

The relationship of large and small scales in a convecting atmosphere

Christian Jakob¹, Laura Pavies¹, Vickal Kumar^{1,2}, and Peter May² ¹Monash University, Melbourne, Australia ²CACWR, Bureau of Meteorology, Melbourne, Australia

Motivation

- * Task of any parametrization is to relate large and small scales to each other
- * When early convection parametrizations were built, data on both scales was sparse
- Yet, almost all existing convection parametrizations are still based on ideas formulated then

 It is timely to revisit convection parametrizations with 21st century data

Starting point

- * Need many samples of concurrent large and small scale observations
- * ASR/ARM data provides a perfect background to do this
- * Use three years of Darwin data 6-hourly to
 - build a large-scale data set using the variational analysis
 - * build a small-scale data set using C-band radar data

Some questions

- * Which variables show the strongest large to small scale relationships?
 - * Is mass-flux a good variable for convection schemes?
- * How stochastic is the problem?
 - * Do we need fully stochastic convection schemes?
- * How much memory is in the large-scale alone?
 - * Do we need fully prognostic convection schemes?

Some basic relationships

Relationship to large-scale q convergence

Domain-mean convective rainfall

Convective area fraction

Number of convective cells

Learning more about intensity

 $I_c = \frac{\overline{R_c}}{f_c} = \frac{\overline{R_c}}{N\overline{A_i}} \times A_0$

 R_c - domain mean convective rainfall

 f_c - convective area fraction

A_i - mean convective cell size

N - Number of convective cells

How stochastic is convection?

Back to 1974 - The convective moisture budget

How is moisture supply distributed among rainfall and moistening of the grid-box?

Column Moistening ($\Delta_i q$) vs Moisture input (M_t)

 $Prec/\Delta_i q vs M_t$

Colours indicate mean rainfall (grey=0; red=large)

Back to 1974 - The convective moisture budget How is moisture supply distributed among rainfall and

Conclusions and next steps

- * ASR/ARM data provides a great opportunity to revisit key ideas in convection parametrization
- * More observational analysis is required add another location
- * Run "forced" CRM for three years and compare the results with the observations
- * Run large-domain "free" CRM and compare results with the observations
- * Define key variables and relationships as design specs for a new parametrization

