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Arctic Mixed-Phase Stratocumulus
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Motivation

Observations indicate that the processes that maintain sul:tmpiel and Arctic stratocumulus
{50 diﬂ:er, due to the different environments in which t]-lcy oceur. For example, speciﬁc
huml'dity inversions (spedﬁ'c l'vurnidity inamsingwfth l'vcig-d:) are \Crequently observed to occur
coincident with temy re inversions in the Arctic (eg, Curry et al. 1996, Tjernstrém et al.
2004, Sedlar and T}’cmm-am 2009). In a recent sm&y, Sedlar et al. 2om) surveyed data from
SHEBA, ASCOS and at Barrow, Alaska, to find that sPcciﬁc I’lumid?ty inversions occurred
75-80% of the time when low-level clouds were present. In addition, this stucly found a
significant relations} ip between the :wanPeciFic' idi 2] inversions and Arctic Mixed-
Pﬁ‘z"se Stratocumulus (AMPS) that extended into the temperature inversion, Hgl’d@'lting the
difference between AMPS and subtropical stratocumulus where the entrainment of dry air
aloft prevents doud liqul'd water from ing in the temperature inversion. Other imPcrlant
differences between warm Sc and AMPS are more tive cloud top radiative caoling
because of the cold, clry avcrlyinsArctic free trapnsphcre, and the vapor diffusion onto ice
CBCI?I’DH chcss) which acts as a Pmenﬁa“y Iarge sink of water vapor for AMPS even when
there is limited [iquic‘ water, I warm Sc¢ drizzle bg collision-coalescence ofdrcplets, soas
[iquid water in warm Sc decr\‘as&s, drizzle will shut off.

in this we focus on a dccouplcd AMPS in order to focus on the conditions that make
AMPS distinct from s ical Sc. SPcciFi"aHH, we use nested LES simulations haquanhfy the
role oFl'lumidi‘hj inversions at cloud topin the persistence of AMPS.

Structure of Stratocumulus TcPPcd Bnundaiy Lagers

Azores 17217 April 2010 Barrow, Alaska 172.8 April 2008
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