

# From particle size distributions to radar measurements: closing the gap



Giovanni Botta Kultegin Aydin Hans Verlinde

> DEPARTMENT OF METEOROLOGY COLLEGE OF EARTH AND MINERAL SCIENCES

#### From PSD to radar reflectivity

PENN<u>STATE</u>



## Comparison between CRM output and radar measurements





![](_page_4_Picture_0.jpeg)

### Measured PSD comparison

in situ measured PSD

PENN<u>STATE</u>

![](_page_5_Figure_2.jpeg)

### Where to go from here?

PENN<u>STATE</u>

- Random aggregate realizations are generated through M-D relationship and component crystal type (needle, stellar, plates, etc. from observations)
  - Size-projected area relationship (A<sub>eff</sub>-D) can be estimated from the realizations
  - M-D and A<sub>eff</sub>-D together determine the fall speed of the particle which can be fed into the CRM for improved self-consistency in model, tested by radar
- Measurements of aggregate size, mass, aspect ratios (vertical and horizontal), component crystals would be useful to better constrain the electromagnetic model

![](_page_6_Picture_5.jpeg)

![](_page_7_Picture_0.jpeg)

#### Conclusions

- To exploit the high complexity and accuracy of CRMs for comparison with radar measurements, the electromagnetic model must be accurate as well
- The soft sphere approach must be used with caution and possibly replaced with more advanced electromagnetic models
- The M-D relationship chosen in the CRM must match the one in the electromagnetic model (i.e. beware of lookup tables!)
- Comparison with radar measurements can help identify the right M-D relationship DEPARTMENT OF

![](_page_7_Picture_6.jpeg)

METEOROLOGY