Testing a new aerosol-dependent ice nucleation parameterization for predicting ice nuclei and simulating mixed-phase clouds during ISDAC

<u>Paul J. DeMott¹</u>, Anthony J. Prenni¹, James M. Carpenter¹, Xiaohong Liu², Andrew Glen³, Sarah D. Brooks³, Mark D. Branson¹, and Sonia M. Kreidenweis¹

¹Colorado State University ²Pacific Northwest National Laboratory ³Texas A&M University

Acknowledgments: DOE (Grant No. DE-FG02-09ER64772); NSF AGS and CMMAP; DOE Climate Change Prediction Program

Overview

- Merged aerosol and ice nuclei (IN) data sets from multiple field programs toward a parameterization of ice nucleation as it depends on aerosols and thermodynamic conditions.
- Compare and contrast IN predictions versus TAMU IN data collected during the Indirect and Semi-Direct Aerosol Campaign (ISDAC)
- Incorporate parameterization into cloud resolving model simulations of single layer Arctic clouds during ISDAC

Sampling methods (CSU in various studies, TAMU in ISDAC)

CVI inlet (aerosol from evaporated cloud particles when in clouds)

Sheath || Sheath Small fraction Nucleation С of particles and Growth F freeze at T, RH D controlled by ice coated Droplet warm and Evaporation cold walls Ice crystal (IN) OPC Detection Collection and Analyses

Aerosol

Continuous flow diffusion chamber (CFDC) in aircraft

Ice nuclei concentrations (RH_w>100%) in projects over 14 years (292, **10-30 min**. averages, coincident aerosol data)

Noted sizes of collected ice nuclei translates to noted concentration sensitivity to concentrations of aerosols > 0.5 μm

Parameterization of ice formation in mixed-phase clouds

$$n_{IN,T_k} = a \left(273.16 - T_k \right)^b \left(n_{aer,0.5} \right)^{(c(273.16 - T_k) + d)}$$

- T_k is cloud temperature in degrees Kelvin
- n_{aer,0.5} is the number concentration (scm⁻³) of aerosol particles with diameters larger than 0.5 μm
- n_{IN} is ice nuclei number concentration (std L⁻¹) at T_k
- Valid only in mixed phase conditions, ignores any IN dependence on RH_w>100%, no sampling represented under sea salt influences

Account for particle size and T-dependencies reduces variability within ~1(O) magnitude

Chemistry or processing impacts on IN variability likely exist and require further research

Use of ISDAC PCASP number concentrations to predict IN number concentrations

Cloud phase data courtesy of R. Jackson and G. McFarquhar 0: clear 1: ice or sub-cloud precip. 2: mixed phase 3: liquid

Flight 17; April 8, 2008

ISDAC IN – aerosol preliminary data for 2 days (5 minute averages)

Springtime Arctic is not deficient in IN, at least at -25 to -32 C

DOE-ASR Science Team Meeting

Flight 31 (April 26, 2008) – single layer, upper-liquid and lower-ice dominated, precipitating ice at times

W. Strapp, A. Korolev

 $\begin{array}{l} N_1 = 206.9 \ cm^{\text{-3}}; \ N_2 = 8.5 \ cm^{\text{-3}} \\ s_1 = 1.50; \ s_2 = 2.45 \\ d_1 = 0.2 \ \mu\text{m}; \ d_2 = 0.7 \ \mu\text{m} \end{array}$

Acknowledgments to Mengistu Wolde, Mikhail Ovchinnikov, Michael Earle Simulations and sensitivity studies using the System for Atmospheric Modeling (SAM v 6.8.2) CRM, Morrison 2-moment microphysics, "diagnostic" IN

March 30, 2011

DOE-ASR Science Team Meeting

Conclusions and outlook

- IN predicted by parameterization linking to aerosols (numbers and size) agrees within expectations with observed values during ISDAC will be compiling a comprehensive comparison.
- Many characteristics of April 26 cloud case are well simulated using IN parameterization – need further analyses of simulation details (cloud water and ice distributions), comparison to remote sensing data.
- Case shows strong sensitivity of clouds to ice formation process. Will attempt prognostic IN implementation next.
- Simulate additional cases and participate in model intercomparisons.