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Motivation

Remote sensing of cirrus particle size distributions (PSD’s)

Maximize the posterior distribution of possible PSD
params given remote observations, as given by Bayes’
Rule:
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Focus on the Prior Distribution:

p(X)

* Often assumed to be Gaussian (e.g. Rogers,
2000)
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PSD Fits

VF?E Learief

Data from 81 of Sparticus’ flight legs
2-DS distributions fit with

n(D)=N,(D/D,)" exp(-D/Dy)
and
n(D)=n,(D)+ ny(D), X:[NO, D, «a N, D, as]
~25,000 fits



CloudSat Overpass of Sparticus, 2/3/10

CloudSat dBZ and Lidar Mask 2010034_20059 20100203a 39.3895 N 20100203a 39.4116 N
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Unimodal Distribution Fit with
Maximum Likelihood Algorithm

Iogm(No) for all flights, degenerates removed
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Bimodal Distribution Fit with Method
of Moments/Excess Mass Algorithm

Iogm(No) for all flights Iogm(Do) for all flights alpha for all flights
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Covariance Analysis for Both Fits

log,,(N,)| | 12.18 022 -13.35

S =coV log,,(D,) 022 014 -061

. a | |-1335 -061 16.43
log,,(N,)| | 089 -0.22 -0.14 033 -021 0.38
log,,(D,)| |-0.22 012 -003 -0.04 012 -0.30
¢ ooy @ ||7014 003 042 -001 -0.002 0.02
i log,,(N,)| | 0.33 -0.04 -001 134 -010 -1.06
log,,(D,)| |-0.21 0.2 -0.002 -0.10 0.17 -043
a, | 1038 -030 002 -1.06 -043 2.86




Whether the Unimodal or Bimodal Fit is More Likely
Correct Tested Using a Likelihood Ratio Test

CloudSat dBZ and Lidar Mask 2010034_20059 20100203a 39.3895 N 20100203a 39.4116 N
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Common Examples of Bimodal and
Unimodal Fits, Correctly Flagged

PSD Fit for 71820 20100114A Index = 1 BIMODAL P3SD Fit for 81049 201001148 Index = 4 UNIMODAL
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Some Counter-Examples

PSD Fit for 71840 20100114A Index = 2 UNIMODAL PSD Fit for 71915 201001714A Index = 14 UNIMODAL
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Scattered Moments from the Two Fit Distributions
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Scattered Moments from Either Distribution
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Bimodality and Temperature

Histogram of Temperature
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=Two-sample Kolmolgorov-Smirnov test confirms that the two temperature histograms
were drawn from different distributions




Summary and Conclusion

Fit with a uni- or bimodal distribution function, the prior
distribution of PSD parameters is not Gaussian and does not
have a diagonal covariance matrix.

A likelihood ratio was used to determine whether fit was
more appropriate.

The bimodal model is not always better than the unimodal
model, even in cases that exhibit bimodality

If a bimodal distribution is to be used, a more sophisticated
model needs to be developed.

Cirrus PSD retrievals can be informed by meteorological
situation.
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