High-resolution Oxygen A-band Spectrometer (HABS) and Photon path distribution

> Qilong Min ASRC, State University of New York at Albany

Validate Broadband Heating Rate Profiles (BBHRP)

AVA and A-band (Active and passive)

Radiative Transfer and Photon Pathlength Distribution

Equivalence Theorem: [Irvine, 1964]

$$I_{\nu}(\mu,\phi;\mu_{0},\phi_{0}) = I_{0}(\mu,\phi;\mu_{0},\phi_{0}) \int_{0}^{\infty} p(l,\mu,\phi;\mu_{0},\phi_{0}) e^{-\kappa_{\nu} l} dl$$

Wherep(l) is photon path length distribution with path length lKv is gaseous absorption coefficient

 $I_0(\mu,\phi;\mu_0,\phi_0) \Rightarrow$ cloud optical properties $p(l,\mu,\phi;\mu_0,\phi_0) \Rightarrow$ cloud geometry

 \Rightarrow Radiation field

- Mean path length to ensues the radiation closure at the surface and TOA
- Higher moments to ensure the accuracy of heating profiles

Radiative Transfer and Photon Pathlength Distribution

Equivalence Theorem: [Irvine, 1964]

$$I_{\nu}(\mu,\phi;\mu_{0},\phi_{0}) = I_{0}(\mu,\phi;\mu_{0},\phi_{0}) \int_{0}^{\infty} p(l,\mu,\phi;\mu_{0},\phi_{0}) e^{-\kappa_{\nu}l} dl$$

Wherep(I) is photon path length distribution with path length IK_v is gaseous absorption coefficient

Taking inverse Laplace transform:

$$p(l,\mu,\phi;\mu_0,\phi_0) = L^{-1}(\frac{I_{\nu}(k_{\nu},\mu,\phi;\mu_0,\phi_0)}{I_0(\mu,\phi;\mu_0,\phi_0)}) = L^{-1}R(k_{\nu},\mu,\phi;\mu_0,\phi_0)$$

Radiation measurements of $I_0(\mu,\phi;\mu_0,\phi_0)$ and $R(k_{\nu},\mu,\phi;\mu_0,\phi_0)$

provide a complete set for understanding RT in the atmosphere

Photon Pathlength Distribution and Oxygen A-band

Oxygen A-band: 759 -770 nm

- Vertical profile of Oxygen is well known (uniform mixture)
- No other absorbers interfere within Oxygen A-band
- A number of absorption lines cover a suitable dynamic range
- The lines are regular and "looser" to be resolved by an instrument
- 760nm is the central wavelength to represent SW

In the lower atmosphere, the line shape of Oxygen A-band

$$k_i = \frac{S_i}{\pi} \frac{\alpha_i}{\left(\upsilon - \upsilon_i\right)^2 + \alpha_i^2}$$

$$\alpha_{i} = \alpha_{i}^{0} \frac{p}{p_{0}} \left(\frac{T_{0}}{T}\right)^{1/2}$$

$$S_{i} = S(T_{0}) \frac{T_{0}}{T} \exp[1.439E^{"}(\frac{1}{T_{0}} - \frac{1}{T})]$$

- 1. Open
- 2. 0-Polarization
- 3.45-Polarization
- 4.90-Polarization
- 5.135-polarization
- 6. Diffusor

Slit Function:

the FWHM is about 1.85 pixels or 0.019 nm, which is better than 1/3 of wavenumber. The out of band rejection of the HABS is 10-5, better than the requirement.

Signal-to-Noise Ratio (SNR):

 \triangleright

Our test shows that the maximum readout noise is 8.35 e, slightly larger than manufactory specification (6 e).

- With an optimized exposure for zenith measurements, the SNR is above 100 even for the darkest pixel.
 - It demonstrates the SNR is better than our design requirement.

Spectral calibration

The response of overall filter function has been calibrated using GS0937 lamp. The tail at the long wavelength is calibrated up and consists with radiance at the short wavelength.

HABS polarization (and polarization Spectrum)

Direct beam vs. diffuse

Aerosol vs. Thin cloud

- Has the capability to measure both zenith and directbeam radiances with a field of view of 2.7 degrees. The direct-beam measurements can be used to calibrate the spectrometer and construct retrieval kernels for zenith measurements.
- Measures polarizations of A-band spectra with four polarizers, which substantially enhances the retrieval ability for aerosols and ice clouds.
- Achieves an out-of-band rejection of 10⁻⁵, a resolution of better than 0.3 cm⁻¹, and a high signal-to-noise ratio

TCRSR retrievals for optically thin clouds: poster by Yin et al.

Combining Radar and A-band to retrieve cloud optical property profiles:

Combining Radar and A-band to retrieve cloud optical property profiles:

Retrievals are sensitive to the top portion of clouds and temporal variation

Sketch map of the O2 A-Band Spectrometer

