Impact of Bulk Microphysics Complexity on Squall Line Simulations

Kwinten Van Weverberg¹, Andy Vogelmann¹, Hugh Morrison², Jason Milbrandt³

> STM- San Antonio 28 March 2011

³ Brookhaven National Laboratory
² National Center for Atmospheric Research
³ Environment Canada

Impact of Bulk Microphysics Complexity on Squall Line Simulations

Kwinten Van Weverberg¹, Andy Vogelmann¹, Hugh Morrison², Jason Milbrandt³

What level of complexity is needed in GCMs?

a passion for discovery

What Level of Complexity is Needed?

Sensitivity simulations of 2D-squall line using WRFV3.2: Morrison vs Milbrandt

- Number of predicted moments for each hydrometeor
- Number of ice categories graupel/hail
- Conversion term formulations

Key Findings

Precipitation extremes sensitive to # predicted moments and to drop breakup

- large drops: faster fallout and less evaporation

BROOKHAVEN NATIONAL LABORATORY

Key Findings

Differences between Morrison and Milbrandt:

- Domain average precipitation: Melting

Key Findings

Differences between Morrison and Milbrandt:

- Domain maximum precipitation: Breakup

Conclusions

- Precipitation extremes sensitive to number of predicted moments and breakup
 - Drop sizes and evaporation determine extremes
- Increasing number of ice categories makes schemes more sensitive to thresholds
 - Continuous riming schemes are probably better approach
- Breakup, Melting and Collection explain most of the differences between Milbrandt and Morrison
 - Need for observations on drop sizes and vertical profiles of melting precip content
- Up next:
 - Bringing in observations (MC³E, NEXRAD, Dual-Pol, Disdrometers)