

Laboratory Studies of Black Carbon Particles: Characterization and Atmospheric Processing

Onasch^{1,2}, Cross¹, Ahern¹, Lambe¹, Wright¹, Croasdale¹, Williams², Worsnop^{1,2}, Freedman¹, Davidovits¹

¹Boston College; ²Aerodyne Research, Inc.

DOE Atmospheric System Research Science Team Meeting San Antonio, TX March 28-31, 2011

Soot Particles

- Products of incomplete combustion. Large anthropogenic contribution to atmospheric loadings (e.g. internal combustion engines, fossil fuel, biomass, biofuel, etc.)
- Soot particles are complex, nonspherical, and composed of heterogeneous mixtures (e.g. *refractory carbon*, polycyclic aromatic hydrocarbons, incomplete combustion products, engine oils, photochemical oxidation products, etc.)

 Soot particles absorb across the solar/terrestrial spectra with implications for atmospheric radiation balance, snow albedo, and clouds

Laboratory setup for carbonaceous particle generation and characterization

Monodisperse Soot Generation

'Efficient' Combustion Soot

Mass Specific Absorption Efficiency $\lambda = 532 \text{ nm}$

- Mass specific absorption efficiency = $8.7 \pm 0.4 \text{ m}^2/\text{g}$
- Size dependence

Lack, Cappa, et al.

Mass Specific Absorption Efficiencies

Soot Type	MAE (m²/g)	Wavelength (λ nm)
Denuded	8.7 ± 0.4	532
Nascent	7.5 ± 0.5	532

MAE
$$\alpha$$
 m_p⁻¹ · Denuded/Nascent m_p ratio = 0.74
• Nascent/Denuded MAE ratio = 0.86

• The measured variation in nascent/denuded MAE is approximately the same as the variation in the per particle mass (i.e. mass lost during denuding)

Wavelength dependence of flame soot

• Mass specific absorption efficiencies exhibit increases greater than $1/\lambda$ with decreasing wavelength

'Inefficient' Combustion Soot

Morphology and Chemistry

- Soot particles coated to spherical particles
- Coating material is mainly conjugated Polycyclic Aromatic Hydrocarbons (PAH)

ABS Enhancement and Evidence for Absorbing Organics

- Absorption increases due to coating
- Long wavelength results likely show lensing effects
- Wavelength dependence strongly suggests absorbing organics (i.e. brown carbon)

Mass Specific Absorption Efficiencies

Soot	MAE (m²/g)	MAE Calculated	Wavelength (I nm)	Reference
Refractory Carbon	8.7 ± 0.4	-	532	This work
'Efficient' combustion	7.5 ± 0.5	6.5	532	This work
'Inefficient' combustion	6.5 ± 1	2.8	532	This work
Variable	8.0 ± 1.2		550 converted to 532	Bond and Bergstrom, 2006

- Calculated MAE accounts for particle mass increase due to nonrefractory coating only
- Difference between the measured and calculated MAEs due to lensing at 532nm and longer wavelengths

Summary

- Refractory carbon MAE = $8.7 \text{ m}^2/\text{g}$ at 532 nm from ethylene flames
- Optical properties at 532 nm of 'efficient' and 'inefficient' nascent soot exhibit similar, though lower, MAE's due to off-setting effects:
 - Increasing nonabsorbing particulate mass
 - ABS enhancements due to lensing
- Wavelength dependence of refractory carbon is described by an inverse power relation with power ~2
- 'Inefficient' combustion generates absorbing (400-450 nm) organic compounds (e.g. PAH's) that complicates a simple wavelength dependence

Acknowledgements...

EAST ANG

Eben Cross/Billy Wrobel/Adam Ahern/ Paul Davidovits – Boston College

Tim Onasch/Achim Trimborn/Leah Williams/Sally Ng/Doug Worsnop/John Jayne – Aerodyne

Jason Olfert – BNL (CPMA)

Beni Brem (Tami Bond) – UIUC (OC/EC filters) Ryan Spackman and Joshua 'Shuka' Schwarz – NOAA (SP2)

R 'Subu' Subramanian and Greg Kok – DMT

Dwight Thornhill (Linsey Marr) – VT (PAS/DC) Jay Slowik – U. of Toronto (SMPS-AMS) • Dan Lack and Paola Massoli – NOAA (PA, PSAP, and CRD)

- Chris Cappa UCDavis (PA)
- Art Sedlacek BNL (PTI)
- Claudio Mazzoleni and Mavendra Dubey LANL (PASS-3 and SEM filters)
- Andy Freedman ARI (CAPS-based extinction and scattering)
- Steffen Freitag (Anthony Clarke) U. of Hawaii (SP2, PSAP, and 3-wavelength Nepholometer)

DOE ASR Funding

Effects of Atmospheric Aging

 New instruments (SP-AMS) starting to provide valuable information on atmospheric aging, soot coating levels and chemistry

Extra Slides

Monodisperse Soot Generation

Operating Parameters $2.0 < \phi < 5.0$ $30 < D_{mobility}(nm) < 500$ $15 < D_{pp} (nm) < 55$ 0 < Coatings (nm) < 250

Complex Refractive Index

 $\lambda = 532 \text{ nm}$

- Mie Theory, fitting measured MAE and MEE
- Nascent soot

Cappa, Lack, et al.

Effects of Coating on Soot Morphology

Coating Soot Particles

- Nascent Soot core (Volume Equivalent Diameter = 102 nm)
- Derived Complex Refractive Index
- Di-octyl sebacate coating
- Mie Core-Shell Theory appears to model measurements

Cappa, Lack, et al.