Aerosol Processes Model Development and Evaluation Plans

Rahul Zaveri, Richard Easter, Manish Shrivastava, and Jerome Fast Pacific Northwest National Laboratory

> Nicole Riemer and Matthew West University of Illinois, Urbana-Champaign

Simon Clegg and Anthony Wexler University of California, Davis

Sasha Madronich and Julia Lee-Taylor National Center for Atmospheric Research

MOSAIC Aerosol Module

Zaveri, R.A., R.C. Easter, J.D. Fast and L.K. Peters, Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), JGR, 113, D13204, 2008.

Salient Features

- Treats key aerosol species (so4, NO3, CI, CO3, MSA, NH4, Na, Ca, POA, SOA, BC, H2O)
- Sectional and particle-resolved dynamics (modal version available soon)
- Fully dynamic gas-particle mass transfer
- Equilibrium particle phase-state and water content
- Heterogeneous chemistry (e.g., N_2O_5 uptake, sea salt and dust aging)
- Robust, accurate, and highly efficient numerics
- Flexible framework for coupling various gas and aerosol processes
- Suitable for 3-D regional and global models
- Implementation in:
 - Weather Research and Forecasting Model (WRF-Chem) done
 - Global model: Community Atmosphere Model (CAM5) *in progress*
 - EPA's CMAQ community model *planned*

MOSAIC Components

Process	MOSAIC Sub-Module
Gas-phase Photochemistry	CBM-Z Zaveri and Peters [1999]
New particle formation (nucleation)	H ₂ SO ₄ + H ₂ O Wexler et al. [1994]
Coagulation	Brownian Kernel Jacobson et al. [1994]
Sectional growth	Two-Moment Method Simmel and Wurzler [2006]
Thermodynamics (activity coefficients)	MTEM Zaveri et al. [2005a]
Thermodynamics (equilibrium phase state)	MESA Zaveri et al. [2005b]
Dynamic gas-particle mass transfer	ASTEM
(gas-solid, gas-liquid, gas-mixed phase)	Zaveri et al. [2008]
CCN activation parameters	κ-Köhler Petters and Kreidenweis [2007]
Optical properties	ACKMIE (Shell-Core) Ackerman and Toon [1981]

Evaluation of Thermod Treatments in MOSAIC

(1)
$$(\mathrm{NH}_4)_2\mathrm{SO}_{4(s)} \rightleftharpoons 2\mathrm{NH}_{4(aq)}^+ + \mathrm{SO}_{4(aq)}^{2-}$$

(2)
$$\operatorname{NH}_4\operatorname{NO}_{3(s)} \rightleftharpoons \operatorname{NH}_{4(aq)}^+ \operatorname{NO}_{3(aq)}^-$$

(3) $\operatorname{NH}_4\operatorname{Cl}_{(s)} \rightleftharpoons \operatorname{NH}_{4(aq)}^+ \operatorname{Cl}_{(aq)}^-$

(4) Na₂SO_{4(s)}
$$\approx 2Na_{(aq)}^{4} + SO_{4(aq)}^{2-}$$

No.

(5)
$$\operatorname{NaNO}_{3(s)} \rightleftharpoons \operatorname{Na}_{(aq)}^+ + \operatorname{NO}_{3(aq)}^-$$

(6)
$$\operatorname{NaCl}_{(s)} \rightleftharpoons \operatorname{Na}_{(aq)}^{+} + \operatorname{Cl}_{(aq)}^{-}$$

(7)
$$\operatorname{Ca(NO_3)}_{2(s)} \rightleftharpoons \operatorname{Ca}_{(aq)}^{2+} + 2\operatorname{NO}_{3(aq)}^{-}$$

(8)
$$\operatorname{CaCl}_{2(s)} \rightleftharpoons \operatorname{Ca}_{aq}^{2} + 2\operatorname{Cl}_{aq}^{2}$$

(9)
$$(\mathrm{NH}_{4})_{3}\mathrm{H}(\mathrm{SO}_{4})_{2(s)} \rightleftharpoons 3\mathrm{NH}_{4(aq)}^{+} + \mathrm{HSO}_{4(aq)}^{-} + \mathrm{SO}_{4(aq)}^{2}$$

(10) $\mathrm{NH}_{4} + \mathrm{HSO}_{4(a)} \rightleftharpoons \mathrm{NH}_{4(aq)}^{+} + \mathrm{HSO}_{4(aq)}^{-}$

(11)
$$\operatorname{NaHSO}_{4(s)} \rightleftharpoons \operatorname{Na}_{(aq)}^{+} + \operatorname{HSO}_{4(aq)}^{-}$$

(12)
$$\operatorname{HSO}_{4(aq)} \rightleftharpoons \operatorname{H}^{+}_{(aq)} + \operatorname{SO}^{2-}_{4(aq)}$$

These processes together pose an extremely stiff ODE problem.

Numerically difficult and expensive to solve!

Reversible Gas-Particle Reactions

No.

(E1)

(E6)

(E7)

(E8)

No.

 $\begin{array}{c} gas\text{-solid} \\ \mathrm{NH}_4\mathrm{Cl}(s) \leftrightarrow \mathrm{NH}_3(g) + \mathrm{HCl}(g) \\ \mathrm{NH}_4\mathrm{NO}_3(s) \leftrightarrow \mathrm{NH}_3(g) + \mathrm{HNO}_3(g) \end{array}$

gas-liquid $\operatorname{NH}_3(g) \leftrightarrow \operatorname{NH}_3(aq)$ $\operatorname{HNO}_3(g) \leftrightarrow \operatorname{H}^+(aq) + \operatorname{NO}_3^-(aq)$ $\operatorname{HCl}(g) \leftrightarrow \operatorname{H}^+(aq) + \operatorname{Cl}^-(aq)$

en the gas and to 10,000 nm)

Transfer

 $\begin{array}{c} liquid-liquid\\ \mathrm{H_2O}(aq) + \mathrm{NH_3}(aq) \leftrightarrow \mathrm{OH^-}(aq) + \mathrm{NH_4^+}(aq)\\ \mathrm{H_2O}(aq) \leftrightarrow \mathrm{H^+}(aq) + \mathrm{OH^-}(aq)\\ \mathrm{HSO_4^-}(aq) \leftrightarrow \mathrm{H^+}(aq) + \mathrm{SO_4^{2-}}(aq) \end{array}$

Irreversible Heterogeneous Reactions

Reactions With $H_2SO_4(g)$

- (R1) $CaCO_3(s) + H_2SO_4(g) \rightarrow CaSO_4(s) + H_2O(g) \uparrow + CO_2(g) \uparrow$
- (R2) $\operatorname{CaCl}_2(s, l) + \operatorname{H}_2\operatorname{SO}_4(g) \to \operatorname{CaSO}_4(s) + 2\operatorname{HCl}(g) \uparrow$
- (R3) $\operatorname{Ca(NO_3)_2}(s,l) + \operatorname{H_2SO_4}(g) \to \operatorname{CaSO_4}(s) + 2\operatorname{HNO_3}(g) \uparrow$
- (R4) $2\operatorname{NaCl}(s,l) + \operatorname{H}_2\operatorname{SO}_4(g) \to \operatorname{Na}_2\operatorname{SO}_4(s,l) + 2\operatorname{HCl}(g) \uparrow$
- (R5) $2NaNO_3(s,l) + H_2SO_4(g) \rightarrow Na_2SO_4(s,l) + 2HNO_3(g) \uparrow$
- (R6) $(CH_3SO_3)_2Ca(s,l) + H_2SO_4(g) \rightarrow CaSO_4(s) + 2CH_3SO_3H(l)$

Reactions With CH₃SO₃H(g)

(R7)
$$CaCO_3(s) + 2CH_3SO_3H(g) \rightarrow (CH_3SO_3)_2Ca(s,l) + H_2O(g) \uparrow + CO_2(g) \uparrow$$

- (R8) $\operatorname{CaCl}_2(s, l) + 2\operatorname{CH}_3\operatorname{SO}_3\operatorname{H}(g) \to (\operatorname{CH}_3\operatorname{SO}_3)_2\operatorname{Ca}(s, l) + 2\operatorname{HCl}(g) \uparrow$
- (R9) $\operatorname{Ca(NO_3)}_2(s,l) + 2\operatorname{CH}_3\operatorname{SO}_3\operatorname{H}(g) \to (\operatorname{CH}_3\operatorname{SO}_3)_2\operatorname{Ca}(s,l) + 2\operatorname{HNO}_3(g) \uparrow$
- (R10) $\operatorname{NaCl}(s, l) + \operatorname{CH}_3\operatorname{SO}_3\operatorname{H}(g) \to \operatorname{CH}_3\operatorname{SO}_3\operatorname{Na}(s, l) + \operatorname{HCl}(g) \uparrow$
- (R11) NaNO₃(s, l) + CH₃SO₃H(g) \rightarrow CH₃SO₃Na(s, l) + HNO₃(g) \uparrow

Reactions With HNO₃(g)

R12)
$$CaCO_3(s) + 2HNO_3(g) \rightarrow Ca(NO_3)_2(s) + H_2O(g) \uparrow + CO_2(g) \uparrow$$

- (R13) $\operatorname{CaCl}_2(s) + 2\operatorname{HNO}_3(g) \to \operatorname{Ca}(\operatorname{NO}_3)_2(s) + 2\operatorname{HCl}(g) \uparrow$
- (R14) $\operatorname{NaCl}(s) + \operatorname{HNO}_3(g) \to \operatorname{NaNO}_3(s) + \operatorname{HCl}(g) \uparrow$

Reactions With HCl(g)

(R15) $CaCO_3(s) + 2HCl(g) \rightarrow CaCl_2(s) + H_2O(g) \uparrow + CO_2(g) \uparrow$

(R16) Reactions With $NH_3(g)$ (R16) $NH_4HSO_4(s) + NH_3(g) \rightarrow (NH_4)_2SO_4(s)$

- (R17) $(\mathrm{NH}_4)_3\mathrm{H}(\mathrm{SO}_4)_2(s) + \mathrm{NH}_3(g) \rightarrow 2(\mathrm{NH}_4)_2\mathrm{SO}_4(s)$
- (R18) $2NaHSO_4(s) + NH_3(g) \rightarrow Na_2SO_4(s) + NH_4HSO_4(s)$

965

ORY

Aerosol Processes of Current Interest

- Secondary organic aerosol (SOA) formation
- Thermodynamic properties of mixed organic-inorganic particles
- Growth of newly formed particles to CCN active sizes
- Evolution of black carbon (BC) mixing state
- Effect of mixing state and organics on optical and CCN activation properties

Secondary Organic Aerosol

- Sasha Madronich and colleagues have developed the explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere)
- Map GECKO-A output on a polarity-vapor pressure grid proposed by J. Pankow and K. Barsanti
- Develop and implement a condensed version of GECKO-A in MOSAIC

Aerosol Thermodynamics

- Mutual deliquescence point
- Solid-liquid equilibrium
- Equilibrium water content
- Water hysteresis

A good treatment for phase-state is needed for moderate to low RH values since it determines the particle size and composition, which have a profound effect on the aerosol optical properties

Interactions between Inorganics and Organics

Evidence of the effect of organics

- Saxena et al., Organics alter hygroscopic behaviour of atmospheric particles, JGR, 1995.
- Choi, M. Y. and Chan, C. K.: The Effects of Organic Species on the Hygroscopic Behaviors of Inorganic Aerosols, ES&T, 2002.
- Gysel et al., Hygroscopic properties of watersoluble matter and humic-like organics in atmospheric fine aerosol, ACP, 2004.
- Marcolli and Krieger, Phase changes during hygroscopic cycles of mixed organic/inorganic model systems of tropospheric aerosols, JPCA, 2006.
- Virtanen et al., An amorphous solid state of biogenic secondary organic aerosol particles, Nature, 2010.

Modified Phase-State and Aerosol Water Content Determination

$$W_{total} = W_{inorganics} + W_{organics}$$

$$W_{total} = W_{inorganics} + f W_{organics} + (1-f) W_{organics}$$

Water shared between inorganics and organics, which is used to dissolve inorganics in phase-state calculations

Water due to organics that is NOT available to dissolve inorganics

NaCI + Glycerol

NaCl + 1,4-hexanediol

Ammonium Sulfate + 1,2-hexanediol

Ammonium Nitrate + 1,2-hexanediol

Comprehensive Treatment Needed

- Need growth data for authentic SOA + inorganic mixtures
 - Biogenic SOA + inorganic mixtures
 - Anthropogenic SOA + inorganic mixtures
- Develop and evaluate the *f-factor* parameterization
 - Parameter f as a function of O:C ratio, OOA, HOA, BBOA, morphology, etc.
 - Evaluate using field observations (AMS, SPLAT, HTDMA)

Aerosol Mixing State Evolution

Mixing-states of primary aerosols change over time by coagulation, condensation, emission, dilution, and other processes.

- Aerosol mixing-state affects optical properties, CCN activation properties, and ice nucleation properties
- Traditional sectional and modal aerosol models do not adequately resolve aerosol mixing state

Particle-Resolved Modeling Approach

Extended MOSAIC to a particle-resolved aerosol framework to explicitly simulate evolution of particle number, mass, and mixing-state

- Explicitly resolve individual particles in a complex aerosol within a small volume of air that represents a much larger well-mixed air mass of interest
- Use MOSAIC modules for trace gas emission, dilution, photochemistry, aerosol thermodynamics, and gas-particle mass transfer
- Use PartMC, a stochastic Monte Carlo module, for particle coagulation, emission, and dilution

PartMC-MOSAIC serves as a numerical benchmark for evaluating sectional and modal approaches used in 3-D models

Pacific Northwest NATIONAL LABORATORY

Sample Result: Particle-Resolved Evolution of Aerosol Mixing State in an Urban Plume

Proudly Operated by Battelle Since 1965

Effect of Binning on Ensemble Mean Optical Properties

Nucleation and Growth in an Urban Air Mass

Examine the Role of Ammonium Nitrate in the Growth of Nanoparticles

- Ammonium nitrate is semi-volatile and very tricky to simulate
- Formation depends on
 - Gas-phase concentrations of HNO₃ and NH₃
 - Particle-phase composition (esp., acidity) and phase state
 - Temperature and relative humidity

Modeled Growth of Newly Formed Particles

Rapid growth due to NH_4NO_3 condensation on dry particles

WRONG REASON!

Growth of Newly Formed Particles

Rapid growth due to NH₄NO₃ condensation on dry particles

No growth due to strong Kelvin effect

Model Evaluation Using CARES Data

- Local closures for optical and CCN activation properties
- Constrained Lagrangian modeling for CARES episodes
 - SOA formation
 - BC mixing state evolution
- Constrained modeling of growth of newly formed particles to CCN active sizes

