMARKS.--Well WC-6. PERIOD OF RECORD.--May 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 244.23 ft below land-surface datum, July 28, 1981; lowest measured, 249.05 ft below land-surface datum, February 5, 1982.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	247.19	FEB 11	245.5	MAY 10	246.98	AUG 09	247.20

WATER YEAR 1999 HIGHEST 245.5 FEB 11, 1999 LOWEST 247.20 AUG 09, 1999

CRAWFORD COUNTY--Continued

421031095225601. Local number, 85-39-16 ADDD1. LOCATION.--Lat 42°10'31", long 95°22'56", Hydrologic Unit 10230007, approximately 2.5 mi east and 0.5 mi north of the Town of Schleswig on the west side of County Road M-27. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 351 ft, screened 315-330 ft,

gravel-packed. Open to Pennsylvanian rock 344-351 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,370 ft above sea level, from topographic map. Measuring point: Top of

casing, 3.14 ft above land-surface datum. REMARKS.--Well WC-7A. PERIOD OF RECORD.--June 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 232.61 ft below land-surface datum, October 7, 1986; lowest measured, 239.65 ft below land-surface datum, August 2, 1995.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 03	235.06	FEB 11	235.25	MAY 10	235.29	AUG 09	235.32

HIGHEST 235.06 NOV 03, 1998 WATER YEAR 1999 LOWEST 235.32 AUG 09, 1999

421031095225602. Local number, 85-39-16 ADDD2. LOCATION.--Lat 42°10'31", long 95°22'56", Hydrologic Unit 10230007, approximately 2.5 mi east and 0.5 mi north of the Town of Schleswig on the west side of County Road M-27. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Missispipian: limestone of Missispipian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 561 ft, screened 543-561 ft,

gravel-packed. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,370 ft above sea level, from topographic map. Measuring point: Top of

casing, 3.14 ft above land-surface datum is 1,50 it above sea rever, from topographic map. Measuring point. For or REMARKS.--Well WC-7B. PERIOD OF RECORD.--June 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 296.63 ft below land-surface datum, May 07, 1996, lowest measured, 307.64 ft below land-surface datum, October 4, 1983.

	WATER LEVE	ELS, I	N FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMBER	r 1999
	WATER		WAT	TER			WAT	ER			WA	ATE	R	
DATE	LEVEL		DA	ΓЕ	LEV	EL	DA	ГЕ	LEV	EL	D.	ATE	LEV	EL
NOV 03	304.81		FEB	11	304.	47	MAY	7 10	304.	25	AU	JG 0	9 304	.51
	WATER	YEAR	1999	HIGH	HEST	304.25	MAY 10	, 1999	1	LOWEST	304.83	l N	IOV 03, 19	998

CRAWFORD COUNTY--Continued

421106095125501. Local number, 85-38-12 DCBA. LOCATION.--Lat 42°11'06", long 95°12'55", Hydrologic Unit 10230007, approximately 5.5 mi east of the Town of Kiron on the south side of County Road E-16 near the Town of Boyer. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Fremont buried channel: sand and gravel of Pleistocene age.

WELL CHARACTERISTICS. --Drilled observation artesian water well, diameter 2 in., depth 341 ft, screened 300-310 ft, open hole from 315-341 ft., gravel packed. Open to Pennsylvanian limestone and shale 331-341 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel.

INSTRUMENTATION. --Guarterly measurement with charked tape of electric file by oses personner.
DATUM. --Elevation of land-surface datum is 1,225 ft above sea level, from topographic map. Measuring point: Top of casing, 3.70 ft above land-surface datum.
REMARKS.--Well WC-14.
PERIOD OF RECORD.--July 1981 to current year.
EXTREMES FOR PERIOD OF RECORD.---Highest water level measured, 62.76 ft below land-surface datum, April 16, 1987; lowest measured, 66.41 ft below land-surface datum, August 09, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	66.25	FEB 11	66.04	MAY 10	65.79	AUG 09	66.41
	WATER YEAR	1999 ніс	HEST 65.79	MAY 10, 1999	LOWEST	66.41 AUG 09	9, 1999

DALLAS COUNTY

413613093530401. Local number, 79-26-33 CDBA.

LOCATION.-- Lat 40°36'13", long 93°53'04", Hydrologic Unit 07100006, approximately 0.5 miles south of the Town of Waukee on county road R-22, 100 ft east of roadway, well located inside 48 in concrete culvert. Owner: Town of Waukee. AQUIFER.-- Cambrian/Ordovician, Jordan sandstone. WEL CHARACTERISTICS.-- Drilled public use well, diameter 16 in., depth 2730 ft, casing interval unknown, gravel packed. INSTRUMENTATION.-- Quarterly measurement with airline by USGS personnel. DATUM.-- Elevation of land-surface datum is 1012 ft above sea level, from topographic map. REMARKS.-- Waukee Well No. 2

PERIOD OF RECORD.--May 1996 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 389 ft below land-surface datum, May 9, 1997; lowest measured 428 ft below land-surface datum, February 09,1998.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	395	FEB 11	390	MAY 06	391	AUG 05	398
	WATER YEAR	к 1999 н	IGHEST 390	FEB 11, 1999	LOWEST	398 AUG 05	, 1999

DECATUR COUNTY

404422093445602. Local number, 69-25-29 DDDD LOCATION.-- Lat 40°44'22", long 93°44'56", Hydrologic Unit 10280102, approximately 7 mi east of Interstate 35 in the City of Leon, within open field between Iowa Highway 2 and NW 2nd Ave. on NW School St. Owner: City of Leon. AQUIFER.-- Cambrian/Ordovician: Jordan sandstone.

MULL CHARCTREISTICS. --Drilled public use well, diameter 8 in, depth 2853 ft, screened 2740-2790 ft, gravel packed. INSTRUMENTATION.-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.-- Elevation of land-surface datum is 1105.60 ft above sea level, from levels. MEasuring point: Top of casing, 3.70

DATOM.-- Elevation of fand-surface datum is firs.ou it above sea fevel, from fevels. Measuring point. Top of casing, 3.70 ft above land-surface datum.
 REMARKS.-- Leon City Well No. 4
 PERIOD OF RECORD.--May 1996 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 439.80 ft below land-surface datum, May 30, 1996; lowest measured, 442.66 ft below land-surface datum, August 12, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 05	441.13	FEB 12	442.30	AUG 12	442.66

WATER YEAR 1999 HIGHEST 441.13 NOV 05, 1998 LOWEST 442.66 AUG 12, 1999

DELAWARE COUNTY

422029091144302. Local number, 87-03-18 CBCD2. LOCATION.--Lat 42°20'37", long 91°14'47", Hydrologic Unit 07060006, behind the municipal utilities building in downtown Hopkinton. Owner: Town of Hopkinton.

AOUIFER. -- Silurian: dolomite of Silurian age.

WELL CHARACTERISTICS. -- Drilled unused artesian water well, diameter 8 in., depth 86 ft. Casing information not available.

INSTRUMENTATION.--Quarterly measurement with chalked tape by observer. DATUM.--Elevation of land-surface datum is 863 ft above sea level, from topographic map. Measuring point: Nipple welded to plate on top of casing, 2.46 ft above land- surface datum.

REMARKS.--Hopkinton #1 well. Water levels affected by pumping of a nearby well. PERIOD OF RECORD.--December 1984 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.74 ft below land-surface datum, August 10, 1994; lowest measured, 27.19 ft below land-surface datum, December 30, 1989.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	13.32	FEB 09	16.08	MAY 04	14.73	AUG 06	15.08

WATER YEAR 1999 HIGHEST 13.32 NOV 03, 1998 LOWEST 16.08 FEB 09, 1999

DUBUQUE COUNTY

422901090471901. Local number, 89-01-36 ABC. LOCATION.--Lat 42°29'01", long 90°47'19", Hydrologic Unit 07060005, located within white shed northeast of Amoco plant main office on Old Fairground Road, 4 mi east of Centralia on County Highway 966. Owner: Julien Standard Oil.

AQUIFER.--Cambrian/Ordovician. WELL CHARACTERISTICS.-- Drilled observation artesian water well, diameter 13 in., depth 1230 ft, casing open 499-1230 ft, gravel packed.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 899.00 ft above sea level, from levels. Measuring point: Top of vent cap, 2.90 above land-surface datum.

REMARKS.--Standard Oil No.2 PERIOD OF RECORD.--January 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 240.38 ft below land-surface datum, January 31, 1997; lowest measured, 248.02 ft below land-surface datum, May 04, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	241.68	FEB 0	9 242.22	MAY 04	248.02	AUG 06	241.81
	WATER Y	YEAR 1999	HIGHEST 241.68	NOV 03, 1998	LOWEST	248.02 MAY 0	4, 1999

FLOYD COUNTY

430200092435301. Local number, 95-16-22 BCA1. LOCATION.--Lat 43°02'00', long 92°43'53", Hydrologic Unit 07080201, approximately 2 mi southwest of Charles City, 1.7 mi south of Highway 14 on County Road T47. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 29 ft, screened 10-29 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,105 ft above sea level, from topographic map. Measuring point: Top of casing, 1.92 ft above land-surface datum.

REMARKS.--Well FM-3 (T). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.98 ft above land-surface datum, May 6, 1993; lowest measured, 6.61 ft below land-surface datum, November 4, 1996.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 03	3.79	FEB 08	5.13	MAY 03	3.45	AUG 03	3.50

WATER YEAR 1999 HIGHEST 3.45 MAY 03, 1999 LOWEST 5.13 FEB 08, 1999

430200092435303. Local number, 95-16-22 BCA3. LOCATION.--Lat 43°02'00', long 92°43'53", Hydrologic Unit 07080201, approximately 2 mi southwest of Charles City, 1.7 mi south of Highway 14 on County Road T47. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Devonian: dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 1 in., depth 103 ft, screened 91-103 ft.

WELL CHARACTERISTICS.--Drilled observation well, diameter 1 in., depth 103 ft, screened 91-103 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,105 ft above sea level, from topographic map. Measuring point: Top of casing, 2.94 ft above land-surface datum. REMARKS.--Well FM-3 (1). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 36.01 ft above land-surface datum, November 01, 1994; lowest measured, 82.06 ft below land-surface datum, February 6, 1996.

	WATER	LEVELS,	IN	FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMBER	1999
DATE	WA' LE'	TER VEL		DAT	<u>re</u>	WATI LEVI	ER EL	DAT	<u>'E</u>	WATE LEVE	IR IL	D	ATE	WATE <u>LEVE</u>	ER EL
NOV 04	72	.57		FEB	08	77.7	70	MAY	03	69.4	9	AU	JG 0	3 65.0	6

FLOYD COUNTY--Continued

430200092435304. Local number, 95-16-22 BCA4. LOCATION.--Lat 43°02'00', long 92°43'53", Hydrologic Unit 07080201, approximately 2 mi southwest of Charles City, 1.7 mi south of Highway 14 on County Road T47. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

south of Highway 14 on County Road T47. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Devonian: dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 1.5 in., depth 207 ft, screened 167-207 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,105 ft above sea level, from topographic map. Measuring point: Top of casing, 2.77 ft above land-surface datum. REMARKS.--Well FM-3 (2). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 56.05 ft above land-surface datum, August 23, 1993; lowest measured, 88.43 ft below land-surface datum, February 6, 1996.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DAT	WATER DATE LEVEL		DATE	WATER <u>LEVEL</u>	DA	<u>re</u>	WATER <u>LEVEL</u>
NOV 04	76.37	FEB	08 81	.37	MAY 03	73.01	AUC	G 03	67.53
	WATER Y	TEAR 1999	HIGHEST	67.53	AUG 03, 1999	LOWEST	81.37	FEB 08	, 1999

430200092435305. Local number, 95-16-22 BCA5. LOCATION.--Lat 43°02'00', long 92°43'53", Hydrologic Unit 07080201, approximately 2 mi southwest of Charles City, 1.7 mi south of Highway 14 on County Road T47. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Devonian: dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 1.5 in., depth 297 ft, screened 257-297 ft.

DATUM.--Elevation of land-surface datum is 1,105 ft above sea level, from topographic map. Measuring point: Top of casing, 2.73 ft above land-surface datum.

REMARKS.--Well FM-3 (3). PERIOD OF RECORD.--August 1992 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 55.21 ft above land-surface datum, August 23, 1993; lowest measured, 82.61 ft below land-surface datum, February 6, 1996.

	WATER	LEVELS,	IN	FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMBER	R 1999
DATE	WA LE	TER VEL		DAT	<u>re</u>	WATI LEVI	ER EL	DAT	<u>'E</u>	WATE <u>LEVE</u>	IR IL	D	ATE	WAT <u>LEV</u>	ER EL
NOV 04	76	5.69		FEB	08	76.7	75	MAY	03	69.5	3	AU	JG 0	64.	88

HIGHEST 64.88 AUG 03, 1999 LOWEST 76.75 FEB 08, 1999 WATER YEAR 1999

FLOYD COUNTY-Continued

430200092435306. Local number, 95-16-22 BCA6.
LOCATION.--Lat 43°02'00', long 92°43'53", Hydrologic Unit 07080201, approximately 2 mi southwest of Charles City, 1.7 mi south of Highway 14 on County Road T47. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.
AQUIFER.--Devonian: dolomite of Devonian age.
WELL CHARACTERISTICS.--Drilled observation well, diameter 1.5 in., depth 360 ft, screened 340-360 ft.
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 1,105 ft above sea level, from topographic map. Measuring point: Top of casing, 2,53 ft above land-surface datum

2.53 ft above land-surface datum.

EMARKS.--Well FM-3 (4).
PERIOD OF RECORD.--August 1992 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 56.23 ft above land-surface datum, August 23, 1993; lowest
measured, 88.44 ft below land-surface datum, February 6, 1996.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 21	76.37	FEB 08	82.34	MAY 03	72.96	AUG 03	67.64

HIGHEST 67.64 AUG 03, 1999 WATER YEAR 1999 LOWEST 82.34 FEB 08, 1999

430800092540301. Local number, 96-17-18 CDBA. LOACATION.--Lat 43°07'45", long 92°54'07", Hydrologic Unit 07080202, on the north side of city street approximately 0.5 miles east of county road T-26 in the Town of Rude. Owner: Town of Rude

AQUIFER.-- Cambrian/Ordovician: Jordan sandstone and Prairie du Chien Formation dolomite. WELL CHARACTERISTICS.--Drilled public well, diameter 8 in., depth 1290 ft, screened 846-855 ft, gravel-packed. INSTRUMENTATION.-- Quarterly measurement by airline by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,123 ft above sea level, by altimeter. REMARKS.--Rudd Town Well No.2 PERIOD OF RECORD.-- February 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.-- Highest water level measured, 161 ft below land surface datum, August 5, 1997; lowest measured 198 ft below land-surface datum, August 03, 1999.

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	188	FEB 08 187		MAY 04	192	AUG 03	198
	WATER YEAR	1999 HIG	HEST 187	FEB 08, 1999	LOWEST	198 AUG 0	3, 1999

GREENE COUNTY

420116094363001. Local number, 83-32-08 BBBC. LOCATION.--Lat 42°01'16", long 94°36'30", Hydrologic Unit 07100006, approximately 3 mi west of the Town of Scranton, south

LOCATION.--Lat 42'01'16", long 94'36'30", Hydrologic unit 0/100006, approximatery 3 mi west of the fown of Scranton, south of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Hardin Creek buried channel: sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 181 ft, screened 161-171 ft, gravel-packed. Open to Pennsylvanian shale and siltstone 171-181 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,135 ft above sea level, from topographic map. Measuring point: Top of

casing, 2.20 ft above land-surface datum. REMARKS.--Well WC-229. PERIOD OF RECORD.--September 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.44 ft below land-surface datum, August 19, 1993; lowest measured, 51.03 ft below land-surface datum, July 8, 1985.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL
NOV 03	41.10	FEB 10	40.85	MAY 05	40.57	AUG 04	48.85

WATER YEAR 1999 HIGHEST 40.57 MAY 05, 1999 LOWEST 48.85 AUG 04, 1999

420146094272301. Local number, 83-31-04 ADDB. LOCATION.--Lat 42°01'46", long 94°27'23", Hydrologic Unit 07100006, approximately 4 mi west of the City of Jefferson and 0.5 mi south of U.S. Highway 30, on the west side of County Road P-14. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 54 ft, screened 40-51 ft, gravel-packed. Open to Pennsylvanian shale 51-54 ft.

INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,000 ft above sea level, from topographic map. Measuring point: Top of casing, 2.10 ft above land-surface datum.

REMARKS.--Well WC-120.
PERIOD OF RECORD.--August 1982 to July 1987, February 1990 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.39 ft below land-surface datum, July 5, 1983; lowest
measured, 19.57 ft below land-surface datum, November 06, 1997.

	WATER LEV	ELS, 1	IN FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEME	ER	1999
	WATER	t l			WAT	ΈR			WAT	ER			W	ATE	R
DATE	LEVEL		DA	<u>ГЕ</u>	LEV	EL	DA	<u>ГЕ</u>	LEV	EL	<u>D</u>	ATE		EVE	L
NOV 03	17.76		FEB	10	17.0)5	MAY	05	12.0	7	AU	JG 0	4 1	6.80)
	WATER	YEAR	1999	HIGH	IEST	12.07	MAY 05	, 1999	1	LOWEST	17.70	5 N	IOV 03,	199	8

415449094155601. Local number, 82-29-18 DBAA. LOCATION.--Lat 41°54'49", long 94°15'56", Hydrologic Unit 07100006, approximately 3.25 mi west and 1.5 mi south of the Town of Rippey, south of County Road E-57. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

Nown of Rippey, South of County Road a 57. General States, Earlier, Ear

casing, 1.85 ft above land-surface datum.

REMARKS.--Well WC-117. PERIOD OF RECORD.--August 1982 to November 1995.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 32.20 ft below land-surface datum, August 17, 1993; lowest measured, 40.13 ft below land-surface datum, February 13, 1990.

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 03	35.41	FEB 10	35.82	MAY 05	32.66	AUG 04	34.20
	WATER YEAR	1999 HIG	HEST 32.66	MAY 05, 1999	LOWEST	35.82 FEB 1	0, 1999

GREENE COUNTY--Continued

420149094344701. Local number, 83-32-04 ACCC. LOCATION.--Lat 42°01'49", long 94°34'47", Hydrologic Unit 07100006, 1.5 mi west of the Town of Scranton south of U.S. Highway 30, adjacent to the Scranton Cemetery. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 240 ft, screened 220-240 ft,

gravel-packed. Open to Pennsylvanian shale 234-240 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,202 ft above sea level, from topographic map. Measuring point: Top of

casing, 2.10 ft above land-surface datum. REMARKS.--Well WC-228. PERIOD OF RECORD.--July 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 151.44 ft below land-surface datum, February 8, 1996; lowest measured, 155.48 ft below land-surface datum, April 17, 1991.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 03	152.70	FEB 10	152.27	MAY 05	151.88	AUG 04	152.69

HIGHEST 151.88 MAY 05, 1999 LOWEST 152.70 NOV 03, 1998 WATER YEAR 1999

420507094141901. Local number, 84-29-16 CBAB. LOCATION.--Lat 42°05'07", long 94°14'19", Hydrologic Unit 07100006, approximately 1.5 mi south of the Town of Dana, east of Iowa Highway 144 near the Chicago and Northwestern Railroad. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Beaver buried channel: sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 181 ft, screened 161-176 ft, gravel-packed. Open to Pennsylvanian shale 177-181 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,075 ft above sea level, from topographic map. Measuring point: Top of casing, 1.80 ft above land-surface datum.

REMARKS.--Well WC-233. PERIOD OF RECORD.--August 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 38.63 ft below land-surface datum, April 2, 1985; lowest measured, 43.28 ft below land-surface datum, October 2, 1989.

	WATER LEV	/ELS,	IN FE	ET BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEM	IBER	1999
DATE	WATER LEVEL			DATE	WAT <u>LEV</u>	ER EL	DAT	<u>re</u>	WATE <u>LEVE</u>	R LL	D	ATE		WATE LEVE	R L
NOV 03	41.37		F	EB 10	41.2	29	МАҰ	05	40.7	6	AU	JG 0	4	41.39	9
	WATER	YEAR	1999	HIGH	IEST	40.76	MAY 05,	1999	L	OWEST	41.39	A	UG 04,	199	9

GRUNDY COUNTY

422611092552501. Local number, 88-18-14 BCCB. LOCATION.--Lat 42°26'07", long 92°55'27", Hydrologic Unit 07080205, located on county road T-19 0.5 miles north of county road D-25 in the City of Wellsburg. Owner: City of Wellsburg

AQUIFER.-- Cambrian: Jordan Formation sandstone WELL CHARACTERISTICS.-- Drilled public artesian water well, diameter 12 in., depth 2050 ft, casing open 1536-2050 ft INSTRUMENTATION .-- Quarterly measurement with airline by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,094 ft above sea level, from topographic map.

PERIOR OF RECORD. -- November 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 275 ft below land-surface datum, February 11, 1997; lowest measured, 296 ft below land-surface datum, August 02, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 02	276	FEB 08	272	MAY 03	274	AUG 02	296

HIGHEST 272 FEB 08, 1999 LOWEST 296 WATER YEAR 1999 AUG 02, 1999

GUTHRIE COUNTY

413223094150801. Local number, 78-29-24 CAAB LOCATION.--Lat 41°32'23", long 94°15'08", Hydrologic Unit 07100007, approximately 0.5 mi west and 1.5 north of the Town of Dexter. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

Agoirra.--Dakota: Saids Solution of relateous age.
WELL CHARACTERISTICS.--Drill observation artesian water well, diameter 2 in., depth 72 ft, screened 60-68 ft, gravel-packed. Open to Pennsylvanian shale 65-72 ft.
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 1,020 ft above sea level, from topographic map. Measuring point: Top of casing, 2.10 ft above land-surface datum.

casing, 2.10 it above inno-surface datum. REMARKS.--Well WC-238. PERIOD OF RECORD.--August 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 38.20 ft below land-surface datum, May 10, 1995; lowest measured, 48.82 ft below land-surface datum, April 10, 1986.

	WATER LEVELS,	IN FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMB	SR 1999
DATE	WATER <u>LEVEL</u>	DA	<u>re</u>	WAT LEV	ER EL	DAT	<u>re</u>	WATE <u>LEVE</u>	ER EL	D	ATE	WA LE	TER VEL
NOV 03	40.14	FEE	3 10	40.1	16	MAY	7 06	39.4	.3	AU	JG 0	5 39).87
	WATER YEA	R 1999	HIGH	EST	39.43	MAY 06.	1999	L	OWEST	40.16	F	EB 10. 1	999

413248094314301. Local number, 78-32-21 AAAA.

LOCATION.--Lat 41°32′48", long 94°31′43", Hydrologic Unit 07100008, approximately 2.25 mi north of the Town of Casey. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 161 ft, cased to 135 ft, slotted 125-135 ft, gravel-packed. Open to Pennsylvanian shale and siltstone 158-161 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,250 ft above sea level, from topographic map. Measuring point: Top of casing, 1.90 ft above land-surface datum. REMARKS.--Well WC-239. PERIOD OF RECORD.--August 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 70.50 ft below land-surface datum, January 12, 1988; lowest measured 74 38 ft below land-surface datum. January 9, 1985

measured, 74.38 ft below land-surface datum, January 9, 1985.

	WATER LEVELS	S, IN	I FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEN	IBER	1999
DATE	WATER <u>LEVEL</u>		DAT	<u>re</u>	WAT LEV	ER EL	DAT	<u>re</u>	WATE <u>LEVE</u>	IR IL	D	ATE		WATE LEVE	R L
NOV 03	73.17		FEB	10	72.6	54	MAY	06	72.4	4	AU	JG 0	5	73.0	7
	WATER YE	AR 1	999	HIGH	EST	72.44	MAY 06,	1999	L	OWEST	73.17	N	ov 03,	199	8

GUTHRIE COUNTY--Continued

414728094385301. Local number, 81-33-26 DDDD. LOCATION.--Lat 41°47'28", long 94°38'53", Hydrologic Unit 07100007, approximately 5 mi south and 1.25 mi east of the Town of Coon Rapids on the north side of County Road F-24. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS. --Drilled observation artesian water well, diameter 2 in., depth 80 ft, screened 60-65 ft, gravel-packed, open hole 67-80 ft. Open to Pennsylvanian shale 67-80 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,205 ft above sea level, from topographic map. Measuring point: Top of casing, 2.20 ft above land-surface datum.
 REMARKS.--Well WC-93.
 PERIOD OF RECORD.--July 1982 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 36.76 ft below land-surface datum, May 4, 1994; lowest measured, 40.98 ft below land-surface datum, January 3, 1983.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 03	38.28	FEB 10	39.01	MAY 06	39.05	AUG 05	37.14
	WATER YEAR	2 1999 HIGH	EST 37.14	AUG 05, 1999	LOWEST	39.05 MAY 06	, 1999

414821094271301. Local number, 81-31-22 CCCC. LOCATION.--Lat 41°48'21", long 94°27'13", Hydrologic Unit 07100007, approximately 2.5 mi south and 1 mi west of the Town of Bagley, north of Spring Brook State Park. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 153 ft, screened 143-153 ft, gravel-packed. Open to Pennsylvanian shale 149-153 ft.

UNSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,190 ft above sea level, from topographic map. Measuring point: Top of casing, 1.45 ft above land-surface datum.

EMARKS.--Well WC-105. PERIOD OF RECORD.--August 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 46.84 ft below land-surface datum, August 3, 1994; lowest measured, 69.88 ft below land-surface datum, December 9, 1982.

	WATER LEV	ELS,	IN FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTE	IBER	1999
DATE	WATER LEVEL		DA	<u>re</u>	WAT LEV	ER EL	DAT	<u>TE</u>	WATE <u>LEVE</u>	IR IL	D	ATE		WATE <u>LEVE</u>	R L
NOV 03	58.02		FEE	8 10	58.3	32	MAY	06	58.5	8	AU	JG 0	5	56.88	8
	WATER	YEAR	1999	HIGH	EST	56.88	AUG 05,	1999	L	OWEST	58.58	М	AY 06,	199	9

HARDIN COUNTY

423310093032802. Local number, 89-19-02 BDAC2. LOCATION.--Lat 42°33'10", long 93°03'28", Hydrologic Unit 07080205, 0.35 south and 0.10 mi west of the intersection of U.S. Highway 20 and County Road S-56. Well is in a shed at the west end of 2nd Avenue adjacent to railroad tracks. Owner: City of Ackley. AQUIFER.--Mississippian: limestone and dolomite of Mississippian age. The operation of the second adjacent by the second second

WELL CHARACTERISTICS.--Drilled unused public-supply artesian well, diameter 10 in., depth 134 ft, screened 57-60 ft, open hole 68-134 ft. Open to Devonian rock 131-134 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Analog digital water-level recorder, 60

minute punch, to October, 1992.
DATUM.--Elevation of land-surface datum is 1,085 ft above sea level, from topographic map. Measuring point: Top of
recorder base, 0.8 ft above land-surface datum.

REMARKS.--Ackley No. 5 well. PERIOD OF RECORD.--September 1988 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.79 ft below land-surface datum, February 5, 1996; lowest measured, 24.15 ft below land-surface datum, February 25, 1990.

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 02	17.57	FEB 08	18.56	MAY 03	16.94	AUG 02	16.72
	WATER YEAR	1999 HIGH	EST 16.72	AUG 02, 1999	LOWEST	18.56 FEB 08	3. 1999

HARRISON COUNTY

413024095353901. Local number, 78-41-31 DDDD. LOCATION.--Lat 41°30'24", long 95°35'39", Hydrologic Unit 10230006, approximately 4.5 mi south of the Town of Persia and west of Iowa Highway 191 to the north of the Tri-County High School. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift: sand and gravel of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 129 ft, screened 109-119 ft, gravel-packed. Open to Pennsylvanian shale and limestone 118-129 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,158 ft above sea level, from topographic map. Measuring point: Top of casing, 2.05 ft above land-surface datum. REMARKS.--Well WC-27. PERIOD OF RECORD.--January 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 55.26 ft below land-surface datum, July 7, 1982; lowest

measured, 60.54, July 5, 1989.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

		WATER			WATER			WA	TER		WATER
DAT	E	<u>LEVEL</u>	DAT	ſΕ	<u>LEVEL</u>		DATE	LE	VEL	DATE	<u>LEVEL</u>
NOV	04	56.42	FE	B 11	56.85		MAY 10	5	5.14	AUG 11	56.85
	WATER	YEAR 1999	HIGHEST	56.14	MAY 10,	1999	LOWEST	56.85	FEB 11, 1999	AUG 11, 19	999

413523095483101. Local number, 78-43-05 ACDD. LOCATION.--Lat 41°35′23", long 95°48′31", Hydrologic Unit 10230007, approximately 3.25 mi south of the Town of Logan and 1.5 mi east of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 179 ft, screened 168-175 ft, gravel-packed. Open to Pennsylvanian shale 175-179 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,080 ft above sea level, from topographic map. Measuring point: Top of casing, 2.35 ft above land-surface datum. REMARKS.--Well WC-33. PERIOD OF RECORD.--May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 66.20 ft below land-surface datum, March 21, 1990; lowest measured, 74.90 ft below land-surface datum, February 16, 1988.

	WATER	LEVELS,	IN	FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMBER	1999
DATE	WA' LE'	TER VEL		DAT	<u>re</u>	WATI LEVI	ER EL	DAT	<u>'E</u>	WATE <u>LEVE</u>	IR IL	D	ATE	WATE <u>LEVE</u>	ER EL
NOV 04	71	.98		FEB	09	71.8	34	MAY	11	70.3	5	AU	JG 1	1 70.7	1

WATER YEAR 1999 HIGHEST 70.35 MAY 11, 1999 LOWEST 71.98 NOV 04, 1998

HARRISON COUNTY--Continued

413524095490601. Local number, 78-43-05 BCDD. LOCATION.--Lat 41°35′24", long 95°49′06", Hydrologic Unit 10230007, approximately 2 mi north and 3.5 mi east of the Town of Missouri Valley and 1 mi east of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Alluvial: Boyer River sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 51 ft, screened 48-51 ft, gravel-

packed.

DATUM.--Elevation of land-surface datum is 1,010 ft above sea level, from topographic map. Measuring point: Top of casing, 3.40 ft above land-surface datum. REMARKS.--Well WC-32. PERIOD OF RECORD.--May 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.68 ft below land-surface datum, July 07, 1998; lowest measured, 7.00 ft below land-surface datum, September 9, 1988, October 18, 1990 and December 5, 1990.

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>		DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
OCT 13	3.98	DEC 08	4.05		APR 08	2.94	JUL 06	3.70
NOV 04	3.98	FEB 09	3.90		MAY 11	3.24	AUG 11	3.19
24	3.90	MAR 03	4.00		JUN 25	3.83	SEP 02	4.31
	WATER YEA	R 1999 H	IGHEST	2.94	APR 08, 1999	LOWEST	4.31 SEP	02, 1999

HARRISON COUNTY--Continued

413838095462001. Local number, 79-42-19 AADB. LOCATION.--Lat 41°38'38", long 95°46'20", Hydrologic Unit 10230007, approximately 0.5 mi east of the Town of Logan, north of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Mississippian: dolomite of Mississippian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 628 ft, screened 588-628 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,045 ft above sea level, from topographic map. Measuring point: Top of casing, 4.40 ft above land-surface datum.

REMARKS.--Well WC-22. PERIOD OF RECORD.--November 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.33 ft above land-surface datum, June 19, 1987; lowest measured, 16.37 ft below land-surface datum, June 3, 1982.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>		DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	5.93	FEB 09	5.73		MAY 12	5.69	AUG 11	5.60
	WATER YEA	AR 1999	HIGHEST	5.60	AUG 11, 1999	LOWEST	5.93 NOV	04, 1998

414700095373001. Local number, 81-41-33 CAAA.

LOCATION.--Lat 41°47'00", long 95°37'30", Hydrologic Unit 10230007, approximately 4.5 mi south of the Town of Dunlap, and 2 mi east of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS .-- Drilled observation artesian water well, diameter 2 in., depth 169 ft, screened 145-154 ft, gravel-packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,182 ft above sea level, from topographic map. Measuring point: Top of

casing, 2.90 ft above land-surface datum. REMARKS.--Well WC-52. PERIOD OF RECORD.--June 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 70.50 ft below land-surface datum, August 12, 1993; lowest measured, 85.03 ft below land-surface datum, June 4, 1982.

	WATER LEVEI	LS IN	FEET	BELOW	LAND	SURFACE	DATUM	WATER	YEAR	OCTOBER	1998	то	SEPT	EMBER	1999
DATE	WATER <u>LEVEL</u>		DAT	<u>'E</u>	WATI LEVI	ER EL	DA	TE	WAT LEV	TER <u>TEL</u>		DATI	E	MA' LE	TER VEL
NOV 03	73.21		FEB	09	74.2	28	MA	Y 12	75.	.19	А	UG	11	71	.57
	WATER YI	EAR 19	999	HIGH	IEST	71.57	AUG 1	1, 1999	Э	LOWEST	75.2	L9	MAY	12, 1	999

HENRY COUNTY

405010091424901. Local number, 70-07-30 BCDD. LOCATION.--Lat 40°50'10", long 91°42'49", Hydrologic Unit 07080107, in the Hillsboro City Park adjacent to water tower. Owner: City of Hillsboro.

AQUIFER.--Mississippian: limestone of Mississippian age. WELL CHARACTERISTICS.--Drilled unused test hole, diameter 6 in., depth 365 ft, cased to 74.8 ft, open hole 74.8-365 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 733 ft above sea level, from topographic map. Measuring point: Hole in top of casing, 1.15 ft above land-surface datum.

REMARKS. -- Hillsboro Test 1.

PERIOD OF RECORD.--August 1989 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 70.12 ft below land-surface datum, February 23, 1996, May 6, 1994; lowest measured, 77.21 ft below land-surface datum, October 27, 1989.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 05	76.57	FEB 08	71.56	MAY 03	71.57	AUG 05	76.46

WATER YEAR 1999 HIGHEST 71.56 FEB 08, 1999 LOWEST 76.57 NOV 05, 1998

410852091394301. Local number, 73-07-09 AABD.

LOCATION.--Lat 41°08'52", long 91°39'43", Hydrologic Unit 07080107, north of Main Street near the water tower, Wayland. Owner: Town of Wayland. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Dug unused water-table well, diameter 4 ft, depth 52 ft. Casing information not available.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 735 ft above sea level, from topographic map. Measuring point: Hole in top of casing, 0.21 ft above land-surface datum.

Casing, 0.21 fe above faite software datum. REMARKS.--Wayland Town Well PERIOD OF RECORD.--August 1960 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.30 ft below land-surface datum, September 1, 1965; lowest measured, 14.69 ft below land-surface datum, February 15, 1977.

	WATER LEVELS	S, IN FEET 1	BELOW LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	TO S	SEPTEI	MBER	1999
DATE	WATER <u>LEVEL</u>	DATI	WAT <u>E LEV</u>	ER EL	DAT	<u>re</u>	WATE <u>LEVE</u>	IR IL	D	ATE		WATE LEVE	R L
NOV 05	9.67	FEB	09 9.7	8	MAY	03	9.7	3	AU	G 05		11.0	5
	WATER YI	EAR 1999	HIGHEST	9.67 1	NOV 05,	1998	L	OWEST 1	1.05	AUG	3 05,	1999)

HOWARD COUNTY

432158092065801. Local number, 99-11-26 BCA. LOCATION.--Lat 43°21'58", long 92°06'58", Hydrologic Unit 07060004, located approximately 1 mi west of the town of Cresco, 0.5 mi south from state highway 9 on county road V-58. Owner: Town of Cresco.

AOUIFER. -- Cambrian/Ordovician.

WELL CHARACTERISTICS.--Drilled public use artesian well, diameter 16 in, depth 1120 ft., Casing information not available.

INSTRUMENTATION.--Quarterly measurement using an airline by USGS personnel. DATUM.--Elevation of land-surface datum is 1288 ft above sea level, from topographic map.

REMARKS. -- Cresco Well No. 4.

PERIOD OF RECORD.--February 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 318 ft below land surface datum, May 20, 1997; lowest measured, 340 ft below land-surface datum, August 02, 1999

		DATE	WZ LE	ATER EVEL	;	DATE	WATER <u>LEVEL</u>					
		MAY	04 3	320	A	UG 02	340					
WATER	YEAR	1999	HIGHEST	320	MAY	04, 1999	LOV	VEST	340	AUG	02,	1999

HUMBOLDT COUNTY

424039094103601. Local number, 91-28-20 CAAA. LOCATION.--Lat 42°40'39", long 94°10'36", Hydrologic Unit 07100004, approximately 3 mi south of the Town of Dakota City, on the west side of County Road P-56. Owner: Elmer Gravdlund. AQUIFER.--Glacial drift of Pleistocene age. WELL CHARACTERISTICS.--Duused water-table well, diameter 3 ft, cribbed with field stone, depth 24.5 ft, casing

information unavailable.

INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,135 ft above sea level, from topographic map. Measuring point: Top of casing, 0.30 ft above land-surface datum.

casing, 0.30 ft above land-surface datum. REMARKS: Gravdlund/G-1 well. PERIOD OF RECORD.--July 1988 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.40 ft below land-surface datum, April 26, 1991; lowest measured, 19.29 ft below land-surface datum, March 12, 1990.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

WATER	WATER	WATER		WATER		
<u>LEVELDATE</u>	<u>LEVELDAT</u>	<u>ELEVELDATE</u>	LEVEL			
9.80	JAN 12	11.80	APR 06	9.27	JUL 01	5.99
10.79	FEB 11	11.83	MAY 05	5.74	AUG 02	7.19
11.35	MAR 11	10.48	JUN 01	5.77	SEP 09	8.25
	WATER <u>LEVELDATE</u> 9.80 10.79 11.35	WATER WATER LEVELDATE LEVELDAT 9.80 JAN 12 10.79 FEB 11 11.35 MAR 11	WATERWATERWATERLEVELDATELEVELDATELEVELDATE9.80JAN 1210.79FEB 1111.35MAR 1110.48	WATERWATERWATERLEVELDATELEVELDATELEVELDATELEVEL9.80JAN 1211.80APR 0610.79FEB 1111.83MAY 0511.35MAR 1110.48JUN 01	WATER WATER WATER WATER LEVELDATE LEVELDATE LEVEL 9.80 JAN 12 11.80 APR 06 9.27 10.79 FEB 11 11.83 MAY 05 5.74 11.35 MAR 11 10.48 JUN 01 5.77	WATER WATER WATER WATER LEVELDATE LEVELDATE LEVEL 9.80 JAN 12 11.80 APR 06 9.27 JUL 01 10.79 FEB 11 11.83 MAY 05 5.74 AUG 02 11.35 MAR 11 10.48 JUN 01 5.77 SEP 09

WATER YEAR 1999 HIGHEST 5.74 MAY 05, 1999 LOWEST 11.83 FEB 11, 1999

IDA COUNTY

422215095390811. Local number, 87-41-05 CCCC11. LOCATION.--Lat 42°22'15", long 95°39'08", Hydrologic Unit 10230005, approximately 0.75 mi east and 6.5 mi south of the Village of Cushing. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 490 ft, screened 301-305 ft. Original depth 510 ft, cemented back to 490 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,344 ft above sea level, from topographic map. Measuring point: Top of casing, 2.18 ft above land-surface datum.

REMARKS.--Well D-10.

EXTREMES FOR PERIOD OF RECORD.--June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 202.55 ft below land-surface datum, June 4, 1980; lowest measured, 206.69 ft below land-surface datum, November 03, 1998.

	WATER LEVELS,	IN FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMBER	1999
DATE	WATER <u>LEVEL</u>	<u>DA</u> '	<u>TE</u>	WATI LEVI	ER EL	DAT	<u>re</u>	WATE <u>LEVE</u>	IR IL	D	ATE	WATE <u>LEVE</u>	R
NOV 03	206.69	FEB	6 09	206.	52	MAY	7 10	206.2	29	AU	JG 0	9 206.0)4

WATER YEAR 1999	HIGHEST	206.04	AUG 09,	1999	LOWEST	206.69	NOV 03,	1998
-----------------	---------	--------	---------	------	--------	--------	---------	------

423107095383201. Local number, 89-41-13 CCCC. LOCATION.--Lat 42°31'07", long 95°38'32", Hydrologic Unit 10230003, at a roadside park on County Road D-15, approximately 1.5 mi east and 3.5 mi north of the Village of Cushing. Owner: Geological Survey Bureau, DNR and U.S. Geological

Survey. AQUIFER.--Mississippian: limestone of Mississippian age. WELL CHARACTERISTICS .-- Drilled observation artesian water well, diameter 2 in., depth 469 ft, sand point 465-468 ft, open hole 468-469 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,320 ft above sea level, from topographic map. Measuring point: Top of casing, 2.11 ft above land-surface datum. REMARKS.--Well D-9.

ERIOD OF RECORD.--December 1978 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 180.25 ft below land-surface datum, August 09, 1999; lowest measured, 244.55 ft below land-surface datum, July 9, 1980.

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 02	182.72	FEB 09	181.83	MAY 10	181.69	AUG 09	180.25
	WATER YEAR 19	99 HIGH	EST 180.25	AUG 09, 1999	LOWEST	182.72 NOV 02	2, 1998

JACKSON COUNTY

420842090165701. Local number, 85-6E-29 ACAD1. LOCATION.--Lat 42°08'42", long 90°16'57", Hydrologic Unit 07060005, 1 mi east of U.S. Highway 52, 2 mi southeast of the Village of Green Island beside the Chicago, Milwaukee, St. Paul and Pacific Railroad tracks in the Upper Mississippi River Wildlife and Fish Refuge. Owner: U.S. Geological Survey. AQUIFER.--Dresbach: Mt. Simon sandstone of Early Cambrian age.

WELL CHARACTERISTICS. -- Drilled observation artesian water well, diameter 2 in., depth 1,804 ft, screened 1,705-1,725 ft, open hole 1,725-1,804 ft. INSTRUMENTATION.--Quarterly measurement with engineers rule by USGS personnel.

INVERVENTATION.--Quarterly measurement with engineers rule by USGS personnel. DATUM.--Elevation of land-surface datum is 610 ft above sea level, from topographic map. Measuring point: Mark on angle iron attached to well house, 6.05 ft above land- surface datum. REMARKS.--Flowing well. Green Island #1. PERIOD OF RECORD.--May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.81 ft above land-surface datum, May 16, 1988; lowest measured, 9.23 ft above land-surface datum, September 02, 1998.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	8.72	FEB 09	9.13	MAY 04	8.62	AUG 06	9.00
	WATER YEAR 1999	HIGHEST	8.62 MAY 04	,1999 LOWE	ST 9.13	FEB 09, 1999	

420842090165702. Local number, 85-06E-29 ACAD2. LOCATION.--Lat 42°08'42", long 90°16'57", Hydrologic Unit 07060005, 1 mi east of U.S. Highway 52, 2 mi southeast of the Village of Green Island beside the Chicago, Milwaukee, St. Paul and Pacific Railroad tracks in the Upper Mississippi River Wildlife and Fish Refuge. Owner: U.S. Geological Survey. AQUIFER.-- Cambrian-Ordovician, Wonewoc sandstone of Late Cambrian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 1,275 ft, screened 1,204.4-1,224.4 ft open hole 1 275 ft

ft, open hole 1,224.4-1,275 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 610 ft above sea level, from topographic map. Measuring point: Top of casing, DATUM.--Elevation of fand-surface datum is off it above sea fever, from topographic map, measuring point. Top of casing, 2.0 ft above land-surface datum
 REMARKS.--Green Island No. 2 well. Well pumped during winter to supply water to goose pond. Water levels for water years 1986 to 1989 affected by oil in the well.
 PERIOD OF RECORD.--July 1982 to November 1983, September 1986 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.73 ft above land-surface datum, May 23, 1995; lowest

measured, 3.88 below land-surface datum, November 4, 1982.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

(MEASUREMENTS ABOVE LAND SURFACE INDICATED BY "+")

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	.70	FEB 09	.48	MAY 04	+.01	AUG 06	.41

WATER YEAR 1999 HIGHEST + 01 MAY 04, 1999 LOWEST .70 NOV 03, 1998

420842090165703. Local number, 85-6E-29 ACAD3

LOCATION.--Lat 42°08'42", long 90°16'57", Hydrologic Unit 07060005, 1 mi east of U.S. Highway 52, 2 mi southeast of the Village of Green Island beside the Chicago, Milwaukee, St. Paul and Pacific Railroad tracks in the Upper Mississippi River Wildlife and Fish Refuge. Owner: U.S. Geological Survey.

AQUIFER. -- Cambrian-Ordovician: Prairie du Chien dolomite of Early Ordovician age and St. Peter sandstone of Middle Ordovician age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 910 ft, screened 604.2-624.2 ft,

open hole 624.2-910 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 610 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. REMARKS.--Green Island No. 3.

PERIOD OF RECORD.--May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.19 ft below land-surface datum, January 8, 1986; lowest measured 9.90 ft below land-surface datum, August 31, 1983.

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 03	7.43	FEB 09	7.07	MAY 04	6.81	AUG 06	6.70
	WATER YEAR	к 1999 ні	GHEST 6.	70 AUG 06, 1	999 LOWEST	7.43 NOV	V 03, 1998

JACKSON COUNTY--Continued

420433090502401. Local number, 84-01E 22 LOCATION.--Lat 42°04'33", long 90°50'24", Hydrologic Unit 07060006, located just east of the water-tower in the Town of Baldwin. Owner: Town of Baldwin.

BAIGWIN. UWHET. 10WN OF BAIGWIN. AQUIFER.--Devonian/Silurian WELL CHARACTERISTICS.--Drilled public-use well, diameter 14 in., depth 190 ft, open hole from 80-190 ft.

INSTRUMENTATION.--Quarterly measurement using airline by USGS personnel. DATUM.--Elevation of land-surface is 760 feet above sea level, by topographic map.

REMARKS.--Baldwin No. 2

PERIOD OF RECORD.--August 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 59.74 feet below land-surface datum, May 03, 1999; lowest measured, 64.22 feet below land-surface datum, February 09, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	59.81	FEB 09	64.22	MAY 03	59.74	AUG 06	61.35
	WATER YEAR 1	999 HIGHE	ST 59.74	MAY 03, 1999	LOWEST	64.22 FEB 09	, 1999

420842090165704. Local number, 85-6E-29 ACAD4. LOCATION.--Lat 42°08'42", long 90°16'57", Hydrologic Unit 07060005, 1 mi east of U.S. Highway 52, 2 mi southeast of the Village of Green Island beside the Chicago, Milwaukee, St. Paul and Pacific Rail- road tracks in the Upper Mississippi River Wildlife and Fish Refuge. Owner: U.S. Geological Survey. AQUIFER.--Cambrian-Ordovician: Galena dolomite of Middle Ordovician age.

WELL CHARACTERISTICS .-- Drilled observation artesian water well, diameter 2 in., depth 400 ft, screened 300-320 ft, open hole 320-400 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 610 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum.

EMARKS.--Green Island No. 4. PERIOD OF RECORD.--May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.39 ft below land-surface datum April 27, 1993; lowest measured, 19.46 ft below land-surface datum, September 20, 1988.

	WATER LEVI	ELS, I	IN FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEM	BER	1999
DATE	WATER <u>LEVEL</u>		DA	<u>re</u>	WAT LEV	ER EL	DAT	<u>'E</u>	WATE <u>LEVE</u>	IR IL	D	ATE	N I	IATE: LEVE	R L
NOV 03	15.86		FEB	09	16.3	38	MAY	04	14.1	4	AU	JG 0	6	15.43	3
	WATER	YEAR	1999	HIGH	EST	14.14	MAY 04,	1999	L	OWEST 1	L6.38	F	EB 09,	199	9

JASPER COUNTY

414147093035401. Local number, 80-19-33 ACAC. LOCATION.--Lat 41°41'50", long 93°03'53", Hydrologic Unit 07080105, 231 West 10th Street, Newton. Owner: John Coppess. AQUIFER.--Cambrian-Ordovician: sandstone and sandy dolomite of Late Cambrian and Early Ordovician age. WELL CHARACTERISTICS.--Drilled unused private artesian water well, diameter 12 to 6 in., depth 2,567 ft, cased to 1,750 ft, open hole 1,750-2,567 ft. Open to 461 ft of Early Ordovician Prairie du Chien formation, 262 ft of Late Cambrian St. Lawrence formation, and 94 ft of Middle Cambrian Franconia formation. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 915 ft above sea level, from topographic map. Measuring point: Plug in cement well cover. 0.50 ft above land-surface datum.

well cover, 0.50 ft above land-surface datum. REMARKS.--John Coppess well PERIOD OF RECORD.--September 1963 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 98.43 ft below land-surface datum, June 14, 1966; lowest measured, 288.3 ft below land-surface datum, August 21, 1996.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 04	255.03	FEB 08	271.09	MAY 05	251.47	AUG 05	264.19
	WATER YEAR 199	99 HIGHE	ST 251.47	MAY 05, 1999	LOWEST 271	.09 FEB 08	, 1999

230

MULL CHARACTERISTICS. --Dug stock water-table well, diameter 36 in., depth 37 ft, cribbed with brick. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 940 ft above sea level, from topographic map. Measuring point: Top of cement platform, 0.70 ft above land-surface datum.

platform, 0.70 ft above land-surface datum. REMARKS.--Beukema well PERIOD OF RECORD.--February 1940 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.67 ft below land-surface datum, June 10, 1947; lowest measured, 27.15 ft below land-surface datum, December 18, 1948.

	WATER LEVELS,	IN	FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTE	MBER	1999
DATE	WATER <u>LEVEL</u>		DAT	<u>re</u>	WAT LEV	ER EL	DAT	<u>re</u>	WATE <u>LEVE</u>	IR IL	D	ATE		WATE <u>LEVE</u>	R L
NOV 04	5.31		FEB	08	7.8	9	MAY	05	4.52	2	AU	JG 0	5	6.26	5
	WATER YEA	R 19	99	HIGH	EST	4.52	MAY 05,	1999	L	OWEST	7.89	F	EB 08,	199	9

JOHNSON COUNTY

413925091324001. Local number, 79-06-09 DDBC.

LOCATION.--Lat 41°39'35", long 91°32'37", Hydrologic Unit 07080209, at the Quadrangle Dormitory, University of Iowa, Iowa City. Owner: University of Iowa. AQUIFER.--Silurian: dolomite of Silurian age.

WELL CHARACTERISTICS .-- Drilled unused artesian water well, diameter 12 in., depth 430.5 ft, cased to 225 ft, open hole 225-430.5 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel, measured twice per month as part of project

461908100.

DATUM.--Elevation of land-surface datum is 714 ft above sea level, from topographic map. Measuring point: Nipple welded to plate on top of casing, 1.81 ft above land- surface datum. REMARKS. -- University of Iowa Quadrangle Dormitory. Water levels affected by nearby wells pumping in late spring, summer,

REMARKS.--ONIVErsity of fow guadrangle boundary, water levels affected by hearby wells pumping in face opting, banned, and early fall. PERIOD OF RECORD.--April 1975 to current year. REVISED RECORDS.--WDR IA-84-1, WDR IA-88-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 74.63 ft below land-surface datum, March 21, 1979; lowest measured, 174.62 ft below land-surface datum, September 5, 1995.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
OCT 21	159.26	MAR 24	159.38	JUN 11	157.55	AUG 25	148.20
NOV 24	152.65	APR 08	154.53	24	146.56	SEP 09	153.60
DEC 15	140.17	28	156.85	JUL 08	145.89	30	139.89
JAN 20	110.00	MAY 12	159.56	28	150.58		
FEB 11	135.87	26	154.39	AUG 12	138.77		

WATER YEAR 1999 HIGHEST 110.00 JAN 20, 1999 LOWEST 159.56 MAY 12, 1999

414132091345501. Local number, 80-06-31 ADAC1

414132091345501. Local number, 80-06-31 ADACI LOCATION.--Lat 41°41'47", long 91°35'00", Hydrologic Unit 07080209, located in the City of Coralville, north of U.S. Interstate 80. Owner: City of Coralville. AQUIFER.--Silurian: dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in. to 130 ft, 2 in. to 300 ft, depth 500 ft,

open hole 300-500 ft.

INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel, measured twice per month March 1995 to October 1995.

DATUM.--Elevation of land-surface datum is 795 ft above sea level, from topographic map. Measuring point: top of casing, 0.70 ft above land-surface datum. REMARKS.--Coralville Observation No. 2, East.

PERIOD OF RECORD.--June 1988 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 192.75 ft below land-surface datum, March 20, 1990; lowest water level measured, 323.24 ft below land-surface datum, December 18, 1996.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
OCT 21	253.01	MAR 24	248.75	JUN 10	252.89	AUG 25	253.23
NOV 24	245.76	APR 08	236.36	24	252.70	SEP 09	258.25
DEC 15	231.58	28	249.40	JUL 08	254.94	30	256.50
JAN 20	206.07	MAY 12	240.85	28	260.25		
FEB 11	234.79	26	254.95	AUG 12	251.41		

WATER YEAR 1999 HIGHEST 206.07 JAN 20, 1999 LOWEST 260.25 JUL 28, 1999

414132091345502. Local number, 80-06-31 ADBC1.

LOCATION.--Lat 41°41′47", long 91°35′00", Hydrologic Unit 07080209, located in the City of Coralville, north of U.S. Interstate 80. Owner: City of Coralville. AQUIFER.--Silurian: dolomite of Silurian age.

WELL CHARACTERISTICS. --Drilled observation artesian water well, diameter 5 in. to 130 ft, 2 in. to 300 ft, depth 500 ft, open hole 300-500 ft.

INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel, measured twice per month March 1995 to September 1997.

September 1997. DATUM.--Elevation of land-surface datum is 795 ft above sea level, from topographic map. Measuring point: top of casing, 1.03 ft above land-surface datum. REMARKS.--Coralville Observation No. 3, North. PERIOD OF RECORD.--June 1988 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest level measured, 169.04 ft below land-surface datum, June 21, 1988; lowest water level measured, 252.30 ft. below land-surface datum, July 30, 1998.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
OCT 21	245.31	MAR 24	236.17	JUN 10	246.45	AUG 25	246.12
NOV 24	240.15	APR 08	237.05	24	245.08	SEP 09	250.07
DEC 15	228.78	28	242.54	JUL 08	246.13	30	248.64
JAN 20	202.14	MAY 12	239.54	28	240.97		
FEB 11	225.13	26	247.19	AUG 12	243.45		

WATER YEAR 1999 HIGHEST 202.14 JAN 20, 1999 LOWEST 250.07 SEP 09, 1999

414107091322901. Local number, 79-06-04 AAAA. LOCATION.--Lat 41°41'07", long 91°32'30", Hydrologic Unit 07080209, at Forest View Trailer Court, northern edge of Iowa City. Owner: Forest View Trailer Court. AQUIFER.--Silurian: limestone of Silurian age.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 6 in., depth 280 ft, cased to 96 ft, open hole 96-280 ft

ft.
 INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel, measured twice per month March 1995 to October 1995. Graphic water-level recorder May 1971 to October 1986.
 DATUM.--Elevation of land-surface datum is 735 ft above sea level, from topographic map. Measuring point: Nipple on plate welded to top of casing, 1.62 ft above land- surface datum.
 REMARKS.--Forest View Trailer Court. Water levels affected by wells in the area pumping in late spring, summer, and early fall. The large number of water-level measurements in June 1996 are a result of the well being used as an observation well for a nearby pump test.
 PERIOD OF RECORD.--MUR IA-84-1.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 96.93 ft below land-surface datum, March 23, 1979; lowest measured. 153.24 ft below land-surface datum, July 30, 1998.

measured, 153.24 ft below land-surface datum, July 30, 1998.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
OCT 21	145.04	MAR 24	144.50	JUN 10	145.65	AUG 25	143.68
NOV 24	143.16	APR 08	143.26	24	142.52	SEP 09	144.81
DEC 15	140.64	28	143.56	JUL 08	140.49	30	141.64
JAN 20	128.01	MAY 12	144.86	28	142.96		
FEB 11	137.67	26	144.09	AUG 12	139.71		

WATER YEAR 1999 HIGHEST 128.01 JAN 20, 1999 LOWEST 145.65 JUN 10, 1999

414132091345503. Local number, 80-06-31 ADBD1.

LOCATION.--Lat 41°41′44", long 91°34′58", Hydrologic Unit 07080209, located in the City of Coralville, north of U.S. Interstate 80. Owner: City of Coralville. AQUIFER.--Silurian: dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled public-supply water well, 12 in. diameter, depth 500 ft, cased 0-200 ft, open hole 200-500 f+

IL. INSTRUMENTATION.--Monthly airline measurement by USGS personnel, measured twice per month March 1995 to October 1995. DATUM.--Elevation of land-surface datum is 795 ft above sea level, from topographic map. Measuring point: airline gauge, 2.88 ft above land-surface datum.

EXAMPLE ADOVE TAIL-Suitable datum. REMARKS.--Coralville Production No. 9. PERIOD OF RECORD.--June 1988 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 204 ft below land-surface datum, July 25, 1988; lowest water level measured, 309 ft below land-surface datum, July 28, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
OCT 21	289	APR 08	295	JUN 24	302	SEP 09	306
NOV 24	285	28	296	JUL 08	302	30	304
DEC 15	241	MAY 12	244	28	309		
FEB 11	235	26	303	AUG 12	297		
MAR 24	301	JUN 10	302	25	300		
	WATER YEAR	1999 HIGH	EST 235	FEB 11, 1999	LOWEST	309 JUL	28, 1999

414145091350101. Local number, 80-06-31 ADC.

LOCATION.--Lat 41°41′45", long 91°35′01". Hydrologic unit 07080209, located in the city of Coralville., north of U.S. Interstate 80. Owner: City of Coralville. AQUIFER.--Cambrian- Jordan sandstone.

WELL CHARACTERISTICS.--Drilled public-supply water well, diameter 16 in, depth 1710 ft., casing information not available.

DATUMENTATION.--Bi-monthly measurements using airline by USGS personnel. DATUM.--Elevation of land-surface datum is 740 ft above sea level, from unknown method.

REMARKS.--Coralville No. 10. PERIOD OF RECORD.--June 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--highest water level measured, 318 ft below land-surface datum, May 07, 1997; lowest water level measured, 411 ft. below land surface datum, July 08, 1999, August 12, 1999, September 09, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	
OCT 21	382	MAR 24	396	JUN 10	407	AUG 25	405	
NOV 24	398	APR 08	392	24	408	SEP 09	411	
DEC 15	334	28	397	JUL 08	411	30	405	
JAN 20	339	MAY 12	397	28	410			
FEB 11	382	26	405	AUG 12	411			
WATER	YEAR 1999	HIGHEST 334	DEC 15, 1998	LOWEST 411	JUL 08, 1999	AUG 12,	1999 SEP 09	9, 1999

414315091252001. Local number, 80-05-22 CBCB1. LOCATION.--Lat 41°43'16", long 91°25'20", Hydrologic Unit 07080209, along the Chicago, Rock Island and Pacific Railroad track, southeast of the overpass on Rapid Creek Road over the track, approximately 5.5 mi northeast of the junction of Interstate 80 and Lowa Highway 1. Owner: Chicago, Rock Island and Pacific Railroad Co.

AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 2.25 in., depth 18.43 ft, screened 16.43-18.43 ft. Depth originally 20 ft, depth of 18.43 ft measured June 23, 1989. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. Graphic water-level recorder February 1942 to

October 1965, measured twice per month March 1995 to October 1995. DATUM.--Elevation of land-surface datum is 753 ft above sea level, from topographic map. Measuring point: Nipple welded to casing, 4.47 ft above land-surface datum.

EVERSE--At the site of the former Elmira deput.
PERIOD OF RECORD.--May 1941 to September 1956, January 1958 to current year.
REVISED RECORDS.--WDR IA-88-1.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.84 ft below land-surface datum, April 29, 1947 (revised);
lowest measured, dry, November 10, 15, 20, 25, and 30, 1964, December 5, 10, 15, 20, 25 and 31, 1964, December 1 and
10, 1975, October 21, November 23, and December 17, 1976, and January 20 and February 18, 1977.

	WATER LEVELS,	IN FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	TO S	SEPTI	EMBER	1999
DATE	WATER LEVEL	DAT	<u>re</u>	WATI LEVI	ER EL	DAT	<u>'E</u>	WATE <u>LEVE</u>	R L	D	ATE		WATE <u>LEVE</u>	R
OCT 21	10.81	MA	AR 24	10.	43	JU	N 11	9.8	5	A	UG :	26	10.6	0
NOV 24	10.42	AF	PR 09	10.	34		25	9.7	1	5	SEP ()9	11.1	6
DEC 15	10.23		29	10.	12	JU	L 09	9.5	5					
JAN 20	10.60	MA	AY 13	9.9	97		29	9.7	3					
FEB 11	10.57		27	9.8	39	AU	G 13	10.1	4					

WATER YEAR 1999 HIGHEST 9.55 JUL 09, 1999 LOWEST 11.16 SEP 09, 1999

414221091361101. Local number, 80-07-25 DBAC1.

LOCATION.--Lat 41°42′24", long 91°36′21", Hydrologic Unit 07080209, located at the Iowa Department of Natural Resources/ Geological Survey Bureau's Oakdale core repository. Owner: Geological Survey Bureau/DNR. AQUIFER.--Silurian: dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in. to 164 ft, 5 in. to 319 ft, 4 in. 319-361.5 ft, liner set 310-361.5 ft, depth 532 ft, open hole 361.5-532 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel, measured twice per month March 1995 to

October 1995. DATUM. -- Elevation of land-surface datum is 790 ft above sea level, from topographic map. Measuring point: top of recorder

DATUM.--Elevation of land-surface datum is /90 it above sea level, from topographic map. Measuring point: top of recorder platform, 2.65 ft above land-surface datum. REMARKS.--Oakdale No. 1 (ODW-1). PERIOD OF RECORD.--April 1990 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 126.23 ft below land-surface datum, July, 31 1997; lowest

water level measured, 245.93 ft below land-surface datum, July 26, 1991.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
OCT 21	234.17	MAR 24	224.89	JUN 10	233.09	AUG 25	232.80
NOV 24	232.05	APR 08	223.34	24	225.05	SEP 09	236.79
DEC 15	229.24	28	222.18	JUL 08	230.74	30	234.45
JAN 20	207.84	MAY 12	224.37	28	238.66		
FEB 11	215.21	26	227.71	AUG 12	229.63		

HIGHEST 207.84 JAN 20, 1999 WATER YEAR 1999 LOWEST 238.66 JUL 28, 1999

414221091361102. Local number, 80-07-25 DBAC2. LOCATION.--Lat 41°42'24", long 91°36'21", Hydrologic Unit 07080209, located at the Iowa Department of Natural Resources/ Geological Survey Bureau's Oakdale core repository. Owner: Geological Survey Bureau/DNR. AQUIFER.--Devonian: limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 301 ft, cased 0-175 ft, open hole

175-301 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel, measured twice per month March 1995 to October 1995.

DCCODET 1995.
 DATUM. --Elevation of land-surface datum is 790 ft above sea level, from topographic map. Measuring point: top of recorder platform, 2.55 ft above land-surface datum.
 REMARKS.--Oakdale No. 2, (ODW-2).
 PERIOD OF RECORD.--April 1990 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 198.65 ft below land-surface datum, June 2 and 7, 1996;

lowest water level measured, 227.09 ft below land-surface datum, August 28, 1991.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
OCT 21	218.23	MAR 24	210.87	JUN 10	214.35	AUG 25	215.68
NOV 24	216.95	APR 08	209.62	24	209.48	SEP 09	218.84
DEC 15	215.51	28	206.67	JUL 08	213.38	30	218.24
JAN 20	206.01	MAY 12	208.15	28	218.60		
FEB 11	202.49	26	210.46	AUG 12	213.74		

WATER YEAR 1999 HIGHEST 202.49 FEB 11, 1999 LOWEST 218.84 SEP 09, 1999

413950091322402. Local number, 79-06-10 BCCD.

413950091322402. Local number, 79-06-10 BCCD.
LOCATION.--Lat 41°39'57", long 91°32'14", Hydrologic Unit 07080209, located on the northeast corner of the terminal end of North Madison Street just north of the Iowa City water treatment plant, approximately 0.5 miles north of Burlington st. Owner: The city of Iowa City.
AQUIFER.--Cambrian/Ordovician. Dolomite from the Prairie Du Chien Formation
WELL CHARACTERISTICS.--Drilled public use well, diameter 26 in, depth 1570 ft, open interval from 1000-1570 ft.
INSTRUMENTATION.--Bi-weekly measurements using an airline by USGS personnel.
DATUM.--Elevation of land-surface datum is 650 ft above sea level, from topographic map.
REMARKS.--Iowa City Well No. 1
PERIOD OF RECORD.--April 1996 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 154 ft below land-surface datum, September 25, 1996, May 07, 1997, June 18, 1997, July 02,1997; lowest water level measured, 360 ft below land-surface datum, May 12, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
OCT 21	172	MAR 2	4 296	MAY 26	313	AUG 12	309
NOV 24	281	APR 08	3 200	JUN 10	309	25	196
DEC 15	198	28	298	24	310	SEP 09	186
JAN 20	297	MAY 1	2 360	JUL 08	307	30	182
FEB 11	327	17	316	28	316		
	WATER YEA	R 1999	HIGHEST 172	OCT 21, 1998	LOWEST 3	360 MAY 1:	2, 1999

413929091322401. Local number 79-06-10 CCCB. LOCATION.--Lat 41°39'30", long 91°32'25". Hydrologic Unit 07080209, located at University of Iowa water treatment plant. Owner: University of Iowa

AQUIFER.--Cambrian-Jordan sandstone.

WELL CHARACTERISTICS.--Drilled artesian well used for withdrawal and testing, diameter 20 in, depth 1550 ft, casing open from 1063-1550 ft.

trom 1063-1550 ft. INSTRUMENTATION.--Bi-weekly measurements using airline by USGS personnel DATUM.--Elevation of land-surface datum is 654.51 ft. above sea level, by levels run to accuracy of 0.01 ft. Measuring point is airline connection, 0.85 ft. above land surface datum. REMARKS.--SUI water treatment plant PERIOD OF RECORD.--May 17, 1995 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 160 ft below land-surface datum, June 04, 1997; lowest water level measured, 216 ft. below land-surface datum, April 30, 1998.

WATER LEVELS,	IN	FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMBER	1999
---------------	----	------	-------	------	---------	--------	-------	------	---------	------	----	-----------	------

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
OCT 21	148	MAR 24	178	JUN 10	191	AUG 25	171
NOV 24	159	APR 08	173	24	187	SEP 09	162
DEC 15	172	28	187	JUL 08	187	30	157
JAN 20	167	MAY 12	210	28	187		
FEB 11	177	26	203	AUG 12	187		
	WATER YEA	AR 1999 HIG	HEST 148	OCT 21, 1998	LOWEST 2	210 MAY 1	12, 1999

414221091361103. Local number, 80-07-25 DBAD1. LOCATION.--Lat 41°42′24", long 91°36′21", Hydrologic Unit 07080209, located at the Iowa Department of Natural Resources/ Geological Survey Bureau's Oakdale core repository. Owner: Geological Survey Bureau/DNR. AQUIFER.--Buried channel: sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 4 in., depth 171 ft, screened 153-171. ft. INSTRUMENTATION.-- Quarterly measurement with chalked tape by USGS personnel, measured twice per month March 1995 to October 1995

October 1995. DATUM.--Elevation of land-surface datum is 790 ft above sea level, from topographic map. Measuring point: top of recorder

platform, 2.55 ft above land-surface datum. REMARKS.--Oakdale No. 3 (ODW-3). PERIOD OF RECORD.--April 1990 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 121.61 ft below land-surface datum, January 20, 1999; lowest water level measured, 128.74 ft below land-surface datum, April 12, 1992.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL
OCT 21	125.09	MAR 24	124.46	JUN 10	123.89	AUG 25	124.44
NOV 24	124.54	APR 08	124.47	24	123.66	SEP 09	124.63
DEC 15	124.59	28	124.31	JUL 08	123.80	30	125.04
JAN 20	121.61	MAY 12	123.99	28	123.97		
FEB 11	123.89	26	124.06	AUG 12	124.07		

WATER YEAR 1999 HIGHEST 121.61 JAN 20, 1999 LOWEST 125.09 OCT 21, 1998

414315091252002. Local number, 80-05-22 CBCB2. LOCATION.--Lat 41°43'16", long 91°25'20", Hydrologic Unit 07080209, along the Chicago, Rock Island and Pacific Railroad track, southeast of the overpass on Rapid Creek Road over the track, approximately 5.5 mi northeast of the junction of Interstate 80 and Iowa Highway 1. Owner: Chicago, Rock Island and Pacific Railroad Co. AQUIFER.--Devonian: Cedar Valley limestone of Middle Devonian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 5 in., depth 82.5 ft. Casing information not applicable.

available.

available. INSTRUMENTATION.--Intermittant measurement with chalked tape by USGS personnel. Shaft encoder and data collection platform (dcp) installed July, 1998. DATUM.--Elevation of land-surface datum is 753 ft above sea level, from topographic map. Measuring point: Nipple welded to plate on top of casing, 4.01 ft above land- surface datum. REMARKS.--At the site of the former Elmira depot. PERIOD OF RECORD.--December 1941 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.58 ft below land-surface datum, November 27, 1992; lowest measured, 21.65 ft below land-surface datum, August 21, 1989.

MEASURED WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 21	13.31	MAR 24	14.68	JUN 11	13.88	AUG 26	16.15
NOV 24	14.83	APR 09	13.23	25	13.78	SEP 09	16.92
DEC 15	14.75	29	13.67	JUL 09	13.83		
JAN 20	14.63	MAY 13	13.41	29	14.91		
FEB 11	14.07	27	14.03	AUG 13	15.59		

WATER YEAR 1999 HIGHEST 13.23 APR 09, 1999 LOWEST 16.92 SEP 09, 1999

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

					DAILY M	IEAN VALUE	lS					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16.04	14.12	14.94	14.82	14.30	14.81	14.81	13.69	14.16	12.88	15.21	16.45
2	15.97	14.15	14.83	14.62	14.04	14.81		13.66	14.29	13.10	15.32	16.49
3	15.47	14.23	14.77	14.64	13.76	14.89	14.79	13.61	14.34	13.21	15.34	16.58
4	15.28	14.36	14.79	14.80	13.87	14.89	14.81	13.58	14.30	13.39	15.32	16.62
5	14.14	14.40	14.77	14.76	13.86	14.88	14.74	13.53	14.25	13.49	15.36	16.67
6	13.46	14.51	14.76	14.71	13.97	15.05	14.66	13.51	14.33	13.65	15.37	16.76
7	13.83	14.60	14.87	14.75	13.96	15.13	14.69	13.58	14.39	13.75	15.37	16.79
8	14.22	14.61	14.86	14.74	13.98	14.98	14.59	13.68	14.46	13.77	15.49	16.84
9	14.44	14.50	14.84	14.74	14.06	14.89	13.23	13.73	14.47	13.83	15.52	16.92
10	14.63	13.72	14.85	14.72	14.13	15.03	12.37	13.70	14.28	14.01	15.53	16.93
11	14.76	13.85	14.84	14.61	14.07	15.09	12.74	13.66	13.88	14.07	15.62	17.00
12	14.88	13.93	14.79	14.58	13.98	15.09	13.24	13.65	13.61	14.09	15.54	17.03
13	14.95	13.95	14.76	14.71	14.13	15.06	13.43	13.42	12.34	14.11	15.59	17.10
14	15.01	13.97	14.77	14.72	14.10	15.04	13.57	13.39	11.98	14.16	15.75	17.14
15	15.05	14.14	14.75	14.65	14.08	15.03	13.59	13.42	12.57	14.24	15.81	17.20
16	15.08	14.18	14.71	14.61	14.24	14.69	13.19	13.35	13.01	14.32	15.84	17.26
17	14.46	14.39	14.68	14.57	14.35	14.24	13.02	13.19	13.27	14.42	15.92	17.29
18	11.80	14.37	14.55	14.58	14.42	14.28	13.10	13.22	13.37	14.45	15.88	17.29
19	12.29	14.52	14.76	14.65	14.52	14.41	13.28	13.28	13.44	14.51	15.79	17.30
20	12.84	14.63	14.81	14.64	14.64	14.43	13.46	13.35	13.56	14.56	15.88	17.39
21	13.31	14.68	14.79		14.75	14.49	13.55	13.41	13.63	14.62	15.93	17.45
22	13.80	14.65	14.86		14.76	14.57	13.63	13.54	13.71	14.68	15.95	17.46
23	14.04	14.76	14.84		14.71	14.60	13.12	13.59	13.68	14.70	15.95	17.43
24	14.18	14.83	14.82		14.74	14.68	12.86	13.64	13.70	14.78	15.99	17.46
25	14.30	14.73	14.74		14.80	14.78	12.84	13.72	13.78	14.84	16.08	17.49
26	14.40	14.79	14.68		14.78	14.79	13.07	13.88	13.80	14.89	16.15	17.52
27	14.31	14.78	14.65		14.68	14.78	13.25	14.02	13.62	14.91	16.21	17.64
28	14.03	14.76	14.67	14.41	14.75	14.79	13.49	14.08	12.02	14.91	16.27	17.64
29	13.86	14.71	14.69	14.45		14.92	13.67	14.11	12.18	14.91	16.37	17.64
30	13.92	14.81	14.79	14.47		14.92	13.71	14.16	12.59	14.92	16.42	17.61
31	14.05		14.77	14.45		14.82		14.17		15.05	16.43	
MEAN	14.28	14.42	14.77		14.30	14.80		13.63	13.57	14.23	15.78	17.15
MAX	16.04	14.83	14.94		14.80	15.13		14.17	14.47	15.05	16.43	17.64
MIN	11.80	13.72	14.55		13.76	14.24		13.19	11.98	12.88	15.21	16.45

JONES COUNTY

415808091160501. Local number, 83-04-25 CBBB. LOCATION.--Lat 41°58'08", long 91°16'05", Hydrologic Unit 07080103, 4 mi north of the Town of Mechanicsville and 1 mi west of County Road X-40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian: dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in. to 41 ft, 5 in. 41-517 ft, depth 517 ft, open hole 41-517 ft.

DATUM.--Elevation of land-surface datum is 811 ft above sea level, from topographic map. Measuring point: Nipple welded to plate on top of casing, 2.16 ft above land- surface datum.

REMARKS.--White Oak Creek well. PERIOD OF RECORD.--July 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.78 ft below land-surface datum, May 3, 1993; lowest measured, 6.21 ft below land-surface datum, September 11, 1989.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	1.51	FEB 09	2.76	MAY 03	2.17	AUG 06	5.46

WATER YEAR 1999 HIGHEST 1.51 NOV 03, 1998 LOWEST 5.46 AUG 06, 1999

KEOKUK COUNTY

412030092121601. Local number, 76-12-35 DBDC LOCATION.--Lat 41°20'30", long 92°12'16", Hydrologic Unit 07080106, approximately 0.25 mi north of the town of Sigourney, 0.25 mi north of Highway 92. Owner: City of Sigourney.

AQUIFER.--Mississippian: limestone and dolomite of Mississippian age. WELL CHARACTERISTICS.--Drilled unused public-supply artesian well, diameter 14 in., depth 300 ft, cased to 128 ft, open hole 128-300 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. Analog digital water-level recorder January 1989 to September 1992.

DATUM.--Elevation of land-surface datum is 769 ft above sea level, from topographic map. Measuring point: Top of recorder base, 1.56 ft above land-surface datum. REMARKS.--Sigourney South Rock Island No. 1 well. Water levels affected by nearby pumping.

PERIOD OF RECORD.--July 1988 to present. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 80.99 ft below land-surface datum, May 17, 1995; lowest measured, 118.29 ft below land-surface datum, August 31, 1991.

> WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 LTA CODO LTA CODO

DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 04	88.96	MAY 04	83.33	AUG 05	85.26

WATER YEAR 1999 HIGHEST 83.33 MAY 04, 1999 LOWEST 88.96 NOV 04, 1998

LEE COUNTY

404306091270201. Local number, 68-05-05 DAAC. LOCATION.--Lat 40°43'06", long 91°27'02", Hydrologic Unit 07080104, located on the south side of State Highway 2 approximately 7 mi east of Donnellson and 6 mi south of West Point.

Approximately, and to be contented and the second s

DATUM.--Elevation of land-surface datum is 763 ft., from topographic map. Measuring point: Top of casing 3.00 ft above land-surface datum.

EMARKS.--West Point No. 3 PERIOD OF RECORD.--November 15, 1996 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 262.04 ft below land-surface datum, January 28, 1997; lowest measured, 266.61 ft. below land-surface datum, August 06, 1999.

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	264.31	FEB 08	263.21	MAY 04	264.57	AUG 06	266.61
	WATER YEAR 19	99 HIGHE	ST 263.21	FEB 08, 1999	LOWEST	266.61 AUG 06	, 1999

LINN COUNTY

415343091360101. Local number, 82-07-25 AAAB. LOCATION.--Lat 41°53′43″, long 91°36′01″, Hydrologic Unit 07080208, 0.5 mi northwest of the Town of Ely at the southwest corner of the junction of County Roads E-70 and W-6E. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian: limestone and dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in., depth 401 ft, cased to 121.5 ft, open hole 121.5-401 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder April 1978 to October 1979. Intermittent measurement with chalked tape by USGS personnel May 1976 to April 1978. DATUM.--Elevation of land-surface datum is 772 ft above sea level, from topographic map. Measuring point: Top of casing, 1.76 ft above land-surface datum.

REMARKS.--Ely (Northwest) Railroad well. Records for May 1976 to September 1988 are unpublished and available in the files of the Iowa District Office.

PERIOD OF RECORD.--May 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.03 ft below land-surface datum, August 26, 1993; lowest measured, 19.96 ft below land-surface datum, June 14, 1977.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

		WATER			1	WATE	R				WATE	ER		
DATE		LEVEL	DAT	E		LEVE	<u>L</u>	DAT	E		LEVE	<u>EL</u>		
NOV 02		7.89	MAY	03		6.93		AUG	09		9.9	5		
FEB 10		8.79	AUG	09		6.92								
WATER	YEAR	1999	HIGHEST	6.92	AUG	09,	1999	I	LOWEST	9.9	95	AUG	09,	1999

420200091363001. Local number 83-07-01 BADC. LOCATION.--Lat 42°02'00", long 91°36'36", Hydrologic Unit 07080206, located in the town of Marion. Owner: Town of Marion AQUIFER.--Cambrian-Trempealeau Group

WEL CHARACTERISTCS.--Drilled public-use well, depth 1570, casing information not available. INSTRUMENTATION.--Quarterly measurements using airline by an observer. DATUM.--Elevation of land-surface datum is 793 ft above sea level, from topographic map.

REMARKS.--Marion No.4

REMARKS.--Warlon NG.4 PERIOD OF RECORD.--August 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 260 ft below land-surface datum, April 21, 1998; lowest measured 325 ft below land-surface datum, August 325, 1999

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>
AUG 19	325

420219091344101. Local number 84-06-32 BCBC. LOCATION.--Lat 42°02'45", long 91°34'43", Hydrologic Unit 07080206, located in the town of Marion near Tauber park on the corner of 31st St. and 23rd Ave. Owner: Town of Marion. AQUIFER.--Cambrian/Ordovician- Jordan sandstone. WELL CHARACTERISTICS.--Drilled public-use well, diameter 24 to 12.5 in., depth 1660 ft, open hole from 1150-1660 ft.

INSTRUMENTATION.--Quarterly measurements using airline by an observer. DATUM.--Elevation of land-surface datum is 863 ft above sea level, from topographic map. REMARKS.--Marion No. 5.

PERIOD OF RECORDS.--January 1997 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 330 ft. below land surface datum, January 28, 1997 and April 21, 1997; lowest measured, 384 ft. below land-surface datum, August 18, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	
NOV 20	348	FEB 18	373	APR 23	348	AUG 18	384	

WATER YEAR 1999 HIGHEST 348 NOV 20, 1998 APR 23, 1999 LOWEST 384 AUG 18, 1999

415422091422601. Local number, 82-07-18 CDCD. LOCATION.--Lat 41°54'22", long 91°42'26", Hydrologic Unit 07080205, on 76th Avenue SW, approximately 1.5 mi west of U.S. Highway 218, Cedar Rapids. Owner: Edwin J. Hynek. AQUIFER.--Glacial drift of Pleistocene age. WELL CHARACTERISTICS.--Dug unused water-table well, diameter 4 ft, depth 13.5 ft, cribbed with brick.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder July 1959 to September 1987. DATUM.--Elevation of land-surface datum is 835 ft above sea level, from topographic map. Measuring point: Base of

recorder shelter, 0.37 ft above land-surface datum.
REMARKS.--Well previously owned by Lester Petrak.
PERIOD OF RECORD.--July 1959 to current year.
REVISED RECORDS.--WDR IA-84-1.
EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 1.09 ft below land-surface datum, August 4, 1968; lowest
recorded, 11.75 ft below land-surface datum, February 8, 1977.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 02	4.33	FEB 10	4.64	MAY 03	4.86

WATER YEAR 1999 HIGHEST 4.33 NOV 02, 1998 LOWEST 4.86 MAY 03, 1999

415725091410101. Local number, 83-07-32 ACDC. LOCATION.--Lat 41°57'25", long 91°41'01", Hydrologic Unit 07080205, northwest corner of 22nd Avenue SW and 11th Street SW, Cedar Rapids. Owner: Floyd Fetter.

AQUIFER.--Silurian: limestone of Silurian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 5 in., depth 282 ft. Casing information not available.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 805 ft above sea level, from topographic map. Measuring point: Plug in well cover at land-surface datum.

Cover at faile-Surface datum. REMARKS.--Water levels may be affected by pumping of near by wells. PERIOD OF RECORD.--July 1940 to current year. REVISED RECORDS.--WDR IA-88-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 75.88 ft below land-surface datum, January 26, 1942; lowest measured, 107.00 ft below land-surface datum, September 16, 1976.

	WATER LEVELS,	IN FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMBER	1999
	WATER			WAT	ER			WATH	ER			WATE	IR
DATE	LEVEL	DA	<u>re</u>	LEV	EL	DAT	<u>'E</u>	LEVE	<u> 11</u>	D	ATE	LEVE	<u>IL</u>
NOV 02	88.08	FEB	10	86.4	17	MAY	2 03	86.9	7	AU	JG 0	9 88.5	4

WATER YEAR 1999 HIGHEST 86.47 FEB 10, 1999 LOWEST 88.54 AUG 09, 1999

415725091410101

415834091351601. Local number, 83-06-30 ABBA. LOCATION.--Lat 41°58'34", long 91°35'16", Hydrologic Unit 07080206, approximately 200 ft west of 5201 Mount Vernon Road SE, Cedar Rapids. Owner: Vulcan Auto Yard. Formerly owned by B.L. Anderson. AQUIFER.--Silurian-Devonian: dolomite of Silurian and limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 6 in., depth 76.5 ft. Casing information not

available.

DATUM.--Elevation of land-surface datum is 755 ft above sea level, from topographic map. Measuring point: Hole in pump base, 0.50 ft above land-surface datum. REMARKS.--Katz well. PERIOD OF RECORD.--May 1940 to current year.

NO

EXTREMES OF PERIOD OF RECORD.--Highest water level measured, 37.68 ft below land-surface datum, August 24, 1993; lowest measured, 53.90 ft below land-surface datum, December 21, 1970.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
IOV 02	47.64	FEB 10	48.78	MAY 03	46.67	AUG 09	46.45

HIGHEST 46.45 AUG 09, 1999 LOWEST 48.78 FEB 10, 1999 WATER YEAR 1999

420300091325801. Local number, 84-06-33 ABBB. LOCATION.--Lat 42°03'00", long 91°32'58", Hydrologic Unit 07080206, near the City of Marion on the east side of Iowa Highway 13, approximately 1 mi north of U.S. Highway 151. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Silurian: dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in. to 142 ft, 5 in. 142-161 ft, depth 481 ft, open hole 161-481 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 838 ft above sea level, from topographic map. Measuring point: Top of casing, 0.90 ft above land-surface datum.

REMARKS.--Marion well. PERIOD OF RECORD.--June 1976 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 42.15 ft below land-surface datum, June 18, 1986; lowest measured, 50.26 ft below land-surface datum, December 1, 1989.

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER LEVEL	DAT	WATER E LEVEL
NOV 02	44.03	FEB 10	44.07	MAY 03	44.89	AUG	09 45.02
	WATER YEAR	1999 нтсн	EST 44.03	NOV 02. 1998	LOWEST	45.02	AUG 09, 1999

420508091395811. Local number, 84-07-16 DBBB.

LOCATION.--Lat 42°05'16", long 91°40'02", Hydrologic Unit 07080205, approximately 0.5 mi south of County Road E-34, north of the Town of Robins. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian: dolomite of Silurian age.

AQUIFER.--SILUTIAN. GOIDMLE OF SILUTIAN AGE. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in. to 60.6 ft, 5 in. to 173 ft, depth 520 ft, open hole 173-520 ft. Open to Devonian rock 173-197, Silurian 196.5-510 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder November 1975 to September 1979. Intermittent measurement with chalked tape by USGS personnel April 1975 to November 1975. DATUM.--Elevation of land-surface datum is 873 ft above sea level, from topographic map. Measuring point: Top of casing, 1.20 ft above land-surface datum. EMAPEKS_--PROIDS well Records for April 1975 to September 1988 are unpublished and available in the files of the Journ

REMARKS. -- Robins well. Records for April 1975 to September 1988 are unpublished and available in the files of the Iowa District Office.

District office. DERIOD OF RECORD.--April 1975 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 36.33 ft below land-surface datum, August 24, 1993; lowest measured, 57.50 ft below land-surface datum, December 1, 1989.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DA	<u>re</u>	WATER <u>LEVEL</u>
NOV 02	42.65	FEB 10	46.25	MAY 03	43.13	AUC	G 09	45.58
	WATER YEAR	1999 HIGH	ST 42.65	NOV 02, 1998	LOWEST	46.25	FEB 10	, 1999

420508091395811

420526091370701. Local number, 84-07-13 BCBB. LOCATION.--Lat 42°05'26", long 91°37'07", Hydrologic Unit 07080206, approximately 0.25 mi south of the junction of County Roads W-58 and E-34, on the east side of the road, or approximately 3.75 mi north of the City of Marion. Owner: U.S. Geological Survey.

AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 1.25 in., depth 17 ft, screened 15-17 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 882 ft above sea level, from topographic map. Measuring point: Nipple welded to casing, 1.24 ft above land-surface datum. REMARKS.--USGS13E2 well. PERIOD OF RECORD.--September 1948 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.93 ft below land-surface datum, May 18, 1982; lowest measured, 15.19 ft below land-surface datum, January 20, 1977.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
OCT 13	3.95	JAN 12	5.08	APR 16	2.36	JUL 15	4.76
NOV 20	3.64	FEB 17	3.18	MAY 11	3.40	AUG 16	5.05
DEC 11	4.29	MAR 16	2.12	JUN 16	3.00	SEP 09	6.10

WATER YEAR 1999 HIGHEST 2.12 MAR 16, 1999 LOWEST 6.10 SEP 09, 1999

420730091490401. Local number, 85-08-31 DDCD1. LOCATION.--Lat 42°07'30", long 91°49'04", Hydrologic Unit 07080205, at the fenced north end of Pleasant Creek Reservoir near the beach house in the beach area. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Silurian: dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in. to 53.5 ft, 5 in. to 214 ft, depth 481 ft, open hole 214-481 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder May 1975 to December 1979. DATUM.--Elevation of land-surface datum is 833 ft above sea level, from topographic map. Measuring point: Top of casing,

1.17 ft above land-surface datum.
 REMARKS.--Pleasant Creek Reservoir/Silurian well. Records for May 1975 to September 1988 are unpublished and available in the files of the Iowa District Office.
 PERIOD OF RECORD.--May 1975 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 20.73 ft below land-surface datum, May 03, 1999; lowest

measured, 108.49 ft below land-surface datum, August 4, 1997.

	WATER LEVELS,	IN FEET BELO	W LAND SURFAC	E DATUM, WATER	YEAR OCTOBER	1998 TO	SEPTEMBER 1999
DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 02	47.47	FEB 10	20.85	MAY 03	20.73	AUG 09	9 23.81
	WATER YEA	R 1999 HIC	HEST 20.73	MAY 03, 1999	LOWEST	47.47 NC	OV 02, 1998

420730091490402. Local number, 85-08-31 DDCD2. LOCATION.--Lat 42°07'29", long 91°49'01", Hydrologic Unit 07080205, at the fenced north end of Pleasant Creek Reservoir near the beach house in the beach area. Owner: Geological Survey Bureau, DNR, and U.S. Geological Survey. AQUIFER.--Devonian: limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 5 in., depth 205 ft, cased to 52 ft, open hole 52-205

ft

INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder May 1975 to December 1979.

DATUM.--Elevation of land-surface datum is 841 ft above sea level, from topographic map. Measuring point: Top of casing, 2.38 ft above land-surface datum. REMARKS. --Pleasant Creek Reservoir/Devonian well. Records for May 1975 to September 1989 are unpublished and available in

the Iowa District Office.

PERIOD OF RECORD.--May 1975 to May 1980, April 1984 to present. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14,60 ft below land-surface datum, May 31, 1991; lowest measured, 48.55 ft below land-surface datum, November 12, 1976.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 02	28.67	FEB 10	18.39	MAY 03	17.96	AUG 09	18.33
	WATER YEAR 19	99 HIGH	EST 17.96	MAY 03, 1999	LOWEST	28.67 NOV	02, 1998

421149091403301. Local number, 85-07-04 CCCC. LOCATION.--Lat 42°11'49", long 91°40'33", Hydrologic Unit 07080205, approximately 5 mi east of the Town of Center Point, north side of County Road E-16. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian-Devonian: dolomite of Silurian age and limestone and dolomite of Devonian age.

 MULL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in. to 41 ft, 5 in 129-147 ft, depth 435 ft, open hole 41-129 ft and 147-435 ft. Devonian rock 23-139 ft, Silurian rock 139-431 ft.
 INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder March 1974 to December 1979. Intermittent measurement with chalked tape by USGS personnel July 1973 to March 1974.
 DATUM.--Elevation of land-surface datum is 912 ft above sea level, from topographic map. Measuring point: Nipple welded to plate on top of casing, 1.21 ft above land- surface datum.

REMARKS. -- Alice well.

PERIOD OF RECORD. --July 1973 to current year.

EEVISED FECORD.- OUR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 17.06 ft below land-surface datum, June 10, 1974; lowest measured, 34.27 ft below land-surface datum, December 1, 1989.

	WATER	LEVELS,	IN	FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMBER	1999
DATE	WA LE	TER VEL		DAT	<u>re</u>	WATI LEVI	ER EL	DAT	<u>'E</u>	WATE <u>LEVE</u>	IR IL	D	ATE	WATI LEVI	ER EL
NOV 02	25	5.63		FEB	10	26.7	74	MAY	03	25.1	5	AU	JG 0	9 26.8	37

WATER YEAR 1999 HIGHEST 25.15 MAY 03, 1999 LOWEST 26.87 AUG 09, 1999

421207091312201. Local number, 85-06-03 DABB. LOCATION.--Lat 42°12'07", long 91°31'24", Hydrologic Unit 07080102, located east of State Highway 13 in the Town of Central City. Owner: Town of Central City. AOULTEER --Silurian

WELL CHARCTERISTICS.--Drilled pumping well, diameter 6 in., depth 106 ft., casing information not available.

INSTRUMENTATION.--Quarterly measurements with airline by USGS personnel. DATUM.--Elevation of land-surface datum is 825 ft, by topographic map.

REMARKS.--Central City Well

PERIOD OF RECORD.--August 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10 feet below land-surface datum, August 09, 1999 and Aug. 03, 1998; lowest measured, 22 ft below land-surface datum, February 23, 1998.

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 02	14	FEB 10	14	MAY 03	11	AUG 09	10
WATER	YEAR 1999	HIGHEST 1) AUG 09	, 1999 LO	OWEST 14	NOV 02, 1998	FEB 10, 1999

LYON COUNTY

431812096302701. Local number, 98-48-16 DDAD. LOCATION.--Lat 43°18'12", long 96°30'27", Hydrologic Unit 10170203, approximately 3.5 mi east of the City of Canton, S.D.,

south of U.S. Highway 18. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 358 ft, screened 335-355 ft. Open

to Late Precambrian Sioux quartzite 353-358 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,268 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum.

REMARKS.--Well D-20. PERIOD OF RECORD.--December 1978 to December 1980, May 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 91.89 ft below land-surface datum, July 8, 1986; lowest measured, 107.60 ft below land-surface datum, November 7, 1991.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
JOV 02	106.03	FEB 10	105.20	MAY 11	104.26	AUG 10	104.54

HIGHEST 104.26 MAY 11, 1999 LOWEST 106.03 NOV 02, 1998 WATER YEAR 1999

432140095595301. Local number, 99-44-26 DDDD.

LOCATION.--Lat 43°21′40", long 95°59′53", Hydrologic Unit 10170204, 1 mi north of the City of George, west of Iowa Highway 339. Owner: State of Iowa. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 20 in., depth 38 ft, lined with tile. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,400 ft above sea level, from topographic map. Measuring point: Plug in well cover, 2.01 ft above land-surface datum. REMARKS.--Well No. 26R1. PERIOD OF RECORD.--October 1940 to June 1943, May 1947 to current year.

NO

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.07 ft above land-surface datum, May 10, 1995; lowest measured, 9.74 ft below land-surface datum, October 24, 1940.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
OCT 06	3.79	JAN 07	2.69	MAY 11	1.58	SEP 08	4.49
NOV 02	3.01	FEB 10	1.87	JUN 16	.95		
18	.93	MAR 24	1.62	JUL 29	2.75		

WATER YEAR 1999 HIGHEST .93 NOV 18, 1998 LOWEST 4.49 SEP 08, 1999

432140095595301

432553096105701. Local number, 99-45-05 ABAC.

LOCATION.--Lat 43°25′53", long 96°10′57", Hydrologic Unit 10170204, 0.05 mi south of Iowa Highway 9 on 2nd Street, Rock Rapids. Owner: City of Rock Rapids. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 10 in., depth 375 ft, cased to 296 ft, open hole 296-375 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,368 ft above sea level, from topographic map. Measuring point: Plug in cover over casing, 1.00 ft above land-surface datum. REMARKS.--City test well No. 3.

PERIOD OF RECORD.--August 1960 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 100.08 ft below land-surface datum, July 27, 1964; lowest measured, 128.62 ft below land-surface datum, November 5, 1996.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
OCT 06	115.70	JAN 07	114.56	MAY 11	122.53	SEP 08	116.08
NOV 02	117.65	FEB 10	115.36	JUN 16	115.72		
18	115.31	MAR 24	115.80	JUL 29	115.69		

WATER YEAR 1999 HIGHEST 114.56 JAN 07, 1999 LOWEST 122.53 MAY 11, 1999

432553096105701

432601096335511. Local number, 100-48-31 CCCC11. LOCATION.--Lat 43°26'01", long 96°33'55", Hydrologic Unit 10170203, 0.5 mi west and 2.5 mi south of the Village of Granite. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 657 ft, screened 450-455 ft and 630-650 ft. Dakota 437-653 ft, Sioux Quartzite 653-657 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,417 ft above sea level, from topographic map. Measuring point: Top of casing

at land-surface datum.

REMARKS.--Well D-19. PERIOD OF RECORD.--December 1978 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 151.57 ft below land-surface datum, February 11, 1994; lowest measured, 158.25 ft below land-surface datum, April 11, 1990.

	WATER LEVELS	, IN FEET	BELOW LANI	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMBE	IR 1999
	WATER		WA	TER			WAT	ER			WA	TER
DATE	LEVEL	DA	<u>TE LE'</u>	/EL	DAT	ГE	LEVI	EL	$\mathbf{D}_{\mathbf{A}}$	ATE	LE	VEL
NOV 02	155.43	FEB	10 154	.68	MAY	11	154.0)3	AU	IG 1	0 15	4.54
	WATER YEA	AR 1999	HIGHEST	154.03	MAY 11,	1999	L	OWEST 1	55.43	N	OV 02, 1	998

MADISON COUNTY

411727093483001. Local number, 75-26-23 AAAC. LOCATION.--Lat 41°17'27", long 93°48'30", Hydrologic Unit 07100008, near the shelter house in the city park, St. Charles. Owner: City of St. Charles.

AQUIFER.--Mississippian: limestone of Mississippian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 8 in., depth 867 ft, cased to 657 ft, open hole 657-867 ft.

DATUM.--Elevation of land-surface datum is 1,067 ft above sea level, from topographic map. Measuring point: Plug in well cover, 1.20 ft above land-surface datum. REMARKS.--City well No. 1. PERIOD OF RECORD.--November 1962 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 261.76 ft below land-surface datum, November 20, 1962; lowest measured, 280.26 ft below land-surface datum, August 19, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 05	279.91	MAR 04	279.71	AUG 19	280.26
FEB 12	279.84	APR 14	279.72		

WATER YEAR 1999 HIGHEST 279.71 MAR 04, 1999 LOWEST 280.26 AUG 19, 1999

MAHASKA COUNTY

411912092273601. Local number, 75-14-10 BAAC. LOCATION.--Lat 41°19'12", long 92°27'36", Hydrologic Unit 07080106, approximately 0.5 mi south of Iowa Highway 92 in the town of Rose Hill. Owner: City of Rose Hill.

AQUIFER.--Mississippian: limestone and dolomite of Mississippian age. WELL CHARACTERISTICS.--Drilled unused public-supply artesian well, diameter 6 in., depth 370 ft, casing information not available

available.
INSTRUMENTATION.-- Quarterly measurement with chalked tape by USGS personnel. Analog digital water-level recorder July 1990 to October 1992. Intermittent measurement with chalked tape by USGS personnel May 1989 to June 1989.
DATUM.--Elevation of land-surface datum is 815 ft above sea level, from topographic map. Measuring point: Top of recorder platform, 1.63 ft above land-surface datum.
REMARKS.--Rose Hill No. 2 well.
PERIOD OF RECORD.--May 1989 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 100.69 ft below land-surface datum, July 30, 1992; lowest measured, 107.51 ft below land-surface datum, February 08, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 04	101.35	FEB 08	107.51	MAY 05	100.03	AUG 05	102.59

WATER YEAR 1999 HIGHEST 100.03 MAY 05, 1999 LOWEST 107.51 FEB 08, 1999

MAHASKA COUNTY--Continued

411914092274701. Local number, 75-14-10 BABC.

LOCATION.--Lat 41°19'14", long 92°27'47", Hydrologic Unit 07080106, approximately 0.45 mi south of Iowa Highway 92, behind City Hall in the Town of Rose Hill. Owner: City of Rose Hill. AQUIFER.--Mississippian: limestone and dolomite of Mississippian age.

WELL CHARACTERISTICS .-- Drilled unused public-supply artesian well, diameter 5 in., depth 273 ft, cased to 106 ft, open hole 106-273 ft.

INOLE 100-273 It. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 817 ft above sea level, from topographic map. Measuring point: Top of casing, 1.56 ft above land-surface datum. REMARKS.--Rose Hill No. 4 well. DEDIOD DE DEFETTION 1000 to surget user

REMARKS.--KOSE HILL NO. 4 WEIL PERIOD OF RECORD.--September 1988 to current year. REVISION.--Site identification number. Previously published as 411914092273001. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 99.56 ft below land-surface datum, May 17, 1995; lowest measured, 106.03 ft below land-surface datum, May 05, 1999.

WATER	LEVELS,	IN	FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMBER	1999

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 04	100.92	FEB 08	100.26	MAY 05	106.03	AUG 05	99.76
	WATER YEAR	1999 HIGHI	EST 99.76	AUG 05, 1999	LOWEST	106.03 MAY 05	, 1999

412020092471002. Local number, 76-17-35 CADB. LOCATION.--Lat 41°20'25", long 92°47'09", Hydrologic Unit 07100009, 150 ft east of the old treatment plant near a retirement village on the north end of the Town of Leighton. Owner: Town of Leighton. AQUIFER.--Cambrian-Ordovician: sandstone of Late Cambrian and sandstone and sandy dolomite of Early Ordovician age. WELL CHARACTERISTICS.--Drilled unused public-supply artesian well, diameter 8 in. to 383 ft, 5 in. 383-1778 ft, depth 2200 ft, open 1778-2200 ft. UNSTEUMENTATION --OUETERLY measurement with chalked tape by USGS personnel

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 820 ft above sea level, from topographic map. Measuring point: Top of casing, 5.43 ft above land-surface datum.

REMARKS.--Leighton No. 4 well. PERIOD OF RECORD.--May 1989 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 215.38 ft below land-surface datum, May 11, 1989; lowest measured, 282.96 ft below land-surface datum, August 20, 1996.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	258.19	MAY 05	223.03	AUG 05	232.10

WATER YEAR 1999 HIGHEST 223.03 MAY 05, 1999 LOWEST 258.19 NOV 04, 1998

MARION COUNTY

411323093142601. Local number, 74-21-11 DBCB1. LOCATION.--Lat 41°13'23", long 93°14'26", Hydrologic Unit 07100008, north of the water tower in the town square. Owner: Town of Melcher. AOUIFER. -- Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 18 in., depth 9.7 ft, lined with tile. Depth originally 25 ft, depth measured in 1981 and 1991 at 12.2 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 948 ft above sea level, from topographic map. Measuring point: Top of tile

Casing at land-surface datum.
 REMARKS.--Town well No. 2.
 PERIOD OF RECORD.--March 1950 to current year.
 REVISION.--Highest water level measured, 0.20 ft below land-surface datum, October 10, 1973; lowest measured, 15.27 ft below land-surface datum, October 22, 1953.
 EXITREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.20 ft below land-surface datum, October 10, 1973; lowest measured, 1973; lowest measured, 15.27 ft below land-surface datum, October 22, 1953.

measured, 15.27 ft below land-surface datum, October 22, 1953.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATE LEVE	IR IL	DATE	WATER LEVEL	DA	TE	WATER <u>LEVEL</u>
OCT 16	5.59	JAN 13	5.89)	MAY 05	3.39	AU	G 05	7.01
NOV 04	4.77	FEB 08	4.36	5	JUN 09	5.89		31	6.72
DEC 15	7.28	MAR 10	6 1.19)	JUL 20	6.78			
	WATER YEA	R 1999	HIGHEST	1.19	MAR 16, 1999	LOWEST	7.28	DEC 1	15, 1998

411328093143503. Local number, 74-21-11 CAAD3.

LOCATION.--Lat 41°13'28", long 93°14'35", Hydrologic Unit 07100008, northeast corner of the junction of West 1st Street and North A Street, Melcher. Owner: Town of Melcher. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 1.25 in., depth 96.5 ft, screened 78-80 ft, open hole 80-96.5 ft.

INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 944 ft above sea level, from topographic map. Measuring point: Nipple welded to casing, 0.51 ft above land-surface datum.

to casing, 0.51 it above fand-surface datam. REMARKS.--Town well No. 5, well 11L1. PERIOD OF RECORD.--August 1953 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.29 ft below land-surface datum, May 7, 1996; lowest measured (nearby well pumping), 55.16 ft, revised, below land-surface datum, March 4, 1954.

	WATER LEVE	LS, I	N FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEME	BER	1999
DATE	WATER <u>LEVEL</u>		WATER DATE LEVEL		ER EL	DATE		WATER <u>LEVEL</u>		DATE		WATER <u>LEVEL</u>		R L	
NOV 04	12.10		FEB	08	12.1	13	MAY	05	11.3	2	AU	JG 0:	5 1	2.58	3
	WATER	YEAR	1999	HIGH	IEST	11.32	MAY 05	, 1999	I	OWEST	12.58	A	UG 05,	199	9

411329093142902. Local number, 74-21-11 DBBB2. LOCATION.--Lat 41°13'29", long 93°14'29", Hydrologic Unit 07100008, southeast corner of the T junction of North B Street and Main Street, Melcher. Owner: Town of Melcher. AQUIFER.--Glacial drift of Pleistocene age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 6 in., depth 119 ft, cased to 76 ft, open hole 76-119

ft. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 943 ft above sea level, from topographic map. Measuring point: Nipple welded to plate on top of casing, 1.82 ft above land- surface datum. REMARKS.--Town well No. 3, well 11K1. PERIOD OF RECORD.--July 1945 to December 1955, October 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.16 ft below land-surface datum, May 07, 1996; lowest measured (nearby well pumping), 108.85 ft below land-surface datum, December 4, 6-7, 1949.

ft

DATE	WATER <u>LEVEL</u>	ATER WA EVEL <u>DATE LE</u>		DATE	WATER <u>LEVEL</u>	<u>re</u>	WATER <u>LEVEL</u>		
NOV 04	21.12 FEB 08 22		22.43	MAY 05	21.89 AUG 05			21.66	
	WATER YEAR 19	99 HIGHE	ST 21.12	NOV 04, 1998	LOWEST	22.43	FEB 08	, 1999	

MARSHALL COUNTY

420355092534701. Local number, 84-18-24 CDCA.

LOCATION.--Lat 42°03'55", long 92°53'47", Hydrologic Unit 07080208, east of Riverview Park and south of the sewage treatment plant, Marshalltown. Owner: City of Marshalltown. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 8 in., depth 200 ft, screened 190-200 ft. INSTRUMENTATION.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 871 ft above sea level, from topographic map. Measuring point: Top of casing,

0.22 ft above land-surface datum.

EMARKS.--Marshalltown city well. PERIOD OF RECORD.--May 1949 to August 1971, March 1973 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.92 ft below land-surface datum, July 13, 1951; lowest measured, 61.04 ft below land-surface datum, November 2, 1995.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 02	39.14	FEB 08	50.27	MAY 03	44.97	AUG 02	54.34

WATER YEAR 1999 HIGHEST 39.14 NOV 02, 1998 LOWEST 54.34 AUG 02, 1999

MILLS COUNTY

405641095365101. Local number, 71-42-24 AAAA.

LOCATION.--Lat 40°55'41", long 95°36'51", Hydrologic Unit 10240002, at the intersection of County Roads M-16 and H-46, approximately 5 mi southeast of the City of Malvern. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Buried channel of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 255 ft, screened 240-250 ft, gravel packed

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,102 ft above sea level, from topographic map. Measuring point: Top of

casing, 2.20 ft above land-surface datum is 1/102 it above sea revel, from topographic map. Measuring point: rop of REMARKS.--Well SW-41. PERIOD OF RECORD.--June 1990 and August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 135.50 feet below land-surface datum, August 5, 1993; lowest measured, 144.30 ft below land-surface datum, June 13, 1990.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 05	137.77	FEB 12	138.63	MAY 14	137.14	AUG 12	137.56
	WATER YEAR	1999 HIGHE	ST 137.14	MAY 14, 1999	LOWEST	138.63 FEB 12	, 1999

405813095433201. Local number, 71-42-07 BBCD.

LOCATION.--Lat 40°58'13", long 95°43'32", Hydrologic Unit 10240001, on the west side of the T-intersection of county roads, approximately 5.5 mi south of the City of Glenwood. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Buried channel: sand and gravel of Pleistocene age.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 2 in., depth 351 ft, screened 332-342 ft, gravel packed.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,122 ft above sea level, from topographic map. Measuring point: Top of casing, 1.80 ft above land-surface datum.

REMARKS.--Well SW-40. PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 165.70 feet below land-surface datum, August 5, 1993; lowest measured, 171.94 ft below land-surface datum, November 10, 1994.

DATE	WATER LEVEL DATE		WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 05	168.02 FEB 12		169.13	MAY 14	166.99	AUG 12	168.41
	WATER YEAR 19	99 HIGHE	ST 166.99	MAY 14, 1999	LOWEST	169.13 FEB 12	, 1999

MITCHELL COUNTY

432156092484101. Local number, 95-17-23 DAA1. LOCATION.--Lat 43°21'56", long 92°48'41", Hydrologic Unit 07080201, approximately 4 mi southwest of Staceyville, at the intersection of Highway 218 and County Road T40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-- Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 27 ft, screened 10-27 ft.

DATUM.--Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of

DATOM.--Elevation of faint-surface datum is 1,210 fe datum casing, 2.41 ft above land-surface datum. REMARKS.--Well FM-2T. PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.46 ft above land-surface datum, May 6, 1993; lowest measured, 12.69 ft below land-surface datum, February 11, 1998.

	WATER LEVE	ELS, 1	IN FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEM	IBER	1999	
DATE	WATER <u>LEVEL</u>		DA	WATER DATE LEVEL		ER EL	WATER DATE LEVEL			ER EL	DATE			WATER <u>LEVEL</u>		
NOV 04	3.18		FEB	09	2.6	4	MAY	7 04	2.8	1	AU	JG 0	2	2.63		
	WATER	YEAR	1999	HIG	HEST	2.63	AUG 02	, 1999	1	LOWEST	3.1	81	JOV 04,	199	98	

432156092484102. Local number, 95-17-23 DAA2. LOCATION.--Lat 43°21'56", long 92°48'41", Hydrologic Unit 07080201, approximately 4 mi southwest of Staceyville, at the intersection of Highway 218 and County Road T40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-- Devonian: dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 1 in., depth 70 ft, screened 55-70 ft.

DATUM.--Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of

DATUM.--Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of casing, 2.58 ft above land-surface datum. REMARKS.--Well FM-2 (1). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.89 ft above land-surface datum, August 23, 1993; lowest measured, 11.92 ft below land-surface datum, January 31, 1994.

	WATER LEV	ELS,	IN FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMB	SR 1999
	WATER	1			WAT	ΈR			WAT	ER			WA	TER
DATE	LEVEL		DA	DATE L		EL	DATE		LEVEL		DATI		LE	VEL
NOV 04	10.79		FEB	09	11.2	21	MAY	2 04	8.24	1	AU	JG 0	2 7	.63
	WATER	YEAR	1999	HIGH	EST	7.63	AUG 02,	1999	L	OWEST	11.21	F	EB 09, 1	999

432156092484103. Local number, 95-17-23 DAA3. LOCATION.--Lat 43°21'56", long 92°48'41", Hydrologic Unit 07080201, approximately 4 mi southwest of Staceyville, at the intersection of Highway 218 and County Road T40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-- Devonian: dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 1.5 in., depth 150 ft, screened 110-150 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of casing, 2.55 ft above land-surface datum.

EMARKS.--Well FM-2 (2). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.78 ft above land-surface datum, August 23, 1993; lowest measured, 12.65 ft below land-surface datum, May 07, 1996.

DATE	WATER <u>LEVEL</u>	ER WATER L <u>DATE LEVEL</u>		DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	11.51	FEB 09	12.23	MAY 04	8.54	AUG 02	7.73
	WATER YEAR	1999 HIG	HEST 7.73	AUG 02, 1999	LOWEST	12.23 FEB (9, 1999

MITCHELL COUNTY--Continued

432156092484104. Local number, 95-17-23 DAA4. LOCATION.--Lat 43°21'56", long 92°48'41", Hydrologic Unit 07080201, approximately 4 mi southwest of Staceyville, at the intersection of Highway 218 and County Road T40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-- Devonian: dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 1.5 in., depth 250 ft, screened 188-250 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of casing, 2.44 ft above land-surface datum.

REMARKS.--Well FM-2 (3). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.54 ft above land-surface datum, May 6, 1993; lowest measured, 15.92 ft below land-surface datum, May 7, 1996.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

	WATER		WATER		WATER		WATER
DATE	<u>LEVEL</u>	DATE	<u>LEVEL</u>	DATE	<u>LEVEL</u>	DATE	<u>LEVEL</u>
NOV 04	13.14	13.14 FEB 09		MAY 04	9.88	AUG 02	8.78
	WATER YEAR	1999 HIC	HEST 8.78	AUG 02, 1999	LOWEST	15.08 FEB ()9, 1999

432156092484105. Local number, 95-17-23 DAA5. LOCATION.--Lat 43°21'56", long 92°48'41", Hydrologic Unit 07080201, approximately 4 mi southwest of Staceyville, at the intersection of Highway 218 and County Road T40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-- Devonian: dolomite of Devonian age.

AQUIFER.-- Devonian: dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 1.5 in., depth 348 ft, screened 278-348 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of casing, 2.37 ft above land-surface datum. REMARKS.--Well FM-2 (4). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.04 ft above land-surface datum, August 23, 1993; lowest measured, 21.81 ft below land-surface datum, Nov. 4, 1996.

	WATER LEVE	LS, I	N FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTE	IBER	1999
	WATER			WA		WATER			WAT	ER			V	VATE	ER
DATE	<u>LEVEL</u>		DA	DATE		EL	DATE		<u>LEVEL</u>		DATE		<u>LEVEL</u>		Ľ
NOV 04	19.35		FEB 09		17.3	17.73		MAY 04		14.03 A		JG 0	2	12.5	1
	WATER Y	YEAR	1999	HIGH	EST	12.51	AUG 02.	1999	L	OWEST	19.35	N	OV 04.	199	8

MONONA COUNTY

415456095414101. Local number, 82-42-14 ADCA. LOCATION.--Lat 41°54′56", long 95°41′41", Hydrologic Unit 10230007, approximately 6 mi southeast of the Town of Soldier, on the north side of Iowa Highway 37. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 341 ft, slotted 311-336 ft, gravelpacked, open 336-341 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,340 ft above sea level, from topographic map. Measuring point: Top of casing, 2.02 ft above land-surface datum.

REMARKS.--Well WC-4. PERIOD OF RECORD.--May 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 240.25 ft below land-surface datum, January 10, 1984; lowest measured, 246.69 ft below land-surface datum, July 28, 1981.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATI	WATER E <u>LEVEL</u>
NOV 03	243.82	FEB 09	243.81	MAY 12	243.65	AUG 11	243.91
	WATER YEAR 19	99 HTGH	EST 243.65	MAY 12, 1999	LOWEST	243.91	AUG 11, 1999

420004095451501. Local number, 83-42-17 ACDD. LOCATION.--Lat 42°00'04", long 95°45'15", Hydrologic Unit 10230001, approximately 1.75 mi northeast of the Town of Soldier, 0.25 mi west of Iowa Highway 183. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 161 ft, screened 149-154 ft. Open

to Pennsylvanian shale and limestone 153-161 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,160 ft above sea level, from topographic map. Measuring point: Top of casing, 2.20 ft above land-surface datum. REMARKS.--Well WC-176. PERIOD OF RECORD.--May 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 54.50 ft below land-surface datum, November 6, 1991; lowest measured, 64.09 ft below land-surface datum, September 7, 1983.

	WATER LEVELS,	IN FEET	BELOW LAN	D SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMBER	1999
DATE	WATER LEVEL	DAT	WA <u>'E</u> LE	TER VEL	DAT	<u>re</u>	WATE <u>LEVE</u>	IR IL	D	ATE	WAT LEV	ER EL
NOV 03	59.18	FEB	09 59	.16	MAY	7 12	58.9	8	AU	JG 1	1 59.7	71
	WATER YEAR	1999	HIGHEST	58.98	MAY 12.	1999	L	OWEST	59.71	A	UG 11, 19	99

420139095155701. Local number, 83-43-04 CBCB. LOCATION.--Lat 41°01'39", long 95°51'57", Hydrologic Unit 10230005, approximately 5.5 mi northwest of the Town of Soldier and 1.5 mi north of Iowa Highway 37. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 321 ft, screened 297-315 ft, gravel-packed, open hole 315-321 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 1,235 ft above sea level, from topographic map. Measuring point: Top of
 casing, 2.53 ft above land-surface datum.

REMARKS. -- Well WC-5. PERIOD OF RECORD. -- May 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 183.60 ft below land-surface datum, November 3, 1993; lowest measured, 189.96 ft below land-surface datum, February 2, 1982.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 03	186.09	FEB 09	184.52	MAY 12	184.41	AUG 11	184.43

WATER YEAR 1999 HIGHEST 184.41 MAY 12, 1999 LOWEST 186.09 NOV 03, 1998

MONONA COUNTY--Continued

421018095591301. Local number, 85-44-17 DCAA.

LOCATION.--Lat 42°10'18", long 95°59'13", Hydrologic Unit 10230003, approximately 2.5 mi southwest of the Town of Rodney on the north side of County Road L-12. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS .-- Drilled observation artesian water well, diameter 2 in., depth 135 ft, screened 115-125 ft, gravel-packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

INSTRUMENTATION.--Quarteriy measurement with charter tape by USGS personner.
DATUM.--Elevation of land-surface datum is 1,110 ft above sea level, from topographic map. Measuring point: Top of casing, 2.70 ft above land-surface datum.
REMARKS.--Well WC-158.
PERIOD OF RECORD.--October 1982 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 49.62 ft below land-surface datum, November 3, 1993; lowest measured, 55.99 ft below land-surface datum, January 11, 1990.

	WATER	LEVELS,	IN	FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMBER	1999
DATE	WA LE	TER VEL		DAT	<u>re</u>	WATI LEVI	ER EL	DAT	<u>'E</u>	WATE <u>LEVE</u>	IR IL	<u>D</u>	ATE	WATE <u>LEVE</u>	IR IL
NOV 03	51	.12		FEB	09	51.3	34	MAY	12	51.2	6	AU	JG 1	0 50.0	1

WATER YEAR 1999 HIGHEST 50.01 AUG 10, 1999 LOWEST 51.34 FEB 09, 1999

MONTGOMERY COUNTY

405841095012702. Local number, 71-36-06 DADA2. LOCATION.--Lat 40°58'42", long 95°01'25", Hydrologic Unit 10240009, located east of dam at Viking Lake State Park, approximately 0.3 mi south of Iowa Highway 34 on the west side of road. Owner: Geological Survey Bureau, DNR, and U.S. Geological Survey. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 36 ft, screened 33-36 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by observer and U.S.G.S. personnel. DATUM.--Elevation of land-surface datum is 1,080 ft above sea level, from topographic map. Measuring point: Top of casing, 2.28 ft above land-surface datum. REMARKS.--Viking Lake No. 2 (6J2) well. PERIOD OF RECORD.--June 1989 to present. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.51 ft below land-surface datum, September 9, 1989; lowest measured, 17.15 ft below land-surface datum, August 15, 1989.

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL
NOV 05	16.41	FEB 12	16.40	MAY 14	14.16

MONTGOMERY COUNTY--continued

410057095075101. Local number, 72-37-29 BABA. LOCATION.--Lat 41°00'57", long 95°07'49", Hydrologic Unit 10240005, approximately 4.35 mi east of the City of Red Oak, just south of County Road H-34. Owner: John Ogden. AQUIFER.--Glacial drift of Pleistocene age. WELL CHARACTERISTICS.--Bored observation water-table well, diameter 3 in., depth 40 ft, screened interval unavailable. WMONDYNYTYDY Unterviewer to recommend the bar we have be UCC encertain of the function of the first screened interval unavailable.

INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. Shaft encoder and transmitting data collection platform (dcp) installed July, 1998. DATUM.--Elevation of land-surface datum is 1,275 ft above sea level, from topographic map. Measuring point: Top of

casing, 1.20 ft above land-surface datum. PERIOD OF RECORD.--June 1937 to current year. REVISION.--Measuring point revised May 10, 1990 to September 10, 1992. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.14 ft below land-surface datum, July 22, 1993; lowest measured, dry, July 8, 1963 and February 3, 1964.

MEASURED WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
16.44	FEB 12	16.70	MAY 14	6.43	SEP 15	15.89
15.81	MAR 11	13.11	JUN 08	5.33		
16.60	29	15.86	29	6.43		
18.33	APR 06	13.99	AUG 04	11.73		
	WATER <u>LEVEL</u> 16.44 15.81 16.60 18.33	WATER DATE 16.44 FEB 12 15.81 MAR 11 16.60 29 18.33 APR 06	WATER WATER LEVEL DATE LEVEL 16.44 FEB 12 16.70 15.81 MAR 11 13.11 16.60 29 15.86 18.33 APR 06 13.99	WATER WATER LEVEL DATE LEVEL DATE 16.44 FEB 12 16.70 MAY 14 15.81 MAR 11 13.11 JUN 08 16.60 29 15.86 29 18.33 APR 06 13.99 AUG 04	WATER WATER WATER WATER WATER LEVEL DATE LEVEL DATE LEVEL 16.44 FEB 12 16.70 MAY 14 6.43 15.81 MAR 11 13.11 JUN 08 5.33 16.60 29 15.86 29 6.43 18.33 APR 06 13.99 AUG 04 11.73	WATER WATER WATER WATER LEVEL DATE LEVEL DATE LEVEL DATE 16.44 FEB 12 16.70 MAY 14 6.43 SEP 15 15.81 MAR 11 13.11 JUN 08 5.33 16.60 29 15.86 29 6.43 18.33 APR 06 13.99 AUG 04 11.73 17.73

WATER YEAR 1999 HIGHEST 5.33 JUN 08, 1999 LOWEST 18.33 JAN 13, 1999

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18.27	17.90	16.05	17.71	17.83	15.00	15.94	7.10	4.53	5.80	11.08	14.55
2	18.31	17.30	16.07	17.76	17.74	14.92	15.97	7.07	4.67	5.82	11.29	14.72
3	18.32	16.62	16.09	17.68	17.63	14.82	16.01	7.04	4.79	5.83	11.47	14.91
4	18.31	16.37	16.13	17.77	17.52	14.73	16.07	7.02	4.88	5.85	11.73	15.08
5	18.27	16.44	16.16	17.82	17.35	14.23	14.65	6.93	4.98	5.86	12.07	15.23
6	18.23	16.58	16.21	17.86	17.19	13.66	13.99	6.91	5.08	5.88	12.26	15.35
7	18.23	16.59	16.27	17.95	17.05	13.57	14.45	6.87	5.20	5.89	9.18	15.45
8	18.24	16.58	16.33	18.01	16.94	13.44	14.11	6.86	5.33	5.90	9.58	14.91
9	18.27	16.48	16.38	18.09	16.88	13.30	14.21	6.86	5.45	5.92	9.89	14.98
10	18.31	16.20	16.44	18.14	16.81	13.20	14.27	6.85	5.53	5.93	10.15	15.13
11	18.35	16.05	16.47	18.19	16.73	13.14	14.31	6.85	5.52	5.94	10.38	15.29
12	18.40	16.03	16.48	18.22	16.70	13.28	14.30	6.24	5.64	5.96	10.48	15.44
13	18.45	16.00	16.51	18.32	16.65	13.45	14.11	6.37	5.74	5.97	10.74	15.59
14	18.49	15.94	16.56	18.35	16.56	13.61	12.52	6.43	5.83	6.89	10.94	15.75
15	18.52	15.91	16.61	18.32	16.47	13.78	8.42	6.36	5.94	7.69	11.15	15.89
16	18.55	15.87	16.66	18.30	16.40	13.91	9.13	6.30	6.03	7.88	11.42	16.02
17	18.56	15.85	16.72	18.28	16.34	14.04	9.26	5.55	6.14	8.03	11.70	16.14
18	18.45	15.82	16.75	18.21	16.28	14.20	9.17	5.52	6.26	8.16	11.92	16.27
19	18.41	15.82	16.83	18.18	16.23	14.37	8.99	5.61	6.37	8.34	12.13	16.38
20	18.40	15.83	16.91	18.18	16.19	14.49	8.83	5.55	6.48	8.53	12.32	16.45
21	18.40	15.83	16.97	18.12	16.17	14.62	8.69	3.88	6.62	8.75	12.54	16.53
22	18.40	15.83	17.06	17.23	16.13	14.75	8.07	4.43	6.73	8.97	12.77	16.62
23	18.41	15.84		17.60	16.04	14.89	8.20	4.35	6.26	9.18	12.98	16.71
24	18.41	15.88		17.78	16.00	15.03	8.17	4.45	6.46	9.37	13.17	16.80
25	18.41	15.88		17.94	15.95	15.20	8.04	4.50	6.66	9.58	13.36	16.90
26	18.42	15.91		18.03	15.86	15.37	7.95	4.58	6.81	9.80	13.53	16.99
27	18.43	15.94		18.01	15.50	15.52	6.98	4.64	6.36	9.98	13.74	17.05
28	18.44	15.95		17.97	15.15	15.67	7.08	4.72	6.25	10.16	13.96	17.03
29	18.13	15.95		17.97		15.84	7.11	4.81	6.43	10.36	14.14	17.04
30	17.99	15.99		17.94		15.91	7.11	4.75	6.39	10.59	14.25	17.07
31	17.95		17.66	17.90		15.92		4.47		10.85	14.37	
MEAN	18.35	16.17		17.99	16.58	14.45	11.20	5.80	5.85	7.73	11.96	15.94
MAX	18.56	17.90		18.35	17.83	15.92	16.07	7.10	6.81	10.85	14.37	17.00
MIN	17.95	15.82		17.23	15.15	13.14	6.98	3.88	4.53	5.80	9.18	14.55

MUSCATINE COUNTY

412120091080401. Local number, 76-02-30 CBAA1.

LOCATION.--Lat 41°21'20", long 91°08'04", Hydrologic Unit 07080101, west of the Town of Fruitland on an Iowa State University Agricultural Experiment Farm. Owner: U.S. Geological Survey. AQUIFER.--Alluvial: Mississippi River sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 6 in., depth 27 ft, screened 24-27 ft.

INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. Graphic water-level recorder May 1966 to October 1987. DATUM. -- Elevation of land-surface datum is 546 ft above sea level, from topographic map. Measuring point: Top of casing,

3.40 ft above land-surface datum. REMARKS.--Fruitland/30M4 well. PERIOD OF RECORD.--May 1966 to current year. REVISED RECORDS.--WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 7.15 ft below land-surface datum, September 7, 1993; lowest measured, 17.86 ft below land-surface datum, August 2, 1989.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	14.59	FEB 09	15.16	MAY 04	14.59	AUG 06	15.5
WATER	YEAR 1999	HIGHEST	14.59 NOV 03	8, 1998 MAY 04,	1999	LOWEST 15.5	AUG 06, 1999

412120091080402. Local number, 76-02-30 CBAA.

LOCATION.--Lat 41°21′20", long 91°08′04", Hydrologic Unit 07080101, west of the Town of Fruitland on an Iowa State University Agricultural Experiment Farm. Owner: U.S. Geological Survey. AQUIFER.--Silurian-Devonian: limestone of Silurian and Devonian age.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 189 ft, screened 169-189 ft. INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 546 ft above sea level, from topographic map. Measuring point: Top of casing, 3.01 ft above land-surface datum. REMARKS.--Fruitland 13B well. PERIOD OF RECORD.--October 1992 to current year.

EXTREMES FOR PERIOD OF RECORD.-Highest water level recorded, 7.12 ft below land-surface datum, August 24, 1993; lowest measured, 16.73 ft below land-surface datum, February 22, 1996.

	WATER LEVEI	LS, IN	FEET BELO	W LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEM	BER	1999
שייגנו	WATER		שיייגרו	WATH	ER	דעם	ידי	WATE	R		<u>م</u>	I	WATE	R.
NOV 02	14.50		EED 00	15 1	511		-04 	14.0	<u></u>	₽ • T		- -	15 41	⊔ 1
NOV 03	14.50		FEB 09	15.1	15	MAY	04	14.0	2	At	JG 0	0	15.41	
	WATER Y	EAR 19	99 HIC	HEST	14.56	NOV 03,	1998	L	OWEST 1	L5.41	A	UG 06,	1999	9

MUSCATINE COUNTY--Continued

412120091080403. Local number, 76-02-30 CBAA.

LOCATION.--Lat 41°21'20", long 91°08'04", Hydrologic Unit 07080101, west of the Town of Fruitland on an Iowa State University Agricultural Experiment Farm. Owner: U.S. Geological Survey. AQUIFER.--Alluvial: Mississippi River sand and gravel of Quarternary age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 100 ft, screened 90-100 ft.

REMARKS.--Fruitland 13C well. PERIOD OF RECORD.--October 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 7.20 ft below land-surface datum, September 10, 1993; lowest measured, 16.84 ft below land-surface datum, February 22, 1996.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 03	13.97	FEB 09	15.22	MAY 04	14.64	AUG 06	15.57
	WATER YEAR	к 1999 н	IIGHEST 13.97	NOV 03, 1998	LOWEST	15.57 AUG ()6, 1999

412740090503201. Local number, 77-01-22 BCBC.

LOCATION.--Lat 41°27′40", long 90°50′53", Hydrologic Unit 07080101, located in basement of house along State Highway 22. Owner: Ed Albers.

AQUIFER.--Silurian-Niagran Series

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in., depth 412 ft, cased to 194.6 ft, open 194.6-412 ft. INSTRUMENTATION.--Monthly measurements using airline by USGS personnel. DATUM.--Elevation of land-surface is 645 ft above sea level, by topographic map. Measuring Point: 5.79 ft below land surface datum.

surface datum. REMARKS.--Albers Farm well. PERIOD OF RECORD.--May 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 104.79 ft. below land-surface datum, January 06, 1998; lowest measured, 160.79 ft below land-surface datum, September 01, 1998

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
OCT 06 NOV 03 DEC 01	116.79 114.79 115.79	FEB 02 MAR 02 APR 06	112.79 115.79 114.79	MAY 04 JUN 15 IUL 06	114.79 114.79 115.79	AUG 03 SEP 09	125.79 111.79

HIGHEST 111.79 SEP 09, 1999 WATER YEAR 1999 LOWEST 125.79 AUG 03, 1999

412833090482001, Local number, 77-01-14 ADAD. LOCATION.--Lat 41°28'33". long 90°48'20", Hydrologic Unit 07080101, located I mile north of State Highway 22 on County Road Y36, between driveways at 1824 Zachary Ave. Owner: Everett Nitzel. AQUIFER.--Devonian/Silurian

WELL CHARACTERISTICS.--Drilled public-use well, depth 400 ft., casing information not available. INSTRUMENTATION.--Quarterly measurements using airline by USGS personnel. DATUM.--Elevation of land-surface datum is 700 feet above sea level, from topographic map. REMARKS.--E. Nitzel Well. PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 235 ft. below land-surface datum, July 01, 1997; lowest measured, 269 ft below land-surface datum, July 06, 1999, August 03, 1999.

	WATER LEVELS,	IN	FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то а	SEPTEMBER 1999
DATE	WATER LEVEL		DAT	<u>re</u>	WATI LEVI	ER EL	DAT	<u>'E</u>	WATE LEVE	IR IL	D	ATE	WATER <u>LEVEL</u>
OCT 06	259		JAN	12	253	3	APR	06	255	i	JU	L 06	269
NOV 03	256		FEB	02	250	6	MAY	04	257	,	AU	JG 03	3 269
DEC 01	254		MAR	R 02	25	7	JUN	15	265	i	SE	EP 09	265

HIGHEST 253 LOWEST 269 JUL 06, 1999 AUG 03, 1999 WATER YEAR 1999 JAN 12, 1999

MUSCATINE COUNTY--Continued

412952090501101. Local number, 77-01-03 CDBD. LOCATION.--Lat 41°29'52", long 90°05'11", Hydrologic Unit 07080101, located in side yard of house at 3714 165th Street in the town of Blue Grass. Owner: Don Massey. AQUIFER.--Devonian/Silurian

MULL CHARACTERISTICS.--Drilled public-use well, diameter 5 in., depth 372 ft., casing information not available. INSTRUMENTATION.--Monthly measurements with airline by USGS personnel. DATUM.--Elevation of land-surface datum is 720 ft above sea level, from topographic map.

REMARKS.--Massey Well PERIOD OF RECORD.--June 1997 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 134 ft below land-surface datum, June 10, 1997; lowest measured 161, August 03, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
OCT 06	159	JAN 12	158	APR 06	153	JUL 06	157
NOV 03	159	FEB 02	151	MAY 04	152	AUG 03	161
DEC 01	151	MAR 02	152	JUN 15	158	SEP 09	152

HIGHEST 151 DEC 01, 1998 FEB 02, 1999 LOWEST 161 WATER YEAR 1999 AUG 03, 1999

413520091013701. Local number, 78-02-01 ACCD. LOCATION.--Lat 41°35′18″, long 91°01′37″, Hydrologic Unit 07080206, located approximately one block east of water treatment plant. Owner: City of Wilton Junction. AOUIFER. -- Silurian

WELL CHARACTERISTICS.--Drifted public-supply well, allowed for the provided public-supply well, allowed for the provided public-supply well, allowed for the provided public supply well, allowed for the provided public supply well.
DATUM.--Elevation of land-surface datum is 692 ft above sea level, from topographic map.
REMARKS.--Wilton No.1
PERIOD OF RECORD.--March 1968 to current year.
EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 33 ft below land-surface datum, March 14, 1968; lowest
measured 63, August 19, 1998. WELL CHARACTERISTICS.--Drilled public-supply well, diameter 8 in., depth 450 ft., steel casing to 315 ft., open hole from

<u>DATE</u>		water <u>LEVEL</u>	<u>DATE</u>	water <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	
NOV 17		50	FEB 18	41	AUG 10	47	
WATER	YEAR	1999	HIGHEST 41	FEB 18, 1999	LOWEST 5	0 NOV 17,	1998

O'BRIEN COUNTY

425610095250611. Local number, 94-39-26 BADB11. LOCATION.--Lat 42°56'10", long 95°25'06", Hydrologic Unit 10230003, near a dead-end road just south of the Little Sioux River, 0.9 mi north of Iowa Highway 10, approximately 5 mi southeast of the Town of Sutherland. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2.5 in, depth 352 ft, screened 291-295 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,212 ft above sea level, from topographic map. Measuring point: Top of

casing, 2.30 ft above land-surface datum. REMARKS.--Well D-3. PERIOD OF RECORD.--April 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 34.94 ft below land-surface datum, May 09, 1995; lowest measured, 36.85 ft below land-surface datum, December 15, 1980.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
JOV 04	36.66	FEB 09	36.39	MAY 05	35.71	AUG 04	36.42
	WATER YEAR 1999	HIGHEST	35.71	MAY 05, 1999	LOWEST	36.66 NOV	7 04, 1998

430930095350401. Local number, 96-40-05 DDDA1. LOCATION.--Lat 43°09'30", long 95°35'04", Hydrologic Unit 10230003, approximately 3 mi east of the Town of Sanborn and 2 mi south of U.S. Highway 18. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Ordovician and Dakota: sandy shale of Ordovician age and sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 701 ft, screened 661-701 ft. Dakota 487-688 ft, Ordovician 688-701 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,560 ft above sea level, from topographic map. Measuring point: Top of

casing, 4.00 ft above land-surface datum.

NOV

REMARKS.--Well D-41. PERIOD OF RECORD.--June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 358.39 ft below land-surface datum, July 8, 1986; lowest measured, 364.74 ft below land-surface datum, November 7, 1991.

	WATER LEVELS,	IN FEET BELOW	LAND SURFACI	E DATUM, WATER	YEAR OCTOBEI	R 1998 TO :	SEPTEMBER 1999
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 02	361.59	FEB 10	361.10	MAY 11	361	AUG 10) 361.43
	WATER YEAD	R 1999 HIG	HEST 361	MAY 11, 1999	LOWEST	361.59 NC	DV 02, 1998

OSCEOLA COUNTY

431613095251801. Local number, 98-39-26 CDCC. LOCATION.--Lat 43°16'13", long 95°25'18", Hydrologic Unit 10230003, 3.5 mi south and 2.5 mi east of the Village of May City. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 500 ft, screened 490-500 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,398 ft above sea level, from topographic map. Measuring point: Top of casing, 2.70 ft above land-surface datum.

REMARKS.--Well D-39. PERIOD OF RECORD.--June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 189.99 ft below land-surface datum, June 17, 1980; lowest

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	192.92	FEB 09	192.56	MAY 05	192.19	AUG 03	196.54

WATER YEAR 1999 HIGHEST 192.19 MAY 05, 1999 LOWEST 196.54 AUG 03, 1999

431620095250501. Local number, 98-39-26 CDAD1. LOCATION.--Lat 43°16'20", long 95°25'05", Hydrologic Unit 10230003, 3.5 mi south and 2.5 mi east of the Village of May City. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Cambrian-Ordovician: St. Peter sandstone of Middle Ordovician age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 662 ft, screened 622-662 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,402 ft above sea level, from topographic map. Measuring point: Top of low DATUM.--Elevation of land-surface datum is 1,402 it above sea level, from topographic map. Measuring point: Top of low pipe, 1.47 ft above land-surface datum. REMARKS.--Well D-38, Deep Hibbing; in same borehole as well D-38 Shallow Hibbing. PERIOD OF RECORD.--June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 192.96 ft below land-surface datum, November 20, 1989;

lowest measured, 202.43 ft below land-surface datum, February 07, 1996.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	197.32	FEB 09	198.88	MAY 05	195.40	AUG 03	199.43

HIGHEST 195.40 MAY 05, 1999 WATER YEAR 1999 LOWEST 199.43 AUG 03, 1999

431620095250501

OSCEOLA COUNTY--Continued

431620095250511. Local number, 98-39-26 CDAD11. LOCATION.--Lat 43°16'20", long 95°25'05", Hydrologic Unit 10230003, 3.5 mi south and 2.5 mi east of the Village of May City. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 345 ft, screened 335-345 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,402 ft above sea level, from topographic map. Measuring point: Top of high

DATUM.--Elevation of land-surface datum is 1,402 it above sea level, from topographic map. Measuring point: Top of high pipe, 2.60 ft above land-surface datum. REMARKS.--Well D-38, Shallow Hibbing; in same borehole as well D-38 Deep Hibbing. PERIOD OF RECORD.--June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 192.20 ft below land-surface datum, September 10, 1981;

lowest measured, 197.03 ft below land-surface datum, May 05, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	195.38	FEB 09	195.14	MAY 05	197.03	AUG 03	195.30

WATER YEAR 1999 HIGHEST 195.14 FEB 09, 1999 LOWEST 197.03 MAY 05, 1999

432828095283611. Local number, 100-39-17 DCCB11. LOCATION.--Lat 43°28'28", long 95°28'36", Hydrologic Unit 10230003, approximately 2 mi west and 2 mi north of the Town of Harris, east of County Road M-12. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in. to 461 ft, 4 in. 440-760 ft, depth 760 ft, screened 680-700 ft. INSTRUMENTATION.--Quarterly measurement with electric line or chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,560 ft above sea level, from topographic map. Measuring point: Top of casing, 3.00 ft above land-surface datum. REMARKS.--Well D-13. PERIOD OF RECORD.--July 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 341.80 ft below land-surface datum, August 5, 1980; lowest measured, 350.68 ft below land-surface datum, November 05, 1997.

	WATER LEVELS,	IN FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTE	MBER	1999
DATE	WATER LEVEL	DA	<u>re</u>	WAT LEV	ER EL	DAT	<u>re</u>	WATE <u>LEVE</u>	IR IL	D	ATE		WATE <u>LEVE</u>	R
NOV 04	345.39	FEB	09	345.	14	MAY	7 05	344.6	54	AU	JG ()3	345.3	37
	WATER YEAD	R 1999	HIGH	EST	344.64	MAY 05.	1999	L	OWEST 3	345.39	N	OV 04	199	8

PAGE COUNTY

404257095150801. Local number, 68-38-07 CCAA. LOCATION.--Lat 40°42'57", long 95°15'08", Hydrologic Unit 10240005, approximately 2 mi south of the Village of Norwich and 1.5 mi west of County Road M-48. Owner: William Brayman. AQUIFER.--Glacial drift of Pleistocene age. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 12 in., depth 44 ft, lined with tile.

REMARKS. -- Braymen Farm Well. Terracing of the farm land surrounding well has lowered the land surface below the original

measuring point. PERIOD OF RECORD.--January 1938 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.09 ft below land-surface datum, March 26, 1946; lowest measured, 22.76 ft below land-surface datum, June 23, 1947.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
OCT 07	11.54	JAN 13	11.52	APR 06	8.66	JUL 01	5.58
NOV 16	10.90	FEB 17	11.34	MAY 14	5.81	AUG 04	9.39
DEC 15	11.41	MAR 30	10.70	JUN 08	7.42	SEP 14	10.33

WATER YEAR 1999 HIGHEST 5.58 JUL 01, 1999 LOWEST 11.54 OCT 07, 1998

PLYMOUTH COUNTY

424833096324701. Local number, 92-48-06 DDDA.
LOCATION.--Lat 42°48'33", long 96°32'47", Hydrologic Unit 10170203, just south of the curve on Iowa Highway 3, 1 mi south of the Town of Akron. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.
AQUIFER.--Dakota: in sandstone of Cretaceous age.
WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 4 in. to 184 ft, 2 in. to 581 ft, depth 581 ft, screened 430-434 ft and 510-515 ft. Paleozoic rock 576-581 ft.
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel,.
DATUM.--Elevation of land-surface datum is 1,282 ft above sea level, from topographic map. Measuring point: Top of casing. 4 50 ft above land-surface datum.

casing, 4.50 ft above land-surface datum.

ľ

CASING, 4.50 TO ADOVE TAND SETTICE GREAN. REMARKS.--Well D-35. PERIOD OF RECORD.--December 1979 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 135.73 ft below land-surface datum, February 10, 1999; lowest measured, 159.82 ft below land-surface datum, August 6, 1980.

	WATER LEVELS,	IN FEET BEI	OW LAND SURFACE	E DATUM, WATER	YEAR OCTOBER	а 1998 то	SEPTEMBER 1999
DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 02	137.17	FEB 10	135.73	MAY 11	136.52	AUG 10	0 136.42
	WATER YEAR	к 1999 н	IGHEST 135.73	FEB 10, 1999	LOWEST	137.17 NC	DV 02, 1998

PLYMOUTH COUNTY--Continued

424850096074801. Local number, 92-45-02 CBCB. LOCATION.--Lat 42°48'50", long 96°07'48", Hydrologic Unit 10230002, approximately 3.8 mi west and 0.6 mi south of the

Village of Oyens. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.
 AQUIFER.--Cambrian-Ordovician: dolomite of Cambrian and Ordovician age.
 WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in. to 161 ft, 4 in. to 598 ft, 2 in. to 1,340 ft, depth 1,340 ft, cased to 598 ft, open hole 598-1,340 ft. Well deepened from 1,089 ft to 1,340 ft in May, 1984. Ordovician rock 568-782 ft, Cambrian rock 782-1062 ft, Precambrian 1062-1340 ft.
 INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
 DNTUM -Elevation of Londouring noint: Top of

DATUM.--Elevation of land-surface datum is 1,245 ft above sea level, from topographic map. Measuring point: Top of casing, 2.80 ft above land-surface datum.
 REMARKS.--Well D-21.
 PERIOD OF RECORD.--May 1979 to January 1981, May 1982 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 55.40 ft below land-surface datum, May 06, 1996; Lowest measured, 102.10 ft below land-surface datum, August 6, 1980.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 02	57.48	FEB 10	57.37	MAY 11	57.46	AUG 09	57.43

WATER YEAR 1999 HIGHEST 57.37 FEB 10, 1999 LOWEST 57.48 NOV 02, 1998

425249096125001. Local number, 93-46-12 DDDD. LOCATION.--Lat 42°52'49", long 96°12'50", Hydrologic Unit 10230002, 1 mi west and 1 mi south of the Village of Struble. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2.5 in., depth 570 ft, screened 356-360 ft.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2.5 in., depth 5/0 ft, screened 356-360 ft.
 INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
 DATUM.--Elevation of land-surface datum is 1,280 ft above sea level, from topographic map. Measuring point: Top of coupling, 2.25 ft above land-surface datum.
 REMARKS.--Well D-2.
 PERIOD OF RECORD.--March 1980 to December 1980, May 1982 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 117.78 ft below land-surface datum, April 9, 1980; lowest measured, 124.71 ft below land-surface datum, November 02, 1998.

DATE	WATER <u>LEVEL</u>	DATE	WAT LEV	ER EL	DATE	1	WATER LEVEL	DAT	<u>'E</u>	WATER <u>LEVEL</u>
NOV 02	124.71	FEB 10	122.	12	MAY	11	121.67	AUG	10	124.67
	WATER YE	CAR 1999	HIGHEST	121.67	MAY 11,	1999	LOWEST	124.71	NOV 0	2, 1998

POTTAWATTAMIE COUNTY

411359095171901. Local number, 74-39-01 CCCC. LOCATION.--Lat 41°13'59", long 95°17'19", Hydrologic Unit 10240002, approximately 6.5 mi east of the Town of Carson, on the northeast corner of the junction of Iowa Highway 92 and County Road M-41. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Buried channel: sand and gravel of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 216 ft, screened 189-206 ft, gravel-packed, open to Pennsylvanian shale 207-216 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,245 ft above sea level, from topographic map. Measuring point: Top of casing, 2.50 ft above land-surface datum. REMARKS.--Well SW-21. PERIOD OF RECORD.--July 1986 to current year. REVISION.--Lowest water level measured, 129.38 ft below land-surface datum, August 20, 1986. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 123.19 ft below land-surface datum, August 11, 1999; lowest measured, 129.38 ft below land-surface datum, August 20, 1986.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 05	123.68	FEB 12	123.71	MAY 14	123.69	AUG 11	123.19
	WATER YEAR 1	.999 HIGHE	ST 123.19	AUG 11, 1999	LOWEST	123.71 FEB 12	, 1999

412407095391201. Local number, 76-42-10 ADBC.

412407095391201. Local number, 76-42-10 ADEC. LOCATION.--Lat 41°24'01", long 95°39'17", Hydrologic Unit 10230006, approximately 1 mi east of the Town of Underwood, behind structure at reststop on eastbound Interstate 80. Owner: Iowa Highway Commission AQUIFER.-- Cambrian: sandstone and dolomite. from the Jordan and Prairie du Chen formations. WELL CHARACTERISTICS.-- Drilled public use well, diameter 16 in., depth 2520 ft, screened 2420-2460 ft, gravel packed.

INSTRUMENTATION.-- Quarterly measurement with chalked tape by USGS personnel. DATUM.-- Elevation of land-surface datum is 1,093 ft above sea level, from topographic map. Measuring point: Top of casing, 1.72 ft above land-surface datum.

REMARKS.-- Underwood Well PERIOD OF RECORD.-- October 1996 to current year. EXTREMES FOR PERIOD OF RECORD.-- Highest water level measured, 72.86 ft below land surface datum, August 06, 1998; lowest measured, 74.18 ft below land surface datum, October 28, 1996.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 06	73.08	MAR 25	73.14	AUG 13	72.25

WATER YEAR 1999 HIGHEST 72.25 AUG 13, 1999 LOWEST 73.14 MAR 25, 1999

SCOTT COUNTY

413544090212901. Local number, 78-5E-03 AADA. LOCATION.--Lat 41°35′44", long 91°21′29", Hydrologic Unit 07080101, at the Bridgeview Elementary School corner of 12th and Davenport Streets, Le Claire. Owner: City of Le Claire. AQUIFER.--Cambrian-Ordovician: sandstone of Late Cambrian and sandstone and sandy dolomite of Early Ordovician age. WELL CHARACTERISTICS.--Drilled unused municipal artesian water well, diameter 16 to 10 in., depth 1,607 ft, cased to 100 ft

1,300 ft, open hole 1,300-1,607 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder July 1975 to December 1984.

December 1984.
 DATUM. --Elevation of land-surface datum is 703 ft above sea level, from topographic map. Measuring point: Nipple on plate welded to casing, 2.11 ft above land-surface datum.
 REMARKS.--Le Claire Well No. 3.
 PERIOD OF RECORD.--July 1975 to current year.
 REVISED RECORDS.--WRD IA-84-1, WDR IA-88-1.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 247.46 ft below land-surface datum, July 8, 1975; lowest recorded 276.86 ft below land-surface datum.

recorded, 276.86 ft below land-surface datum, September 1, 1978.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DAT	<u>'E</u>	WATER <u>LEVEL</u>
NOV 03	265.40	FEB 09	264.21	MAY 04	264.68	AUG	06	267.18
	WATER YEAR 19	99 HIGHI	EST 264.21	FEB 09, 1999	LOWEST	267.18	AUG 06	, 1999

413544090212901

SHELBY COUNTY

413255095070401. Local number, 78-37-17 DDDD. LOCATION.--Lat 41°32'55", long 95°07'04", Hydrologic Unit 10240003, 3 mi south and 3 mi west of the Town of Elkhorn on the east side of County Road M-56 near Elkhorn Creek. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota and Pennsylvanian: sandstone of Cretaceous age and shale and limestone of Pennsylvanian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 181 ft, screened 121-179 ft,

gravel-packed, open to Dakota 121-140 ft, Pennsylvanian 140-181 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,208 ft above sea level, from topographic map. Measuring point: Top of

casing, 2.80 ft above land-surface datum. REMARKS.--Well WC-16. PERIOD OF RECORD.--August 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 36.60 ft below land-surface datum, August 11, 1993; lowest measured, 42.86 ft below land-surface datum, September 24, 1981.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 04	40.74	FEB 12	41.54	MAY 14	39.06	AUG 09	39.35

HIGHEST 39.06 MAY 14, 1999 LOWEST 41.54 FEB 12, 1999 WATER YEAR 1999

413359095182701. Local number, 78-39-11 CCBC.

LOCATION.--Lat 41°33′59″, long 95°18′27″, Hydrologic Unit 10240002, approximately 5.5 mi south of the City of Harlan, 0.75 mi south of County Road F-58, and 1.5 mi east of U.S. Highway 59. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER. -- Fremont buried channel: sand and gravel of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 541 ft, screened 520-535 ft, gravel-packed. Pennsylvanian shale 537-541 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,310 ft above sea level, from topographic map. Measuring point: Top of casing, 1.65 ft above land-surface datum.

REMARKS.--Well WC-227. PERIOD OF RECORD.--July 1983 to current year. REVISION.--Lowest water level measured, 153.32 below land-surface datum, April 12, 1990. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 146.61 ft below land-surface datum, September 6, 1983; lowest measured, 153.32 ft below land-surface datum, April 12, 1990.

	WATER	LEVELS,	IN	FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMBER	1999
DATE	WA LE	TER VEL		DAT	<u>'E</u>	WATI LEVI	ER EL	DAT	<u>'E</u>	WATE LEVE	IR IL	D.	ATE	WATE <u>LEVE</u>	R L
NOV 04	15	1.12		FEB	12	151.	15	MAY	14	150.8	35	AU	G 0	9 151.1	8

HIGHEST 150.85 MAY 14, 1999 LOWEST 151.18 AUG 09, 1999 WATER YEAR 1999

SHELBY COUNTY--Continued

413953095302601. Local number, 79-40-09 DBCA.

LOCATION.--Lat 41°39'53", long 95°30'26", Hydrologic Unit 10230006, east of State Highway 191, approximately 1 mi northeast of the Town of Portsmouth. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 210 ft, screened 160-175 ft, gravel packed, open hole 200-210 ft.

DATUM.--Elevation of land-surface datum is 1,205 ft above sea level, from topographic map. Measuring point: Top of casing, 4.10 ft above land-surface datum.

REMARKS.--Well WC-15. PERIOD OF RECORD.--August 1992 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.29 feet below land-surface datum, May 9, 1995; lowest measured, 19.38 ft below land-surface datum, November 04, 1998.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 04	19.38	FEB 11	19.34	MAY 10	18.95	AUG 11	19.33

WATER YEAR 1999 HIGHEST 18.95 MAY 10, 1999 LOWEST 19.38 NOV 04, 1998

414624095252301. Local number, 80-39-06 AADC.

LOCATION.--Lat 41°46′24", long 95°25′22", Hydrologic Unit 10230006, west of the Town of Earling on the north side of Iowa Highway 37 near the junction of Iowa Highways 37 and 191. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

Survey.
 AQUIFER.--Dakota: sandstone of Cretaceous age.
 WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 370 ft, screened 332-347 ft, open to Pennsylvanian sandstone, shale, and limestone 347-370 ft.
 INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
 DATUM.--Elevation of land-surface datum is 1,305 ft above sea level, from topographic map. Measuring point: Top of

casing, 2.60 ft above land-surface datum.

REMARKS. --Well WC-10. PERIOD OF RECORD.--June 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 89.91 ft below land-surface datum, April 10, 1984; lowest measured, 131.70 ft below land-surface datum, April 12, 1990.

WATER	LEVELS,	IN	FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	TO	SEPTEMBER	1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	107.39	FEB 11	106.83	MAY 10	106.94	AUG 11	106.84

HIGHEST 106.83 FEB 11, 1999 LOWEST 107.39 NOV 04, 1998 WATER YEAR 1999

414856095160101. Local number, 81-38-21 ADAD LOCATION.--Lat 41°48'56", long 95°16'01", Hydrologic Unit 10240002, approximately 3.75 mi east of the Town of Defiance on the west side of County Road M-36. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Fremont buried channel: sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 535 ft, screened 525-535 ft,

gravel-packed. Open to Pennsylvanian shale 530-535 ft.

DATUM.--Elevation of land-surface datum is 1,370 ft above sea level, from topographic map. Measuring point: Top of casing, 2.90 ft above land-surface datum. REMARKS.--Well WC-222.

PERIOD OF RECORD. -- August 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 208.09 ft below land-surface datum, April 15, 1987; lowest measured, 212.97 ft below land-surface datum, October 11, 1990.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	210.19	FEB 11	210.20	MAY 10	209.95	AUG 09	210.37

WATER YEAR 1999 HIGHEST 209.95 MAY 10, 1999 LOWEST 210.37 AUG 09, 1999

SIOUX COUNTY

430140095573101. Local number, 95-43-07 AAAA. LOCATION.--Lat 43°04'10", long 95°57'32", Hydrologic Unit 10230002, just south of County Road B-40, 1 mi east of the Village of Newkirk. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 681 ft, screened 641-681 ft. Open

to Paleozoic rock from 674-681 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,390 ft above sea level, from topographic map. Measuring point: Top of casing, 3.70 ft above land-surface datum.

Casing, 5.70 it above land-surface datum. REMARKS.--Well D-43. PERIOD OF RECORD.--July 1980 to December 1980, May 1982 to current year. REVISED RECORDS.--WDR IA-88-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 213.66 ft below land-surface datum, March 13, 1984; lowest measured, 219.57 ft below land-surface datum, February 5, 1996.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 02	216.73	FEB 10	218.17	MAY 11	218.02	AUG 10	218.48

HIGHEST 216.73 NOV 02, 1998 WATER YEAR 1999 LOWEST 218.48 AUG 10, 1999

430913096033201. Local number, 96-44-08 ADAA. LOCATION.--Lat 43°09'13", long 96°03'32", Hydrologic Unit 10230002, west side of County Road K-64, approximately 2.5 mi west of the Town of Boyden and approximately 2.2 mi south of U.S. Highway 18. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 682 ft, screened 647-667 ft. Open to Paleozoic rock 681-682 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,373 ft above sea level, from topographic map. Measuring point: Top of casing, 3.70 ft above land-surface datum.

REMARKS.--Well D-44. PERIOD OF RECORD.--August 1980 to December 1980, May 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 187.85 ft below land-surface datum, October 16, 1984; lowest measured, 196.30 ft below land-surface datum, November 7, 1991.

WATER LEVELS,	LΝ	F.F.F.L. BETOM	I LAND	SURFACE	DATUM,	MAJ.EK	YEAR	OCTOBER	1998	.1.0	SEPTEMBER	1999
WATER			WAT	ER			WATE	IR			WATE	R

DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 02	195.96	FEB 10	195.61	MAY 11	195.46	AUG 10	196.03

HIGHEST 195.46 MAY 11, 1999 LOWEST 196.03 AUG 10, 1999 WATER YEAR 1999

STORY COUNTY

420129093273701. Local Number, 83-22-06 CDBD. LOCATION.-- Lat 42°01'30", long 93°27'33", Hydrologic Unit 07080105, approximately one mile north of Highway 30 near 1st and N Ave. Owner: City of Nevada.

AQUIFER.--Cambrian/Ordovician. AQUIFER.--Camprian/Ordovician. WEL CHARACTERISTICS.--Drilled observation public supply well, diameter 16 in, depth 2630 ft, open hole 2015-2630 ft. INSTRUMENTATION.--Quarterly measurement using airline by USGS personnel. DATUM.--Elevation of land-surface datum is 991 ft above sea level, from topographic map. REMARKS.--Nevada Well No. 4

EXINENCE For the second weil No. 4 PERIOD OF RECORD.--February 1997 to current year EXTREMES FOR PERIOD OF RECORD.-- Highest water level measured, 295 ft below land-surface datum, February 08, 1999 and August 4, 1997; lowest measured, 373 ft below land surface datum, February 11, 1997.

DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 02	342	FEB 08	295	MAY 03	330	AUG 02	310
	WATER YEAR	R 1999 - H	HIGHEST 295	FEB 08, 1999	LOWEST	342 NOV	02, 1998

STORY COUNTY-Continued

420137093361501. Local number, 83-24-02 DABC.

42013/093361501. Local number, 83-24-02 DABC. LoCATION.--Lat 42°01'32", long 93°36'32", Hydrologic Unit 07080105, in Ames, north of the Chicago and Northwestern Railroad and County Road E-41, approximately 0.75 mi east of U.S. Highway 69. Owner: City of Ames. AQUIFER.--Glacial drift of Pleistocene age. WELL CHARACTERISTICS.--Drilled municipal well, depth 124 ft, casing information unavailable.

EMARKS.--Ames city well No. 4. PERIOD OF RECORD.--September 1987 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 49.98 ft below land-surface datum, March 14, 1991; lowest measured, 75.97 ft below land-surface datum, November 2, 1995.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 02	73.90	FEB 08	62.93	AUG 02	58.71

WATER YEAR 1999 HIGHEST 58.71 AUG 02, 1999 LOWEST 73.90 NOV 02. 1998

TAMA COUNTY

420957092181801. Local number, 85-13-24 ABAC. LOCATION.--Lat 42°09'57", long 92°18'21", Hydrologic Unit 07080208, located on county road 0.5 mi east of the Town of Dysart on county road, 1 mi south of State Highway 8. Owner: Town of Dysart. AQUIFER.--Cambrian/ Ordovician-Prairie Du Chien Formation dolomite Dysart on county road, 1 because in the second dolomite Dysart on county road, 1 because in the second dolomite

WELL CHARCTERISTICS.--Drilled observation well, diameter 20 in., depth 1880 ft., casing open from 1300-1880. INSTRUMENTATION.--Quarterly measurements using an airline by USGS personnel. DATUM.--Elevation of land-surface datum is 961 ft above sea level, from topographic map.

REMARKS. -- Dysart Park well.

PERIOD OF RECORD-January 1997 to current year EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 350 feet below land-surface datum, August 4, 1997; lowest measured, 367 ft below land-surface datum, November 02, 1998.

	WATER		WATER		WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	
NOV 02	367	FEB 10	328	MAY 03	327	
WATER YEAR	1999 нт	GHEST 327	MAY 03, 1999	LOWEST 367	NOV 02.	1998

VAN BUREN COUNTY

404150091483001. Local number, 68-08-08 CDD.

LOCATION.--Lat 40°41′50″, long 91°48′30″, Hydrologic Unit 07100009, located at the west end of the park in the City of Bonaparte, south of County Road J-40. Owner: City of Bonaparte. AQUIFER.--Mississippian: limestone and dolomite of Mississippian age.

WELL CHARACTERISTICS.--Drilled unused semi-confined public-supply well, diameter 6 in., depth 205 ft, cased to 18 ft, open hole 18-205 ft. INSTRUMENTATION. -- Intermittent measurement with chalked tape by USGS personnel. Graphic water-level recorder December

1988 to July 1990. Intermittent measurement with chalked tape by USGS personnel August 1988 to December 1988. DATUM.--Elevation of land-surface datum is 552 ft above sea level, from topographic map. Measuring point: Top of recorder platform, 0.65 ft above land-surface datum.

REMARKS.--Bonaparte No. 1 well. Recorder removed July 17, 1990. PERIOD OF RECORD.--August 1988 to present. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.08 ft below land-surface datum, August 10, 1993; lowest measured, 32.13 ft below land-surface datum, August 16, 1989.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER LEVEL
NOV 04	19.02	FEB 08	20.48	MAY 03	16.95	AUG (05 20.09
	WATER YEAR	1999 HIGH	EST 16.95	MAY 03, 1999	LOWEST	20.48 E	FEB 08, 1999

404150091483001

WASHINGTON COUNTY

411300091320701. Local number, 74-06-15 BDAC. LOCATION.--Lat 41°13'00", long 91°32'09", Hydrologic Unit 07080107, in the water treatment plant, beneath the water tower in Crawfordsville. Owner: Town of Crawfordsville. AQUIFER.--Mississippian: dolomite of Mississippian age.

WELL CHARACTERISTICS.--Drilled unused municipal artesian water well, diameter 6.5 in., depth 215 ft, cased to 132 ft, open hole 132-215 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 725 ft above sea level, from topographic map. Measuring point: Nipple on plate welded to casing, 1.10 ft above land-surface datum.
 PERIOD OF RECORD.--September 1983, March 1987 to current year.
 REMARKS: Crawfordsville North.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 69.23 ft below land-surface datum, March 25, 1987; lowest measured, 78.09 ft below land-surface datum, August 05, 1999.

	WATER LEV	ELS,	IN FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEM	IBER	1999
DATE	WATER <u>LEVEL</u>		DA	TE	WAT LEV	ER EL	DAT	<u>TE</u>	WATE <u>LEVE</u>	IR IL	D	ATE		WATE LEVE	R L
NOV 05	73.20		FEB	8 09	71.9	94	MAY	05	70.5	7	AU	JG 0	5	78.09	Ð
	WATER	YEAR	1999	HIGH	EST	70.57	MAY 05,	1999	L	OWEST 7	8.09	A	UG 05,	199	9

WASHINGTON COUNTY-Continued

412037091564701. Local number, 76-09-31 CBBC. LOCATION.--Lat 41°20'37", long 91°56'47", Hydrologic Unit 07080107, at Pepper Quarry on County Road V-15, 1 mi south of the City of Keota. Owner: River Products Co.

AQUIFER.--Mississippian: limestone of Mississippian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 136 ft, cased to 19 ft, open hole 19-136 ft

INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder August 1979 to December 1989.

DATUM.--Elevation of land-surface datum is 745 ft above sea level, from topographic map. Measuring point: Top of casing, 2.88 ft above land-surface datum. REMARKS.--Water levels affected by quarrying operations.

PERIOD OF RECORD. -- August 1979 to current year. REVISED RECORDS. -- WDR IA-84-1.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 8.45 ft below land-surface datum, May 3, 1993; lowest recorded, 25.72 ft below land-surface datum, December 10, 1989.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

	WATER
DATE	LEVEL
NOV 03	10.29

412750091495201. Local number, 77-09-24 AADA. LOCATION.--Lat 41°27'46", long 91°50'10", Hydrologic Unit 07080209, north of the city sewage treatment plant and west of First Avenue SE, Wellman. Owner: City of Wellman. AQUIFER.--Mississippian: dolomite of Mississippian age.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 10 in. to 27 ft, 8 in. to 47 ft, depth 110 ft, cased to 47 ft, open hole 47 to 110 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 695 ft above sea level, from topographic map. Measuring point: Nipple on plate

welded to casing, 1.87 ft above land-surface datum. REMARKS.--City test well No. 1. PERIOD OF RECORD.--May 1963 to October 1971, May 1973 to current year. REVISED RECORDS.--WDR IA-84-1, WDR IA-88-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.59 ft above land-surface datum, November 04, 1998; lowest measured, 6.80 ft below land-surface datum, October 20, 1964

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

(READINGS ABOVE LAND SURFACE INDICATED BY "+")

DATE	WATER <u>LEVEL</u>	WATER DATE LEVEL		DATE	WATER <u>DATE LEVEL DATE</u>				
NOV 04	+.59	FEB 08	.35	MAY 05	+.20	AUG 05	2.71		

HIGHEST +.59 NOV 04, 1998

WATER YEAR 1999

421829091304701. Local number, 75-06-14 ABBB. LOCATION.--Lat 41°18'29", long 91°30'47", Hydrologic Unit 07080209, 1 mi north and 1.5 mi east of the junction of U.S. Highway 218 and Iowa Highway 92. Owner: Mrs. David Armstrong. AQUIFER.--Glacial drift of Pleistocene age. WELL CHARACTERISTICS.--Bored unused water-table well, diameter 12 in., depth 45 ft, lined with tile.

LOWEST 2.71 AUG 05, 1999

INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 745 ft above sea level, from topographic map. Measuring point: Nipple welded to barrel, 4.08 ft above land-surface datum.

PERIOD OF RECORD.--November 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.29 ft below land-surface datum, April 16, 1999; lowest measured, 12.65 ft below land-surface datum, November 1, 1988.

	WATER LEVEL,	IN P.F.F.I. BELOW	LAND SURFACE	S DATUM, WATER	YEAR OCTOBER	1998 TO SEP	TEMBER 1999
DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
OCT 13	2.73	JAN 12	3.33	APR 16	1.29	JUL 15	5.05
NOV 20	2.83	FEB 17	2.63	MAY 11	3.41	AUG 16	5.04
DEC 11	2.83	MAR 16	1.84	JUN 16	3.57	SEP 09	7.51
	WATER YEA	R 1999 HTG	HEST 1.29	APR 16, 1999	LOWEST	7.51 SEP	09. 1999
WASHINGTON COUNTY--Continued

411813091411202. Local number, 75-07-17 ACBC. LOCATION.--Lat 41°18'13", long 91°41'14", Hydrologic Unit 07080107, located in the Town of Washington just east of the water-tower. Owner: The Town of Washington.

AQUIFER.--Cambrian/Ordovician Jordan sandstone. WELL CHARACTERISTICS.--Drilled public-use well, diameter 12.3 in, depth 1900 ft., casing open from 1400-1900.

INSTRUMENTATION.--Quarterly measurements using an airline by USGS personnel. DATUM.--Elevation of land-surface is 755 feet above sea level, by topographic map.

REMARKS.--Washington No. 5

EXTREMES FOR PERIOD OF RECORD.--October 1996 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 248 feet below land-surface datum, April 25, 1997; lowest measured, 256 ft below land-surface datum, May 06, 1998.

WATER	LEVELS,	IN FE	EET BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBE	R 1998	то	SEPTEN	4BER	199	9
DATE	WATER <u>LEVEL</u>		DATE		WATER <u>LEVEL</u>		DATE		WATER <u>LEVEL</u>			DATE		WAT LEV	ER EL
NOV 03	252		FEB 01	l	252		MAY 1	0	254		А	UG 06		25	3
WATER YEA	R 1999	HIC	GHEST 252		NOV 03,	1998	FEB 01	, 199	9 I	OWEST	254		MAY	10,	1999

411822091411001. Local number, 75-07-17 ABCA. LOCATION.--Lat 41°18'22", long 91°41'13", Hydrologic Unit 07080107, located on north side of railroad tracks on county road within the Town of Washington. Owner: The Town of Washington.

AQUIFER.--Cambrian/Ordovician- Jordan sandstone. WELL CHARACTERISTICS.--Drilled public-use well, diameter 26 in, depth 1900 ft., casing open from 1400-1900 ft. INSTRUMENTATION.--Quarterly measurements using an airline by USGS personnel.

DATUM.--Elevation of land-surface 757 feet above sea level, by topographic map

REMARKS.--Washington No.6 PERIOD OF RECORD.--April 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 249 feet below land-surface datum, May 10, 1999; lowest measured, 304 feet below land-surface datum, April 24, 1997.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	260	FEB 01	251	MAY 10	249	AUG 10	257
W	ATER YEAR 1999	HIGHEST	249	MAY 10, 1999	LOWEST 260	NOV 04, 19	998

411812091412601. Local number, 75-07-17 BCCC LOCATION.--Lat 41°18'08", long 91°41'49", Hydrologic Unit 07080107, located in the Town of Washington approximately.5 miles east and.10 mile north of Washington Well No. 5. Owner: Town of Washington. AQUIFER.--Cambrian/Ordovician-Trempealeau Group WELL CHARACTERISTICS.--Drilled public-use well, diameter 26 to 13.375 in., depth 1825, cased to 1450 ft, open form 1400 ft.

from 1450-1825 ft.

INSTRUMENTATION.-Quarterly measurements using an airline by USGS personnel. DATUM.--Elevation of land-surface is 748 feet above sea level, by topographic map.

REMARKS.--Washington Well No. 7

EXTREMES FOR PERIOD OF RECORD.--October 1996 to current year EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 240 feet below land-surface datum, November 04, 1998; lowest measured 259 ft below land-surface datum, October 11, 1996.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
NOV 04	240	FEB 01	252	MAY 10	250	AUG 06	256
W	ATER YEAR 1999	HIGHEST	240	NOV 04, 1998	LOWEST 256	AUG 06, 1	999

WEBSTER COUNTY

W

421837094083601. Local number, 87-28-29 CCCD. LOCATION.--Lat 41°18'37", long 94°08'36", Hydrologic Unit 07100006, 3 mi north and 2 mi east of the Town of Harcourt. Owner: Grace Helms.

AQUIFER.--Glacial drift of Pleistocene age. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 12 in., depth 42 ft, lined with tile. INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel. Graphic water-level recorder October 1942 to

December 1976. DATUM.--Elevation of land-surface datum is 1,165 ft above sea level, from topographic map. Measuring point: Top of

casing, 1.29 ft above land-surface datum. PERIOD OF RECORD.--October 1942 to June 1956, March 1958 to current year. REMARKS.--Sometimes called Harcourt well. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.05 ft below land-surface datum, August 1, 1972; lowest measured, 13.62 ft below land-surface datum, March 12, 1956.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>	DATE	WATER <u>LEVEL</u>
OCT 07	6.93	JAN 12	7.80	APR 06	3.52	JUL 01	2.50
NOV 17	6.65	FEB 11	5.18	MAY 05	2.68	AUG 02	4.05
DEC 17	7.31	MAR 11	5.28	JUN 01	3.16	SEP 09	5.22

ATER Y	EAR	1999	HIGHEST	2.50	JUL	01,	1999	LOWEST	7.80	JAN 12	,	1999
--------	-----	------	---------	------	-----	-----	------	--------	------	--------	---	------

423018094214701. Local number, 89-30-23 CCBB. LOCATION.--Lat 42°30'18", long 94°21'47", Hydrologic Unit 07100004, 75 ft west of the new school addition, Barnum. Owner: Johnson Township Consolidated School. AQUIFER.--Dakota: sandstone of Cretaceous age.

MULL CHARACTERISTICS.--Drilled unused artesian water well, diameter 4 in., depth 208 ft, screened 203-208 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,174 ft above sea level, from topographic map. Measuring point: Top of casing at land-surface datum. PERIOD OF RECORD.--October 1942 to September 1945, May 1947 to current year. REVISED RECORD.--WDR IA-88-1.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.36 ft below land-surface datum, October 21, 1942; lowest measured, 45.85 ft below land-surface datum, July 28, 1980.

	WATER LEVEL,	IN	FEET BELOW	LAND-SURFACE	DATUM,	WATER	YEARS	OCTOBER	1997	то	SEPTEM	BER	1998
DATE	WATER <u>LEVEL</u>		WATER DATE LEVEL		DATE		WATER <u>LEVEL</u>		D	ATE	WATER LEVEL		
NOV 05	43.00		FEB 11	42.57	MA	Y 06	42.5	3	AU	JG 0	4 4	42.80)
	WATER YEA	AR 1	999 HI	GHEST 42.53	MAY 06	, 1999	L	OWEST	43.00	N	OV 05,	199	8

WOODBURY COUNTY

422058095573701. Local number, 87-44-15 CBBB. LOCATION.--Lat 42°20'58", long 95°57'37", Hydrologic Unit 10230003, approximately 3.5 mi west and 5.5 mi north of the Village of Oto. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AOUIFER. -- Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS .- Drilled observation artesian water well, diameter 2 in., depth 197 ft, screened 185-189 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,165 ft above sea level, from topographic map. Measuring point: Top of casing, 1.50 ft above land-surface datum.

REMARKS.--Well D-34.

PERIOD OF RECORD.--April 1980 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 51.54 ft below land-surface datum, August 7, 1996; lowest measured, 63.56 ft below land-surface datum, November 2, 1982.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER <u>LEVEL</u>
NOV 03	53.61	FEB 09	53.90	MAY 12	54.25	AUG 10	52.77

WATER YEAR 1999 HIGHEST 52.77 AUG 10. 1999 LOWEST 54.25 MAY 12, 1999

422830096000511. Local number, 88-44-16 BAAB11. LOCATION.--Lat 42°28'30", long 96°00'05", Hydrologic Unit 10230004, approximately 3 mi east and 0.5 mi south of the Town of Moville. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 4 in. to 235 ft, 2 in. to 337 ft, depth 337 ft, screened 332-337 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,340 ft above sea level, from topographic map. Measuring point: Top of

casing, 3.50 ft above land-surface datum is 1,340 it above sea level, from topographic map. Measuring point. Top of casing, 3.50 ft above land-surface datum. REMARKS.--Well D-33. Damaged March 1998 PERIOD OF RECORD.--October 1979 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 198.70 ft below land-surface datum, August 10, 1999; lowest measured, 202.90 ft below land-surface datum, October 17, 1979.

	WATER LEVEL,	IN FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1998	то	SEPTEMB	ER	1999
DATE	WATER <u>LEVEL</u>	DAT	<u>re</u>	WAT <u>LEV</u>	ER EL	DA	TE	WAT <u>LEV</u>	ER EL	Ī	DATE	W I	IATE JEVE	R L
NOV 02	198.90	FEB	09	198	.84	MA	Y 12	198.	.86	AU	UG 1	0 1	98.7	0'
	WATER YEAD	R 1999	HIGH	EST	198.70	AUG 10	, 1999	I	LOWEST	198.90) N	ov 02,	199	8

GROUND WATER QUALITY MONITORING

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

STATION NUMBER	STATION NAME	COUNTY	DATE	TIME	GEO- LOGIC UNIT	DEPTH OF WELL, TOTAL (FEET) (72008)
411727094374001075N33W15DDBB	1976Fontanelle 5	Adair	07-13-99	1130	111ALVM	39
412852094275101077N31W07CAAB	1977Menlo 3	Adair	07-13-99	1200	111ALVM	30
405632094534401071N35W20AACB	1990Nodaway 4	Adams	07-13-99	1600	111ALVM	35
431638091282902098N05W30ACDC	1899Waukon 2	Allamakee	08-11-99	1215	371JRDN	577
413234094552401078N35W19BCDB	1976Brayton 1	Audubon	07-13-99	0945	111ENRV	41
415950091574301083N10W13CDB	1940Newhall 1	Benton	08-16-99	1430	350SLRN	473
420451093561301084N27W13DCAA	1940Boone 20	Boone	06-10-99	0830	111ALVM	63.7
420959094001901085N27W16CCDC	1967Pilot Mound 3	Boone	06-09-99	1500	112PLSC	30
422852092040101089N10W31AAB	1957Jesup 2	Buchanan	08-16-99	1215	358KNKK	380
424708094570801092N35W14BCCC	1949Albert City 1	Buena Vista	06-07-99	1400	112PLSC	190
425344095090401093N37W01DDDD	1977Sioux Rapids 2	Buena Vista	06-07-99	1600	111ALVM	54
415233094403201082N33W34ABBD	1938Coon Rapids 1, North	Carroll	07-14-99	1025	217DKOT	191
411622094520901075N35W27BBAB	1921Cumberland 1	Cass	07-13-99	0945	112PLSC	155
423744095383301090N41W11ADAD	1967Quimby 1	Cherokee	06-09-99	1615	217DKOT	225
414652090153201081N06E33ADA	1956Camanche 2	Clinton	06-14-99	1130	111ALVM	61.2
414930090321601081N04E18ACBB	1923De Witt 3	Clinton	06-14-99	1345	371JRDN	1646
420336095115601084N37W30BDAD	1936Vail (1),2	Crawford	07-14-99	1430	111ALVM	32
415057094065301081N28W09ABBB	1987Perry 9R	Dallas	07-14-99	0825	111ALVM	45
423020091273701089N05W20DBBB	1981Manchester 7	Delaware	08-16-99	0930	350SLRN	270
423135090383201089N03E18AADD	1969Dubuque 9	Dubuque	08-10-99	1045	111ALVM	125
423602090595201090N01W19AA	1987Holy Cross 1	Dubuque	08-10-99	1315	364GLEN	665
432349094285201099N31W14BBCD	1995Armstrong 7	Emmet	06-08-99	0905	112PLSC	136
425717091382602094N07W14CBAD	1954Elgin 2	Fayette	08-10-99	1600	364GLEN	220
425341093132501093N20W05DDAB	1956Sheffield 2	Franklin	08-12-99	1140	111ALVM	27
404327095284801068N40W07BCAA	1980Farragut 79-2 (North)	Fremont	07-14-99	1230	111ALVM	65
421322092522001086N17W31ABDA	1962Conrad 3	Grundy	07-13-99	1000	339HMPN	120
430015093360501095N23W31ACA	1959Klemme 2	Hancock	06-08-99	1610	341LMCK	185
414236096012501080N45W25DABD	1951Mondamin 2, South	Harrison	07-12-99	0900	111ALVM	90
432650092170401100N12W29DBD	1968Lime Springs 2	Howard	08-11-99	0900	364GLEN	380
422106095280201087N40W14ACBB	1965Ida Grove 3	Ida	06-10-99	0800	112PLSC	65
422915095323504089N39W33CDDD	1985Holstein 3	Ida	06-09-99	1400	111ALVM	54
414520092112001080N12W12ADDC	1952Ladora 1	Iowa	08-09-99	1400	112PLSC	72.5
420414090113201084N07E20BCDD	1895Sabula 1	Jackson	06-14-99	0900	3600VCB	973
413048093062101078N20W36DBDA	1981Monroe 7	Jasper	07-14-99	1030	325DSMS	300
413913093070001079N20W13ADDA	1955Newton 13	Jasper	07-14-99	1330	111ALVM	45
403745091174701067N04W02CBBC	1991Fort Madison 4	Lee	06-17-99	0900	111ALVM	147
420005091431201083N08W13ACDB	1970Cedar Rapids S6	Linn	07-12-99	1030	111ALVM	65
411644091110703075N03W22DCBD	1975Grandview 3	Louisa	06-17-99	1215	112AFNN	174
432608096201503100N47W36DCBD	1988Lester (4) 2	Lyon	06-08-99	1315	111ALVM	32
420405092545601084N18W23CACA	1977Marshalltown 8	Marshall	07-13-99	1330	112PLSC	223

*Geologic unit abbreviations used in this table:

		-	
Geological Unit Abbrev.	Geological Unit	Geological Unit Abbrev.	Geological Unit
110QRCU	Quarternary-Cretaceous Undifferentiated	339WSVL	Wassonville Member of 339HMPN
110QRNR	Quarternary System	341LMCK	Lime Creek Formation
111ALVM	Holocene Alluvium	344CDVL	Cedar Valley Limestone
111ENRV	East Nishnabotna River Alluvial	350SLRN	Silurian System
111SDRV	Soldier River Alluvial	355HPKN	Hopkinton Dolomite
112AFNN	Aftonian Interglacial Deposits	358KNKK	Kankakee Formation
112PLSC	Pleistocene Series	3600VCB	Ordovician-Cambrian System
217DKOT	Dakota Group	364GLEN	Galena Formation
325DSMS	Des Moinesian Series	364PLVL	Platteville Formation
339HMPN	Hampton Formation	371JRDN	Jordon Sandstone
339KDRK	Kinderhookian Series		

GROUND WATER QUALITY MONITORING--Continued

STATION NUMBER	DATE	FLOW RATE (G/M) (00058)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN) (72004)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	OXYGEN, DIS- SOLVED (MG/L) (00300)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
411727094374001	07-13-99	100	30	12.0	586	7.0	.2	270	200	320	17000
412852094275101	07-13-99	10	30	10.7	444	7.4	1.1	200	180	300	<20
405632094534401	07-13-99	55	>30	12.0	540	6.8	.6	220	150	400	530
431638091282902	08-11-99	295		9.8	565	7.1		350	280	400	<20
413234094552401	07-13-99	50	30	11.6	824	6.8	.1	360	310	540	5900
415950091574301	08-16-99	780	30	11.5	840	7.0		430	310	560	560
420451093561301	06-10-99	380	35	10.6	715	7.3	1.1	370	280	470	<20
420959094001901	06-09-99	33	30	9.8	680	7.4	.4	380	310	450	2700
422852092040101	08-16-99	185	30	10.6	491	7.2		390	240	310	<20
424708094570801	06-07-99	80	30	10.0	1310	7.3	.2	570	360	1010	4400
425344095090401	06-07-99	285	45	10.0	1110	7.4	3.6	520	320	640	<20
415233094403201	07-14-99	100	30	12.0	394	7.3	2.1	210	160	240	310
411622094520901	07-13-99	30	30	14.0	342	7.2	2.7	150	170	200	<20
423744095383301	06-09-99	100	>30	11.5	999	7.3	.3	460	290	690	1700
414652090153201	06-14-99	210	30	12.9	410	6.9	6.9	160	120	260	<20
414930090321601	06-14-99	300	30	14.5	615	7.2		210	250	360	660
420336095115601	07-14-99		30	13.4	802	7.3	1.3	400	270	550	<20
415057094065301	07-14-99	450	30	11.4	775	7.1	.1	390	290	540	2400
423020091273701	08-16-99			10.5	454	7.4	4.5	350	180	310	<20
423135090383201	08-10-99	625	>30	13.1	419	7.3	.1	250	160	260	2100
423602090595201	08-10-99		30	14.1	550	7.0		370	270	350	100
432349094285201	06-08-99	304	20	10.0	1050	7.2	.2	500	450	720	2000
425717091382602	08-10-99	400	30	10.1	596	6.9	.3	410	260	430	<20
425341093132501	08-12-99	100	30	13.3	514	7.1	4.1	360	220	350	20
404327095284801	07-14-99	160	30	13.5	627	6.8	1.0	280	230	410	860
421322092522001	07-13-99	165	30	11.0	640	7.1	2.0	330	280	390	<20
430015093360501	06-08-99	120	35	12.7	868	7.1	.3	450	340	560	3500
414236096012501	07-12-99	120	>60	12.5	1290	7.3	. 4	580	500	790	10000
432650092170401	08-11-99	200	30	9.0	370	7.3		240	210	270	550
422106095280201	06-10-99	125	>30	12.5	1100	7.2	.9	450	360	660	<20
422915095323504	06-09-99	110	>30	13.0	716	7.5	2.2	380	270	480	50
414520092112001	08-09-99	90	30	11.9	1020	7.5	.7	430	360	660	1400
420414090113201	06-14-99	230	30	15.1	472	7.1		240	250	270	60
413048093062101	07-14-99			12.6	792	7.0	1.8	410	350	510	260
413913093070001	07-14-99	150	30	11.1	599	7.1	7.3	330	250	400	<20
403745091174701	06-17-99	690	>30	16.8	474	7.1	.1	180	210	260	3600
420005091431201	07-12-99	1000	30	11.4	533	7.2	.5	280	240	340	90
411644091110703	06-17-99	30	40	12.3	446	7.2	. 2	210	250	260	1800
432608096201503	06-08-99	40	>30	9.5	1180	7.4	.2	590	350	840	3400
420405092545601	07-13-99	750	30	10.6	651	7.2	.2	300	290	420	2200

GROUND WATER QUALITY MONITORING--Continued

STATION NUMBER	DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
411727094374001	07-13-99	880	86	16	8.8	2.2	.20	24	11	30	.3
412852094275101	07-13-99	250	75	11	13	<1.0	.25	25	8.5	29	<.1
405632094534401	07-13-99	80	71	22	12	<1.0	.25	23	4.3	120	<.1
431638091282902	08-11-99	<20	100	22	5.9	<1.0	<.10	17	15	25	<.1
413234094552401	07-13-99	1200	110	33	29	1 1	.35	24	55	67	<.1
415950091574301	08-16-99	<20	80	38	61	10	1.4	7.4	2.6	160	3.6
420451093561301	06-10-99	150	100	35	12	2.3	.35	20	20	62	<.1
420959094001901	06-09-99	210	100	32	7.0	2.5	.35	30	11	72	.2
422852092040101	08-16-99	<20	74	25	6.1	1.8	.90	11	6.6	20	<.1
424708094570801	06-07-99	130	180	54	65	7.7	.25	32	<1.0	380	1.8
425344095090401 415233094403201 411622094520901 423744095383301 414652090153201	06-07-99 07-14-99 07-13-99 06-09-99 06-14-99	20 70 <20 150 <20	150 57 49 140 48	41 17 12 35 17	24 6.2 8.2 37 11	3.1 <1.0 1.2 6.3 1.1	.20 .30 .30 .85 <.10	26 24 25 19 24	110 3.6 1.0 2.6 23	70 34 11 250 31	<.1 <.1 .5 <.1
414930090321601	06-14-99	<20	49	24	47	8.5	.70	12	24	33	.7
420336095115601	07-14-99	<20	120	28	25	1.1	.25	27	44	93	<.1
415057094065301	07-14-99	480	130	32	6.9	2.1	.30	27	7.4	130	<.1
423020091273701	08-16-99	<20	77	20	7.6	2.2	.15	14	18	26	<.1
423135090383201	08-10-99	2800	51	19	10	2.2	.10	15	14	20	.5
423602090595201	08-10-99	<20	81	34	2.1	1.7	.20	10	1.4	22	<.1
432349094285201	06-08-99	510	140	43	47	3.9	.25	30	1.3	180	.9
425717091382602	08-10-99	<20	100	28	5.4	2.4	.30	13	16	55	<.1
425341093132501	08-12-99	<20	80	25	4.2	<1.0	.10	27	8.2	16	<.1
404327095284801	07-14-99	130	83	24	18	2.7	.30	27	13	73	<.1
421322092522001	07-13-99	40	89	35	11	1.5	.25	15	18	43	<.1
430015093360501	06-08-99	170	130	42	13	3.1	.45	23	36	90	.3
414236096012501	07-12-99	480	170	52	45	6.8	.30	37	38	140	1.4
432650092170401	08-11-99	<20	70	20	4.4	1.8	.50	12	2.7	20	.3
422106095280201	06-10-99	320	150	29	49	2.5	.25	25	100	74	<.1
422915095323504	06-09-99	<20	120	27	14	<1.0	.30	19	22	53	<.1
414520092112001	08-09-99	<20	91	31	110	2.6	.55	15	5.0	180	5.1
420414090113201	06-14-99	<20	52	34	1.8	4.3	.25	11	1.9	15	<.1
413048093062101	07-14-99	20	120	32	34	2.6	.35	22	1.6	110	1.5
413913093070001	07-14-99	<20	88	31	7.2	<1.0	.25	29	16	31	<.1
403745091174701	06-17-99	2400	54	18	9.3	2.5	.15	20	19	6.1	4.1
420005091431201	07-12-99	390	79	21	9.3	1.9	.20	13	19	28	<.1
411644091110703	06-17-99	70	66	17	7.4	.72	.25	24	<1.0	<1.0	.7
432608096201503	06-08-99	1300	170	50	24	2.5	.40	15	25	260	.1
420405092545601	07-13-99	60	90	32	15	2.2	.35	16	16	69	1.2

GROUND WATER QUALITY MONITORING--Continued

STATION NUMBER	DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630)	CYAN- AZINE TOTAL (UG/L) (81757)	METOLA- CHLOR WATER UNFLIRD REC (UG/L) (39356)	ALA- CHLOR TOTAL RECOVER (UG/L) (77825)	METRI- BUZIN IN WHOLE WATER (UG/L) (81408)
411727094374001	07-13-99	<.1	.1	.4	.5	2.0	<.10	<.10	<.10	<.10	<.10
412852094275101	07-13-99	5.5	<.1	<.1	.2	<1.0	<.10	<.10	<.10	<.10	<.10
405632094534401	07-13-99	1.3	<.1	.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
431638091282902	08-11-99	2.2	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
413234094552401	07-13-99	<.1	.1	.1	.1	<1.0	<.10	<.10	<.10	<.10	<.10
415950091574301	08-16-99	<.1	.4	4.0	<.1	1.3	<.10	<.10	<.10	<.10	<.10
420451093561301	06-10-99	8.8	<.1	<.1	<.1	2.0	<.10	<.10	<.10	<.10	<.10
420959094001901	06-09-99	<.1	<.1	.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
422852092040101	08-16-99	2.5	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
424708094570801	06-07-99	1.1	<.1	1.8	<.1	3.1	<.10	<.10	<.10	<.10	<.10
425344095090401	06-07-99	9.2	<.1	.2	<.1	<1.0	<.10	<.10	1.40	<.10	<.10
415233094403201	07-14-99	1.7	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
411622094520901	07-13-99	<.1	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
423744095383301	06-09-99	<.1	<.1	.5	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
414652090153201	06-14-99	5.8	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
414930090321601	06-14-99	<.1	<.1	.6	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
420336095115601	07-14-99	6.3	<.1	<.1	.1	<1.0	<.10	<.10	<.10	<.10	<.10
415057094065301	07-14-99	<.1	.2	.2	<.1	2.0	<.10	<.10	<.10	<.10	<.10
423020091273701	08-16-99	8.4	.1	.1	<.1	<1.0	.17	<.10	.13	<.10	<.10
423135090383201	08-10-99	<.1	.1	.6	.5	4.4	<.10	<.10	<.10	<.10	<.10
423602090595201	08-10-99	<.1	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
432349094285201	06-08-99	<.1	<.1	.8	<.1	1.9	<.10	<.10	<.10	<.10	<.10
425717091382602	08-10-99	4.7	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
425341093132501	08-12-99	13.0	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
404327095284801	07-14-99	1.1	.2	.2	.2	<1.0	<.10	<.10	<.10	<.10	<.10
421322092522001	07-13-99	4.6	<.1	<.1	.1	16	.12	<.10	<.10	<.10	<.10
430015093360501	06-08-99	<.1	<.1	.3	<.1	1.2	<.10	<.10	<.10	<.10	<.10
414236096012501	07-12-99	<.1	.2	1.6	.4	4.5	<.10	<.10	<.10	<.10	<.10
432650092170401	08-11-99	<.1	<.1	.4	<.1	1.5	<.10	<.10	<.10	<.10	<.10
422106095280201	06-10-99	2.2	<.1	<.1	<.1	1.0	<.10	<.10	<.10	<.10	<.10
422915095323504	06-09-99	18.0	<.1	<.1	<.1	2.3	.25	<.10	.77	<.10	<.10
414520092112001	08-09-99	<.1	.5	5.6	.3	4.0	<.10	<.10	<.10	<.10	<.10
420414090113201	06-14-99	<.1	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
413048093062101	07-14-99	<.1	.2	1.7	<.1	12	<.10	<.10	<.10	<.10	<.10
413913093070001	07-14-99	9.9	<.1	<.1	.1	12	<.10	<.10	<.10	<.10	<.10
403745091174701	06-17-99	<.1	<.1	4.1	.6	5.5	<.10	<.10	<.10	<.10	<.10
420005091431201	07-12-99	4.5	.3	.3	<.1	2.1	.31	<.10	<.10	<.10	<.10
411644091110703	06-17-99	<.1	<.1	.7	.3	<1.0	<.10	<.10	<.10	<.10	<.10
432608096201503	06-08-99	<.1	.2	.4	<.1	2.7	<.10	<.10	<.10	<.10	<.10
420405092545601	07-13-99	<.1	<.1	1.2	<.1	17	<.10	<.10	<.10	<.10	<.10

GROUND WATER QUALITY MONITORING--Continued

STATION NUMBER	DATE	BUTYL- ATE WATER WHLREC (UG/L) (30236)	TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)	ACETO- CHLOR, WATER, UNFLTRD REC (UG/L) (49259)	DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981)	DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980)	PROME- TONE TOTAL (UG/L) (39056)	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT) (01515)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) (03515)	RADIUM 226, DIS- SOLVED (PCI/L) (09503)	RADIUM 228 DIS- SOLVED (PCI/L AS RA-228) (81366)
411727094374001	07-13-99	<.10	<.10	<.10	<.10	<.10	<.10				
412852094275101	07-13-99	<.10	<.10	<.10	<.10	<.10	<.10				
405632094534401	07-13-99	<.10	<.10	<.10	<.10	<.10	<.10				
431638091282902	08-11-99	<.10	<.10	<.10	<.10	<.10	<.10	1.5	1.2	<.6	1.1
413234094552401	07-13-99	<.10	<.10	<.10	<.10	<.10	<.10				
415950091574301	08-16-99	<.10	<.10	<.10	<.10	<.10	<.10	4.7	10	2.5	1.8
420451093561301	06-10-99	<.10	<.10	<.10	<.10	<.10	<.10				
420959094001901	06-09-99	<.10	<.10	<.10	<.10	<.10	<.10				
422852092040101	08-16-99	<.10	<.10	<.10	<.10	<.10	<.10	1.9	2.2	<.6	.70
424708094570801	06-07-99	<.10	<.10	<.10	<.10	<.10	<.10				
425344095090401	06-07-99	<.10	<.10	<.10	<.10	<.10	<.10				
415233094403201	07-14-99	<.10	<.10	<.10	<.10	<.10	<.10				
411622094520901	07-13-99	<.10	<.10	<.10	<.10	<.10	<.10				
423744095383301	06-09-99	<.10	<.10	<.10	<.10	<.10	<.10				
414652090153201	06-14-99	<.10	<.10	<.10	<.10	<.10	<.10				
414930090321601	06-14-99	<.10	<.10	<.10	<.10	<.10	<.10	6.2	8.3	2.7	1.2
420336095115601	07-14-99	<.10	<.10	<.10	<.10	<.10	<.10				
415057094065301	07-14-99	<.10	<.10	<.10	<.10	<.10	<.10				
423020091273701	08-16-99	<.10	<.10	<.10	.25	<.10	<.10				
423135090383201	08-10-99	<.10	<.10	<.10	<.10	<.10	<.10				
423602090595201	08-10-99	<.10	<.10	<.10	<.10	<.10	<.10	4.1	12	2.2	2.6
432349094285201	06-08-99	<.10	<.10	<.10	<.10	<.10	<.10				
425717091382602	08-10-99	<.10	<.10	<.10	<.10	<.10	<.10				
425341093132501	08-12-99	<.10	<.10	<.10	.13	.19	<.10				
404327095284801	07-14-99	<.10	<.10	<.10	<.10	<.10	<.10				
421322092522001	07-13-99	<.10	<.10	<.10	<.10	<.10	<.10				
430015093360501	06-08-99	<.10	<.10	<.10	<.10	<.10	<.10				
414236096012501	07-12-99	<.10	<.10	<.10	<.10	<.10	<.10				
432650092170401	08-11-99	<.10	<.10	<.10	<.10	<.10	<.10	1.8	2.1	.7	.80
422106095280201	06-10-99	<.10	<.10	<.10	<.10	<.10	<.10				
422915095323504	06-09-99	<.10	<.10	<.10	<.10	<.10	<.10				
414520092112001	08-09-99	<.10	<.10	<.10	<.10	<.10	<.10				
420414090113201	06-14-99	<.10	<.10	<.10	<.10	<.10	<.10	7.1	5.1	1.4	.40
413048093062101	07-14-99	<.10	<.10	<.10	<.10	<.10	<.10	2.3	5.1	2.1	3.1
413913093070001	07-14-99	<.10	<.10	<.10	<.10	<.10	<.10				
403745091174701	06-17-99	<.10	<.10	<.10	<.10	<.10	<.10				
420005091431201	07-12-99	<.10	<.10	<.10	<.10	<.10	<.10				
411644091110703	06-17-99	<.10	<.10	<.10	<.10	<.10	<.10				
432608096201503	06-08-99	<.10	<.10	<.10	<.10	<.10	<.10				
420405092545601	07-13-99	<.10	<.10	<.10	<.10	<.10	<.10				

GROUND WATER QUALITY MONITORING--Continued

STATION NUMBER	DATE	BENZENE TOTAL (UG/L) (34030)	CARBON TETRA- CHLO- RIDE TOTAL (UG/L) (32102)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L) (32103)	ETHYL- BENZENE TOTAL (UG/L) (34371)	METHYL ENE CHLO- RIDE TOTAL (UG/L) (34423)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L) (34475)	TOLUENE TOTAL (UG/L) (34010)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L) (34506)	XYLENE WATER UNFLTRD REC (UG/L) (81551)
411727094374001	07-13-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
412852094275101	07-13-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
405632094534401	07-13-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
431638091282902	08-11-99									
413234094552401	07-13-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
415950091574301	08-16-99									
420451093561301	06-10-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
420959094001901	06-09-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
422852092040101	08-16-99									
424708094570801	06-07-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
425344095090401	06-07-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
415233094403201	07-14-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
411622094520901	07-13-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
423744095383301	06-09-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
414652090153201	06-14-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
414930090321601	06-14-99									
420336095115601	07-14-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
415057094065301	07-14-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
423020091273701	08-16-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
423135090383201	08-10-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
423602090595201	08-10-99									
432349094285201	06-08-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
425717091382602	08-10-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
425341093132501	08-12-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
404327095284801	07-14-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
421322092522001	07-13-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
430015093360501	06-08-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
414236096012501	07-12-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
432650092170401	08-11-99									
422106095280201	06-10-99	22.0	<.5	<.5	<.5	<1.0	.9	<.5	<.5	<.5
422915095323504	06-09-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
414520092112001	08-09-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
420414090113201	06-14-99									
413048093062101	07-14-99									
413913093070001	07-14-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
403745091174701	06-17-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
420005091431201	07-12-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
411644091110703	06-17-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
432608096201503	06-08-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
420405092545601	07-13-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5

GROUND WATER QUALITY MONITORING--Continued

STATION NUMBER	STATION NAME	COUNTY	DATE	TIME	GEO- LOGIC UNIT	DEPTH OF WELL, TOTAL (FEET) (72008)
410656095380201073N42W23AAAC	1978Silver City 3	MILLS	07-16-99	0915	111ALVM	60
432241092550802099N18W24CABA	1960Saint Ansgar 2	MONONA	08-12-99	0930	344CDVL	240
420241095422001084N42W35CABB	1974Ute 3	MONONA	06-10-99	1000	111SDRV	58
405850095061701071N37W04ACD	1953Stanton 1	MONTGOMERY	07-13-99	1400	217DKOT	158
413521090511001078N01E04CAA	1948Stockton 1	MUSCATINE	06-15-99	1400	355HPKN	247
431157095502901097N42W29BBBC	1949Sheldon 5	O'BRIEN	06-08-99	0845	111ALVM	24
403906095015001067N37W01AAAA	1985Shambaugh 3	PAGE	07-14-99	0745	111ALVM	30
423537095583901090N43W19CCBB	1956Kingsley 1	PLYMOUTH	06-09-99	1030	110QRNR	37
411501095251301075N40W35CBCA	1975Carson (5) 3	POTTAWATTAMIE	07-15-99	1030	111ALVM	25
421617095051001086N36W07CDBB	1971Wall Lake 3	SAC	06-07-99	1120	112PLSC	43
413040090455001078N02E32CC	1971Blue Grass (2),1	SCOTT	06-15-99	1045	364PLVL	640
413923090350901079N03E11CCBD	1929Eldridge 2	SCOTT	06-15-99	0900	350SLRN	515
413049095254501078N39W34ACCD	1968Shelby 5	SHELBY	07-12-99	1130	111ALVM	48.5
430017096285301095N48W35BDDC	1931Hawarden 2	SIOUX	06-08-99	1115	110QRCU	36
415252093411401082N24W30DCBB	1945Slater 1	STORY	06-09-99	1010	112PLSC	180
415417092180101082N13W24AAAD	1961Belle Plaine 4	TAMA	07-15-99	1100	111ALVM	42
415753092350201083N15W27CDD	1966Tama 5	TAMA	07-15-99	0900	111ALVM	43
403659094285301067N32W12CAAD	1960Blockton 1	TAYLOR	07-14-99	1000	112PLSC	271
410907092375301073N15W06CADA	1995Eddyville 3	WAPELLO	06-16-99	1400	111ALVM	35
413040093290501078N23W34DDBD	1979Carlisle 5	WARREN	08-09-99	1045	111ALVM	30
412013091485701076N08W31DDCC	1957West Chester 1	WASHINGTON	06-16-99	1100	339WSVL	243
412850091342901077N06W17BBA	1961Riverside 5	WASHINGTON	06-16-99	0830	112PLSC	250
423028094115101089N28W19CAA	1931Fort Dodge 12	WEBSTER	06-10-99	1300	339KDRK	541
431828091473201098N08W16ACBC	1972Decorah 6	WINNESHIEK	08-11-99	1510	111ALVM	82
422831095465102089N42W34DDDD	1927Correctionville 1 W	WOODBURY	06-09-99	1200	111ALVM	26
422929096253401089N47W29CCDA	1971SIOUX CITY RIVER 3	WOODBURY	06-09-99	0800	217DKOT	312
423958093535701091N26W27DBAB	1980Eagle Grove 5	WRIGHT	06-08-99	1310	112PLSC	70

GROUND WATER QUALITY MONITORING--Continued

STATION NUMBER	DATE	FLOW RATE (G/M) (00058)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN) (72004)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	OXYGEN, DIS- SOLVED (MG/L) (00300)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
410656095380201	07-16-99	85	30	12.0	949	7.5	.2	460	320	580	3800
432241092550802	08-12-99	325	30	9.9	475	7.1	4.4	410	250	440	<20
420241095422001	06-10-99	82	30	12.5	878	7.3	4.3	440	340	520	<20
405850095061701	07-13-99	140	20	12.5	599	7.0	.2	300	240	360	2400
413521090511001	06-15-99		<30	12.2	605	7.0	.2	300	310	360	690
431157095502901	06-08-99	55	>30	9.0	808	7.4	1.7	400	280	520	1200
403906095015001	07-14-99	30	45	12.0	466	6.8	.6	160	140	300	3800
423537095583901	06-09-99	165	30	11.0	851	7.5	7.4	420	310	540	<20
411501095251301	07-15-99	40	30	11.5	732	7.4	.3	410	300	460	1100
421617095051001	06-07-99	350	>60	11.0	920	7.3	.7	430	300	580	810
413040090455001 413923090350901 413049095254501 430017096285301 415252093411401	06-15-99 06-15-99 07-12-99 06-08-99 06-09-99	200 195 15 145 90	30 >30 >60 >30 25	13.2 12.5 13.0 11.0 11.7	632 460 514 880 721	7.0 7.1 7.2 7.5 7.8	 5.6 8.1 .5	310 200 230 420 270	350 250 140 310 430	360 250 320 560 460	<20 1900 80 <20 7500
415417092180101	07-15-99	220	30	14.2	667	11.1	.1	210	100	380	<20
415753092350201	07-15-99	450	30	10.9	604	7.2	2.5	400	220	420	<20
403659094285301	07-14-99	70	40	14.0	1760	7.6	.2	140	410	1100	570
410907092375301	06-16-99	175	>30	12.4	762	6.9	1.6	340	220	510	40
413040093290501	08-09-99	185	>30	12.4	640	7.0	.6	370	270	390	330
412013091485701	06-16-99	100	<30	12.1	818	7.1	.2	340	360	480	1100
412850091342901	06-16-99	190	60	15.8	665	7.6	.5	220	340	380	890
423028094115101	06-10-99	700	35	10.5	883	7.0		460	270	590	740
431828091473201	08-11-99	400	30	10.9	613	6.9	2.5	360	240	420	20
422831095465102	06-09-99	25	30	12.0	831	7.4	5.9	450	310	510	<20
422929096253401	06-09-99	1080	>60	12.5	1270	7.4		490	240	920	1600
423958093535701	06-08-99	350	25	11.0	713	7.2	.2	380	380	450	1500

GROUND WATER QUALITY MONITORING--Continued

STATION NUMBER	DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
410656095380201	07-16-99	550	130	36	22	2.4	.30	25	68	81	<.1
432241092550802	08-12-99	<20	99	32	12	1.2	.15	13	30	59	<.1
420241095422001	06-10-99	30	130	38	9.6	4.0	.25	25	30	49	<.1
405850095061701	07-13-99	230	82	20	13	1.5	.30	28	36	19	.4
413521090511001	06-15-99	<20	85	29	11	<1.0	.25	12	6.7	12	<.1
431157095502901	06-08-99	980	110	36	15	1.6	.45	23	25	120	.2
403906095015001	07-14-99	420	59	12	21	<1.0	.20	32	22	56	<.1
423537095583901	06-09-99	<20	130	34	10	2.4	.35	26	15	83	<.1
411501095251301	07-15-99	1200	110	28	8.7	<1.0	.40	9.4	16	62	<.1
421617095051001	06-07-99	560	130	34	26	3.7	.40	22	50	110	<.1
413040090455001	06-15-99	<20	84	34	11	1.3	.25	14	1.3	12	<.1
413923090350901	06-15-99	20	52	25	11	<1.0	.45	12	1.2	<1.0	2.4
413049095254501	07-12-99	<20	68	19	8.0	<1.0	.30	23	16	21	<.1
430017096285301	06-08-99	<20	130	36	16	2.3	.35	25	16	90	<.1
415252093411401	06-09-99	100	72	24	65	5.9	.35	12	2.5	<.50	6.6
415417092180101	07-15-99	<20	90	<.1	15	2.1	.70	39	38	75	.2
415753092350201	07-15-99	30	94	25	13	1.1	.20	30	22	71	<.1
403659094285301	07-14-99	40	39	11	340	2.4	.85	18	90	320	2.4
410907092375301	06-16-99	100	120	27	12	1.2	.15	16	24	120	<.1
413040093290501	08-09-99	380	92	28	13	1.4	.15	26	24	40	<.1
412013091485701	06-16-99	<20	73	39	53	2.5	.25	13	2.3	65	2.0
412850091342901	06-16-99	50	59	20	59	2.6	.15	11	2.6	13	3.7
423028094115101	06-10-99	50	120	42	30	5.2	.70	15	3.3	130	.8
431828091473201	08-11-99	<20	110	20	11	1.9	.10	15	25	28	<.1
422831095465102	06-09-99	<20	120	32	16	2.3	.20	21	20	63	<.1
422929096253401	06-09-99	1100	150	42	81	8.5	.40	15	48	370	.4
423958093535701	06-08-99	270	99	37	15	2.6	. 45	34	1.5	22	.7

GROUND WATER QUALITY MONITORING--Continued

STATION NUMBER	DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	ATRA- ZINE WATER UNFLIRD REC (UG/L) (39630)	CYAN- AZINE TOTAL (UG/L) (81757)	METOLA- CHLOR WATER UNFLIRD REC (UG/L) (39356)	ALA- CHLOR TOTAL RECOVER (UG/L) (77825)	METRI- BUZIN IN WHOLE WATER (UG/L) (81408)
410656095380201 432241092550802	07-16-99 08-12-99	<.1 6.7	.3 <.1	.3 <.1	<.1 <.1	<1.0 <1.0	<.10 <.10	<.10 <.10	<.10 <.10	<.10 <.10	<.10 <.10
420241095422001	06-10-99	13.0	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
405850095061701	07-13-99	<.1	<.1	.5	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
413521090511001	06-15-99	<.1	<.1	<.1	<.1	3.0	<.10	<.10	<.10	<.10	<.10
431157095502901	06-08-99	<.1	.1	.3	.1	1.8	<.10	<.10	<.10	<.10	<.10
403906095015001	07-14-99	<.1	.2	.2	.3	1.8					
423537095583901	06-09-99	12.0	<.1	<.1	.1	<1.0	<.10	<.10	<.10	<.10	<.10
411501095251301	07-15-99	1./	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
42101/095051001	00-07-99	3.3	• 1	• 1	<.1	1.5	<.10	<.10	.25	<.10	<.10
413040090455001	06-15-99	<.1	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
413923090350901	06-15-99	<.1	<.1	2.4	.3	2.8	<.10	<.10	<.10	<.10	<.10
413049095254501	07-12-99	18.0	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
430017096285301	06-08-99	14.0	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
415252093411401	06-09-99	<.1	<.1	6.2	<.1	16	<.10	<.10	<.10	<.10	<.10
415417092180101	07-15-99	5.5	.2	.4	<.1	<1.0	.13	<.10	<.10	<.10	<.10
415753092350201	07-15-99	4.2	<.1	<.1	<.1	20	<.10	<.10	<.10	<.10	<.10
403659094285301	07-14-99	<.1	1.0	3.4	.4	13	<.10	<.10	<.10	<.10	<.10
410907092375301	06-16-99	4.2	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
413040093290501	08-09-99	<.1	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
412013091485701	06-16-99	<.1	<.1	1.9	<.1	1.3	<.10	<.10	<.10	<.10	<.10
412850091342901	06-16-99	<.1	.1	3.8	.3	2.3	<.10	<.10	<.10	<.10	<.10
423028094115101	06-10-99	<.1	<.1	.7	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
431828091473201	08-11-99	4.0	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
422831095465102	06-09-99	14.0	<.1	<.1	<.1	<1.0	<.10	<.10	<.10	<.10	<.10
422929096253401	06-09-99	<.1	<.1	.4	<.1	1.6	<.10	<.10	<.10	<.10	<.10
423958093535701	06-08-99	<.1	<.1	.7	<.1	<1.0	<.10	<.10	<.10	<.10	<.10

GROUND WATER QUALITY MONITORING--Continued

		BUTYL-	TRI- FLURA-	ACETO- CHLOR,	DEETHYL ATRA- ZINE,	DE-ISO PROPYL ATRAZIN		GROSS ALPHA, DIS-	GROSS BETA, DIS-	RADIUM	RADIUM 228 DIS-
		ATE	LIN	WATER,	WATER,	WATER,	PROME-	SOLVED	SOLVED	226,	SOLVED
		WATER	TOTAL	UNFLTRD	WHOLE,	WHOLE,	TONE	(PCI/L	(PCI/L	DIS-	(PCI/L
STATION NUMBER	DATE	WHLREC	RECOVER	REC	TOTAL	TOTAL	TOTAL	AS	AS	SOLVED	AS
		(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	U-NAT)	CS-137)	(PCI/L)	RA-228)
		(30236)	(39030)	(49259)	(75981)	(75980)	(39056)	(01515)	(03515)	(09503)	(81366)
410656095380201	07-16-99	<.10	<.10	<.10	<.10	<.10	<.10				
432241092550802	08-12-99	<.10	<.10	<.10	<.10	<.10	<.10				
420241095422001	06-10-99	<.10	<.10	<.10	<.10	<.10	<.10				
405850095061701	07-13-99	<.10	<.10	<.10	<.10	<.10	<.10				
413521090511001	06-15-99	<.10	<.10	<.10	<.10	<.10	<.10				
431157095502901	06-08-99	<.10	<.10	<.10	<.10	<.10	<.10				
403906095015001	07-14-99										
423537095583901	06-09-99	<.10	<.10	<.10	<.10	<.10	<.10				
411501095251301	07-15-99	<.10	<.10	<.10	<.10	<.10	<.10				
421617095051001	06-07-99	<.10	<.10	<.10	<.10	<.10	<.10				
413040090455001	06-15-99	<.10	<.10	<.10	<.10	<.10	<.10	4.0	6.7	.9	<.40
413923090350901	06-15-99	<.10	<.10	<.10	<.10	<.10	<.10	2.4	5.0	.6	.80
413049095254501	07-12-99	<.10	<.10	<.10	<.10	<.10	<.10				
430017096285301	06-08-99	<.10	<.10	<.10	<.10	<.10	<.10				
415252093411401	06-09-99	<.10	<.10	<.10	<.10	<.10	<.10				
415417092180101	07-15-99	<.10	<.10	<.10	<.10	<.10	<.10				
415753092350201	07-15-99	<.10	<.10	<.10	<.10	<.10	<.10				
403659094285301	07-14-99	<.10	<.10	<.10	<.10	<.10	<.10				
410907092375301	06-16-99	<.10	<.10	<.10	<.10	<.10	<.10				
413040093290501	08-09-99	<.10	<.10	<.10	<.10	<.10	<.10				
412013091485701	06-16-99	<.10	<.10	<.10	<.10	<.10	<.10				
412850091342901	06-16-99	<.10	<.10	<.10	<.10	<.10	<.10				
423028094115101	06-10-99	<.10	<.10	<.10	<.10	<.10	<.10	5.7	6.7	1.8	<.60
431828091473201	08-11-99	<.10	<.10	<.10	<.10	<.10	<.10				
422831095465102	06-09-99	<.10	<.10	<.10	<.10	<.10	<.10				
422929096253401	06-09-99	<.10	<.10	<.10	<.10	<.10	<.10				
423958093535701	06-08-99	<.10	<.10	<.10	<.10	<.10	<.10				

GROUND WATER QUALITY MONITORING--Continued

STATION NUMBER	DATE	BENZENE TOTAL (UG/L) (34030)	CARBON TETRA- CHLO- RIDE TOTAL (UG/L) (32102)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L) (32103)	ETHYL- BENZENE TOTAL (UG/L) (34371)	METHYL ENE CHLO- RIDE TOTAL (UG/L) (34423)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L) (34475)	TOLUENE TOTAL (UG/L) (34010)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L) (34506)	XYLENE WATER UNFLTRD REC (UG/L) (81551)
410656095380201	07-16-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
432241092550802	08-12-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
420241095422001	06-10-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
405850095061701	07-13-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
413521090511001	06-15-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
431157095502901	06-08-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
403906095015001	07-14-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
423537095583901	06-09-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
411501095251301	07-15-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
421617095051001	06-07-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
413040090455001	06-15-99									
413923090350901	06-15-99									
413049095254501	07-12-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
430017096285301	06-08-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
415252093411401	06-09-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
415417092180101	07-15-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	1.3
415753092350201	07-15-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
403659094285301	07-14-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
410907092375301	06-16-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
413040093290501	08-09-99	<.5	<.5	<.5	<.5	<1.0	3.3	<.5	<.5	<.5
412013091485701	06-16-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
412850091342901	06-16-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
423028094115101	06-10-99									
431828091473201	08-11-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
422831095465102	06-09-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
422929096253401	06-09-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5
423958093535701	06-08-99	<.5	<.5	<.5	<.5	<1.0	<.5	<.5	<.5	<.5

405747093233201 MCNAY RESEARCH STATION NEAR CHARITON, IOWA

LOCATION.--Lat 40`57'47", long 93`23'34", in SW1/4 NE1/4 sec. 9, T.71 N., R.23 W., Lucas County, Hydrologic Unit 10280201, 3.1 mi east and 2.0 mi north of Derby, Iowa, 3.4 mi west and 2.8 mi south of Chariton, Iowa.

OWNER.--U.S. Geological Survey.

PERIOD OF RECORD. -- September 1984 to current year.

INSTRUMENTATION.--Wet/dry precipitation collector, weighing-bucket type recording rain gage with alter wind shield and event recorder. National Weather Service standard 8-inch rain and snow gage (back-up only).

REMARKS.--Samples collected by Jim Secor and Steve Goben.

EXTREMES FOR PERIOD OF RECORD. --Maximum field pH, 7.07, April 19-26, 1988; minimum field pH, 3.84, February 12-19, 1985.

EXTREMES FOR CURRENT YEAR .-- Maximum field pH, 5.9, March 23-30; minimum field pH, 4.3, September 28 to October 5.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 [The parameter codes for the 1999 water year have been updated to more accurately describe atmospheric deposition data]

DATE	PH FIELD ATM DEP WET T (UNITS) (83106)	SPEC. CONDUC- TANCE FIELD ATM DEP WET TOT (US/CM) (83154)	CALCIUM ATM DEP WET DIS (MG/L) (82932)	MAG- NESIUM ATM DEP WET DIS (MG/L) (83002)	POTAS- SIUM ATM DEP WET DIS (MG/L) (83120)	SODIUM ATM DEP WET DIS (MG/L) (83138)	NI- TROGEN AMMON. ATM DEP WET DIS AS N (MG/L) (83044)	NI- TROGEN NITRATE ATM DEP WET DIS AS N (MG/L) (83068)	CHLO- RIDE ATM DEP WET DIS (MG/L) (82944)	SULFATE ATM DEP WET DIS AS SO4 (MG/L) (83160)	PHOS- PHORUS ORTHO ATM DEP WET DIS AS P (MG/L) (83108)
OCT											
06-13 OCT											
13-20	5.5	4	.04	.01	.01	.03	.12	.05	.05	.40	<.001
20-27			.99	.06	.05	.06	.57	.63	.16	2.5	<.001
OCT 27- NOV 03	4.8	11	.18	.02	.01	.05	.24	.24	.07	1.3	<.001
NOV 03-10	4 7	14	14	02	01	06	28	27	0.9	14	< 001
NOV	1.,	11		.02	.01	.00	.20	1 50	.05	4 1	4.001
NOV			1.1	.06	.08	.05	.97	1.52	.18	4.1	<.004
17-24 NOV 24-											
DEC 01	5.2	4	.08	.01	.00	.01	.20	.08	.04	.43	<.001
01-08	5.4	6	.13	.01	.02	.03	.23	.15	.04	.69	<.001
08-15											
DEC 15-22											
DEC 22-29			.06	.01	.04	.03	.05	.02	.08	.04	.004
DEC 29 1998-	54	5	26	01	07	03	19	12	10	1.8	< 001
JAN	5.1	5	.20	.01	.07	.05	.17	.12	.10	.10	
JAN			1.4	.05	.04	.15	.51	.67	. 22	1.3	<.003
12-19 JAN	4.9	22	.31	.02	.02	.05	1.00	.93	.13	1.8	<.001
19-26 JAN 26-	4.5	23	.13	.01	.02	.02	.47	.49	.08	2.4	<.001
FEB 02											
02-09	4.9	22	.69	.05	.02	.06	.96	1.13	.19	1.9	<.001
FEB 09-16	5.0	10	.24	.02	.03	.15	.45	.21	.14	1.8	<.001
FEB 16-23	4.6	20	.15	.01	.01	.02	.49	.75	.09	1.2	<.001
FEB 23- MAR 02	5 2	15	47	03	05	11	1 12	58	22	18	< 001
MAR	с 1	11		.03						1 0	. 001
MAR	5.1	11	.52	.03	.02	.04	.50	.42	.07	1.3	<.001
09-16 MAR											
16-23 MAR											
23-30	5.9	18	.57	.04	.02	.01	1.38	.11	.08	1.2	<.001
APR 06	5.8	11	.37	.03	.03	.08	.79	.21	.12	1.5	<.001
APR 06-13	5.5	18	1.2	.11	.10	.35	.89	.47	.31	2.7	.004
APR 13-20	4.4	25	.38	.04	.01	.02	.47	.74	.07	2.0	<.001
APR 20-27	5 0	10	.35	.04	.03	.06	.30	28	0.8	1 3	<.001
APR 27-	5.0	- 0	20	02				.20		1 1	< 0.01
MAY 04	0.0	0	.20	.∪∠	.02	.UI	. 25	. 34	.04	1.1	<.UUI
04-11 MAY	5.6	11	.37	.05	.08	.05	.82	.33	.09	1.1	<.001
11-18	5.4	7	.23	.03	.04	.07	.39	.22	.07	1.0	<.001

QUALITY OF PRECIPITATION

405747093233201 - MCNAY RESEARCH STATION NEAR CHARITON, IOWA--Continued

DATE	PH FIELD ATM DEP WET T (UNITS) (83106)	SPEC. CONDUC- TANCE FIELD ATM DEP WET TOT (US/CM) (83154)	CALCIUM ATM DEP WET DIS (MG/L) (82932)	MAG- NESIUM ATM DEP WET DIS (MG/L) (83002)	POTAS- SIUM ATM DEP WET DIS (MG/L) (83120)	SODIUM ATM DEP WET DIS (MG/L) (83138)	NI- TROGEN AMMON. ATM DEP WET DIS AS N (MG/L) (83044)	NI- TROGEN NITRATE ATM DEP WET DIS AS N (MG/L) (83068)	CHLO- RIDE ATM DEP WET DIS (MG/L) (82944)	SULFATE ATM DEP WET DIS AS SO4 (MG/L) (83160)	PHOS- PHORUS ORTHO ATM DEP WET DIS AS P (MG/L) (83108)
MAY											
18-25	5.8	11	.49	.04	.04	.03	.83	.34	.07	.72	<.001
MAY 25-	5 5	7	18	01	01	01	24	14	03	57	< 001
JUN	5.5	1	.10	.01	.01	.01	.21	.11	.05	. 57	<.001
01-08	5.6	14	.84	.06	.07	.14	.66	.32	.18	1.8	<.001
08-15	5.5	10	.30	.04	.07	.06	.45	.23	.08	1.1	.035
JUN											
15-22 JUN											
22-29	5.0	8	.10	.01	.01	.01	.18	.19	.05	.72	<.001
JUN 29-	57	8	67	05	02	06	26	19	0.9	56	< 001
JUL	5.7	0	.07	.05	.02	.00	.20	. 10	.05	.50	1.001
06-13	5.5	4	.23	.02	.02	.03	.19	.17	.05	.45	<.001
13-20	5.7	20	1.8	.12	.14	.18	.86	.79	.25	2.3	<.001
JUL											
JU-27											
AUG 03	5.2	10	.36	.02	.02	.03	.22	.30	.05	.77	<.001
AUG 03-10	4 6	17	22	01	0.0	01	32	36	04	15	< 001
AUG	1.0	1	.22	.01	.00	.01	. 52	.50	.01	1.5	1.001
10-17	5.1	12	.64	.04	.03	.07	.33	.46	.12	1.7	<.001
17-24	5.4	25	2.5	.12	.05	.07	.93	1.08	.17	3.2	<.001
AUG											
24-31 AUG 31-											
SEP 07	5.0	7	.21	.01	.01	.01	.09	.16	.03	.65	<.001
SEP 07-14	53	11	5.8	03	04	03	47	50	06	1 3	< 001
SEP	5.5	11	. 50	.05	.01	.05	. 17	. 50	.00	1.5	<.001
14-21			.40	.04	.03	.02	.17	.16	<.22	1.2	<.007
5EP 21-28	4.9	8	.10	.01	.01	.01	.16	.11	<.03	.58	<.001
SEP 28-											
OCT 05	4.3	42	.50	.06	.05	.03	.68	.75	.10	3.5	<.001

425435091281101 BIG SPRING FISH HATCHERY NEAR ELKADER, IOWA

LOCATION.--Lat 42`54'35", long 91`28'11", in SE1/4 NE 1/4 SE1/4 sec. 31, T.94 N., R.5 W., Clayton County, Hydrologic Unit 07060004, 3.0 mi north and 2.8 mi west of Elkader, Iowa.

OWNER.--U.S. Geological Survey.

PERIOD OF RECORD. -- August 1984 to current year.

INSTRUMENTATION.--Wet/dry precipitation collector, weighing-bucket type recording rain gage with alter wind shield and event recorder and National Weather Service standard 8-inch rain and snow gage (back-up only).

REMARKS. -- Samples Collected by Robert Zach.

EXTREMES FOR PERIOD OF RECORD. --Maximum field pH, 6.9, April 2-9 1996; minimum field pH, 3.7, August 31 to September 7, 1999.

EXTREMES FOR CURRENT YEAR. -- Maximum field pH, 6.1, July 13-20; minimum field pH, 3.7, August 31 to September 7.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 [The parameter codes for the 1999 water year have been updated to more accurately describe atmospheric deposition data]

DATE	PH FIELD ATM DEP WET T (UNITS) (83106)	SPEC. CONDUC- TANCE FIELD ATM DEP WET TOT (US/CM) (83154)	CALCIUM ATM DEP WET DIS (MG/L) (82932)	MAG- NESIUM ATM DEP WET DIS (MG/L) (83002)	POTAS- SIUM ATM DEP WET DIS (MG/L) (83120)	SODIUM ATM DEP WET DIS (MG/L) (83138)	NI- TROGEN AMMON. ATM DEP WET DIS AS N (MG/L) (83044)	NI- TROGEN NITRATE ATM DEP WET DIS AS N (MG/L) (83068)	CHLO- RIDE ATM DEP WET DIS (MG/L) (82944)	SULFATE ATM DEP WET DIS AS SO4 (MG/L) (83160)	PHOS- PHORUS ORTHO ATM DEP WET DIS AS P (MG/L) (83108)
OCT		~		0.1			05	15		50	0.01
OCT 06-13	5.1	6	.09	.01	.03	.04	.25	.15	.08	.70	<.001
13-20 OCT	5.8	5	.24	.05	.04	.03	.14	.11	.06	.53	.006
20-27	5.1	11	.31	.04	.02	.17	.26	.27	.22	1.1	<.001
NOV 03	4.5	18	.11	.03	.03	.09	.42	.32	.12	1.9	<.001
NOV 03-10	4.5	20	.34	.06	.12	.04	.39	.44	.09	2.1	.003
NOV 10-17	5.6	14	.03	. 01	1.7	. 02	.14	. 33	.20	1.6	<.001
NOV			4 5	20	10	10	4 4 5	2 57	24	10 E	< 0.01
NOV 24-			4.5	. 30	.19	.10	4.45	2.57	. 54	13.5	<.001
DEC 01 DEC	5.6	27	1.3	.07	.07	.06	1.38	. 39	.48	4.2	<.001
01-08 DEC											
08-15											
15-22											
DEC 22-29	5.8	16	1.5	.12	.04	.11	.45	.45	.13	.89	<.001
DEC 29 1998- JAN 05 1999	5.5	4	.27	.05	.01	.02	.06	.12	.06	.12	<.001
JAN 05-12	4 8	10	25	03	01	13	10	36	17	47	< 001
JAN 12 10	2.0	<u> </u>	.20	.05	05	10	1 25	1 96	20	1 0	< 0.01
JAN	5.9	00	.09	.00	.05	.12	1.25	1.00	. 59	4.0	<.001
19-26 JAN 26-	4.3	25	.19	.02	.03	.02	.39	.69	.09	1.5	<.001
FEB 02 FEB											
02-09											
09-16	4.9	14	.38	.04	.06	.17	.54	.30	.14	2.2	<.001
нев 16-23											
FEB 23- MAR 02	4.3	41	.83	.15	.05	.26	1.03	1.18	.42	4.1	<.001
MAR 02-09	4 4	17	29	05	01	02	13	43	15	97	< 001
MAR	1.1	17	.25	.05	.01	.02	.15	. 15	.15	,	1.001
MAR											
16-23 MAR											
23-30 MAR 30-	4.9	9	.28	.06	.04	.02	.14	.11	.04	1.1	<.001
APR 06	5.3	15	.62	.06	.09	.10	.79	.40	.14	2.1	<.001
06-13	5.1	13	.60	.07	.05	.14	.48	.30	.15	2.1	<.001
APR 13-20	5.5	27	1.2	.18	.09	.03	1.71	1.08	.20	3.2	<.001
APR 20-27	4.5	21	.27	.04	.04	.06	.54	.55	.09	2.0	<.001
APR 27- MAY 04	4 2	32	.09	.02	. 02	. 01	.26	20	05	2.9	<.001
MAY 04 11	5.2	17		.02	10	.01	.20		.00	1 7	< 0.01
MAY	5./	1/	.85	.25	.18	.04	.93	. 30	.12	1./	<.UU1
11-18	5.2	11	.27	.07	.22	.05	.42	.30	.08	1.6	<.001

QUALITY OF PRECIPITATION

425435091281101 - BIG SPRING FISH HATCHERY NEAR ELKADER, IOWA--Continued

DATE	PH FIELD ATM DEP WET T (UNITS) (83106)	SPEC. CONDUC- TANCE FIELD ATM DEP WET TOT (US/CM) (83154)	CALCIUM ATM DEP WET DIS (MG/L) (82932)	MAG- NESIUM ATM DEP WET DIS (MG/L) (83002)	POTAS- SIUM ATM DEP WET DIS (MG/L) (83120)	SODIUM ATM DEP WET DIS (MG/L) (83138)	NI- TROGEN AMMON. ATM DEP WET DIS AS N (MG/L) (83044)	NI- TROGEN NITRATE ATM DEP WET DIS AS N (MG/L) (83068)	CHLO- RIDE ATM DEP WET DIS (MG/L) (82944)	SULFATE ATM DEP WET DIS AS SO4 (MG/L) (83160)	PHOS- PHORUS ORTHO ATM DEP WET DIS AS P (MG/L) (83108)
MAY											
18-25	5.4	20	1.6	.14	.06	.09	.68	.73	.17	2.0	<.001
MAY 25-	F 4	22	0 7	25	10	0.0	60	C A	10	2 6	. 001
JUN UL	5.4	22	2.7	.25	.10	.02	.08	.04	.13	2.0	<.001
01-08	5.5	10	.24	.05	.06	.05	.75	.26	.09	1.5	<.001
JUN											
08-15	5.5	8	.59	.11	.07	.05	.33	.31	.10	.97	<.001
JUN 15-22	5.8	18	2 0	24	02	01	53	19	04	53	< 001
JUN	5.0	10	2.0	.21	.02	.01	.55	. 19	.01	.55	1.001
22-29	5.4	13	.77	.15	.06	.01	.56	.32	.06	2.2	<.001
JUN 29-											
JUL 06	5.5	9	.48	.08	.09	.13	.35	.28	.15	1.1	<.001
06-13											
JUL											
13-20	6.1	8	.41	.04	.02	.06	.30	.30	.08	.89	<.001
JUL											
20-23											
AUG 03	53	19	18	13	10	09	62	83	14	2 1	< 001
AUG	5.5	19	1.0	.15	.10	.09	.02	.05	.14	2.1	<.001
03-10	4.8	12	.38	.07	.01	.01	.29	.32	.06	1.6	<.001
AUG											
10-17	5.0	21	1.0	.11	.06	.11	.86	.93	.19	2.9	<.001
AUG 17_24	4 8	14	33	04	04	01	41	36	05	1 9	< 0.01
AUG	4.0	14		.04	.04	.01	.41	. 50	.05	1.9	<.001
24-31											
AUG 31-											
SEP 07	3.7	119	4.7	.53	.18	.04	1.34	1.92	.32	18.1	<.001
SEP		27	2 2	20	11	0.4	75	0.2	1.2	0.7	. 001
SED	5.5	27	3.3	. 29	• 11	.04	. / 5	.83	.13	2.7	<.001
14-21			.75	.06	.04	.01	.43	.19	.04	.84	<.001
SEP											
21-28	5.2	8	.48	.07	.04	.04	.30	.20	.04	.67	<.001
SEP 28-	4 0	01	1 4	1.4	05	0.2	70	70	07	0.0	. 001
OCI 05	4.9	21	⊥.4	.14	.05	.03	.79	.79	.07	2.3	<.001

254

Α

Acre-foot, definition of —36 Akron, Big Sioux River at —54 Alkalinity, definition of —36 Alton, Floyd River at —66 Annual 7-day minimum, definition of —37 Annual runoff, definition of —36 Aquifer, water table, definition of —43 Atlantic, East Nishnabotna River near —120

В

Bacteria, definition of -36 Enterococcus, definition of -36 Escherichia coli, definition of -36 Fecal coliform, definition of -36 Total coliform, definition of -36 Base flow, definition of -36 Bed load, definition of -41 Bed material, definition of -36 Bedford, East Fork One Hundred and Two River at -132 Bed-load discharge, definition of -41 Big Sioux River at Akron —54 Big Sioux River basin, crest-stage partial-record stations in -146Big Whiskey Slough near Remsen —146 Bluegrass Creek at Audubon —148 Bottom material, definition of -36 Boyer River at Logan —96 Boyer River tributary at Woodbine —147 Burr Oak Creek near Perkins —146

С

Chariton River near Chariton -136 near Moulton -144 near Rathbun —142 Chlorophyll, definition of -37 Clarinda, Nodaway River at -128 Colloid, definition of -37 Color unit, definition of -37 Confined aquifer, definition of -37 Contents, definition of -37 Continuous-record station, definition of -37 Control structure, definition of -37 Control. definition of -37 Correctionville, Little Sioux River at -86 Cubic foot per second per square mile, definition of -36 Cubic foot per second, definition of -37Cubic foot per second-day, definition of -37

D

Daily record station, definition of —37 Daily record, definition of —37 Datum, definition of —37 Davis City, Thompson River at —134 Dawson Creek near Sibley —146 Decatur, Missouri River at —70 Definition of terms —36 Discharge, definition of —37 Dissolved oxygen, definition of —38 Dissolved, definition of —37 Dissolved-solids concentration, definition of —38 Downstream order system —19 Drainage area, definition of —38 Drainage basin, definition of —38 Dry Run Creek near Harris —147

Ε

East Fork One Hundred and Two River at Bedford —132 East Nishnabotna River near Atlantic —120 at Red Oak —122 East Tarkio Creek near Stanton —148 Elk Creek near Decatur City —149 Elliot Creek at Lawson —147 Elm Creek near Jacksonville —148 Enterococcus bacteria, definition of —36 Escherichia coli (E. coli), definition of —36

F

Fecal coliform bacteria, definition of —36 Flow (see Discharge) —37 Flow-duration percentiles, definition of —38 Floyd River at Alton —66 at James —68

G

Gage datum, definition of --38 Gage height, definition of --38 Gaging station, definition of --38 Ground-water level, definition of --38 Ground-water levels, records of --32 Data collection and computation --32 Data presentation --32 Ground-water quality, records of --33 Data presentation --34

Η

Halfway Creek at Schaller —147 Hamburg, Nishnabotna River above —124 Hancock, West Nishnabotna River at —116 Hardness, definition of —38 Hornick, West Fork Ditch at —72 Hydrologic benchmark station, definition of —38 Hydrologic conditions, summary of —3 Ground water —10 Ground-water quality —14 Surface water —3 Surface-water quality —14 Suspended sediment —8 Hydrologic unit, definition of —38

I

Indian Creek near Emerson —148 Instantaneous discharge, definition of —37

J

James, Floyd River at —68

K

Keg Creek tributary near Mineola —148

L

Land-surface datum, definition of —38 Linn Grove, Little Sioux River at —84 Little Floyd River near Sanborn —146 Little Sioux River at Correctionville —86 at Linn Grove —84 near Turin —90 Little Sioux River tributary near Peterson —147 Logan, Boyer River at —96 Low flow, 7-day 10-year, definition of —42

Μ

Maple River at Mapleton —88 Mean discharge, definition of -37 Measuring point, definition of -38 Membrane filter, definition of -38 Micrograms per gram, definition of -38 Micrograms per kilogram, definition of -39 Micrograms per liter, definition of -39 Microsiemens per centimeter, definition of -39 Middle Branch 102 River near Gravity —149 Middle Silver Creek near Oakland —148 Milford, West Okoboji Lake at Lakeside Laboratory near -80 Milligrams per liter, definition of -39 Miscellaneous site, definition of -39 Missouri River at Decatur -70 at Nebraska City -108 at Omaha -98 at Rulo -126 at Sioux City -58 Monona-Harrison Ditch near Turin -74 Moser Creek near Earling —148 Mosquito Creek tributary near Neola —148 Moulton, Chariton River near —144

Ν

National Geodetic Vertical Datum of 1929, definition of — 39 Nebraska City, Missouri River at —108 Nephelometric turbidity unit, definition of —39 NGVD of 1929, definition of —39 Nishnabotna River above Hamburg —124 Nodaway River at Clarinda —128 Numbering system for wells —20

0

Ocheyedan River near Ocheyedan —147 near Spencer —82 Omaha, Missouri River at —98 Open or screened interval, definition of —39 Organic carbon, definition of —39 Organism, definition of —39 Organochlorine compounds, definition of —39 Orleans, Spirit Lake near —78

Ρ

Parameter Code, definition of -39 Partial-record station, definition of -39 Particle size, definition of -39 Particle-size classification, definition of -40 Percent composition, definition of -40 Periodic station, definition of -40 Perry Creek near Hinton -146 near Merrill —146 at 38th Street Sioux City -64 Perry Creek basin, crest-stage partial-record stations in -146-149 Pesticides, definition of -40 pH, definition of -40 Picocurie, definition of -40 Pisgah, Soldier River at —92 Polychlorinated biphenyls (PCB's), definition of -40 Polychlorinated naphthalenes, definition of -40 Prairie Creek near Spencer —147 Promise City, South Fork Chariton River near —138

R

Radioisotopes, definition of --40 Randolph, West Nishnabotna River at --118 Rathbun Chariton River near ---142 Rathbun Lake near ----140 Records, explanation of ---19 Recoverable, bottom material, definition of ---40 Recurrence interval, definition of ---40 Red Oak, East Nishnabotna River at -----122 Replicate samples, definition of ---41 River mile, definition of ---41 River mileage, definition of ---41 Rock River near Rock Valley ----52 Rulo, Missouri River at -----126 Runoff, definition of ---41

S

Sea level, definition of —41 Sediment, definition of —41 Sevenmile Creek near Thayer —149 Sioux City Missouri River at —58 Perry Creek at 38th Street —64

256

Sodium adsorption ratio, definition of -42 Soldier River at Pisgah —92 Solute, definition of -42 South Fork Chariton River near Promise City —138 Special networks and programs -18 Specific conductance, definition of -42 Spencer, Ocheyedan River near — 82 Spirit Lake near Orleans —78 Stage (see gage height) —42 Stage and water discharge, records of -21 Accuracy of the records -26Data collection and computation -21 Data presentation -23 Identifying estimated daily discharge -26 Other records available -27Stage-discharge relation, definition of -42 Station identification numbers —19 Downstream order system —19 Latitude-longitude system -20 Streamflow, definition of -42 Surface area, definition of -42 Surface-water quality, records of -27 Arrangement of records —27 Classification of records -27 Data presentation —29 Laboratory measurements -29 On-site measurements and sample collection -28 Remark codes —30 Sediment – 28 Water temperature and specific conductance -28 Suspended sediment, definition of -41 Suspended sediment, mean concentration, definition of -41 Suspended, definition of -42 Recoverable, definition of -42 Total, definition of -42 Suspended-sediment concentration, definition of -41 Suspended-sediment discharge, definition of -41 Suspended-sediment load, definition of -41 Sweeney Creek tributary near Sheldon —146 Synoptic studies, definition of -42

Т

Tarkio River near Elliott —148 Tarkio River tributary near Stanton —148, —149 Techniques of Water-Resources Investigations of the U.S. Geological Survey —45 Thompson River at Davis City -134 Tons per acre-foot, definition of -43 Tons per day, definition of -43 Total coliform bacteria, definition of -36 Total discharge, definition of -43 Total load, definition of -43 Total recoverable, definition of -43 Total, bottom material, definition of -43 Total, definition of -43 Turbidity, definition of -43 Turin Little Sioux River near -90 Monona-Harrison Ditch near -74 TWRI. See Techniques of Water-Resources Investigations

۷

Volatile organic compounds, definition of -43

W

Water level, definition of -43 Water table, definition of -43 Water year, definition of -43 Water-table aquifer, definition of -43 WATSTORE data, access to -35 WDR, definition of -43 Weighted average, definition of -44 Well, definition of -44 West Floyd Branch near Struble —146 West Fork Ditch at Hornick —72 West Nishnabotna River at Hancock -116 at Randolph —118 West Nodaway River at Massena —149 West Okoboji Lake at Lakeside Laboratory near Milford -80 Wet weight, definition of -44 Willow Creek near Calumet —147 near Cornell —147 near Soldier -147 WSP, definition of -44