Intercomparison of Long-term SCM Simulations of Clouds at the ARM SGP Site

Hua Song¹, Wuyin Lin¹, Yanluan Lin², Leo Donner², Audrey Wolf³, Anthony Del Genio³, Roel Neggers⁴, and Yangang Liu¹

1. ASD/BNL 2. NOAA/GFDL 3. NASA GISS 4. KNMI

ASR meeting, Mar 28-Apr 1, 2010, San Antonio, TX

Introduction

- ✓ Statistical analysis with 3-year hourly data: Jan1999-Dec2001
- ARM observations: ARSCL cloud fraction and ABRFC precipitation
- ✓ 7 SCMs outputs, forced by same large-scale continuous forcing (Xie et al 2004)
- ✓ To bin data according to 500hPa omega and precipitation

Table 1. Main parameterization schemes of 7 AGCMs				
Models	Convection Scheme	Microphysical Scheme	Cloud Fraction	Resolution
GFDL AM2	Relaxed AS scheme Moorthi and Suarez 1992	One-moment Rotstayn 1997	Prognostic Tiedtke 1993	L24, 30mn
GFDL AM3	Cumulus conv. scheme Donner et al. 2001	Two-moment Salzmann et al. 2010	Prognostic Tiedtke 1993	L24, 30mn
GISS ModelE	Bulk mass flux scheme Yao and Del Genio 1995	One-moment Del Geino et al. 1996	Diagnostic Del Genio et al. 1996	L40, 30mn
ECMWF/KNMI	Bulk mass flux scheme Tiedtke 1989	One-moment Tiedtke 1993	Prognostic Tiedtke 1993	L91, 5mn
NCAR CAM3	Simplified AS scheme Zhang and McFarlane 1995	One-moment Rasch and Kristjansson 1998	Diagnostic Slingo 1987	L26, 20mn
NCAR CAM4	Simplified AS scheme Modified ZM, Neale et al. 2008	One-moment Rasch and Kristjansson 1998	Diagnostic Slingo 1987	L26, 20mn
NCAR CAM5	Simplified AS scheme Modified ZM, Neale et al. 2008	Two-moment Morrison and Gettelman 2008	Diagnostic Park/Gettelman et al. 2010	L30, 20mn

Cloud Fraction
binned by 500hPa Omega

Total Precipitation binned by 500hPa Omega

- Most precipitation occurs during strong ascending events
- Models underestimate obs. precipitation
- The underestimation is not significantly large
- Precipitation in models is well constrained by large-scale forcing

Cloud Fraction binned by

Conv.-dominated, Strat.-dominated and Conv./Strat.-dominated Precipitation

Summary

- Large differences in cloud fraction distributions:
 - Most models overestimate cloud amounts in descending regimes
 - Both GFDL AMs overestimate top cloud amounts
 - Models with higher resolutions tend to produce fewer cloud amounts (GISS and ECMWF)
 - From CAM3 to CAM5, the middle level cloud amounts are improved
- Small underestimation of total precipitation, well constrained by large-scale forcing.
- Partitioning of total precipitation is quite different among 6 models.
- Vertical cloud fraction distributions are top-heavy for convectiondominated events, but more homogeneous for stratiformdominated events.

Cloud Fraction binned by Convective Precipitation

All Clouds

Convective Clouds Only