
## DOE - ARM / NASA- GPM

# Midlatitude Continental Convective Cloud Experiment (MC3E)





- ARM Southern Great Plains Central Facility
- April 22<sup>nd</sup> June 6<sup>th</sup> 2011

## MC3E April 22- June 6, DOE ARM Central Facility

Represents a collaborative effort between the DOE ARM Program and the NASA Global Precipitation Measurement (GPM) mission

#### Overarching Science:

A complete characterization of convective cloud systems in order to:

- 1) Advance the understanding of the different components of convective parameterization
  - Focus: Convective initiation and up/downdraft coupling to precipitation and cloud microphysics.
- 2) Improve the fidelity of satellite estimates of precipitation over land.
  - Focus: Observation and quantification of dominant column microphysical processes impacting satellite-based passive/active microwave retrievals

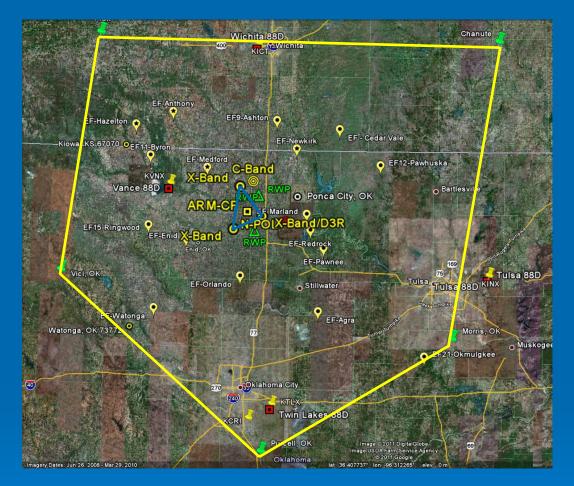
- Multi-Freq. / Doppler / polarimetric/ profiling radars
  - Sub-pixel DSD/rain variability
  - 3-D (solid/liquid/mixed) HID
  - Cloud water (maybe)
  - Kinematics
- Network embedded in sounding array
  - CRM Forcing
  - Budgets



Vance AFB

88D 60 km

#### NASA Disdrometer network


Ponca City Airport (Citation)

37 km to CF

2DVD 3rd Generation. compact

W97.45

- 16 Parsivel (Autonomous)
- 1-3 Joss (915 Profiler collocated)
- 20-40 Rain gauges collocated



#### MC3E Sounding Network

Proposed Sounding Sites

- Pratt, KS [37.7, -98.75]
- Chanute, KS [37.674, -95.488]
- B4 Vici, OK [36.071, -99.204]
- B5 Morris, OK [35.687, -95.856]
- B6 Purcell, OK [34.985, -97.522]
- · C1 Lamont, OK [36.605, -97.485]

NOAA Wind Profilers are at:

C1, B4, B5, B6 and B1 Hillsboro, KS [38.305, -97.301], Haviland, KS [37.65, -99.09], Neodisha, KS [37.38, 95.63]

Sounding launches - 4 or 8 per day.

#### **GPM Airborne Assets in MC3E**

#### **GPM Core Satellite "Simulator"**

#### **In Situ Microphysics**



NASA ER-2: **GMI/DPR Proxy** 

Base: Albuquerque Base: Ponca City, (Kirtland) AFB, NM OK

**UND Citation Microphysics** 



| Instrument                     | Characteristics             |
|--------------------------------|-----------------------------|
| AMPR (Radiometer, H+V)         | 10.7, 19.35, 37.1, 85.5 GHz |
| Resolution @ 20 km             | 0.6 km (85.5 GHz), 1.5 km   |
| range                          | (37.1 GHz), 2.8 km (10.7-   |
|                                | 19.35 GHz)                  |
| CoSMIR(Radiometer, H+V)        | 37, 89, 165.5, 183.3+/-1,   |
|                                | 183.3+/-3, 183.3+/-8 GHz    |
| Resolution @ 20 km             | 1.4 km footprint at nadir   |
| range                          |                             |
| HIWRAP Ka-Ku band              | 13.91/13.35 GHz,            |
| Radar                          | 35.56/33.72 GHz             |
| Transmit peak power            | 30 W (Ku), 10 W (Ka)        |
| 3 dB beamwidth                 | 2.9° Ku, 1.2° Ka            |
| MDS ( $dBZ_e$ , 60 m res., 3.3 | $0.0, -5.0 \text{ dBZ}_{e}$ |
| μs chirp pulse, 10 km          |                             |
| range)                         |                             |

| Instrument        | Measurement                |
|-------------------|----------------------------|
| FSSP/King         | Cloud liquid water         |
| PMS 2D-C/P        | Cloud and                  |
|                   | precipitation particle     |
|                   | spectra                    |
| HVPS              | Large hydrometeor          |
|                   | spectra                    |
| 2D-S              | Cloud particle spectra     |
| CDP and/or SID    | Cloud particle spectra     |
| Nevzorov and CVI  | <b>Total water content</b> |
| Rosemount icing   | Supercooled liquid         |
| probe             | water                      |
| CN counter, UHSAS | CN/CCN                     |

### Other MC3E-related field campaigns

#### Airborne Instruments for MC3E

(Mike Poellet UND)

Deployment of CN counter (10 nm cut) and a UHSAS (100 channels, 60 nm - 1 micron) for collection of aerosol profiles in vicinity of deep convective systems

- Inner Domain Thermodynamic Profiling during MC3E (Dave Turner NSSL)
  Deployment of three AERI systems for the retrieval of boundary layer thermodynamic profiles
- <u>Multi-Frequency Profilers</u>
   (Christopher Williams NOAA)
   Deployment of 414 MHz and 2.3 GHz (S-band) profilers at the CF.

## MC3E final "spin-up" activities

- February 24-25 MC3E Siting and Logistics Meeting with Forecasting Exercise (SGP Central Facility)
- March 29-31 Daily Pre-campaign Weather Briefing @ ASR STM
- March 29 MC3E Breakout Meeting ALSO COME BY MY POSTER
- April 4 April 21 Daily Pre-campaign Weather Briefing online
- <u>April 19</u> (tent.) Radiosonde Crew on-site training LOOKING FOR ADDITIONAL STUDENT HELP!
- April 8 22 Guest instrument set-up
- April 22 MC3E Day 1

## MC3E Breakout Schedule Tuesday, March 29<sup>th</sup> 1:30-30 PM

| 1:30 -1:40<br>1:40 - 1:50<br>1:50 - 2:05<br>2:05 - 2:20 | Michael Jensen – "The MC3E – Overview and Updates"  V. Chandrasekar – "Science Plans for the D3R"  Wei-Kuo Tao – "Goddard WRF for real-time forecasting during MC3E"  Arun Chandra – "Evaluating aspects of exiting shallow cumulus cloudiness and mass flux parameterizations using MC3E observations" |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:20 – 2:35                                             | Yunyan Zhang – Transistion from Shallow to deep convection                                                                                                                                                                                                                                              |
| 2:35 – 2:50                                             | Steve Krueger – "Interactions of Cumulus Convection and the Boundary Layer at the Southern Great Plains ACRF"                                                                                                                                                                                           |
| 2:50 – 3:05                                             | Anthony Del Genio – "Mesoscale Organization Issues for Climate Models"                                                                                                                                                                                                                                  |
| 3:05 – 3:20                                             | Ann Fridlind – "Aerosols, dynamics, microphysical processes and hydrometeor size distributions: Advancing understanding through observationally constrained CRM simulations"                                                                                                                            |
| 3:20 – 3:35                                             | Hugh Morrison – "Microphysical uncertainties in simulations of midlatitude convective clouds"                                                                                                                                                                                                           |