USER'S GUIDE FOR THE PUBLIC USE DATA FILES

1995
NATIONWIDE PERSONAL TRANSPORTATION SURVEY

October 1997

Research Triangle Institute
Research Triangle Park, North Carolina

Federal Highway Administration
United States Department of Transportation

Publication No. FHWA-PL-98-002
HPM-40/10-97 (2M)

1995 NPTS USER'S GUIDE

TABLE OF CONTENTS
 PAGE

CHAPTER 1. INTRODUCTION

1-A SURVEY SPONSORS... 1-1
1-B PURPOSE OF SURVEY.. 1-2
1-C COVERAGE AND SCOPE..................................... 1-3
1-D COMPARABILITY WITH EARLIER NPTS DATA 1-6
1-E TYPICAL NPTS HOUSEHOLD.............................. 1-10
CHAPTER 2. SURVEY CONTENT AND INTERVIEWS
2-A INTERVIEW PROCESS... 2-1
2-B INTERVIEWS.. 2-2
2-C CORE NPTS DATA... 2-5
2-D SURVEY CONTENT CHANGES IN 1995............... 2-7
2-E TYPICAL NPTS HOUSEHOLD.............................. 2-9
CHAPTER 3. SURVEY PROCEDURES AND METHODOLOGY
3-A OVERVIEW.. 3-1
3-B SAMPLE DESIGN AND SELECTION................... 3-2
3-C DATA COLLECTION PROCEDURES.................. 3-5
3-D DATA EDITING ... 3-9
3-E SURVEY RESPONSE RATES............................. 3-14
3-F CONFIDENTIALITY ASSURANCE 3-21
3-G WEIGHT CALCULATIONS................................... 3-21
3-H SURVEY METHOD \& PROCEDURE CHANGES.. 3-24
CHAPTER 4. DESCRIPTION OF DATA FILES
4-A STRUCTURE OF THE DATA FILES......................... 4-1
$\begin{array}{ll}\text { 4-B RELATIONSHIP BETWEEN THE SIX NPTS } \\ & \text { DATA FILES.. 4-3 }\end{array}$
4-C CODEBOOK.. 4-8
4-D VARIABLES REPEATED 4-11
4-E VARIABLES ADDED .. 4-13
CHAPTER 5. USING THE DATA
5-A TRAVEL CONCEPTS 5-1
5-B TABULATING THE DATA 5-1
5-C CONTROL NUMBERS 5-2
5-D WEIGHTING THE DATA 5-3
5-E SAMPLING ERRORS 5-5
5-F FINDING THE VARIABLES YOU WANT 5-5
5-G USING THE DATA FROM MULTIPLE FILES 5-7
5-H SPECIAL USER NOTES 5-11
CHAPTER 6. 1995 NPTS RESULTS
6-A COMPARABILITY OF 1995 RESULTS WITH EARLIER NPTSs 6-1
APPENDIXES
A - CONTROL NUMBERS A-1
B- SAMPLE TABLES \& LOGIC B-1
C- CODEBOOK C-1
D- TRAVEL CONCEPTS \& GLOSSARY D-1
E- NPTS QUESTIONNAIRE E-1
F- SURVEY DOCUMENTS (Samples) F-1
G- ESTIMATING SAMPLING ERRORS G-1
H- NPTS DATA DICTIONARY H-1
I- VARIABLE LISTS I-1
J- DOCUMENTATION NOTES J-1
K- ANNUALIZING ODOMETER READINGS K-1
L- TRACT \& BLOCK GROUP CHARACTERISTICS L-1
M- TRIP PURPOSE CODING \& VARIABLES M-1
N - GEOGRAPHIC CODES N-1
O- VEHICLE MAKE \& MODEL CODES O-1
P- USING NPTS WITH CENSUS JOURNEY TO WORK P-1
Q- LINKED AND UNLINKED TRIPS Q-1
R- RELATED DATASETS R-1

CHAPTERI- INTRODUCTION

1995 NPTS

DATA FILES

USER'S GUIDE This guide includes descriptions of the survey procedures and methodology used for the 1995 NPTS, the questionnaire, the public use data files, and the weighting procedures for 1995 NPTS data. Appendices provide sample tables, SAS Proc Contents Listings, data file code books, glossary of NPTS terms, a copy of the 1995 NPTS questionnaire, discussion of estimating sampling errors, and additional background information.

1-A. SURVEY SPONSORS

Research Triangle Institute (RTI) conducted the 1995 NPTS under the sponsorship of four agencies of the U.S. Department of Transportation:

Federal Highway Administration (FHWA)
Bureau of Transportation Statistics (BTS)
Federal Transit Administration (FTA)

FHWA has the lead role in coordinating the survey.

1-B. PURPOSE OF THE SURVEY

DATA COLLECTED

USES OF
NPTS

The NPTS serves as the nation's inventory of daily personal travel. It is the only authoritative source of national data on the daily trips including, but not limited to:

- purpose of the trip (work, shopping, etc.)
- means of transportation used (car, bus, subway, walk, etc.)
- how long the trip took, i.e., travel time
- time of day the trip took place
- day of week the trip took place, and, if a private vehicle trip:
- number of people in the vehicle, i.e., vehicle occupancy
- driver characteristics (age, sex, worker status, education level, etc.)
- vehicle attributes (make, model, model year, amount of miles driven in a year).

These data are collected for:

- all trips,
- all modes,
- all purposes,
- all trip lengths, and
- all areas of the country, urban and rural.

NPTS data are used to:

- quantify travel behavior
- analyze changes in travel trends over time
- relate travel behavior to the demographics of the traveller
- look at the relationship of demographics and travel over time
- look at the relationship of travel and land use

The NPTS data are used primarily for gaining a better understanding of travel behavior. The data are used to enable DOT officials to assess program initiatives, review programs and policies, and plan for the future.

The NPTS is a tool in the urban transportation planning process; it provides data on personal travel behavior, trends in travel over time, trip generation rates, national data to use as a benchmark in reviewing local data, and data for various other planning and modeling applications.

The transportation research community, including academics, consultants and government, use the NPTS extensively to examine:

- Travel behavior at the individual and household level
- The characteristics of travel, such as trip chaining, use of the various modes, amount and purpose of travel by time of day \& day of week, vehicle occupancy, and a host of other attributes
- The relationship between demographics and travel, e.g. the 1990 NPTS showed increases in personal mobility among women, older Americans, youth, and to some degree, low-income households
- The public's perceptions of the transportation system

People in various fields use the NPTS data to connect the role of transportation with other aspects of our lives. Medical researchers use the data to determine accident exposure rates of school-age children, particularly when they are travelling on their own by walking or biking. Social service agencies need to know more about how low-income households currently travel, which has taken on heightened importance with the employment initiatives for unemployed portion of the welfare population.

1- C. COVERAGE AND SCOPE

COVERAGE- The NPTS is a survey of the civilian, non-institutionalized WHO population of the United States. As such, it does not include:

- military personnel living on base or overseas, OR
- residents of group quarters, such as nursing homes or assisted-living facilities, college dormitories, longterm medical institutions, and prisons.
Military personnel are included if they live in civilian housing. College students are included if they live in apartments or other off-campus housing, or if they live at home for the summer.

WHEN

WHERE

SCOPE-
WHAT THE
NPTS
INCLUDES -

The 1995 NPTS was conducted over a period from May 1995 to July 1996. Travel data were collected for all seven days of the week, including all holidays.

All trips by U. S. residents were recorded, including those where the destination was a foreign country.

The 1995 NPTS data set includes:

- Household data on relationship of household members, education level, income categories, housing characteristics, and other demographic information.
- Motor vehicle information including year, make, model, and odometer readings, converted to annual estimates.
- Information on the availability of public transportation.
- Data about drivers, including information on travel as part of work.
- Data about one-way trips taken during a designated 24-hour period (the household's travel day) including the time the trip began, length of trip, composition of the travel party, mode of transportation, purpose of the trip, and specific vehicle used (if a household vehicle).
- Data describing round-trips taken during a 14-day period (the household's travel period) where the farthest point of the trip was at least 75 miles from home, including the destination, mode, and purpose.
- Information to describe characteristics of the geographic area in which the sample household and workplace of sample persons are located.
- Data on telecommuting.
- Data on people who use transit occasionally.
- Public perceptions of the transportation system.
- Reasons for not car-pooling or using public transit for the work trip.
- Incidence of seat belt use, and reasons people don't always wear seat belts.

WHAT IS NOT INCLUDED IN THE NPTS

In the past there have been many requests for data that are closely related to the NPTS, but are not available in the NPTS. Examples of the most common requests for data that are NOT included in NPTS are:

- Information on costs of travel (other than parking costs at work).
- Information about specific travel routes or types of roads used.
- How travel of the sampled household changes over time. Note: The NPTS is a cross-sectional survey, which means that different households are selected for the sample each time it is conducted. The NPTS is not currently a longitudinal survey, which would involve tracking the same sample households over time.
- Information that would identify the exact household or workplace location.
- \quad Travel by household members under the age of 5 when they travel with non-household members, e.g., a day care provider takes your child to the park, another parent takes your child to their house.
- Information on the fuel economy of vehicles, i.e., miles per gallon or MPG. However, the NPTS vehicle file includes the vehicle make, model and model year, which would allow linking the NPTS with another source of MPG.
- The traveller's reason for selecting a specific mode of travel over another mode

1-D. COMPARABILITY WITH EARLIER NPTS DATA

1969 NPTS
-

1977 NPTS

The original Nationwide Personal Transportation Survey (NPTS) was conducted from 1969 to 1970 by the U.S. Bureau of the Census, who collected the survey data for the Federal Highway Administration (FHWA) of the U.S. Department of Transportation. That first NPTS survey was based on a multi-state probability sample of housing units located in 235 sample areas, which included 485 counties and independent cities representing every state of the U.S. and the District of Columbia. Experienced Census Bureau field staff conducted personal interviews in some 15,000 households, obtaining transportation-related information for all occupants.

Sections of that initial questionnaire provided information including:

- automobile record (ownership, whether an automobile was purchased new or used, and annual miles driven)
- proximity to public transportation and shopping
- travel to work
- driver information, such as estimated annual miles driven by licensed drivers
- travel to school
- all one-way trips by motor vehicle or some form of public transportation during the previous 24 hours (referred to as the travel day)
- record of all trips lasting one or more nights during the seven days that ended the day before the preassigned travel day.

During the 1977 NPTS, an update of the 1969 nationwide survey, the data were again collected from households in a national sample of area segments, with basically the same sampling, collection, and processing procedures as the 1969 version. The Census Bureau collected the data from approximately 18,000
households nationwide. The 1977 survey questionnaires were expanded considerably and updated to better address thencurrent issues, and the survey procedures were modified to upgrade the effort.

One of the major differences between the 1969 and the 1977 surveys was the extension of vehicle coverage to all motor vehicles owned by a sample household. While the 1969 survey included only automobiles as part of the vehicle record, the 1977 survey also included personal trucks and vans, camper vehicles, motorcycles, and mopeds.

1983 NPTS

1990 NPTS

When the 1983 NPTS was conducted between February 1983 and January 1984 the Census Bureau again collected survey data by using face-to-face interviews in an area probability sample of nearly 6,500 households. Additional, information was obtained about the use of safety devices in household vehicles including seatbelt usage: when, how often, under what conditions; and information about child safety topics such as type of safety seat used and its position in the vehicle, internal harnesses in use, and injuries sustained from an emergency stop when a child was not using a child safety seat or other safety device.

Research Triangle Institute (RTI) conducted the 1990 NPTS using a computer-assisted telephone interviewing (CATI) technology. This was a significant change from the in-home interview methodology previously used for the NPTS. The national sample consisted of 18,000 households. One state and two Metropolitan Planning Organizations purchased additional interviews in their areas, increasing the total sample to more than 22,000 households.

Other methodology changes in 1990 were:

- the use of the random-digit dialing (RDD) sampling procedures,
- greater utilization of proxy respondents, and
- \quad an increase in the allowable window for interviewing
sampled persons about their travel from four to six days.

The 1990 NPTS included new questions about vehicle accidents that members of the household had experienced and the highway types used for selected vehicle trips on the household's travel day. The core data components, however, were comparable to previous surveys in the series.

The 1990 NPTS features which were the same as in previous NPTS surveys included the:

- definitions of eligible persons, trip purposes, and modes of transportation,
- concepts of a travel-day section for all trips taken on the travel day and a travel period section for reporting long trips taken during a 14-day period, and
- core information collected for sample households, persons, vehicles, drivers, travel period, and travel day trips. For each travel day trip, information was collected regarding the trip purpose, mode, distance, time taken, and accompanying persons, as it was during earlier surveys.

1995
METHODS STUDIED

Prior to the 1995 NPTS pretest, the following methodology issues, which might improve the survey results or strengthen analysis capability, were studied:

- Methods to obtain more complete trip reporting
- Alternate definitions of a completed household interview
- Use of proxy respondents
- Obtaining data on trip chaining
- Enhanced geographic coding of household and work locations
- Expanded on-line editing during the interviews
- Vehicle odometer readings to obtain more accurate miles traveled (VMT) estimates.

1995 PRETEST

Other pretest results included the following:

- Practicality of mailing advance letters to selected households
- Feasibility of collecting more detailed information about the household location
- Feasibility of collecting paired odometer readings for the sample vehicles
- Advantage of using a household roster of trips to reduce respondent burden and increase trip recall

The household roster of trips allowed the CATI interviewer to skip trip detail for a specific respondent if information about that trip had already been reported by another household member.

Mailing advance letters informed the sample households of their selection for the 1995 NTPS, legitimized the survey and presented it in the larger context, and notified them that an interviewer would telephone their household to interview the members.
In preparation for the 1995 NPTS, a large methodological pretest was conducted from November 1994 through January 1995 to identify problems with new questions, determine the average interview time, and test the data collection procedures. A methodological experiment was embedded within the pretest sample in order to test three different survey methods: recall, memory jogger, and travel diary. The major pretest result was the indication that the use of travel diaries would lead to more complete NPTS trip reporting, and FHWA decided to utilize a oneday trip diary in the 1995 NPTS.

1995 NEW
 CONTENT

The 1995 NPTS included new questions to:

- Measure the public's perceptions of, or satisfaction with, the nation's transportation system
- Determine respondents usual modes of travel
- Elicit their reactions to statements about mobility and congestion
- Identify perceived difficulties in travel
- \quad Collect information on the use of seat belts
- Describe the household's location, type of structure, and tenure
- Improve trip purpose coding

1-E. TYPICAL NPTS HOUSEHOLD

To illustrate key NPTS concepts, an example may be helpful. We introduce at this point a hypothetical sample household consisting of the following four persons:

Typical NPTS Household:

Terry and Keith live in a metropolitan area with their two children Lucy and Ben. When Keith picked up their mail in early October, 1995, he read the letter from Rodney Slater, the Administrator of the Federal Highway Administration, advising that their home telephone number had been selected in the sample for the Nationwide Personal Transportation Survey, and that they would be receiving a telephone call from an interviewer at Research Triangle Institute.

We will refer back to this typical NPTS household from time to time in later sections of this User's Guide, to illustrate aspects of the NPTS survey procedures or methodology.

CHAPTER 2. SURVEY CONTENT AND INTERVIEWS

2-A. INTERVIEW PROCESS

OVERVIEW

THREE
PHASES

An understanding of the data collection for the NPTS is essential to the proper use and interpretation of the data. FHWA staff and other survey sponsors occasionally monitored the data collection interviews from the Telephone Survey Unit at Research Triangle Institute. Everyone who had the experience of monitoring the interviews came away with a better understanding of the survey data.

For purposes of this User's Guide we have attempted to give the reader a better understanding of the interview process by using the Typical NPTS Household example. Basic background on the interview process, as contained in the next few sections, will aid the reader in understanding the Typical Household's involvement in the survey.

The NPTS data collection consists of three main phases:
Household Interview - collects information about the household, the household members, vehicles owned by or available to the household, and to obtain the mailing address for the travel diaries. It is conducted once per household.

Person Interview - collects the travel day data, the long trip (travel period) data, information about worker status and the typical trip to work, baseline data on occasional use of transit and occasional working from home, and customer satisfaction with the transportation system. A person interview is attempted for each household member 5 years and older, with an adult reporting the travel of those 5-13 years old. For the household to be included in the final data set, interviews had to be completed with at least half of the household adults (defined as persons 18 years and older)

Odometer Readings - are collected for each household vehicle at two points in time. The first is at or around the time of the person interviews. The second is $2-6$ months later.

2-B. INTERVIEWS

HOUSEHOLD INTERVIEW

Once a sample telephone number was selected, an advance letter was sent to the household if a mailing address for that telephone number was available from computerized telephone directory services. After the advance letter mailing, an interviewer would call the number, ask some screening questions to determine that it was a household, and complete the household interview portion of the survey by interviewing one of the adult household members. The household interview questions are contained in Sections A through D of the CATI questionnaire (see Appendix E.) Exhibit 1 describes screening and interviewing in the sample household.

Exhibit 1- Household Screening and Interview Contents

Data Collected	1. Information to determine whether the selected telephone number is a household and not a business, fax line, etc. 2. Characteristics of the household members, vehicles, and address for mailing the travel diaries.
Who is contacted	1. Any household member who can respond (screening questions). 2. A household member 18 years or older can answer the questions about household members and vehicles.
When collected	The first contact with the household can occur any time after the telephone number is placed in the sample. Follow-up contacts are scheduled as part of the data collection
Why collected	1. To insure the sampled number is a household, not group quarters, business, etc. 2. To introduce the survey and obtain the household-level and address information.

How collected	1. Telephone screening contact (1 to 2 minutes) 2. Household interview (8 to 10 minutes)

AFTER THE HOUSEHOLD INTERVIEW

At the time the household interview was completed, the computer would assign a pre-selected travel day 12 to 18 days in the future. The travel diaries would be prepared and mailed to the household, along with odometer forms, a reminder to complete the diaries on the travel day, response incentive money (\$2.00 per person), and other instructions to the household. On the day before the household's travel day, an NPTS interviewer would call and briefly remind the person answering the telephone to ask the members to complete their travel diaries on the following day.

Attempts to complete the person interviews began on the day following the travel day, and generally continued (with a maximum limit of six days) until all person interviews had been completed for all household members 5 years of age and older. Proxy interviews would be conducted, for persons 5 to 13 years of age, by interviewing another household member 14 or older. Persons 14 and older would be interviewed individually as often as possible, with proxy interviews allowed with other household members when necessary. Exhibit 2 describes the person interview.

Exhibit 2 - Person Interview Content by Age of Household Member

Age 16 and older		Age 5 to 15 years
Data Collected	Customer satisfaction Driver information Education level Usual travel to work Travel day trip information Travel period trip information	Travel day trip information Travel period trip information
Who is contacted	Each household member 16 years and older	Each household member 14 and 15 years old, Proxy for those 5 to 13 years of age.
When collected	Within 6 days following travel day	Within 6 days following travel day
Why collected	To obtain the person-level data. The travel day trip information collectd in the person interview is considered the core NPTS data	To obtain the person-level data. The travel day trip information is considered the core NPTS data
How collected	Travel diaries mailed; Person interview by telephone (10-15 minutes)	Travel diaries mailed; Person interview by telephone (5-10 minutes)

ODOMETER READINGS

The third portion of the NPTS survey involves collecting odometer readings two times for each of the household's vehicles. A form listing each vehicle and requesting the information was mailed with the travel diaries. The first odometer readings and the dates they were made were collected during the person interviews if possible. If the readings were not available, household members were asked to record the readings within a few days. Additional odometer reading call back attempts were made if the readings had not been obtained when person interviews were completed for the household, or when the six day interviewing window had
expired.
At least 2 months after the first odometer readings, another letter was mailed to the sample household. This letter also listed the vehicles and requested that another reading be taken and the date recorded on the form, for each of the vehicles.

Subsequently, NPTS interviewers called the households to collect the second odometer reading information. The exhibit that follows describes the odometer reading contacts.

Exhibit 3 - Contents of the Odometer Reading Contacts

	First Odometer Reading	Second Odometer Reading
Data Collected	Date and odometer reading for each vehicle	Date and odometer reading for each vehicle
Who is contacted	Any household member who can provide the information	Any household member who can provide the information
When collected	During person interviews, or shortly after	From 2 to 6 months following the first readings
Why collected	Obtain better information on vehicle miles of travel	Obtain better information on vehicle miles of travel
How collected	Recording form mailed with travel diaries; results collected by phone	Recording form sent in separate mailing; results collected by phone

2-C. NPTS CORE DATA

There is a group of data that is considered "core" NPTS data, and it is largely composed of the items that have been collected in all five NPTSs to date. It is very likely that this core data will be included in future NPTS efforts. The data items that are considered core and their item number on the 1995 NPTS questionnaire are:

HOUSEHOLD LEVEL	FOR EACH HOUSEHOLD:
	Household size - item D. 1
	Household composition - derived from items D.1-D.4, D.7-D.8
	Number of vehicles - item B. 1
	Race \& Hispanic status of household respondent - items D.5-D. 6
	Household location - items D.17-D.18, J.1-J.2, plus information from the sample frame
	Income - Sections K and I
	Availability of public transportation - items C.1-C.5
PERSON LEVEL	FOR EACH HOUSEHOLD MEMBER:
	Age - item D. 3
	Sex-item D. 4
	Education level - item F. 1
	Worker status- items D. 12 and F. 2
	If worker - typical work trip- items F.5-F. 9
	Driver status - items D. 11 and E. 6
	If driver- annual miles driven - item E. 8
	If driver- drive as part of work - items G.3-G.8
VEHICLE LEVEL	FOR EACH HOUSEHOLD VEHICLE:
	Make - item B. 2
	Model - item B. 2
	Model year - item B. 2
	Purchased new or used - item B. 6
	Annual miles driven - item B. 7
	Primary driver - item D. 15
TRAVEL DAY	FOR EACH TRIP EACH HOUSEHOLD MEMBER 5 YEARS AND
	OLDER TOOK ON THE HOUSEHOLD'S ASSIGNED TRAVEL
	DAY:
	Time trip began - item G. 17
	Trip purpose - item G. 20
	Distance to destination - G. 22
	Time trip took - G. 27
	Means of transportation - item G. 25
	If private vehicle trip, was household vehicle used - item G. 23
	If household vehicle used, which vehicle - item G. 24

If private vehicle trip, did a household member drive - G. 37
If household member drove, which one - item G. 38
Any other household members on trip - item G. 35
If household members, which ones - item G. 36
Any non-household members in trip- item G. 39
If non-household members on trip, how many - item G. 40
The answers to this series of core questions about each trip taken by the members of the household on their travel day provide the most sought after and most used data from NPTS and all other household travel surveys.

TRAVEL PERIOD

SEGMENTED
TRIPS

FOR EACH TRIP OF 75 MILES OR MORE (ONE-WAY) TAKEN IN THE TWO WEEK PERIOD ENDING ON, AND INCLUDING, TRAVEL DAY:
Trip purpose - item H. 6
Means of transportation - item H. 8
Destination - item H. 2

2-D. SURVEY CONTENT CHANGES IN 1995

The core questions in the 1995 survey remained the same as in previous NPTS surveys. However, a number of content changes were made in the 1995 NPTS, as described in this section.

ODOMETER READINGS

FOR EACH PORTION OF A TRIP TAKEN BY PUBLIC TRANSIT OR AMTRAK:
Means of transportation - item G. 28
Travel time - G. 30

Two odometer readings and the associated date of the readings, planned to be taken two to six months apart, were attempted for each household vehicle. A model to estimate annual miles driven from these two readings and other information was developed. The odometer readings were collected and annualized to produce a separate estimate of vehicle miles of travel (VMT), in addition to the owner's estimate and the summation of travel day trips made
in that vehicle.

CENSUS
TRACT AND
BLOCK
GROUP
CHARACTERISTICS

The first three NPTS surveys were conducted by the U.S. Census Bureau using an area household sample in 1969, 1977 and 1983. However, because the Census Bureau had conducted the survey, there were very strict confidentiality requirements and the neither the address nor the Census tract could be identified outside the Bureau. For the 1990 NPTS FHWA chose not to collect address information. It was not necessary to do so because the survey was conducted totally by phone with no diary mailings.

Home and work addresses were collected in the 1995 NPTS. The purpose of collecting the addresses in 1995 was to mail the travel diaries, and also to add additional geographic detail to the data files. However, addresses are not part of the dataset.
Appending a series of characteristics of the area of the residence and workplace locations to the data files will allow analyses of the land use-transportation connection, and may also facilitate the potential creation of synthetic travel survey data for states or metropolitan areas.

For the first time in the NPTS series, the 1995 survey contained questions on the public's opinion of transportation services and systems. The data user can analyze these attitudes in the context of how much the respondent travels, which modes are used, vehicle ownership, income, and so forth. It is anticipated that customer satisfaction questions will continue to be incorporated in future NPTS work.

SEAT BELT USE

Questions were included on how often people use seat belts. For those using seat belts some or most of the time, additional questions were asked on the reasons for not using them all of the time. This will benefit safety analysis of seat belt use, and provide a thorough catalog of reasons people do not always use seat belts.

TRIP PURPOSES

In an effort to better understand travel, more detailed trip purpose data were collected. New trip purpose categories in the 1995 NPTS are:

- return to work
- take someone somewhere
- pick up someone
- out to eat
- return home.

The collection of trip purposes changed from a descriptive format (e.g., what best describes your reason for making this trip) to a FROM-TO format (e.g., a trip from "other family and personal business" to "home"). This is a more objective and more straightforward way to collect the data. This approach also allows for an improved analysis of trip chaining.

See Appendix M for a more detailed explanation of trip purpose coding and the trip purpose variables on the 1995 NPTS dataset.

2-E. TYPICAL NPTS HOUSEHOLD

HOUSEHOLD
 INTERVIEW

At this point, we continue the example of the hypothetical household mentioned in Section E of Chapter 1. Here we describe their interactions with the 1995 NPTS project, by walking through the types of information collected.

First, an interviewer called and spoke with Terry; the household was screened to verify that it was a legitimate household sample and the household interview was conducted. In this example case, only one call was required to both screen, and complete the household interview.

Household Interview - Terry gave the household interview on October 15, 1995 and she is termed the Household respondent

- the ' 89 Camry was driven 14,000 miles in the past year
- the Ford Contour was driven 11,000 miles in the past year
- there is a bus stop one block from the townhouse they own
- there is a subway, but the nearest stop is about 2 miles away
- Terry is 37 years old, a female, an AfricanAmerican. She is employed and is the primary driver of the Ford Contour.
- Keith is 39, a male, the husband of Terry, employed, and the primary driver of the Toyota Camry.
- Lucy is 16 , female, and has begun driving.
- Ben is 10 years old, male.
- their mailing address is 2370 SW Fifth Street, Anytown, Anystate
(Note that the mailing address is used to send the diaries. It is not kept on the datafile.)

AFTER HOUSEHOLD INTERVIEW

At the end of the household interview, the interviewer told Terry that the computer had selected October 29, 1995 as the random travel day for the household and asked that each family member keep a diary with key information about their travel on that day. The diaries were prepared and mailed to the household on October 22, along with instructions, $\$ 8.00$ in incentives, the odometer reading form, and a reminder that their travel day was October 29.

PERSON INTERVIEW

On November 1, after several no-answer calls, an interviewer reached Terry at home and completed her person-level interview.

Person Interview with Terry - about 2 weeks after the Household Interview

- highway congestion is not a problem for her
- rough pavement on the highways is a small problem for her
- she has used public transportation three times in the past two months
- she is a driver and always wears her seat belts when in a private vehicle
- she drove about 12,500 miles in the past year
- she has completed some college, but does not have a Bachelor's degree
- she works full time--her workplace is at 123 Frontage Road, which is 9 miles from her home
- she usually leaves home at 7:45 AM to go to work--the trip usually takes 20 minutes one-way and she drives alone in the Contour
- she does not pay to park at work
- she never works at home in place of going to her workplace

Person Interview continues with Terry's Travel Day

Inventory of Terry's trips on the travel day, October 29:

7:45 am - to work
12:30 pm - to lunch
$1: 20 \mathrm{pm}$ - return to work
5:15 pm - leave work
5:35 pm - stop at bank
5:45 pm-return home
7:25 pm - walk the dogs, with Keith

Detailed information collected on sample trip to lunch:
started at 12:30 pm from work to eat out walked 3 blocks to restaurant, took 10 minutes was with two coworkers

Detailed information collected on sample trip to the Bank started at 5:15 pm
from work to other family \& personal business trip was 8 miles, it took 20 minutes she drove alone in the Contour.

Terry has not made any trips of 75 miles or more one-way in the two week period ending on Travel Day

Additional information gathered from Terry at the end of her person interview

- they have one phone number for their household
- their annual household income is in the $\$ 35,000$ \$40,000 range
Interviewer asked for the odometer readings but they were not available. Terry agreed to make the readings and the interviewer said she would call back to record them.

FIRST
ODOMETER READINGS

SECOND ODOMETER READINGS

The same interviewer called again on November 3 and completed the odometer readings and the date they were taken for both vehicles.

Callback for odometer reading two days after Terry's person interview

- Contour is 14,355 , Camry is 73,940
- both readings were recorded on November 2, 1995

Around February 1, Terry received a letter from RTI asking that another recording be made of the odometer readings of the two vehicles. Keith completed the form and placed it by the telephone. On February 20, another interviewer called for the readings. Lucy was the only person home at the time; she found the completed form by the phone and gave the information to the interviewer.

Callback for second odometer reading three months later
-Contour has 17,923, Camry has 78,125
-both readings were recorded on February 5,1996.

CHAPTER 3 - SURVEY PROCEDURES AND METHODOLOGY

3-A. OVERVIEW

WHO IS
INCLUDED

HOW THE
DATA ARE
COLLECTED
The NPTS collected travel data from the civilian, noninstitutionalized population of the United States. People living in college dormitories, nursing homes, other medical institutions, prisons, and on military bases were excluded from the sample.

There are a total of 42,033 households on the final 1995 NPTS dataset. Approximately half of the households are in the "national sample" and the other half represent the add-on areas of:

New York State
Commonwealth of Massachusetts
Oklahoma City, Oklahoma
Tulsa, Oklahoma, and
Seattle, Washington.
These areas purchased larger samples to support their planning needs. Interview data from all 42,033 households are included on the public use data file. For areas that conducted add-on surveys, the weights were adjusted downward so their inclusion does not skew the national estimates.

All household members age 5 or older were eligible to be interviewed. For children ages 5 through 13, an adult member of the household reported for them.

The NPTS was conducted as a telephone survey, using Computer-Assisted Telephone Interviewing (CATI) technology. The sample was a list-assisted telephone number sample.

Each household in the sample was assigned a specific 24 -hour "Travel Day" and a 14-day "Travel Period" for which detailed data on all travel were collected.

The households were contacted by an advance letter, followed by a telephone contact. After the first telephone interview, the household interview, travel diaries were mailed to the household so that each household member could record their travel on the assigned Travel Day.

WHEN THE
 DATA ARE COLLECTED

GEOGRAPHIC COVERAGE

Residents of the sampled households were contacted by telephone as soon as possible after Travel Day to record their travel. A six-day window was established to obtain the travel day data.

Odometer readings from each household vehicle were also collected by telephone contacts at two points in time.

The NPTS interviews were conducted from May 1995 through June 1996.

The survey is conducted over a 12-month period so that seasonal variations in travel are represented. The 1995 NPTS took 14 months, rather than 12, because the number of interviewers working on the project varied throughout the year. The weighting adjusts for the monthly differences in number of interviews.

Travel days were assigned to all seven days of the week, including holidays. The intent is to represent travel across an entire year.

Interviews were conducted with households in all 50 States and the District of Columbia. A new sample of telephone numbers located throughout the United States was used every quarter to insure that all geographic areas were represented in all seasons.

The following section contains more information on the add-on areas.

3-B. SAMPLE DESIGN AND SELECTION

OVERVIEW
The 1995 NPTS sample was designed as a list-assisted telephone number sample. The sample design yields a representative national sample of all U.S. telephone households.

The national sample was increased within the planning areas of two States and three local transportation planning organizations, who purchased additional samples to provide data for their planning efforts. These areas are referred to as "add-ons".

The sampling frame was designed to cover all U.S. telephone households, both listed and unlisted. The sample was stratified by:

- geography (Census divisions),
- metropolitan area size,
- presence of subway/elevated rail transit systems, and
- two levels of telephone number density (low and high).

The target sample size for the 1995 NPTS included the:

- national sample of 21,120 completed households, and
- 20,895 additional households within the five add-on areas,
for a total planned sample size of 42,015 completed households.
See Chapter 5-D for a table showing the national and add-on components of the NPTS sample.

SAMPLING FRAME

STRATIFYING THE SAMPLE

The sampling frame was constructed using information listing all valid residential NPA/NXX (area code/telephone exchange) codes associated with the fifty states and the District of Columbia, obtained from Bell Communications Research (Bellcore). The sampling frame, which excluded some NPA/NXX codes used exclusively for nonresidential purposes, was created in February 1995 and updated in June and September, 1995 and in January, 1996.

The sampling frame also utilized counts of listed telephone numbers for each group of 100 consecutive number (100-block) within the NPA/NXX codes. This information on telephone number listings was developed by Donelly Marketing Systems and obtained from Nielsen Media Research (Nielsen).

To control sampling variation and increase coverage of transit trips, the sampling frame was stratified by:

- geography (Census division)
- metropolitan area status
- the presence of subway or elevated rail systems, and
- the density of listed telephone numbers.

Prior to stratification, each NPA/NXX code was assigned to the county (or county-equivalent) expected to contain the majority of its telephone households.

First, each block of 100 telephone numbers was assigned to one of the nine Census divisions, based on its county assignment. Within the nine Census divisions, counties were classified first by metropolitan area size, as follows:

1) in a consolidated metropolitan statistical area (CMSA) or metropolitan statistical area (MSA) of 1,250,000
population,
2) in a CMSA or MSA of less than 1,250,000 population, or
3) not in an MSA.

Next, the counties were stratified according to the presence or absence of subway/elevated rail transit systems.

Special add-on strata were defined within the:

- State of New York,
- Commonwealth of Massachusetts
- Oklahoma City, Oklahoma planning area,
- Tulsa, Oklahoma planning area, and
- Puget Sound, Washington planning area.

These strata were needed to control allocation of the additional sample to subareas within New York and Massachusetts, as well as to effect the over-sampling necessary to obtain the desired sample size in each add-on area. A total of 70 major strata were defined, based on the stratification variables mentioned above.

Finally, within the 70 major strata, each 100-block was assigned to one of two density substrata:

1) low density - those 100-blocks containing zero residential listings, or
2) high density - those 100-blocks containing one or more residential listings.
Low density substrata were retained because they contain newly assigned telephone numbers and unlisted numbers.

SAMPLE
ALLOCATION
AND
SELECTION

The sample size was allocated to the major strata in proportion to estimates of the total number of households, except for:

- 25 percent over-sampling in 11 large metropolitan areas with subway/elevated rail systems, designed to increase the number of transit trips in the sample, and
- additional over-sampling to obtain the increased sample
sizes contracted for in the add-on areas.
Due to the large add-on sample increases in New York and Massachusetts, the New York City and Boston metropolitan areas were over-sampled more than 25 percent.

The sample allocated to each major stratum was further allocated to the high- and low-density substrata within them. The high density substrata were sampled at a rate three times more heavily than the low density strata, in order to offset the higher costs of identifying and completing interviews within the low density strata.

The sample of telephone numbers allocated to substrata were then selected randomly with equal probabilities within substrata.

3-C. DATA COLLECTION PROCEDURES

OVERVIEW

ADVANCE
LETTER TO HOUSEHOLDS

The 1995 NPTS interviews were completed by the staff of RTI's Telephone Survey Unit. Each interviewer was thoroughly trained before beginning work on the survey.

A number of quality control measures were implemented during the data collection. Supervisors were present to observe interviewing and assist with problem cases at all times during interviewing. Numerous real-time edits were performed by the CATI system during the interview process. In addition, monitoring of interviews in progress was conducted by supervisors, NPTS project staff, and others throughout the data collection period. Periodic meetings were held with groups of interviewers to discuss issues in conducting the interviews and to document suggestions for resolving issues.

Addresses were obtained for those selected telephone numbers which were listed (i.e., the number is published in the phone book). Advance letters from the Federal Highway Administrator were sent to households with listed phone numbers; no letters could be sent to households that had unlisted telephone numbers. Advance letter mailings were performed about once a month, using the phone numbers periodically added to the sample.

Approximately 70 percent of the households in the U.S. have listed numbers. About 10 percent of the advance letters could not
be delivered, so more than 60 percent of sample households probably received the letter. The primary purpose of the letter was to inform the prospective respondents that this was a legitimate survey, not a marketing or fundraising call.

Though it is not possible to measure the impact of the advance letter in the absence of a designed experiment, we believe it may have legitimized the survey with many respondents, resulting in greater participation in the survey.

Appendix F contains a copy of the advance letter to sample households.

TRAVEL DAY ASSIGNMENT

TRAVEL DIARIES

Travel characteristics are known to vary by season of the year and day-of-the week.

The 1995 NPTS had more seasonal variation than planned because the number of interviewers did not remain stable throughout the 14 -month survey period. To correct for seasonal variations, an element of the sample weighting was developed to specifically address this issue. Each household and person weight was adjusted so that the weighted data reflect an equal number of household and person interviews for each month. See Control Totals in Appendix A.

The variation in travel by day of the week was balanced by assigning the travel days for one-seventh of the sample telephone numbers to each day of the week. When the calls to a sample phone number resulted in a completed household interview, the CATI system determined the household's travel day on the selected day of the week 12 to 18 days in the future, which allowed time for dairy mailings to reach the household. This proved reasonably effective in distributing the survey travel days to the seven days of the week.

Travel diaries were used in the 1995 NPTS because, in the pretest for this survey, they proved to be the most effective method to capture full reporting of personal travel. After the household interview, a packet of survey materials was mailed to each household. The packet contained:

- A travel diary for each household member age 5 and older - a label was affixed to each diary with the
first name of one household member.
- Two $\$ 1$ bills were clipped to each diary.
- Instructions for filling out the travel diary, including a sample diary.
- A brightly colored $81 / 2 \times 11$ reminder sheet identifying the household's travel day.
- A form identifying the make, model and year of each household vehicle, with spaces to enter the odometer readings and the dates they were taken.

Appendix F contains samples of the materials sent to

 respondents.The use of travel diaries represents a significant change in survey methods from earlier NPTSs. The purpose of the travel diary was to have respondents write down each place they went as they proceeded through the day in order to obtain a more complete reporting of travel and better reporting of trip characteristics, such as time of day the trip started, the trip duration, trip distance in miles, etc.

Travel diaries have long been successfully used in urban travel surveys. A methodological pretest conducted prior to the 1995 NPTS demonstrated that using travel diaries caused more complete reporting, particularly for incidental trips, such as stopping at a convenience store, which are the most difficult to capture in a household travel survey. In addition, the overall response rates for the diary method were comparable to the retrospective method used in earlier NPTSs, thus the diary method was chosen for the 1995 survey.

CALL-BACK PERIOD

There was a six-day call-back period for reporting Travel Day trips. Phone calls to collect the diary information from the household started the day after the travel day, and continued for the next five days. Any diary information not collected during this six-day window was lost for purposes of the survey. Even though the respondent may have recorded basic information on their trips in their diary, the details of travel on a particular day should ideally be captured within the first three days, and the time interval should not be allowed to exceed six-days. Note that approximately two-thirds of the 1995 NPTS trip and travel data were obtained within three days following the household's travel day.

RESPONSE INCENTIVES

A \$2 incentive for each household member 5 and older was clipped to the diary for that person. Because respondents were being asked to fill out a travel diary, it was decided to give a small cash incentive. The literature on survey incentives is fairly clear in two respects:

- cash is the preferred incentive
- the incentive should be given in advance, rather than after the interview.
Thus, $\$ 2$ in cash was sent with each travel diary.

HOUSEHOLD ROSTER OF TRIPS

The household roster of trips captured some trips that may otherwise have been overlooked. In "household rostering" the interviewer has the benefit of trip data from all household members who had already been interviewed.

For example, suppose person \#1 took a trip and reported that persons \#2 and \#3 were with him. When persons \#2 and \#3 were interviewed, they were asked to confirm that they were on the trip with person \#1. If they were, the trip characteristics were copied from person \#1's record to person \#2 and person \#3. If person \#2 or person \#3 said they were not on the trip with person \#1, this was accepted.

This system resulted in a number of benefits to the survey operations, including making the tedious travel day reporting easier and, of course, in aiding the memory of the respondent. The 1995 NPTS may be the first large-scale household travel survey that used the household rostering concept as part of a CATI (computer-aided telephone interview) survey.

A proxy interview is one in which someone else in the household reports for the respondent. In the NPTS data collection, an adult household member always serves as the proxy for a child between the ages of 5 and 13. There are also a number of proxy interviews given by household adults for teens aged 14 through 17.

An issue with proxy interviews is under what circumstances to allow one household member to report for another respondent. In

NPTS, proxies for adult members of the household were allowed if:

- the respondent was not capable of being interviewed because of an impairment or a language barrier
- the interviewer was told that this respondent would not be available for the entire six-day recall period, or
- the interviewers have been attempting to reach the respondent for the first three days of the six-day call-back period, and have not been successful.

If the respondent filled out a travel diary for travel day, the proxy household member is asked to find the diary and use it when they served as a proxy for the respondent. Note that the conditions of each interview are a part of the datafile. Thus there is a variable for:

- whether the interview was with the respondent or a proxy (PROXY),
- if a travel diary was completed, and
- if so, who completed the diary, the respondent or another household member (DIARYCMP).

CONFIRMING ZERO TRIPS

When a respondent reports not going anywhere on travel day, that may really be a "soft refusal". The respondent may not want to report their travel, but may want to still appear to be cooperative. In previous NPTS surveys reports of zero trips were not questioned or confirmed. The 1995 NPTS still did not go as far as many of the US urban travel surveys in questioning a report of no trips on travel day, but a followup question was added: "Does that mean you stayed at the same place all day?" The rate of persons reporting zero trips dropped from approximately 25 percent in 1990 to 12 percent in 1995. This change was one of many things contributing to an increased level of trip reporting in the 1995 NPTS.

3-D. DATA EDITING

ONLINE EDITS Several variables were edited in real-time during the NPTS interviews. The on-line edit checks notified the interviewers of a possible discrepancy and allowed them an opportunity to correct an entry or other errors. For example, the combination of trip
length and time reported in the travel day section were checked against pre-programmed miles per hour ranges for most modes of travel. Reported sample person ages in the person interview were checked for consistency with the ages and relationships reported by the household's reference person. Reported zip codes were checked against pre-entered lists of valid codes.

APPROACH TO POSTINTERVIEW EDITING

PRELIMINARY
EDITS

In surveys with complex questionnaires and procedures, such as the NPTS, the final dataset reflects certain approaches taken in the data collection and editing processes. For the 1995 NPTS, two approach issues may have had considerable impact on the resulting data.

The first is the reluctance to impute data. If the respondent did not answer an item, we generally did not impute it, i.e., determine what the logical response would be given the response to other items. Carefully performed imputation has its place in many statistical surveys, however FHWA and RTI that imputation would be extremely limited in the NPTS data.

Second, we were conservative in changing reported data, unless it was clear that what was reported could not have happened. The classic example of this type of situation is the one-half hour walking trip, in which 500 miles were covered. In this type of situation we would look at the other trips of this respondent and the trips of any household members who were with him/her. Often that will clarify what should have been entered. If that effort was not successful, in this particular example it is most likely that miles would have been changed to "not reported."

The first step in preparation for editing and cleaning the data was to extract the survey responses from the CATI data files. In doing this, it was also necessary to import data from problem sheets and supplemental trip files.

Problem sheets were completed by interviewers to indicate how to correct a problem they encountered during the interview, but were unable to correct because of CATI program limitations or respondent considerations. For example, the interviewer realized that she had entered an incorrect start time for trip number four when she was several trips further into the interview, and judged
that the interview would be lost if she asked the respondent to wait while she backed up to that trip and make the correction. In such cases the changes needed were recorded on a problem sheet, which was entered into the CATI system after the interview by supervisory staff.

SUPPLEMENTAL FILES

HOUSEHOLD ROSTERING

DATA FILES

The main CATI program recorded trip data for up to 15 trips for each person interviewed. When a person took more than 15 trips on their travel day, data for the additional trips were recorded in a supplemental data file and the two files were subsequently merged.

Trip details recorded with the first household member reporting the trip were accessed and added to trip records for the other household members who reported being on the same trip.

Next, the survey data was separated into several different data files:

Household file - data collected once for the household (one record per household).

Person file - data items collected once for each household member (one record for each completed person interview).

Vehicle file - data items related to the household's vehicles (one record for each household vehicle).

Travel day trip file - data items collected for each trip a person made on the household's travel day (one record for each trip each person made) .

Segmented trip file - additional data collected for each of the travel day trips that involved two or more trip segments, at least one of which involved public transit or Amtrak (one record for each segmented trip).

Travel period file - data items collected for each longer trip taken by each person interviewed during a 14-day period (one record for each travel period person trip).

A useable household was defined for the 1995 NPTS as one in

RECODING
which the household interview was completed, and person interviews were completed with at least 50 percent of the adult (age 18+) household members. The data were examined in order to determine which households met this "useable household" definition.

In order for the household interview to be considered complete the household respondent must have:

- provided the complete household roster information for the household members, and
- given an address for mailing the travel diaries to the household.

In order for a person interview to be considered complete:

- travel day trip data must have been obtained for at least the destination and start time for each of the person's travel day trips.

In other words, the person interview must have been completed at least through question G.17, the person's inventory of travel day trips.

Interview data for all households not meeting the 1995 NPTS definition of a "useable household" were removed from all data files at this point, prior to any further data editing and cleaning.

This definition of useable household also increased the data collection effort. For example, if a household was composed of three adults and two children, and interviews for only one adult and two children were completed by the sixth day after travel day, all of the work for that household was discarded. There were 16,243 households in the 1995 NPTS that were considered nonuseable.

Several coding and re-coding operations were necessary to put the data in the desired form, including:

- Examining all "other, specify" responses for all items in which the interviewer had marked this option and entered text describing a non-coded response category. In many cases, the "other, specify" responses could appropriately fit into one of the previously listed categories for the questionnaire item and these were corrected.
- In other cases, additional response categories which had
not been anticipated were reported with sufficient frequency to be added to the list of response options.
- Reported vehicle make and model information was edited for reasonableness and National Accident Sampling System (NASS) make and model codes were added to the data base.
- Standard codes were added to the data base to replace the "don't know" and "refused" responses, and to indicate items which were not applicable to this respondent or this trip, and thus were not asked due to skip patterns in the survey questionnaire.
- In the travel day section, trips with the purpose of "change transportation means" were edited and combined with adjacent trips. Interviewers had been instructed to use the "change means" trip purpose only for those cases in which respondents insisted that this was the only purpose of the trip, and they were unable to determine what the trip purpose should have been. These trips were later combined with the trips the person took before or after the change means trip.
- \quad Segmented trips were defined for the 1995 NPTS as trips which involved a change of vehicle or means and at least one of the trip portions or segments must have been on public transit or Amtrak. If these conditions were met, and a change means trip was involved, that trip was converted to a segment of a segmented trip.

LOGICAL EDITS

Various edit routines were implemented to check the consistency of the reported data and to identify reporting or entry errors. Actual responses for all variables were examined for reasonableness and consistency across items. Extreme values that were either impossible or unlikely were identified, and inconsistent data were corrected when possible. For example:

- Very long walking trips, very short airplane trips, and very long waiting times were examined to determine whether they were legitimate data or probable entry errors.
- Calendar dates outside the survey period were edited based on other reported or assigned dates for the household.
- Some extreme or inconsistent data values which could not be corrected were edited to missing
values
- Edit flag variables were added to the data base to identify key variables that had received logical edits
- The relationship between the reported time and distance for all trips was examined by mode. Obvious entry errors were corrected.
- Trips with impossible miles per hour (MPH) for the reported mode of travel (e.g., 20 MPH walk trips) were either corrected or edited by changing the reported time or distance to missing values.
- The travel party size, computed by adding the number of household members and non-household members reportedly on the trip was also edited, by mode for all trips. It appears that some respondents reported the total number of persons on the transportation means (e.g., airplane, bus or school bus trips) even though interviewers had been instructed to define the travel party as friends, relatives or other persons the respondent knew and who were traveling together. In a number of cases, the reported number of non-household members on the trips was edited to a missing value.
- Reporting vehicle odometer readings was apparently difficult for many respondents. Many cases were noted in which the two reported readings were impossible (second reading less than the first reading) or unlikely (over 100,000 driven in a few months). Many of these reporting or entry errors were obvious and were corrected (e.g., reporting the tenths of miles on one but not both odometer readings.)
- The reported miles specific vehicles were driven by a certain person during the year and the number of miles persons reported driving in all vehicles during a year were capped at maximum values of 115,000 miles per vehicle and 200,000 miles per driver.

3-E. SURVEY RESPONSE RATES

OVERVIEW
The 1995 NPTS data were collected during the period from May 1995 through July 1996. There were several stages of data collection. First, a sample of telephone numbers was screened to identify residential households. Second, an adult member of the
household was asked a series of questions about the persons and vehicles of the household. Following this household interview, the household was assigned a travel day for trip reporting. Then, travel diaries for each person 5 years and older were prepared and mailed to the household. Following the household's travel day, interviewers called to conduct the person interview for each eligible household member. During the person interviews, travel diary information was recorded in the computer, along with responses to a number of additional questionnaire items. A summary of the overall response rates, as well as the rates obtained at each stage of the survey process are documented in this section.

SUMMARY OF RESPONSE RATES

The 1995 NPTS response rates are summarized in Table 3-1, which includes the partial response rate experienced at each stage of the survey, and the overall response rate up to that point in the process. The table shows that 73.2 percent of the in-scope sample numbers completed the screening process. Household interviews were completed for 75.6 percent of the completed screening cases, or 55.3 percent of all in-scope sample cases. Over 93 percent of the completed household interview cases accepted the travel diaries, and sufficient person-level interviews were completed for 72.1 percent of these households to classify them as "useable" for the 1995 NPTS. Within the useable households, person level interviews were completed with 92.2 percent of the eligible persons. Table 3-1 shows that the overall response rates were 55.3 percent for household level data and 34.3 percent for person level data.

Table 3-1 - Summary of Overall Response Rates

	Rate	Rate	Calculation
Telephone Number Screening	73.2	73.2%	------
Household Interview Rate	$\mathbf{7 5 . 6}$	$\mathbf{5 5 . 3 \%}$	73.2×75.6
Diary Acceptance Rate	93.3	51.6%	55.3×93.3
Useable Household Rate	72.1	37.2%	51.6×72.1
Person Interview Rate	$\mathbf{9 2 . 2}$	$\mathbf{3 4 . 3 \%}$	37.2×92.2

Another way of viewing the survey response rates, is with the
actual numbers of sample cases, as follows:
112,960 - telephone numbers in-scope
82,663 - households completing screening
58,276 - households accepting diary
42,033 - useable households, that contained:
103,466 - persons eligible
95,360 - persons interviewed.

TELEPHONE NUMBER SCREENING

Table 3-2 shows the results of telephone calls to screen the 160,048 sample telephone numbers.

- Most of the 27.4 percent of telephone numbers determined to be out-of-scope (i.e., non-residential) phone numbers were business and non-working numbers.
- Residential telephone numbers accounted for 65.8 percent of the sample numbers. While telephone number screening, questionnaire section A, was completed for 73.2 percent of them, Table 3-2 shows that there were substantial numbers of refusals and other non-interview cases.
- There were also 10,897 sample numbers, or 6.8 percent of the total sample, that the interviewers were unable to classify as residential or non-residential numbers.

Table 3-2 - Telephone Number Screening Response Data

Number

43,882
15,393
2,089
953
4,193
1,204
19,270
483
297

105,269
82,663

Percent
27.4\% 9.6\%
1.3\%
0.6\%
2.6\%
0.8\%
12.0\%
0.3\%
0.2\%
65.8\%
51.6\%

Answering Machine	4,938	3.1\%
Refusal	12,233	7.6\%
Language Barrier	1,315	0.8\%
Other non-interview	2,393	1.5\%
Trials exhausted	1,727	1.1\%
Eligibility Unknown		
No Contact	10,897	6.8\%
Total Sample Cases	160,048	100.0\%
SCREENING RESPONSE RATE	mber scre 3-3. The ng a portion wn to the the 70.58 10,897 n yielded e were a stimated numbers,	rate calcu numbe whos ned to be n-scope scope cou hat were 269 in-s 112,960 complet

Table 3-3-Screening Response Rate Calculation
Number

Total Sample Cases 160,048
Telephone Number Screening:
Out-of-Scope Numbers 43,882
In-Scope Numbers 105,269
Scope Determined 149,151
Percent In-Scope 70.58%
Scope not Determined 10,897
Presumed In-Scope 7,691
Estimated Total In-Scope 112,960
Completed Eligible Screenings 82,663
Screening Response Rate 73.2\%
HOUSEHOLD The interviewers attempted to complete both the household

Abstract

INTERVIEW RATES screening and the household interview on a single call whenever possible. Toward the end of the household interview, the respondents were told the travel day selected for the household, and they were asked to complete the travel diaries they would be receiving in the mail in a few days. They were also told that a monetary incentive of $\$ 2.00$ per eligible person would be sent along with the diaries, as a token of appreciation for the time it takes to complete them.

As Table 3-4 shows, over 19 percent of the 82,663 households identified in the telephone number screening process refused to provide the household interview information. In total, household interviews were completed with 62,468 household respondents, or 75.6%. In 4,192 of these, the household respondent either refused to verify their mailing address, if we knew it before the interview, or refused to provide the mailing address, if we didn't know it in advance. These cases are shown in Table 3-4 as completing the household interview, but refusing to accept the travel diaries.

Table 3-4 - Household Interview Response Data Number Percent
Household Interviews:

Completed - diary accepted
Completed - diary refused
Completed - total
Refusal
Language Barrier
Other non-interview
Trials exhausted

58,276
4,192
62,468
16,039
704
888
2,564
82,663
70.5\%
5.1\%
75.6\%
19.4\%
0.9\%
1.1\%
3.1\%
100.0\%

PERSON
INTERVIEW
RATES

At the completion of the household interview, the household's travel day was assigned 12 to 18 days in the future. This allowed time to prepare and mail the diaries, and for the mail to be delivered to the household shortly before their travel day. Following the travel day, interviewers called to retrieve the diary information and complete the person interview for each eligible household member.

Table 3-5 shows that there were 146,317 eligible persons in the 58,276 households that completed the household interview and accepted the diary. Of these 146,317 people, person interviews were completed with 97,881 people or 66.9 percent. An additional 5.1 percent were refusals and 14.6 percent were for persons that could not be contacted despite repeated attempts during the six-day interviewing period. Table 3-5 also shows the breakdown of completed interviews by whether they were completed by the persons themselves or by proxy respondents. Note that the 1995 NPTS required proxy interviews for all eligibles 5 to 13 years of age; it allowed proxy interviews for eligibles who were 14 years and older.

Table 3-5 - Person Interview Response Data - All Households

> Number

Completed - self interviews	65,869	45.0%
Completed - proxy interviews	32,012	21.9%
Total Completed interviews	97,881	66.9%
Partial interview	776	0.5%
No Contact	21,366	14.6%
Refusal	7,433	5.1%
Language Barrier	0	0.0%
Incapable	594	0.4%
Deceased	47	0.0%
Other non-interview	496	0.3%
Trials exhausted		17,724
		12.1%
	Total	146,317

USEABLE HOUSEHOLD RATE

The 1995 NPTS defined a useable household as one in which person interviews were completed with at least 50 percent of the household's eligible adults. Table $3-6$ shows that 42,033 , or 72.1 percent, of the 58,276 households that accepted the travel diaries met this requirement. Person interviews were completed for all eligible persons in the majority of the useable households. The 1995 NPTS data files contain the information collected from these 42,033 useable households.

Table 3-6 - Useable Household Response Data

Person Interview Results:	Number of Households	Percent of Households
All persons completed	35,914	61.6%
Enough persons completed	6,119	10.5%
Total Useable households	$\mathbf{4 2 , 0 3 3}$	$\mathbf{7 2 . 1 \%}$
Too few persons completed	16,243	27.9%
Total households accepting dairies	58,276	100.0%

PERSONS IN	Table 3-7 shows the person response rate information within
USEABLE	1995 NPTS useable households. Data for each of the 95,360
HOUSEHOLDS	responding persons in useable households is included in the 1995
	NPTS data files, and accounts for nearly all of the 97,881 (see
	Table 3-5) person interviews completed in the 1995 NPTS survey.

Note that the proxy interviews include persons age 5 through 13 where the interview must be by proxy, and 14 through 17 yearolds who have a high incidence of proxy interviews.

Table 3-7 - Person Response Rate Within Useable Households

Number	Percent
63,646	61.5%
31,714	30.7%
95,360	92.2%
8,106	7.8%
103,466	$100 . \%$

3-F. CONFIDENTIALITY ASSURANCE

CONFIDENTIALITY MEASURES

The following measures were taken in producing this public use data set to assure respondent confidentiality:

- All direct identifiers, such as telephone numbers, zip codes, county codes, names of individuals, and addresses were removed from the files.
- Metropolitan Statistical Areas (MSAs) of less than 1 million population and states with less than 2 million population are not specifically identified on the datafile.
- Other geographic variables were examined to prevent identification of geographic areas with less than 50,000 population (1990 Census). These variables included the MSA size code, Census division, and the specificallyidentified MSAs and states.
- The data files contain a number of population and workforce variable estimates at Census Tract and Block Group levels. These variables will help describe the area of the sample members' household and work locations. The values published for these variables were rounded and/or placed into intervals to lessen the likelihood of users identifying specific areas from these variables.
- The specific dates of travel day and travel period trips were removed from the file.
- Data values for certain other variables were coded into intervals or suppressed, and some data distributions were capped. For example, detailed year/make/model information for antique and classic autos could compromise respondent confidentiality if fully revealed. In the public use files, rare make and model codes were recoded as "other" makes and models. The year data for 1919 to 1969 model vehicles was re-coded into intervals.

3-G. WEIGHT CALCULATIONS

WEIGHTS

HOUSEHOLD
WEIGHTS

The purpose of weighting in NPTS is to expand the sample data to estimates for the U.S. population. There are four different NPTS weights that are used to compute different kinds of population estimates. The methods used to calculate each of the four weights are discussed in the sections which follow.

With the NPTS list-assisted sample design, all in-sample households have a known, nonzero probability of selection. The
unadjusted household weight is simply the reciprocal of the household's selection probability.

Since household telephone numbers were selected with equal probabilities within each sample stratum, the initial household sampling weights are computed simply as the ratio of the number of sampling units (telephone numbers) in the sampling frame for a stratum to the number of sample telephone numbers released for calling.

The initial sampling weights were adjusted for multiplicities arising from households that had more than one residential telephone number in the sampling frame, i.e., more than one chance of being in the sample.

Then the household weights were adjusted to sum to $98,990,000$, an estimate of the number of U.S. households in 1995, to correct for non-responding households. Note that the estimated number of households includes those with and without telephones.

The household weights were then adjusted to equal marginal totals for the important variables listed below, to correct for nonresponse and non-coverage, and to reduce non-response bias. The basic concept is to adjust the sampling weights of the survey respondents so that they sum to known external totals, e.g., Census totals. A method of iterative proportional fitting was used to adjust the household weights simultaneously so the sums agreed closely with the following marginal controls:

- Equal weight totals for each of the 12 months of the year.
- Geographic areas - estimated total households in the four Census regions plus sub-regions associated with the addon areas (39 total areas).
- U.S. level Current Population Estimates of the numbers of Black and non-Black households.
- U.S. level Current Population Estimates of the numbers of Hispanic and non-Hispanic households.
- Five categories of MSA population sizes.
- Four household size categories (1, 2, 3, 4 or more persons).

The adjusted household weights are appropriate for use in weighting all NPTS household variable data and vehicle variable data, since information on vehicles was collected at the household level. This variable is WTHHFIN.

NOTE: It is NOT appropriate to summarize travel day or travel period travel at the household level and then weight the estimate by the household weight. Travel data was collected at the person level, and a derivation of the person weight, such as the trip weight, must be used to obtain accurate estimates of travel day and travel period data. This is primarily because the person weight and the trip weights have been adjusted to account for non-interviewed persons within an interviewed household.

PERSON WEIGHTS

Since there was no sub-sampling of age-eligible persons within NPTS sample households, the household weights would also be appropriate for weighting the person data if data for 100 percent of the eligible persons within sample households had been obtained. Since that was not the case, the person weights were adjusted to compensate for person-level non-response in the 1995 NPTS. The sum of all person weights was adjusted to equal 241,675,000, an estimate of the number of U.S. residents in 1995 five years and older. Post-stratification weight adjustments were also made to adjust the person weights to the following external known totals:

- Equal weight totals for each of the 12 months of the year.
- Geographic areas - estimated total persons in the four Census regions plus sub-regions associated with the addon areas (39 total areas).
- U.S. level Current Population Estimates of the numbers of Black and non-Black persons.
- U.S. level Current Population Estimates of the numbers of Hispanic and non-Hispanic persons.
- Ten categories of U.S. level age by gender populations (males and females each by the following ages: 5-17 years; 18-34; 35-44, 45-64, and 65 years and older).

The adjusted person weight, variable WTPERFIN, should be used to weight all person-level data from the 1995 NPTS survey. Person weights form the basis of the travel day and travel period weights, since person weights are adjusted to account for noninterviewed persons within an interviewed household.

TRAVEL FILE The two trip-level weights are simple functions of the adjusted person weights. There is no adjustment to be made for trip-level non-response, since the trip data had to be obtained in order for the person to be treated as a responding person. Each person's
travel-day trip weight, variable WTTRDFIN, was calculated by multiplying the final person weight, WTPERFIN, times 365 to expand the person's travel day to an annual total. This weight is appropriate for weighting data from the travel day trip file and the segmented travel day trip file. The travel period weight, variable WTTRPFIN, for a person was calculated by dividing their travel day weight by 14 , to reflect the 14-day travel period.

3-H. SURVEY METHOD AND PROCEDURE CHANGES

1995 NPTS CHANGES

In many ways the 1995 NPTS represents a significant change in survey methods and procedures from earlier NPTSs. These survey changes, which are listed in Exhibit 3.1, have had a significant impact on the results of the survey. The greatest impacts are most likely from:

1. Use of a written diary to help remember travel on a specific day. In the pretest conducted in 1994 for the 1995 NPTS, a written diary was compared to the retrospective, or recall, method. The diary method averaged 0.5 trips more per person per day than the retrospective method. (Reference: PlanTrans, Draft report on NPTS Pretest Methods, Spring 1997)
2. The household roster of trips, that maintained a list of trips that household members already interviewed had been on with, or accompanied by, this respondent.
3. The $\$ 2.00$ incentive that was sent with each travel diary. This may have made the respondents feel obligated to record and report all of their travel.
4. Use of an advance letter to notify potential respondents that they would be recruited for the survey. We believe that the advance letter added legitimacy to the telephone recruitment, which contributed to higher quality data. The effect of the advance letter cannot be measured quantitatively.
5. Confirmation of "no travel" to distinguish from "soft refusals." The proportion of persons who said they made no trips on the assigned travel day was approximately 12
percent in 1995 , compared to about 25 percent in 1990.

Exhibit 3.1-Changes in the 1995 NPTS Survey Methodology and Their Probable Impacts

TOPIC	FROM	TO	PROBABLE IMPACTS
Respondent Contact	No advance letters	Advance letters	Improved response Legitimizes the survey with respondents
	No incentive	Incentive (\$2/person)	Improved respondent cooperation rates, may have increased trip reporting
	Recall	Travel Diary	More trips reported More shorter, incidental trips More trips for family \& personal business and social \& recreational purposes
	All trips for each person collected independently	Household rostering of trips	Include trips that may have been forgotten More consistent trip data Lower respondent burden More coherent picture of household tripmaking
	Did not specifically confirm zero trips	Specifically confirmed zero trips	More accurate count of persons who made no trips on their travel day
	Proxy from memory	Proxy from diary	More trips reported More accurate reporting of trip characteristics
	Trip definition	Clearer trip definition	Easier for respondent to report trips Interviewers more attuned to pick up incidental trips
	On-line edits	Additional on- line edits	More coherent trip reporting Improved data quality
	At least one person completed the travel day trip section	At least 50\% of the adults completed the travel day trip section	A more accurate representation of travel by the household unit
Completed household definition			

CHAPTER 4. DESCRIPTION OF DATA FILES

4-A. STRUCTURE OF THE DATA FILES

BASIC
STRUCTURE

The 1995 NPTS Public Use Data are organized into six different data files, which are available to users in SAS, ASCII, or DBF formats. Exhibit 4.1 illustrates the structure of the six files, with a description of which data are included in each file, the applicable questionnaire sections, the record level, and the variables which are needed to uniquely identify a record (ID variables).

The file variables are identified by variable name in the SAS versions. For each file variable, the code book contains:

- the variable type \& length
- whether it was a variable on the 1990 NPTS dataset
- the label, which is a brief description of the variable
- the section and item number of the questionnaire or other source of the data
- value ranges and special codes
- the frequency of responses for each value or code shown
- comments, as necessary

The variables in the ASCII files are on the file in the following order:

- ID and weight variables, followed by
- question response variables in questionnaire order, and ending with
- variables used to describe the geography, stratification variables, date of interview variables, and derived variables.
See Appendix I for the lists of ASCII variables, including the starting position and length of each variable and their order on the NPTS files.

Users should be aware that the ID variables TRPNUM (for travel day trips) and TRIPNUM (for travel period trips) are two different variables. Also, data for all of the travel day trips, including segmented trips, are included in the travel day trip file. More detail about the segmented trips is included in the segmented
travel day trip file.

Exhibit 4.1-Structure of 1995 NPTS Data Files

Data Files	Information Included	Record Level	ID Variables
Household file	Data unique to a household, or questions asked once for each sample household. Questions from interview sections: C -Home and Neighborhood D -Person Data J - Household Location, and K -Household Income	One record per household	HOUSEID
Person file	Data determined once for each completed person interview. Questions from interview sections: E - Driver Info. \& Customer Eval. F - Education \& Travel to Work I - Income of Persons not included in Household Income	One record per person	HOUSEID and PERSONID
Vehicle file	Data relating to each of the household's vehicles. Questions from interview section: B - Vehicle Data	One record per vehicle	HOUSEID and VEHID
Travel day trip file	Data about each trip the person made on the household's randomly-assigned travel day. Questions from interview section: G - Travel Day	One record per travel day trip	HOUSEID, PERSONID, and TRPNUM
Segmented travel day trip file	Data for up to 4 segments of each segmented travel day trip the person made on travel day. Based on responses to questions 28-30 and other questions of interview section G - Travel Day	One record per segmented travel day trip.	HOUSEID, PERSONID, and TRPNUM

Travel period file	Data that is asked once for every trip of at least 75 miles one way that the person took during a 14- day period ending on travel day. Questions from interview section: H - Travel Period	One record per travel period (14 days) trip.	HOUSEID, PERSONID, and TRIPNUM

4-B. RELATIONSHIP BETWEEN THE SIX NPTS DATA FILES

The chart below depicts the six NPTS data files and their relationship.

TYPICAL NPTS HOUSEHOLD

The next chart shows how the records would appear for the data reported by the Typical NPTS Household example introduced in Chapters 1 and 2. Remember that this household reported only a portion of what would have been reported in an actual NPTS interview.

NOTES: - This follows the Typical NPTS Household material in Chapter 2. In a real household, there would probably be trips by each household member. - Terry had no long trips, so there is no Travel Period file for her

- Terry had no segmented trips, so there are no Segmented trip files for her

TRAVEL DAY AND TRAVEL PERIOD TRIPS

These two sections of the questionnaire are designed to complement each other. When the data from the two sections are combined, a more complete picture of personal travel is obtained.
In the travel day section, the respondent is asked to report all trips of any length during the 24-hour period designated as their "travel day." The travel day is designed to collect the types of trips typically made on a daily basis, such as trips to work, to the store, running errands, and visiting friends.

Because people make longer trips less frequently, respondents are asked to report any long trips, defined as 75 miles or more one-way, taken over a two week period. This is known as the travel period.

Once the travel day is designated for a household, the travel period becomes the thirteen days preceding the travel day plus the travel day. Because the travel day is also included in the travel period, if the respondent took a long trip on travel day, this would be reported in both trip sections of the questionnaire. These trips, which are called "overlap" trips, must be subtracted from travel day data when the user combines travel day and travel period. To do this, omit the trips on travel day that have the a "yes" response (code=01) in the OVERLAP variable.

SEGMENTED TRIPS

In the 1995 NPTS, as in the 1990, certain trips were "segmented", that is, they were broken into their component parts. A trip was segmented if both of these conditions were met:

- there was a change of vehicle or a change of mode on the trips, AND
- one of the modes used was a public transit mode or Amtrak. Public transit modes include bus, subway, elevated rail, commuter train, streetcar or trolley car. This was done to collect more complete data on multi-modal trips, with particular emphasis on the use of public transit.

There was a limit of four segments per trip, and the typical travel day trip information was collected, along with the mode, start time and duration of each of the segments.

Trips in which the respondent went from one private vehicle (POV) to another were not segmented. For example, the respondent drives his sport utility vehicle to the pickup point for his carpool, then rides to work in the car of another carpool member. These POV-to-POV transfers were not segmented because they would have added to the respondent burden in reporting travel day trips, without an offsetting value in improving
our understanding of travel behavior. When more than one POV was used for a trip, the travel mode was assigned to the vehicle type used for the longest distance. In the example above, the car was probably the mode used for the longest distance.

RELATIONSHIP OF TRAVEL DAY TRIPS AND SEGMENTED TRIPS

Segmented trips are a small subset of the universe of NPTS travel day trips. Of the 409,025 travel day trips collected in the 1995 NPTS , 3,779 or less than one percent, are segmented. When a travel day trip is segmented, most of the trip information is on the travel day trip record. In addition, a segmented trip record is established on the segmented trip file. This segmented record, which has the same ID variables as the travel day trip record, contains the unique information on each of the segments of the trip, such as the mode, start time and duration in minutes. Even though a trip can have up to four segments, there is only one segmented trip record established. The data for each segment is listed in variables with names like SEG1_MIN, SEG2_MIN, SEG3_MIN, etc. to accommodate the characteristics of up to four segments in one record.

The purpose of this subsection is to present information on the NPTS file structure that has confused data users in the past.

Household Record - There is one record for each household in the dataset, also called a "useable" household.

Vehicle Record - There is a vehicle record for each vehicle owned by or available to a useable household. If the household has no vehicles, there will not be any vehicle records. The number of household vehicles, including zero vehicles, is available on the household record in the variable, HHVEHCNT.

Person Record - There is a person record for each interviewed person in the household. For example, a household consists of three people, Tom, Dick \& Harry. Tom and Dick were interviewed for the NPTS, but Harry was never available, despite repeated attempts. There will be a person record for Tom and one for Dick. No person record will exist for Harry, but his characteristics will be available to the analyst on the household file (see HOUSEHOLD

MEMBER VARIABLES below.)

Travel Day Trip Record - There is a trip record for each trip taken by an interviewed person in a useable household. So, in our example above, if Tom makes six trips, there will be six travel day trip records on the file. Suppose Dick was ill and stayed home all day. There are no travel day trips records for Dick, however, there is a person record for him, since he was interviewed. The person file variable, SAMEPLC, i.e. "stayed in the same place all day?", will confirm that Dick was interviewed for travel day and reported no trips. No travel day trip records will exist for Harry, since he was not interviewed. Likewise, there will be no person file record for Harry.

In earlier NPTSs, before "stayed in same place all day?" was asked, data users assumed that the lack of a travel day trip record for Dick meant that he was not interviewed for his travel day travel. This is not true. If there is a person record for that person, they were interviewed for travel day. Note that about 12 percent of the 1995 NPTS respondents reported no travel day trips. While some of these non-travelling people may be "soft refusals" who did not want to bother reporting their trips, many of them are legitimate non-travellers. Remember that the NPTS travel days encompass all 365 days of the year, including holidays and weekends.

Segmented Trip Record - A segmented trip record will be present only when a travel day trip meets the two conditions for segmented treatment (see SEGMENTED TRIPS discussion above). In our example, assuming that none of Tom's six trips met those conditions, there would be no segmented trip records for him.

Travel Period Trip Record - A record is present only when a qualifying trip was made by the respondent. Thus, if Dick, who was sick on travel day, had made a 250-mile trip the week before travel day, there would a travel period trip record for him. Because little detail is collected on the long trips in the travel period section, there is only one record for each roundtrip.

HOUSEHOLD MEMBER
VARIABLES

For the 1995 NPTS, the characteristics of all household members, whether interviewed or not, are available on the Household File. These characteristics were included to allow the user to address a number of travel behavior and survey method research issues. The characteristics are contained in the variables starting with P1 through P10 and, for each household member, the information includes:

- age (P1_AGE, P2_AGE,etc.)
- sex (P1_SEX, etc.)
- relationship to household respondent (P1_RELAT, etc.)
- driver status (P1_DRVR, etc.)
- worker status (P1_WKR, etc.) and
- response status, i.e., eligible or not eligible, interviewed or not interviewed, self interview or proxy (P1_STAT, etc.).

In earlier NPTSs it was difficult to obtain a complete picture of the household members, because a person record is only on the datafile when a household member is interviewed for the survey. The characteristics of all household members were gathered in the household interview, but in the 1990 NPTS the characteristics of those household members not interviewed were discarded. This caused some limitations on the analyses that could be performed, so it was decided to retain characteristics of all household members in the 1995 NPTS.

4-C. CODEBOOK

CODEBOOK FORMAT

The documentation includes a codebook, with sections for each of the data files. The codebook contains critical user information about each variable in each of the files. The codebook is arranged in a two-page format, with the variables in Exhibit 4.2 beginning on the left-hand side and continuing across the two facing pages. Exhibit 4.2 lists the items that correspond to the codebook columns, along with a brief description of the contents of each column.

CODEBOOK EXAMPLE

As an example, the third column of Exhibit 4.2 shows the codebook information for the variable named BUS_DIST.

- It is a numeric variable of width 5 including the decimal point (up to 3 digits before the decimal and one after).
- This question was not asked in the 1990 NPTS.
- This variable contains the distance in miles from the home to the nearest bus stop, reported in response to item 2.1 of questionnaire section C.
- The value range and the frequencies show that the file contains 26,160 reports ranging from 0 to 100 miles; that 1,245 household respondents said they could not ascertain the distance, and 15 refused to answer the question. It also shows that the question was legitimately skipped in the 14,613 households in which the household respondent answered no or don't know to question C-1 "Is local bus service available in your town or city?"
- \quad The comment for this variable tells the user that the responses in blocks have been converted to miles using a factor of 9 blocks per mile.

Exhibit 4.2 - Contents of the 1995 NPTS Code Books

Column Heading	Description of Contents	Example Variable (from Household File)
Target Variable	The variable name	BUS_DIST
Variable Type	C = character; N = numeric	N
Width	Maximum variable length	5.1
1990 Variable Name	S = same name in 1990 NPTS N = new variable in 1995 NPTS = variable values external to the survey	N
Variable Label	Short description of the variable	Distance to bus (miles)
Section	Source section(s) of the questionnaire	C
Item ID	Source item(s) in the questionnaire section	2.1
 Codes	Either lists all possible values of the variable, a range of the values, or a combination of the two	$(0-100)$ $994=$ Legitimate skip $998=$ Not ascertained $999=$ Refused
Frequencies	Shows the number of records in the file for each listed value	$0-100=26,160$ $994=14,613$ $998=1,245$ $999=$ 15
Comments	Gives additional information to users, or refers to relevant discussion in other sections of the documentation	Miles as reported, blocks converted to miles (9/mile)

COMPAR-
ABILITY
WITH 1990
NPTS

Emphasis was placed on making the 1995 NPTS data files comparable with the 1990 NPTS data files.

- To the extent possible, the same variable names as in 1990 were used for variables based upon the same information. In cases where the information is basically the same as 1990, but it was asked in a slightly different way or context, the similar 1990 variable name will be listed in the codebook column labeled "1990 variable".
- The same general scheme was used again for legitimate skip, not ascertained and refusal codes.
- The documentation in this volume is intended to cover at least the same content as the "1990 NPTS User's Guide for the Public Use Tapes", (Publication FHWA-PL-92-007).

4-D. VARIABLES REPEATED

REPEATED VARIABLES

HOUSEHOLD
LEVEL
REPEATED
VARIABLES

In addition to the information specific to its file (e.g., the travel day file contains data on the individual travel day trips), each of the six files includes variables from other files to be used along with its own variables. This is done for the convenience of the data user, to minimize the need to merge data from multiple files. Although this format is less desirable from a data storage standpoint, it significantly simplifies subsequent data manipulation.

The following commonly used variables are included in all six data files:

VARIABLE DESCRIPTION	VARIABLE NAME
Census Division	CENSUS_D
Census Region	CENSUS_R
Number of household drivers CMSA of household (Consoli- dated Metropolitan Statistical Area)	DRVRCNT
HHCMSA	

BLOCK

 GROUP REPEATED VARIABLES -PERSON
LEVEL
REPEATED VARIABLES

Household family income

category	HHFAMINC
MSA of household	
(Metropolitan Statistical Area)	HHMSA
Number of household members	HHSIZE
Number of household vehicles	HHVEHCNT
Hispanic status of household reference	
person	HH_HISP
Race of household reference person	HH_RACE
Household life cycle	LIF_CYC
Population size of MSA	MSASIZE
Presence or absence of rapid rail (i.e., subway, elevated rail)	RAIL
Substratum within major stratum for	
low-density or high-density residential	
phone numbers	SUBSTRAT
Travel day month (May 1995 through	
June 1996)	TDAY_MON
Travel day year	TDAY_YR
Major sample stratum	VARSTRAT
Number of household workers	WRKCOUNT.

HHFAMINC
HHMSA
HHSIZE
HHVEHCNT
HH_HISP
HH_RACE
LIF_CYC
MSASIZE
RAIL

SUBSTRAT
TDAY_MON
TDAY_YR
VARSTRAT
WRKCOUNT.

Four of the variables that describe the block group of the interviewed household are also repeated on the other files (except the segmented trip file). These four variables are:

VARIABLE DESCRIPTION
Median household income, block group HBHINMED
Housing unit density, block group
Urban/rural code, block group
Population density, block group

VARIABLE NAME
HBHRESDN
HBHUR
HBPPOPDN

There are a few person-level variables that are repeated on the three trip files (travel day, travel period, and segmented trips.).
These are:

VARIABLE DESCRIPTION

Whether respondent is a driver
Was this a proxy interview
Respondent's age

VARIABLE NAME
DRIVER
PROXY
R_AGE

Respondent's sex
Whether respondent is a worker

R_SEX
WORKER.

4- E. VARIABLES ADDED

ADDED VARIABLES

HOUSEHOLD LEVEL

An added variable is an item on the dataset that is not a response to a question in the interview. Numerous variables were developed and added to the data base, including:

- summary variables to aid data analysis,
- external variables to describe the geographic area surrounding the respondents' household and work locations, and
- flag variables to identify data records that have been edited.

Common-required variables were calculated and included on the data files so they would not need to be constructed each time they were needed. The variables that are repeated on all six files are indicated with an asterisk.

VARIABLE DESCRIPTION

* Number of drivers in the household

VARIABLE NAME
Number of eligible household members HHELGCNT

* Total number of persons in the household
* Number of household vehicles Number of household members under 5 years of age
Number of household members
not eligible for NPTS (e.g., under 5 years
of age, determined not to reside in the household, or incapable of being interviewed)
* Life cycle of the household

Variable indicating non-family income reported in the person file Number of person interviews completed for the household

HH_OTO4

DRVRCNT

HHSIZE
HHVEHCNT

INELGCNT
LIF_CYC
NONFMFLG
RESP_CNT

Day of week for the household's
travel day

* Number of workers in the household

TRAVDAY
WRKCNT.

TRACT \&
BLOCK
GROUP
CHARACTERISTICS

A number of geographically-based variables obtained from Claritas, Inc. were added to the database. These variables are based on Census tract or block group level projections of 1990 Census data to 1995. They provide the data user with characteristics of the respondent's neighborhood, which can supplement to the data collected on the respondent's household.

The tract and block group were identified by geocoding the reported home and work addresses from the survey. The addresses used to geocode the home and workplace locations were removed from the dataset for confidentiality reasons.

All of the household level variables are on the Household file, and the workplace variables are on the Person file. Four of these variables were repeated on all files except the Segmented Trip file (see BLOCK GROUP REPEATED VARIABLES above).

Appendix L contains more information on the tract and block group variables.

TRAVEL DAY The derived variables added to the travel day file are:
VARIABLE DESCRIPTION
Whether the trip began during
AM or PM hours
Difference in days between the household travel day and the person interview date
The number of minutes spent at destination of previous trip
Total number of persons on the travel day trip
Variable identifying travel day

VARIABLE NAME

DAYNIGHT

DIFFDATE
DWELTIME

NUMONTRP

POV trips for which the respondent was the driver VTR_FLG

TRAVEL PERIOD

There are two derived variables added to this file:

VARIABLE DESCRIPTION

Straight line distance of the travel period trip, based on household location and reported trip destination
Imputed variable identifying the driver of a travel period trip

VARIABLE NAME

CALCDIST
DRVR_TRP.

1990 TRIP PURPOSES

The trip purpose definitions for the 1995 NPTS differed from those used in the 1990 NPTS. In addition to the 1995 trip purpose, each trip was recoded into the variable WHYTRP90 to mimic the 1990 NPTS trip purpose definitions.

The 1995 trip purposes use a "from-to" format, while the 1990 purposes were based on coding a "main reason" for the trip. As a result, the trip purpose codes used in 1995 differed from the 1990 trip purposes in the following ways:

- Returning home is a 1995 trip purpose but was not a 1990 NPTS trip purpose. In 1990, the trip purpose was assigned to the activity that was the main reason the person was away from home.
- In 1990, if one of the reasons was work, the return trip home was assigned a work purpose, even if there were incidental trips made on the way home.
- \quad In 1990, if there were multiple purposes for being away from home and work was not one of them, the respondent was asked main reason for the trips. Because this "main reason" format was not used in the 1995 survey, when the 1995 purposes were recoded to the 1990 scheme, the activity the person spent the most time at while away from home was assigned as the main purpose for the return trip home. The variable, DWELTIME, was created to determine this.

The recoded 1990 trip purposes will be particularly useful for analyses comparing the 1990 and 1995 data by purpose. See Appendix \mathbf{M} for more detail on trip purposes and trip purpose variables on the 1995 dataset.

TRIP
CHAINING

Part of the recoding of trip purposes to the 1990 purpose involved creating trip chains. For this purpose, the chains were defined by trips ending at home, work or someplace else.

There are several derived variables on the Travel Day file developed to define trip chains. The variable CHAIN file indexes the trip chains defined for each a person's travel day. Each trip reported for a respondent was assigned to a "chain", after ordering the person's travel day trips by STRTTIME from 4:00 am to $3: 59 \mathrm{am}$. Trips with missing STRTTIME values were sorted to the beginning of the list. All trips within a chain are sequentially numbered in the variable CHAINTRP. Variables TRPNUM_A and TRPNUM_B identify the first and last trips in each chain. The variables FROM_A and TO_B identify the origin and destination of the chains in terms of home, work or someplace else (H, W, or S).

Some of these chains do not begin or end at either home or work, as some respondents did not take such trips. Also, some persons reported only a single trip on the travel day, such as returning home from vacation. It is possible to select a subset of chains that are anchored by home and work using FROM_A and TO_B. Note that some trip chains involve only one or two trips, which might exclude them from other types of trip chaining analyses.

CHAPTER 5 . USING THE DATA

5-A. TRAVEL CONCEPTS

OVERVIEW

The Travel Concepts portion of Appendix \mathbf{D} is primarily geared toward NPTS data users who are not familiar with household travel survey data. However, it may also be useful to the transportation planning professional because the use of certain travel terms and concepts often vary by individual survey. Appendix D contains definitions of the following measures of personal travel, when to use each, and how to compute them with the NPTS data:

- Person Trips
- \quad Person Miles of Travel (PMT)
- Vehicle Trips
- Vehicle Miles of Travel (VMT)
- Vehicle Occupancy
- Trip Chains
- Overlap Trips (used when adding Travel Day and Travel Period data)

5-B. TABULATING THE DATA

SAMPLE
TABLES \&
LOGIC

Appendix B contains 12 sample tables, computed at the national level. The sample tables were chosen to illustrate frequently used data tabulations. Tables were chosen to illustrate the nationallevel estimates which would be tabulated by many data users, such as estimated:

- total households by income and vehicle ownership pattens
- total persons by age, race and gender
- total numbers of workers, drivers, person trips, person miles, vehicle trips, and vehicle miles.
The 12 sample tables in Appendix B also include vehicle occupancy and commute time tabulations.

Each cell of each of the tables contains the:

- sample size
- weighted estimate, and
- sampling error of each weighted estimate.

These tables were prepared using the SUDAAN survey data analysis software developed by RTI. The computer logic used to prepare the data input to make the tables is also included in Appendix B.

ADDITIONAL RESOURCES

NPTS Website: http://www-cta.ornl.gov/npts
The NPTS Website offers:

- analysis capability which will include production of user-defined tables,
- a component for exploratory analysis of the data,
- a number of standard NPTS tables, and
- a conference portion to allow the data user to communicate with others, share code, etc.

NPTS Training - FHWA is developing an interactive CD-ROM as a stand-alone training tool. This will allow individuals to obtain training that fits with their needs.

Contact information for user support:
NPTS Website: Oak Ridge National Laboratories ORNL, (423) 574-5958 rtg@ornl.gov

User Support FHWA, (202) 366-5026
(Non-Web) OHIM.gatekeeper@fhwa.dot.gov
Fax (202) 366-7742

5-C. CONTROL NUMBERS

Two kinds of control numbers, control totals and weight sums, are described briefly below.

Control totals are known values, external to the survey itself, non-coverage. Control totals were used to adjust the 1995 NPTS weights for:
(1) the number of U.S. households, and
(2) the number of persons five years of age and older.

The control categories chosen for the 1995 NPTS and the method used to make the adjustments, also known as a post-stratification
weight adjustment procedure, are described in Section 3-G of this User's Guide. Appendix A contains the full complement of Control numbers for the 1995 NPTS data set.

WEIGHT SUMS Weight sums are simply the calculated sums of the survey

 weights. These values are helpful to users in verifying the correctness of data tabulations. The 1995 NPTS total sample sizes and weight sums for the six data files are as follows:Exhibit 5.1 - File Sample Sizes and Weight Sums

Data File	Sample Size	Weight Sum
Household	42,033	$98,990,000$
Person	95,360	$241,675,000$
Vehicle	75,217	$176,066,658$
Travel day trip	409,025	$378,930,363,336$
Segmented trip	3,779	$3,440,664,924$
Travel period trip	29,647	$1,996,178,135$

5-D. WEIGHTING THE DATA

MUST USE THE WEIGHTS

Calculation of survey weighting factors for the 1995 NPTS data was discussed earlier in Section 3-G of this User's Guide. The weights reflect the sample design and selection probabilities, over-sampling of certain strata, and adjustments to compensate for survey non-response and non-coverage.

The weights are multiplicative factors that must be applied to the file variables in order to obtain valid estimates of population values. If the weights are not used, the tabulations will give incorrect results. For example, overall unweighted daily sample trips per household are 9.73, whereas overall weighted daily trips per household are 10.49. Sample error can be magnified and lead to serious inaccuracies when weights are not used in tabulating these data.

The estimated weighted totals are obtained by multiplying each data value by the appropriate weight and summing the results. The purpose of weighting the data is to obtain valid estimates of national and regional totals for the U.S. population.

OVERSAMPLING

Large metropolitan areas with subway or elevated rail transit systems were over-sampled in order to increase the number of insample transit trips. Also, several geographic areas purchased NPTS add-on contracts, increasing the sample sizes within their planning areas in order to provide small-area data for transportation planning. The target sample size for the national sample was 21,120 useable households. Additional samples of useable households were provided to five add-on areas, as shown in Exhibit 5.2.

Over-sampling certain strata to increase the sample sizes increases the selection probabilities for each household in the sampling frame for the over-sampled areas. The larger selection probabilities translate into smaller weighting factors for the oversampled strata, correcting the weighted results for the effect of the over-sampling. Note that Exhibit 5.2 shows that the five addon areas accounted for 55.2 percent of the final useable households in the 1995 NPTS data set, though they accounted for only 10.8 percent of the initial 1995 NPTS target sample size at the national level, and 10 to 11 percent of U . S. households. It would be especially dangerous to rely on unweighted tabulations made from the 1995 NPTS data files, because of the heavy oversampling rates applied in the add-on areas. That is, national data tabulations made without weighting the data would look a lot like data for New York and Massachusetts. Weighting the data eliminates this problem and corrects the sample estimates.

Exhibit 5.2 - Target and Final Sample Sizes, at the National and Add-on Levels

Geographic Area	National Sample	Add-on Sample	Total Target	Final Actual
New York	1,683	9,189	10,872	11,004
Massachusetts	490	7,500	7,990	7,801
Central Oklahoma	68	2,944	3,012	2,956
Tulsa, Oklahoma	51	962	1,013	976
Puget Sound	-	300	300	326
Remainder of United States	18,828	-	18,828	18,970
Totals	21,120	20,895	42,015	42,033

5-E. SAMPLING ERRORS

EXAMPLE

Sample surveys are conducted when time or resources are not available to enumerate every household or person. Because every person was not included, the sample has an error associated with the results. Calculating sampling errors allows the measurement of the variability in the estimated statistics, and allows analysts to make probability statements about how large the difference may be between a sample statistic and its population value.

For example, the 1995 NPTS estimated number of household vehicles in the United States is $176,067,000$ with an estimated standard error of 828,000 (see Table 2 in Appendix B). This standard error estimate allows one to make the following probability statement
"We are 95 percent confident that the number of household vehicles in the United States in 1995 was between $174,411,000$ and 177,723,000."
That is, statistical theory tells us that estimated statistics will be within two standard errors of the census value in 95 percent of the possible samples that we may select. Here the census value is the value that would have resulted had the 1995 NPTS survey
been conducted in all United States households, rather than in a sample of households.

USE THE WEIGHTS

When calculating sampling error estimates, it is absolutely necessary to use the survey weights and formulas which properly account for the sample design used for the survey. The 1995 NPTS survey data set is based on a complex sampling design that includes stratification, unequal weighting and clustering of persons, vehicle, and trips. Sampling errors are typically decreased by stratification and increased by sample clustering and unequal weighting, with clustering normally being the dominant factor. Many standard statistical packages, including SAS, do not calculate sampling errors properly using data from the NPTS or other complex samples. See Appendix G for additional information about properly computing NPTS sampling errors.

5-F. FINDING THE VARIABLES YOU WANT

VARIABLE LISTS

The 1995 NPTS data sets are large and complex, containing numerous survey and external variables. In addition to the code books for each of the six NPTS data files, the following variable lists are available to assist users in locating NPTS variables:

1. SAS Proc Contents - Appendix I contains SAS proc contents lists for each of the six NPTS data files. The survey variables are listed in alphabetic order on each of these six listings.
2. ASCII File Variable Lists - Appendix I also contains the list of each ASCII variable, with its position and length on each of the six files. The ASCII variables for each NPTS file are ordered as follows:
first, ID and weight variables
second, questionnaire variables in order by questionnaire section and item number; and
last, all stratification variables, computed or derived variables and external variables.
3. Data Dictionary Listing - This list shows all of the variables that are contained in all six 1995 NPTS data files in a single alphabetic listing. Since many variables are in
more than one file, the data dictionary list has six columns indicating which data files contain each of the variables. The data dictionary is Appendix H.

5-G. USING THE DATA FROM MULTIPLE FILES

MERGING

FILES

Despite the effort to include as many "common" variables as possible (see Section 4-D), there still comes a time when it is necessary to use information from separate files for an analysis. For example, to study the daily trip patterns of different types of privately-owned vehicles (POVs), one needs to use the variable VEHTYPE (vehicle type) from the Vehicle file and link it to trip characteristics maintained in the Travel-day file. In these types of circumstances, one needs to merge together two or more of the six files.

File merging can be complicated and confusing, and a mistake can lead to invalid analysis results. However, an understanding of how the six files are structured and related to each other can significantly help clarify the process.

ID NUMBERS
Each unit (e.g. households, persons) in the survey has its unique identification number (ID). For example, each household is identified by a unique household ID (HOUSEID). Within each household, household members are numbered by a person number (PERSONID) and, similarly, household vehicles are numbered by a vehicle number (VEHID). Again, trips taken by an individual are numbered by a trip number (TRPNUM for a travel day trip or TRIPNUM for a travel period trip).

With this numbering system, the number that identifies a unit within a household (e.g., the household's vehicles and household members) needs to be used in conjunction with the household ID to uniquely identify that unit. For example, if a household has a HOUSEID of 12345678, its first member has a PERSONID of 01, and its second member has a PERSONID of 02, then the first household member is uniquely identified by an ID of 1234567801 and the second member 1234567802.

Similarly, the number that identifies a trip taken by an individual needs to be used in conjunction with the person's unique ID (i.e., HOUSEID and PERSONID) to uniquely identify that trip.

Continuing the above example, assume that the first household member took three trips during the sample day. Thus, the number TRPNUM for the first trip is 01 , the second trip 02 and the third trip 03. An ID of 123456780101 will uniquely identify the first trip taken by the first household member of Household 12345678. Likewise, an ID of 123456780102 and an ID of 123456780103 will uniquely identify the second and the third trips taken by the same person, respectively. The last trip ID is represented as:

HOUSEID;PERSONID;TRPNUM = \{12345678\}\{01\}\{03\}
Exhibit 5.3 shows which ID variables to use in the most common data linking of any two data files. Note that the linking ID must be common to both the "from" and "to" files. For example, in linking Person file data with Travel Day trip data, the variable TRIPNUM would not be used because it is only on the Travel Day file, not on the Person file.

Exhibit - Examples of Link Variables Between the Six 1995 NPTS Data Files

From File 1	To File 2	Linking ID Variables
Household file	Person file	HOUSEID
Household file	Vehicle file	HOUSEID
Household file	Travel day trip file	HOUSEID
Household file	Travel period file	HOUSEID
Person file	Vehicle file	HOUSEID
Person file	Travel day trip file	HOUSEID and PERSONID
Person file	Travel period file	HOUSEID and PERSONID
Vehicle file	Travel day trip file	HOUSEID
Travel day trip file	Segmented trip file	HOUSEID, PERSONID,
and TRPNUM		

id Variables NOT ALWAYS SEQUENTIAL

EXAMPLE OF A MERGE

The ID variables within a file are not always sequential. There are a number of reasons for this, including the following:

- \quad Some persons and vehicles reported by the household respondent were later found not to belong with the household and were deleted from the data set
- Some trip segments reported as separate trips were combined during editing
- When a person took more than 15 travel day trips, the additional trips were numbered starting with 21 in numbering the person's trips (TRPNUM) and starting with 101 in numbering the household's trips (HHTRIPID).

Depending on the nature of the analysis, merging files is typically based on a variable common to the files. The file-merging approach is illustrated here using an example. In this example, one wants to analyze the impact, if any, of occasional telecommuting on the number of daily trips. The trip-making data are contained in the Travel Day file while the variable indicating occasional telecommuting is in the Person file (WKFMHM2M). That is, the Travel-day file needs to be merged with the Person file.

The variables HOUSEID and PERSONID combined enable one to use the Person file to identify those who occasionally telecommute and those who do not. Using the combined identification number for HOUSEID and PERSONID, one can identify trips taken by that person in the Travel Day file. In this case, HOUSEID and PERSONID combined is the common identification needed to merge the Travel-Day and Person files.

In layman's language, the computer is first instructed to "grab" the variable WKFMHM2M, which holds the data on whether the respondent occasionally telecommutes, along with the associated HOUSEID and PERSONID variables from the Person file. Next, the computer is instructed to identify from the Travelday file all trips that are taken by that person i.e., having the same combined HOUSEID and PERSONID identification number.

Finally, the computer is told to "match" information on occasional telecommuting to the travel-day trips based on the combined HOUSEID and PERSONID identification number.

WHICH
WEIGHT TO USE

After the files are successfully merged, the next question in using the merged file is which weighting factor to use. In our example, there is a weighting factor in the Person file and one in the Travelday file. Chapter 3-G describes the calculations of the different weights in the NPTS. In essence, a weighting factor expands the sample data to a population from which the sample is selected. Thus, a household weight indicates the number of households with similar characteristics in the overall population that are represented by the sampled household.

For example, a household with a weight of 100 means that it represents itself and 99 other households of similar characteristics that were not sampled for the survey. This implies that these 99 households have travel patterns that are similar to those of the sampled household. One purpose of a sample design is to ensure that such similarity is maximized.

The rule in deciding which weight to use depends on the unit (e.g., households, persons, vehicles, or trips) on which the analysis is performed. For example, if an analysis is to be performed on a collection of trips, then the trip is the unit and the trip weight should be used. On the other hand, if an analysis is to be performed on a set of vehicles, then the vehicle is the unit and the vehicle weight should be used. In the above example, number of daily trips by telecommuting status, the main interest is on the trips, the individual trip is the unit and thus the trip weight is the appropriate factor.

Another way to explain this, using our example is:

Distribution of Persons by Telecommuting Status and Number of Daily Trips - Hypothetical Data

Tele- commute Status	$0-4$ daily trips	$5-9$ daily trips	10 or more daily trips	All
Sometime	45.9%	38.9%	15.6%	100.0%
Never	56.7	33.7	9.6	100.0
Total	54.9	34.2	10.9	100.0

In this example, the row data on telecommuting frequency is from the Person file, and the column data, number of daily trips, is computed from the travel day file. The determining factor in which weight to apply is always "where does the cell data come from?". For this example, the cell data is percent of persons, which is from the person file, and the person weight, WTPERFIN, is the correct weight to apply.

5-H. SPECIAL USER NOTES

DATA FILE CONVENTIONS

ADDING
TRAVEL DAY
AND TRAVEL PERIOD DATA

There are a number of conventions followed throughout the NPTS data files. These are also listed in Appendix J, Documentation Notes, and they include:

Yes/No questions - coded as $01=$ yes and $02=$ no.
Calendar Dates - separate variables were constructed for the month, day and year of reported dates.

Times - all reported time variables are in military time from 0000 to 2359 .

Legitimate skip codes - questions intentionally skipped in the instrument were generally denoted by a field filled with 9's with a 4 in the last digit.

Don't know - responses of don't know or not ascertained were generally denoted by a field filled with 9 's with an 8 in the last digit.

Refused - responses of refused were generally denoted by a field completely filled with 9's

Survey weights - there is one only one weight variable on each file. It is the weight that is appropriate for use in preparing tabulations of data from that file.

Special procedures must be followed for adding the data from Travel Day and Travel Period. See Section 4-B for a description of the relationship between these two files.

If the respondent took a trip of 75 miles or more and returned
home on Travel Day, that trip will be collected in both the travel day and the travel period sections of the questionnaire. Note that, for travel period trips, it does not matter when the outgoing portion of the trip took place, the return trip must be made during the 14 -day travel period. And the trip will be collected twice only for the travel that took place on the travel day.

Because of the difference in the definition of travel day and travel period trips, it is likely that the long-distance travel will be one trip on the travel period file, but will be counted as several trips on the travel day file. The variable, OVERLAP, will identify which travel day trips are part of the long trip reported in the travel period file.

To run a combined estimate, run the travel day file omitting the OVERLAP trips, and combine that result with all trips from the travel period file.

ESTIMATES OF VMT FROM THE 1995 NPTS

There are multiple ways of computing vehicle miles of travel (VMT) from the 1995 NPTS. Which one is used for a specific analysis should depend on the nature of that analysis. For many data inquiries, more than one way would be appropriate. The intent of this subsection is to make the data users aware of the various ways VMT estimates can be made, which are:

- travel day
- travel day plus travel period
- travel day plus travel period plus commercial driving
- annual estimate of driver miles
- annual estimate of vehicle miles
- annualized estimate of odometer readings

FHWA will be conducting analysis of the differences in the estimates derived from each of these sources.

CHAPTER 6. 1995 NPTS RESULTS

6-A. COMPARABILITY OF 1995 RESULTS WITH EARLIER NPTSs

CHANGES IN It is important that the data user not attempt to directly TRAVEL BETWEEN 1990 AND 1995 compare the data on daily travel from the 1995 NPTS with the 1990 or any of the earlier NPTSs.

When comparing the 1995 and 1990 NPTS datasets directly, there is nearly an increase of about 1.1 trips per person per day in 5 years, or 35% increase (3.1 trips in 1990 compared to 4.2 trips in 1995). However, much of this apparent increase is due to changes in survey methods. We estimate that one-third of this increase is a real increase in travel, and two-thirds due to changes in survey methods implemented in the 1995 survey. That is, between 1990 and 1995, daily person trips increased from 3.8 trips to 4.2 trips. By comparing the 1990 and 1995 NPTS data to regional data, we estimate that an increase of 0.4 trips per person per day can be attributed to "real" increases in travel, and 0.7 trips per day are attributable to changes in survey methods. Thus, to make 1990 NPTS more comparable to 1995 NPTS, the 1990 overall trip rates should increase by 22%. The remainder of this section describes the basis for these adjustments to the 1990 data.

METHOD OF COMPARISON

Step 1. Using regional data sets from approximately the same time period.

Six regional travel surveys for 1990 were used in the analysis, and seven different regional surveys were used for 1995 data. Data for these cities was extracted from the 1990 and 1995 NPTS for comparison.

Step 2. Making the data sets comparable
Several controls were established to reduce the possible impact of differences in survey implementation, between the various regional data sets, and with the NPTS. These controls, which were placed on the regional data sets and the NPTS, included:

- Travel days Monday through Friday only
- Persons age 5 and over
- Bike and walk trips included ONLY if traveling to/from work
- People who made no trips were excluded
- Proxy reports excluded (when identifiable)
- Travel reported within 3 days of assigned travel day (when identifiable).

Step 3. Calculating daily trips rates per person- total and by trip purpose.

Using these controlled datasets, the 1990 NPTS daily person trip rate is slightly lower than the 1990 regional data. In 1995, the reverse is true. When the data were controlled by the attributes listed above, NPTS shows an increase of 0.6 daily person trips per person between 1990 and 1995. With the same controls in place, the regional datasets show an increase of 0.4 trips per person over the same time.

Step 4. Adjusting for the difference.
Overall, to adjust for total trips, it is estimated that the 1990 trips should be increased by 22% to account for the difference in survey methods. NOTE: When using the datasets with the
controls in place an adjustment of 0.5 daily trips per person is sufficient. However, once the controls are removed a 22% increase in the 1990 NPTS is required.

IMPACT OF
 TRIP PURPOSE

The accuracy of trip reporting varies by trip purpose. Typically, important trips, such as to work or school, are less likely to be forgotten even when a diary is not used. Thus the 1990 NPTS, which was conducted from memory, has good coverage of home to work trips. Less important trips, such as trips to the gas station, dry cleaner, post office, etc. which may be considered incidental are more likely to be forgotten. Therefore, the number of trips directly from home to work or from work to home are overstated, and the non-home and non-work trips are understated. For basic comparisons, one should reduce the 1990 NPTS home-based Work trips, and increase both the home-based non-work trips and the non-home-based trips.

Trip purpose	Percent change	1990 daily trips per person	1990 adjusted daily trips
Home-based Work	Decrease by 14%	0.87	0.75
Home-based Other	Increase by 19%	1.60	1.91
Non-home based	Increase by 55%	0.73	1.13
Total		3.2	3.8

In the 1995 NPTS, which used a diary, there is a dramatic increase in the number of non-home-based trips, such as trips from work to shopping or personal errands, before going home. Concurrently, there is a decrease in the number of home-based work trips. Again, this indicates that people were more likely in 1990 to report a trip made directly from work to home, rather than reporting that they stopped along the way before returning home. Note that people are more likely to make stops on the way home from work, compared to making stops on the way to work.
(Reference: 1990 NPTS, Strathman and Dueker, "Understanding Trip Chaining".)

The most significant difference is that in 1990, the NPTS reports many more home-based work trips relative to the number of non-home-based trips. In 1995, the results are much more similar to the data collected in regional surveys all over the country.

FOR MORE DETAIL AND FURTHER ANALYSIS

A copy of the full report on this comparison of trip rates can be obtained from FHWA, NPTS User Support (see below).

FHWA will also be conducting and publishing further analysis of how to adjust 1990 NPTS data, so that it can be compared with 1995 NPTS results without the change in survey methods skewing the results. This analysis will cover trips and travel by major mode and major purpose. Data users on the FHWA mailing list will be issued updates to this User's Guide, or the reader may contact either the NPTS Website at:
http://www-cta.ornl.gov/npts
or NPTS Data User Support, FHWA
voice 202-366-5026, fax 202-366-7742
OHIM.gatekeeper@fhwa.dot.gov.

APPENDIX A
 1995 NPTS CONTROL NUMBERS

There are two kinds of control numbers contained in this Appendix. The first control numbers are those that were used to expand the sample to the total population, e.g. households by region and msa size, persons by age, sex and race. The second set of control numbers, contained on the last page of the Appendix, are the weighted numbers that should be obtained when the data are properly weighted and tabulated. These include vehicles, drivers, workers, person trips and person miles of travel, vehicle trips and vehicle miles of travel.

CONTROL NUMBERS FOR SAMPLE EXPANSION:

Household Weight Sums by Ethnicity

ETHNICITY	Hhld weight	COUNT
Hispanic nonHisp.	7,735,000	1,735
	91,255,000	40,298
	98,990,000	42,033

Household Weight Sums by Race

RACE	Hhld weight	COUNT
black	11,655,002	2,997
nonblack	87,334,998	39,036
	98,990,000	42,033

[^0]| | Hhld
 weight | |
| :--- | ---: | ---: |
| REGION | COUNT | |
| | | |
| Northeast Region | $19,593,000$ | 21,163 |
| MidwestRegion | $23,683,013$ | 5,114 |
| South Region | $34,765,980$ | 11,112 |
| West Region | $20,948,007$ | 4,644 |
| | $==========$ | $========$ |
| | $98,990,000$ | 42,033 |

Household Weight Sums by Travel Month

Travel day date (MM)	Hhld weight	COUNT
Jan	$8,249,171$	2,598
Feb	$8,249,165$	3,691
Mar	$8,249,167$	4,770
Apr	$8,249,170$	3,812
May	$8,249,168$	4,827
Jun	$8,249,175$	3,723
Jul	$8,249,169$	3,166
Aug	$8,249,165$	2,531
Sep	$8,249,166$	2,833
Oct	$8,249,152$	3,305
Nov	$8,249,168$	3,400
Dec	$8,249,163$	3,377
	$===========$	$=======$
	$98,990,000$	42,033

Household Weight Sums by MSA Size

	Hhld weight	COUNT
MSA SIZE		
msa 2.5M+	$32,810,839$	10,852
msa 1M -2.5M	$17,961,022$	6,404
msa $<1 \mathrm{M}$	$27,822,102$	18,707
not in msa	$20,396,037$	6,070
	$==========$	$=======$
	$98,990,000$	42,033

Household Weight Sums by HHId Size

HHSIZE	Hhld weight	COUNT
1	$24,732,000$	8,219
2	$31,834,000$	15,263
3	$16,827,000$	7,392
$4+$	$25,597,000$	11,159
	$=========$	$=======$
	$98,990,000$	42,033

Person Weight Sums by Ethnicity of Respondent

	Person weight	COUNT
ETHNIC		
Hispanic	$23,888,001$	4,322
NonHisp.	$217,786,999$ 91,038 $=========$ $=======$ $241,675,000$	95,360

Person Weight Sums by Race of Respondent

	Person weight	COUNT
RACE		
black	$30,001,008$	6,596
nonblack	$211,673,992$	88,764
	$==========$	$======$
	$241,675,000$	95,360

Respondent person sex	Age Category	Person weight	COUNT
male	05-17	25,690,000	10,159
	18-34	33,083,000	10,049
	35-44	20,968,000	8,481
	45-64	24,893,000	10,942
	65+	13,002,000	5,528
	male	17,636,000	45,159
female	05-17	24,531,000	9,677
	18-34	33,356,000	11,563
	35-44	21,361,000	9,513
	45-64	26,544,000	12,285
	65+	18,247,000	7,163
	female	124,039,000	50,201
		241,675,000	95,360

Person Weight Sums by Region

\quad REGION	Person weight	COUNT
North East Region	$47,522,003$	48,184
North Central Region	$56,600,031$	11,703
South Region	$84,786,949$	24,862
West Region	$52,766,017$	10,611
	$================$	
	$241,675,000 \quad 95,360$	

MONTH weight COUNT

Jan	$20,139,591$	5,771
Feb	$20,139,591$	8,449
Mar	$20,139,593$	10,767
Apr	$20,139,580$	8,269
May	$20,139,583$	10,974
Jun	$20,139,578$	8,500
Jul	$20,139,587$	7,243
Aug	$20,139,572$	5,860
Sep	$20,139,581$	6,313
Oct	$20,139,582$	7,682
Nov	$20,139,585$	7,760
Dec	$20,139,575$	7,772
	$=========$	$======$
	$241,675,000$	95,360

CONTROL TOTALS FOR CHECKING OUTPUT:

Variable	Sample Size	Weighted Sum *	95\% Confidence Interval Estimate ${ }^{* * *}$ (Units=000)	File Processed	Comments (Variable names are capitalized)
Households	42,033	98,990,000	98,329 to 99,651	Household	Sum over WTHHFIN
Persons	95,360	241,675,000	239,113 to 244,237	Person	Sum over WTPERFIN
Household Vehicles	75,217	176,066,660	174,411 to 177,722	Vehicle	Sum over WTHHFIN
Drivers **	69,990	176,798,290	175,186 to 178,410	Person	Sum over WTPERFIN where DRIVER="01"
Workers **	51,928	131,697,367	130,381 to 133,014	Person	Sum over WTPERFIN where WORKER="01"
TRAVEL DAY: Person Trips	409,025	378,930,363,336	$\begin{aligned} & 373,823,600 \text { to } \\ & 384,037,120 \end{aligned}$	Travel Day	Sum over WTTRDFIN
Person Miles of Travel (PMT)	402,298	3,411,121,810,000	$\begin{array}{\|l} 3,313,725,600 \\ 3,508,518,000 \end{array}$	Travel Day	If TRPMILES=9996 then set TRPMILES=0.06;/f TRPMILES=9997 then set TRPMILES $=0.50$;Then sum over TRPMILES weighted with WTTRDFIN where TRPMILES does not equal 9998 or 9999
Segmented Trips (subset of person trips)	3,779	3,440,664,924	---	Segment	Sum over WTTRDFIN
Vehicle Trips (travel day) **	250,181	229,745,329,785	$\begin{aligned} & 226,830,150 \text { to } \\ & 232,660,149 \end{aligned}$	Travel Day	Sum over WTTRDFIN where VTR_FLG="01" See ${ }^{\overline{* * * *}}$ below
Vehicle Miles of Travel (VMT) **		2,068,368,000,000	$\begin{array}{\|l} 2,022,487,420 \text { to } \\ 2,114,248,580 \end{array}$	Travel Day	If TRPMILES=9996 then set TRPMILES=0.06;If TRPMILES=9997 then set TRPMILES $=0.50$;Then sum over TRPMILES weighted with WTTRDFIN where TRPMILES does not equal 9998 or 9999 and VTR FLG="01" See **** below.

TRAVEL PERIOD: Person Trips	29,647	$1,996,178,135$	$1,949,858$ to $2,042,498$	Travel Period	Sum over WTTRPFIN

* annual, national estimates
** There are slight differences between these estimates and those in Appendix B. See Appendix B Notes on page B-2.
*** The end points of a confidence interval are formed by subtracting 2 standard errors from each estimate and adding 2 standard errors to each estimate. For example, the standard error for the number of household vehicles is 828,000 , making the 95% Confidence Interval estimate range from 174,411,320 to 177,722,000.
**** Instead of using VTR_FLG="01", setting DRVR_FLG="01" and TRPTRANS less than or equal to "08" will produce similar results.

WARNING: Do not compare the 1995 data on trips and travel directly to the 1990 NPTS data. See Chapter 6 of this User's Guide.

APPENDIX B
 STANDARD TABLES AND LOGIC

This appendix contains the commonly-requested tables listed below. For each cell, the table contains the sample size (unweighted number of cases), weighted size, and the standard error of the weighted estimate. Standard errors are more important when sample sizes are smaller. The cells of the tables show the standard errors for subsets of the data. The tables are followed by the logic, in the form of table statements, used to produce them.

Table 1- Number of Households by Household Income and Household Vehicles
Table 2- Number of Household Vehicles by Vehicle Age and Type
Table 3 - \quad Number of Persons 5 Years and Older in Households, by Age and Sex
Table 4 - \quad Number of Drivers by Annual Miles Category, Age and Sex
Table 5- Number of Workers by Work Trip Time and MSA Size
Table 6 - \quad Number of Travel Day Person Trips by Mode and Purpose
Table 7 - \quad Average Number of Travel Day Trips per Person by Age and Sex
(NOTE: The rates in this table are per travelling person. Persons who made no travel day trips are excluded from the rates shown here.)

Table 8 - \quad Number of Travel Day Person Miles Travelled by Mode and Purpose
Table 9 - \quad Number of Travel Day Vehicle Trips by Trip Length Category and Purpose
Table 10- Number of Travel Day Vehicle Miles of Travel by Trip Length Category and Purpose
Table 11-Number of Travel Period Person Trips by Mode and Purpose

Table 12 - Average Vehicle Occupancy by Trip Length and Purpose
(NOTE: The rates in this table are computed as POV person trips divided by vehicle trips. A different rate will be obtained if POV person miles are divided by vehicle miles of travel.)

Appendix B Notes

There are some differences between the totals shown in Appendix A, pages A-6 and A-7, and those shown in the Appendix B tables. The reason for the differences in Workers and Drivers is that legitimate skip responses were excluded because they add nothing to the understanding of the data in the Appendix B tables and they result in extraneous records being included in the table totals.

The specific differences and the reasons for them are shown below.

Variable	Appendix A \#	Appendix B \#	Reason
Drivers	$\begin{aligned} & \mathrm{n}=69,990 \\ & \mathrm{wgt}=176,798,290 \end{aligned}$	$\begin{aligned} & \mathrm{n}=69,876 \\ & \text { wgt }=176,330,410 \end{aligned}$	Appendix A uses all records where DRIVER=01 Appendix B uses DRIVER=01 and YEARMILE not equal 999994 (legitimate skip)
Workers	$\begin{aligned} & \mathrm{n}=51,928 \\ & \text { wgt }=131,697,367 \end{aligned}$	$\begin{aligned} & \mathrm{n}=46,679 \\ & \mathrm{wgt}=117,746,380 \end{aligned}$	Appendix A uses all workers (WORKER=01) Appendix B table presents workers by travel time and MSA size, and excludes 5,249 workers for whom travel time was legitimately skipped (TIMETOWK=994) for reasons including work from home and or no fixed place of work
Vehicle Trips	$\begin{aligned} & \mathrm{n}=250,181 \\ & \mathrm{wgt}=229,745,329,785 \end{aligned}$	$\begin{aligned} & \mathrm{n}=250,173 \\ & \text { wgt }=229,737,860,000 \end{aligned}$	the Appendix B totals inadvertently omitted 8 trips because their trip distance fell between the categories as defined in the table code, e.g., a trip of 5.2 miles was not included in the $<=5$ category
VMT	wgt= 2,068,368,000,000	wgt= 2,068,326,640,000	this difference is the result of the 8 trips inadvertently omitted from the Appendix B table

APPENDIX C
 CODEBOOK FOR NPTS PUBLIC USE DATA FILES

Codebook Version Date 9/29/97

This appendix contains information on the variables in each of the NPTS data files. The first line of each page identifies the file being documented. The following is the file order as well as the length of the documentation:

Household	64 pages
Person	52 pages
Vehicle	18 pages
Travel Day	30 pages
Segment	16 pages
Travel Period	20 pages

Pagination restarts at one for each file. The information on each variable is intended to be view across two pages. The columns of the left hand page are:

Target Variable This is the variable name.
Variable Type $\quad N$ "indicates the data is numeric
" C " indicates character (alphanumeric) data
Width

1990 Var
N"indicates a new variable, ' S "indicates that the same variable name is used as in 1990,
**"(asterisk) is used if the 1995 variable has no comparable 1990 variable, and
If a variable name is shown, identifies the 1990 variable similar to this one.

Variable Label
Provides a short explanation of what the variable describes.

Section and Item ID Together the Section and Item ID document the survey section and question that was the source of the data. Other possible entries include:

CLAR Tract and block group characteristics purchased from Claritas, Inc. (See Appendix L)

OAKR Product of Oak Ridge National Lab (e.g. annualized odometer readings)
*"
An asterisk notes a value derive from data collected on the questionnaire or another source, such as the sampling frame or the geocoding process

On the second page, the following columns appear:
Target Variable This is the variable name.

Value Range and Codes
The legitimate data entries are identified. If special codes are used, they are also identified and defined.

Freqs For each item identified in the column Value Range and Codes, the frequency of its occurrence is documented.

Comments Provides additional details on the variable.
The following pages of this appendix are best displayed and/or printed as Courier set to 7 points and the text left justified.

Target Variable	Value Range and Codes:	Freqs:	Comments:
HBHHSMLT	$0=0$ to 4\%	12,508	Variables beginning with $H B$ are external Census block level variables describing the location of the household.
	$5=5$ to 14\%	8,214	
	$20=15$ to 24%	4,595	
	$30=25$ to 34%	3,280	
	$40=35$ to 44\%	2,898	
	$50=45$ to 54\%	2,231	
	$60=55$ to 64\%	1,885	
	$70=65$ to 74%	1,558	
	$80=75$ to 84\%	1,431	
	$90=85$ to 94%	1,548	
	$95=95$ to 100\%	1,552	
	998 $=$ Not ascertained	333	
HBHHSOTH	$0=0$ to 4\%	40,777	
	$5=5$ to 14%	851	
	$20=15$ to 24%	49	
	$30=25$ to 34%	16	
	$40=35$ to 44\%	1	
	$50=45$ to 54\%	4	
	$60=55$ to 64%	1	
	$70=65$ to 74\%	0	
	$80=75$ to 84%	0	
	$90=85$ to 94\%	1	
	$95=95$ to 100\%	0	
	998 $=$ Not ascertained	333	
HBHHSSNG	$0=0$ to 4\%	1,674	
	$5=5$ to 14%	1,515	
	$20=15$ to 24%	1,425	
	$30=25$ to 34\%	1,552	
	$40=35$ to 44\%	1,924	
	$50=45$ to 54\%	2,225	
	$60=55$ to 64\%	2,857	
	$70=65$ to 74\%	3,296	
	$80=75$ to 84%	4,618	
	$90=85$ to 94%	7,948	
	$95=95$ to 100%	12,666	
	998 $=$ Not ascertained	333	
HBHINCH	$0=0$ to 4\%	2,751	
	$5=5$ to 14%	10,231	
	$20=15$ to 24%	9,414	
	$30=25$ to 34%	7,283	
	$40=35$ to 44%	4,751	
	$50=45$ to 54\%	3,413	
	$60=55$ to 64%	2,032	
	$70=65$ to 74%	1,156	
	$80=75$ to 84%	508	
	$90=85$ to 94%	148	
	$95=95$ to 100%	13	

Target	Var
Variable: Type: Width: 1990 Var: Variable Label	

HBHINCH	N	3	Percent HHs, income $\$ 60000$ and up, BG	CLAR
HBHINCL	N	3	$*$	Percent HHs, income $<\$ 15000, \mathrm{BG}$

HBHINCM1 N 3 * Percent HHs, income \$15000-\$39999, BG CLAR *

HBHINCM2 N 3 Percent HHs, income \$40000-\$59999, BG CLAR *

HBHINMED N 6 . Median household income, BG CLAR *

Target Variable	Value Range and Codes:	Freqs:
	998= Not ascertained	333
HBHINCL	$0=0$ to 4\%	4,638
	$5=5$ to 14%	15,531
	$20=15$ to 24%	11,142
	$30=25$ to 34%	5,597
	$40=35$ to 44%	2,664
	$50=45$ to 54\%	1,116
	$60=55$ to 64%	617
	$70=65$ to 74%	267
	$80=75$ to 84%	87
	$90=85$ to 94%	27
	$95=95$ to 100\%	14
	998= Not ascertained	333
HBHINCM1	$0=0$ to 4\%	11
	$5=5$ to 14%	244
	$20=15$ to 24%	2,366
	$30=25$ to 34%	6,383
	$40=35$ to 44%	11,154
	$50=45$ to 54\%	12,755
	$60=55$ to 64\%	7,065
	$70=65$ to 74%	1,525
	$80=75$ to 84%	168
	$90=85$ to 94\%	28
	$95=95$ to 100\%	1
	998= Not ascertained	333
HBHINCM2	$0=0$ to 4\%	3
	$5=5$ to 14\%	803
	$20=15$ to 24%	7,595
	$30=25$ to 34%	19,915
	$40=35$ to 44%	11,669
	$50=45$ to 54\%	1,591
	$60=55$ to 64%	104
	$70=65$ to 74%	13
	$80=75$ to 84\%	3
	$90=85$ to 94\%	1
	$95=95$ to 100\%	3
	998= Not ascertained	333
HBHINMED	15,000 $=0$ to 20K	3,387
	$22,000=20 \mathrm{~K}$ to 25 K	3,667
	$27,000=25 \mathrm{~K}$ to 30 K	5,086
	$32,000=30 \mathrm{~K}$ to 35 K	5,755
	$37,000=35 \mathrm{~K}$ to 40 K	5,093
	$45,000=40 \mathrm{~K}$ to 50 K	8,395
	$60,000=50 \mathrm{~K}$ to 70 K	7,805
	$80,000=70 \mathrm{~K}$ to 999K	2,512
	999998= Not ascertained	333

(This page revised March 1999)

Target Variable	Value Range and Codes:	Freqs:	Comments:
HBHMEDHS	$30000=0$ to 50 K	4,995	
	$60000=50 \mathrm{~K}$ to 70 K	5,883	
	$85000=70 \mathrm{~K}$ to 100 K	8,798	
	$125000=100 \mathrm{~K}$ to 150 K	10,102	
	$175000=150 \mathrm{~K}$ to 200 K	6,396	
	$300000=200 \mathrm{~K}$ to 999K	5,526	
	999998= Not ascertained	333	
HBHRECNT	$0=0$ to 4%	18,198	
	$5=5$ to 14%	12,755	
	$20=15$ to 24%	5,796	
	$30=25$ to 34%	2,349	
	$40=35$ to 44%	1,202	
	$50=45$ to 54\%	577	
	$60=55$ to 64%	337	
	$70=65$ to 74%	220	
	$80=75$ to 84%	122	
	$90=85$ to 94\%	88	
	$95=95$ to 100%	56	
	998 $=$ Not ascertained	333	
HBHRESDN	$25=0$ to 50	5,815	
	$150=50$ to 250	6,730	
	$700=250$ to 1000	9,109	
	$2000=1000$ to 3000	11,873	
	$4000=3000$ to 5000	3,626	
	$6000=5000$ to 999 K	4,547	
	999998= Not ascertained	333	
HBHTNOWN	$0=0$ to 4%	813	
	$5=5$ to 14%	1,074	
	$20=15$ to 24%	1,375	
	$30=25$ to 34%	2,032	
	$40=35$ to 44%	2,319	
	$50=45$ to 54\%	3,123	
	$60=55$ to 64%	3,885	
	$70=65$ to 74%	5,905	
	$80=75$ to 84%	8,997	
	$90=85$ to 94%	9,837	
	$95=95$ to 100%	2,340	
	998= Not ascertained	333	
HBHTNRNT	$0=0$ to 4\%	1,678	
	$5=5$ to 14%	9,432	
	$20=15$ to 24%	9,377	
	$30=25$ to 34%	6,113	
	$40=35$ to 44%	4,011	
	$50=45$ to 54\%	3,215	
	$60=55$ to 64%	2,355	
	$70=65$ to 74%	2,122	
	$80=75$ to 84%	1,393	
	$90=85$ to 94%	1,128	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
HBHTNRNT	N	3	*	Percent renter-occupied housing, BG	CLAR	*
HBHUR	C	1	*	Urban/rural code, block group	CLAR	*
HBP 65P	N	3	*	Percent 65 \& older, block group	CLAR	*

HBPCOLGD N 3 * Pcnt Colg Grads (over 25) , block group CLAR *
HBPFORBN N 3 * Percent foreign born 1990, block group CLAR *
HBPHISP N 3 Percent Hispanic, block group CLAR *

Target Variable	Value Range and Codes:	Freqs:	Comments:
	$95=95$ to 100\%	876	
	998 $=$ Not ascertained	333	
HBHUR	$8=$ Not ascertained	333	
	$\mathrm{C}=$ Second city	8,811	
	$\mathrm{R}=$ Rural	6,669	
	$\mathrm{S}=$ Suburban	10,017	
	$\mathrm{T}=$ Town	10,243	
	$\mathrm{U}=$ Urban	5,960	
HBP 65P	$0=0$ to 4\%	2,866	
	$5=5$ to 14%	23,257	
	$20=15$ to 24%	12,313	
	$30=25$ to 34%	2,437	
	$40=35$ to 44%	502	
	$50=45$ to 54\%	188	
	$60=55$ to 64%	54	
	$70=65$ to 74%	28	
	$80=75$ to 84%	27	
	$90=85$ to 94%	27	
	$95=95$ to 100%	1	
	998= Not ascertained	333	
HBPCOLGD	$0=0$ to 4\%	771	
	$5=5$ to 14\%	6,982	
	$20=15$ to 24%	10,476	
	$30=25$ to 34%	8,984	
	$40=35$ to 44%	6,314	
	$50=45$ to 54\%	3,928	
	$60=55$ to 64\%	2,463	
	$70=65$ to 74%	1,253	
	$80=75$ to 84%	424	
	$90=85$ to 94%	89	
	$95=95$ to 100%	16	
	998= Not ascertained	333	
HBPFORBN	$0=0$ to 4\%	23,594	
	$5=5$ to 14%	13,070	
	$20=15$ to 24%	2,828	
	$30=25$ to 34%	1,162	
	$40=35$ to 44%	541	
	$50=45$ to 54\%	270	
	$60=55$ to 64\%	149	
	$70=65$ to 74%	70	
	$80=75$ to 84%	15	
	$90=85$ to 94%	1	
	$95=95$ to 100%	0	
	998= Not ascertained	333	
HBPHISP	$0=0$ to 4\%	30,560	
	$5=5$ to 14%	6,966	
	$20=15$ to 24%	1,693	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
HBPHISP	N	3	*	Percent Hispanic, block group	CLAR	*
HBPHSGD	N	3	*	Pcnt HS grads (over 25), block group	CLAR	*
HBPLTPOV	N	3	*	Percent families below poverty, blk grp	CLAR	*
HBPPOPDN	N	6	*	Population density, block group	CLAR	*
HBPPOPNO	N	6	*	Current population, block group	CLAR	*

Target Variable	Value Range and Codes:	Freqs:	Comments:
	$30=25$ to 34%	813	
	$40=35$ to 44%	498	
	$50=45$ to 54\%	340	
	$60=55$ to 64%	263	
	$70=65$ to 74%	202	
	$80=75$ to 84%	179	
	$90=85$ to 94%	135	
	$95=95$ to 100%	51	
	998 $=$ Not ascertained	333	
HBPHSGD	$0=0$ to 4\%	251	
	$5=5$ to 14\%	3,090	
	$20=15$ to 24%	8,732	
	$30=25$ to 34%	15,191	
	$40=35$ to 44%	11,476	
	$50=45$ to 54\%	2,690	
	$60=55$ to 64%	251	
	$70=65$ to 74%	11	
	$80=75$ to 84%	4	
	$90=85$ to 94%	2	
	$95=95$ to 100%	2	
	998 $=$ Not ascertained	333	
HBPLTPOV	$0=0$ to 4%	17,101	
	$5=5$ to 14%	16,861	
	$20=15$ to 24%	4,583	
	$30=25$ to 34%	1,696	
	$40=35$ to 44%	829	
	$50=45$ to 54%	356	
	$60=55$ to 64%	153	
	$70=65$ to 74%	80	
	$80=75 \text { to } 84 \%$	26	
	$90=85$ to 94%	8	
	$95=95$ to 100%	7	
	998 $=$ Not ascertained	333	
HBPPOPDN	$50=0$ to 100	4,936	
	$300=100$ to 500	6,552	
	$750=500$ to 1 K	3,634	
	$1,500=1 \mathrm{~K}$ to 2 K	4,717	
	$3,000=2 \mathrm{~K}$ to 4 K	6,943	
	$7,000=4 \mathrm{~K}$ to 10 K	9,536	
	$17,000=10 \mathrm{~K}$ to 25 K	3,284	
	$30,000=25 \mathrm{~K}$ to 999 K	2,098	
	999998= Not ascertained	333	
HBPPOPNO			
	$1250=1000 \text { to } 1500$	$11,771$	
	$1750=1500 \text { to } 2000$	6,555	
	$2500=2000$ to 3000	5,450	
	$3500=3000$ to 999 K	4,866	
	999998= Not ascertained	333	

Target Var
Variable: Type: Width: 1990 Var: Variable Label:
HBPRCAA N 3 Percent African-Am., block group CLAR *
HBPRCASN N 3

Percent Asian- Am., block group
CLAR *

HBPRCCAU N 3
Percent White, block group
CLAR *

HBPRCOTH N 3 *
Percent Other races, block group
CLAR *

Target Variable	Value Range and Codes:	Freqs: Comments:
HBPRCAA	$0=0$ to 4%	29,471
	$5=5$ to 14%	6,282
	$20=15$ to 24%	1,833
	$30=25$ to 34%	977
	$40=35$ to 44%	570
	$50=45$ to 54%	432
	$60=55$ to 64%	370
	$70=65$ to 74%	344
	$80=75$ to 84%	330
	$90=85$ to 94%	411
	$95=95$ to 100%	680
	998= Not ascertained	333
HBPRCASN	$0=0$ to 4%	34,725
	$5=5$ to 14%	$5,553$
	$20=15$ to 24%	886
	$30=25$ to 34%	270
	$40=35$ to 44%	111
	$50=45$ to 54%	82
	$60=55$ to 64%	22
	$70=65$ to 74%	20
	$80=75$ to 84%	18
	$90=85$ to 94%	9
	$95=95$ to 100%	4
	998 $=$ Not ascertained	333
HBPRCCAU	$0=0$ to 4\%	688
	$5=5$ to 14%	466
	$20=15$ to 24%	372
	$30=25$ to 34%	437
	$40=35$ to 44%	447
	$50=45$ to 54%	614
	$60=55$ to 64%	914
	$70=65$ to 74%	1,572
	$80=75$ to 84%	3,451
	$90=85$ to 94%	10,598
	$95=95$ to 100%	22,141
	998= Not ascertained	333
HBPRCOTH	$0=0$ to 4\%	39,577
	$5=5$ to 14\%	1,897
	$20=15$ to 24%	155
	$30=25$ to 34%	33
	$40=35$ to 44%	14
	$50=45$ to 54%	6
	$60=55$ to 64%	6
	$70=65$ to 74%	3
	$80=75$ to 84%	4
	$90=85$ to 94%	2
	$95=95$ to 100%	3
	998= Not ascertained	333

Target Var
Variable: Type: Width: 1990 Var: Variable Label:
HHELGCNT N 2
\# of eligible persons in HH
D
3

HHFAMINC
C
2
S
HH family income category
K
$1 \& 2$

Progid: disk46:[wmynpts.pubfiles]cbrp_hh.sas Date: 23SEP97

Target Variable	Value Range and Codes:	Freqs:	Comments:
HHCMSA	Chicago-Gary-Kenosha, IL-IN-WI CMSA	833	
	Cincinnati-Hamilton, OH-KY-IN CMSA	176	
	Cleveland-Akron, OH CMSA	240	
	Dallas-Fort Worth, TX CMSA	307	
	Denver-Boulder-Greeley, CO CMSA	152	
	Detroit-Ann Arbor-Flint, MI CMSA	334	
	Houston-Galveston-Brazoria, TX CMSA	268	
	Los Angeles-Riverside-Orange County	962	
	Miami-Fort Lauderdale, FL CMSA	291	
	Milwaukee-Racine, WI CMSA	136	
	New York-No. New Jersey-Long Island	5,407	
	Philadelphia-Wilmington-Atlantic City	598	
	Portland-Salem, OR-WA CMSA	217	
	Sacramento-Yolo, CA CMSA	159	
	San Francisco-Oakland-San Jose, CA CMSA	587	
	Seattle-Tacoma-Bremerton, WA CMSA	696	
	Washington-Baltimore, DC-MD-VA-WV CMSA	798	
	Not in a CMSA	29,872	
HHELGCNT	1	8,555	Number of persons 5 years and older
	2	17,668	
	3	7,428	
	4	5,706	
	5	1,940	
	6	543	
	7	134	
	8	42	
	9	13	
	10	4	
HHFAMINC	01= Less than \$5,000	814	Based on questions of Section K.See olso NONFMFLG and NONFMINC
	02= \$5,000-9,999	2,183	
	03 $=$ \$10,000-14,999	2,388	
	$04=\$ 15,000-19,999$	3,011	
	05= \$20,000-24,999	2,371	
	06= \$25,000-29,999	3,696	
	07= \$30,999 - 34,999	2,084	
	08= \$35,000-39,999	3,338	
	$09=\$ 40,000-44,999$	1,582	
	$10=\$ 45,000-49,999$	2,799	
	$11=\$ 50,000-54,999$	1,110	
	$12=\$ 55,000-59,999$	2,178	
	$13=\$ 60,000-64,999$	762	
	$14=\$ 65,000-69,999$	1,492	
	$15=\$ 70,000-74,999$	496	
	16= \$75,000-79,999	1,037	
	$17=\$ 80,000-99,999$	1,614	
	$18=\$ 100,000$ and over	1,855	
	98= Not ascertained	2,969	
	99= Refused	4,254	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
HHMSA	C	4	S	MSA identification code	*	*
HHRESP	C	2	N	HH respondent	D	13
HHSIZE	N	2	S	Total number of persons in HH	D	1
HHSTATE	C	2	S	State postal code	*	*

Target Variable	Value Range and Codes:	Freqs:	Comments:
HHMSA	(0520-8840)		
HHRESP	1	27,878	Person number of household respondent
	2	12,483	
	3	1,242	
	4	328	
	5	76	
	6	19	
	7	6	
	8	1	
	9	0	
	10	0	
	Not ascertained	0	
	Refused	0	
HHSIZE	1	8,219	Number of persons - all ages (derived)
	2	15,263	
	3	7,392	
	4	7,043	
	5	2,852	
	6	873	
	7	247	
	8	85	
	9	33	
	10	26	
HHSTATE	State population < 2 million	1,513	
	$94=$ Legitimate skip (Foreign Country)	0	
	98= Not ascertained	0	
	99= Refused	0	
	Alaska	0	
	Alabama	308	
	Arkansas	227	
	Arizona	274	
	California	2,262	
	Colorado	272	
	Connecticut	225	
	District of Columbia	0	
	Delaware	0	
	Florida	1,129	
	Georgia	582	
	Hiwaii	0	
	Iowa	236	
	Idaho	0	
	Illinois	1,093	
	Indiana	465	
	Kansas	205	
	Kentucky	261	
	Louisiana	354	
	Massachusetts	7,801	
	Maryland	542	
	Maine	0	

Target Var	
Variable: Type: Width: 1990 Var: Variable Label:	Section: Item ID:

HHSTATE C 2 State postal code (See Appendix N for detail) * *

Target Variable	Value Range and Codes:	Freqs:	Comments:
	Michigan	671	
	Minnesota	380	
	Missouri	393	
	Mississippi	174	
	Montana	0	
	North Carolina	623	
	North Dakota	0	
	Nebraska	0	
	Hew Hampshire	0	
	New Jersey	616	
	New Mexico	0	
	Nevada	0	
	New York	11,004	
	Ohio	932	
	Oklahoma	4,073	
	Oregon	327	
	Pennsylvania	1,170	
	Rhode Island	0	
	South Carolina	317	
	South Dakota	0	
	Tennessee	431	
	Texas	1,219	
	Utah	0	
	Virginia	613	
	Vermont	0	
	Washington	866	
	Wisconsin	475	
	West Virginia	0	
	Wyoming	0	
HHSTFIPS	(1-55)	42,033	
HHVEHCNT	0	3,343	Count of all vehicles for the household
	1	12,678	
	2	18,277	
	3	5,716	
	4	1,488	
	5	378	
	6	104	
	7	31	
	8	10	
	9	6	
	10	2	
HH_0TO4	0	35,968	Number of persons in the household who are under 5 years of age
	1	4,526	
	2	1,399	
	3	132	
	4	6	
	5	2	
	6	0	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
HH_HISP	C	2	S	Hispanic status of ref. person	D	5
HH_RACE	C	2	S	Race of reference person	D	6
HOMEOWN	C	2	N	Tenure of housing unit	C	8
HOMETYPE	C	2	N	Type of housing unit	C	6
HOUSEID	N	8	S	Household identification number	*	*
HSTORIES	C	2	N	Stories in apt. building	C	7
HTEEMPDN	N	6	*	Jobs per square mile, census tract	CLAR	*
HTHHSMLT	N	3	*	Percent multiple unit housing, CT	CLAR	*

[^1]| Target
 Variable | Value Range and Codes: | Freqs: | Comments: |
| :---: | :---: | :---: | :---: |
| HH_HISP | 01= Hispanic | 1,735 | |
| | 02= Non-hispanic | 40,202 | |
| | 98= Not Ascertained | 42 | |
| | $99=$ Refused | 54 | |
| HH_RACE | 01= White | 35,854 | |
| | 02=African-american | 2,997 | |
| | 03=Asian | 703 | |
| | $04=$ Other | 2,010 | |
| | 98= Not Ascertained | 150 | |
| | $99=$ Refused | 319 | |
| HOMEOWN | 01 $=$ Owned | 30,571 | |
| | 02 $=$ Rented | 11,229 | |
| | 03= Provided by job or military | 108 | |
| | $04=$ Other, specify | 55 | |
| | 98= Not ascertained | 20 | |
| | $99=$ Refused | 50 | |
| HOMETYPE | 01= Single house (detached) | 29,292 | |
| | 02= Duplex | 2,004 | |
| | 03= Rowhouse or townhouse | 1,922 | |
| | 04 = Apartment | 7,006 | |
| | 05= Mobile home or trailer | 1,749 | |
| | $06=$ Other, specify | 34 | |
| | 94= Legitimate skip | 0 | |
| | $98=$ Not ascertained | 12 | |
| | $99=$ Refused | 14 | |
| HOUSEID | (1000371-12227427) | 42,033 | |
| HSTORIES | 01= Five or more stories | 1,679 | |
| | $02=$ Less than five stories | 5,305 | |
| | 94= Legitimate skip | 35,027 | |
| | 98= Not ascertained | 20 | |
| | 99= Refused | 2 | |
| HTEEMPDN | $25=0$ to 49 | 8,411 | Variables beginning with HT are external Census tract level variables describing the location of the household. |
| | $150=100 \text { to } 249$ | 8,109 | |
| | $350=250$ to 500 | 4,716 | |
| | $750=500$ to 1000 | 5,964 | |
| | $1500=1 \mathrm{~K}$ to 2000 | 6,148 | |
| | $3000=2 \mathrm{~K}$ to 4000 | 4,187 | |
| | $5000=4 \mathrm{~K}$ to 999K | 4,165 | |
| | 999998= Not ascertained | 333 | |
| HTHHSMLT | $0=0$ to 4\% | 7,328 | |
| | $5=5$ to 14% | 9,707 | |
| | $20=15$ to 24% | 6,903 | |
| | $30=25$ to 34% | 4,824 | |

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
HTHHSMLT	N	3	*	Percent multiple unit housing, CT	CLAR	*
HTHHSOTH	N	3	*	Percent other housing, CT	CLAR	*
HTHHSSNG	N	3	*	Percent single family housing, CT	CLAR	*
HTHINCH	N	3	*	Percent HHs, income \$60000 and up, CT	CLAR	*
HTHINCL	N	3	*	Percent HHs, income < \$15000, CT	CLAR	*

[^2]| Target
 Variable | Value Range and Codes: | Freqs: | Comments: |
| :---: | :---: | :---: | :---: |
| | $40=35$ to 44% | 3,445 | |
| | $50=45$ to 54% | 2,513 | |
| | $60=55$ to 64% | 1,919 | |
| | $70=65$ to 74% | 1,321 | |
| | $80=75$ to 84% | 1,123 | |
| | $90=85$ to 94% | 1,400 | |
| | $95=95$ to 100% | 1,217 | |
| | 998 $=$ Not ascertained | 333 | |
| HTHHSOTH | $0=0$ to 4\% | 41,116 | |
| | $5=5$ to 14% | 560 | |
| | $20=15$ to 24% | 19 | |
| | $30=25$ to 34% | 3 | |
| | $40=35$ to 44% | 0 | |
| | $50=45$ to 54\% | 1 | |
| | $60=55$ to 64% | 0 | |
| | $70=65$ to 74% | 0 | |
| | $80=75$ to 84% | 0 | |
| | $90=85$ to 94% | 1 | |
| | $95=95$ to 100% | 0 | |
| | 998 $=$ Not ascertained | 333 | |
| HTHHSSNG | $0=0$ to 4\% | 1,337 | |
| | $5=5$ to 14% | 1,373 | |
| | $20=15$ to 24% | 1,076 | |
| | $30=25$ to 34% | 1,352 | |
| | $40=35$ to 44% | 1,942 | |
| | $50=45$ to 54\% | 2,391 | |
| | $60=55$ to 64% | 3,511 | |
| | $70=65$ to 74% | 4,752 | |
| | $80=75$ to 84% | 7,021 | |
| | $90=85 \text { to } 94 \%$ | 9,554 | |
| | $95=95$ to 100% | 7,391 | |
| | 998= Not ascertained | 333 | |
| HTHINCH | $0=0$ to 4% | 1,560 | |
| | $5=5$ to 14% | 10,679 | |
| | $20=15$ to 24% | 10,201 | |
| | $30=25$ to 34% | 8,126 | |
| | $40=35$ to 44% | 4,988 | |
| | $50=45$ to 54\% | 3,243 | |
| | $60=55$ to 64% | 1,755 | |
| | $70=65$ to 74% | 817 | |
| | $80=75$ to 84% | 282 | |
| | $90=85$ to 94% | 47 | |
| | $95=95$ to 100% | 2 | |
| | 998= Not ascertained | 333 | |
| HTHINCL | $0=0$ to 4% | 2,145 | |
| | $5=5$ to 14% | 15,879 | |
| | $20=15$ to 24% | 13,433 | |
| | $30=25$ to 34% | 6,114 | |

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
HTHINCL	N	3	*	Percent HHs, income < \$15000, CT	CLAR	*
HTHINCM1	N	3	*	Percent HHs, income \$15000-\$39999, CT	CLAR	*
HTHINCM2	N	3	*	Percent HHs, income \$40000-\$59999, CT	CLAR	*
HTHINMED	N	6	*	Median household income, CT	CLAR	*
HTHMEDHS	N	6	*	Median housing unit value, CT	CLAR	*

Target Variable	Value Range and Codes:	Freqs:	Comments:
	$40=35$ to 44%	2,564	
	$50=45$ to 54\%	946	
	$60=55$ to 64%	406	
	$70=65$ to 74%	153	
	$80=75$ to 84%	39	
	$90=85$ to 94\%	10	
	$95=95$ to 100%	11	
	998 $=$ Not ascertained	333	
HTHINCM1	$0=0$ to 4%	59	
	$5=5$ to 14%	1,351	
	$20=15$ to 24%	5,579	
	$30=25$ to 34%	11,627	
	$40=35$ to 44%	16,979	
	$50=45 \text { to } 54 \%$	5,676	
	$60=55 \text { to } 64 \%$	360	
	$70=65$ to 74%	46	
	$80=75$ to 84%	22	
	$90=85$ to 94%	1	
	$95=95$ to 100%	0	
	998 $=$ Not ascertained	333	
HTHINCM2	$0=0$ to 4\%	234	
	$5=5$ to 14\%	5,565	
	$20=15$ to 24%	25,004	
	$30=25$ to 34%	10,580	
	$40=35$ to 44%	312	
	$50=45$ to 54\%	3	
	$60=55$ to 64%	1	
	$70=65$ to 74%	1	
	$80=75 \text { to } 84 \%$	0	
	$90=85 \text { to } 94 \%$	0	
	$95=95$ to 100%	0	
	998= Not ascertained	333	
HTHINMED	$15,000=0$ to 20 K	2,617	
	$22,000=20 \mathrm{~K}$ to 25 K	3,713	
	$27,000=25 \mathrm{~K}$ to 30 K	5,367	
	$32,000=30 \mathrm{~K}$ to 35 K	6,171	
	$37,000=35 \mathrm{~K}$ to 40 K	6,146	
	$45,000=40 \mathrm{~K}$ to 50 K	8,607	
	$60,000=50 \mathrm{~K}$ to 70 K	7,303	
	$80,000=70 \mathrm{~K}$ to 999 K	1,776	
	999998 $=$ Not ascertained	333	
HTHMEDHS	$30000=0$ to 50 K	4,412	
	$60000=50 \mathrm{~K}$ to 70 K	6,230	
	$85000=70 \mathrm{~K} \text { to } 100 \mathrm{~K}$	8,870	
	$125000=100 \mathrm{~K} \text { to } 150 \mathrm{~K}$	10,233	
	$175000=150 \mathrm{~K} \text { to } 200 \mathrm{~K}$	$6,714$	
	$300000=200 \mathrm{~K} \text { to } 999 \mathrm{~K}$	$5,241$	
	999998= Not ascertained	333	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
HTHRECNT	N	3	*	Percent units built last 10 years, CT	CLAR	*
HTHRESDN	N	6	*	HU density (units/square mile), CT	CLAR	*
HTHTNOWN	N	3	*	Percent owner-occupied housing, CT	CLAR	*
HTHTNRNT	N	3	*	Percent renter-occupied housing, CT	CLAR	*
HTHUR	C	1	*	Urban/rural code, census tract	CLAR	*

Target Variable	Value Range and Codes:	Freqs:	Comments:
HTHRECNT	$0=0$ to 4\%	14,725	
	$5=5$ to 14%	16,468	
	$20=15$ to 24%	6,739	
	$30=25$ to 34%	1,952	
	$40=35$ to 44%	1,028	
	$50=45$ to 54\%	366	
	$60=55$ to 64\%	213	
	$70=65$ to 74%	104	
	$80=75$ to 84\%	59	
	$90=85$ to 94%	23	
	$95=95 \text { to } 100 \%$	23	
	998 $=$ Not ascertained	333	
HTHRESDN		6,237	
	$150=50 \text { to } 249$	$7,570$	
	$700=250$ to 1000	9,851	
	$2000=1000$ to 3000	11,502	
	$4000=3000$ to 5000	2,745	
	$6000=5000$ to 999K	3,795	
	999998= Not ascertained	333	
HTHTNOWN	$0=0$ to 4%	482	
	$5=5$ to 14%	886	
	$20=15$ to 24%	1,174	
	$30=25$ to 34%	1,794	
	$40=35$ to 44%	2,269	
	$50=45$ to 54\%	3,308	
	$60=55 \text { to } 64 \%$	5,192	
	$70=65 \text { to } 74 \%$	$7,959$	
	$80=75 \text { to } 84 \%$	$10,778$	
	$90=85$ to 94%	7,060	
	$95=95$ to 100%	798	
	998 $=$ Not ascertained	333	
HTHTNRNT	$0=0$ to 4\%	488	
	$5=5$ to 14%	6,345	
	$20=15$ to 24%	10,798	
	$30=25$ to 34%	8,387	
	$40=35$ to 44%	5,351	
	$50=45$ to 54\%	3,452	
	$60=55$ to 64%	2,317	
	$70=65$ to 74%	1,886	
	$80=75$ to 84%	1,228	
	$90=85$ to 94%	840	
	$95=95$ to 100%	608	
	998= Not ascertained	333	
HTHUR	8= Not ascertained	333	
	$\mathrm{C}=$ Second city	8,549	
	$\mathrm{R}=$ Rural	6,827	
	$\mathrm{S}=$ Suburban	10,179	
	$\mathrm{T}=$ Town	10,139	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
HTHUR	C	1	*	Urban/rural code, census tract	CLAR	*
HTINDRET	N	3	*	Pct $16+$ workplace pop, retl trd ind, CT	CLAR	*
HTP 65P	N	3	*	Percent 65 \& older, census tract	CLAR	*
HTPCOLGD	N	3	*	Pcnt Colg Grads (over 25), census tract	CLAR	*
HTPFORBN	N	3	*	Percent foreign born 1990, census tract	CLAR	*

Target Variable	Value Range and Codes:	Freqs:	Comments:
	$\mathrm{U}=$ Urban	6,006	
HTINDRET	$0=0$ to 4\%	2,878	
	$5=5$ to 14%	13,184	
	$20=15$ to 24%	12,527	
	$30=25$ to 34%	7,027	
	$40=35$ to 44\%	3,364	
	$50=45$ to 54\%	1,735	
	$60=55$ to 64\%	690	
	$70=65$ to 74%	211	
	$80=75$ to 84%	53	
	$90=85$ to 94\%	31	
	$95=95$ to 100%	0	
	998= Not ascertained	333	
HTP 65P	$0=0$ to 4\%	1,850	
	$5=5$ to 14\%	23,460	
	$20=15$ to 24%	14,440	
	$30=25$ to 34%	1,562	
	$40=35$ to 44%	235	
	$50=45$ to 54\%	76	
	$60=55$ to 64\%	31	
	$70=65$ to 74%	14	
	$80=75$ to 84\%	14	
	$90=85$ to 94\%	18	
	$95=95$ to 100%	0	
	998= Not ascertained	333	
HTPCOLGD	$0=0$ to 4\%	179	
	$5=5$ to 14\%	6,170	
	$20=15$ to 24%	11,958	
	$30=25$ to 34%	9,560	
	$40=35$ to 44\%	6,685	
	$50=45$ to 54\%	3,678	
	$60=55$ to 64\%	2,121	
	$70=65$ to 74\%	1,020	
	$80=75$ to 84\%	300	
	$90=85$ to 94%	24	
	$95=95$ to 100%	5	
	998= Not ascertained	333	
HTPFORBN	$0=0$ to 4\%	22,909	
	$5=5$ to 14%	13,824	
	$20=15$ to 24%	2,822	
	$30=25$ to 34%	1,179	
	$40=35$ to 44\%	539	
	$50=45$ to 54\%	219	
	$60=55$ to 64\%	137	
	$70=65$ to 74%	62	
	$80=75$ to 84\%	8	
	$90=85$ to 94\%	1	
	$95=95$ to 100%	0	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
HTPFORBN	N	3	*	Percent foreign born 1990, census tract	CLAR	*
HTPHISP	N	3	*	Percent Hispanic, census tract	CLAR	*
HTPHSGD	N	3	*	Pcnt HS grads (over 25), census tract	CLAR	*
HTPLTPOV	N	3	*	Percent families below poverty, cen. tr.	CLAR	*
HTPPOPDN	N	6	*	Population density, census tract	CLAR	*
HTPPOPNO	N	6	*	Current population, census tract	CLAR	*

Target Variable	Value Range and Codes:	Freqs:	Comments:
	998 $=$ Not ascertained	333	
HTPHISP	$0=0$ to 4\%	30,074	
	$5=5$ to 14%	7,308	
	$20=15$ to 24%	1,770	
	$30=25$ to 34%	888	
	$40=35$ to 44%	484	
	$50=45$ to 54%	337	
	$60=55$ to 64%	311	
	$70=65$ to 74%	210	
	$80=75$ to 84%	159	
	$90=85$ to 94%	123	
	$95=95$ to 100%	36	
	998 $=$ Not ascertained	333	
HTPHSGD	$0=0$ to 4\%	67	
	$5=5$ to 14%	2,336	
	$20=15$ to 24%	7,932	
	$30=25$ to 34%	17,806	
	$40=35$ to 44%	12,156	
	$50=45$ to 54%	1,377	
	$60=55$ to 64%	23	
	$70=65$ to 74%	1	
	$80=75$ to 84%	1	
	$90=85$ to 94%	1	
	$95=95$ to 100%	0	
	998 $=$ Not ascertained	333	
HTPLTPOV	$0=0$ to 4\%	14,107	
	$5=5$ to 14%	20,328	
	$20=15$ to 24%	4,693	
	$30=25$ to 34%	1,501	
	$40=35 \text { to } 44 \%$	659	
	$50=45$ to 54%	293	
	$60=55$ to 64%	84	
	$70=65$ to 74%	21	
	$80=75$ to 84%	7	
	$90=85$ to 94%	5	
	$95=95$ to 100%	2	
	998 $=$ Not ascertained	333	
HTPPOPDN	$50=0$ to 100	5,377	
	$300=100$ to 500	7,270	
	$750=500$ to 1 K	4,244	
	$1,500=1 \mathrm{~K}$ to 2 K	5,145	
	$3,000=2 \mathrm{~K}$ to 4 K	7,185	
	$7,000=4 \mathrm{~K}$ to 10 K	8,000	
	$17,000=10 \mathrm{~K}$ to 25 K	2,577	
	$35,000=25 \mathrm{~K}$ to 999 K	1,902	
	999998= Not ascertained	333	
HTPPOPNO	$1500=0$ to 3 K	6,303	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
HTPPOPNO	N	6	*	Current population, census tract	CLAR	*
HTPRCAA	N	3	*	Percent African-Am., census tract	CLAR	*
HTPRCASN	N	3	*	Percent Asian- Am., census tract	CLAR	*
HTPRCCAU	N	3	*	Percent White, census tract	CLAR	*
HTPRCOTH	N	3	*	Percent Other races, census tract	CLAR	*

Percent Other races, census tract

Progid: disk46:[wmynpts.pubfiles]cbrp_hh.sas Date: 23SEP97

Target Variable	Value Range and Codes:	Freqs:	Comments:
	$4000=3 \mathrm{~K}$ to 5 K	14,926	
	$6000=5 \mathrm{~K}$ to 7K	11,043	
	$8000=7 \mathrm{~K}$ to 10K	6,542	
	$12000=10 \mathrm{~K}$ to 999K	2,886	
	999998= Not ascertained	333	
HTPRCAA	$0=0$ to 4\%	28,293	
	$5=5$ to 14%	7,044	
	$20=15$ to 24%	2,140	
	$30=25$ to 34%	1,027	
	$40=35$ to 44%	685	
	$50=45$ to 54\%	493	
	$60=55$ to 64%	409	
	$70=65$ to 74%	341	
	$80=75$ to 84%	287	
	$90=85$ to 94\%	407	
	$95=95$ to 100%	574	
	998= Not ascertained	333	
HTPRCASN	$0=0$ to 4\%	34,625	
	$5=5$ to 14\%	5,744	
	$20=15$ to 24%	860	
	$30=25$ to 34%	237	
	$40=35$ to 44\%	89	
	$50=45$ to 54\%	66	
	$60=55$ to 64\%	25	
	$70=65$ to 74%	20	
	$80=75$ to 84%	23	
	$90=85$ to 94%	10	
	$95=95$ to 100%	1	
	998= Not ascertained	333	
HTPRCCAU	$0=0$ to 4\%	570	
	$5=5$ to 14%	456	
	$20=15$ to 24%	340	
	$30=25$ to 34%	440	
	$40=35$ to 44%	490	
	$50=45$ to 54%	645	
	$60=55$ to 64\%	1,000	
	$70=65$ to 74%	1,648	
	$80=75$ to 84%	3,806	
	$90=85$ to 94\%	11,505	
	$95=95$ to 100\%	20,800	
	998= Not ascertained	333	
HTPRCOTH	$0=0$ to 4\%	39,534	
	$5=5$ to 14%	1,963	
	$20=15$ to 24%	148	
	$30=25$ to 34%	24	
	$40=35$ to 44%	13	
	$50=45$ to 54\%	4	
	$60=55$ to 64\%	3	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
HTPRCOTH	N	3	*	Percent Other races, census tract	CLAR	*
INELGCNT	N	2	S	\# of ineligible persons in HH	C	3
LIF_CYC	C	2	S	Family life cycle	D	3
MSASIZE	C	2	S	Size of MSA of household	*	*
MSTR_MON	N	2	S	Date of master interview - month	*	*
MSTR_YR	N	2	S	Date of master interview - year	*	*

MSTR_YR N
Date of master interview - year

Progid: disk46:[wmynpts.pubfiles]cbrp_hh.sas Date: 23SEP97

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
NONFMFLG	C	2	S	Non-family income reported for HH	K	10
NOTELWKS	C	2	N	No. of weeks w/o telephone service	J	5
NOTELYR	C	2	N	Without telephone service in past year?	J	4
NUMADLT	N	2	S	\# of adults in HH	D	3
OTHERPTR	C	2	N	Other public transit available	C	3
P10_AGE	N	3	N	Age of person 10	D	3
P10_DRVR	C	2	N	Driver status of person 10	D	9
P10_REL	C	2	N	Person 10 relation to ref. person	D	7

Person 10 relation to ref. person

Target Variable	Value Range and Codes:	Freqs:	Comments:
NONFMFLG	01= Yes	262 \square HHFAM	Indicates one or more persons reported their come in NONFMINC, which was NOT included in INC
	02 $=$ No	41,771	
	94= Legitimate skip	0	
	98= Not Ascertained	0	
	$99=$ Refused	0	
NOTELWKS	(00-99)	-	No. of weeks (months converted to weeks)
NOTELYR	01= Yes	946	
	$02=\mathrm{No}$	40,847	
	94= Legitimate skip	0	
	98= Not Ascertained	188	
	$99=$ Refused	52	
NUMADLT	0	5	Number of persons 18 years and older
	1	10,062	
	2	26,071	
	3	4,436	
	4	1,199	
	5	212	
	6	40	
	7	6	
	8	2	
OTHERPTR	01= Yes	8,231	
	$02=\mathrm{No}$	18,970	
	$94=$ Legitimate skip	14,606	
	98= Not Ascertained	225	
	$99=$ Refused	1	
P10_AGE	(0-75)	26	
	$994=$ Legitimate skip	42,007	
	998= Not ascertained	0	
	999 $=$ Refused	0	
P10_DRVR	01= Yes	1	
	$02=\mathrm{No}$	25	
	94= Legitimate skip	42,007	
	98= Not Ascertained	0	
	$99=$ Refused	0	
P10_REL	01= Reference person	0	
	$02=$ Spouse of ref. person	0	
	$03=$ Child of ref. person	16	
	$04=$ Parent of ref. person	0	
	05= Sibling of ref. person	0	
	$06=$ Other relative of ref. person	8	
	$07=$ Unmarried partner of ref. person	0	
	$08=$ Not related to ref. person	2	
	$94=$ Legitimate skip	42,007	
	98= Not ascertained	0	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
P10_REL	C	2	N	Person 10 relation to ref. person	D	7
P10_SEX	C	2	N	Sex of person 10	D	4
P10_STAT	C	2	N	Response status of person 10	*	*
P10_WKR	C	2	N	Worker status of person 10	D	12
P1_AGE	N	3	N	Age of person 1	D	3
P1_DRVR	C	2	N	Driver status of person 1	D	9
P1_REL	C	2	N	Person 1 relation to ref. person	D	7
P1_SEX	C	2	N	Sex of person 1	D	4

[^3]N
Sex of person 1
4

Target Variable	Value Range and Codes:	Freqs:	Comments:
	$99=$ Refused	0	
P10_SEX	01= Male	12	
	02= Female	14	
	94= Legitimate skip	42,007	
	98= Not ascertained	0	
	99= Refused	0	
P10_STAT	01= Ineligible, too young	20	See documentation notes for Pi_STAT
	02= Other ineligible	0	
	03= Complete, self interview	0	
	$04=$ Complete, proxy interview	2	
	05 $=$ No contact made	0	
	06= Refused	1	
	$07=$ Contact made, time expired	3	
	08= Other non-interview	0	
	$94=$ Legitimate skip	42,007	
P10_WKR	01 $=$ Yes	1	
	$02=\mathrm{No}$	25	
	94= Legitimate skip	42,007	
	98= Not Ascertained	0	
	99= Refused	0	
P1_AGE	(1-88)	42,023	
	$994=\text { Legitimate skip }$	0	
	998= Not ascertained	4	
	999 $=$ Refused	6	
P1_DRVR	01= Yes	38,544	
	$02=\mathrm{No}$	3,489	
	94= Legitimate skip	0	
	98= Not Ascertained	0	
	$99=$ Refused	0	
P1_REL	01 $=$ Reference person	41,957	
	$02=$ Spouse of ref. person	3	
	03= Child of ref. person	64	
	$04=$ Parent of ref. person	1	
	$05=$ Sibling of ref. person	2	
	$06=$ Other relative of ref. person	4	
	07= Unmarried partner of ref. person	1	
	08= Not related to ref. person	1	
	94= Legitimate skip	0	
	98= Not ascertained	0	
	99= Refused	0	
P1_SEX	01= Male	26,595	
	02 $=$ Female	15,438	
	$94=$ Legitimate skip	0	
	98= Not ascertained	0	
	99= Refused	0	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
P1_STAT	C	2	N	Response status of person 1	*	*
P1_WKR	C	2	N	Worker status of person1	D	12
P2_AGE	N	3	N	Age of person 2	D	3
P2_DRVR	C	2	N	Driver status of person 2	D	9
P2_REL	C	2	N	Person 2 relation to ref. person	D	7
P2_SEX	C	2	N	Sex of person 2	D	4
P2_STAT	C	2	N	Response status of person 2	*	*

[^4]Progid: disk46:[wmynpts.pubfiles]cbrp_hh.sas Date: 23SEP97

Target Variable	Value Range and Codes:	Freqs:	Comments:
P1_STAT	01= Ineligible, too young	13	See documentation notes for Pi_STAT
	02= Other ineligible	52	
	03= Complete, self interview	33,678	
	$04=$ Complete, proxy interview	6,075	
	05 $=$ No contact made	684	
	06= Refused	543	
	$07=$ Contact made, time expired	824	
	08= Other non-interview	164	
	94= Legitimate skip	0	
P1_WKR	01 $=$ Yes	28,994	
	02 $=\mathrm{No}$	13,039	
	$94=$ Legitimate skip	0	
	98= Not Ascertained	0	
	99= Refused	0	
P2_AGE	(0-88)	33,792	
	994 $=$ Legitimate skip	8,219	
	998= Not ascertained	9	
	999= Refused	13	
P2_DRVR	01 $=$ Yes	28,840	
	$02=\mathrm{No}$	4,974	
	94= Legitimate skip	8,219	
	98= Not Ascertained	0	
	$99=$ Refused	0	
P2_REL	01 $=$ Reference person	33	
	$02=$ Spouse of ref. person	25,663	
	03= Child of ref. person	4,045	
	$04=$ Parent of ref. person	462	
	$05=$ Sibling of ref. person	452	
	$06=$ Other relative of ref. person	516	
	07 $=$ Unmarried partner of ref. person	1,199	
	$08=$ Not related to ref. person	1,399	
	$94=$ Legitimate skip	8,219	
	98= Not ascertained	17	
	$99=$ Refused	28	
P2_SEX		8,860	
	$02=\text { Female }$	24,951	
	94= Legitimate skip	8,219	
	98= Not ascertained	3	
	99= Refused	0	
P2_STAT	01= Ineligible, too young	345	See documentation notes for Pi_STAT
	02= Other ineligible	89	
	03= Complete, self interview	22,970	
	$04=$ Complete, proxy interview	7,635	
	$05=$ No contact made	896	
	$06=$ Refused	617	
	$07=$ Contact made, time expired	993	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
P2_STAT	C	2	N	Response status of person 2	*	*
P2_WKR	C	2	N	Worker status of person 2	D	12
P3_AGE	N	3	N	Age of person 3	D	3
P3_DRVR	C	2	N	Driver status of person 3	D	9
P3_REL	C	2	N	Person 3 relation to ref. person	D	7
P3_SEX	C	2	N	Sex of person 3	D	4
P3_STAT	C	2	N	Response status of person 3	*	*
P3_WKR	C	2	N	Worker status of person 3	D	12

Target Variable	Value Range and Codes:	Freqs:	Comments:
	08= Other non-interview	269	
	94= Legitimate skip	8,219	
P2_WKR	$01=$ Yes	20,846	
	$02=\mathrm{No}$	12,968	
	$94=$ Legitimate skip	8,219	
	98= Not Ascertained	0	
	99 $=$ Refused	0	
P3_AGE	$(0-88)$	18,537	
	$994=$ Legitimate skip	23,482	
	998= Not ascertained	9	
	999 $=$ Refused	5	
P3_DRVR	01 $=$ Yes	5,975	
	$02=\mathrm{No}$	12,576	
	94= Legitimate skip	23,482	
	98= Not Ascertained	0	
	99 $=$ Refused	0	
P3_REL	01= Reference person	22	
	$02=$ Spouse of ref. person	232	
	03= Child of ref. person	16,034	
	$04=$ Parent of ref. person	284	
	05 $=$ Sibling of ref. person	167	
	$06=$ Other relative of ref. person	1,033	
	$07=$ Unmarried partner of ref. person	49	
	08= Not related to ref. person	704	
	94= Legitimate skip	23,482	
	98= Not ascertained	14	
	$99=$ Refused	12	
P3_SEX	01= Male	9,600	
	02= Female	8,947	
	$94=$ Legitimate skip	23,482	
	98= Not ascertained	4	
	$99=$ Refused	0	
P3_STAT	01= Ineligible, too young	2,673	See documentation notes for Pi_STAT
	02= Other ineligible	141	
	$03=$ Complete, self interview	4,865	
	$04=$ Complete, proxy interview	9,257	
	05 $=$ No contact made	509	
	$06=$ Refused	219	
	$07=$ Contact made, time expired	676	
	08= Other non-interview	211	
	94= Legitimate skip	23,482	
P3_WKR	01= Yes	4,955	
	$02=\mathrm{No}$	13,596	
	94= Legitimate skip	23,482	
	98= Not Ascertained	0	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
P3_WKR	C	2	N	Worker status of person 3	D	12
P4_AGE	N	3	N	Age of person 4	D	3
P4_DRVR	C	2	N	Driver status of person 4	D	9
P4_REL	C	2	N	Person 4 relation to ref. person	D	7
P4_SEX	C	2	N	Sex of person 4	D	4
P4_STAT	C	2	N	Response status of person 4	*	*
P4_WKR	C	2	N	Worker status of person 4	D	12
P5_AGE	N	3	N	Age of person 5	D	3

Target Variable	Value Range and Codes:	Freqs:	Comments:
	$99=$ Refused	0	
P4_AGE	(0-88)	11,151	
	$994=$ Legitimate skip	30,874	
	998 $=$ Not ascertained	3	
	999 $=$ Refused	5	
P4_DRVR	$01=$ Yes	1,688	
	$02=\mathrm{No}$	9,471	
	94= Legitimate skip	30,874	
	98= Not Ascertained	0	
	99= Refused	0	
P4_REL	01= Reference person	12	
	$02=$ Spouse of ref. person	104	
	03= Child of ref. person	9,773	
	$04=$ Parent of ref. person	81	
	05 $=$ Sibling of ref. person	82	
	$06=$ Other relative of ref. person	746	
	07 $=$ Unmarried partner of ref. person	15	
	$08=$ Not related to ref. person	331	
	94= Legitimate skip	30,874	
	98= Not ascertained	8	
	$99=$ Refused	7	
P4_SEX	01= Male	5,717	
	02= Female	5,441	
	94= Legitimate skip	30,874	
	98= Not ascertained	1	
	$99=\text { Refused }$	0	
P4_STAT			See documentation notes for Pi_STAT
	$02=$ Other ineligible	69	
	$03=$ Complete, self interview	1,676	
	$04=$ Complete, proxy interview	5,848	
	$05=$ No contact made	318	
	06= Refused	118	
	$07=$ Contact made, time expired	416	
	08= Other non-interview	82	
	$94=$ Legitimate skip	30,874	
P4_WKR	01= Yes	1,400	
	$02=\mathrm{No}$	9,759	
	94= Legitimate skip	30,874	
	98= Not Ascertained	0	
	99 $=$ Refused	0	
P5_AGE	(0-88)	4,114	
	$994=$ Legitimate skip	37,917	
	998 $=$ Not ascertained	2	
	999= Refused	0	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
P5_DRVR	C	2	N	Driver status of person 5	D	9
P5_REL	C	2	N	Person 5 relation to ref. person	D	7
P5_SEX	C	2	N	Sex of person 5	D	4
P5_STAT	C	2	N	Response status of person 5	*	*
P5_WKR	C	2	N	Worker status of person 5	D	12
P6_AGE	N	3	N	Age of person 6	D	3
P6_DRVR	C	2	N	Driver status of person 6	D	9
P6_REL	C	2	N	Person 6 relation to ref. person	D	7

Progid: disk46:[wmynpts.pubfiles]cbrp_hh.sas Date: 23SEP97

Target Variable	Value Range and Codes:	Freqs:	Comments:
P5_DRVR	01= Yes	371	
	02 $=$ No	3,745	
	$94=$ Legitimate skip	37,917	
	98= Not Ascertained	0	
	$99=$ Refused	0	
P5_REL	01= Reference person	8	
	$02=$ Spouse of ref. person	35	
	$03=$ Child of ref. person	3,422	
	$04=$ Parent of ref. person	45	
	$05=$ Sibling of ref. person	24	
	$06=$ Other relative of ref. person	438	
	$07=$ Unmarried partner of ref. person	4	
	$08=$ Not related to ref. person	135	
	94= Legitimate skip	$37,917$	
	98= Not ascertained	3	
	$99=$ Refused	2	
P5_SEX	01= Male	2,040	
	02= Female	2,075	
	$94=$ Legitimate skip	37,917	
	$98=$ Not ascertained	1	
	$99=$ Refused	0	
P5_STAT	01= Ineligible, too young	1,325	See documentation notes for Pi_STAT
	$02=$ Other ineligible	35	
	$03=$ Complete, self interview	376	
	$04=$ Complete, proxy interview	2,063	
	$05=$ No contact made	97	
	$06=$ Refused	27	
	07 $=$ Contact made, time expired	165	
	$08=$ Other non-interview	28	
	94= Legitimate skip	37,917	
P5_WKR	$01=$ Yes	318	
	02 $=$ No	3,797	
	$94=$ Legitimate skip	37,917	
	98= Not Ascertained	1	
	$99=$ Refused	0	
P6_AGE	(0-88)	1,263	
	$994=$ Legitimate skip	40,769	
	998 $=$ Not ascertained	1	
	999 $=$ Refused	0	
P6_DRVR	$01=$ Yes	90	
	02 $=$ No	1,174	
	$94=$ Legitimate skip	40,769	
	98= Not Ascertained	0	
	$99=$ Refused	0	
P6_REL	01= Reference person	1	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
P6_REL	C	2	N	Person 6 relation to ref. person	D	7
P6_SEX	C	2	N	Sex of person 6	D	4
P6_STAT	C	2	N	Response status of person 6	*	*
P6_WKR	C	2	N	Worker status of person 6	*	*
P7_AGE	N	3	N	Age of person 7	D	3
P7_DRVR	C	2	N	Driver status of person 7	D	9
P7_REL	C	2	N	Person 7 relation to ref. person	D	7

Target Variable	Value Range and Codes:	Freqs:	Comments:
	$02=$ Spouse of ref. person	11	
	$03=$ Child of ref. person	928	
	$04=$ Parent of ref. person	14	
	$05=$ Sibling of ref. person	10	
	$06=$ Other relative of ref. person	235	
	$07=$ Unmarried partner of ref. person	1	
	08 $=$ Not related to ref. person	62	
	$94=$ Legitimate skip	40,769	
	98= Not ascertained	2	
	$99=\text { Refused }$	0	
P6_SEX	01= Male	666	
	02= Female	598	
	$94=$ Legitimate skip	40,769	
	98= Not ascertained	0	
	$99=$ Refused	0	
P6_STAT	01= Ineligible, too young	474	See documentation notes for Pi_STAT
	02= Other ineligible	16	
	$03=$ Complete, self interview	78	
	$04=$ Complete, proxy interview	588	
	05 $=$ No contact made	28	
	$06=$ Refused	8	
	$07=$ Contact made, time expired	64	
	$08=$ Other non-interview	8	
	94= Legitimate skip	40,769	
P6_WKR	$01=$ Yes	86	
	02 $=$ No	1,176	
	$94=$ Legitimate skip	40,769	
	98= Not Ascertained	2	
	$99=$ Refused	0	
P7_AGE	(0-88)	390	
	$994=$ Legitimate skip	41,642	
	998= Not ascertained	1	
	999= Refused	0	
P7_DRVR			
	$02=\mathrm{No}$	367	
	$94=\text { Legitimate skip }$	$41,642$	
	98= Not Ascertained	0	
	$99=$ Refused	0	
P7_REL	01= Reference person	0	
	$02=$ Spouse of ref. person	2	
	$03=$ Child of ref. person	261	
	$04=$ Parent of ref. person	7	
	$05=$ Sibling of ref. person	2	
	$06=$ Other relative of ref. person	92	
	$07=$ Unmarried partner of ref. person	1	
	08= Not related to ref. person	25	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
P7_REL	C	2	N	Person 7 relation to ref. person	D	7
P7_SEX	C	2	N	Sex of person 7	D	4
P7_STAT	C	2	N	Response status of person 7	*	*
P7_WKR	C	2	N	Worker status of person 7	D	12
P8_AGE	N	3	N	Age of person 8	D	3
P8_DRVR	C	2	N	Driver status of person 8	D	9
P8_REL	C	2	N	Person 8 relation to ref. person	D	7
P8_SEX	C	2	N	Sex of person 8	D	4

Target Variable	Value Range and Codes:	Freqs:	Comments:
	$94=$ Legitimate skip	41,642	
	98= Not ascertained	0	
	99= Refused	1	
P7_SEX	01= Male	201	
	02= Female	190	
	94= Legitimate skip	41,642	
	98= Not ascertained	0	
	$99=$ Refused	0	
P7_STAT	01= Ineligible, too young	162	See documentation notes for Pi_STAT
	02= Other ineligible	7	
	03= Complete, self interview	21	
	$04=$ Complete, proxy interview	166	
	05 $=$ No contact made	9	
	06= Refused	5	
	$07=$ Contact made, time expired	18	
	08= Other non-interview	3	
	94= Legitimate skip	41,642	
P7_WKR	$01=$ Yes	25	
	02 $=\mathrm{No}$	366	
	94= Legitimate skip	41,642	
	98= Not Ascertained	0	
	$99=$ Refused	0	
P8_AGE	(0-82)	144	
	$994=$ Legitimate skip	41,889	
	998 $=$ Not ascertained	0	
	999= Refused	0	
P8_DRVR	01 $=$ Yes	8	
	02= No	136	
	94= Legitimate skip	41,889	
	98= Not Ascertained	0	
	99= Refused	0	
P8_REL	01= Reference person	0	
	$02=$ Spouse of ref. person	2	
	03= Child of ref. person	93	
	$04=$ Parent of ref. person	3	
	05 $=$ Sibling of ref. person	0	
	$06=$ Other relative of ref. person	34	
	$07=$ Unmarried partner of ref. person	0	
	08= Not related to ref. person	11	
	94= Legitimate skip	41,889	
	$98=\text { Not ascertained }$	1	
	$99=\text { Refused }$	0	
P8_SEX	01= Male	76	
	02= Female	67	
	94= Legitimate skip	41,889	

Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
P8_SEX	C	2	N	Sex of person 8	D	4
P8_STAT	C	2	N	Response status of person 8	*	*
P8_WKR	C	2	N	Worker status of person 8	*	*
P9_AGE	N	3	N	Age of person 9	D	3
P9_DRVR	C	2	N	Driver status of person 9	D	9
P9_REL	C	2	N	Person 9 relation to ref. person	D	7
P9_SEX	C	2	N	Sex of person 9	D	4
P9_STAT	C	2	N	Response status of person 9	*	*

Target Variable	Value Range and Codes:	Freqs:	Comments:
	98= Not ascertained	1	
	99 $=$ Refused	0	
P8_STAT	01= Ineligible, too young	77	See documentation notes for Pi_STAT
	02= Other ineligible	2	
	$03=$ Complete, self interview	5	
	$04=$ Complete, proxy interview	45	
	05= No contact made	4	
	06= Refused	3	
	$07=$ Contact made, time expired	7	
	08= Other non-interview	1	
	$94=$ Legitimate skip	41,889	
P8_WKR	01= Yes	10	
	$02=\mathrm{No}$	134	
	94= Legitimate skip	41,889	
	98= Not Ascertained	0	
	99= Refused	0	
P9_AGE	(0-67)	58	
	994= Legitimate skip	41,974	
	998= Not ascertained	1	
	999= Refused	0	
P9_DRVR	$01=\text { Yes }$	4	
	$02=\mathrm{No}$	55	
	94= Legitimate skip	41,974	
	98= Not Ascertained	0	
	99= Refused	0	
P9_REL	01= Reference person	0	
	$02=$ Spouse of ref. person	1	
	03= Child of ref. person	37	
	$04=$ Parent of ref. person	1	
	$05=$ Sibling of ref. person	0	
	$06=$ Other relative of ref. person	14	
	$07=$ Unmarried partner of ref. person	0	
	08= Not related to ref. person	6	
	$94=$ Legitimate skip	41,974	
	$98=\text { Not ascertained }$	0	
	$99=\text { Refused }$	0	
P9_SEX	01= Male	41	
	02= Female	18	
	94= Legitimate skip	41,974	
	98= Not ascertained	0	
	99= Refused	0	
P9_STAT	01= Ineligible, too young	37	See documentation notes for Pi_STAT
	$02=$ Other ineligible	0	
	$03=$ Complete, self interview	3	
	$04=$ Complete, proxy interview	9	

Target Variable	Value Range and Codes:	Freqs:	Comments:
	05= No contact made	3	
	06= Refused	1	
	$07=$ Contact made, time expired	6	
	08= Other non-interview	0	
	$94=$ Legitimate skip	41,974	
P9_WKR	01= Yes	2	
	$02=\mathrm{No}$	57	
	94= Legitimate skip	41,974	
	98= Not Ascertained	0	
	99 $=$ Refused	0	
RAIL	01 $=$ Yes	3,071	01=Urban areas $1,250,000$ population or greater with subway/elevated rail,02=other areas
	02 $=\mathrm{No}$	38,962	
REF_AGE	(16-88)	42,024	
	16-75= Ages 16-75	39,210	
	$77=$ Ages 76-79	1,259	
	82= Ages 80-84	997	
	88= Ages 85-100	558	
	$994=$ Legitimate skip	0	
	998= Not ascertained	4	
	999 $=$ Refused	5	
REF_DRVR	01= Yes	38,599	
	$02=\mathrm{No}$	3,434	
	$94=\text { Legitimate skip }$	0	
	$98=\text { Not Ascertained }$	0	
	$99=$ Refused	0	
REF_EDUC	11= Less than H.S. graduate	4,271	
	$12=$ H.S. graduate (includes GED)	12,546	
	$21=$ Some college, no degree	7,655	
	$22=$ Associate degree in college	2,272	
	$24=$ Bachelors degree in college	6,995	
	25= Some grad/prof school	1,001	
	$26=$ Grad/prof school degree	4,729	
	$98=$ Not ascertained	2,476	
	99= Refused	88	
REF_SEX	01= Male	$26,569$	
	$02=\text { Female }$	$15,464$	
REF_STAT			See documentation notes for Pi_STAT
	$02=$ Other ineligible	52	
	$03=$ Complete, self interview	33,725	
	$04=$ Complete, proxy interview	6,042	
	05= No contact made	684	
	06= Refused	544	
	$07=$ Contact made, time expired	823	
	08= Other non-interview	163	
	$94=$ Legitimate skip	0	
REF_WKR	$01=$ Yes	29,035	
	02 $=\mathrm{No}$	12,998	

(This page revised March 1999)

1NPTS Househo	d	Code Bo	k - Public			ember 23, 1997	57
Target Variable:		Width:	1990 Var:	Variable Label:		Item ID:	
REF_WKR	C	2	N	Worker status of reference person	D	10	
RESP_CNT	N	2	S	\# of respondents in HH	*	*	
STCBLOCK	N	3	N	Reported dist to streetcar (blocks)	C	5	
STCMILE	N	3	N	Reported dist to streetcar (miles)	C	5	
STC_AVL	C	2	N	Streetcar service available	C	4	
STC_DIST	N	5.1	N	Distance to streetcar (miles)	C	5	
SUBBLOCK	N	3	N	Reported dist to subway (blocks)	C	5	
SUBMILE	N	3	N	Reported dist to subway (miles)	C	5	

Target Variable	Value Range and Codes:	Freqs:	Comments:
	```94= Legitimate skip 98= Not Ascertained 99= Refused```	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	
RESP_CNT	1	11,912	Number of person interviews completed for the household
	2	16,441	
	3	6,893	
	4	4,746	
	5	1,509	
	6	405	
	7	97	
	8	23	
	9	5	
	10	2	
STCBLOCK			Blocks as reported
	994= Legitimate skip	$41,310$	
	996= < 1 block	89	
	998= Not ascertained	311	
	999= Refused	7	
STCMILE	(1-45)	437	Miles as reported
	$994=$ Legitimate skip	41,213	
	997= Half a mile	65	
	998= Not ascertained	311	
	999 $=$ Refused	7	
STC_AVL	01= Yes	999	
	$02=\mathrm{No}$	7,232	
	$94=\text { Legitimate skip }$	$33,576$	
	98= Not Ascertained	$225$	
	99 $=$ Refused	1	
STC_DIST	$(0-45)$	$\begin{array}{r} 907 \\ \mathrm{Se} \end{array}$	Miles as reported, blocks converted (9/mile). documentation notes for STC_DIST.
	$994=$ Legitimate skip	40,808	
	998= Not ascertained	311	
	999 $=$ Refused	7	
SUBBLOCK	(1-200)	1,854	Blocks as reported
	$994=$ Legitimate skip	39,716	
	996= < 1 block	143	
	998= Not ascertained	316	
	999 $=$ Refused	4	
SUBMILE			Miles as reported
	994= Legitimate skip	$40,243$	
	$997=$ Half a mile	206	
	998= Not ascertained	316	
	999 $=$ Refused	4	

Target
Variable:
Type:


Target Variable:	Var   Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
TEL_HHS	C	2	N	No. of HHs this phone number serves	A	7
TPER_BMO	N	2	S	Travel period beginning date (MM)	*	*
TPER_BYR	N	2	S	Travel period beginning date (YY)	*	*
TPER_EMO	N	2	S	Travel period ending date (MM)	*	*
TPER_EYR	N	2	S	Travel period ending date (YY)	*	*
TRNBLOCK	N	3	N	Reported dist to train (blocks)	C	5
TRNMILE	N	3	N	Reported dist to train (miles)	C	5


Target   Variable	Value Range and Codes:	Freqs:	Comments:
	4	16	
	5	11	
	6	4	
	7	0	
	8	0	
	9	0	
	10	1	
	Not ascertained	4	
	Refused	4	
TPER_BMO	1= January	3,791	
	$2=$ February	3,812	
	3= March	4,183	
	$4=$ April	3,415	
	$5=$ May	5,040	
	$6=$ June	4,119	
	7 = July	2,637	
	$8=$ August	2,419	
	9 = September	2,685	
	$10=$ October	3,377	
	$11=$ November	3,564	
	$12=$ December	2,991	
TPER_BYR	95	24,156	
	96	17,877	
TPER_EMO	1= January	2,598	
	$2=$ February	3,691	
	$3=$ March	4,770	
	$4=$ April	3,812	
	$5=$ May	4,827	
	6= June	3,723	
	$7=$ July	3,166	
	8= August	2,531	
	$9=$ September	2,833	
	$10=$ October	3,305	
	$11=$ November	$3,400$	
	$12=$ December	3,377	
TPER_EYR	95	23,129	
	96	18,904	
TRNBLOCK	(1-200)	1,251	Blocks as reported
	994 $=$ Legitimate skip	40,278	
	996= < 1 block	72	
	998 $=$ Not ascertained	425	
	999= Refused	7	
TRNMILE	(1-60)	3,612	Miles as reported
	$994=$ Legitimate skip	37,536	
	$997=$ Half a mile	453	
	998= Not ascertained	425	


Target Variable:	Var   Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
TRNMILE	N	3	N	Reported dist to train (miles)	C	5
TRN_AVL	C	2	N	$01=$ if commuter train service available	C	4
TRN_DIST	N	5.1	N	Distance to commuter train	C	5
URBAN	C	2	*	Urbanized area code	*	*
VARSTRAT	N	2	S	Sample stratum	*	*
WRKCOUNT	N	2	WRKRCNT	No. of workers in HH	*	*
WTHHFIN	N	11.5	S	Final household weight	*	*




Target   Variable	Value Range and Codes:	Freqs:	Comments:
ALWYSDRV	01= Always drive	1,295	
	$02=$ Share the drive	1,883	
	03= Rarely or Never	1,726	
	94= Legitimate skip	90,451	
	98= Not ascertained	3	
	99= Refused	2	
CENSUS_D	01= New England	19,056	
	02= Middle Atlantic	29,128	
	03= East North Central	8,439	
	$04=$ West North Central	3,264	
	05= South Atlantic	9,083	
	06= East South Central	2,672	
	07= West South Central	13,107	
	08= Mountain	2,648	
	09= Pacific	7,963	
CENSUS_R	01= Northeast	48,184	
	02 $=$ North Central	11,703	
	03 $=$ South	24,862	
	$04=$ West	10,611	
DIARYCMP	01= Completed on own	52,231	
	02= Someone else completed	14,542	
	03= Not completed at all	15,897	
	$04=$ Did not recieve materials	12,523	
	94= legitimate skip	0	
	98= Not ascertained	167	
DIARYGET	01 $=$ Yes	971	
	$02=\mathrm{No}$	5,504	
	94= Legitimate skip	88,715	
	98= Not ascertained	170	
	99= Refused	0	
DIARYHAV	01= Yes	60,295	
	$02=\mathrm{No}$	6,475	
	94= Legitimate skip	28,420	
	98= Not ascertained	170	
	99= Refused	0	
DISTTOWK	(0-990)	45,668	See documantation notes
	993= No fixed place	327	
	994= Legitimate skip	47,577	
	995= Works at home	777	
	998= Not ascertained	980	
	999= Refused	31	
DRIVER	01 $=$ Yes	69,990	Driver status reported in D-9, and verified or corrected in $\mathrm{E}-6$ or $\mathrm{E}-7$
	$02=\mathrm{No}$	25,369	
	$94=$ Legitimate skip	0	



Target   Variable	Value Range and Codes:	Freqs:	Comments:
	98= Not ascertained	1	
	99= Refused	0	
DRVRCNT	0	3,195	Derived from the variable DRIVER
	1	16,907	
	2	55,528	
	3	14,398	
	4	4,465	
	5	729	
	6	127	
	7	11	
DTACDT	01= Large problem	4,234	
	02= Small problem	8,317	
	03= No problem	7,926	
	94= Legitimate skip	74,741	
	98= Not ascertained	128	
	99 $=$ Refused	14	
DTCONJ	01= Large problem	11,306	
	02= Small problem	20,435	
	03 $=$ No problem	29,651	
	$94=$ Legitimate skip	33,447	
	98= Not ascertained	484	
	99= Refused	37	
DTCRIME	01= Large problem	4,433	
	02= Small problem	7,272	
	$03=$ No problem	$8,706$	
	$94=\text { Legitimate skip }$	$74,773$	
	$98=\text { Not ascertained }$	168	
	$99=$ Refused	8	
DTNTFMLR	01= Large problem	2,491	
	02= Small problem	5,420	
	03= No problem	12,571	
	94= Legitimate skip	74,741	
	98= Not ascertained	127	
	99= Refused	10	
DTPAVE	01= Large problem	10,145	
	02= Small problem	15,621	
	03= No problem	15,170	
	94= Legitimate skip	54,034	
	98= Not ascertained	361	
	99 $=$ Refused	29	
DTPOLLTN	01= Large problem	7,892	
	02= Small problem	14,091	
	03 $=$ No problem	18,926	
	94= Legitimate skip	54,066	
	98= Not ascertained	361	



GWKXIN N 2 *
Basis for geocoding - workplace location GEOW

Target   Variable	Value Range and Codes:	Freqs:	Comments:
	99= Refused	24	
DTSTRTS	01= Large problem	12,266	
	02= Small problem	14,977	
	03= No problem	13,742	
	94= Legitimate skip	54,066	
	98= Not ascertained	286	
	99= Refused	23	
DTTIEUP	01= Large problem	9,917	
	02= Small problem	14,918	
	03= No problem	16,090	
	94= Legitimate skip	54,066	
	98= Not ascertained	343	
	99= Refused	26	
DTWALK	01= Large problem	3,370	
	02= Small problem	5,660	
	03= No problem	11,355	
	94= Legitimate skip	74,741	
	98= Not ascertained	223	
	99= Refused	11	
EDUC	11= Less than high school graduate	10,686	
	$12=$ High school graduate include GED	25,264	
	$21=$ Some college, but no degree	15,355	
	$22=$ Associate degree in college	4,454	
	$24=$ Bachelor's degrees	12,685	
	$25=$ Some graduate/professional degree	1,734	
	26= Graduate/professional shcool degrees	7,448	
	94= Legitimate skip	17,082	
	98= Not ascertained	481	
	99= Refused	171	
FQSTBELT	01= Always	69,350	
	02 $=$ Most of the time	13,653	
	03= Sometimes	7,859	
	04= Never	3,968	
	98= Not ascertained	471	
	99= Refused	59	
GT1JBLWK	01 $=$ Yes	6,079	
	$02=\mathrm{No}$	45,606	
	$94=$ Legitimate skip	43,643	
	98= Not ascertained	23	
	99= Refused	9	
GWKXIN	$0=$ Street address level match	30,059	
	$2=$ Zip+2 Centroid	268	
	4= Zip+4 Centroid	1,043	
	5= 5-Digit Zip code centroid	4,903	
	94= Legitimate skip	43,432	



Target   Variable	Value Range and Codes:	Freqs:	Comments:
	98= Not ascertained	15,655	
HBHINMED	15,000 $=0$ to 20 K	7,061	
	$22,000=20 \mathrm{~K}$ to 25 K	7,798	
	$27,000=25 \mathrm{~K}$ to 30 K	11,091	
	$32,000=30 \mathrm{~K}$ to 35 K	12,789	
	$37,000=35 \mathrm{~K}$ to 40 K	11,527	
	$45,000=40 \mathrm{~K}$ to 50 K	19,536	
	$60,000=50 \mathrm{~K}$ to 70 K	18,722	
	$80,000=70 \mathrm{~K}$ to 999 K	6,168	
	999998 $=$ Not ascertained	668	
HBHRESDN	$25=0$ to 50	14,059	
	$150=50$ to 250	16,152	
	$700=250$ to 1000	21,390	
	$2000=1000$ to 3000	26,386	
	$4000=3000$ to 5000	7,615	
	$6000=5000$ to 999K	9,090	
	999998 $=$ Not ascertained	668	
HBHUR	$8=$ Not ascertained	668	
	$\mathrm{C}=$ Second city	18,706	
	$\mathrm{R}=$ Rural	15,968	
	S $=$ Suburban	23,377	
	$\mathrm{T}=$ Town	24,283	
	$\mathrm{U}=$ Urban	12,358	
HBPPOPDN	$50=0$ to 100	11,840	
	$300=100$ to 500	15,655	
	$750=500$ to 1 K	8,608	
	$1,500=1 \mathrm{~K}$ to 2 K	10,957	
	$3,000=2 \mathrm{~K}$ to 4 K	15,629	
	$7,000=4 \mathrm{~K}$ to 10 K	20,786	
	$17,000=10 \mathrm{~K}$ to 25 K	7,071	
	$30,000=25 \mathrm{~K}$ to 999 K	4,146	
	999998= Not ascertained	668	
HHCMSA	Chicago-Gary-Kenosha, IL-IN-WI CMSA	1,958	
	Cincinnati-Hamilton, OH-KY-IN CMSA	393	
	Cleveland-Akron, OH CMSA	562	
	Dallas-Fort Worth, TX CMSA	722	
	Denver-Boulder-Greeley, CO CMSA	330	
	Detroit-Ann Arbor-Flint, MI CMSA	790	
	Houston-Galveston-Brazoria, TX CMSA	563	
	Los Angeles-Riverside-Orange County	2,185	
	Miami-Fort Lauderdale, FL CMSA	600	
	Milwaukee-Racine, WI CMSA	314	
	New York-No. New Jersey-Long Island	12,217	
	Phila-Wilmington-Atlantic City	1,412	
	Portland-Salem, OR-WA CMSA	477	
	Sacramento-Yolo, CA CMSA	345	
	San Francisco-Oakland-San Jose	1,266	


Target   Variable:	Var   Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
HHCMSA	C	4	SMSA	CMSA identification code	*	*
HHFAMINC	C	2	S	HH family income category	K	1 \& 2




Target Variable:	Var   Type:	Width:	1990 Var:	Variable Label:		Item ID:
HHVEHCNT	N	2	S	No. of vehicles in household (derived)	B	*
HH_HISP	C	2	S	Hispanic status of ref. person	D	5
HH_RACE	C	2	S	Race of reference person	D	6
HOUSEID	N	8	S	Household identification number	*	*
INTRVMON	N	2	S	Person interview date - month	*	*
INTRVYR	N	2	S	Person interview date - year	*	*
JOBLSTWK	C	2	N	Have full, part time job last wk or not	F	2
LIF_CYC	C	2	S	Family life cycle	D	3


Target   Variable	Value Range and Codes:	Freqs:	Comments:
	3	16,537	
	4	4,703	
	5	1,242	
	6	342	
	7	110	
	8	31	
	9	15	
	10	6	
HH_HISP	$01=$ Hispanic	4,322	
	02 $=$ Non-hispanic	90,851	
	98= Not Ascertained	79	
	$99=$ Refused	108	
HH_RACE	01= White	81,141	
	02= African-american	6,596	
	03= Asian	1,743	
	$04=$ Other	4,845	
	98= Not Ascertained	348	
	$99=$ Refused	687	
HOUSEID	(1000371-12227427)	95,360	
INTRVMON	1	5,998	
	2	8,374	
	3	10,456	
	4	8,437	
	5	10,325	
	6	8,862	
	7	7,387	
	8	6,226	
	9	5,862	
	10	7,692	
	11	7,697	
	12	8,044	
INTRVYR	95	52,654	
	96	42,706	
JOBLSTWK	01= Full time	41,196	
	02 $=$ Part time	10,521	
	03 $=$ Not at all	14,227	
	04= Retired	11,830	
	$94=$ Legitimate skip	17,082	
	98= Not ascertained	418	
	99= Refused	86	
LIF_CYC	01= 1 adult, no children	5,507	See documentation notes for LIF_CYC
	$02=>1$ adult, no children	21,644	
	$03=1$ adult, child age 0-5	1,332	
	$04=>1$ adult, child age 0-5	18,137	
	05= 1 adult, child age 6-15	3,001	


Target Variable:	Var   Type:	Width:	1990 Var:	Variable Label:		Item ID:
LIF_CYC	C	2	S	Family life cycle	D	3
MSASIZE	C	2	S	Size of MSA of household	*	*
MSTR_MON	N	2	S	Date of master interview - month	*	*
MSTR_YR	N	2	S	Date of master interview - year	*	*
NCCOMCR	C	2	N	Not carpool-have company car	F	17.11
NCINCVNT	C	2	N	Not carpool-it's inconvenient	F	17.03
NCIRRHR	C	2	N	Not carpool-irregular/unusual hours	F	17.01
NCLVFAR	C	2	N	Not carpool-live far from work	F	17.1


Target   Variable	Value Range and Codes:	Freqs:	Comments:
	$06=>1$ adult, child age 6-15	23,697	
	$07=1$ adult, child age 16-21	865	
	$08=>1$ adult, child age 16-21	6,144	
	$09=1$ adult, retired, no children	2,736	
	$10=>1$ adult, retired, no children	12,297	
MSASIZE	01 $=$ Less than 250,000	8,840	See documentation notes for MSASIZE
	$02=250,000-499,999$	5,943	
	$03=500,000-999,999$	11,717	
	$04=1,000,000-2,999,999$	17,870	
	$05=3,000,000$ or more	36,980	
	$94=$ Legitimate skip, not in an MSA	14,010	
MSTR_MON	1	9,024	Date of the household interview
	2	8,256	
	3	9,128	
	4	7,537	
	5	11,351	
	6	9,242	
	7	6,187	
	8	5,502	
	9	6,344	
	10	7,761	
	11	8,348	
	12	6,680	
MSTR_YR	95	56,194	Date of the household interview
	96	39,166	
NCCOMCR	01 $=$ Yes	88	
	$02=\mathrm{No}$	20,337	
	94= Legitimate skip	74,902	
	98= Not ascertained	33	
	$99=$ Refused	0	
NCINCVNT	01 $=$ Yes	1,569	
	02 $=\mathrm{No}$	18,856	
	$94=$ Legitimate skip	74,902	
	98= Not ascertained	33	
	99= Refused	0	
NCIRRHR	01= Yes	4,275	
	02 $=\mathrm{No}$	16,150	
	94= Legitimate skip	74,902	
	98= Not ascertained	33	
	99 $=$ Refused	0	
NCLVFAR	01= Yes	65	
	$02=\mathrm{No}$	20,360	
	$94=$ Legitimate skip	74,902	
	98= Not ascertained	33	
	99= Refused	0	





Target   Variable	Value Range and Codes:	Freqs:	Comments:
	$11=\$ 50,000-54,999$	15	
	$12=\$ 55,000-59,999$	8	
	$13=\$ 60,000-64,999$	10	
	$14=\$ 65,000-69,999$	2	
	$15=\$ 70,000-74,999$	8	
	16= \$75,000-79,999	3	
	$17=\$ 80,000-99,999$	0	
	$18=\$ 100,000$ and over	5	
	94= Legitimate skip	94,764	
	98= Not ascertained	46	
	99= Refused	25	
NPT2EXPV	01 $=$ Yes	122	
	$02=\mathrm{No}$	8,899	
	94= Legitimate skip	86,321	
	98= Not ascertained	18	
	99= Refused	0	
NPT2FRWK	01= Yes	3,381	
	$02=\mathrm{No}$	5,641	
	94= Legitimate skip	86,321	
	98= Not ascertained	17	
	99= Refused	0	
NPT2MCTM	01= Yes	1,070	
	02= No	7,952	
	94= Legitimate skip	86,321	
	98= Not ascertained	17	
	99= Refused	0	
NPTCOMCR	01 $=$ Yes	27	
	02 $=\mathrm{No}$	8,995	
	94= Legitimate skip	86,321	
	98= Not ascertained	17	
	$99=$ Refused	0	
NPTDLPT	01 $=$ Yes	3,395	
	02 $=\mathrm{No}$	5,629	
	94= Legitimate skip	86,321	
	98= Not ascertained	15	
	$99=$ Refused	0	
NPTFMHM	01= Yes	778	
	$02=\mathrm{No}$	8,244	
	94= Legitimate skip	86,321	
	98= Not ascertained	17	
	$99=$ Refused	0	
NPTHVCAR	01 $=$ Yes	186	
	$02=\mathrm{No}$	8,836	
	94= Legitimate skip	86,321	
	98= Not ascertained	17	






Target Variable:	Var   Type:	Widt	1990 Var:	Variable Label:		Item ID:
NSBSPCLH	C	2	N	Not wear seat belt w/ certain clothes	E	5.13
NSBSPPER	C	2	N	Not wear seat belt w/ a certain person	E	5.1
NSBSPVEH	C	2	N	Not wear seat belt when in a certain veh	E	5.08
NSBTOWN	C	2	N	Not wear seat belt when in town/city	E	5.09
NSBTOWRK	C	2	N	Not wear seat belt when going to work	E	5.17
NSBWTHR	C	2	N	Not wear seat belt when good weather	E	5.19
OUTCNTRY	C	2	N	Out of country	G	14
PARKAMNT	N	7.2	S	Parking fee to pay at work	F	14.1
PARKCODE	C	2	S	Unit of amount paid for parking at work	F	14.2


Target   Variable	Value Range and Codes:	Freqs:	Comments:
NSBSPCLH	01= Yes	660	
	$02=\mathrm{No}$	20,844	
	94= Legitimate skip	73,848	
	98= Not ascertained	8	
	99= Refused	0	
NSBSPPER	01 $=$ Yes	213	
	$02=\mathrm{No}$	21,288	
	94= Legitimate skip	73,848	
	98= Not ascertained	11	
	99 $=$ Refused	0	
NSBSPVEH	01 $=$ Yes	708	
	$02=\mathrm{No}$	20,796	
	94= Legitimate skip	73,848	
	98= Not ascertained	8	
	99= Refused	0	
NSBTOWN	01 $=$ Yes	749	
	$02=\mathrm{No}$	20,755	
	94= Legitimate skip	73,848	
	98= Not ascertained	8	
	99 $=$ Refused	0	
NSBTOWRK	01 $=$ Yes	141	
	$02=\mathrm{No}$	21,363	
	94= Legitimate skip	73,848	
	98= Not ascertained	8	
	99 $=$ Refused	0	
NSBWTHR	01= Yes	72	
	$02=\mathrm{No}$	21,432	
	$94=$ Legitimate skip	73,848	
	98= Not ascertained	8	
	$99=$ Refused	0	
OUTCNTRY	$01=$ Out of country	$171$	Sample person out of US for the entire travel y
	02 $=$ Was not out of country	95,189	
PARKAMNT	(0-850)	2,479	
	9994 $=$ Legitimate skip	92,861	
	9998= Not ascertained	20	
	9999 $=$ Reused	0	
PARKCODE	01= Hour	52	
	02= Day	672	
	03= Week	166	
	04 $=$ Month	1,047	
	05= Year	466	
	$06=$ Quarter	40	
	07= Other	41	
	94= Legitimate skip	92,861	

Progid: disk46:[wmynpts.pubfiles]cbrp_per.sas Date: 26SEP97

Target Variable:	Var   Type:	Width:	1990 Var:	Variable Label:		Item ID:
PARKCODE	C	2	S	Unit of amount paid for parking at work	F	14.2
PAYTOPRK	C	2	S	Pay parking at work?	F	13
PERSONID	N	2	S	Person ID number	*	*
PROXY	C	2	H_PROXY	Proxy respondent for person data	*	*
PTCARND	C	2	N	Having access to a car when you need it	E	3.1
PTCOST	C	2	N	Cost of travel by public transportation	E	3.G
PTCRIME	C	2	N	Worry w/ crime on public transportation	E	3.C
PTCROWD	C	2	N	Difficulty w/ crowding or getting a seat	E	3.AF


Target   Variable	Value Range and Codes:	Freqs:	Comments:
	$\begin{aligned} & 98=\text { Not ascertained } \\ & 99=\text { Refused } \end{aligned}$	$\begin{array}{r} 13 \\ 2 \end{array}$	
PAYTOPRK	$\begin{aligned} & 01=\text { Yes } \\ & 02=\text { No } \\ & 94=\text { Legitimate skip } \\ & 98=\text { Not ascertained } \\ & 99=\text { Refused } \end{aligned}$	$\begin{array}{r} 2,499 \\ 40,613 \\ 52,122 \\ 119 \\ 7 \end{array}$	
PERSONID	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \end{aligned}$	$\begin{array}{r} 39,753 \\ 30,605 \\ 14,122 \\ 7,524 \\ 2,439 \\ 666 \\ 187 \\ 50 \\ 12 \\ 2 \end{array}$	
PROXY	$\begin{aligned} & 01=\text { Yes } \\ & 02=\text { No } \\ & 94=\text { Legitimate skip } \\ & 98=\text { Not ascertained } \\ & 99=\text { Refused } \end{aligned}$	$\begin{array}{r} 31,714 \\ 63,646 \\ 0 \\ 0 \\ 0 \end{array}$	$01=$ person and trip data were collected from proxy respondent
PTCARND	01= Large problem   02= Small problem   03 $=$ No problem   94= Legitimate skip   98= Not ascertained   99= Refused	$\begin{array}{r} 836 \\ 749 \\ 2,372 \\ 91,382 \\ 15 \\ 6 \end{array}$	
PTCOST	01= Large problem   02= Small problem   03= No problem   94= Legitimate skip   98= Not ascertained   99= Refused	$\begin{array}{r} 850 \\ 1,108 \\ 2,013 \\ 91,382 \\ 6 \\ 1 \end{array}$	
PTCRIME	$\begin{aligned} & 01=\text { Large problem } \\ & 02=\text { Small problem } \\ & 03=\text { No problem } \\ & 94=\text { Legitimate skip } \\ & 98=\text { Not ascertained } \\ & 99=\text { Refused } \end{aligned}$	$\begin{array}{r} 1,016 \\ 1,256 \\ 1,532 \\ 91,544 \\ 11 \\ 1 \end{array}$	
PTCROWD	$\begin{aligned} & 01=\text { Large problem } \\ & 02=\text { Small problem } \\ & 03=\text { No problem } \\ & 94=\text { Legitimate skip } \end{aligned}$	$\begin{array}{r} 1,732 \\ 2,319 \\ 3,723 \\ 87,566 \end{array}$	



1NPTS Person	File Code Book - Public Use		14:11 Friday, September 26, 199728 (This page revised March 1999)
Target			
Variable	Value Range and Codes:	Freqs:	Comments:
	98= Not ascertained	17	
	99= Refused	3	
PTNTCLN	01= Large problem	682	
	02= Small problem	1,350	
	03= No problem	1,773	
	94= Legitimate skip	91,544	
	98= Not ascertained	10	
	99 $=$ Refused	1	
PTTIMEON	01= Large problem	1,809	
	02= Small problem	2,755	
	03= No problem	3,192	
	94= Legitimate skip	87,566	
	98= Not ascertained	34	
	$99=$ Refused	4	
PTTMND	01= Large problem	779	
	02= Small problem	1,222	
	03= No problem	1,962	
	94= Legitimate skip	91,382	
	98= Not ascertained	15	
	99 $=$ Refused	0	
PTTRANSF	01= Large problem	561	
	02= Small problem	1,170	
	03= No problem	2,039	
	$94=$ Legitimate skip	91,544	
	98= Not ascertained	44	
	99 $=$ Refused	2	
PTUSED	$01=$ Two or more days/week (11+ times)	$5,172$	
	02 $=$ About once a week (5-10 times)	1,457	
	$03=$ Once or twice a month (2-4 times)	2,817	
	$04=$ Less than once a month (one time)	2,048	
	05 $=$ Never	38,541	
	06= Not available	27,982	
	94= Legitimate skip	17,082	
	98= Not ascertained	239	
	$99=$ Refused	22	
RAIL	01= Yes	6,908	```01=Urban areas 1,250,000 population or greater with subway/elevated rail,02=other areas```
	$02=\mathrm{No}$	88,452	
	94= Legitimate skip	0	
	98= Not ascertained	0	
	$99=$ Refused	0	
REF_AGE	(16-88)	95,360	
	16-75= Ages 16-75	91,023	
	$77=$ Ages 76-79	2,003	
	82= Ages 80-84	1,508	
	88= Ages 85-100	812	
	998= Not Ascertained	6	
	999= Refused	8	
REF_EDUC	$11=$ Less than high school graduate	9,115	
	$12=$ High school graduate include GED	29,335	

Progid: disk46:[wmynpts.pubfiles]cbrp_per.sas Date: 26SEP97
(This page revised March 1999)


(This page revised March 1999)


[^5]| Target Variable | Value Range and Codes: | Freqs: | Comments: |
| :---: | :---: | :---: | :---: |
|  | 99= Refused | 0 |  |
| SIT2SBWY | $01=$ Sit | 88 |  |
|  | 02= Stand | 65 |  |
|  | 94= Legitimate skip | 95,199 |  |
|  | 98= Not ascertained | 8 |  |
|  | $99=$ Refused | 0 |  |
| SIT2STCR | 01 $=$ Sit | 7 |  |
|  | 02= Stand | 3 |  |
|  | $94=$ Legitimate skip | 95,348 |  |
|  | 98= Not ascertained | 2 |  |
|  | $99=$ Refused | 0 |  |
| SIT2TRAN | $01=$ Sit | 99 |  |
|  | 02= Stand | 58 |  |
|  | $94=$ Legitimate skip | 95,195 |  |
|  | 98= Not ascertained | 8 |  |
|  | $99=$ Refused | 0 |  |
| SITAMTR | 01= Sit only | 10 |  |
|  | 02 $=$ Stand only | 1 |  |
|  | $03=$ Some of both | 2 |  |
|  | $94=$ Legitimate skip | 95,346 |  |
|  | 98= Not ascertained | 1 |  |
|  | $99=$ Refused | 0 |  |
| SITBUS | 01= Sit only | 1,240 |  |
|  | $02=$ Stand only | 165 |  |
|  | 03 $=$ Some of both | 439 |  |
|  | 94= Legitimate skip | 93,465 |  |
|  | 98= Not ascertained | 49 |  |
|  | 99= Refused | 2 |  |
| SITSBWY | 01= Sit only | 152 |  |
|  | 02= Stand only | 147 |  |
|  | 03= Some of both | 161 |  |
|  | 94= Legitimate skip | 94,167 |  |
|  | 98= Not ascertained | 733 |  |
|  | $99=$ Refused | 0 |  |
| SITSTCR | 01= Sit only | 11 |  |
|  | 02 $=$ Stand only | 3 |  |
|  | 03= Some of both | 12 |  |
|  | 94= Legitimate skip | 95,330 |  |
|  | 98= Not ascertained | 4 |  |
|  | $99=$ Refused | 0 |  |
| SITTRAN | 01= Sit only | 458 |  |
|  | 02= Stand only | 68 |  |
|  | 03 $=$ Some of both | 165 |  |
|  | 94= Legitimate skip | 94,660 |  |


Target   Variable:	Var   Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
SITTRAN	C	2	N	Usually sit/stand/both on commuter train	F	11.5
SUBSTRAT	N	1	*	Substratum within VARSTRAT	*	*
TDAY_MON	N	2	S	Travel day date (MM)	*	*
TDAY_YR	N	2	S	Travel day date (YY)	*	*
TIMELEAV	N	4	N	Time usually leave for work	F	6
TIMETOWK	N	3	N	Minutes it took from home to work	F	7
UNITDIST	C	2	N	Unit of distance to work	F	5.2
USULDRV	C	2	N	Usually drive to work alone or carpool	F	15
VARSTRAT	N	2	S	Sample stratum	*	*
WAITAMTR	N	3	N	Minutes wait for AMTRAK	F	10.1
WAITBUS	N	3	N	Minutes wait for bus	F	10.2


Target   Variable	Value Range and Codes:	Freqs:	Comments:
	98= Not ascertained	8	
	99= Refused	1	
SUBSTRAT	1	1,524	
	2	93,836	
TDAY_MON	1= January	5,771	Date of travel day for the household
	$2=$ February	8,449	
	3= March	10,767	
	4 = April	8,269	
	$5=$ May	10,974	
	6= June	8,500	
	7 = July	7,243	
	$8=$ August	5,860	
	$9=$ September	6,313	
	$10=$ October	7,682	
	$11=$ November	7,760	
	$12=$ December	7,772	
TDAY_YR	95	53,269	Date of travel day for the household
	96	42,091	
TIMELEAV	(0-2355)	45,396	
	9994= Legitimate skip	48,681	
	9998= Not ascertained	1,283	
	9999= Refused	0	
TIMETOWK	(0-680)	45,963	
	$994=$ Legitimate skip	48,681	
	998= Not ascertained	680	
	999 $=$ Refused	36	
UNITDIST	94= Legitimate skip	48,681	Indicates if distance reported in blocks or miles
	98= Not ascertained	988	
	$\mathrm{B}=\mathrm{Block}$	1,804	
	$\mathrm{M}=\mathrm{Mile}$	43,887	
USULDRV	01 $=$ Yes	38,106	
	02= No	4,909	
	94= Legitimate skip	52,122	
	98= Not ascertained	187	
	$99=$ Refused	36	
VARSTRAT	$(1-70)$	95,360	
WAITAMTR	(0-15)	13	
	$994=$ Legitimate skip	95,346	
	998= Not ascertained	1	
	999 $=$ Refused	0	
WAITBUS	(0-60)	1,837	
	$994=$ Legitimate skip	93,465	

Progid: disk46:[wmynpts.pubfiles]cbrp_per.sas Date: 26SEP97


Target   Variable	Value Range and Codes:	Freqs:	Comments:
	998 $=$ Not ascertained	57	
	999 $=$ Refused	1	
WAITSBWY	(0-50)	456	
	$994=$ Legitimate skip	94,167	
	998= Not ascertained	737	
	999 $=$ Refused	0	
WAITSTCR	$(1-20)$	26	
	$994=$ Legitimate skip	95,330	
	998 $=$ Not ascertained	4	
	999 = Refused	0	
WAITTRAN	(0-60)	684	
	$994=$ Legitimate skip	94,660	
	998= Not ascertained	15	
	999= Refused	1	
WKBYAIR	$01=$ Yes	37	
	$02=\mathrm{No}$	46,592	
	94= Legitimate skip	48,681	
	98= Not ascertained	50	
	99= Refused	0	
WKBYAMTR	01= Yes	14	
	02 $=\mathrm{No}$	46,615	
	94= Legitimate skip	48,681	
	98= Not ascertained	50	
	$99=$ Refused	0	
WKBYAUTO	01 $=$ Yes	35,798	
	$02=\mathrm{No}$	10,841	
	94= Legitimate skip	48,681	
	98= Not ascertained	40	
	99 $=$ Refused	0	
WKBYBIKE	01= Yes	1,880	
	02= No	44,749	
	94= Legitimate skip	48,681	
	98= Not ascertained	50	
	$99=$ Refused	0	
WKBYBUS	01= Yes	1,895	
	$02=\mathrm{No}$	44,734	
	94= Legitimate skip	48,681	
	98= Not ascertained	50	
	99= Refused	0	
WKBYHOME	01= Yes	21	
	02 $=$ No	46,608	
	94= Legitimate skip	48,681	
	98= Not ascertained	50	


Target Variable:	Var   Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
WKBYHOME	C	2	N	Worked from home	F	8.19
WKBYMCYC	C	2	N	Get to work usually by motorcycle	F	8.07
WKBYOPOV	C	2	N	Get to work usually by other POV	F	8.08
WKBYOTHR	C	2	N	Get to work by other means	F	8.2
WKBYOTTK	C	2	N	Get to work usually by other truck	F	8.05
WKBYRV	C	2	N	Get to work usually by RV	F	8.06
WKBYSBWY	C	2	N	Get to work usually by elev. rail/subway	F	8.13
WKBYSCBS	C	2	N	Get to work usually by school bus	F	8.18
WKBYSTCR	C	2	N	Get to work usually by strtcar/trolley	F	8.12
WKBYTAXI	C	2	N	Get to work usually by taxi	F	8.15


Target   Variable	Value Range and Codes:	Freqs:	Comments:
	99= Refused	0	
WKBYMCYC	01= Yes	282	
	$02=\mathrm{No}$	46,347	
	94= Legitimate skip	48,681	
	98= Not ascertained	50	
	99= Refused	0	
WKBYOPOV	01 $=$ Yes	64	
	$02=\mathrm{No}$	46,565	
	94= Legitimate skip	48,681	
	98= Not ascertained	50	
	99= Refused	0	
WKBYOTHR	01= Yes	341	
	02= No	46,288	
	94= Legitimate skip	48,681	
	98= Not ascertained	50	
	99= Refused	0	
WKBYOTTK	01= Yes	213	
	02 $=\mathrm{No}$	46,416	
	94= Legitimate skip	48,681	
	98= Not ascertained	50	
	$99=$ Refused	0	
WKBYRV	01= Yes	20	
	$02=\mathrm{No}$	46,609	
	94= Legitimate skip	48,681	
	98= Not ascertained	50	
	99= Refused	0	
WKBYSBWY	01= Yes	1,193	
	02 $=\mathrm{No}$	45,436	
	94= Legitimate skip	48,681	
	98= Not ascertained	50	
	99= Refused	0	
WKBYSCBS	01= Yes	43	
	02= No	46,587	
	94= Legitimate skip	48,681	
	98= Not ascertained	49	
	99= Refused	0	
WKBYSTCR	01= Yes	30	
	02= No	46,599	
	94= Legitimate skip	48,681	
	98= Not ascertained	50	
	99= Refused	0	
WKBYTAXI	01= Yes	232	
	02 $=\mathrm{No}$	46,397	



Target Variable	Value Range and Codes:	Freqs:	Comments:
	$\begin{aligned} & 94=\text { Legitimate skip } \\ & 98=\text { Not ascertained } \\ & 99=\text { Refused } \end{aligned}$	$\begin{array}{r} 48,681 \\ 50 \\ 0 \end{array}$	
WKBYTRAN	$\begin{aligned} & 01=\text { Yes } \\ & 02=\text { No } \\ & 94=\text { Legitimate skip } \\ & 98=\text { Not ascertained } \\ & 99=\text { Refused } \end{aligned}$	$\begin{array}{r} 700 \\ 45,930 \\ 48,681 \\ 49 \\ 0 \end{array}$	
WKBYTRUK	$\begin{aligned} & 01=\text { Yes } \\ & 02=\text { No } \\ & 94=\text { Legitimate skip } \\ & 98=\text { Not ascertained } \\ & 99=\text { Refused } \end{aligned}$	$\begin{array}{r} 5,191 \\ 41,439 \\ 48,681 \\ 49 \\ 0 \end{array}$	
WKBYUV	$\begin{aligned} & 01=\text { Yes } \\ & 02=\text { No } \\ & 94=\text { Legitimate skip } \\ & 98=\text { Not ascertained } \\ & 99=\text { Refused } \end{aligned}$	$\begin{array}{r} 1,304 \\ 45,326 \\ 48,681 \\ 49 \\ 0 \end{array}$	
WKBYVAN	$\begin{aligned} & 01=\text { Yes } \\ & 02=\text { No } \\ & 94=\text { Legitimate skip } \\ & 98=\text { Not ascertained } \\ & 99=\text { Refused } \end{aligned}$	$\begin{array}{r} 1,813 \\ 44,816 \\ 48,681 \\ 50 \\ 0 \end{array}$	
WKBYWALK	$\begin{aligned} & 01=\text { Yes } \\ & 02=\text { No } \\ & 94=\text { Legitimate skip } \\ & 98=\text { Not ascertained } \\ & 99=\text { Refused } \end{aligned}$	$\begin{array}{r} 2,843 \\ 43,786 \\ 48,681 \\ 50 \\ 0 \end{array}$	
WKFMHM2M	```01= Yes 02= No 94= Legitimate skip 98= Not ascertained 99= Refused```	$\begin{array}{r} 8,604 \\ \text { in } \\ 41,652 \\ 44,973 \\ 115 \\ 16 \end{array}$	Includes persons who said they work at home questions $F-4, F-5$ or $F-19$. See documentation notes for WKFMHM2M
WKFMHMLW	```01= Yes 02= No 94= Legitimate skip 98= Not ascertained 99= Refused```	$\begin{array}{r} 6,154 \\ \\ 44,109 \\ 44,973 \\ 103 \\ 21 \end{array}$	Includes persons who said they work at home in questions $F-4$ or $F-5$. See documentation notes for WKFMHMLW


4.2

Target   Variable	Value Range and Codes:	Freqs: Comments:
WKFMHMXX	01= Two or more days/week (11+ times)	4,850 Their question was asked of persons answering   YES to $\mathrm{F}-19$ or $\mathrm{F}-20$. A response of 1 was imputed for persons who said they worked at home in questions $\mathrm{F}-4$ or $\mathrm{F}-5$.   See documentation notes for WKFMHMXX
	02 $=$ About once a week (5-10 times)	927
	$03=$ Once or twice a month (2-4 times)	1,881
	$04=$ Less than once a month (one time)	753
	05 $=$ Never	121
	06= Not available	0
	94= Legitimate skip	86,625
	98= Not ascertained	193
	$99=$ Refused	10
WORKDAYS	1	6
	2	18
	3	23
	4	51
	5	671
	6	160
	7	71
	94= legitimate skip	94,332
	98= Not ascertained	28
WORKER	01= Yes	51,928 Response to question D-12, as verified or corrected by the response to F-2
	$02=\mathrm{No}$	43,432
	94= Legitimate skip	0
	98= Not ascertained	0
	99= Refused	0
WORKLOC	1 = Work from home	2,931
	$2=$ No fixed work place	1,024
	$3=$ Work at work location	47,783
	94= Legitimate skip	43,622
	$98=$ Not ascertained	0
WORKSTAT	State population $<2$ million	2,082
	Not ascertained	48,287
	Refused	55
	AK	0
	AL	308
	AR	250
	AZ	223
	CA	2,412
	CO	330
	CT	427
	DC	0
	DE	0
	Foreign Country	4
	FL	1,104
	GA	638
	HI	0

Progid: disk46:[wmynpts.pubfiles]cbrp_per.sas Date: 26SEP97

Target Var			
Variable: Type: Width: 1990 Var: Variable Label:	Section: Item ID:		
WORKSTAT	C	2	N

WRKCOUNT N 2 WRKRCNT No. of workers in HH

WRKDRIVE C 2
S
Drive lisensed vehicle in work
G
3



Target   Variable	Value Range and Codes:	Freqs:	Comments:
	94= Legitimate skip	46,193	
	98= Not ascertained	138	
	99= Refused	0	
WRKMILES	(1-800)	936	
	$994=$ Legitimate skip	94,332	
	998= Not ascertained	91	
	999 $=$ Refused	1	
WRKTRANS	01= Automobile	34,329	
	02= Van	1,639	
	$03=$ Sport utility vehicle	1,200	
	$04=$ Pickup truck	4,822	
	05 $=$ Other truck	159	
	06= RV (recreational vehicle)	13	
	07= Motorcycle	65	
	08= Other private vehicle	33	
	09 $=$ Bus	1,161	
	10= Amtrak	6	
	11= Commuter train	547	
	$12=$ Streetcar/trolley	15	
	13= Subway/elevated rail	825	
	14= Airplane	19	
	15= Taxicab	73	
	16= Bicycle	200	
	17= Walk	1,326	
	$18=$ School bus	31	
	$19=$ Other public transit	9	
	$20=$ Other	155	
	94= Legitimate skip	48,681	
	98= Not ascertained	52	
	99= Refused	0	
WRKTRPS	01= Yes	1,028	
	$02=\mathrm{No}$	4,541	
	94= Legitimate skip	89,790	
	98= Not ascertained	1	
	99= Refused	0	
WRKVTYPE	01= Automobile	319	
	02= Van	162	
	03= Sport utility vehicle	49	
	$04=$ Pickup truck	139	
	05 $=$ Other truck	241	
	06= RV (recreational vehicle)	2	
	07= Motorcycle	2	
	08= Other private vehicle	24	
	09= Bus	26	
	$10=$ School Bus	40	
	11= Taxicab	8	
	$94=$ Legitimate skip	94,332	
	98= Not ascertained	15	


Target	Var		
Variable: Type: Width:	1990 Var: Variable Label:	Section: Item ID:	
WRKVTYPE	C	2	S
WTEMPLDN	N	6	$*$

WTINDAGR N 3 * Pct 16+ workers, agr/mining/const, CT CLAR *
WTINDFIN N 3 * Pct $16+$ workers, fin/ins/rl est ind, CT CLAR
WTINDMAN N 3 * Pct 16+ workers, manuf. industries, CT CLAR *

Target   Variable	Value Range and Codes:	Freqs:	Comments:
	99= Refused	1	
WTEMPLDN	$25=0$ to 49	3,998	
	$150=50$ to 249	4,642	
	$300=250$ to 499	2,951	
	$750=500$ to 1K	4,432	
	$1500=1 \mathrm{~K}$ to 2 K	5,416	
	$3000=2 \mathrm{~K}$ to 4 K	5,003	
	$7000=4 \mathrm{~K}$ to 10 K	4,295	
	$30000=10 \mathrm{~K}$ to 50K	3,179	
	$60000=50 \mathrm{~K}$ to 999K	2,357	
	999994= Legitimate skip	43,432	
	999998= Not ascertained	15,655	
WTINDAGR	$0=0$ to 4\%	22,663	
	$10=5$ to $14 \%$	11,603	
	$20=15$ to $24 \%$	1,516	
	$30=25$ to $34 \%$	333	
	$40=35$ to 44\%	90	
	$50=45$ to 54\%	28	
	$60=55$ to $64 \%$	19	
	$70=65$ to $74 \%$	12	
	$80=75$ to $84 \%$	3	
	$90=85$ to 94\%	3	
	$95=95$ to $100 \%$	3	
	994= Legitimate skip	43,432	
	998= Not ascertained	15,655	
WTINDFIN	$0=0$ to 4\%	22,090	
	$10=5$ to $14 \%$	10,770	
	$20=15$ to $24 \%$	1,997	
	$30=25$ to $34 \%$	768	
	$40=35$ to $44 \%$	313	
	$50=45$ to 54\%	94	
	$60=55$ to 64\%	104	
	$70=65$ to $74 \%$	60	
	$80=75$ to $84 \%$	76	
	$90=85$ to $94 \%$	1	
	$95=95$ to 100\%	0	
	994= Legitimate skip	43,432	
	998= Not ascertained	15,655	
WTINDMAN	$0=0$ to 4\%	14,885	
	$10=5$ to $14 \%$	9,944	
	$20=15$ to $24 \%$	4,514	
	$30=25$ to $34 \%$	2,628	
	$40=35$ to $44 \%$	1,612	
	$50=45$ to 54\%	1,217	
	$60=55$ to 64\%	609	
	$70=65$ to $74 \%$	373	
	$80=75$ to $84 \%$	296	
	$90=85$ to $94 \%$	173	



Target   Variable	Value Range and Codes:	Freqs:	Comments:
	$95=95$ to 100\%	22	
	$994=$ Legitimate skip	43,432	
	998 $=$ Not ascertained	15,655	
WTINDRET	$0=0$ to 4\%	4,012	
	$10=5$ to $14 \%$	13,220	
	$20=15$ to $24 \%$	9,920	
	$30=25$ to $34 \%$	4,968	
	$40=35$ to 44\%	2,330	
	$50=45$ to 54\%	1,140	
	$60=55$ to 64\%	492	
	$70=65$ to 74\%	128	
	$80=75$ to $84 \%$	39	
	$90=85$ to 94\%	24	
	$95=95$ to 100\%	0	
	994 $=$ Legitimate skip	43,432	
	998 $=$ Not ascertained	15,655	
WTINDSVC	$0=0$ to 4\%	1,365	
	$10=5$ to $14 \%$	6,997	
	$20=15$ to $24 \%$	9,773	
	$30=25$ to $34 \%$	7,797	
	$40=35$ to 44\%	4,229	
	$50=45$ to 54\%	2,611	
	$60=55$ to 64\%	1,349	
	$70=65$ to $74 \%$	936	
	$80=75$ to 84\%	621	
	$90=85$ to 94\%	479	
	$95=95$ to 100\%	116	
	994 $=$ Legitimate skip	43,432	
	998= Not ascertained	15,655	
WTINDTRN	$0=0$ to 4\%	24,669	
	$10=5$ to $14 \%$	9,175	
	$20=15$ to $24 \%$	1,564	
	$30=25$ to $34 \%$	433	
	$40=35$ to $44 \%$	211	
	$50=45$ to 54\%	85	
	$60=55$ to 64\%	68	
	$70=65$ to 74\%	41	
	$80=75$ to $84 \%$	24	
	$90=85$ to 94\%	1	
	$95=95$ to 100\%	2	
	994= Legitimate skip	43,432	
	998= Not ascertained	15,655	
WTINDWHL	$0=0$ to 4\%	23,250	
	$10=5$ to $14 \%$	10,005	
	$20=15$ to $24 \%$	2,025	
	$30=25$ to $34 \%$	670	
	$40=35$ to $44 \%$	235	
	$50=45$ to 54\%	54	


Target Variable:	Var   Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
WTINDWHL	N	3	*	Pct 16+ workers, wholesale trade ind, CT	CLAR	*
WTPERFIN	N	11.5	S	Final person wt person-nonresp adjusted	*	*
YEARMILE	N	6	S	How many miles did you drive per year	E	8
YEARMIL2	N	6	S	Revised YEARMILE.	E	8
YMILEFLG	C	2	*	Yearmile mileage was capped at 200,000	E	8


Target Variable	Value Range and Codes:	Freqs:	Comments:
	$60=55$ to $64 \%$	18	
	$70=65$ to 74\%	11	
	$80=75$ to $84 \%$	1	
	$90=85$ to 94\%	4	
	$95=95$ to 100\%	0	
	994= Legitimate skip	43,432	
	998 $=$ Not ascertained	15,655	
WTPERFIN	(0-65264)	95,360	Used to weight person file data
YEARMILE	(0-200000)	65,718	
	$999994=$ Legitimate skip	25,194	
	999998= Not ascertained	4,422	
	999999= Refused	26	
YEARMIL2	(0-200,000)	95,360	See Documentation notes in Appendix J.
	0	1,061	for more detail on YEARMIL2
	1-200,000	61,138	
	999994	25,194	
	999998	7,941	
	999999	26	
YMILEFLG	$01=$ Yes	28	
	02= No	95,332	



Progid: disk46:[wmynpts.pubfiles]cbrp_veh.sas Date: 24SEP97


Progid: disk46:[wmynpts.pubfiles]cbrp_veh.sas Date: 24SEP97


Target Variable	Value Range and Codes:	Freqs:	Comments:
	$\begin{aligned} & 08=\text { Mountain } \\ & 09=\text { Pacific } \end{aligned}$	$\begin{aligned} & 2,284 \\ & 6,794 \end{aligned}$	
CENSUS_R	$\begin{aligned} & 01=\text { Northeast } \\ & 02=\text { North Central } \\ & 03=\text { South } \\ & 04=\text { West } \end{aligned}$	$\begin{array}{r} 35,344 \\ 9,763 \\ 21,032 \\ 9,078 \end{array}$	
DRVRCNT	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{array}{r} 215 \\ 12,332 \\ 46,328 \\ 11,671 \\ 3,921 \\ 616 \\ 126 \\ 8 \end{array}$	Derived from the variable DRIVER
HBHINMED	$\begin{aligned} & 15,000=0 \text { to } 20 \mathrm{~K} \\ & 22,000=20 \mathrm{~K} \text { to } 25 \mathrm{~K} \\ & 27,000=25 \mathrm{~K} \text { to } 30 \mathrm{~K} \\ & 32,000=30 \mathrm{~K} \text { to } 35 \mathrm{~K} \\ & 37,000=35 \mathrm{~K} \text { to } 40 \mathrm{~K} \\ & 45,000=40 \mathrm{~K} \text { to } 50 \mathrm{~K} \\ & 60,000=50 \mathrm{~K} \text { to } 70 \mathrm{~K} \\ & 80,000=70 \mathrm{~K} \text { to } 999 \mathrm{~K} \\ & 999998=\text { Not ascertained } \end{aligned}$	$\begin{array}{r} 4,186 \\ 5,759 \\ 8,624 \\ 10,181 \\ 9,296 \\ 15,950 \\ 15,403 \\ 5,278 \\ 540 \end{array}$	
HBHRESDN	$\begin{array}{rrr} 25 & =r \text { to } 50 \\ 150 & =50 \text { to } 250 \\ 700 & =250 \text { to } 1000 \\ 2000 & =1000 \text { to } 3000 \\ 4000 & =3000 \text { to } 5000 \\ 6000 & =5000 \text { to } 999 \mathrm{~K} \\ 999998=\text { Not ascertained } \end{array}$	$\begin{array}{r} 12,199 \\ 13,718 \\ 17,696 \\ 21,186 \\ 5,518 \\ 4,360 \\ 540 \end{array}$	
HBHUR	$\begin{aligned} & 8=\text { Not ascertained } \\ & \mathrm{C}=\text { Second city } \\ & \mathrm{R}=\text { Rural } \\ & \mathrm{S}=\text { Suburban } \\ & \mathrm{T}=\text { Town } \\ & \mathrm{U}=\text { Urban } \end{aligned}$	$\begin{array}{r} 540 \\ 14,529 \\ 13,732 \\ 19,290 \\ 20,182 \\ 6,944 \end{array}$	
HBPPOPDN	$\begin{aligned} 50 & =0 \text { to } 100 \\ 300 & =100 \text { to } 500 \\ 750 & =500 \text { to } 1 \mathrm{~K} \\ 1,500 & =1 \mathrm{~K} \text { to } 2 \mathrm{~K} \\ 3,000 & =2 \mathrm{~K} \text { to } 4 \mathrm{~K} \\ 7,000 & =4 \mathrm{~K} \text { to } 10 \mathrm{~K} \\ 17,000 & =10 \mathrm{~K} \text { to } 25 \mathrm{~K} \\ 30,000 & =25 \mathrm{~K} \text { to } 999 \mathrm{~K} \\ 999998 & =\text { Not ascertained } \end{aligned}$	$\begin{array}{r} 10,374 \\ 13,310 \\ 7,200 \\ 9,062 \\ 12,831 \\ 16,147 \\ 4,419 \\ 1,334 \\ 540 \end{array}$	

Target Var
Variable: Type: Width: 1990 Var: Variable Label:
HHCMSA


Progid: disk46:[wmynpts.pubfiles]cbrp_veh.sas Date: 24SEP97

Target	Var			
Variable: Type: Width: 1990 Var: Variable Label:	Section: Item ID:			
HHMSA	C	4	S	MSA identification code
HHSIZE	N	2	S	Total number of persons in HH

HHVEHCNT N 2

HHVEHCNT N 2
HH_HISP C 2
HH_RACE C 2 S

HOUSEID	N	8	S
LIF_CYC	C	2	S

LIF CYC C 2
Household identification number * *

Family life cycle
D
5
Hispanic status of ref. person

Race of reference person

Household identification number

Does one HH mem. usually drive this veh $D$
14
MAINDRVR C 2

1NPTS Vehicle File Code Book - Public Use
Target

Variable	Value Range and Codes:	Freqs:	Comments:
HHMSA	(0520 - 8840 )	-	
HHSIZE	1	7,684	Number of persons - all ages (derived)
	2	27,337	
	3	15,466	
	4	15,494	
	5	6,331	
	6	2,031	
	7	567	
	8	184	
	9	66	
	10	57	
HHVEHCNT	1	12,678	
	2	36,554	
	3	17,148	
	4	5,952	
	5	1,890	
	6	624	
	7	217	
	8	80	
	9	54	
	10	20	
HH_HISP	01 $=$ Hispanic	2,500	
	02= Non-hispanic	72,577	
	98= Not ascertained	53	
	99 $=$ Refused	87	
HH_RACE	01= White	66,693	
	02=African-american	3,619	
	03= Asian	1,140	
	$04=$ Other	3,014	
	98= Not ascertained	207	
	99= Refused	544	
HOUSEID	(1000371-12227427)	75,217	
LIF_CYC			See documentation notes for LIF_CYC
	$02=>1$ adult, no children	$22,389$	
	$03=1$ adult, child age 0-5	540	
	$04=>1$ adult, child age 0-5	12,754	
	05= 1 adult, child age 6-15	1,211	
	$06=>1$ adult, child age 6-15	14,008	
	$07=1$ adult, child age 16-21	719	
	$08=>1$ adult, child age 16-21	5,383	
	$09=1$ adult, retired, no children	2,310	
	$10=>1$ adult, retired, no children	10,489	
MAINDRVR	01= Yes	66,765	
	02 $=$ No	6,623	
	$94=$ Legitimate skip	0	


Target Variable:	Var   Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
MAINDRVR	C	2	S	Does one HH mem. usually drive this veh	D	14
MAKECODE	C	2	S	First 2 char of NASS code	B	1
MILELIMT	C	2	S	$=1$ if annmiles capped at 115 K	B	7
MODLCODE	C	3	S	Last 3 char of NASS code	B	1
MSASIZE	C	2	S	Size of MSA of household	*	*
MSTR_MON	N	2	S	Date of master interview - month	*	*
MSTR_YR	N	2	S	Date of master interview - year	*	*
OD_DAY1	N	2	N	Date of first odometer reading - day	*	*
OD_DAY2	N	2	N	Date of second odomete reading - day	*	*
OD_MON1	N	2	N	Date of first odometer reading - month	*	*


Target Variable	Value Range and Codes:	Freqs:	Comments:
	$\begin{aligned} & 98=\text { Not ascertained } \\ & 99=\text { Refused } \end{aligned}$	$\begin{array}{r} 1,763 \\ 66 \end{array}$	
MAKECODE	(01-99 )	-	NASS codes are described in appendix 0
MILELIMT	$\begin{aligned} & 01=\text { Yes } \\ & 02=\text { No } \end{aligned}$	$\begin{array}{r} 188 \\ 75,029 \end{array}$	
MODLCODE	(001 - 999 )	-	NASS codes are described in appendix 0
MSASIZE	$\begin{aligned} & 01=\text { Less than } 250,000 \\ & 02=250,000-499,999 \\ & 03=500,000-999,999 \\ & 04=1,000,000-2,999,999 \\ & 05=3,000,000 \text { or more } \\ & 94=\text { Legitimate skip, not in an MSA } \end{aligned}$	$\begin{array}{r} 7,208 \\ 4,897 \\ 9,514 \\ 14,974 \\ 26,986 \\ 11,638 \end{array}$	See documentation notes for MSASIZE
MSTR_MON	1= January   2 $=$ February   3= March   4= April   5= May   6= June   $7=$ July   8= August   9= September   $10=$ October   11= November   12 $=$ December	$\begin{aligned} & 6,926 \\ & 6,360 \\ & 7,286 \\ & 6,057 \\ & 9,048 \\ & 7,375 \\ & 4,995 \\ & 4,612 \\ & 4,984 \\ & 6,014 \\ & 6,364 \\ & 5,196 \end{aligned}$	Date of the household interview
MSTR_YR	$\begin{aligned} & 95 \\ & 96 \end{aligned}$	$\begin{aligned} & 44,282 \\ & 30,935 \end{aligned}$	Date of the household interview
OD_DAY1	$\begin{aligned} & (1-31) \\ & 98=\text { Not ascertained } \end{aligned}$	$\begin{aligned} & 65,079 \\ & 10,138 \end{aligned}$	
OD_DAY2	$\begin{aligned} & (1-31) \\ & 98=\text { Not ascertained } \end{aligned}$	$\begin{aligned} & 42,321 \\ & 32,896 \end{aligned}$	
OD_MON1	$\begin{aligned} & 1=\text { January } \\ & 2=\text { February } \\ & 3=\text { March } \\ & 4=\text { April } \\ & 5=\text { May } \\ & 6=\text { June } \\ & 7=\text { July } \\ & 8=\text { August } \\ & 9=\text { September } \\ & 10=\text { October } \\ & 11=\text { November } \\ & 12=\text { December } \\ & 98=\text { Not ascertained } \end{aligned}$	$\begin{array}{r} 3,622 \\ 5,728 \\ 7,190 \\ 6,030 \\ 7,409 \\ 6,227 \\ 5,269 \\ 4,371 \\ 4,406 \\ 5,414 \\ 5,193 \\ 4,220 \\ 10,138 \end{array}$	


Target	Var	
Variable: Type: Width: 1990 Var: Variable Label:	Section: Item ID:	
OD_MON2	N	2



Target Variable	Value Range and Codes:	Freqs:	Comments:
OD_MON2	1= January	1,146	
	$2=$ February	1,270	
	3 3 March	1,952	
	4= April	4,120	
	$5=$ May	4,613	
	6= June	14,035	
	$7=$ July	5,748	
	$8=$ August	2,689	
	$9=$ September	910	
	$10=$ October	1,296	
	11= November	1,499	
	$12=$ December	3,043	
	98= Not ascertained	32,896	
OD_READ1	(0-997564)	65,056	
	999995= No longer have vehicle	$0$	
	999996= Broken odometer	0	
	999998 $=$ Not ascertained	10,154	
	999999= Refused	7	
OD_READ2	(2-999625)	40,689	
	999995= No longer have vehicle	5,553	
	999996= Broken odometer	331	
	999998= Not ascertained	23,246	
	999999= Refused	5,398	
OD_YR1	$95=1995$	36,031	
	$96=1996$	29,049	
	98= Not ascertained	10,137	
OD_YR2			
	$96=1996$	34,627	
	98= Not ascertained	32,896	
PURCHMON	1= January	1,090	Month vehicle obtained, if in past 12 months
	$2=$ February	1,109	
	3= March	1,245	
	4= April	1,260	
	$5=$ May	1,344	
	6= June	1,400	
	$7=$ July	1,238	
	$8=$ August	1,379	
	$9=$ September	1,146	
	$10=$ October	1,374	
	11= November	1,301	
	$12=$ December	1,008	
	94= Legitimate skip	$59,191$	
	98= Not ascertained	1,063	
	$99=$ Refused	69	
PURCHYR	1994	2,744	
	1995	11,490	



Hicle number

Target   Variable	Value Range and Codes:	Freqs:	Comments:
	1996	1,360	
	9994= Legitimate skip	59,191	
	9998 $=$ Not ascertained	385	
	9999= Refused	47	
RAIL	$01=$ Yes	5,165	```01=Urban areas 1,250,000 population or greater with subway/elevated rail,02=other areas```
	02 $=$ No	70,052	
SUBSTRAT	1	1,243	
	2	73,974	
SUM_STAT	050 - All elig persons completed intervi	63,003	$50=$ all adults responded, $51=$ at least $50 \%$ of adults responded
	051 - >50\% of adults completed interview	12,214	
TDAY_MON	1= January	4,463	Date of travel day for the household
	$2=$ February	6,452	
	$3=$ March	8,342	
	$4=$ April	6,693	
	5= May	8,723	
	6= June	6,869	
	7 = July	5,806	
	8= August	4,727	
	$9=$ September	5,214	
	$10=\text { October }$	5,911	
	11= November	6,030	
	$12=$ December	5,987	
TDAY_YR	95	42,037	Date of travel day for the household
	96	33,180	
VARSTRAT	(1-70)	75,217	
VEH12MNT	$01=$ Yes	15,609	
	02 $=$ No	59,191	
	$94=\text { Legitimate skip }$	$0$	
	98= Not ascertained	372	
	99= Refused	45	
VEHID	1	38,633	
	2	25,988	
	3	7,780	
	4	2,041	
	5	540	
	6	153	
	7	50	
	8	20	
	9	9	
	10	3	



Target   Variable	Value Range and Codes:	Freqs:	Comments:
VEHMILES	$(0-500000)$	66,313	Miles vehicle was driven in past 12 months, as reported in $B-7$ or in $\mathrm{E}-9$
	999998 $=$ Not ascertained	8,778	
	999999= Refused	126	
VEHNEW	01 $=$ Yes	35,726	
	02 $=\mathrm{No}$	38,760	
	94= Legitimate skip	0	
	98= Not ascertained	620	
	99 $=$ Refused	111	
VEHTYPE	01= Automobile	49,409	
	02= Van	6,026	
	03= Sport utility vehicle	5,414	
	04= Pickup truck	12,001	
	05= Other truck	274	
	$06=$ RV (recreational vehicle)	333	
	07= Motorcycle	742	
	08= Other POV	82	
	98= Not ascertained	919	
	$99=$ Refused	17	
VEHYEAR	$1955=1919$ to 1964	443	
	$1967=1965$ to 1969	711	
	1970	188	
	1971	197	
	1972	280	
	1973	278	
	1974	283	
	1975	272	
	1976	489	
	1977	653	
	1978	951	
	1979	1,178	
	1980	863	
	1981	986	
	1982	1,279	
	1983	1,772	
	1984	3,036	
	1985	3,954	
	1986	4,881	
	1987	5,316	
	1988	5,554	
	1989	6,001	
	1990	4,991	
	1991	5,106	
	1992	5,163	
	1993	5,621	
	1994	5,983	
	1995	5,223	
	1996	973	
	1997	23	



1NPTS Vehicl	File Code Book - Public Use		:09 Wednesday, September 24, 199718
Target			
Variable	9998 $=$ Not ascertained	2,569	
WHOMAIN	01	37,570	Person ID for main driver of vehicle
	02	23,752	
	03	4,168	
	04	1,039	
	05	187	
	06	38	
	07	5	
	08	4	
	94= Legitimate skip	6,623	
	98= Not ascertained	1,765	
	99= Refused	66	
WRKCOUNT	0	10,638	Derived from WORKER variable
	1	21,294	
	2	33,002	
	3	7,539	
	4	2,323	
	5	348	
	6	63	
	7	9	
	8	1	
WTHHF IN	(0-47981)	75,217	Used to weight household file and vehicle file data



Trip chain number for this person

Progid: disk46:[wmynpts.pubfiles]cbrp_tday.sas Date: 24SEP97

Target   Variable	Value Range and Codes:	Freqs:	Comments:
AWAYHOME	01= To work	834	Asked only when first trip was to home
	02= Work-related business	36	
	03= Return to work	0	
	04= Shopping	4	
	05= School	16	
	06= Religious activity	3	
	07= Medical/dental	19	
	$08=$ Other family or personal bus	83	
	$09=$ Take someone somewhere	4	
	$10=$ Pick up someone	6	
	11= Vacation	83	
	$12=$ Visit friends or relatives	368	
	$13=$ Went out to eat	4	
	$14=$ Other social/recreational	121	
	$15=$ Change means of transportati	0	
	$16=$ Other, specify	48	
	$17=$ Home	2	
	94= Legitimate skip	407,129	
	98= Not ascertained	265	
	99= Refused	0	
CENSUS_D	01= New England	83,567	
	02= Middle Atlantic	118,666	
	03 $=$ East North Central	37,201	
	04 $=$ West North Central	14,918	
	05= South Atlantic	38,241	
	06= East South Central	11,248	
	$07=$ West South Central	58,635	
	08= Mountain	12,070	
	$09=$ Pacific	34,479	
CENSUS_R	01= Northeast	202,233	
	02 $=$ North Central	52,119	
	03 $=$ South	108,124	
	04= West	46,549	
CHAIN	1		See documentation notes for CHAIN
	2	$113,372$	
	3	$56,707$	
	4	24,423	
	5	10,563	
	6	4,677	
	7	2,317	
	8	1,275	
	9	745	
	10	391	
	11	238	
	12	132	
	13	74	
	14	41	
	15	22	
	16	4	


Target Variable:	Var   Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
CHAIN	N	2	N	Trip chain number for this person	G	*
CHAINTRP	N	2	N	\# of trip within chain	G	*


DATEFLG	C	1	N	Intrv date imputed from trav date plus	G	*
DAYNIGHT	C	2	S	Trip started AM or PM G17A	G	17.04
DAYNGHT2	C	2	S	Corrected DAYNIGHT Variable		
DIFFDATE	N	3	S	Days between travel \& interview dates	G	*
DRIVER	C	2	LIC_DRVR	Person is a driver D9	D	9


Target   Variable	Value Range and Codes:	Freqs:	Comments:
	17	2	
	18	2	
	19	1	
	20	1	
	21	1	
	22	1	
CHAINTRP	1	197,748	See documentation notes for CHAIN
	2	126,086	
	3	43,713	
	4	20,975	
	5	10,029	
	6	5,070	
	7	2,558	
	8	1,365	
	9	716	
	10	372	
	11	189	
	12	98	
	13	50	
	14	31	
	15	15	
	16	3	
	17	2	
	18	2	
	19	2	
	20	1	
DATEFLG	$\begin{aligned} & 01=\text { Yes } \\ & 02=\text { No } \end{aligned}$	$\begin{array}{r} 1,362 \\ 407,663 \end{array}$	Interview date imputed as travel day plus one
DAYNIGHT	$98=$ Not ascertained	111	
	$99=$ Refused	8	
	AM	$137,520$	
	PM	$271,386$	
DAYNGHT2			
	AM	137,	541
	PM	271,	
DIFFDATE	1	$126,106$	Indicates days after travel day when person and trip date were collected
	2	81,890	
	3	60,269	
	4	54,490	
	5	47,414	
	6	38,750	
	7	106	
DRIVER	$01=$ Yes	324,343	Driver status reported in D-9, as verified or corrected in E-6 or E-7
	02 $=$ No	84,680	
	$94=$ Legitimate skip	0	
	98= Not Ascertained	2	
	99= Refused	0	


Target Variable:	Var   Type:	Width:	1990 Var:	Variable Label:	Secti	Item ID:
DRVRCNT	N	2	S	Number of drivers in HH	D	*
DRVR_FLG	C	2	S	$1=$ person drove on trip	G	21\&38
DWEL2_HM	N	4	N	DWELTIM2 in easy to HH:MM format	G	*
DWELSEC2	N	4	N	Time in seconds spent at destination of current record calcluated by STRTIM2	G	*
DWELTIME	N	4	N	Time spent at destination of prev trip	G	17
DWELTIM2	N	4	N	Time spent at destination of current record and calculated using STRTIM2	G	*
EDITMILE	C	2	S	1= trip miles were edited	G	22
EDITMODE	C	2	S	$1=$ transportation mode was edited	G	25
EDITNONH	C	2	N	1 = variable NONHHCNT was edited	G	40
EDIT_MIN	C	2	S	$1=$ trip duration was edited	G	27
FROM_A	C	1	N	Where trip chain started (H, W, S)	G	16
FRSTHM	C	2	N	$1=$ persons 1st trip began at home	G	19
HBHINMED	N	6	*	Median household income, BG	CLAR	*
HBHRESDN	N	6	*	HU density (units/square mile), BG	CLAR	*

[^6]| Target Variable | Value Range and Codes: | Freqs: | Comments: |
| :---: | :---: | :---: | :---: |
| DRVRCNT | 0 | 8,778 | Derived from the variable DRIVER |
|  | 1 | 68,389 |  |
|  | 2 | 244,382 |  |
|  | 3 | 64,340 |  |
|  | 4 | 19,457 |  |
|  | 5 | 3,082 |  |
|  | 6 | 574 |  |
|  | 7 | 23 |  |
| DRVR_FLG | $01=$ Yes | 252,574 | Indicates that the sample person drove on the trip (PERSONID=WHODROVE) |
|  | 02 $=$ No | 156,451 |  |
| DWEL2_HM | (0-1250) | 409,025 | Shows DWELTIM2 in easy to read HH:MM format. |
| DWELSEC2 | (0-75,000) | 409,025 | Variable is DWLETIM2 in Seconds. |
| DWELTIME | (-540-1250) | 409,025 | Calculated as the minutes at the destination of the previous trip,before starting the current trip. Missing for each person's first trip on travel day, and when STRTTIME or TRVL_MIN was not determined. |
| DWELTIM2 | $\begin{gathered} (0-1250) \\ 0 \\ 1-1250 \end{gathered}$ | $\begin{gathered} 409,025 \\ 14,4 \\ 295,556 \end{gathered}$ | New variable compareable to DWELTIME except DWELTIM2 4 sets negative values to missing. |
|  | issing | 99,065 |  |
| EDITMILE | $01=$ Yes | 20 |  |
|  | 02= No | 409,005 |  |
| EDITMODE | 01= Yes | 15 |  |
|  | 02 $=\mathrm{No}$ | 409,010 |  |
| EDITNONH | $01=$ Yes | 934 |  |
|  | 02= No | 408,091 |  |
| EDIT_MIN | 01= Yes | 1,752 |  |
|  | 02 $=\mathrm{No}$ | 407,273 |  |
| FROM_A | $8=$ Not Ascertained | 0 | See documentation notes for CHAIN |
|  | $\mathrm{H}=$ Home | 311,744 |  |
|  | $\mathrm{S}=$ Other | 19,345 |  |
|  | W= Work | 77,936 |  |
| FRSTHM | 01= Yes | 76,148 | Asked when the person's first trip was not to home |
|  | 02= No | 2,599 |  |
|  | 94= Legitimate skip | 327,426 |  |
|  | 98= Not Ascertained | 2,852 |  |
|  | $99=$ Refused | 0 |  |
| HBHINMED | 15,000 $=0$ to 20 K | 27,558 |  |
|  | $22,000=20 \mathrm{~K}$ to 25 K | 32,612 |  |
|  | $27,000=25 \mathrm{~K}$ to 30 K | 47,386 |  |
|  | $32,000=30 \mathrm{~K}$ to 35 K | 55,152 |  |
|  | $37,000=35 \mathrm{~K}$ to 40 K | 49,987 |  |
|  | $45,000=40 \mathrm{~K}$ to 50 K | 84,220 |  |
|  | $60,000=50 \mathrm{~K}$ to 70 K | 81,849 |  |
|  | $80,000=70 \mathrm{~K}$ to 999K | 27,615 |  |
|  | 999998= Not ascertained | 2,646 |  |
| HBHRESDN | $25=0$ to 50 | 57,776 |  |



Target Variable	Value Range and Codes:	Freqs:	Comments:
	$150=50$ to 250	69,304	
	$700=250$ to 1000	94,608	
	$2000=1000$ to 3000	116,942	
	$4000=3000$ to 5000	32,771	
	$6000=5000$ to 999 K	34,978	
	999998 $=$ Not ascertained	2,646	
HBHUR	$8=$ Not ascertained	2,646	
	$\mathrm{C}=$ Second city	82,719	
	$\mathrm{R}=$ Rural	66,816	
	$\mathrm{S}=$ Suburban	102,788	
	$\mathrm{T}=$ Town	105,507	
	$\mathrm{U}=$ Urban	48,549	
HBPPOPDN	$50=0$ to 100	48,565	
	$300=100$ to 500	66,491	
	$750=500$ to 1 K	38,355	
	$1,500=1 \mathrm{~K}$ to 2 K	48,184	
	$3,000=2 \mathrm{~K}$ to 4 K	69,730	
	$7,000=4 \mathrm{~K}$ to 10 K	91,408	
	17,000= 10K to 25K	28,544	
	$30,000=25 \mathrm{~K}$ to 999K	15,102	
	999998 $=$ Not ascertained	2,646	
HHCMSA	Chicago-Gary-Kenosha, IL-IN-WI	8,179	
	Cincinnati-Hamilton, OH-KY-IN C	1,685	
	Cleveland-Akron, OH CMSA	2,341	
	Dallas-Fort Worth, TX CMSA	3,201	
	Denver-Boulder-Greeley, CO CMSA	1,500	
	Detroit-Ann Arbor-Flint, MI CMS	3,570	
	Houston-Galveston-Brazoria, TX	2,632	
	Los Angeles-Riverside-Orange Co	9,492	
	Miami-Fort Lauderdale, FL CMSA	2,483	
	Milwaukee-Racine, WI CMSA	1,288	
	New York-No. New Jersey-Long Is	47,451	
	Philadelphia-Wilmington-Atlanti	5,680	
	Portland-Salem, OR-WA CMSA	2,042	
	Sacramento-Yolo, CA CMSA	1,443	
	San Francisco-Oakland-San Jose,	5,590	
	Seattle-Tacoma-Bremerton, WA CM	6,905	
	Washington-Baltimore, DC-MD-VA-	7,231	
	Not in a CMSA	296,312	
HHFAMINC	01= Less than \$5,000	4,652	Based on questions of Section K.See olso NONFMFLG and NONFMINC
	02= \$5,000-9,999	12,555	
	03= \$10,000-14,999	16,907	
	$04=\$ 15,000-19,999$	22,986	
	05= \$20,000-24,999	20,875	
	06= \$25,000-29,999	34,724	
	07= \$30,999-34,999	21,554	
	$08=\$ 35,000-39,999$	35,378	


Target			
Variable: Type: Width: 1990 Var: Variable Label:	Section: Item ID:		
HHFAMINC	C 2	S	HH family income category

HHMEMDRV C 2

1= household member drove G37
G
37

HHMSA	C	4	S	MSA identification code	*	*
HHSIZE	N	3	S	Total number of persons in HH	D	



Target   Variable	Value Range and Codes:		Freqs:	Comments:
	09= \$40,000-44,999		17,770	
	$10=\$ 45,000-49,999$		32,322	
	$11=\$ 50,000-54,999$		12,689	
	$12=\$ 55,000-59,999$		25,149	
	$13=\$ 60,000-64,999$		9,466	
	$14=\$ 65,000-69,999$		17,882	
	$15=\$ 70,000-74,999$		5,986	
	16=\$75,000-79,999		12,597	
	$17=\$ 80,000-99,999$		20,155	
	$18=\$ 100,000$ and over		22,300	
	$98=$ Not ascertained		28,582	
	99= Refused		34,496	
HHMEMDRV				See documentation notes
	$02=\mathrm{No}$		$29,344$	
	03= Some		218	
	94= Legitimate skip		51,923	
	98= Not ascertained		2,357	
	$99=$ Refused		0	
HHMSA	(0520 - 8840		-	
HHSIZE	1		34,019	Number of persons - all ages (derived)
	2		117,313	
	3		81,658	
	4		101,601	
	5		49,200	
	6		17,143	
	7		$4,977$	
	8		$1,923$	
	9		628	
	10		563	
HHTRIPID	(1-119)		409,025	Travel day trip ID within a household. See documentation notes
HHVEHCNT	0		17,204	Count of all vehicles for the household
	1		90,488	
	2		198,654	
	3		73,787	
	4		21,223	
	5		5,467	
	6		1,552	
	7		449	
	8		119	
	9		60	
	10		22	
HH_HISP	01= Hispanic		17,398	
	02= Non-hispanic		390,919	
	98= Not Ascertained		260	
	99= Refused		448	


Target	Var	
Variable: Type: Width: 1990 Var: Variable Label:	Section: Item ID:	
HH_ONTRP N	2	S


| HH_RACE | C | Race of reference person | D |
| :--- | :--- | :--- | :--- | :--- | :--- |


HOUSEID	N	8	S
HOWFARU	C	2	N


| Household identification number | $*$ | $*$ |
| :--- | :--- | :--- | :--- |
| Units of reported dist: B) locks, M) iles | G | 22.02 |

INTRVMON N 2

Person interview date - month

INTRVYR	N	2	S
LIF_CYC	C	2	$S$

Person interview date - year
*

D 3

Target   Variable	Value Range and Codes:	Freqs:	Comments:
HH_ONTRP	1	254,400	Includes the person reporting the trip and other household members
	2	96,726	
	3	33,341	
	4	16,640	
	5	5,810	
	6	1,413	
	7	420	
	8	171	
	9	24	
	10	80	
HH_RACE	01= White	354,061	
	02=African-american	25,093	
	03=Asian	6,410	
	04= Other	19,073	
	98 $=$ Not Ascertained	1,339	
	99= Refused	3,049	
HOUSEID	(1000371-12227427)	409,025	
HOWFARU	98=Not Ascertained	6,619	
	99=Refused	3	
	$\mathrm{B}=$ Reported in blocks	50,893	
	$\mathrm{M}=$ Reported in miles	351,510	
INTRVMON	$1=$ January	22,074	
	$2=$ February	34,768	
	$3=$ March	45,329	
	4= April	37,834	
	$5=$ May	45,254	
	$6=$ June	39,524	
	$7=$ July	33,140	
	$8=$ August	28,038	
	$9=$ September	24,896	
	$10=\text { October }$	34,061	
	11= November	32,022	
	12= December	32,085	
INTRVYR	95	229,409	
	96	179,616	
LIF_CYC	01= 1 adult, no children	24,605	See documentation notes for LIF_CYC
	$02=>1$ adult, no children	92,455	
	$03=1$ adult, child age 0-5	5,598	
	$04=>1$ adult, child age 0-5	78,402	
	$05=1$ adult, child age 6-15	$13,174$	
	06= >1 adult, child age 6-15	106,948	
	07= 1 adult, child age 16-21	3,940	
	$08=>1$ adult, child age 16-21	27,455	
	09= 1 adult, retired, no childre	9,535	
	$10=>1$ adult, retired, no childr	46,913	



Target Variable	Value Range and Codes:	Freqs:	Comments:
MATCH	(1-51)	74,044	Identifies the HHTRIPID where the trip was first reported. See PREVREP
	$994=$ Legitimate skip	333,626	
	998= Not ascertained	1,355	
	999 $=$ Refused	0	
MSASIZE	01 $=$ Less than 250,000	39,330	See documentation notes for MSASIZE
	$02=250,000-499,999$	25,962	
	$03=500,000-999,999$	50,386	
	$04=1,000,000-2,999,999$	78,338	
	$05=3,000,000$ or more	153,991	
	94= Legitimate skip, not in an M	61,018	
MSTR_MON	1= January	37,037	Date of the household interview
	$2=$ February	35,511	
	3= March	40,295	
	$4=$ April	33,696	
	5= May	50,016	
	6= June	41,370	
	7 = July	27,934	
	8= August	23,591	
	$9=$ September	27,599	
	10= October	34,440	
	11= November	33,846	
	$12=$ December	23,690	
MSTR_YR	95	241,364	Date of the household interview
	96	167,661	
NONHHACC	01= Yes	73,068	
	$02=\mathrm{No}$	334,452	
	$94=$ Legitimate skip	0	
	98= Not Ascertained	1,441	
	$99=$ Refused	64	
NONHHCNT	(1-28)	71,677	
	$994=$ Legitimate skip	334,452	
	998= Not ascertained	2,827	
	999 Refused	69	
NUMONTRP	(1-32)	406,230	Total of HH_ONTRP and NONHHCNT
	994= Legitimate skip	0	
	998= Not ascertained	2,728	
	999 $=$ Refused	67	
OVERLAP	$1=\mathrm{Yes}$	2,900	
	$2=\mathrm{No}$	406,125	
PASSPURP	01= To work	1,399	PASSPURP is asked only when WHYTRIP95=09
	02= Work-related business	99	
	03= Return to work	70	
	04= Shopping	310	


		Var	(This page revised March 1999)
Target			
Variable: Type: Width: 1990 Var: Variable Label:	Section: Item ID:		
PASSPURP	C	2	S

PERSONID N 2 Person ID number * *
PREVREP C 2

This trip also reported by other HH mem G
17

PROXY	C	2	H_PROXY	Proxy respondent for person data	*	*
PUBTRANS	C	2	S	Used public transit (8<trptrans<14)	G	25.CK
RAIL	C	2	N	Presence/absence of rail	*	*
REF_AGE	N	3	S	Age of reference person (yr)	D	3


1NPTS Travel   Target   Variable	Day File Code Book - Public Use   Value Range and Codes:	Freqs:	16:29 Wednesday, September 24, 199716 (This page revised March 1999)   Comments:
	05= School	3,390	
	06= Religious activity	162	
	07= Medical/dental	551	
	08= Other family or personal bus	2,398	
	09= Take someone somewhere	17	
	$10=$ Pick up someone	1	
	11= Vacation	45	
	$12=$ Visit friends or relatives	654	
	$13=$ Went out to eat	87	
	14= Other social/recreational	1,544	
	15= Change means of transportati	76	
	$16=$ Other, specify	19	
	17= Home	4,076	
	$94=$ Legitimate skip	393,953	
	98= Not ascertained	174	
	99= Refused	0	
PERSONID	1	178,717	Person ID within household
	2	134,130	
	3	56,007	
	4	28,468	
	5	8,852	
	6	2,178	
	7	526	
	8	114	
	9	29	
	10	4	
PREVREP	01= Yes	74,123	01=trip was previously reported by another household member, $02=$ not. See documentation notes for PREVREP
	$02=\mathrm{No}$	333,626	
	$94=$ Legitimate skip	0	
	98= Not Ascertained	1,276	
	99= Refused	0	
PROXY	01= Yes	115,463	01=person and trip data were collected from proxy respondent
	$02=\mathrm{No}$	293,562	
PUBTRANS	01= Yes	7,458	Indicates public transit was the main mode used for the trip
	$02=\mathrm{No}$	401,567	
RAIL	$01=\mathrm{Yes}$	28,499	$01=$ Urban areas $1,250,000$ population or greater with subway/elevated rail,02=other areas
	$02=\mathrm{No}$	380,526	
REF_AGE	(16-88)	408,961	
	5-75= Ages 5-75	395,781	
	77= Ages 76-79	6,891	
	82= Ages 80-84	4,539	
	88= Ages 85-98	1,750	
	994 $=$ Legitimate skip	0	
	998 $=$ Not ascertained	27	
	999= Refused	37	



Target Variable	Value Range and Codes:	Freqs: Comments:
REF_EDUC	11= Less than H.S. graduate   $12=$ H.S. graduate (includes GED)   $21=$ Some college, no degree   $22=$ Associate degree in college   24= Bachelors degree in college   $25=$ Some grad/prof school   26= Grad/prof school degree   98= Not ascertained   99= Refused	$\begin{array}{r} 30,980 \\ 120,726 \\ 78,795 \\ 24,200 \\ 73,913 \\ 10,833 \\ 52,085 \\ 16,968 \\ 525 \end{array}$
REF_SEX	$\begin{aligned} & 01=\text { Male } \\ & 02=\text { Female } \end{aligned}$	$\begin{aligned} & 283,415 \\ & 125,610 \end{aligned}$
R_AGE	$\begin{aligned} & (5-88) \\ & 5-75=\text { (Ages } 5-75) \\ & 77=\text { (Ages 76-79) } \\ & 82=\text { (Ages 80-84) } \\ & 88=\text { (Ages 85-102) } \end{aligned}$	$\begin{aligned} & \mathbf{4 0 9}, \mathbf{0 2 5} \text { See documentation notes for R_AGE } \\ & 398,376 \\ & 5,536 \\ & 3,703 \\ & 1,410 \end{aligned}$
R_SEX	$\begin{aligned} & 01=\text { Male } \\ & 02=\text { Female } \end{aligned}$	$\begin{aligned} & 194,351 \\ & 214,674 \end{aligned}$
SEGMENTD	$\begin{aligned} & 01=\mathrm{Yes} \\ & 02=\mathrm{No} \end{aligned}$	$\begin{array}{r} 3,779 \\ 405,246 \end{array}$
SITMOST	$\begin{aligned} & 01=\text { Sit } \\ & 02=\text { Stand } \\ & 94=\text { Legitimate skip } \\ & 98=\text { Refused } \end{aligned}$	$\begin{array}{r} 525 \\ 349 \\ 408,113 \\ 38 \end{array}$
STANDSIT	```01= Sit only 02= Stand only 03= Some of both 94= Legitimate skip 98= Not ascertained 99= Refused```	$\begin{array}{r} 4,912 \\ 1,182 \\ 912 \\ 401,596 \\ 415 \\ 8 \end{array}$
STRTTIME	```(0 - 2359) 9994= Legitimate skip 9998= Not ascertained 9999= Refused```	$\begin{array}{r} 408,905 \\ 0 \\ 114 \\ 6 \end{array}$
STRTTIM2	(1-2359)	408,905
SUBSTRAT	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 6,616 \\ 402,409 \end{array}$
TDAY_MON	$\begin{aligned} & 1=\text { January } \\ & 2=\text { February } \\ & 3=\text { March } \\ & 4=\text { April } \\ & 5=\text { May } \\ & 6=\text { June } \\ & 7=\text { July } \\ & 8=\text { August } \\ & 9=\text { September } \\ & 10=\text { October } \\ & 11=\text { November } \end{aligned}$	21,448 Date of travel day for the household 35,270 46,354 37,213 48,086 38,347 32,126 26,585 26,806 34,161 32,064

Progid: disk46:[wmynpts.pubfiles]cbrp_tday.sas Date: 24SEP97

1NPTS Travel Day File Code Book - Public Use 16:29 Wednesday, September 24, 199719						
Target	Var.					
Variable:	Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
TDAY_MON	N	2	S	Travel day date (MM)	*	*
TDAY_YR	N	2	S	Travel day date (YY)	*	*
TO_B	C	1	N	Where trip chain ended	G	16
TRANSFER	C	2	S	$=01$ if changed mode from/to pub trans	G	26
TRAVDAY	N	2	S	Travel day - day of week	*	*
TRAVWKND	C	2	S	Travel day on weekend ( $1=\mathrm{Y}, 2=\mathrm{N}$ )	*	*
TRPHHACC	C	2	S	Other HH mem were also on trip?	G	35
TRPHHVEH	c	2	S	Was HH vehicle used on trip?	G	23
TRPMILES	N	6.1	S	Distance (miles)	G	22.03
TRPNUM	N	2	S	Travel day trip number for sample person	n G	*
TRPNUM2	N	2	S	Travel day trip number to be used to Chronologically reorder trip with each Person's records.	G	*
TRPNUM_A	N	2	N	Person trip \# of first trip in chain	*	*
TRPNUM_B	N	2	N	Person trip \# of last trip in chain	*	*
TRPTRANS	C	2	S	Mode of transportation code	G	25

Progid: disk46:[wmynpts.pubfiles]cbrp_tday.sas Date: 24SEP97

Target Variable	Value Range and Codes:	Freqs:	Comments:
	$12=$ December	30,565	
TDAY_YR	$\begin{aligned} & 95 \\ & 96 \end{aligned}$	$\begin{aligned} & 231,718 \\ & 177,307 \end{aligned}$	Date of travel day for the household
TO_B	$\begin{aligned} & 8=\text { Not Ascertained } \\ & H=\text { Home } \\ & S=\text { Other } \\ & \text { W= Work } \end{aligned}$	$\begin{array}{r} 0 \\ 324,359 \\ 13,089 \\ 71,577 \end{array}$	See documentation notes for CHAIN
TRANSFER	$\begin{aligned} & 01=\text { Yes } \\ & 02=\text { No } \\ & 94=\text { Legitimate skip } \\ & 98=\text { Not Ascertained } \\ & 99=\text { Refused } \end{aligned}$	$\begin{array}{r} 3,779 \\ 3,501 \\ 401,567 \\ 177 \\ 1 \end{array}$	Only for trip that involved public transportation
TRAVDAY	1= Sunday   2= Monday   3= Tuesday   $4=$ Wednesday   $5=$ Thursday   6= Friday   $7=$ Saturday	$\begin{aligned} & 43,277 \\ & 59,175 \\ & 62,826 \\ & 62,236 \\ & 61,842 \\ & 67,711 \\ & 51,958 \end{aligned}$	
TRAVWKND	$\begin{aligned} & 01=\text { Yes } \\ & 02=\mathrm{No} \end{aligned}$	$\begin{array}{r} 95,235 \\ 313,790 \end{array}$	
TRPHHACC	$\begin{aligned} & 01=\text { Yes } \\ & 02=\mathrm{No} \end{aligned}$	$\begin{aligned} & 154,625 \\ & 254,400 \end{aligned}$	
TRPHHVEH	$\begin{aligned} & 01=\text { Yes } \\ & 02=\text { No } \\ & 03=\text { Some } \\ & 94=\text { Legitimate skip } \\ & 98=\text { Not ascertained } \\ & 99=\text { Refused } \end{aligned}$	$\begin{array}{r} 320,646 \\ 69,043 \\ 909 \\ 17,204 \\ 1,127 \\ 96 \end{array}$	
TRPMILES	```(0 - 1200) <1 mile 1-1200 9998= Not ascertained 9999= Refused```	$\begin{array}{r} 409,025 \\ 68,703 \\ 333,595 \\ 6,615 \\ 112 \end{array}$	Distance reported in miles. See documentaion notes for TRPMILES.
TRPNUM	(1-39)	409,025	See documentation notes for TRPNUM
TRPNUM2	$(1-39)$	409,025	See documentation notes for TRPNUM2
TRPNUM_A	(1-31)	409,025	See documentation notes for CHAIN
TRPNUM_B	(1-39)	409,025	See documentation notes for CHAIN
TRPTRANS	$\begin{aligned} & 01=\text { Automobile } \\ & 02=\text { Van } \end{aligned}$	$\begin{array}{r} 240,373 \\ 41,735 \end{array}$	Main transportation means for the trip
rogid: dis	46: [wmynpts.pubfiles] cb	Date: 24	EP97


Target	Var		
Variable: Type: Width: 1990 Var: Variable Label:	Section: Item ID:		
TRPTRANS	C	2	S



Target   Variable	Value Range and Codes:	Freqs:	Comments:
	03 $=$ Sport utility vehicle	25,203	
	$04=$ Pickup truck	41,599	
	05= Other truck	2,397	
	06= RV (recreational vehicle)	189	
	07= Motorcycle	441	
	08= Other POV	234	
	$09=$ Bus	4,681	
	10= Amtrak	37	
	11= Commuter train	778	
	$12=$ Streetcar/trolley	54	
	$13=$ Subway/elevated rail	1,986	
	14= Airplane	346	
	15= Taxicab	971	
	16= Bicycle	3,108	
	$17=$ Walk	21,113	
	18= School bus	8,807	
	19= Other non-POV	1,105	
	$94=$ Legitimate skip	0	
	98= Not ascertained	13,735	
	99 $=$ Refused	133	
TRVL_MIN	(1-1020)	404,256	For segmented trips, derived as the sum of SEGi_MIN. See documentaion notes for TRVL_MIN.
	$9994=$ Legitimate skip	0	
	9998 $=$ Not ascertained	4,633	
	9999= Refused	136	
VARSTRAT	(1-70)	409,025	
VEHID	1	201,606	
	2	95,925	
	3	19,096	
	4	3,959	
	5	594	
	6	168	
	7	35	
	8	12	
	9	10	
	$94=$ Legitimate skip	87,470	
	98= Not ascertained	150	
VTR_FLG	01= Yes	250,181	
	02= No	158,844	
WAIT_MIN	(0-9999)	6,774	
	$9994=$ Legitimate skip	401,567	
	9998 $=$ Not ascertained	670	
	$9999=$ Refused	14	
WHERE	$8=$ Not Ascertained	14	Trip destination is home, work, or other
	$\mathrm{H}=$ Home	137,598	
	$\mathrm{S}=$ Other	230,557	


Target	Var			
Variable: Type: Width: 1990 Var: Variable Label:	Section: Item ID:			
WHERE	C	1	N	H=home, W=work, S=other-specify
WHOACC_A	N	2	S	Roster \# of other HH mem on trip G36

WHOACC_B N 2

Target   Variable	Value Range and Codes:	Freqs:	Comments:
	W= Work	40,856	
WHOACC_A	1	60,331	
	2	52,360	
	3	25,434	
	4	11,564	
	5	3,704	
	6	917	
	7	226	
	8	69	
	9	11	
	10	9	
	94= Legitimate skip	254,400	
WHOACC_B	Missing	351,126	
	1	0	
	2	11,526	
	3	21,384	
	4	18,204	
	5	4,910	
	6	1,368	
	7	364	
	8	96	
	9	35	
	10	12	
WHOACC_C	Missing	384,467	
	1	0	
	2	0	
	3	3,790	
	4	12,528	
	5	6,490	
	6	1,343	
	7	257	
	8	88	
	9	45	
	10	17	
WHOACC_D	Missing	401,107	
	1	0	
	2	0	
	3	0	
	4	913	
	5	4,909	
	6	1,679	
	7	281	
	8	77	
	9	32	
	10	27	
WHOACC_E	Missing	406,917	
	1	0	



Target
Variable Value Range and Codes

Freqs: Comments:


Target Variable:	Var   Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
WHODROVE	N	2	S	ID of HH mem who drove on trip G38	G	38
WHYFROM	C	2	N	1995 purpose - from	G	20

WHYTO C 2
1995 purpose - to

G
20

WHYTRP90 C 2 WHYTRP Purpose of trip (1990 definition) G 20

Target   Variable	Value Range and Codes:	Freqs:	Comments:
	8	28	
	94= Legitimate skip	83,624	
	98= Not ascertained	143	
	99= Refused	16	
WHYFROM	01 $=$ To work	35,865	See documentation for WHYFROM
	02= Work-related business	11,354	
	03= Return to work	7,160	
	04= Shopping	55,992	
	05= School	13,238	
	06= Religious activity	6,042	
	07= Medical/dental	4,055	
	$08=$ Other family or personal bus	40,273	
	09= Take someone somewhere	14,891	
	$10=$ Pick up someone	12,501	
	11= Vacation	531	
	$12=$ Visit friends or relatives	19,110	
	$13=$ Went out to eat	18,907	
	$14=$ Other social/recreational	25,709	
	$15=$ Change means of transportati	0	
	$16=$ Other, specify	432	
	17= Home	136,218	
	94= Legitimate skip	0	
	98= Not ascertained	6,732	
	99= Refused	15	
WHYTO	01= To work	36,274	See documentation for whYTO
	02= Work-related business	11,541	
	03= Return to work	7,229	
	04= Shopping	56,312	
	05= School	13,301	
	06= Religious activity	6,075	
	07= Medical/dental	4,083	
	$08=$ Other family or personal bus	41,227	
	09= Take someone somewhere	15,065	
	$10=$ Pick up someone	12,589	
	11= Vacation	747	
	$12=$ Visit friends or relatives	20,321	
	13= Went out to eat	19,020	
	$14=$ Other social/recreational	26,391	
	$15=$ Change means of transportati	0	
	$16=$ Other, specify	612	
	17= Home	138,166	
	94= Legitimate skip	0	
	98= Not ascertained	53	
	99 $=$ Refused	19	
WHYTRP90	01 $=$ To or from work	73,897	Trip purpose by 1990 NPTS definition (derived). See documentation notes
	02= Work-related business	10,709	
	03= Shopping	82,292	
	$04=$ Other family or personal bus	100,680	



Target Variable	Value Range and Codes:	Freqs:	Comments:
	05= School/Church	35,550	
	06= Medical/dental	6,564	
	07= Vacation	777	
	08= Visit friends or relatives	31,504	
	$10=$ Other social/recreational	66,307	
	$11=$ Other, specify	657	
	98= Not ascertained	88	
WHYTRP95	01= To work	36,281	See documentation notes
	02= Work-related business	11,544	
	03= Return to work	7,229	
	04 $=$ Shopping	56,326	
	05 $=$ School	13,304	
	06= Religious activity	6,080	
	07= Medical/dental	4,084	
	08= Other family or personal bus	41,238	
	09= Take someone somewhere	15,072	
	$10=$ Pick up someone	12,590	
	11= Vacation	749	
	12= Visit friends or relatives	20,336	
	$13=$ Went out to eat	19,026	
	14= Other social/recreational	26,405	
	15= Change means of transportati	0	
	$16=$ Other, specify	612	
	17= Home	138,077	
	94= Legitimate skip	0	
	98= Not ascertained	53	
	$99=$ Refused	19	
WORKER	01 $=$ Yes	245,870	Response to question $D-12$, as verified or corrected by the response to $\mathrm{F}-2$
	$02=\mathrm{No}$	163,155	
WRKCOUNT	0	52,330	Derived from WORKER variable
	1	118,673	
	2	181,557	
	3	42,259	
	4	12,043	
	5	1,752	
	6	350	
	7	57	
	8	4	
WTTRDFIN	(48-23821385)	409,025	Used to weight travel day trip file and segmented trip file data (weights up to annual estimates)


HHFAMINC C
S
HH family income category
K
1 \& 2

Target   Variable	Value Range and Codes:	Freqs:	Comments:
CENSUS_D	01= New England	525	
	02= Middle Atlantic	2,430	
	03= East North Central	230	
	04= West North Central	16	
	05= South Atlantic	196	
	06= East South Central	12	
	07= West South Central	67	
	08= Mountain	27	
	09= Pacific	276	
CENSUS_R	01 $=$ Northeast	2,955	
	02= North Central	246	
	03= South	275	
	04= West	303	
DRIVER	01= Yes	1,954	Driver status reported in D-9, as verified or corrected in E-6 or E-7
	$02=\mathrm{No}$	1,825	
	94= Legitimate skip	0	
	98= Not Ascertained	0	
	99= Refused	0	
DRVRCNT	0	920	Derived from the variable DRIVER
	1	1,255	
	2	1,178	
	3	324	
	4	82	
	5	17	
	6	3	
	7	0	
HHCMSA	Chicago-Gary-Kenosha, IL-IN-WI CMSA	161	
	Cincinnati-Hamilton, OH-KY-IN CMSA	14	
	Cleveland-Akron, OH CMSA	14	
	Dallas-Fort Worth, TX CMSA	10	
	Denver-Boulder-Greeley, CO CMSA	9	
	Detroit-Ann Arbor-Flint, MI CMSA	5	
	Houston-Galveston-Brazoria, TX CMSA	6	
	Los Angeles-Riverside-Orange County	72	
	Miami-Fort Lauderdale, FL CMSA	15	
	Milwaukee-Racine, WI CMSA	7	
	New York-No. New Jersey-Long Island	2,079	
	Phila-Wilmington-Atlantic City	115	
	Portland-Salem, OR-WA CMSA	13	
	Sacramento-Yolo, CA CMSA	8	
	San Francisco-Oakland-San Jose	89	
	Seattle-Tacoma-Bremerton	69	
	Washington-Baltimore	108	
	Not in a CMSA	985	
HHFAMINC	01= Less than \$5,000		Based on questions of Section K.See olso NFMFLG and NONFMINC


Target	Var		
Variable: Type: Width: 1990 Var: Variable Label:	Section: Item ID:		
HHFAMINC	C	2	S


HHMSA	C	4	S	MSA identification code	$*$	$*$
HHSIZE	N	2	S	Total number of persons in HH	D	


HHTRIPID	N	3	N	Trip number for household travel day	*	*
HHVEHCNT	N	2	S	No. of vehicles in household (derived)	B	*
HH_HISP	C	2	S	Hispanic status of ref. person	D	5
HH_RACE	C	2	S	Race of reference person	D	6


Target   Variable	Value Range and Codes:	Freqs:	Comments:
	02= \$5,000-9,999	358	
	$03=\$ 10,000-14,999$	253	
	04= \$15,000-19,999	301	
	05= \$20,000-24,999	202	
	06= \$25,000-29,999	258	
	07= \$30,999-34,999	166	
	08= \$35,000-39,999	221	
	$09=\$ 40,000-44,999$	115	
	$10=\$ 45,000-49,999$	197	
	$11=\$ 50,000-54,999$	69	
	$12=\$ 55,000-59,999$	152	
	$13=\$ 60,000-64,999$	46	
	$14=\$ 65,000-69,999$	135	
	$15=\$ 70,000-74,999$	32	
	$16=\$ 75,000-79,999$	112	
	$17=\$ 80,000-99,999$	153	
	$18=\$ 100,000$ and over	205	
	98= Not ascertained	351	
	99= Refused	287	
HHMSA	(0160-9998)	-	
HHSIZE	1	605	Number of persons - all ages (derived)
	2	1,099	
	3	786	
	4	699	
	5	326	
	6	194	
	7	44	
	8	21	
	9	4	
	10	1	
HHTRIPID	(1-108)	3,779	Travel day trip ID within a household. See documentation notes
HHVEHCNT	0	1,820	Count of all vehicles for the household
	1	1,059	
	2	626	
	3	209	
	4	45	
	5	18	
	6	2	
	7	0	
HH_HISP	01= Hispanic	571	
	02= Non-hispanic	3,204	
	98= Not Ascertained	0	
	$99=$ Refused	4	
HH_RACE	01= White	1,946	
	02= African-american	1,136	


Target   Variable:	Var   Type:	Width:	1990 Var:	Variable Label:		Item ID:
HH_RACE	C	2	S	Race of reference person	D	6
HOUSEID	N	8	S	Household identification number	*	*
HOWFARU	C	2	N	Units of reported dist: B) locks, M) iles	G	22.02
LIF_CYC	C	2	S	Family life cycle	D	3
MSASIZE	C	2	S	Size of MSA of household	*	*
PERSONID	N	2	S	Person ID number	*	*
PROXY	C	2	H_PROXY	Proxy respondent for person data	*	*
RAIL	C	2	N	Presence/absence of rail	*	*


Target Variable	Value Range and Codes:	Freqs:	Comments:
	$03=$ Asian	144	
	$04=$ Other	475	
	98= Not Ascertained	34	
	99 $=$ Refused	44	
HOUSEID	(1002591-12221586)	3,779	
HOWFARU	98=Not Ascertained	567	
	99=Refused	0	
	$\mathrm{B}=$ Reported in blocks	367	
	M $=$ Reported in miles	2,845	
LIF_CYC	01= 1 adult, no children	509	See documentation notes for LIF_CYC
	$02=>1$ adult, no children	1,143	
	03= 1 adult, child age 0-5	240	
	$04=>1$ adult, child age 0-5	494	
	05= 1 adult, child age 6-15	208	
	$06=>1$ adult, child age 6-15	598	
	$07=1$ adult, child age 16-21	56	
	08 $=>1$ adult, child age 16-21	192	
	$09=1$ adult, retired, no children	96	
	$10=>1$ adult, retired, no children	243	
MSASIZE	01 $=$ Less than 250,000	88	See documentation notes for MSASIZE
	$02=250,000-499,999$	47	
	$03=500,000-999,999$	147	
	$04=1,000,000-2,999,999$	246	
	$05=3,000,000$ or more	3,178	
	94 $=$ Legitimate skip, not in an MSA	73	
PERSONID	1	1,945	Person ID within household
	2	1,061	
	3	484	
	4	199	
	5	56	
	6	25	
	7	9	
	8	0	
	9	0	
	10	0	
PROXY	01 $=$ Yes	802	$01=$ person and trip data were collected from proxy respondent
	02 $=\mathrm{No}$	2,977	
RAIL	$01=$ Yes	488	```01=Urban areas 1,250,000 population or greater with subway/elevated rail,02=other areas```
	$02=\mathrm{No}$	3,291	
	94= Legitimate skip	0	
	98= Not Ascertained	0	
	99= Refused	0	



13:11 Tuesday, September 23, 19978
(This page revised March 1999)

Freqs: Comments:
$\begin{array}{lr}9998=\text { Not ascertained } & 22 \\ 9999=\text { Refused } & 0\end{array}$
$\begin{array}{lr}01=\text { Automobile } & 168 \\ 02=\text { Van } & 11\end{array}$
$02=$ Van
$03=$ Sport utility vehicle
$04=$ Pickup truck
05= Other truck
$06=$ RV (recreational vehicle)
07= Motorcycle
$08=$ Other POV
$09=$ Bus
10= Amtrak
11= Commuter train
$12=$ Streetcar/trolley
13= Subway/elevated rail
14= Airplane
$15=$ Taxicab
$16=$ Bicycle
17= Walk
$18=$ School bus
$19=$ Other non-POV
$94=$ Legitimate skip
98 $=$ Not ascertained
99= Refused
SEG1_MIN ( 0 - 240)
9994 $=$ Legitimate skip
9998= Not ascertained
9999= Refused
SEG2TIME ( 0 - 2353)
9994 = Legitimate skip $\quad 3,689$
9998= Not ascert
9999= Refused

SEG2TRAN 01= Automobile
$02=\operatorname{Van}$
03 $=$ Sport utility vehicle
$04=$ Pickup truck
$05=$ Other truck
$06=$ RV (recreational vehicle)
07= Motorcycle
$08=$ Other POV
$09=$ Bus

3,779 See documentation notes for R_AGE.
3,717
35
21
6
1,632
2,147
3,757
0
1


Target   Variable	Value Range and Codes:	Freqs:	Comments:
	10= Amtrak	12	
	11= Commuter train	425	
	12= Streetcar/trolley	19	
	$13=$ Subway/elevated rail	1,107	
	14= Airplane	7	
	15= Taxicab	7	
	16= Bicycle	0	
	17= Walk	549	
	$18=$ School bus	1	
	$19=$ Other non-POV	40	
	94= Legitimate skip	0	
	98= Not ascertained	14	
	$99=\text { Refused }$	1	
SEG2_MIN	$(0-840)$	3,695	
	9994= Legitimate skip	0	
	9998= Not ascertained	81	
	9999= Refused	3	
SEG3TIME	(10-2350)	1,864	
	$9994=$ Legitimate skip	1,884	
	9998 $=$ Not ascertained	30	
	9999= Refused	1	
SEG3TRAN	01= Automobile	91	
	02= Van	6	
	03= Sport utility vehicle	7	
	$04=$ Pickup truck	1	
	$05=\text { Other truck }$	0	
	$06=\text { RV (recreational vehicle) }$	0	
	$07=$ Motorcycle	0	
	08= Other POV	0	
	$09=$ Bus	282	
	$10=$ Amtrak	2	
	$11=$ Commuter train	82	
	12= Streetcar/trolley	8	
	$13=$ Subway/elevated rail	208	
	14= Airplane	2	
	15= Taxicab	23	
	16= Bicycle	2	
	$17=$ Walk	1,145	
	$18=$ School bus	0	
	$19=$ Other non-POV	23	
	94= Legitimate skip	1,884	
	98= Not ascertained	13	
	$99=$ Refused	0	
SEG3_MIN	(0-480)	1,871	
	9994 $=$ Legitimate skip	1,884	
	9998 $=$ Not ascertained	24	
	9999= Refused	0	


Target Variable:	Var   Type:	Width:	1990 Var:	Variable Label:		Item ID:
SEG4TIME	N	4	S	Start time for segment 4	G	29.04
SEG4TRAN	C	2	S	Mode code for segment 4	G	28.04


SEG4_MIN	N	4	S	Duration of segment 4 (min)	G	30.04
SEGNUM	C	1	N	Number of segments (derived)	*	*
STRTTIME	N	4	S	Start time of trip	G	$15 \& 17$
SUBSTRAT	N	1	*	Substratum within VARSTRAT	*	*
TDAY_MON	N	2	S	Travel day date (MM)	*	*


Target   Variable	Value Range and Codes:	Freqs:	Comments:
SEG4TIME	(45-2340)	450	
	9994= Legitimate skip	3,314	
	9998 $=$ Not ascertained	15	
	9999= Refused	0	
SEG4TRAN	01= Automobile	40	
	$02=\operatorname{Van}$	1	
	03= Sport utility vehicle	1	
	04= Pickup truck	3	
	05= Other truck	0	
	06= RV (recreational vehicle)	0	
	07= Motorcycle	0	
	08= Other POV	0	
	$09=$ Bus	56	
	10=Amtrak	1	
	11= Commuter train	12	
	12= Streetcar/trolley	1	
	$13=$ Subway/elevated rail	39	
	14= Airplane	0	
	15= Taxicab	4	
	16= Bicycle	0	
	$17=$ Walk	295	
	18= School bus	0	
	19= Other non-POV	6	
	94= Legitimate skip	3,314	
	98 $=$ Not ascertained	6	
	99= Refused	0	
SEG4_MIN	(1-360)	450	
	9994= Legitimate skip	3,314	
	9998 $=$ Not ascertained	15	
	9999= Refused	0	
SEGNUM	1	0	Number of segments in the trip
	2	1,883	
	3	1,431	
	4	465	
STRTTIME		3,776	
	9994= Legitimate skip	0	
	9998 $=$ Not ascertained	3	
	9999 $=$ Refused	0	
SUBSTRAT	1	92	
	2	3,687	
TDAY_MON	1= January	296	Date of travel day for the household
	$2=$ February	397	
	3= March	482	
	4= April	419	
	$5=$ May	411	
	$6=$ June	237	


Target Variable:		Widt		Variable Label:		Item ID:
TDAY_MON	N	2	S	Travel day date (MM)	*	*
TDAY_YR	N	2	S	Travel day date (YY)	*	*
TRANSFER	C	2	S	$=01$ if changed mode from/to pub trans	G	26
TRPMILES	N	6.1	S	Distance (miles)	G	22.03
TRPNUM	N	2	S	Travel day trip number for sample person	G	*
TRPTRANS	C	2	S	Mode of transportation code	G	25


Target   Variable	Value Range and Codes:	Freqs:	Comments:
	7 = July	182	
	$8=$ August	162	
	9 = September	191	
	$10=$ October	424	
	11= November	355	
	$12=$ December	223	
TDAY_YR	95	1,828	Date of travel day for the household
	96	1,951	
TRANSFER	01= Yes	3,779	Only for trip that involved public transportation
	$02=\mathrm{No}$	0	
	94= Legitimate skip	0	
	98= Not Ascertained	0	
	99= Refused	0	
TRPMILES	(0-916)	3,148	Distance reported in miles, blocks corrected (9/mile). See documentaion notes for TRPMILES.
	9996= < 1 block	7	
	9997= Half a mile	41	
	9998= Not ascertained	579	
	9999= Refused	4	
TRPNUM	(1-28)	3,779	See documentation notes for TRPNUM
TRPTRANS	01= Automobile	11	Main transportation means for the trip
	02= Van	0	
	03= Sport utility vehicle	1	
	$04=$ Pickup truck	1	
	05= Other truck	0	
	06= RV (recreational vehicle)	0	
	07= Motorcycle	0	
	08= Other POV	2	
	$09=$ Bus	1,957	
	10= Amtrak	17	
	11= Commuter train	500	
	12= Streetcar/trolley	21	
	13= Subway/elevated rail	1,254	
	14= Airplane	9	
	15= Taxicab	1	
	16= Bicycle	0	
	$17=$ Walk	0	
	$18=$ School bus	0	
	19= Other non-POV	3	
	94= Legitimate skip	0	
	98= Not ascertained	2	
	99= Refused	0	
TRVL_MIN	(3-945)	3,671	For segmented trips, derived as the sum of SEGi_MIN.See documentaion notes for TRVL_MIN.
	9994= Legitimate skip	0	
	9998= Not ascertained	108	



[^7]| Target <br> Variable | Value Range and Codes: | Freqs: | Comments: |
| :---: | :---: | :---: | :---: |
|  | 9999= Refused | 0 |  |
| VARSTRAT | (1-70) | 3,779 |  |
| WHYTRP95 | 01= To work | 909 | See documentation notes |
|  | 02= Work-related business | 56 |  |
|  | 03= Return to work | 11 |  |
|  | 04 $=$ Shopping | 237 |  |
|  | 05 $=$ School | 198 |  |
|  | 06= Religious activity | 36 |  |
|  | 07= Medical/dental | 101 |  |
|  | 08= Other family or personal business | 286 |  |
|  | $09=$ Take someone somewhere | 28 |  |
|  | $10=$ Pick up someone | 32 |  |
|  | 11= Vacation | 6 |  |
|  | $12=$ Visit friends or relatives | 199 |  |
|  | $13=$ Went out to eat | 39 |  |
|  | $14=$ Other social/recreational | 204 |  |
|  | $15=$ Change means of transportation | 0 |  |
|  | 16= Other - specify | 6 |  |
|  | $17=$ Home | 1,431 |  |
|  | 94= Legitimate skip | 0 |  |
|  | $98=\text { Not ascertained }$ | 0 |  |
|  | $99=\text { Refused }$ | 0 |  |
| WORKER | 01= Yes | 2,387 | Response to question $D-12$, as verified or corrected by the response to $\mathrm{F}-2$ |
|  | 02 $=$ No | 1,392 |  |
|  | 94= Legitimate skip | 0 |  |
|  | 98= Not Ascertained | 0 |  |
|  | $99=$ Refused | 0 |  |
| WRKCOUNT | 0 | 651 | Derived from WORKER variable |
|  | 1 | 1,343 |  |
|  | 2 | 1,285 |  |
|  | 3 | 359 |  |
|  | 4 | 110 |  |
|  | 5 | 22 |  |
|  | 6 | 8 |  |
|  | 7 | 1 |  |
| WTTRDFIN | (49-17201955) | 3,779 | Used to weight travel day trip file and segmented trip file data (weights up to annual estimates) |


1NPTS Travel	Period	File Cod	Book - Pub	lic Use   15:06 Tuesday, Se (This page revis	15:06 Tuesday, September 23, 1997 (This page revised March 1999)	
Target Variable:	Var Type:	Width:	1990 Var:	Variable Label:		Item ID:
CALCDIST	N	5	*	Calculated distance home to destination	*	*
CENSUS_D	C	2	S	Census division	*	*
CENSUS_R	C	2	S	Census region	*	*
COUNTRY	C	3	S	Destination country code	H	2



1NPTS Travel Period File Code Book - Public Use


Target Variable	Value Range and Codes:	Freqs:	Comments:
	Ecuador	1	
	The Carribbean	15	
	Hong Kong	1	
	Saudi Arabia	1	
	Israel	4	
	British Columbia	19	
	Quebec, Canada	4	
	Ontario, Canada	8	
	New Brunswick, Canada	0	
	Unknown province of Canada	199	
	Not ascertained	176	
DESTSTAT	$94=$ Legitimate skip (Foreign Country)	395	
	$98=$ Not ascertained	131	
	99= Refused	16	
	Alaska	51	
	Alabama	217	
	Arkansas	269	
	Arizona	175	
	California	1,569	
	Colorado	251	
	Connecticut	848	
	District of Columbia	152	
	Delaware	88	
	Florida	838	
	Georgia	436	
	Hiwaii	31	
	Iowa	189	
	Idaho	98	
	Illinois	582	
	Indiana	335	
	Kansas	255	
	Kentucky	204	
	Louisiana	280	
	Massachusetts	2,935	
	Maryland	305	
	Maine	462	
	Michigan	603	
	Minnesota	350	
	Missouri	445	
	Mississippi	180	
	Montana	97	
	North Carolina	552	
	North Dakota	97	
	Nebraska	115	
	Hew Hampshire	806	
	New Jersey	1,021	
	New Mexico	119	
	Nevada	184	
	New York	5,016	
	Ohio	650	
	Oklahoma	2,096	



[^8]| Target <br> Variable | Value Range and Codes: | Freqs: | Comments: |
| :---: | :---: | :---: | :---: |
|  | Oregon | 303 |  |
|  | Pennsylvania | 1,189 |  |
|  | Rhode Island | 311 |  |
|  | South Carolina | 293 |  |
|  | South Dakota | 65 |  |
|  | Tennessee | 426 |  |
|  | Texas | 1,343 |  |
|  | Utah | 129 |  |
|  | Virginia | 534 |  |
|  | Vermont | 380 |  |
|  | Washington | 541 |  |
|  | Wisconsin | 501 |  |
|  | West Virginia | 126 |  |
|  | Wyoming | 63 |  |
| DRIVER | $01=$ Yes | 25,699 | Driver status reported in D-9, and verified or corrected in E-6 or E-7 |
|  | $02=\mathrm{No}$ | 3,948 |  |
| DRVRCNT | 0 | 306 | Derived from the variable DRIVER |
|  | 1 | 4,334 |  |
|  | 2 | 18,602 |  |
|  | 3 | 4,743 |  |
|  | 4 | 1,436 |  |
|  | 5 | 182 |  |
|  | 6 | 41 |  |
|  | 7 | 3 |  |
| DRVR_TPT | 01= Yes | 17,860 | Imputed variable indicating that the sample person drove on the travel period trip |
|  | 02 $=\mathrm{No}$ | 8,175 |  |
|  | 94= Legitimate skip | 2,425 |  |
|  | 98= Not Ascertained | 1,187 |  |
|  | 99= Refused | 0 |  |
| HBHINMED | 15,000 $=0$ to 20 K | 1,698 |  |
|  | $22,000=20 \mathrm{~K}$ to 25 K | 2,279 |  |
|  | $27,000=25 \mathrm{~K}$ to 30 K | 3,323 |  |
|  | $32,000=30 \mathrm{~K}$ to 35 K | 4,196 |  |
|  | $37,000=35 \mathrm{~K}$ to 40 K | 3,529 |  |
|  | $45,000=40 \mathrm{~K}$ to 50K | 6,103 |  |
|  | $60,000=50 \mathrm{~K}$ to 70K | 6,116 |  |
|  | $80,000=70 \mathrm{~K}$ to 999K | 2,217 |  |
|  | 999998= Not ascertained | 186 |  |
| HBHRESDN | $25=0$ to 50 | 5,262 |  |
|  | $150=50$ to 250 | 5,559 |  |
|  | $700=250$ to 1000 | 7,040 |  |
|  | $2000=1000$ to 3000 | 7,816 |  |
|  | $4000=3000$ to 5000 | 1,862 |  |
|  | $6000=5000$ to 999K | 1,922 |  |
|  | 999998= Not ascertained | 186 |  |


Target Variable:	Var   Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
HBHUR	C	1	*	Urban/rural code, block group	CLAR	*
HBPPOPDN	N	6	*	Population density, block group	CLAR	*
HHCMSA	C	4	SMSA	CMSA identification code	*	*

HHFAMINC C
2
S
HH family income category
K
1 \& 2

Target Variable	Value Range and Codes:	Freqs:	Comments:
HBHUR	Not ascertained	186	
	Second city	5,811	
	Rural	5,916	
	Suburban	6,704	
	Town	8,499	
	Urban	2,531	
HBPPOPDN	$50=0$ to 100	4,412	
	$300=100$ to 500	5,509	
	$750=500$ to 1 K	3,038	
	$1,500=1 \mathrm{~K}$ to 2 K	3,567	
	$3,000=2 \mathrm{~K}$ to 4 K	4,904	
	$7,000=4 \mathrm{~K}$ to 10 K	5,709	
	$17,000=10 \mathrm{~K}$ to 25 K	1,476	
	$30,000=25 \mathrm{~K}$ to 999K	846	
	999998 $=$ Not ascertained	186	
HHCMSA	Chicago-Gary-Kenosha, IL-IN-WI CMSA	445	
	Cincinnati-Hamilton, OH-KY-IN CMSA	96	
	Cleveland-Akron, OH CMSA	116	
	Dallas-Fort Worth, TX CMSA	224	
	Denver-Boulder-Greeley, CO CMSA	81	
	Detroit-Ann Arbor-Flint, MI CMSA	222	
	Houston-Galveston-Brazoria, TX CMSA	204	
	Los Angeles-Riverside-Orange County	617	
	Miami-Fort Lauderdale, FL CMSA	146	
	Milwaukee-Racine, WI CMSA	104	
	New York-No. New Jersey-Long Island	3,136	
	Philadelphia-Wilmington-Atlantic City	395	
	Portland-Salem, OR-WA CMSA	167	
	Sacramento-Yolo, CA CMSA	137	
	San Francisco-Oakland-San Jose, CA CMSA	$337$	
	Seattle-Tacoma-Bremerton, WA CMSA	$481$	
	Washington-Baltimore, DC-MD-VA-WV CMSA	$522$	
	Not in a CMSA	22,217	
HHFAMINC	01= Less than \$5,000	212	Based on questions of Section K.See olso NONFMFLG and NONFMINC
	$02=\$ 5,000-9,999$	616	
	$03=\$ 10,000-14,999$	841	
	$04=\$ 15,000-19,999$	1,349	
	05 = \$20,000-24,999	1,275	
	06= \$25,000-29,999	2,325	
	07 = \$30,999-34,999	1,482	
	08= \$35,000-39,999	2,514	
	$09=\$ 40,000-44,999$	1,303	
	$10=\$ 45,000-49,999$	2,405	
	$11=\$ 50,000-54,999$	1,017	
	$12=\$ 55,000-59,999$	2,108	
	$13=\$ 60,000-64,999$	742	
	$14=\$ 65,000-69,999$	1,478	
	$15=\$ 70,000-74,999$	556	


Target Variable:	Var   Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
HHFAMINC	C	2	S	HH family income category	K	1 \& 2
HHMSA	C	4	S	MSA identification code	*	*
HHSIZE	N	2	S	Total number of persons in HH	D	1
HHTRP ID	N	3	N	Trip number for household travel period	*	*

HHVEHCNT N 2

No. of vehicles in household (derived) B


Target Variable:	Var   Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
HHVEHCNT	N	2	S	No. of vehicles in household (derived)	B	*
HH_HISP	C	2	S	Hispanic status of ref. person	D	5
HH_RACE	C	2	S	Race of reference person	D	6
HOUSEID	N	8	S	Household identification number	*	*
LIF_CYC	C	2	S	Family life cycle	D	3

MSASIZE C 2
Size of MSA of household * *
MSTR_MON N 2 D Date of master interview - month

MSTR_YR	N	2	S	Date of master interview - year	*
PERSONID	N	2	$S$	Person ID number	*


Target   Variable	Value Range and Codes:	Freqs:	Comments:
	10	0	
HH_HISP	```01= Hispanic 02= Non-hispanic 98= Not Ascertained 99= Refused```	$\begin{array}{r} 865 \\ 28,735 \\ 10 \\ 37 \end{array}$	
HH_RACE	```01= White 02= African-american 03= Asian 04= Other 98= Not Ascertained 99= Refused```	$\begin{array}{r} 26,622 \\ 1,256 \\ 346 \\ 1,123 \\ 83 \\ 217 \end{array}$	
HOUSEID	(1000454-12227328)	29,647	
LIF_CYC	01= 1 adult, no children   $02=>1$ adult, no children   $03=1$ adult, child age $0-5$   $04=>1$ adult, child age $0-5$   $05=1$ adult, child age 6-15   $06=>1$ adult, child age 6-15   $07=1$ adult, child age 16-21   $08=>1$ adult, child age 16-21   $09=1$ adult, retired, no children   $10=>1$ adult, retired, no children	$\begin{array}{r} 2,081 \\ 8,560 \\ 228 \\ 5,511 \\ 623 \\ 6,689 \\ 258 \\ 2,035 \\ 414 \\ 3,248 \end{array}$	See documentation notes for LIF_CYC
MSASIZE	$\begin{aligned} & 01=\text { Less than } 250,000 \\ & 02=250,000-499,999 \\ & 03=500,000-999,999 \\ & 04=1,000,000-2,999,999 \\ & 05=3,000,000 \text { or more } \\ & 94=\text { Legitimate skip, not in an MSA } \end{aligned}$	$\begin{array}{r} 3,234 \\ 1,864 \\ 3,672 \\ 5,186 \\ 10,110 \\ 5,581 \end{array}$	See documentation notes for MSASIZE
MSTR_MON	$\begin{aligned} & 1=\text { January } \\ & 2=\text { February } \\ & 3=\text { March } \\ & 4=\text { April } \\ & 5=\text { May } \\ & 6=\text { June } \\ & 7=\text { July } \\ & 8=\text { August } \\ & 9=\text { September } \\ & 10=\text { October } \\ & 11=\text { November } \\ & 12=\text { December } \end{aligned}$	$\begin{aligned} & 2,071 \\ & 2,347 \\ & 3,069 \\ & 2,447 \\ & 3,684 \\ & 3,442 \\ & 2,396 \\ & 2,139 \\ & 1,748 \\ & 2,469 \\ & 2,156 \\ & 1,679 \end{aligned}$	Date of the household interview
MSTR_YR	$\begin{aligned} & 95 \\ & 96 \end{aligned}$	$\begin{aligned} & 17,962 \\ & 11,685 \end{aligned}$	Date of the household interview
PERSONID	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 15,517 \\ 9,333 \end{array}$	


(This page revised March 1999)


[^9](This page revised March 1999)

Target Variable:	Var   Type:	Width:	1990 Var:	Variable Label:	Section:	Item ID:
TDAY_MON	N	2	S	Travel day date (MM)	*	*
TDAY_YR	N	2	S	Travel day date (YY)	*	*
TOWHYPAS	C	2	N	Trip purpose for passenger	H	7

TOWHYTRP C 2

6

Target   Variable	Value Range and Codes:	Freqs:	Comments:
	6= June	3,039	
	7 = July	2,826	
	$8=$ August	2,306	
	$9=$ September	2,098	
	$10=$ October	2,337	
	11- November	2,353	
	$12=$ December	1,675	
TDAY_YR	95	17,139	Date of travel day for the household
	96	12,508	
TOWHYPAS	01= To work	20	Question is asked only if $\mathrm{TOWHYTRP}=09$
	02= Work-related business	24	
	03= Return to work	2	
	$04=$ Shopping	8	
	05= School	91	
	$06=$ Religious activity	1	
	07= Medical/dental	65	
	08= Other family or personal business	48	
	09= Take someone somewhere	0	
	$10=$ Pick up someone	0	
	11= Vacation	22	
	$12=$ Visit friends or relatives	80	
	13= Went out to eat	0	
	$14=$ Other social/recreational	48	
	15= Change mode of transportation	0	
	16= Other, specify	0	
	17= Home	131	
	$94=$ Legitimate skip	29,103	
	98= Not ascertained	4	
	99= Refused	0	
TOWHYTRP	01= To work	1,845	Sample person's main purpose for trip
	02= Work-related business	4,895	
	03= Return to work	0	
	$04=$ Shopping	1,239	
	05= School	294	
	06= Religious activity	231	
	07= Medical/dental	570	
	$08=$ Other family or personal business	3,018	
	09= Take someone somewhere	544	
	$10=$ Pick up someone	514	
	11= Vacation	1,915	
	$12=$ Visit friends or relatives	7,713	
	$13=$ Went out to eat	84	
	$14=$ Other social/recreational	6,275	
	$15=$ Change mode of transportation	0	
	16= Other, specify	494	
	$17=$ Home	0	
	$94=$ Legitimate skip	0	
	98= Not ascertained	15	
	99 $=$ Refused	1	


Target	Var		
Variable: Type: Width: 1990 Var: Variable Label:	Section: Item ID:		
TO_TRANS	C	2	N

TPER_BMO N 2

Travel period beginning date (MM)

Travel period beginning date (YY)

Travel period ending date (MM)

Target Variable	Value Range and Codes:	Freqs:	Comments:
TO_TRANS	01 $=$ Automobile	19,467	Main means of transportation
	02= Van	2,997	
	03= Sport utility vehicle	1,254	
	$04=$ Pickup truck	2,594	
	05= Other truck	704	
	$06=$ RV (recreational vehicle)	89	
	07= Motorcycle	44	
	08= Other POV	73	
	09 $=$ Bus	507	
	10=Amtrak	103	
	$11=$ Commuter train	115	
	12= Streetcar/trolley	11	
	$13=$ Subway/elevated rail	33	
	14= Airplane	$1,283$	
	$15=\text { Taxicab }$	$3$	
	16= Bicycle	4	
	17= Walk	6	
	$18=$ School bus	130	
	19= Other non-POV	190	
	94= Legitimate skip	0	
	98= Not ascertained	40	
	$99=$ Refused	0	
TPER_BMO	1= January	1,980	
	$2=$ February	2,435	
	3= March	3,024	
	4 = April	2,433	
	5= May	3,783	
	$6=\text { June }$	3,524	
	$7=\text { July }$	2,280	
	$8=\text { August }$	2,167	
	$9=$ September	1,762	
	$10=$ October	2,464	
	11= November	2,148	
	$12=$ December	1,647	
TPER_BYR	95	17,777	
	96	11,870	
TPER_EMO	1= January	1,489	
	$2=$ February	2,035	
	$3=$ March	3,299	
	4 = April	2,868	
	5= May	3,322	
	$6=\text { June }$	3,039	
	$7=\text { July }$	2,826	
	$8=\text { August }$	2,306	
	$9=$ September	2,098	
	$10=$ October	2,337	
	$11=$ November	2,353	
	$12=$ December	1,675	



Target Variable	Value Range and Codes:	Freqs:	Comments:
TPER_EYR	95	17,139	
	96	12,508	
TRIPNUM	1	20,945	ID number of trip for sample person. See documentation for TRIPNUM
	2	5,104	
	3	1,842	
	4	1,016	
	5	607	
	6	43	
	7	31	
	8	25	
	9	18	
	10	12	
	11	3	
	12	1	
VARSTRAT	(1-70)	29,647	
WORKER	01 $=$ Yes	20,462	Response to question $D-12$, as verified or corrected by the response to $\mathrm{F}-2$
	$02=\mathrm{No}$	9,185	
WRKCOUNT	0	3,120	Derived from WORKER variable
	1	8,806	
	2	13,785	
	3	2,955	
	4	853	
	5	113	
	6	10	
	7	5	
WTTRPFIN	(3-1416647)	29,647	Used to weight travel period trip file data (weights up to annual estimates)

# APPENDIX D. TRAVEL CONCEPTS AND GLOSSARY OF TERMS 

## TRAVEL CONCEPTS


#### Abstract

PERSON TRIP

PERSON MILES OF TRAVEL (PMT)

DEFINITION - The number of miles travelled by each person on a trip.

EXAMPLES - If two people travelling together take a six-mile subway trip to the airport, that trip results in 12 person miles of travel. A four-mile van trip with a driver and three passengers counts as 16 person miles of travel.

WHEN TO USE - As with person trips, person miles must be used when analyzing travel by the various modes of transport. It is the appropriate measure when the topic of analysis is the miles travelled by people, not vehicles.


ALIAS - Person miles is often called Passenger Miles, particularly in the transit and airline industries.

HOW TO COMPUTE- Multiply each weighted person trip (WTTRDFIN) by the trip distance in miles (TRPMILES). When this is done for all trips on the Travel Day file with miles reported, the resulting estimate is $3,411,122$ million person miles of travel by U.S. residents in the course of a year.

WARNING - When computing TRPMILES, be sure to exclude entries of:

9998, miles not ascertained, and
9999, refused to report miles.
Also, remember to convert any special codes, such as:
9996, less than one block, to some appropriate measure such as 0.06 mile, and
9997 , half a mile, to 0.5 miles.

VEHICLE
TRIPS

DEFINITION - A trip by a single privately operated vehicle (POV) regardless of the number of persons in the vehicle.

EXAMPLES - Two people travelling together in a car would be counted as one vehicle trip. Four people going to a restaurant in a van is considered one vehicle trip.

NPTS MODE RESTRICTIONS - To be considered a vehicle trip in NPTS, the trip must have been made in a privately operated vehicle, namely a household-based car, van, sport utility vehicle, pickup truck, other truck, recreational vehicle, motorcycle or other POV. The vehicle does not need to belong to the household.

Trips made in other highway vehicles, such as buses, streetcars, taxis, and school buses are collected in the NPTS, but these are shown as person trips by those modes. The design of the NPTS is such that it does not serve as a source for vehicle trips in modes such as buses, because there is no way to trace the movement of the bus fleet throughout the day. Those interested in vehicle trips by buses, taxis, etc. need to use a data source that relies on reports from the fleet operators of those vehicles. The Section 15 report published by the Federal Transit Administration is one such source.

WHEN TO USE - The unit of vehicle trips is most appropriately
used when considering POV travel, e.g., " 20 percent of all POV trips are for commuting to and from work."

HOW TO COMPUTE -The variable VTR_FLG was created to allow the data user to select the vehicle trip records from the travel day file. The typical manner of computing vehicle trips from the NPTS file is to impose two limits on the full universe of Travel Day trips:

- travel mode must be POV (TRPTRANS = $01-08$ ), and
- only the driver's trip is captured (DRVR_FLG = 01). The second limitation is to insure that the trip is counted only once. Remember that the NPTS Travel Day file is a person trip file, so if three household members went somewhere by car, that trip is reflected in three travel day trip records. To insure that it is only counted once as a vehicle trip, the driver's record is used.

To obtain the total of all vehicle trips, sum all weighted trips that meet the two conditions above, i.e., where VTR_FLG $=01$. The resulting estimate is $229,745,000,000$ vehicle trips made by U.S. residents in the course of a year.

VEHICLE MILES OF TRAVEL (VMT)

DEFINITION - One vehicle mile of travel is the movement of one privately operated vehicle (POV) for one mile, regardless of the number of people in the vehicle.

EXAMPLES- When one person drives her car 12 miles to work, 12 vehicle miles of travel have been made. If two people travel three miles by pickup, three vehicle miles of travel have been made.

SAME MODE RESTRICTIONS - For NPTS data, vehicle miles are restricted to the same privately-operated vehicles as vehicle trips(see above), that is a household-based car, van, sport utility vehicle, pickup truck, other truck, recreational vehicle, or other POV. .

WHEN TO USE- Vehicle miles of travel (VMT) are a very commonly used measure of highway travel. This measure is particularly important when analyzing highway capacity, congestion and air quality.

HOW TO COMPUTE - Multiply each weighted vehicle trip by the distance. In terms of NPTS variables, this would look like
(VTR_FLG=01 times WTTRDFIN) times TRPMILES.
WARNING - When computing TRPMILES, be sure to exclude entries of:

9998, miles not ascertained, and
9999, refused to report miles.
Also, remember to convert any special codes, such as:
9996, less than one block, to some appropriate measure such as 0.06 mile, and
9997 , half a mile, to 0.5 miles.
The annual estimate for VMT from the 1995 NPTS is $2,068,368$ million vehicle miles.

## VEHICLE OCCUPANCY

DEFINITION - For NPTS data, vehicle occupancy is generally computed as person miles of travel per vehicle mile (referred to as the travel method). Note that the other commonly-used definition of vehicle occupancy is persons per vehicle trip (referred to as the trip method).

COMMENTS - Because longer trips often have higher occupancies, the travel method generally yields a higher rate ( 1.59 for the 1995 NPTS) than the trip method (1.50). The calculation of the travel method requires that trip miles be reported, thus it is calculated on a slightly smaller number of trips than the trip method.

HOW TO COMPUTE - The four variables that may be used in the computation are described earlier in this section. Just remember to limit the denominator to person trips or person miles in POVs.

## GLOSSARY

This glossary provides the most common terms used in the NPTS and definitions of those terms. These definitions are provided to assist the user in the interpretation of the NPTS data.

Adult

Block Group

Census
Region and
Division

For NPTS, this is defined as a person 18 years or older.

A subdivision of a Census tract that averages 1000 to 1100 people, and approximately 400-500 housing units.

The Census Bureau divides the states into four regions and nine divisions. Note that the divisions are wholly contained within a region, i.e., region lines do not split division lines. The regions and their component divisions are:

## Northeast Region

New England Division: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont Middle Atlantic Division : New Jersey, New York, Pennsylvania

## North Central Region

East North Central Division: Illinois, Indiana, Michigan, Ohio, Wisconsin
West North Central Division: Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota

## South Region

South Atlantic Division: Delaware, Florida, Georgia, Maryland, North Carolina, South Carolina, Virginia, West Virginia
East South Central Division: Alabama, Kentucky, Mississippi, Tennessee
West South Central Division: Arkansas, Louisiana, Oklahoma, Texas

## West Region

Mountain Division: Arizona, Colorado, Idaho, Montana,

Nevada, New Mexico, Utah, Wyoming
Pacific Division: Alaska, California, Hawaii, Oregon, Washington

Census Tract -

Consolidated Metropolitan Statistical Area (CMSA)

Destination

Driver

Employed

Education
Level

A small subdivision of a county, containing approximately 4,000 persons. Tracts can range in population from 2,500 to 8,000. The geographic size of the tract may vary considerably, depending on population density. Tracts were designed to be homogeneous in regard to population characteristics, economic status and living conditions when they were first delineated. Since the first tracts were delineated for the 1890 Census, today's tracts may be far from homogeneous.

A large metropolitan complex of 1 million or more population, containing two or more identifiable component parts designated as primary metropolitan statistical areas (PMSAs). For example, the Boston CMSA is composed of six PMSAs.

For travel day trips, the destination is the point at which there is a break in travel, except if the break is only to change vehicles or means of transport.

For travel period trips, the destination is the farthest point of travel.

A driver is a person who operates a motorized vehicle. If more than one person drives on a single trip, the person who drives the most miles is classified as the principal driver.

A person is considered employed if he/she worked for pay, either full time or part time, during the week before the interview.

The number of years of regular schooling completed in graded public, private, or parochial schools, or in colleges, universities, or professional schools, whether day school or night school. Regular schooling advances a person toward an elementary or high school diploma, or a college, university, or professional school degree.

Household

Household Income

Household Members

Household Vehicle

A group of persons whose usual place of residence is a specific housing unit; these persons may or may not be related to each other. The total of all U.S. households represents the total civilian non-institutionalized population. A household does not include group quarters (i.e., 10 or more persons living together, none of whom are related).

Household income is the money earned by all family members in a household, including those temporarily absent. Annual income consisted of the income earned 12 months preceding the interview. Household income includes monies from all sources, such as wages and salary, commissions, tips, cash bonuses, income from a business or farm, pensions, dividends, interest, unemployment or workmen's compensation, social security, veterans' payments, rent received from owned property (minus the operating costs), public assistance payments, regular gifts of money from friends or relatives not living in the household, alimony, child support, and other kinds of periodic money income other than earnings. Household income excludes in-kind income such as room and board, insurance payments, lump-sum inheritances, occasional gifts of money from persons not living in the same household, withdrawal of savings from banks, tax refunds, and the proceeds of the sale of one's house, car, or other personal property.

Household members include all people, whether present or temporarily absent, whose usual place of residence is in the sample unit. Household members also include people staying in the sample unit who have no other usual place of residence elsewhere.

A household vehicle is a motorized vehicle that is owned, leased, rented or company-owned and available to be used regularly by household members during the two-week travel period. Household vehicles include vehicles used solely for business purposes or business-owned vehicles, so long as they are driven home and can be used for the home to work trip, (e.g., taxicabs, police cars, etc.). Household vehicles include all vehicles that were owned or available for use by members of the household during the travel period, even though a vehicle may have been sold before the interview. Vehicles excluded from household vehicles are those which were not working and were not expected to be working within 60 days, and vehicles that were purchased or received after the designated travel day.

## Licensed Driver

## Means of Transportation

A licensed driver is any person who holds a valid driver's license from any state.

A mode of travel used for going from one place (origin) to another (destination). A means of transportation includes private and public modes, as well as walking. For travel day trips, each new destination constitutes a separate trip, UNLESS it was to change vehicles or means of transport. A trip made to change means was given segmented treatment if one of the means used was public transportation or Amtrak (see discussion of segmented trips in Chapter 4, Section B of this Guide.)

The following transportation modes, grouped by major mode, are included in the NPTS data.

## Private Vehicle

Automobile A privately owned and/or operated licensed motorized vehicle including cars and station wagons. Leased and rented cars are included if they are privately operated and not used for picking up passengers in return for fare.

Van A privately owned and/or operated van or minivan designed to carry 5 to 13 passengers, or to haul cargo.

Sport Utility Vehicle A privately owned and/or operated vehicle that is a hybrid of design elements from a van, a pickup truck and a station wagon. Examples include a Chevrolet Blazer, Ford Bronco, Jeep Cherokee, or Nissan Pathfinder.

Pickup Truck A pickup truck is a motorized vehicle, privately owned and/or operated, with an enclosed cab that usually accommodates 2-3 passengers, and an open cargo area in the rear. Pickup trucks usually have the same size of wheel-base as a full-size station wagon. This category also includes pickups with campers.

Other Truck This category consists of all trucks other than pickup trucks (i.e., dump trucks, trailer trucks, etc.).

D-8

RV or Motor Home An RV or motor home includes a selfpowered recreational vehicle that is operated as a unit without being towed by another vehicle (e.g., a Winnebago motor home).

Motorcycle This category includes large, medium, and small motorcycles. Minibikes are excluded because they cannot be licensed for highway use.

Other POV A vehicle that cannot be classified into one of the categories above.

## Public Transportation

Bus The bus category includes intercity buses, mass transit systems, and shuttle buses that are available to the general public. Also, Dial-A-Bus and Senior Citizen buses that are available to the public are included in this category. However, shuttle buses operated by a government agency or private industry for the convenience of employees, contracted or chartered buses, or school buses are excluded from this category.

Commuter Train This category includes commuter trains and passenger trains other than elevated rail trains and subways. Commuter Train also includes local and commuter train service. Amtrak intercity service is excluded from this category.

Streetcar/Trolley This category includes trolleys, streetcars, and cable cars.

Elevated Rail/Subway This category includes elevated railways and subway trains in a city.

## Other Modes

Amtrak Amtrak is defined as the U.S. national passenger railroad service providing intercity train service. Amtrak intercity service is excluded from the commuter train data.

Airplane Airplanes include commercial airplanes and smaller planes that are available for use by the general public in exchange for a fare. Private planes and helicopters are included under "Other."

Taxi Taxis include the use of a taxicab by a driver for hire, or by a passenger for fare, and airport limousines. The taxi category does not include rental cars if they are privately operated and not picking up passengers in return for fare.

Bicycles This category includes bicycles of all speeds and sizes that do not have a motor.

Walk This category includes walking and jogging.
School Bus This category includes county school buses, private school buses, and buses chartered from private companies for the express purposes of carrying students to or from school and/or school-related activities.

Moped (Motorized Bicycle) This category includes motorized bicycles equipped with a small engine, typically characteristic of a two horsepower motor or less. Minibikes, dirt bikes, and trail bikes are excluded from this category. Note that a motorized bicycle may or may not be licensed for highway use.

Other Includes any types of transportation not previously listed, e.g. ferry boat.

## Metropolitan <br> Statistical <br> Area (MSA)

Except in the New England States, a Metropolitan Statistical Area is a county or group of contiguous counties which contains at least one city of 50,000 inhabitants or more, or "twin cities" with a combined population of at least 50,000. In addition, contiguous counties are included in an MSA if, according to certain criteria, they are socially and economically integrated with the central city. In the New England States, MSA's consist of towns and cities instead of counties.

Motorized vehicles are all vehicles that are licensed for highway driving. Snow mobiles and minibikes are specifically excluded.

Occupancy	Occupancy is the number of persons, including driver and   passenger(s) in a vehicle. NPTS occupancy rates are generally   calculated as person miles divided by vehicle miles.

Origin Origin is the starting point of a trip.

Overlap Trip

Passenger

Person Miles of Travel (PMT)

A travel period trip that occurs on travel day, and is thus collected in both portions of the NPTS questionnaire. To insure that this trip is not counted twice, eliminate overlap trips from travel day data when travel day and travel period data will be added together.

For a specific trip, a passenger is any occupant of a motorized vehicle, other than the driver.

PMT is a primary measure of person travel. When one person travels one mile, one person mile of travel results. Where 2 or more persons travel together in the same vehicle, each person makes the same number of person miles as the vehicle miles. Therefore, four persons traveling 5 miles in the same vehicle results in 20 person miles ( $4 \times 5=20$ ).

A person trip is a trip by one or more persons in any mode of transportation. Each person is considered as making one person trip. For example, four persons traveling together in one auto are counted as four person trips.

POV
A privately-owned vehicle or privately-operated vehicle. Either way, the intent here is that this is not a vehicle available to the public for a fee, such as a bus, subway, taxi, etc.

A travel day is a 24-hour period from 4:00 a.m. to 3:59 a.m. designated as the reference period for studying trips and travel by members of a sampled household.

Travel Day
Trip

A travel period consists of 14 days. The travel period is the 13 day period which precedes the travel day, and includes the 14th day as the travel day for a sampled household.

A travel day trip is defined as any time the respondent went from one address to another by private motor vehicle, public transportation, bicycle, walking, or other means. However, a separate trip is not counted in two instances:

1. When the sole purpose for the trip is to get to another vehicle or mode of transportation in order to continue to the destination.
2. Travel within a shopping center, mall or shopping areas of 4-5 blocks is to be considered as travel to one destination.

A travel period trip is a roundtrip of 75 miles or more with the return home portion taking place during the 14-day travel period. The outgoing portion of this trip can take place at any time, but the return must be within the 14-day period. Note that a trip made to move the household to a new residence would be counted as a travel period trip, even though it is not a roundtrip.

A trip purpose is the main reason that motivates a trip. There are 17 trip purposes used in the 1995 NPTS. For travel day trips, if there is more than one reason, and the reasons do not involve different destinations, then only the main reason is chosen. If there are two or more reasons, and they each involve different destinations, then each reason is classified as a separate trip. For travel period trips, if there is more than one reason, the primary reason is collected.

For the 1995 survey, trip purposes were collected using a FromTo approach. For each trip, the origin and destination are on the file in generic terms, e.g. from work to shopping.

Note that there are two major purpose categories, Family and Personal Business and Social and Recreational, that are used to group like purposes. The 17 trip reasons are defined as follows:

To or From Work Travel between home and a place where one
reports for work.
Work-Related Trips for the respondent's job or business, other than to or from the workplace. Examples: a plumber drives to a wholesale dealer to purchase supplies for his business, or a company executive travels from his office to another firm to attend a business meeting. Out-of-town business trips and professional conventions are included in this category.

Return to Work Returning to the workplace after leaving for some reason. Examples: returning to work from lunch, shopping, a meeting, etc.

## FAMILY AND PERSONAL BUSINESS:

Shopping Trips to purchase commodities such as groceries, furniture, clothing, etc. for use or consumption elsewhere. This purpose also includes window-shopping and trip made to shop even if nothing is purchased.

Doctor/Dentist This category includes trips made for medical, dental, or psychiatric treatment, or other related professional services.

Take someone somewhere (Dropoff) Escorting someone else to their destination. Examples: taking a child to school or daycare, taking someone to a friend's house, a doctor's appointment, etc.

Pick up someone Escorting someone on the return from their trip destination. Examples: return from school or daycare, a friend's house, a doctor's appointment, etc.

Other Family or Personal Business This category includes the purchase of services such as dry cleaning, auto repair, haircuts, banking, legal services, etc.

School Trips to school, college or university classes, or attending school-related functions, such as PTA meetings, seminars, etc. Community meetings or activities that use the school building are not considered trips to school.

Religious Activities Trips to attend religious services or to participate in other religious activities. Social activities that take
place at a house of worship, but cannot be classified as religious, are not included in this category.

## SOCIAL AND RECREATIONAL:

Visit Friends or Relatives Trips made primarily to visit friends or relatives.

Out to Eat Trips made to go to restaurants or other eating establishments, such as coffee shops, ice cream shops, bagel shops, etc. Note that trips made to purchase food for take-out are not included here, they are considered shopping trips.

Vacation This category is for trips reported by the respondent as their vacation.

Other Social or Recreational Trips taken to enjoy some form of social activity involving friends or acquaintances. This category includes trips for general entertainment or recreation (as an observer or a participant.) Examples: movies, video rentals, plays, parties, dancing, sporting events, sightseeing.

Return home - A trip made to go to the respondent's residence .
Other Trips that do not fit in any of the other trip purposes above.

For more on trip purpose coding and variables, see Appendix M.

Urbanized Area

An urbanized area consists of the built up area surrounding a central core (or central city), with a population density of at least 1,000 persons per square mile. Urbanized areas do not follow jurisdictional boundaries, thus it is common for the urbanized area boundary to divide a county.

For the 1995 NPTS, an approximate classification of sample households was based upon the population density of the Census block group containing the household. Households in block groups estimated to have at least 1,000 persons per square mile were classed as urban; those in block groups with less than 1,000 persons per square miles were classed as not urban.

D-14

Vehicle

## Vehicle Miles of Travel <br> (VMT)

Vehicle
Occupancy

Vehicle Trip

Vehicle Type

Worker

In the 1995 NPTS, the term vehicle includes autos, passenger vans, sport utility vehicles, pickups and other light trucks, RV's, motorcycles and mopeds owned or available to the household. Note that in the 1969 NPTS, the term vehicle was limited to cars or passenger vans. Estimates show that in 1969 there were an additional 7.5 million pickups and other light trucks that are not reflected in the 1969 NPTS data.

VMT is a unit to measure vehicle travel made by a private vehicle, such as an automobile, van, pickup truck, or motorcycle. Each mile traveled is counted as one vehicle mile regardless of the number of persons in the vehicle.

Vehicle occupancy is the number of persons, including driver and passenger(s) in a vehicle; also includes persons who did not complete a whole trip. NPTS occupancy rates are generally calculated as person miles divided by vehicle miles.

A trip by a single privately-operated vehicle (POV) regardless of the number of persons in the vehicle.

For purposes of the 1995 NPTS, one of the following:

1. Automobile (including station wagon)
2. Van
3. Sport Utility Vehicle
4. Pickup Truck (including pickup with camper)
5. Other Truck
6. RV or Motor Home
7. Motorcycle
8. Other

See "Means of Transportation" for definitions of these vehicle types. For NPTS, vehicle types are limited to privately operated vehicles (POV) because other vehicles that the respondent may have rode in (e.g., bus) were not tracked throughout the day, as was the case with household vehicles.

See "Employed".

## APPENDIX E 1995 NPTS QUESTIONNAIRE

9/29/97 This copy of the questionnaire has been annotated with the variable names in bold and enclosed in brackets, e.g. \{VARIABLE\}.

## SECTION A - TELEPHONE NUMBER SCREENING

NOTE: THROUGHOUT SECTION A, A NOTE WILL BE DISPLAYED IN THE TOP RIGHT CORNER OF EVERY SCREEN INDICATING WHETHER OR NOT AN ADVANCE LETTER WAS SENT TO THE CASE. THE MESSAGE WILL BE "LETTER SENT" OR "NO LETTER."

1. Hello, this is $\qquad$ , calling on behalf of the U.S. Department of Transportation. Have I reached (NUMBER)?

1 YES $\rightarrow$ GO TO QUESTION 3
2 NO
3 LANGUAGE BARRIER $\rightarrow$ GO TO QUESTION 11
$-1 \quad$ DK $\rightarrow$ GO TO QUESTION 3
$-2 \quad \mathrm{RE} \rightarrow \mathrm{GO}$ TO QUESTION 3
2. What number have I reached?

NUMBER: $\qquad$ $\rightarrow$ THANK RESPONDENT; HANG UP
-1 DK
-2 RE

CATI CHECK: IS THIS THE SECOND TIME THIS SAME WRONG NUMBER HAS BEEN REACHED?

1 YES $\rightarrow$ SET OUTCOME $=30$ (NONWORKING NUMBER)
2 NO $\rightarrow$ RETURN TO DIAL SCREEN FOR INTERVIEWER TO DIAL AGAIN.
3. We are conducting an important study on transportation in the U.S. We are calling a random sample of telephone numbers, and I need to know if this is a home, a business, or something else?

1 HOME $\rightarrow$ GO TO QUESTION 6
2 BUSINESS/INSTITUTION
3 OTHER
4. Does anyone live there on the premises?
$\begin{array}{ll}1 & \text { YES } \\ 2 & \mathrm{NO} \rightarrow \text { GO TO QUESTION } 11\end{array}$
5. Is this the number they use as their home phone?

1 YES
$2 \quad \mathrm{NO} \rightarrow$ GO TO QUESTION 11
-1 DK
-2 RE
6. Does this telephone number serve only (your/one) household or more than one household?

1 SERVES ONE HOUSEHOLD $\rightarrow$ GO TO QUESTION 8
2 SERVES MORE THAN ONE HOUSEHOLD
$-1 \quad$ DK $\rightarrow$ GO TO QUESTION 8
$-2 \quad \mathrm{RE} \rightarrow$ GO TO QUESTION 8
7. Can you tell me the total number of households served by this telephone number?

## \{TEL_HHS\}

NUMBER OF HOUSEHOLDS SERVED: $\qquad$

```
-1 DK
-2 RE
```

Now, I would like to talk about your household only.
8. Do ten or more persons currently live in this household?

```
1 YES
2 NO }->\mathrm{ GO TO QUESTION 10
-1 DK }->\mathrm{ GO TO QUESTION 10
-2 RE }->\mathrm{ GO TO QUESTION 10
```

9. Are any of these persons related to each other?
```
1 YES
2 NO }->\mathrm{ GO TO QUESTION 11
```


## Section A (continued)

10. CATI: SET SCREENING LEVEL STATUS CODE=50.

For the rest of the questions, I need to speak to a member of the household who is at least 18 years old.

Are you a member of this household and at least 18 years old?
1 YES $\rightarrow$ GO TO HOUSEHOLD QUESTIONNAIRE \{HHRESP\}
$2 \mathrm{NO} \rightarrow$ ASK TO SPEAK TO A MEMBER 18+; IF NONE AVAILABLE, MAKE ARRANGEMENTS FOR CALLBACK. WHEN AVAILABLE, CONTINUE WITH HOUSEHOLD QUESTIONNAIRE.
3 NO ONE 18 OR OLDER LIVES HERE $\rightarrow$ GO TO HOUSEHOLD QUESTIONNAIRE
4 NO ADULT RESIDENT SPEAKS ENGLISH $\rightarrow$ GO TO QUESTION 11
11. That is all the questions I have. Thank you very much for your help.

CATI: SET OUTCOME AND STATUS CODES AND EXIT CASE

## SECTION B - VEHICLE DATA - (HOUSEHOLD RESPONDENT)

(Hello, this is $\qquad$ calling on behalf of the U.S. Department of Transportation.) We are conducting the Nationwide Personal Transportation Survey. The results will be used for future planning of roads and other transportation needs. This interview will take about 8 minutes. Your participation is voluntary, and we can skip any question you choose not to answer.
(IF ASKED: The study has been authorized by Title 23, United States Code. The OMB clearance number is 2125-0545, expiration June 30, 1996.)

First, I would like to ask you some questions about motor vehicles owned or used by the household. Please do not include the vehicle of anyone visiting or staying with you if they usually live somewhere else, such as a college student away at school.

1. How many licensed vehicles were owned, or available for regular use by members of your household during the past two weeks?
$\qquad$ NUMBER OF VEHICLES $\rightarrow$ IF NONE, GO TO NEXT SECTION
(INCLUDE LEASED OR COMPANY-OWNED LICENSED MOTORIZED VEHICLES IF THEY ARE USED BY HOUSEHOLD MEMBERS ON A REGULAR BASIS.)

IF MORE THAN ONE, SAY: I have a few questions about each of these vehicles. Let's start with the newest one.
2. What are the make, model and year (of the newest one/of the next newest vehicle)?
\{MAKECODE, MODLCODE, VEHYEAR\}
NOTE: AN ON-LINE LOOK-UP TABLE IS USED. INTERVIEWER SELECTS MAKE AND THEN SELECTS MODEL AND YEAR FROM DISPLAYED LIST.

## 3. IF VEHICLE TYPE IS IN LOOKUP TABLE, CATI WILL CODE QUESTION 3

 AUTOMATICALLY AND GO TO QUESTION 4.What type vehicle is it? (READ CHOICES AS NECESSARY.)
\{VEHTYPE

01 AUTOMOBILE
05
OTHER TRUCK

Section B (continued)
02 VAN (MINI, CARGO, PASSENGER) 06 RV
(RECREATIONAL
03 UTILITY VEHICLE (BRONCO, BLAZER, 4RUNNER, PATHFINDER, ETC.)
04 PICKUP TRUCK
4. Did you get the vehicle in the past 12 months (that is, since $\overline{(\mathrm{MONTH} / \mathrm{YEAR}})$ )?
\{VEH12MNT\}
1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 6
5. In what month and year?
\{PURCHMON, PURCHYR\}
MONTH $\qquad$ YEAR $\qquad$
CATI EDIT CHECK: VERIFY THAT DATE GIVEN IS WITHIN THE PAST 12 MONTHS BUT EQUAL TO OR EARLIER THAN TODAY'S MONTH/YEAR.
6. Was it new or used when you got it?
\{VEHNEW\}
$\begin{array}{ll}1 & \text { NEW } \\ 2 & \text { USED }\end{array}$
(CODE DEMONSTRATORS, PROGRAM CARS, OR EXECUTIVE CARS AS NEW.)
CATI EDIT CHECK: IF VEHICLE PURCHASED NEW IN PAST 12 MONTHS [Q4=YES AND Q6=NEW], VERIFY THAT MODEL YEAR IS 94, 95, OR 96.
7. About how many miles was this vehicle driven [during the last 12 months/since (MONTH/YEAR BOUGHT OR RECEIVED)]? Include mileage driven by all drivers.
\{VEHMILES, ANNMILES\}
$\qquad$ MILES

CATI: IF VEHICLE ACQUIRED IN PAST 12 MONTHS, CONVERT MILES REPORTED TO ANNUALIZED MILEAGE. [CALCULATE NUMBER OF DAYS BETWEEN TODAY'S DATE AND FIRST DAY OF MONTH/YEAR REPORTED IN Q5. DIVIDE 365 BY THIS NUMBER AND MULTIPLY BY MILEAGE REPORTED IN Q7.]

IF ANNUALIZED MILEAGE > 40,000, CATI WILL PROMPT INTERVIEWER TO VERIFY WITH R.

RETURN TO QUESTION 2 AND OBTAIN INFORMATION ON THE NEXT
VEHICLE UNTIL INFORMATION HAS BEEN OBTAINED FOR ALL HOUSEHOLD VEHICLES.
8. I have listed...
[CATI WILL DISPLAY VEHICLES BY MAKE/MODEL/YEAR].
Are these all the vehicles that were in working condition and available to your household in the past 2 weeks?

1 CORRECT $\rightarrow$ GO TO NEXT SECTION
2 INCORRECT $\rightarrow$ MAKE CORRECTIONS AS NEEDED

## SECTION C - HOME AND NEIGHBORHOOD - (HOUSEHOLD RESPONDENT)

1. Is local bus service available in your town or city?
\{BUS_AVL\}
1 YES
$2 \quad \mathrm{NO} \rightarrow$ GO TO QUESTION 6
(INCLUDE ONLY SERVICES THAT ARE AVAILABLE FOR USE BY THE
GENERAL PUBLIC FOR LOCAL OR COMMUTER TRAVEL, INCLUDING DIAL-A-BUS AND SENIOR CITIZEN BUS SERVICE. DO NOT INCLUDE LONG DISTANCE BUSES OR THOSE CHARTERED FOR SPECIFIC TRIPS.)
2. How far is it from your home to the nearest bus stop?
\{BUS_DIST, BUSBLOCK, BUSMILE\}
$\qquad$ BLOCKS OR $\qquad$ MILES
```
996 = LESS THAN 1 BLOCK
997 = 1/2 MILE
```

3. Is subway, commuter train, or streetcar service available in your town or city?

## \{OTHERPTR\}

1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 6
(INCLUDE ONLY SERVICES THAT ARE AVAILABLE FOR USE BY THE GENERAL PUBLIC FOR LOCAL OR COMMUTER TRAVEL, INCLUDING ELEVATED TRAINS. DO NOT INCLUDE LONG DISTANCE SERVICES OR THOSE CHARTERED FOR SPECIFIC TRIPS.)
4. (Which of these are available?) (CODE ALL THAT APPLY.)
\{SUB_AVL, TRN_AVL, STC_AVL\}
1 SUBWAY
2 COMMUTER TRAIN
3 STREETCAR

## Section C (continued)

5. REPEAT QUESTION 5 FOR EACH SERVICE MENTIONED IN QUESTION 4.

How far is it from your home to the nearest (subway/commuter train/streetcar) stop?
\{SUB_DIST, SUBBLOCK, SUBMILE, TRN_DIST, TRNBLOCK, TRMILE, STC_DIST, STCBLOCK, STCMILE\}
$\qquad$ BLOCKS OR $\qquad$ MILES

996 = LESS THAN 1 BLOCK
997 = 1/2 MILE
6. Do you live in a...
\{HOMETYPE\}
1 Single house (detached),
2 Duplex,
3 Rowhouse or townhouse,
4 Apartment,
5 Mobile home or trailer?
6 OTHER $\rightarrow$ SPECIFY: $\qquad$
(CODE CONDOMINIUMS INTO APPROPRIATE CATEGORY BASED ON TYPE OF STRUCTURE. CODE DOUBLE TOWNHOUSE AS DUPLEX.)

CHECK ITEM: DOES R LIVE IN APARTMENT? [DOES Q6=4?]
1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 8
7. Is your apartment in a building with...
\{HSTORIES\}
15 or more stories, or
2 less than 5 stories?

## Section C (continued)

8. Is your home owned or rented?

## \{HOMEOWN\}

1 OWNED
2 RENTED
3 PROVIDED BY JOB OR MILITARY
4 OTHER $\rightarrow$ SPECIFY: $\qquad$
(IF HOME IS NOT OWNED OUTRIGHT, BUT UNDER MORTGAGE, CODE "OWNED."
IF R RENTS BUT SOMEONE WHO LIVES IN THE HOME OWNS IT, CODE "OWNED.")

## SECTION D - PERSON DATA FOR EACH HOUSEHOLD MEMBER (ROSTER) (HOUSEHOLD RESPONDENT)

Now I would like to ask you a couple of questions about each person in your household.

1. How many people live in your household? Please do not include anyone who usually lives somewhere else or is just visiting, such as a college student away at school. (Please include anyone living or staying there now, and anyone who usually lives there but is now away from home such as traveling, or in the hospital.)

## TOTAL NUMBER:

$\qquad$
2. What is the first name of (the household member, or one of the members, who (owns/rents) the home/the next person who lives there)? (IF ASKED: We are not collecting last names for this survey, only first names. If you prefer, we can use initials if everyone in your home has different initials.)

NAME OF (REFERENCE/NEXT) PERSON: $\qquad$
3. How old is (PERSON)?
\{R_AGE, REF_AGE, P1_AGE through P10_AGE\}
AGE: $\qquad$
4. ASK IF NOT APPARENT:

Is (PERSON) male or female?
\{R_SEX, REF_SEX, P1_SEX through P10_SEX, HH_0TO4\}
1 MALE
2 FEMALE
5. ASK ONLY FOR REFERENCE PERSON:

Is (PERSON) Hispanic?
\{HH_HISP

1 YES
2 NO

Section D (continued)
6. ASK ONLY FOR REFERENCE PERSON:

Is (he/she)...

## \{HH_RACE\}

1 White
2 African American (Black),
3 Asian, or
4 some other race?
(ASIAN INCLUDES PACIFIC ISLANDERS SUCH AS HAWAIIANS AND FILIPPINOS.)
7. FOR REFERENCE PERSON, CATI WILL CODE "1" AND GO TO NEXT CHECK ITEM.

What is (PERSON)'s relationship to (REFERENCE PERSON)?

## \{R_RELAT, P1_REL through P10_REL\}

ENTER CODE FOR RELATIONSHIP TO REFERENCE PERSON; FOR EXAMPLE IF REFERENCE PERSON SAYS: I'm his mother", ENTER "3", NOT "4".

```
1 REFERENCE PERSON (NAME)
2 SPOUSE OF (NAME)
3 CHILD OF (NAME)
P PARENT OF (NAME)
5 BROTHER/SISTER OF (NAME)
OTHER RELATIVE OF (NAME)
7 UNMARRIED PARTNER OF (NAME)
8 NON-RELATIVE OF (NAME)
```

CATI EDIT CHECK: IF THIS PERSON IS CHILD OF REFERENCE PERSON [Q7=3], VERIFY THAT AGE IS LESS THAN REFERENCE PERSON'S AGE. IF THIS PERSON IS PARENT OF REFERENCE PERSON [Q7=4], VERIFY THAT AGE IS GREATER THAN REFERENCE PERSON'S AGE. MAKE SURE THAN NOT MORE THAN ONE SPOUSE IS CODED.

CHECK ITEM: ARE THERE MORE PERSONS TO BE ASKED ABOUT?
1 YES $\rightarrow$ RETURN TO QUESTION 2
2 NO
E- 12

Section D (continued)
8. I have listed...
[CATI WILL DISPLAY ALL ROSTER INFORMATION FOR ALL PERSONS, INCLUDING NAME, AGE, GENDER, AND RELATIONSHIP TO REFERENCE PERSON.]

Is this correct?

1 YES
$2 \mathrm{NO} \rightarrow$ MAKE CORRECTIONS AS NECESSARY. IF MORE THAN ONE PERSON OF DRIVING AGE IN THE HOUSEHOLD, GO TO QUESTION 11.
9. Are you a driver?
\{DRIVER, REF_DRVR\}
1 YES
2 NO
10. Do you have a job?
\{WORKER, REF_WKR\}

1 YES
2 NO
(HAVING A JOB MEANS WORKING FOR PAY OR PROFIT.)

GO TO QUESTION 13
11. Which of the persons you have listed are drivers?
\{DRVRCNT, P1_DRVR through P10_DRVR\}

ENTER ROSTER NUMBER(S): $\qquad$
(CODE ALL DRIVERS MENTIONED, WHETHER LICENSED OR NOT.)
12. Which of the persons work at a job?
\{WKRCOUNT, P1_WKR through P10_WKR\}

Section D (continued)
ENTER ROSTER NUMBER(S): $\qquad$
(HAVING A JOB MEANS WORKING FOR PAY OR PROFIT.)
13. IF THIS IS A SINGLE PERSON HOUSEHOLD, CATI WILL CODE QUESTION 13 AUTOMATICALLY AND GO TO QUESTION 14.

ASK IF NOT APPARENT:
And with whom am I speaking now?
\{HHRESP\}
ENTER ROSTER NUMBER: $\qquad$
14. CATI: SET HOUSEHOLD LEVEL STATUS CODE=50 AND DETERMINE TRAVEL DAY.

IF NO VEHICLES OR NO DRIVERS IN HOUSEHOLD, CATI WILL SKIP TO QUESTION 16.
IF SINGLE-PERSON HOUSEHOLD, CATI WILL CODE "1" FOR QUESTIONS 14 AND 15 FOR ALL VEHICLES AND GO TO QUESTION 15.

ASK QUESTIONS 14 AND 15 FOR EACH HOUSEHOLD VEHICLE.
(Now, about the household vehicle(s) you told me about earlier), Does one household member drive the (VEHICLE) most of the time?
\{MAINDRVR\}
1 YES
$2 \mathrm{NO} \rightarrow$ ASK ABOUT NEXT VEHICLE
15. (Who is that?)
\{WHOMAIN\}
ENTER ROSTER NUMBER: $\qquad$
CATI EDIT CHECK: VERIFY THAT PERSON IS OF DRIVING AGE AND IS A DRIVER.

## Section D (continued)

16. To better understand people's travel patterns, we would like to mail a one-day diary to (you/each person in your household who is 5 or older). We ask you to record each trip you make on DAY, DATE. (We/Along with each diary, we) will send 2 dollars in appreciation for the time it takes to complete. Then after (DATE), we will call you back to collect the information.

CHECK ITEM: IS HOUSEHOLD ADDRESS KNOWN?

```
1 YES
2 NO }->\mathrm{ GO TO QUESTION 18
```

17. In order to mail the (diary/diaries) to you, I need to verify that your address is:
(ADDRESS)
(CITY, STATE)
(ZIP CODE)
1 CORRECT $\rightarrow$ GO TO QUESTION 19
2 INCORRECT
INTERVIEWER: WHICH DO YOU NEED TO MODIFY?

1 STREET ADDRESS $\rightarrow$ ENTER CORRECT ADDRESS
2 CITY $\rightarrow$ ENTER CORRECT CITY
3 STATE $\rightarrow$ ENTER CORRECT STATE
4 ZIP CODE $\rightarrow$ ENTER CORRECT ZIP CODE
5 ALL CORRECT $\rightarrow$ GO TO QUESTION 19
18. In order to mail the (diary/diaries) to you, would you please tell me your mailing address?

STREET ADDRESS $\qquad$
CITY
STATE ZIP CODE $\qquad$
19. INTERVIEWER: HAS THE RESPONDENT AGREED TO COMPLETE THE DIARY AND PROVIDED MAILING ADDRESS?

1 YES
$2 \mathrm{NO} \rightarrow$ Thank you very much for your time. EXIT CASE.
20. To whom should we address the envelope?

Section D (continued)
21. INTERVIEWER: DID THE RESPONDENT GIVE A HOME OR WORK ADDRESS?

1 HOME--STREET ADDRESS
2 HOME--PO BOX OR RR
3 WORK/OTHER
4 DONT KNOW
CHECK ITEM: ARE THERE CHILDREN AGED 5-13 IN THE HOUSEHOLD?

1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 23
22. When we call back to collect the data, household members 14 and older will be asked to answer questions for themselves; however, someone else will need to answer for younger household members. Who would be the best person to give the information about them?

ENTER ROSTER NUMBER: $\qquad$
23. We will mail the (diary/diaries) to you in a few days and will call you again after (TRAVEL DATE). Thank you for your time.

EXIT CASE

## CHECK ITEM 1: IS THIS A PROXY INTERVIEW?

1 YES $\rightarrow$ GO TO CHECK ITEM 2
2 NO

1. I'm going to read some difficulties people sometimes have when traveling. Thinking about your day-to-day travel, please tell me whether each of these is a large problem, a small problem, or no problem at all for you.

BASED UPON THE PREASSIGNED RANDOM INDICATOR, CATI WILL ADMINISTER THE APPROPRIATE SUBSET OF ITEMS FOR QUESTION 6. IF INDICATOR=1, FIRST BLOCK WILL BE ADMINISTERED. IF INDICATOR=2, THE SECOND BLOCK WILL BE ADMINISTERED. IF INDICATOR=3, THE THIRD BLOCK WILL BE ADMINISTERED.

LG SM NO
BLOCK 1
A Highway congestion
\{DTCONJ\} 123
B Rough pavement on highways
\{DTPAVE\} 123
C Being worried about getting lost in areas or neighborhoods
you're not familiar with
\{DTNTFMLR 1123
D Being worried about traffic accidents
\{DTACDT\} $1 \quad 2 \quad 3$
E Poor walkways or sidewalks
\{DTWALK\} 123

## BLOCK 2

F Highway congestion
\{DTCONJ\} $1 \quad 2 \quad 3$
G Air pollution caused by cars, trucks, and buses $\quad$ \{DTPOLLTN\} $\quad 1 \begin{array}{llll}1 & 2 & 3\end{array}$
H Not knowing about traffic tie-ups or road construction \{DTTIEUP\} $\begin{array}{llll} & 2 & 3\end{array}$
I Rough pavement on neighborhood streets $\quad$ \{DTSTRTS\} $1 \quad 2 \quad 3$
J Being worried about crime against motorists $\quad$ \{DTCRIME\} $1 \quad 2 \quad 3$

## BLOCK 3

K Highway congestion
L Rough pavement on highways
M Rough pavement on neighborhood streets
N Air pollution caused by cars, trucks, and buses
\{DTCONJ\} 122
\{DTPAVE\} 123
\{DTSTRTS\} 123
\{DTPOLLTN\} 1223

Section E (continued)
O Not knowing about traffic tie-ups or road construction \{DTTIEUP\} $\begin{array}{llll} & 2 & 3\end{array}$

Section E (continued)
CHECK ITEM 2: WAS PUBLIC TRANSPORTATION REPORTED AS AVAILABLE TO THE HOUSEHOLD? [DOES QUESTION C1=1]

1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 4
2. In the past two months, about how often (have you/has PERSON) used public transportation such as buses, subways, streetcars, or commuter trains?

## \{PTUSED\}

1	TWO OR MORE DAYS A WEEK (11+ TIMES)
2	ABOUT ONCE A WEEK (5-10 TIMES)
3	ONCE OR TWICE A MONTH (2-4 TIMES)
4	LESS THAN ONCE A MONTH (ONE TIME)
5	NEVER
6	NOT AVAILABLE
(DO NOT INCLUDE TAXIS. DO INCLUDE FERRIES.)	

CHECK ITEM 3: IS THIS A PROXY INTERVIEW?

1 YES $\rightarrow$ GO TO QUESTION 4
2 NO
CHECK ITEM 4: DOES R USE PUBLIC TRANSPORTATION REGULARLY?
[DOES Q2 = 1, 2, OR 3]?
1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 4
3. Thinking about your use of public transportation, please tell me whether each of these is a large problem, a small problem, or no problem at all for you.

BASED UPON THE PREASSIGNED RANDOM INDICATOR, CATI WILL ADMINISTER THE APPROPRIATE SUBSET OF ITEMS FOR QUESTION 8. IF INDICATOR=1, FIRST BLOCK WILL BE ADMINISTERED. IF INDICATOR=2, THE SECOND BLOCK WILL BE ADMINISTERED.

LG SM NO
BLOCK 1

A Crowding or difficulty getting a seat
\{PTCROWD\}
12

## Section E (continued)

B The time it takes to use public transportation
\{PTTIMEON\} 12
C Being worried about crime
\{PTCRIME\} $1 \begin{array}{lll}1 & 2\end{array}$
D Public transportation stations and vehicles not being clean\{PTNTCLN\}1 223
E The difficulty of transfering between buses or other $\begin{aligned} & \text { \{PTTRANSF \} }\end{aligned} 1 \begin{array}{llll}1 & 2\end{array}$ transit vehicles

123

## BLOCK 2

F Crowding or difficulty getting a seat	\{PTCROWD			1	2
	3				
G The cost of using public transportation	\{PTCOST\}	2	3		
H Public transportation being available at the times of day					
you need it	\{PTTMND	2	3		
I Having access to a car when you need it	\{PTCARND\}	2	3		
J The time it takes to use public transportation	\{PTTI	ON		1	2

4. How often (do you/does PERSON) wear (your/his/her) seat belt when driving or riding in a car or other private vehicle? Would you say...
\{FQSTBELT\}
1 Always, $\rightarrow$ GO TO CHECK ITEM 5
2 Most of the time,
3 Sometimes, or
4 Never? $\rightarrow$ GO TO CHECK ITEM 5
5. What are the typical situations when (you do/PERSON does) not wear seat belts? (CODE ALL THAT APPLY.)

SEE ALSO:
1 WHEN FORGET
2 WHEN BROKEN/UNAVAILABLE
\{NSBFGET\}
3 SHORT TRIPS
\{NSBHURRY\}
4 LONG TRIPS \{NSBMED\}
5 IN BACK SEAT
6 WHEN PASSENGER \{NSBNOASK\}
7 WHEN DRIVER
\{NSBDRVR\}
\{NSBPOLIC\}

Section E (continued)
8 WHEN IN A CERTAIN VEHICLE (E.G. PICKUP)\{NSBSPVEH\} \{NSBSPCLH\}
9 IN TOWN/CITY
\{NSBTOWN \{NSBSPPER\}
11 OTHER $\rightarrow$ SPECIFY:____ \{NSBTOWRK\}
\{NSBWTHR\}
CHECK ITEM 5: WAS R LISTED AS DRIVER IN HOUSEHOLD ROSTER?

1 YES
$2 \mathrm{NO} \rightarrow \mathrm{GO}$ TO QUESTION 7
6. IF THIS IS A SINGLE-PERSON HOUSEHOLD CATI WILL CODE "1" FOR QUESTION 6 AND GO TO QUESTION 8.

Just to verify, (you are/PERSON is) a driver, is that correct?

## \{DRIVER\}

1 CORRECT, R DRIVES $\rightarrow$ GO TO QUESTION 8
2 INCORRECT, R DOES NOT DRIVE $\rightarrow$ CORRECT DRIVER FLAG ON HOUSEHOLD ROSTER AND GO TO CHECK ITEM 6
7. IF THIS IS A SINGLE-PERSON HOUSEHOLD CATI WILL CODE "1" FOR QUESTION 7 AND GO TO CHECK ITEM 6
(You are not/PERSON is not) a driver, is that correct?
1 CORRECT, R DOES NOT DRIVE $\rightarrow$ GO TO CHECK ITEM 6
2 INCORRECT, R DOES DRIVE $\rightarrow$ CORRECT DRIVER FLAG ON HOUSEHOLD ROSTER AND GO TO QUESTION 8
8. About how many miles did (you/PERSON) personally drive during the past 12 months in all licensed motorized vehicles?
\{YEARMILE\}
(INCLUDE MILES DRIVEN AS A PART OF WORK.)
$\qquad$ MILES

Section E (continued)
[IF RESPONSE > 40,000 MILES, CATI WILL PROMPT INTERVIEWER TO VERIFY WITH R.]

CHECK ITEM 6: IS THIS A PROXY INTERVIEW?
1 YES $\rightarrow$ GO TO NEXT SECTION
2 NO

CHECK ITEM 7: WAS R DESIGNATED AS THE PRIMARY DRIVER FOR ANY HOUSEHOLD VEHICLES?

1 YES
$2 \mathrm{NO} \rightarrow \mathrm{GO}$ TO NEXT SECTION

CHECK ITEM 8: IS THIS THE HOUSEHOLD RESPONDENT?

$$
\begin{array}{ll}
1 & \text { YES } \rightarrow \text { GO TO NEXT SECTION } \\
2 & \text { NO }
\end{array}
$$

Section E (continued)
9. ASK THIS QUESTION FOR EACH VEHICLE FOR WHICH R IS PRIMARY DRIVER.

I understand that you are the person who drives the (VEHICLE) most.
About how many miles was the (VEHICLE) driven (during the last 12 months/since MONTH/YEAR BOUGHT OR RECEIVED)? Include mileage driven by you and all other drivers.
\{VEHMILES $\}$
$\qquad$ MILES
CATI: IF VEHICLE ACQUIRED IN PAST 12 MONTHS, CONVERT MILES REPORTED TO ANNUALIZED MILEAGE. [CALCULATE NUMBER OF DAYS BETWEEN TODAY'S DATE AND FIRST DAY OF MONTH/YEAR REPORTED IN B6. DIVIDE 365 BY THIS NUMBER AND MULTIPLY BY MILEAGE REPORTED IN Q14.]
IF ANNUALIZED MILEAGE > 40,000, CATI WILL PROMPT INTERVIEWER TO VERIFY WITH R.

## SECTION F - EDUCATION AND TRAVEL TO WORK - (HOUSEHOLD MEMBERS 16 YEARS OR OLDER; PROXY PERMITTED)

1. What is the highest grade or year of school (you have/PERSON has) completed? READ CHOICES AS NECESSARY.
\{EDUC\}
11 LESS THAN HIGH SCHOOL GRADUATE
12 HIGH SCHOOL GRADUATE, INCLUDING EQUIVALENT SUCH AS GED
21 SOME COLLEGE, BUT NOT A COLLEGE GRADUATE
22 ASSOCIATE DEGREE IN COLLEGE (FOR EXAMPLE, AA)
24 BACHELOR'S DEGREE (FOR EXAMPLE, BA, AB, BS)
25 SOME GRADUATE OR PROFESSIONAL SCHOOL, BUT NO DEGREE
26 GRADUATE OR PROFESSIONAL SCHOOL DEGREE (FOR EXAMPLE, MA, MS, MBA, MD, DDS, PHD, EdD, JD)

CATI EDIT CHECK: IF RESPONSE IS CODE 22, VERIFY THAT AGE IS 18 OR OLDER. IF RESPONSE IS CODE 24 OR CODE 25, VERIFY THAT AGE IS 20 OR OLDER. IF RESPONSE IS CODE 26, VERIFY THAT AGE IS 22 OR OLDER.
2. (Do you/Does PERSON) have a job full time, part time or not at all?
\{WORKER, JOBLSTWK\}
1 FULL TIME
2 PART TIME
3 NOT AT ALL $\rightarrow$ GO TO NEXT SECTION
4 RETIRED $\rightarrow$ GO TO NEXT SECTION
(IF ASKED, FULL TIME IS 35 OR MORE HOURS A WEEK. DO NOT INCLUDE VOLUNTEER WORK.

IF "SELF-EMPLOYED" PROBE FOR NUMBER OF HOURS R USUALLY WORKS AND CODE INTO APPROPRIATE CATEGORY.)
3. (Do you/Does PERSON) have more than one job?

## \{GT1JBLWK\}

1 YES $\rightarrow \quad$| The next question are about (you/PERSON's) primary job or |
| :--- |
| occupation. |

## Section F (continued)

(IF R CANT DECIDE WHICH JOB IS PRIMARY, USE THE ONE AT WHICH HE/SHE USUALLY WORKS THE MOST HOURS.)

```
2
NO
```

4. What is the street address of (your/PERSON's) workplace?

STREET NUMBER $\qquad$ STREET NAME $\qquad$
FIRST ROAD
SECOND ROAD
CITY $\qquad$ STATE $\qquad$
ZIP CODE $\qquad$

## DO NOT ENTER POST OFFICE BOX!

(IF R WORKS AT OR OUT OF HOME, ENTER "HOME" FOR STREET NUMBER. IF R HAS NO FIXED WORKPLACE, ENTER "NONE" FOR STREET NUMBER.)

IF NEEDED: It is important that we get at least a general location of (your/PERSON's) workplace. Would you please identify the intersection of roads which is closest to (your/his/her) workplace?

IF NEEDED: We are not going to contact you there, we just want to know the location of your workplace.

NOTE: IF R PROVIDES STREET NUMBER AND STREET NAME, FIELDS FOR ROAD INTERSECTION WILL BE SKIPPED. IF EITHER STREET NUMBER OR NAME IS MISSING, INTERSECTION DATA WILL BE OBTAINED.

IF STREET NUMBER = "HOME" OR "NONE," GO TO NEXT SECTION. CATI EDIT CHECK: VERIFY THAT STATE ABBREVIATION AND ZIP CODE ARE LEGAL VALUES.
5. What is the one-way distance from (your/PERSON's) home to (your/his/her) workplace?

## \{DISTTOWK\}

BLOCKS OR MILES

```
996 = LESS THAN 1 BLOCK
997 = 1/2 MILE
-3 NO FIXED WORKPLACE }->\mathrm{ GO TO NEXT SECTION
```


## Section F (continued)

-4 WORKS AT OR OUT OF HOME $\rightarrow$ GO TO NEXT SECTION
6. What time (do you/does PERSON) usually leave home to go to work? \{TIMELEAV\}

## Section F (continued)

7. How many minutes does it usually take (you/PERSON) to get from home to work?
\{TIMETOWK\}
$\qquad$ MINUTES
(DO NOT INCLUDE TIME TAKEN TO DROP OFF CHILDREN OR MAKE OTHER STOPS. PROBE FOR TIME IT WOULD TAKE TO GO STRAIGHT FROM HOME TO WORK.)

CATI EDIT CHECK: IF RESPONSE IS 60 MINUTES OR GREATER, CATI WILL PROMPT INTERVIEWER TO VERIFY WITH R.
8. How (do you/does PERSON) usually get to work? Please tell me all the kinds of transportation (you/he/she) usually (use/uses). (CODE ALL THAT APPLY.)

01	AUTOMOBILE	\{WKBYAUTO\}
02	VAN (MINI, CARGO, PASSENGER)	\{WKBYVAN\}
03	UTILITY VEHICLE (BRONCO, BLAZER	
	4RUNNER, PATHFINDER, ETC.)	\{WKBYUV\}
04	PICKUP TRUCK	\{WKBYTRUK\}
05	OTHER TRUCK	\{WKBYOTTK\}
06	RV (RECREATIONAL VEHICLE)	\{WKBYRV\}
07	MOTORCYCLE	\{WKBYMCYC\}
08	OTHER P.O.V. $\rightarrow$ SPECIFY	
		\{WKBYOPOV \}
09	BUS	\{WKBYBUS\}
10	AMTRAK	\{WKBYAMTR\}
11	COMMUTER TRAIN	\{WKBYTRAN\}
12	STREETCAR/TROLLEY	\{WKBYSTCR\}
13	SUBWAY/ELEVATED RAIL	\{WKBYSBWY\}
14	AIRPLANE	\{WKBYAIR\}
15	TAXICAB	\{WKBYTAXI\}
16	BICYCLE	\{WKBYBIKE\}
17	WALK	\{WKBYWALK\}
18	SCHOOL BUS	\{WKBYSCBS\}
19	WORKED FROM HOME/	
	TELECOMMUTED	\{WKBYHOME\}
20	OTHER $\rightarrow$ SPECIFY:	
		\{WKBYOTHR\}

## Section F (continued)

CHECK ITEM: IS MORE THAN ONE ANSWER ENTERED IN QUESTION 8?
1 YES $\rightarrow$ GO TO QUESTION 9
2 NO
CATI EDIT CHECK: VERIFY THAT MILES PER HOUR FOR QUESTION 8 IS WITHIN ACCEPTABLE RANGE BASED ON DISTANCE, TIME, AND MODE.

MODE IN Q8	
$01-09,15,18,19$	VALID MPH RANGE
$10-13$	$10-90$
14	$20-100$
16	$80-600$
17	$1-20$
	$1-10$

GO TO NEXT CHECK ITEM
9. What is the main means of transportation (you/PERSON) usually use to get to work--that is, the one used for most of the distance?

## \{WRKTRANS\}



CATI EDIT CHECK: ALLOW ONLY RESPONSES WHICH WERE REPORTED IN QUESTION 8.

## Section F (continued)

CATI EDIT CHECK: VERIFY THAT MILES PER HOUR FOR QUESTION 9 IS WITHIN ACCEPTABLE RANGE BASED ON DISTANCE, TIME, AND MODE.

MODE IN Q9	VALID MPH RANGE
01-09, 15, 18, 19	10-90
10-13	20-100
14	80-600
16	1-20
17	1-10

CHECK ITEM: IS PUBLIC TRANSPORTATION USED? [DOES Q8=09, 10, 11, 12, OR 13?]

1 YES
$2 \mathrm{NO} \rightarrow \mathrm{GO}$ TO NEXT CHECK ITEM
10. REPEAT QUESTIONS 10-12 FOR EACH PUBLIC TRANSPORTATION METHOD REPORTED IN QUESTION 8.

How many minutes (do you/does PERSON) usually have to wait for the (PUBLIC TRANSPORTATION MEANS IN Q8)?
\{WAITAMTR, WAITBUS, WAITSBWY, WAITSTRC, WAITTRAN\}
$\qquad$ MINUTES
11. (Do you/Does PERSON) usually sit, stand, or do both on the (PUBLIC TRANSPORTATION MEANS IN Q8)?
\{SITAMTR, SITBUS, SITSBWY, SITSTCR, SITTRAN\}

1 SIT ONLY $\rightarrow$ GO TO NEXT CHECK ITEM
2 STAND ONLY $\rightarrow$ GO TO NEXT CHECK ITEM
3 SOME OF BOTH
12. Which (do you/does PERSON) usually do most, sit or stand?
\{SIT2AMTR, SIT2BUS, SIT2SBWY, SIT2STCR, SIT2TRAN\}
1 SIT
2 STAND

## Section F (continued)

CHECK ITEM: IS PRIVATE VEHICLE USED? [DOES Q8=01, 02, 03, 04, 05, 06, 07, OR 08?]

1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 19
13. Do you pay for parking at work (or on your way to work)?
\{PAYTOPK\}
1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 15
14. How much do you usually pay?
\{PARKAMT\}
AMOUNT: $\qquad$

UNIT:
\{PARKCODE\}
1 HOUR
2 DAY
3 WEEK
4 MONTH
5 YEAR
6 QUARTER
7 OTHER $\rightarrow$ SPECIFY: $\qquad$
15. (Do you/Does PERSON) usually drive to work alone or (do you/does he/does she) carpool?
\{USULDRV\}
1 DRIVE ALONE $\rightarrow$ GO TO NEXT CHECK ITEM
2 CARPOOL
(CARPOOLING DOES NOT INCLUDE THE PRESENCE OF A CHILD BEING TAKEN TO SCHOOL OR DAY CARE. DOES INCLUDE ONE ADULT DROPPING OFF ANOTHER ON THE WAY.)

## Section F (continued)

16. (Are you/Is PERSON) always the driver, (do you/does PERSON) share the driving on a regular basis, or (do you/does PERSON) rarely or never drive?

## \{ALWYSDRV\}

1 ALWAYS DRIVE
2 SHARE THE DRIVING
3 RARELY OR NEVER DRIVE
GO TO QUESTION 19

## CHECK ITEM: IS THIS A PROXY INTERVIEW? <br> 1 YES $\rightarrow$ GO TO QUESTION 19 <br> 2 NO

CHECK ITEM: IS PUBLIC TRANSPORTATION USED? [DOES F8 $=09,10,11,12$, OR 13?]

1 YES $\rightarrow$ GO TO QUESTION 19
2 NO

CHECK ITEM: DID R REPORT THAT PUBLIC TRANSPORTATION IS NOT AVAILABLE? [DOES E2 = 6?]

1 YES $\rightarrow$ GO TO QUESTION 17
2 NO

CHECK ITEM: WAS PUBLIC TRANSPORTATION REPORTED AS AVAILABLE IN SECTION C? [DOES C1 = 1?]

1 YES
$2 \quad \mathrm{NO} \rightarrow$ GO TO QUESTION 17

CHECK ITEM: IS CASE ASSIGNED TO "CARPOOL" TREATMENT? [DOES PREASSIGNED RANDOM INDICATOR FOR "WHY NOT" = 1]?

1 YES
$2 \quad \mathrm{NO} \rightarrow$ GO TO QUESTION 18
17. What are the reasons you do not carpool to work? (CODE ALL THAT APPLY.)

## 1 WORK IRREGULAR/UNUSUAL HOURS <br> \{NCIRRHR\}

## Section F (continued)

2 NO ONE TO CARPOOL WITH
3 DONT WANT INCONVENIENCE/HASSLE
\{NCNOONE $\}$
\{NCINCVNT\}
4 NEED OWN VEHICLE AT/BEFORE/AFTER WORK \{NCNEEDCR\}
5 SHORT DISTANCE--DONT THINK IT'S NECESSARY \{NCSHRTDI\}
6 OTHER $\rightarrow$ SPECIFY: $\qquad$ \{NCOTHRES\}
\{SEE ALSO: NCCOMCR, NCLVFAR, NCNEVER, NCNLIKE, NCONLY\}
GO TO QUESTION 19
18. What are the reasons you do not use public transportation such as buses or subways to travel to work? (CODE ALL THAT APPLY.)

1 NOT AVAILABLE AT WORKPLACE
\{NPT2FRWK\}
2 TAKES TOO MUCH TIME
\{NPT2MCHT\}
3 COSTS TOO MUCH
\{NPT2EXPV\}
4 NEED OWN VEHICLE AT/BEFORE/AFTER WORK \{NPTOTHTG\}
5 SCHEDULE IS NOT CONVENIENT
\{NPTNTCNV\}
6 CLOSEST STOP IS TOO FAR FROM HOME \{NPTFMHM\}
7 OTHER $\rightarrow$ SPECIFY: $\qquad$ \{NPTOTHER\}
\{ SEE ALSO: NPTCOMCR, NPTDLPT, NPTNVCAR, NPTLVCLS\}
19. On any day last week, did (you/PERSON) work from home instead of traveling to (your/his/her) usual workplace?
\{WKFMHMLW\}
1 YES $\rightarrow$ GO TO QUESTION 21
2 NO
(CODE YES ONLY IF R WORKED AT HOME INSTEAD OF GOING TO THE WORKPLACE. DO NOT INCLUDE WORKING AT HOME IN ADDITION TO WORKING AT THE WORKPLACE.)
20. On any day in the past two months, did (you/PERSON) work from home instead of traveling to (your/his/her) usual workplace?
\{WKFMHM2M\}
1 YES

## Section F (continued)

$2 \mathrm{NO} \rightarrow$ GO TO NEXT SECTION
(CODE YES ONLY IF R WORKED AT HOME INSTEAD OF GOING TO THE WORKPLACE. DO NOT INCLUDE WORKING AT HOME IN ADDITION TO WORKING AT THE WORKPLACE.)
21. In the past two months, about how often (have you/has PERSON) worked from home instead of traveling to (your/his/her) usual workplace?
\{WKFMHMXX \}
1 TWO OR MORE DAYS A WEEK (11+ TIMES)
2 ABOUT ONCE A WEEK (5-10 TIMES)
3 ONCE OR TWICE A MONTH (2-4 TIMES)
4 LESS THAN ONCE A MONTH (ONE TIME)
(INCLUDE ONLY THE DAYS R WORKED AT HOME INSTEAD OF AT THE WORKPLACE. DO NOT INCLUDE DAYS WORKED AT HOME IN ADDITION TO AT THE WORKPLACE.)

SECTION G - TRAVEL DAY (HOUSEHOLD MEMBERS 5 YEARS OR OLDER; PROXY PERMITTED UNDER PROXY RULES. PROXY REQUIRED FOR PERSONS 5-13 YEARS)

## CHECK ITEM 1: IS R 5-15 YEARS OF AGE?

```
1 YES
2 NO }->\mathrm{ GO TO INTRO
```

1. How often (do you/does PERSON) wear (your/his/her) seat belt when riding in a car or other private vehicle? Would you say...
\{FQSTBELT\}

1 Always, $\rightarrow$ GO TO INTRO
2 Most of the time,
3 Sometimes, or
4 Never? $\rightarrow$ GO TO INTRO
2. What are the typical situations when (you do/PERSON does) not wear seat belts? (CODE ALL THAT APPLY.)

1	WHEN FORGET	\{NSBFGET\}
2	WHEN BROKEN/UNAVAILABLE	\{NSBBROKE \}
3	SHORT TRIPS	\{NSBSHORT\}
4	LONG TRIPS	\{NSBLONG\}
5	IN BACK SEAT	\{NSBBACK \}
8	WHEN IN A CERTAIN VEHICLE (E.G. PICKUP)	\{NSBSPVEH\}
9	IN TOWN/CITY	\{NSBTOWN\}
10	WHEN WITH A CERTAIN PERSON (E.G. OTHER PARENT) \{NSBSPPER\}	
11	OTHER $\rightarrow$ SPECIFY:	\{NSBOTHER\}

\{SEE ALSO: NSBHURRY, NSBMED, NSBNLIKE, NSBNOASK, NSBPOLIC, NSBSPCLH, NSBWTHR\}

INTRO Now I have some questions about all trips (you/PERSON) took (yesterday/on TRAVEL DAY). Even though (your/his/her) travel on this day may have been unusual for some reason, we still want to know about (your/PERSON's) trips on this particular day.

CHECK ITEM 2: IS R A WORKER, AS REPORTED IN QUESTION F2?

## Section G (continued)

1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 9

CHECK ITEM 3: IS R A DRIVER, AS REPORTED IN SECTION E?
1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 9
3. (Yesterday/On TRAVEL DAY), did (you/PERSON) work at a job that required (you/him/her) to drive a licensed motor vehicle as part of the job--for example a cab or truck driver, delivery person, police officer, or traveling salesperson? Please do not include just getting to and from the workplace.

## \{WRKDRIVE\}

1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 9
4. What is that job or occupation?

OCCUPATION $\qquad$
5. While working at this job on (TRAVEL DAY), did you travel from one place to another more than ten times?

## \{WRKTRPS\}

1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 9
6. On (TRAVEL DAY) about how many miles did (you/PERSON) drive as part of (your/his/her) work, not counting miles driven to and from (your/his/her) place of work?

## \{WRKMILES\}

$\qquad$ MILES

## CATI EDIT CHECK: IF RESPONSE < 15 MILES, CATI WILL PROMPT INTERVIEWER TO VERIFY THAT R DID MAKE 5 OR MORE TRIPS ON TRAVEL DAY.

7. What type of vehicle did (you/PERSON) drive as part of this job?

## Section G (continued)

\{WRKVTYPE\}
IF MORE THAN ONE TYPE, MARK THE TYPE DRIVEN MOST. READ CHOICES AS NECESSARY.

01	AUTOMOBILE	07	MOTORCYCLE	
02	VAN (MINI, CARGO, PASSENGER)		08	OTHER
VEHICLE $\rightarrow$ SPECIFY:				
03	UTILITY VEHICLE (BRONCO, BLAZER,			
	4RUNNER, PATHFINDER, ETC.)	09	BUS	
04	PICKUP TRUCK	10	SCHOOL BUS	
05	OTHER TRUCK	11	TAXICAB	
06	RV (RECREATIONAL VEHICLE)			

8. How many days a week (do you/does PERSON) usually work at this job?
\{WORKDAYS\}
NUMBER OF DAYS $\qquad$
9. Several days ago we mailed a diary to your household for (you/PERSON) to complete about (your/his/her) travel on (TRAVEL DAY). Did (you/PERSON) complete the diary on (your/his/her) own or did someone else complete it for (you/him/her)?

## \{DIARYCMP\}

1 COMPLETED ON OWN
2 SOMEONE ELSE COMPLETED IT
3 DIARY WAS NOT COMPLETED AT ALL $\rightarrow$ GO TO QUESTION 11a
4 DID NOT RECEIVE MATERIALS $\rightarrow$ GO TO QUESTION 11a

## CHECK ITEM 3A: DID R MAKE MORE THAN 10 TRIPS AS PART OF WORK ON TRAVEL DAY? [DOES G5=1?]

1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 10
9a. Did (you/PERSON) record the trips (you/he/she) made as part of (your/his/her) work?
1 YES $\rightarrow \quad$ Since it would be too difficult to cover all these trips over the phone, we will send you a self-addressed, stamped envelope to mail

## Section G (continued)

(your/his/her) diary to us. For this interview, we'll focus on (your/his/her) non-work trips.
2 NO
10. Do you have (your/PERSON's) completed diary with you now?
\{DIARYHAV \}
1 YES $\rightarrow$ GO TO QUESTION 12
2 NO
11. Can you get the diary?

## \{DIARYGET\}

## 1 YES (WAIT FOR R TO RETRIEVE THE DIARY; GO TO QUESTION 12) 2 NO

11a. Let's continue with the interview anyway. Information on (you/PERSON's) travel is important to us. Please try to recall the information as best you can.
12. For the next questions, a "trip" is any time (you/PERSON) went from one address to another in a vehicle or by walking or biking. Each stop you make is a separate trip, including picking up or dropping off someone.

To be sure we get all the trips (you/PERSON) took during the day, we'll list all (your/PERSON's) trips starting at 4 a.m. in the morning and ending at 4 a.m. the next morning.

IF QUESTION 5 = YES: We do not want to include the trips you made as part of your job, but we do want to include trips to and from your workplace.

IF QUESTION 5 = NO: Please include the trips you made as part of your work.
NOTE: WHILE ASKING QUESTIONS 12 THRU 17, THE INTERVIEWER WILL HAVE INFORMATION REPORTED BY OTHER HOUSEHOLD MEMBERS DISPLAYED ON THE SCREEN: FOR EXAMPLE:

TRIP	DESCRIPTION	TIME	REPORTED BY
1	post office	$9: 00 \mathrm{am}$	John
2	work	$9: 15 \mathrm{am}$	John
3	home	$3: 00 \mathrm{pm}$	Karen

## Section G (continued)

Where did (you/PERSON) go first (yesterday/on TRAVEL DAY)?
\{WHERE, FROM_A\}
1 HOME $\rightarrow$ GO TO QUESTION 15
2 WORK $\rightarrow$ GO TO QUESTION 15
3 OTHER $\rightarrow$ SPECIFY: $\qquad$ $\rightarrow$ GO TO QUESTION 15
4 NOWHERE
5 OUT OF COUNTRY $\rightarrow$ GO TO QUESTION 14
13. Does this mean (you/PERSON) stayed at the same place all day?
\{SAMEPLC\}
1 YES $\rightarrow$ GO TO NEXT SECTION
2 NO $\rightarrow$ REASK QUESTION 12
14. Just to verify, (you were/PERSON was) out of the country for the entire day (yesterday/on TRAVEL DAY), is that correct?

## \{OUTCNTRY\}

1 YES $\rightarrow$ GO TO NEXT SECTION
2 NO $\rightarrow$ REASK QUESTION 12
15. What time did this trip begin?
\{STRTTIME, DAYNIGHT\}

INTERVIEWER: IS THIS THE SAME OR SIMILAR TO ANY TRIP DISPLAYED ABOVE?

1 YES $\rightarrow$ VERIFY WITH R AND ENTER TRIP NUMBER
2 NO
16. Where did (you/he/she) go next?
\{WHERE, FROM_A, TO_B\}
1 HOME
2 WORK

## Section G (continued)

3 OTHER $\rightarrow$ SPECIFY:
17. What time did this trip begin?
\{STRTTIME, DAYNIGHT, DWELTIME\}

INTERVIEWER: IS THIS THE SAME OR SIMILAR TO ANY TRIP DISPLAYED ABOVE?
\{PREVREP, MATCH\}
1 YES $\rightarrow$ VERIFY WITH R AND ENTER TRIP NUMBER
2 NO
REPEAT QUESTIONS 16 AND 17 UNTIL NO MORE TRIPS.

## RECONCILIATION

## IF ANY PREVIOUSLY-REPORTED TRIPS REMAIN:

I also show a trip to (DESCRIPTION) at (TIME) reported by (NAME). Did you take this trip?

1 YES $\rightarrow$ INDICATE WHICH TRIP THIS WAS OR ADD TO LIST OF TRIPS 2 NO

WHEN ALL TRIPS MADE ON TRAVEL DAY HAVE BEEN LISTED, SAY: While I read the trips, please think back to see if there were any additional ones.

READ LIST; ADD ADDITIONAL TRIPS IF REPORTED. WHEN ALL TRIPS HAVE BEEN LISTED AND VERIFIED, CONTINUE.

```
CHECK ITEM 4: IS DESTINATION FOR FIRST TRIP HOME? [DOES Q12 = 1?]
 1 YES
 2 NO }->\mathrm{ GO TO QUESTION 19
```

18. Now I have a few questions about each trip.

You told me the first place (you/PERSON) went was home. What was the main reason (you were/PERSON was) away from home?

## Section G (continued)

## \{AWAYHOME\}

01	AT WORK	09	TAKE SOMEONE SOMEWHERE
02	WORK RELATED BUSINESS		$10 \quad$ PICK UP SOMEONE
		11	VACATION
04	SHOPPING	12	VISIT FRIENDS OR RELATIVES
05	AT SCHOOL	13	WENT OUT TO EAT
06	AT RELIGIOUS ACTIVITY		$14 \quad$ OTHER
			SOCIAL/RECREATIONAL
07	MEDICAL/DENTAL		
08	OTHER FAMILY OR PERSONAL 16         BUSINESS	OTHER $\rightarrow$ SPECIFY:	

GO TO CHECK ITEM 6
19. Now I have a few questions about each trip.

Did the trip to (FIRST DESTINATION) begin at home?
\{FRSTHM\}

1	YES
2	NO

20. IF DESTINATION = HOME, CATI WILL CODE "17" AND SKIP TO CHECK ITEM 6.

What was the main purpose of the trip to (DESTINATION)?
\{WHYFROM, WHYTO, WHYTRP90, WHYTRP95\}

01 TO WORK 09
02 WORK RELATED BUSINESS
03 RETURN TO WORK
04 SHOPPING
05 SCHOOL
06 RELIGIOUS ACTIVITY

07 MEDICAL/DENTAL
08 OTHER FAMILY OR PERSONAL 16 BUSINESS

10
11
12
13
14

15

TAKE SOMEONE SOMEWHERE PICK UP SOMEONE VACATION VISIT FRIENDS OR RELATIVES WENT OUT TO EAT OTHER SOCIAL/RECREATIONAL CHANGE MEANS OF TRANSP. OTHER $\rightarrow$ SPECIFY:

## Section G (continued)

## 17 HOME [NOT DISPLAYED ON CATI SCREEN]

CHECK ITEM 5: IS PURPOSE TO TAKE SOMEONE SOMEWHERE? [DOES Q20=09]?

1 YES
$2 \mathrm{NO} \rightarrow$ GO TO CHECK ITEM 6
21. What was (passenger's) main reason for the trip?

## \{PASSPURP\}

01 TO WORK
02 WORK RELATED BUSINESS
03 RETURN TO WORK 11 VACATION
04 SHOPPING 12
05 SCHOOL
06 RELIGIOUS ACTIVITY
13 WENT OUT TO EAT
14 OTHER SOCIAL/RECREATIONAL
07 MEDICAL/DENTAL
08 OTHER FAMILY OR PERSONAL 16 OTHER $\rightarrow$ SPECIFY:
BUSINESS
17 HOME
(CODE CHILD BEING TAKEN TO DAY CARE AS OTHER FAMILY OR PERSONAL BUSINESS.)

CHECK ITEM 6: HAVE DATA ON THIS TRIP ALREADY BEEN REPORTED BY ANOTHER HOUSEHOLD MEMBER?

1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 22 OR ORIGIN/DESTINATION
CHECK ITEM 7: IS THIS A PROXY INTERVIEW?
1 YES $\rightarrow$ GO TO QUESTION 20 FOR NEXT TRIP/NEXT SECTION
2 NO
CHECK ITEM 8: WAS R THE DRIVER ON THIS TRIP, AS REPORTED BY OTHER HOUSEHOLD MEMBER?

## Section G (continued)

\{DRVR_FLG\}
1 YES
2 NO $\rightarrow$ RETURN TO QUESTION 20 FOR NEXT TRIP/NEXT SECTION

22. How far is it from where (you/PERSON) started to (DESTINATION)?
\{TRPMILES, HOWFARU\}

## BLOCKS OR MILES

996 = LESS THAN 1 BLOCK
$997=1 / 2$ MILE
(IF ASKED, RECORD ACTUAL DISTANCE TRAVELED, NOT DISTANCE "AS THE CROW FLIES.")

CHECK ITEM 9: HAVE DATA ON THIS TRIP ALREADY BEEN REPORTED BY ANOTHER HOUSEHOLD MEMBER? [NOTE: IF DATA WERE ALREADY REPORTED BUT R WAS NOT DRIVER, R WILL ALREADY HAVE SKIPPED OUT IN CHECK ITEM 8.]

1 YES $\rightarrow$ GO TO QUESTION 27
2 NO

## Section G (continued)

23. IF NO VEHICLES WERE REPORTED IN SECTION B CATI WILL CODE " 2 " AND GO TO QUESTION 25.

Was a household vehicle used on this trip?
\{TRPHHVEH\}
1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 25
3 PART OF TRIP
24. IF ONLY ONE VEHICLE REPORTED IN SECTION B CATI WILL CODE VEHICLE NUMBER "1" AND GO TO QUESTION 27.

Which vehicle? (IF NEEDED: Which one was used for the longest distance?)
\{VEHID $\}$

## $\qquad$ <br> VEHICLE NUMBER OR

-3 HOUSEHOLD VEHICLE THAT NEEDS TO BE ADDED TO VEHICLE ROSTER $\rightarrow$ AT COMPLETION OF TRAVEL DAY SECTION, CATI WILL ROUTE THROUGH QUESTIONS TO ADD VEHICLE TO ROSTER AND THEN CHANGE -3 CODE TO THE PROPER VEHICLE NUMBER.

## CHECK ITEM 10: WAS VEHICLE USED FOR THE ENTIRE TRIP [DOES Q23=1]?

1 YES $\rightarrow$ GO TO QUESTION 27
2 NO
25. IF Q23=2 THEN ASK: How did (you/PERSON) get to (DESTINATION)? (That is, what means of transportation did (you/PERSON) use for this trip?) (IF MORE THAN ONE MODE, CODE THE ONE USED FOR THE LONGEST DISTANCE.)

## \{TRPTRANS\}

IF Q23=3 THEN ASK: What other means of transportation did (you/PERSON) use?
01 AUTOMOBILE 09 BUS

02 VAN (MINI, CARGO, PASSENGER) 10
03 UTILITY VEHICLE (BRONCO, BLAZER 11 4RUNNER, PATHFINDER, ETC.)

10 AMTRAK
COMMUTER TRAIN
STREETCAR/TROLLEY

## Section G (continued)

04	PICKUP TRUCK
05	OTHER TRUCK
06	RV (RECREATIONAL VEHICLE)
07	MOTORCYCLE
08	OTHER P.O.V. $\rightarrow$ SPECIFY

## 13 SUBWAY/ELEVATED

 RAIL14 AIRPLANE
15 TAXICAB
16 BICYCLE
17 WALK
18 SCHOOL BUS
OTHER $\rightarrow$ SPECIFY:

CHECK ITEM 11: WAS PUBLIC TRANSPORTATION USED? [DOES Q25=9, 10, 11, 12, OR 13?]
\{PUBTRANS\}

```
1 YES
2 NO }->\mathrm{ GO TO QUESTION 27
```

26. Did (you/PERSON) make a transfer, walk, or use any other methods of transportation along the way?

## \{TRANSFER\}

1 YES $\rightarrow$ GO TO QUESTION 28
2 NO
27. About how many minutes did it take to get there?
\{TRVL_MIN\}
$\qquad$ MINUTES OR HOURS

CATI EDIT: CATI WILL CALCULATE END TIME. CATI EDIT CHECK: VERIFY THAT MILES PER HOUR IS WITHIN ACCEPTABLE RANGE BASED ON DISTANCE, TIME, AND MODE.

MODE IN Q25	VALID MPH RANGE
$01-09,15,18,19$	$10-90$
$10-13$	$20-100$
14	$80-600$
16	$1-20$

## Section G (continued)

CHECK ITEM 12: HAVE DATA ON THIS TRIP ALREADY BEEN REPORTED BY ANOTHER HOUSEHOLD MEMBER? [NOTE: IF DATA WERE ALREADY REPORTED BUT R WAS NOT DRIVER, R WILL ALREADY HAVE SKIPPED OUT IN CHECK ITEM 8.]

1 YES $\rightarrow$ GO TO QUESTION 37
$2 \mathrm{NO} \rightarrow$ GO TO CHECK ITEM 13

NOTE: QUESTIONS 28-30 ARE FOR MULTI-SEGMENT TRIPS.
28. ASK ONLY IF NOT KNOWN: What means of transportation did (you/PERSON) use for the (first/next) part of this trip?
\{SEG1TRAN, SEG2TRAN, SEG3TRAN, SEG4TRAN\}
97 NO OTHER PORTION OF TRIP $\rightarrow$ GO TO CHECK ITEM 13

01 AUTOMOBILE 09 BUS
02 VAN (MINI, CARGO, PASSENGER)
03 UTILITY VEHICLE (BRONCO, BLAZER 11 4RUNNER, PATHFINDER, ETC.) 12
PICKUP TRUCK
13

OTHER TRUCK
RV (RECREATIONAL VEHICLE)
MOTORCYCLE
OTHER P.O.V. $\rightarrow$ SPECIFY
10 AMTRAK
COMMUTER TRAIN
STREETCAR/TROLLEY
SUBWAY/ELEVATED
RAIL
AIRPLANE
TAXICAB
BICYCLE
WALK
18 SCHOOL BUS
19 OTHER $\rightarrow$ SPECIFY:
29. What time did (you/PERSON) begin this part of the trip?
\{SEG1TIME, SEG2TIME, SEG3TIME, SEG4TIME\}

CATI EDIT: CATI WILL CONVERT TO MILITARY TIME.
30. About how many minutes did this part of the trip take?

## Section G (continued)

\{SEG1_MIN, SEG2_MIN, SEG3_MIN, SEG4_MIN\}
$\qquad$ MINUTES

CATI EDIT: CATI WILL CALCULATE END TIME.

CHECK ITEM 13: WAS PUBLIC TRANSPORTATION USED? [DOES Q25=09, 10, 11, 12, OR 13 OR DOES Q28=09, 10, 11, 12, OR 13 FOR ANY SEGMENT?]

1 YES
$2 \mathrm{NO} \rightarrow$ GO TO CHECK ITEM 14
31. How many minutes did (you/PERSON) have to wait for the (TRANSPORTATION MEANS)?
\{WAIT_MIN\}
$\qquad$ MINUTES
32. Did (you/PERSON) sit, did (you/PERSON) stand, or did (you/PERSON) do both on the (TRANSPORTATION MEANS)?
\{STANDSIT\}
1 SIT ONLY $\rightarrow$ GO TO CHECK ITEM 14
2 STAND ONLY $\rightarrow$ GO TO CHECK ITEM 14
3 SOME OF BOTH
33. Which did (you/PERSON) do most of the time, sit or stand?

## \{SITMOST\}

1 SIT
2 STAND
GO TO QUESTION 35
CHECK ITEM 14: WAS A PRIVATE VEHICLE USED FOR THIS TRIP? [DOES Q23 $=1$ OR Q25=01, 02, 03, 04, 05, 06 ,07 OR 08?]

1 YES
$2 \mathrm{NO} \rightarrow \mathrm{GO}$ TO QUESTION 35

## Section G (continued)

34. Was anyone with you on this trip?

1 YES
2 NO $\rightarrow$ CATI WILL CODE "NO" FOR QUESTIONS 35 AND 39 AND ENTER R'S ROSTER NUMBER AS THE DRIVER ON THE TRIP. THEN GO TO QUESTION 20 FOR NEXT TRIP/NEXT SECTION.
35. IF THIS IS A SINGLE-PERSON HOUSEHOLD, GO TO CHECK ITEM 15.

Were any household members with (you/PERSON) on this trip?

## \{TRPHHACC

1 YES
$2 \mathrm{NO} \rightarrow$ GO TO CHECK ITEM 15
36. (Which household members?)

## \{HH_ONTRP, NUMONTRP, WHOACC_A through WHOACC_J\}

ENTER ROSTER NUMBER (S): $\qquad$
CHECK ITEM 15: WAS A PRIVATE VEHICLE USED FOR THIS TRIP? [DOES Q23 = YES OR DOES Q25=01, 02, 03, 04, 05, 06, 07, OR 08?]

1 YES
$2 \mathrm{NO} \rightarrow$ GO TO CHECK ITEM 16
37. IF NO HOUSEHOLD MEMBERS WERE WITH R [Q35=2] AND R IS NOT A DRIVER, CATI WILL CODE "NO" FOR QUESTION 37 AND GO TO CHECK ITEM 16.

Did (you/PERSON/a member of the household) drive on the trip?

## \{HHMEMDRV

1 YES
$2 \quad \mathrm{NO} \rightarrow$ GO TO CHECK ITEM 16
3 PART OF TRIP
38. IF SINGLE-PERSON HOUSEHOLD, CATI WILL CODE "1" FOR QUESTION 38 AND GO TO CHECK ITEM 16.

## Section G (continued)

IF A HOUSEHOLD MEMBER DROVE ON THE TRIP [Q37 = 1] AND NO OTHER HOUSEHOLD MEMBERS WERE ON THE TRIP [Q35 = 2], CATI WILL CODE R'S ROSTER NUMBER FOR Q38 AND GO TO CHECK ITEM 16.

Who was that? (IF NEEDED: Which one drove the longest distance?)
\{DRVR_FLG, WHODROVE\}
ENTER ROSTER NUMBER: $\qquad$

CATI EDIT CHECK: VERIFY THAT PERSON ENTERED WAS REPORTED TO BE ON THIS TRIP (Q36) AND THAT HE/SHE IS LISTED AS DRIVER IN HOUSEHOLD ROSTER.

CHECK ITEM 16: HAVE DATA ON THIS TRIP ALREADY BEEN REPORTED BY ANOTHER HOUSEHOLD MEMBER? [NOTE: IF DATA WERE ALREADY REPORTED BUT R WAS NOT DRIVER, R WILL ALREADY HAVE SKIPPED OUT IN CHECK ITEM 8.]

```
YES }->\mathrm{ GO TO QUESTION 20 FOR NEXT TRIP/NEXT SECTION
2 NO
```

39. Did any non-household members go with (you/PERSON) on this trip, (such as friends, relatives, or other people you know)?

## \{NONHHACC $\}$

1 YES
2 NO $\rightarrow$ GO TO QUESTION 20 FOR NEXT TRIP/NEXT SECTION
40. How many non-household members went on this trip with (you/PERSON)?
\{NONHHCNT, NUMONTRP\}
NUMBER: $\qquad$

CATI EDIT CHECK: RANGE CHECK BASED UPON MODE, ESPECIALLY FOR BUS, AIRPLANE, TRAIN, ETC.
GO TO QUESTION 20 FOR NEXT TRIP/NEXT SECTION

# SECTION H - TRAVEL PERIOD - COLLECT ONLY TRIPS OF 75 MILES OR MORE FROM HOME TAKEN DURING THE 14 DAY TRAVEL PERIOD (HOUSEHOLD MEMBERS 5 YEARS OR OLDER. PROXY PERMITTED UNDER PROXY RULES. PROXY REQUIRED FOR PERSONS 5-13 YEARS) 

1. Now I would like to ask about any trips of 75 miles or more one way that (you/PERSON) may have taken recently. How many trips of 75 miles or more one way did (you/PERSON) take where (you/he/she) returned home between $\qquad$ and $\qquad$ ?
$\qquad$ TRIPS

IF NONE, GO TO NEXT SECTION
2. What was the farthest point (you/PERSON) traveled to on (this/the first/the next) trip? Please tell me the city and state, or foreign country.
\{COUNTRY, DESTSTAT\}
CITY OR PLACE $\qquad$ STATE OR FOREIGN COUNTRY $\qquad$
3. On what date did (you/PERSON) return home from the trip to (DESTINATION)?

## \{RET_MON, RET_YR\}

DATE: $\qquad$

CATI EDIT CHECK: VERIFY THAT DATE GIVEN IS WITHIN 14 DAY TRAVEL PERIOD.

CHECK ITEM: IS DATE IN QUESTION 3 = TRAVEL DAY?
1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 6
4. Were any of the trips you told me about earlier on (TRAVEL DAY) part of this trip to (DESTINATION)?

1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 6
5. Which trips were part of this longer trip?

## Section H (continued)

\{OVERLAP\}
(DISPLAY TRAVEL DAY TRIP ROSTER. READ TRIPS IF NECESSARY.)
ENTER ROSTER NUMBER(S): $\qquad$
6. What was the main reason (you/PERSON) made the trip to (DESTINATION)?
\{TOWHYTRP\}

01	TO WORK	09	TAKE SOMEONE SOMEWHERE
02	WORK RELATED BUSINESS		$10 \quad$ PICK UP SOMEONE
		11	VACATION
04	SHOPPING	12	VISIT FRIENDS OR RELATIVES
05	SCHOOL	13	WENT OUT TO EAT
06	RELIGIOUS ACTIVITY	14	OTHER      07
MEDICAL/DENTAL		SOCIAL/RECREATIONAL	
08	OTHER FAMILY OR PERSONAL 16	OTHER $\rightarrow$ SPECIFY:	
	BUSINESS		

CHECK ITEM: IS PURPOSE TO TAKE SOMEONE SOMEWHERE? [DOES Q6=09?
1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 8
7. What was (passenger's) main reason for the trip?
\{TOWHYPAS\}
01 TO WORK
02 WORK RELATED BUSINESS
03 RETURN TO WORK
04 SHOPPING
12 VISIT FRIENDS OR RELATIVES
05 SCHOOL
06 RELIGIOUS ACTIVITY
13
14 WENT OUT TO EAT
OTHER
SOCIAL/RECREATIONAL
07 MEDICAL/DENTAL
08 OTHER FAMILY OR PERSONAL 16 OTHER $\rightarrow$ SPECIFY:

## Section H (continued)

## BUSINESS

8. What was the main means of transportation used for the trip to (DESTINATION)?
(IF NEEDED: What means of transportation was used for the longest distance.)
\{TO_TRANS $\}$

01	AUTOMOBILE	09	BUS	
02	VAN (MINI, CARGO, PASSENGER)		$10 \quad$ AMTRAK	
03	UTILITY VEHICLE (BRONCO, BLAZER	11	COMMUTER TRAIN	
	4RUNNER, PATHFINDER, ETC.)	12	STREETCAR/TROLLEY	
04	PICKUP TRUCK	13	SUBWAY/ELEVATED	
			RAIL	
05	OTHER TRUCK	14	AIRPLANE	
06	RV (RECREATIONAL VEHICLE)	15	TAXICAB	
07	MOTORCYCLE	16	BICYCLE	
08	OTHER P.O.V. $\rightarrow$ SPECIFY	17	WALK	
			19	OTHER $\rightarrow$ SPECIFY:

CHECK ITEM: ARE THERE MORE TRIPS TO BE ASKED ABOUT? 1 YES $\rightarrow$ RETURN TO QUESTION 2 FOR NEXT TRIP 2 NO

ROUTING INSTRUCTIONS:

FOR ALL CASES, SET PERSON LEVEL STATUS CODE TO 50 (SELF) OR 51 (PROXY)

PERSON UNDER $18 \rightarrow$ CONCLUDE INTERVIEW. SEEK TO INTERVIEW ANY OTHER PERSONS IN THE HOUSEHOLD STILL NEEDING TO BE INTERVIEWED.
PERSON WHOSE INCOME WAS NOT INCLUDED IN HOUSEHOLD
ESTIMATE $\rightarrow$ SECTION I
PERSON 18 OR OLDER $\rightarrow$ SECTION J, K, OR L IF THERE IS INFORMATION MISSING IN THESE SECTIONS; OTHERWISE, CONCLUDE INTERVIEW AND SEEK TO INTERVIEW ANY OTHER PERSONS IN THE HOUSEHOLD STILL NEEDING TO BE INTERVIEWED.

Section H (continued)

## SECTION I - INCOME OF PERSONS NOT INCLUDED IN HOUSEHOLD INCOME (PERSONS WHO ROSTER NUMBER WAS REPORTED IN QUESTION K11.)

1. In order to classify your household for statistical purposes, we need an estimate of (your/PERSON's) total income in the past 12 months. Please stop me when I get to the category that best describes (your/his/her) income.

## \{NONFMINC\}

(Total income includes income from all sources such as wages and salaries, income from business or farm, Social Security, pensions, dividends, interest, rent, and any other income received.)
(IF R VOLUNTEERS AMOUNT THAT IS ON THE BREAKPOINT, CODE TO HIGHER CATEGORY.)

1 Less than $\$ 10,000 \rightarrow$ GO TO QUESTION 2
$2 \quad \$ 10,000$ to $\$ 20,000 \rightarrow$ GO TO QUESTION 3
$3 \quad \$ 20,000$ to $\$ 30,000 \rightarrow$ GO TO QUESTION 4
$4 \quad \$ 30,000$ to $\$ 40,000 \rightarrow$ GO TO QUESTION 5
$5 \quad \$ 40,000$ to $\$ 50,000 \rightarrow$ GO TO QUESTION 6
$6 \quad \$ 50,000$ to $\$ 60,000 \rightarrow$ GO TO QUESTION 7
$7 \quad \$ 60,000$ to $\$ 70,000 \rightarrow$ GO TO QUESTION 8
$8 \quad \$ 70,000$ to $\$ 80,000 \rightarrow$ GO TO QUESTION 9
$9 \quad \$ 80,000$ to $\$ 100,000 \rightarrow$ GO TO CHECK ITEM
$10 \$ 100,000$ OR MORE $\rightarrow$ GO TO CHECK ITEM
2. Was (your/PERSON's) income more or less than $\$ 5,000$ ?
$1 \quad \$ 5,000$ OR MORE $\rightarrow$ GO TO CHECK ITEM
2 LESS THAN $\$ 5,000 \rightarrow$ GO TO CHECK ITEM
3. Was (your/PERSON's) income more or less than $\$ 15,000$ ?
$1 \quad \$ 15,000$ OR MORE $\rightarrow$ GO TO CHECK ITEM
2 LESS THAN $\$ 15,000 \rightarrow$ GO TO CHECK ITEM
4. Was (your/PERSON's) income more or less than $\$ 25,000$ ?
$1 \quad \$ 25,000$ OR MORE $\rightarrow$ GO TO CHECK ITEM
2 LESS THAN $\$ 25,000 \rightarrow$ GO TO CHECK ITEM

## Section I (continued)

5. Was (your/PERSON's) income more or less than $\$ 35,000$ ?
$1 \$ 35,000$ OR MORE $\rightarrow$ GO TO CHECK ITEM 2 LESS THAN $\$ 35,000 \rightarrow$ GO TO CHECK ITEM
6. Was (your/PERSON's) income more or less than $\$ 45,000$ ?
$1 \quad \$ 45,000$ OR MORE $\rightarrow$ GO TO CHECK ITEM
2 LESS THAN $\$ 45,000 \rightarrow$ GO TO CHECK ITEM
7. Was (your/PERSON's) income more or less than $\$ 55,000$ ?

1 \$55,000 OR MORE $\rightarrow$ GO TO CHECK ITEM 2 LESS THAN $\$ 55,000 \rightarrow$ GO TO CHECK ITEM
8. Was (your/PERSON's) income more or less than $\$ 65,000$ ?
$1 \quad \$ 65,000$ OR MORE $\rightarrow$ GO TO CHECK ITEM
2 LESS THAN $\$ 65,000 \rightarrow$ GO TO CHECK ITEM
9. Was (your/PERSON's) income more or less than $\$ 75,000$ ?

1 \$75,000 OR MORE
2 LESS THAN \$75,000
GO TO SECTION J, K, OR L IF THERE IS INFORMATION MISSING IN THESE SECTIONS; OTHERWISE, CONCLUDE INTERVIEW AND SEEK TO INTERVIEW ANY OTHER PERSONS IN THE HOUSEHOLD STILL NEEDING TO BE INTERVIEWED.

## SECTION J - HOUSEHOLD LOCATION AND TELEPHONE NUMBER INFORMATION (ANY HOUSEHOLD MEMBER 18 OR OLDER)

1. Transportation planners use data from this study to assess current travel patterns and anticipate new ones. These patterns are affected by where people choose to live. (I'd like to verify that your home is located at:/Would you please tell me the address of your home?)

STREET NUMBER $\qquad$ STREET NAME $\qquad$ FIRST ROAD
SECOND ROAD
CITY $\qquad$ STATE $\qquad$ ZIP CODE $\qquad$

DO NOT ENTER POST OFFICE BOX OR RURAL ROUTE!!!
IF NEEDED: It is important that we get at least a general location of your household. Would you please identify the intersection of roads which is closest to your home?

NOTE: IF R PROVIDES STREET NUMBER AND STREET NAME, FIELDS FOR ROAD INTERSECTION WILL BE SKIPPED. IF EITHER STREET NUMBER OR NAME IS MISSING, INTERSECTION DATA WILL BE OBTAINED.

CATI EDIT CHECK: VERIFY THAT STATE ABBREVIATION AND ZIP CODE ARE LEGAL VALUES.

CHECK ITEM: WAS ZIP CODE GIVEN IN QUESTION 1?

```
Y YES }->\mathrm{ GO TO QUESTION 3
2 NO
```

2. Would you please tell me your ZIP code?

## CATI EDIT CHECK: VERIFY THAT ZIP CODE IS VALID FOR THE STATE.

3. How many different residential telephone numbers, including this number, are there for your household?
\{TELNUMCT\}

NUMBER OF TELEPHONE NUMBERS: $\qquad$
-1 DK
-2 RE
4. During the past 12 months, has there been any time when you did not have telephone service at your home for one week or longer?

## \{NOTELYR\}

1 YES
$2 \mathrm{NO} \rightarrow$ GO TO NEXT SECTION
(IF NEEDED: Since we are doing this survey by telephone, we cannot study the travel of people without phones. Identifying people who were without phones at an earlier time helps us understand what kinds of travel may be missing from our data.)
5. About how many weeks or months were you without service (in the past 12 months)?

## \{NOTELWKS\}

ENTER NUMBER: $\qquad$

```
UNIT: 1 WEEKS
2 MONTHS
```

(IF WITHOUT SERVICE MULTIPLE TIMES, ADD TOGETHER AND ENTER TOTAL NUMBER OF WEEKS OR MONTHS.)

## SECTION K - HOUSEHOLD INCOME (ANY HOUSEHOLD MEMBER 18 OR OLDER)

1. In order to classify your household for statistical purposes, we need an estimate of your total household income in the past 12 months. Please stop me when I get to the category that best describes the total income of your household in the past 12 months.
(Total income includes income from all sources such as wages and salaries, income from business or farm, Social Security, pensions, dividends, interest, rent, and any other income received.)

## \{HHFAMINC\}

(IF R VOLUNTEERS AMOUNT THAT IS ON THE BREAKPOINT, CODE TO HIGHER CATEGORY.)

1 Less than $\$ 10,000 \rightarrow$ GO TO QUESTION 2
$2 \quad \$ 10,000$ to $\$ 20,000 \rightarrow$ GO TO QUESTION 3
$3 \quad \$ 20,000$ to $\$ 30,000 \rightarrow$ GO TO QUESTION 4
$4 \quad \$ 30,000$ to $\$ 40,000 \rightarrow$ GO TO QUESTION 5
$5 \quad \$ 40,000$ to $\$ 50,000 \rightarrow$ GO TO QUESTION 6
$6 \quad \$ 50,000$ to $\$ 60,000 \rightarrow$ GO TO QUESTION 7
$7 \quad \$ 60,000$ to $\$ 70,000 \rightarrow$ GO TO QUESTION 8
$8 \quad \$ 70,000$ to $\$ 80,000 \rightarrow$ GO TO QUESTION 9
$9 \quad \$ 80,000$ to $\$ 100,000 \rightarrow$ GO TO QUESTION 10
$10 \$ 100,000$ or more? $\rightarrow$ GO TO QUESTION 10
2. Was your household income more or less than $\$ 5,000$ ?
$1 \quad \$ 5,000$ OR MORE $\rightarrow$ GO TO QUESTION 10
2 LESS THAN $\$ 5,000 \rightarrow$ GO TO QUESTION 10
3. Was your household income more or less than $\$ 15,000$ ?

$$
1 \quad \$ 15,000 \text { OR MORE } \rightarrow \text { GO TO QUESTION } 10
$$

2 LESS THAN $\$ 15,000 \rightarrow$ GO TO QUESTION 10
4. Was your household income more or less than $\$ 25,000$ ?

$$
\begin{array}{ll}
1 & \$ 25,000 \text { OR MORE } \rightarrow \text { GO TO QUESTION } 10 \\
2 & \text { LESS THAN } \$ 25,000 \rightarrow \text { GO TO QUESTION } 10
\end{array}
$$

5. Was your household income more or less than $\$ 35,000$ ?

## Section K (continued)

1 \$35,000 OR MORE $\rightarrow$ GO TO QUESTION 10
2 LESS THAN $\$ 35,000 \rightarrow$ GO TO QUESTION 10

## Section K (continued)

6. Was your household income more or less than $\$ 45,000$ ?
$1 \quad \$ 45,000$ OR MORE $\rightarrow$ GO TO QUESTION 10
2 LESS THAN $\$ 45,000 \rightarrow$ GO TO QUESTION 10
7. Was your household income more or less than $\$ 55,000$ ?
$1 \quad \$ 55,000$ OR MORE $\rightarrow$ GO TO QUESTION 10
2 LESS THAN \$55,000 $\rightarrow$ GO TO QUESTION 10
8. Was your household income more or less than $\$ 65,000$ ?
$1 \quad \$ 65,000$ OR MORE $\rightarrow$ GO TO QUESTION 10
2 LESS THAN $\$ 65,000 \rightarrow$ GO TO QUESTION 10
9. Was your household income more or less than $\$ 75,000$ ?

1 \$75,000 OR MORE
2 LESS THAN \$75,000
10. IF THIS IS A SINGLE PERSON HOUSEHOLD, CATI WILL SKIP TO CHECK ITEM.

INTERVIEWER: DOES THIS INCLUDE INCOME OF ALL HOUSEHOLD MEMBERS?
\{NONFMFLG\}
1 YES $\rightarrow$ GO TO QUESTION CHECK ITEM
2 NO
11. WHOSE INCOME ISNT INCLUDED?

ROSTER NUMBER(S): $\qquad$
IF AT LEAST ONE VEHICLE IN HOUSEHOLD, GO TO SECTION L.
IF NO VEHICLES, CONCLUDE INTERVIEW AND SEEK TO INTERVIEW ANY OTHER PERSONS IN THE HOUSEHOLD STILL NEEDING TO BE INTERVIEWED.

## SECTION L - COLLECTION OF ODOMETER READINGS (ANY HOUSEHOLD MEMBER 18 OR OLDER)

1. In the packet we sent to (you/your household), there was a form to record the odometer reading(s) for your vehicle(s).
(Is the reading/Are any of the readings) available now?
\{OD_READ1, OD_READ2, OD_MON1, OD_YEAR1, OD_MON2, OD_YEAR2\}
1 YES
$2 \mathrm{NO} \rightarrow$ GO TO QUESTION 3
2. INTERVIEWER: RECORD ANY READINGS THAT ARE NOW AVAILABLE.
[CATI WILL DISPLAY ALL VEHICLES AND ODOMETER READINGS THAT HAVE BEEN RECORDED TO DATE. INTERVIEWER WILL SELECT APPROPRIATE VEHICLE AND ENTER ODOMETER MILEAGE AND DATE THE READING WAS RECORDED.]

CONCLUDE INTERVIEW AND SEEK TO INTERVIEW ANY OTHER PERSONS IN THE HOUSEHOLD STILL NEEDING TO BE INTERVIEWED.
3. When would be a good time to call back when the readings will be available?

SET CALLBACK
CONCLUDE INTERVIEW AND SEEK TO INTERVIEW ANY OTHER PERSONS IN THE HOUSEHOLD STILL NEEDING TO BE INTERVIEWED.

## APPENDIX F <br> SURVEY DOCUMENTS

This Appendix contains samples of the documents sent to the respondents, including:

Pre-Interview Letter
Cover letter sent with travel diaries
Travel diary
Reminder note for Travel Day
Odometer reading card.
The survey process is described in Chapter 2 of this User's Guide.
U.S. Deportmert

## federal Highway

 AdministrationResident

Refer to: HPM-40

## Dear Resident:

I am writing to ask your cooperation in a survcy of the daily travel experjences of a represtentative sample of U.S. housebolds. We at the C'.S. Department of 'Transportation recognize that transportation is much more than stretts and highways. public transit, walkways, bike paths, and carpool services. 'Transportation is really about your ability to get where you need to ge, whether it is to work, school, shopping, or someplace else. Occasionally, ue need to ask you about your daily travel so we can determine if we are moving in the right direction

Our computer randomly selected your telephone number fron al] possible phone numbers in the U.S. We then obtained your address from the telephone directory in order to mail you this letter. Within a few weeks your housthold will be contacted and asked to provide information on your local and long distance ravel for a single day. The interview will be conducted by telephone. The information you provide will be kept strictly confidential.

The survey is being conduted for the Department of Transportation by Research Triangle Institute ( RT ), a not-for-profit research firm affiljated with Duke University, the L'niversity of North Carolina, and North Carolina State liniversity. An interviewer from RTI will telephone you within the next few weeks. Your participation, while strictly voluntary, is extremely important in assessing the Nation's trapsportation needs. The survey results will be used to determine transportation patterns of the U.S. population and to project the amount and lype of travel that will take place in the futare.

If you have any questions or concerns, pleasc contact Brett Anderson at RTt by calling 1-800-334-8571, ext. 6038 between the hours of 9 a.m. and 5 p.m. Eastern time. The project manager at the Federal Highway
Administration is Susan Liss who can be reached at $1-800-307.8243$ between the hours of 9 a.m. and $5 \mathrm{p} . \mathrm{m}$. Eastern time. You may also leave a message for her after hourg and she will return your call.

Thank you for your help.

Sincerely yours.


Rodney E. Slater
Ferderal Hiphwav Adminisitratar

## Dear NPTS Household:

Recently you completed a telephone interview as part of the 1995 Nationwide Personal Transportation Survey (NPTS). As we discussed on the phone, this envelope contains a ore-day diary for each member of your houschold who is 5 years old or older. We ask that each household member complete his or her own diary for the one day listed at the op of the form, Even though your household's travel on this day may be unusual for some reason, we still want to know about your trips on this particular day. If there are young children in your household, please have an adult household member who knows about the child's activities complete the diary. An example diary is enclosed. (If you should non out of space on the diary. please continue recording trips on the back or on a separate piece of paper.) In appreciation of your help in our research, we have enclosed a two-dollar payment for each diary.

After your designated diary completion day, one of our professional telephone interviewers will call to collect the information and ask some additional transponation-relatere questions. We would like to talk with each person $\mathfrak{J d}$ or older individually and ask an adult to respond for younger household members.

If any vehicles were reported for your househeser, you will also find an (odometer Reading Form enclosed. By collecting odonter readings mix and again in a few months. the Department of Transportation obtains accurate data on the miles vehicles are driven.

It may be helpful for household members to leave their completed diaries and the Odometer Reading Forb by the telephone so they are available oren our interviewer calls If you have any questions about completing your diary or collecting the odometer readings, please call Research Triangle Institute at 1.800-334-8571 between the hours of 9:00 an and $5: 00 \mathrm{pm}$ Eastern time and ask for Brett Anderson. Thank you in advance for your cooperation. Your participation is critical to the success of our study.

Sincerely,
PR.Bulthoue
R. Paul More, Project Director

Nationwide Personal Transportation Survey

# SPECIAL INSTRUCTIONS FOR HOUSEHOLDS WITH YOUNG CHILDREN 

We have enclosed a travel diary for every member of your household 5 years old or older. We prefer that household members complete their own lavel diary. However, we understand that this will nol be possibie in all cases. For households with young children please follow these guidelines:

- Children who are old enough to read and write may enjoy completing their own travel diary. With help from an adult household member it is perfectly acceptable for these children to complete their own diaries.
- For children who are not able to compiete their own travel diaries, we ask that an adult household member who is krowledgeable abcut the child's activities complete the diary.
- Household members who tepon for children should use their best judgement to answer the detailed questions about trips made by the child.
- Remember to include trips made by the child which do tot include other members of the household. Examples iaclude: bus rides or walking to school, class trips, traveling to after school activities, and biking or walking to visit friends.



## Complete your diary for: Thursday

September 14th


An RTI interviewer will call you within a few days to collect the diary information. If you have any questions in the meantime, you can call Brett Anderson

## at 1-800-334-8571

between the hours of 9:00 am and 5:00 pm Eastern time.

## ODOMETER READING FORM

## 1995 Nationwide Peraonal Transportation Survey

Please record the odomater (milesgel reading and the date of the raading for each vehicle and keep the form by your telephone so it will be available when our intarviawer calls.

Pigase be sure to record the odameter reading which reflacts the mitage for the entire life of ther car, not the meter which gan be marually raset to zero for specific trips or to calculate mileage per tank of gasoling. Also. plesse be sure dof to record tha last digit if it represents the tenth of the mils. For axample, it the odometer resding is 60,55 $\uparrow .3$, record 60,551.

It is not necessery that odownetar raadings be taken on the same day that you complate yout diary, but this may be a conveniont way to make cartain that the readings arre made.

Thenk you for your cooperation in this important part of the study.


## APPENDIX G

## ESTIMATING SAMPLING ERRORS

The final adjusted weights are used in calculating parameter estimates and their sample variances. RTI uses SUDAAN for these calculations. Variance estimation for the statistics computed in the SUDAAN series of procedures for survey data analysis is based on a first-order Taylor series approximation of the deviations of estimates from their expected values. This approximation for large samples is well-known (see Kendall and Stuart, 1961, p. 231). Woodruff (1971) presented applications of this technique to sample surveys. This method yields one of the best known numerical approximations currently available in the statistical literature for ratio estimates. The general approach taken to compute variances is to first form the Taylor series linearization for a particular statistic. These linearized values are referred to as $Z_{i}$ for the $i^{\text {th }}$ sample unit throughout this appendix. Once the linearized values are formed, they are substituted into the formula for computing the variance of a total estimate that is appropriate for the design.

Estimating the total number of individuals who belong to an arbitrarily defined domain or subpopulation provides a convenient example. Denote the total in question by $\hat{N}_{d}$, where d denotes the domain. Establish a domain indicator

where
$h$ is the stratum, $h=1, \ldots, H$
i is the $i^{\text {th }}$ cluster, in stratum $\mathrm{h}, \mathrm{i}=1, \ldots, n_{h}$
j is the $j^{\text {th }}$ household in the cluster i in stratum $\mathrm{h}, \mathrm{j}=1, \ldots, n_{i}$
k is the $k^{\text {th }}$ person in the household; in cluster i in stratum $\mathrm{h}, \mathrm{k}=1, \ldots, n_{j}$
and $w_{\text {hijk }}$ is the population weight for person k in household j in cluster i in stratum h .
Then, $z_{h i j k}=I_{h i j k} \cdot w_{h i j k}$
and the estimate of the domain total is

$$
\hat{N}_{d}=\sum_{h} \sum_{i} \sum_{j} \sum_{k} z_{h i j k}
$$

and the variance of this estimate is

$$
\operatorname{Var}(z)=\sum_{h} n_{h} s_{h}^{2}
$$

where

$$
s_{h}^{2}=\frac{\sum_{i}\left(z_{h i}-\bar{z}_{h}\right)^{2}}{n_{h}-1} \text {, the stratum-level sum of squares, }
$$

with

$$
z_{h i}=\sum_{j} \sum_{k} z_{h i j k}, \text { the cluster-level sum }
$$

and

$$
\bar{z}_{h}=\frac{\sum_{i} z_{h i}}{n_{h}}, \text { the stratum-level mean. }
$$

Other methods of obtaining the variance estimates could be used instead of the first order Taylor series linearizations. Examples include such pseudorandomization techniques as balanced repeated replications (BRR), jackknifing and boot-strapping. The Taylor series linearization is preferred by many because of its computational efficiency (generally less demanding of computer time).

The most commonly used statistical packages, such as SAS, BMDP, and SPSS, do not calculate standard errors of survey estimates accounting for complex sample designs. There are, however, several commercially available packages that can correctly calculate the standard errors for designs such as the one used in NPTS, among them are:

- Clusters (World Health Organization
- Osiris (University of Michigan)
- SUDAAN (RTI)
- $\quad$ Super Carp (lowa State University)
- Wesvar Procedures (Westat)

Of these, all use Taylor series linearization except Wesvar, which uses BRR.

## APPENDIX H <br> NPTS DATA DICTIONARY

## PURPOSE

The NPTS is a large, complex dataset, with hundreds of variables contained in six files. For ease in running tabulations and analyzing the data, a number of the variables are repeated on several files. The data dictionary contained in this Appendix is designed to assist the data user in finding the variables they need or in placing a variable in context when all that is known is the variable name.

The data dictionary is a consolidated list of all NPTS variables in alphabetic order by variable name. It contains much of the information that is in the Codebook, such as source of the data, variable type, variable length, a label describing the contents, and a indication of which file or files the variable is found on.

The attached is Courier font, 8 point, left justified.

NPTS
Listing of All NPTS Variables By Alphabetical Order Public Use File

	Item	1990	Target	Var	Var	Var		HH	Per	Veh	Seg	Tday	Tper
Section	ID	Var	Var	Type	Length	Width	Labels	Var	Var	Var	Var	Var	Var
F	16	N	ALWYSDRV	C	2	2	Always the driver?	N	Y	N	N	N	N
B	7	S	ANNMILES	N	4	6	Self-reported annualized vmt	N	N	Y	N	N	N
OAKR	*	*	ANNUALZD	N	5	6	Odometer-based annualized vmt	N	N	Y	N	N	N
OAKR	*	*	ANN_EDIT	C	2	2	Flag any edits/adjustments to ANNUALZD	N	N	Y	N	N	N
OAKR	*	*	ANN_FLG	C	2	2	Reasons for missing ANNUALZD value	N	N	Y	N	N	N
OAKR	*	*	ANN_OUT	C	2	2	Flag identifying ANNUALZD outlier values	N	N	Y	N	N	N
OAKR	*	*	ANULZDSE	N	8	9.2	Standard error of ANNUALZD estimate	N	N	Y	N	N	N
G	18	N	AWAYHOME	C	2	2	Reason started day away from home	N	N	N	N	Y	N
C	2.2	N	BUSBLOCK	N	3	3	Reported dist. to bus (blocks)	Y	N	N	N	N	N
C	2.2	N	BUSMILE	N	3	3	Reported dist. to bus (miles)	Y	N	N	N	N	N
C	1	N	BUS_AVL	C	2	2	Bus service available	Y	N	N	N	N	N
C	2.1	N	BUS_DIST	N	8	5.1	Distance to bus (miles)	Y	N	N	N	N	N
*	*	*	CALCDIST	N	4	5	Calculated distance home to destination	N	N	N	N	N	Y
*	*	S	CENSUS_D	C	2	2	Census division	Y	Y	Y	Y	Y	Y
*	*	S	CENSUS_R	C	2	2	Census region	Y	Y	Y	Y	Y	Y
G	*	N	CHAIN	N	3	2	Trip chain number for this person	N	N	N	N	Y	N
G	*	N	CHAINTRP	N	3	2	\# of trip within chain	N	N	N	N	Y	N
H	2	S	COUNTRY	C	3	3	Destination country code	N	N	N	N	N	Y
G	*	N	DATEFLG	C	2	1	Intrv date imputed from trav date plus o	N	N	N	N	Y	N
G	17.04	S	DAYNIGHT	C	2	2	Trip started AM or PM G17A	N	N	N	N	Y	N
H	2	S	DESTSTAT	C	2	2	Destination state of travel period trip	N	N	N	N	N	Y
G	9	N	DIARYCMP	C	2	2	Who completed diary	N	Y	N	N	N	N
G	11	N	DIARYGET	C	2	2	Can get diary now	N	Y	N	N	N	N
G	10	N	DIARYHAV	C	2	2	Have the diary now	N	Y	N	N	N	N
G	*	S	DIFFDATE	N	3	3	Days between travel \& interview dates	N	N	N	N	Y	N
F	5.1	N	DISTTOWK	N	8	6.2	One-way distance to work	N	Y	N	N	N	N
D	9	LIC_DRVR	DRIVER	C	2	2	Person is a driver D9	N	Y	N	Y	Y	Y
D	*	S	DRVRCNT	N	3	2	Number of drivers in HH	Y	Y	Y	Y	Y	Y
G	21\&38	S	DRVR_FLG	C	2	2	$1=$ person drove on trip	N	N	N	N	Y	N
*	*	*	DRVR_TPT	C	2	2	Person was the main driver on trip	N	N	N	N	N	Y
E	1.D	N	DTACDT	C	2	2	Worry about traffic accident	N	Y	N	N	N	N
E	1.AFK	N	DTCONJ	C	2	2	Highway congestion	N	Y	N	N	N	N
E	1.J	N	DTCRIME	C	2	2	Worry about crimes against motorists	N	Y	N	N	N	N
E	$1 . \mathrm{C}$	N	DTNTFMLR	C	2	2	Unfamiliar local areas or neighborhood	N	Y	N	N	N	N
E	1. BL	N	DTPAVE	C	2	2	Rough pavement on highways	N	Y	N	N	N	N
E	1. GN	N	DTPOLLTN	C	2	2	Air pollution by cars, trucks, and buses	N	Y	N	N	N	N
E	1.IM	N	DTSTRTS	C	2	2	Rough pavement on neighborhood streets	N	Y	N	N	N	N

Progid: disk2:[nsnpts.share]report.sas Date: 26SEP97
1990 Variable Names: N = No Comparable 1990 Variable
S = Same Name in 1990

Always the driver
Self-reported annualized vit
Flag any edits/adjustments to ANNUALZD
Reasons for missing ANNUALZD value
Flag identifying ANNUALZD outlier values Reason started
Reported dist. to bus (blocks)
Reported dist. to bus (miles)
Bus service available
Calculated distance home to destination Census division
Trip chai
\# of trip within chain
Intrv date imputed from trav date plus Trip started AM or PM G17A

Who completed diary
Have the diary now
Days between travel \& interview dates One-way distance to work
Number of drivers in
l person drove on trip
Person was the main driver on trip
Worry about traffic accident
Highway congestion
Unfamiliar local areas or neighborhood pavement on

Rough pavement by cars, trucks, and buses

	Item	1990	Target	Var	Var	Var		HH	Per	Veh	Seg	Tday	Tper
Section	ID	Var	Var	Type	Length	Width	Labels	Var	Var	Var	Var	Var	Var
E	1. HO	N	DTTIEUP	C	2	2	Traffic tie-ups or road construction	N	Y	N	N	N	N
E	1.E	N	DTWALK	C	2	2	Poor walkways or sidewalks	N	Y	N	N	N	N
G	17	N	DWELTIME	N	4	4	Time spent at destination of prev trip	N	N	N	N	Y	N
G	22	S	EDITMILE	C	2	2	$1=$ trip miles were edited	N	N	N	N	Y	N
G	25	S	EDITMODE	C	2	2	$1=$ transportation mode was edited	N	N	N	N	Y	N
G	40	N	EDITNONH	C	2	2	$1=$ variable NONHHCNT was edited	N	N	N	N	Y	N
G	27	S	EDIT_MIN	C	2	2	$1=$ trip duration was edited	N	N	N	N	Y	N
F	1	S	EDUC	C	2	2	Highest grade or yr of school completed	N	Y	N	N	N	N
E	4	N	FQSTBELT	C	2	2	How often wear seat belt when driving	N	Y	N	N	N	N
G	16	N	FROM_A	C	1	1	Where trip chain started (H,W,S)	N	N	N	N	Y	N
G	19	N	FRSTHM	C	2	2	$1=p e r s o n s$ 1st trip began at home	N	N	N	N	Y	N
GEOH	*	*	GHMXIN	N	8	2	Basis for geocoding - household	Y	N	N	N	N	N
F	3	N	GT1JBLWK	C	2	2	Have more than one job last week	N	Y	N	N	N	N
GEOW	*	*	GWKXIN	N	8	2	Basis for geocoding - workplace location	N	Y	N	N	N	N
CLAR	*	*	HBHHSMLT	N	4	3	Percent multiple unit housing, BG	Y	N	N	N	N	N
CLAR	*	*	HBHHSOTH	N	4	3	Percent other housing, BG	Y	N	N	N	N	N
CLAR	*	*	HBHHSSNG	N	4	3	Percent single family housing, BG	Y	N	N	N	N	N
CLAR	*	*	HBHINCH	N	4	3	Percent HHs, income \$60000 and up, BG	Y	N	N	N	N	N
CLAR	*	*	HBHINCL	N	4	3	Percent HHs, income < \$15000, BG	Y	N	N	N	N	N
CLAR	*	*	HBHINCM1	N	4	3	Percent HHs, income \$15000-\$39999, BG	Y	N	N	N	N	N
CLAR	*	*	HBHINCM2	N	4	3	Percent HHs, income \$40000-\$59999, BG	Y	N	N	N	N	N
CLAR	*	*	HBHINMED	N	6	6	Median household income, BG	Y	Y	Y	N	Y	Y
CLAR	*	*	HBHMEDHS	N	6	6	Median housing unit value, BG	Y	N	N	N	N	N
CLAR	*	*	HBHRECNT	N	4	3	Percent units built last 10 years, BG	Y	N	N	N	N	N
CLAR	*	*	HBHRESDN	N	6	6	HU density (units/square mile), BG	Y	Y	Y	N	Y	Y
CLAR	*	*	HBHTNOWN	N	4	3	Percent owner-occupied housing, BG	Y	N	N	N	N	N
CLAR	*	*	HBHTNRNT	N	4	3	Percent renter-occupied housing, BG	Y	N	N	N	N	N
CLAR	*	*	HBHUR	C	1	1	Urban/rural code, block group	Y	Y	Y	N	Y	Y
CLAR	*	*	HBP 65P	N	4	3	Percent 65 \& older, block group	Y	N	N	N	N	N
CLAR	*	*	HBPCOLGD	N	4	3	Pcnt Colg Grads (over 25), block group	Y	N	N	N	N	N
CLAR	*	*	HBPFORBN	N	4	3	Percent foreign born 1990, block group	Y	N	N	N	N	N
CLAR	*	*	HBPHISP	N	4	3	Percent Hispanic, block group	Y	N	N	N	N	N
CLAR	*	*	HBP HSGD	N	4	3	Pcnt HS grads (over 25), block group	Y	N	N	N	N	N
CLAR	*	*	HBPLTPOV	N	4	3	Percent families below poverty, blk grp	Y	N	N	N	N	N
CLAR	*	*	HBPPOPDN	N	6	6	Population density, block group	Y	Y	Y	N	Y	Y
CLAR	*	*	HBPPPOPNO	N	6	6	Current population, block group	Y	N	N	N	N	N
CLAR	*	*	HBPRCAA	N	4	3	Percent African-Am., block group	Y	N	N	N	N	N

Progid: disk2:[nsnpts.share]report.sas Date: 26SEP97
1990 Variable Names: $N=$ No Comparable 1990 Variable

[^10]NPT
isting of All NPTS Variables By Alphabetical Order Public Use File

	Item	1990	Target	Var	Var	Var		HH	Per	Veh	Seg	Tday	Tper
Section	ID	Var	Var	Type	Length	Width	Labels	Var	Var	Var	Var	Var	Var
CLAR	*	*	HBPRCASN	N	4	3	Percent Asian- Am., block group	Y	N	N	N	N	N
CLAR	*	*	HBPRCCAU	N	4	3	Percent White, block group	Y	N	N	N	N	N
CLAR	*	*	HBPRCOTH	N	4	3	Percent Other races, block group	Y	N	N	N	N	N
*	*	SMSA	HHCMSA	C	4	4	CMSA identification code	Y	Y	Y	Y	Y	Y
D	3	S	HHELGCNT	N	3	2	\# of eligible persons in HH	Y	N	Y	N	N	N
K	1 \& 2	S	HHFAMINC	C	2	2	HH family income category	Y	Y	Y	Y	Y	Y
G	37	S	HHMEMDRV	C	2	2	1= household member drove G37	N	N	N	N	Y	N
*	*	S	HHMSA	C	4	4	MSA identification code	Y	Y	Y	Y	Y	Y
D	13	N	HHRESP	C	2	2	HH respondent	Y	Y	N	N	N	N
D	1	S	HHSIZE	N	3	2	Total number of persons in HH	Y	Y	Y	Y	Y	Y
*	*	S	HHSTATE	C	2	2	State postal code	Y	N	N	N	N	N
*	*	S	HHSTFIPS	N	3	2	State FIPS code	Y	N	N	N	N	N
*	*	N	HHTRIPID	N	3	3	Trip number for household travel day	N	N	N	Y	Y	N
*	*	N	HHTRPID	N	3	3	Trip number for household travel period	N	N	N	N	N	Y
B	*	S	HHVEHCNT	N	3	2	No. of vehicles in household (derived)	Y	Y	Y	Y	Y	Y
C	3	S	HH_0TO4	N	3	2	Number of persons in HH age 0-4	Y	N	N	N	N	N
D	5	S	HH_HISP	C	2	2	Hispanic status of ref. person	Y	Y	Y	Y	Y	Y
G	36	S	HH_ONTRP	N	3	2	\# of HH members on the trip (derived)	N	N	N	N	Y	N
D	6	S	HH_RACE	C	2	2	Race of reference person	Y	Y	Y	Y	Y	Y
C	8	N	HOMEOWN	C	2	2	Tenure of housing unit	Y	N	N	N	N	N
C	6	N	HOMETYPE	C	2	2	Type of housing unit	Y	N	N	N	N	N
*	*	S	HOUSEID	N	5	8	Household identification number	Y	Y	Y	Y	Y	Y
G	22.02	N	HOWFARU	C	2	2	Units of reported dist: B) locks, M)iles	N	N	N	Y	Y	N
C	7	N	HSTORIES	C	2	2	Stories in apt. building	Y	N	N	N	N	N
CLAR	*	*	HTEEMPDN	N	6	6	Jobs per square mile, census tract	Y	N	N	N	N	N
CLAR	*	*	HTHHSMLT	N	4	3	Percent multiple unit housing, CT	Y	N	N	N	N	N
CLAR	*	*	HTHHSOTH	N	4	3	Percent other housing, CT	Y	N	N	N	N	N
CLAR	*	*	HTHHSSNG	N	4	3	Percent single family housing, CT	Y	N	N	N	N	N
CLAR	*	*	HTHINCH	N	4	3	Percent HHs, income $\$ 60000$ and up, CT	Y	N	N	N	N	N
CLAR	*	*	HTHINCL	N	4	3	Percent HHs, income < \$15000, CT	Y	N	N	N	N	N
CLAR	*	*	HTHINCM1	N	4	3	Percent HHs, income \$15000-\$39999, CT	Y	N	N	N	N	N
CLAR	*	*	HTHINCM2	N	4	3	Percent HHs, income \$40000-\$59999, CT	Y	N	N	N	N	N
CLAR	*	*	HTHINMED	N	6	6	Median household income, CT	Y	N	N	N	N	N
CLAR	*	*	HTHMEDHS	N	6	6	Median housing unit value, CT	Y	N	N	N	N	N
CLAR	*	*	HTHRECNT	N	4	3	Percent units built last 10 years, CT	Y	N	N	N	N	N
CLAR	*	*	HTHRESDN	N	6	6	HU density (units/square mile), CT	Y	N	N	N	N	N
CLAR	*	*	HTHTNOWN	N	4	3	Percent owner-occupied housing, CT	Y	N	N	N	N	N

Progid: disk2:[nsnpts.share]report.sas Date: 26SEP97
1990 Variable Names: $N=$ No Comparable 1990 Variable

[^11]isting of All NPTS Variables By Alphabetical Order
Public Use File

Section	$\begin{aligned} & \text { Item } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & 1990 \\ & \text { Var } \end{aligned}$	Target   Var	Var Type	Var   Length	Var   Width	Labels	$\begin{aligned} & \mathrm{HH} \\ & \text { Var } \end{aligned}$	Per Var	Veh   Var	Seg   Var	Tday   Var	Tper Var
CLAR	*	*	HTHTNRNT	N	4	3	Percent renter-occupied housing, CT	Y	N	N	N	N	N
CLAR	*	*	HTHUR	C	1	1	Urban/rural code, census tract	Y	N	N	N	N	N
CLAR	*	*	HTINDRET	N	4	3	Pct 16+ workplace pop, retl trd ind, CT	Y	N	N	N	N	N
CLAR	*	*	HTP 65P	N	4	3	Percent 65 \& older, census tract	Y	N	N	N	N	N
CLAR	*	*	HTPCOLGD	N	4	3	Pcnt Colg Grads (over 25), census tract	Y	N	N	N	N	N
CLAR	*	*	HTPFORBN	N	4	3	Percent foreign born 1990, census tract	Y	N	N	N	N	N
CLAR	*	*	HTPHISP	N	4	3	Percent Hispanic, census tract	Y	N	N	N	N	N
CLAR	*	*	HTPHSGD	N	4	3	Pcnt HS grads (over 25), census tract	Y	N	N	N	N	N
CLAR	*	*	HTPLTPOV	N	4	3	Percent families below poverty, cen. tr.	Y	N	N	N	N	N
CLAR	*	*	HTPPOPDN	N	6	6	Population density, census tract	Y	N	N	N	N	N
CLAR	*	*	HTPPOPNO	N	6	6	Current population, census tract	Y	N	N	N	N	N
CLAR	*	*	HTPRCAA	N	4	3	Percent African-Am., census tract	Y	N	N	N	N	N
CLAR	*	*	HTPRCASN	N	4	3	Percent Asian- Am., census tract	Y	N	N	N	N	N
CLAR	*	*	HTPRCCAU	N	4	3	Percent White, census tract	Y	N	N	N	N	N
CLAR	*	*	HTPRCOTH	N	4	3	Percent Other races, census tract	Y	N	N	N	N	N
C	3	S	INELGCNT	N	3	2	\# of ineligible persons in HH	Y	N	N	N	N	N
*	*	S	INTRVMON	N	3	2	Person interview date - month	N	Y	N	N	Y	N
*	*	S	INTRVYR	N	3	2	Person interview date - year	N	Y	N	N	Y	N
F	2	N	JOBLSTWK	C	2	2	Have full, part time job last wk or not	N	Y	N	N	N	N
D	3	S	LIF_CYC	C	2	2	Family life cycle	Y	Y	Y	Y	Y	Y
D	14	S	MAINDRVR	C	2	2	Does one HH mem. usually drive this veh	N	N	Y	N	N	N
B	1	S	MAKECODE	C	2	2	First 2 char of NASS code	N	N	Y	N	N	N
G	17.05	N	MATCH	N	3	3	ID of matching prev. reported trip	N	N	N	N	Y	N
B	7	S	MILELIMT	C	2	2	$=1$ if annmiles capped at 115K	N	N	Y	N	N	N
B	1	S	MODLCODE	C	3	3	Last 3 char of NASS code	N	N	Y	N	N	N
*	*	S	MSASIZE	C	2	2	Size of MSA of household	Y	Y	Y	Y	Y	Y
*	*	S	MSTR_MON	N	3	2	Date of master interview - month	Y	Y	Y	N	Y	Y
*	*	S	MSTR_YR	N	3	2	Date of master interview - year	Y	Y	Y	N	Y	Y
F	17.11	N	NCCOMCR	C	2	2	Not carpool-have company car	N	Y	N	N	N	N
F	17.03	N	NCINCVNT	C	2	2	Not carpool-it's inconvenient	N	Y	N	N	N	N
F	17.01	N	NCIRRHR	C	2	2	Not carpool-irregular/unusual hours	N	Y	N	N	N	N
F	17.1	N	NCLVFAR	C	2	2	Not carpool-live far from work	N	Y	N	N	N	N
F	17.04	N	NCNEEDCR	C	2	2	Not carpool-need car at/bfr/aft work	N	Y	N	N	N	N
F	17.08	N	NCNEVER	C	2	2	Not carpool-never thought of it	N	Y	N	N	N	N
F	17.09	N	NCNLIKE	C	2	2	Not carpool-don't like to do it	N	Y	N	N	N	N
F	17.02	N	NCNOONE	C	2	2	Not carpool-no one to carpool with	N	Y	N	N	N	N
F	17.07	N	NCONLY	C	2	2	Not carpool-only one works there	N	Y	N	N	N	N

Progid: disk2:[nsnpts.share]report.sas Date: 26SEP97
1990 Variable Names: $N$ = No Comparable 1990 Variable

[^12]NPTS
isting of All NPTS Variables By Alphabetical Order
Public Use File

	Item	1990	Target	Var	Var	Var		HH	Per	Veh	Seg	Tday	Tper
Section	ID	Var	Var	Type	Length	Width	Labels	Var	Var	Var	Var	Var	Var
F	17.06	N	NCOTHRES	C	2	2	Not carpool-other reasons	N	Y	N	N	N	N
F	17.05	N	NCSHRTDI	C	2	2	Not carpool-short distance/unnecessary	N	Y	N	N	N	N
K	10	S	NONFMFLG	C	2	2	Non-family income reported for HH	Y	N	N	N	N	N
I	1 \& 2	S	NONFMINC	C	2	2	Individual income category	N	Y	N	N	N	N
G	39	S	NONHHACC	C	2	2	$1=$ non-HH members on trip	N	N	N	N	Y	N
G	40	S	NONHHCNT	N	3	3	\# of non-HH members on trip	N	N	N	N	Y	N
J	5	N	NOTELWKS	C	2	2	No. of weeks w/o telephone service	Y	N	N	N	N	N
J	4	N	NOTELYR	C	2	2	Without telephone service in past year?	Y	N	N	N	N	N
F	18.03	N	NPT2EXPV	C	2	2	Public transp. too expensive	N	Y	N	N	N	N
F	18.01	N	NPT2FRWK	C	2	2	Public trans. not available at work	N	Y	N	N	N	N
F	18.02	N	NPT2MCTM	C	2	2	Public trans. takes too much time	N	Y	N	N	N	N
F	18.11	N	NPTCOMCR	C	2	2	Not used public trans. have com car	N	Y	N	N	N	N
F	18.09	N	NPTDLPT	C	2	2	Not used public trans. dont like to	N	Y	N	N	N	N
F	18.06	N	NPTFMHM	C	2	2	Public trans. stops too far from home	N	Y	N	N	N	N
F	18.1	N	NPTHVCAR	C	2	2	Not used public trans. have onw car	N	Y	N	N	N	N
F	18.08	N	NPTLVCLS	C	2	2	Not used public trans. short distance	N	Y	N	N	N	N
F	18.05	N	NPTNTCNV	C	2	2	Public trans. schedule not convenient	N	Y	N	N	N	N
F	18.07	N	NPTOTHER	C	2	2	Not used public trans. for other reasons	N	Y	N	N	N	N
F	18.04	N	NPTOTHTG	C	2	2	Need own vehicle to do other things	N	Y	N	N	N	N
E	5.05	N	NSBBACK	C	2	2	Not wear seat belt when in back seat	N	Y	N	N	N	N
E	5.02	N	NSBBROKE	C	2	2	Not wear seat belt when broken/unavail	N	Y	N	N	N	N
E	5.07	N	NSBDRVR	C	2	2	Not wear seat belt when driver	N	Y	N	N	N	N
E	5.01	N	NSBFGET	C	2	2	Not wear seat belt when forget	N	Y	N	N	N	N
E	5.12	N	NSBHURRY	C	2	2	Not wear seat belt when in a hurry	N	Y	N	N	N	N
E	5.04	N	NSBLONG	C	2	2	Not wear seat belt when taking long trip	N	Y	N	N	N	N
E	5.15	N	NSBMED	C	2	2	Not wear seat belt: medical reasons	N	Y	N	N	N	N
E	5.16	N	NSBNLIKE	C	2	2	Not wear seat belt: don't like to	N	Y	N	N	N	N
E	5.14	N	NSBNOASK	C	2	2	Not wear seat belt when not asked	N	Y	N	N	N	N
E	5.11	N	NSBOTHER	C	2	2	Not wear seat belt: other specify	N	Y	N	N	N	N
E	5.18	N	NSBPOLIC	C	2	2	Not wear seat belt when police not aroun	N	Y	N	N	N	N
E	5.06	N	NSBPSNG	C	2	2	Not wear seat belt when passenger	N	Y	N	N	N	N
E	5.03	N	NSBSHORT	C	2	2	Not wear seat belt when short trips	N	Y	N	N	N	N
E	5.13	N	NSBSPCLH	C	2	2	Not wear seat belt w/ certain clothes	N	Y	N	N	N	N
E	5.1	N	NSBSPPER	C	2	2	Not wear seat belt w/ a certain person	N	Y	N	N	N	N
E	5.08	N	NSBSPVEH	C	2	2	Not wear seat belt when in a certain veh	N	Y	N	N	N	N
E	5.09	N	NSBTOWN	C	2	2	Not wear seat belt when in town/city	N	Y	N	N	N	N
E	5.17	N	NSBTOWRK	C	2	2	Not wear seat belt when going to work	N	Y	N	N	N	N

Progid: disk2:[nsnpts.share]report.sas Date: 26SEP97
1990 Variable Names: $\mathrm{N}=\mathrm{No}$ Comparable 1990 Variable

[^13]isting of All NPTS Variables By Alphabetical Order Public Use File

Section		$\begin{aligned} & 1990 \\ & \text { Var } \end{aligned}$	Target Var	Var Type	Var Length	Var Width	Labels	$\begin{aligned} & \mathrm{HH} \\ & \text { Var } \end{aligned}$	Per   Var	Veh Var	Seg Var	Tday Var	Tper Var
E	5.19	N	NSBWTHR	C	2	2	Not wear seat belt when good weather	N	Y	N	N	N	N
D	3	S	NUMADLT	N	3	2	\# of adults in HH	Y	N	N	N	N	N
G	36\&40	S	NUMONTRP	N	3	3	Total \# of persons on trip (derived)	N	N	N	N	Y	N
*	*	N	OD_DAY1	N	3	2	Date of first odometer reading - day	N	N	Y	N	N	N
*	*	N	OD_DAY2	N	3	2	Date of second odomete reading - day	N	N	Y	N	N	N
*	*	N	OD_MON1	N	3	2	Date of first odometer reading - month	N	N	Y	N	N	N
*	*	N	OD_MON2	N	3	2	Date of second odomete reading - month	N	N	Y	N	N	N
*	*	N	OD_READ1	N	4	6	First odometer reading	N	N	Y	N	N	N
*	*	N	OD_READ2	N	4	6	Second odometer reading	N	N	Y	N	N	N
*	*	N	OD_YR1	N	3	2	Date of first odometer reading - year	N	N	Y	N	N	N
*	*	N	OD_YR2	N	3	2	Date of second odomete reading - year	N	N	Y	N	N	N
C	3	N	OTHERPTR	C	2	2	Other public transit available	Y	N	N	N	N	N
G	14	N	OUTCNTRY	C	2	2	Out of country	N	Y	N	N	N	N
H	5	S	OVERLAP	C	1	2	$=1$ if trip part of travel period trip	N	N	N	N	Y	N
D	3	N	P10_AGE	N	3	3	Age of person 10	Y	N	N	N	N	N
D	9	N	P10_DRVR	C	2	2	Driver status of person 10	Y	N	N	N	N	N
D	7	N	P10_REL	C	2	2	Person 10 relation to ref. person	Y	N	N	N	N	N
D	4	N	P10_SEX	C	2	2	Sex of person 10	Y	N	N	N	N	N
*	*	N	P10_StAT	C	2	2	Response status of person 10	Y	N	N	N	N	N
D	12	N	P10_WKR	C	2	2	Worker status of person 10	Y	N	N	N	N	N
D	3	N	P1_AGE	N	3	3	Age of person 1	Y	N	N	N	N	N
D	9	N	P1_DRVR	C	2	2	Driver status of person 1	Y	N	N	N	N	N
D	7	N	P1_REL	C	2	2	Person 1 relation to ref. person	Y	N	N	N	N	N
D	4	N	P1_SEX	C	2	2	Sex of person 1	Y	N	N	N	N	N
*	*	N	P1_STAT	C	2	2	Response status of person 1	Y	N	N	N	N	N
D	12	N	P1_WKR	C	2	2	Worker status of person1	Y	N	N	N	N	N
D	3	N	P2_AGE	N	3	3	Age of person 2	Y	N	N	N	N	N
D	9	N	P2_DRVR	C	2	2	Driver status of person 2	Y	N	N	N	N	N
D	7	N	P2_REL	C	2	2	Person 2 relation to ref. person	Y	N	N	N	N	N
D	4	N	P2_SEX	C	2	2	Sex of person 2	Y	N	N	N	N	N
*	*	N	P2_STAT	C	2	2	Response status of person 2	Y	N	N	N	N	N
D	12	N	P2_WKR	C	2	2	Worker status of person 2	Y	N	N	N	N	N
D	3	N	P3_AGE	N	3	3	Age of person 3	Y	N	N	N	N	N
D	9	N	P3_DRVR	C	2	2	Driver status of person 3	Y	N	N	N	N	N
D	7	N	P3_REL	C	2	2	Person 3 relation to ref. person	Y	N	N	N	N	N
D	4	N	P3_SEX	C	2	2	Sex of person 3	Y	N	N	N	N	N
*	*	N	P3_STAT	C	2	2	Response status of person 3	Y	N	N	N	N	N

Progid: disk2:[nsnpts.share]report.sas Date: 26SEP97
1990 Variable Names: $N=$ No Comparable 1990 Variable

[^14]| NPTS |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Listing of All NPTS Variables By Alphabetical OrderPublic Use File |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Item | 1990 | Target | Var | Var | Var |  | HH | Per | Veh | Seg | Tday | Tper |
| Section | ID | Var | Var | Type | Length | Width | Labels | Var | Var | Var | Var | Var | Var |
| D | 12 | N | P3_WKR | C | 2 | 2 | Worker status of person 3 | Y | N | N | N | N | N |
| D | 3 | N | P4_AGE | N | 3 | 3 | Age of person 4 | Y | N | N | N | N | N |
| D | 9 | N | P4_DRVR | C | 2 | 2 | Driver status of person 4 | Y | N | N | N | N | N |
| D | 7 | N | P4_REL | C | 2 | 2 | Person 4 relation to ref. person | Y | N | N | N | N | N |
| D | 4 | N | P4_SEX | C | 2 | 2 | Sex of person 4 | Y | N | N | N | N | N |
| * | * | N | P4_STAT | C | 2 | 2 | Response status of person 4 | Y | N | N | N | N | N |
| D | 12 | N | P4_WKR | C | 2 | 2 | Worker status of person 4 | Y | N | N | N | N | N |
| D | 3 | N | P5_AGE | N | 3 | 3 | Age of person 5 | Y | N | N | N | N | N |
| D | 9 | N | P5_DRVR | C | 2 | 2 | Driver status of person 5 | Y | N | N | N | N | N |
| D | 7 | N | P5_REL | C | 2 | 2 | Person 5 relation to ref. person | Y | N | N | N | N | N |
| D | 4 | N | P5_SEX | C | 2 | 2 | Sex of person 5 | Y | N | N | N | N | N |
| * | * | N | P5_STAT | C | 2 | 2 | Response status of person 5 | Y | N | N | N | N | N |
| D | 12 | N | P5_WKR | C | 2 | 2 | Worker status of person 5 | Y | N | N | N | N | N |
| D | 3 | N | P6_AGE | N | 3 | 3 | Age of person 6 | Y | N | N | N | N | N |
| D | 9 | N | P6_DRVR | C | 2 | 2 | Driver status of person 6 | Y | N | N | N | N | N |
| D | 7 | N | P6_REL | C | 2 | 2 | Person 6 relation to ref. person | Y | N | N | N | N | N |
| D | 4 | N | P6_SEX | C | 2 | 2 | Sex of person 6 | Y | N | N | N | N | N |
| * | * | N | P6_STAT | C | 2 | 2 | Response status of person 6 | Y | N | N | N | N | N |
| * | * | N | P6_WKR | C | 2 | 2 | Worker status of person 6 | Y | N | N | N | N | N |
| D | 3 | N | P7_AGE | N | 3 | 3 | Age of person 7 | Y | N | N | N | N | N |
| D | 9 | N | P7_DRVR | C | 2 | 2 | Driver status of person 7 | Y | N | N | N | N | N |
| D | 7 | N | P7_REL | C | 2 | 2 | Person 7 relation to ref. person | Y | N | N | N | N | N |
| D | 4 | N | P7_SEX | C | 2 | 2 | Sex of person 7 | Y | N | N | N | N | N |
| * | * | N | P7_STAT | C | 2 | 2 | Response status of person 7 | Y | N | N | N | N | N |
| D | 12 | N | P7_WKR | C | 2 | 2 | Worker status of person 7 | Y | N | N | N | N | N |
| D | 3 | N | P8_AGE | N | 3 | 3 | Age of person 8 | Y | N | N | N | N | N |
| D | 9 | N | P8_DRVR | C | 2 | 2 | Driver status of person 8 | Y | N | N | N | N | N |
| D | 7 | N | P8_REL | C | 2 | 2 | Person 8 relation to ref. person | Y | N | N | N | N | N |
| D | 4 | N | P8_SEX | C | 2 | 2 | Sex of person 8 | Y | N | N | N | N | N |
| * | * | N | P8_STAT | C | 2 | 2 | Response status of person 8 | Y | N | N | N | N | N |
| * | * | N | P8_WKR | C | 2 | 2 | Worker status of person 8 | Y | N | N | N | N | N |
| D | 3 | N | P9_AGE | N | 3 | 3 | Age of person 9 | Y | N | N | N | N | N |
| D | 9 | N | P9_DRVR | C | 2 | 2 | Driver status of person 9 | Y | N | N | N | N | N |
| D | 7 | N | P9_REL | C | 2 | 2 | Person 9 relation to ref. person | Y | N | N | N | N | N |
| D | 4 | N | P9_SEX | C | 2 | 2 | Sex of person 9 | Y | N | N | N | N | N |
| * | * | N | P9_STAT | C | 2 | 2 | Response status of person 9 | Y | N | N | N | N | N |
| D | 12 | N | P9_WKR | C | 2 | 2 | Worker status of person 9 | Y | N | N | N | N | N |

Progid: disk2:[nsnpts.share]report.sas Date: 26SEP97
1990 Variable Names: $\mathrm{N}=\mathrm{No}$ Comparable 1990 Variable

[^15]|  | Item | 1990 | Target | Var | Var | Var |  | HH | Per | Veh | Seg | Tday | Tper |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Section | ID | Var | Var | Type | Length | Width | Labels | Var | Var | Var | Var | Var | Var |
| F | 14.1 | S | PARKAMNT | N | 8 | 7.2 | Parking fee to pay at work | N | Y | N | N | N | N |
| F | 14.2 | S | PARKCODE | C | 2 | 2 | Unit of amount paid for parking at work | N | Y | N | N | N | N |
| G | 21 | S | PASSPURP | C | 2 | 2 | Trip purpose for passenger | N | N | N | N | Y | N |
| F | 13 | S | PAYTOPRK | C | 2 | 2 | Pay parking at work? | N | Y | N | N | N | N |
| * | * | S | PERSONID | N | 3 | 2 | Person ID number | N | Y | N | Y | Y | Y |
| G | 17 | N | PREVREP | C | 2 | 2 | This trip also reported by other HH mem | N | N | N | N | Y | N |
| * | * | H_PROXY | PROXY | C | 2 | 2 | Proxy respondent for person data | N | Y | N | Y | Y | Y |
| E | 3.1 | N | PTCARND | C | 2 | 2 | Having access to a car when you need it | N | Y | N | N | N | N |
| E | 3.G | N | PTCOST | C | 2 | 2 | Cost of travel by public transportation | N | Y | N | N | N | N |
| E | $3 . \mathrm{C}$ | N | PTCRIME | C | 2 | 2 | Worry w/ crime on public transportation | N | Y | N | N | N | N |
| E | 3. AF | N | PTCROWD | C | 2 | 2 | Difficulty w/ crowding or getting a seat | N | Y | N | N | N | N |
| E | 3.D | N | PTNTCLN | C | 2 | 2 | Transit stations/vehicles not clean | N | Y | N | N | N | N |
| E | 3.BJ | N | PTTIMEON | C | 2 | 2 | Time spent on public transportation | N | Y | N | N | N | N |
| E | 3. H | N | PTTMND | C | 2 | 2 | Public transp avail time of day needed | N | Y | N | N | N | N |
| E | 3.E | N | PTTRANSF | C | 2 | 2 | Time and aggrevation with transferes | N | Y | N | N | N | N |
| E | 2 | N | PTUSED | C | 2 | 2 | How often used public transportation | N | Y | N | N | N | N |
| G | 25.CK | S | PUBTRANS | C | 2 | 2 | Used public transit (8<trptrans<14) | N | N | N | N | Y | N |
| B | 5 | N | PURCHMON | N | 3 | 2 | Month of purchase | N | N | Y | N | N | N |
| B | 5 | N | PURCHYR | N | 4 | 4 | Year vehicle was purchas (yyyy) | N | N | Y | N | N | N |
| * | * | N | RAIL | C | 2 | 2 | Presence/absence of rail | Y | Y | Y | Y | Y | Y |
| D | 3 | S | REF_AGE | N | 3 | 3 | Age of reference person (yr) | Y | Y | N | N | Y | N |
| D | 9 | N | REF_DRVR | C | 2 | 2 | Driver status of reference person | Y | N | N | N | N | N |
| F | 1 | S | REF_EDUC | C | 2 | 2 | Education of HH reference person | Y | Y | N | N | Y | N |
| A | 2 | N | REF_ROST | N | 3 | 2 | Reference roster number | N | Y | N | N | N | N |
| D | 4 | S | REF_SEX | C | 2 | 2 | Sex of ref person | Y | Y | N | N | Y | N |
| * | * | N | REF_STAT | C | 2 | 2 | Response status of reference person | Y | N | N | N | N | N |
| D | 10 | N | REF_WKR | C | 2 | 2 | Worker status of reference person | Y | N | N | N | N | N |
| * | * | S | RESP_CNT | N | 3 | 2 | \# of respondents in HH | Y | N | N | N | N | N |
| H | 3 | S | RET_MON | C | 2 | 2 | Return month of travel period trip | N | N | N | N | N | Y |
| H | 3 | S | RET_YR | C | 2 | 2 | Return year of travel period trip | N | N | N | N | N | Y |
| D | 3 | S | R_AGE | N | 3 | 3 | Age of sample person | N | Y | N | Y | Y | Y |
| * | * | N | R_AGEFLG | C | 2 | 2 | Age imputed | N | Y | N | N | N | N |
| D | 7 | S | R_RELAT | C | 2 | 2 | Relationship to ref person | N | Y | N | N | N | N |
| D | 4 | S | R_SEX | C | 2 | 2 | Sex of sample person | N | Y | N | Y | Y | Y |
| G | 13 | N | SAMEPLC | C | 2 | 2 | Same place all day | N | Y | N | N | N | N |
| G | 29.01 | S | SEG1TIME | N | 4 | 4 | Start time for segment 1 | N | N | N | Y | N | N |
| G | 28.01 | S | SEG1TRAN | C | 2 | 2 | Mode code for segment 1 | N | N | N | Y | N | N |

Progid: disk2:[nsnpts.share]report.sas Date: 26SEP97
1990 Variable Names: $N=$ No Comparable 1990 Variable S = Same Name in 1990
isting of All NPTS Variables By Alphabetical Order Public Use File

	Item	1990	Target	Var   Type   Section	ID	Var   Length
			Var			
Gidth						

Labels
Duration of segment 1 (min)
Start time for segment 2
Mode code for segment 2
Duration of segment 2 (min)
Start time for segment 3
Mode code for segment
Duration of segment 3 (min)
Start time for segment 4
Mode code for segment
Duration of segment 4 (min)
$1=$ if trip is segmented
Number of segments (derived)
Usually sit or stand most on AMTRAK
Usually sit or stand most on bus
Usually sit or stand most on subway Usually sit/stand most on strcr/trolley Usually sit or stand most on comm train Usually sit, stand or both on AMTRAK Usually sit, stand or both on bus Sit or stand most on trip
Usually sit/stand/both on rail/subway
Usually sit/stand/both on strtcr/trolley Usually sit/stand/both on commuter train 1 =sat, 2 =stood, $3=$ both on trip Reported dist to streetcar (blocks) Reported dist to streetcar (miles) Streetcar service available
Distance to streetcar (miles Start time of trip
Reported dist to subway (blocks Reported dist to subway (miles) Substratum within VARSTRAT
$01=$ if subway service is available Distance to subway
for household Travel day date (MM)

HH	Per	Veh	Seg	Tday	Tper
Var	Var	Var	Var	Var	Var
N	N	N	Y	N	N
N	N	N	Y	N	N
N	N	N	Y	N	N
N	N	N	Y	N	N
N	N	N	Y	N	N
N	N	N	Y	N	N
N	N	N	Y	N	N
N	N	N	Y	N	N
N	N	N	Y	N	N
N	N	N	Y	N	N
N	N	N	N	Y	N
N	N	N	Y	N	N
N	Y	N	N	N	N
N	Y	N	N	N	N
N	Y	N	N	N	N
N	Y	N	N	N	N
N	Y	N	N	N	N
N	Y	N	N	N	N
N	Y	N	N	N	N
N	N	N	N	Y	N
N	Y	N	N	N	N
N	Y	N	N	N	N
N	Y	N	N	N	N
N	N	N	N	Y	N
Y	N	N	N	N	N
Y	N	N	N	N	N
Y	N	N	N	N	N
Y	N	N	N	N	N
N	N	N	Y	Y	N
Y	N	N	N	N	N
Y	N	N	N	N	N
Y	Y	Y	Y	Y	Y
Y	N	N	N	N	N
Y	N	N	N	N	N
Y	N	Y	N	N	Y
Y	Y	Y	Y	Y	Y
Y	Y	Y	Y	Y	Y

Progid: disk2:[nsnpts.share]report.sas Date: 26SEP97
1990 Variable Names: $N=$ No Comparable 1990 Variable

[^16]

Progid: disk2:[nsnpts.share]report.sas Date: 26SEP97
1990 Variable Names: $N=$ No Comparable 1990 Variable

[^17]| NPTS |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Listing of All NPTS Variables By Alphabetical OrderPublic Use File |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Item | 1990 | Target | Var | Var | Var |  | HH | Per | Veh | Seg | Tday | Tper |
| Section | ID | Var | Var | Type | Length | Width | Labels | Var | Var | Var | Var | Var | Var |
| B | 2.3 | S | VEHYEAR | N | 3 | 4 | Model year of veh (yyyy) | N | N | Y | N | N | N |
| * | * | * | VTR_FLG | C | 2 | 2 | $1=P O V$ trip, respondent drove | N | N | N | N | Y | N |
| F | 10.1 | N | WAITAMTR | N | 3 | 3 | Minutes wait for AMTRAK | N | Y | N | N | N | N |
| F | 10.2 | N | WAITBUS | N | 3 | 3 | Minutes wait for bus | N | Y | N | N | N | N |
| F | 10.3 | N | WAITSBWY | N | 3 | 3 | Minutes wait for elevated rail/subway | N | Y | N | N | N | N |
| F | 10.4 | N | WAITSTCR | N | 3 | 3 | Minutes wait for streetcar/trolley | N | Y | N | N | N | N |
| F | 10.5 | N | WAITTRAN | N | 3 | 3 | Minutes wait for commuter train | N | Y | N | N | N | N |
| G | 31 | S | WAIT_MIN | N | 4 | 4 | Time waited for transportation (min) | N | N | N | N | Y | N |
| G | 16.01 | N | WHERE | C | 1 | 1 | H=home, W=work, S=other-specify | N | N | N | N | Y | N |
| G | 36.01 | S | WHOACC_A | N | 3 | 2 | Roster \# of other HH mem on trip G36 | N | N | N | N | Y | N |
| G | 36.02 | S | WHOACC_B | N | 3 | 2 | Roster \# of other HH mem on trip G36 | N | N | N | N | Y | N |
| G | 36.03 | S | WHOACC_C | N | 3 | 2 | Roster \# of other HH mem on trip G36 | N | N | N | N | Y | N |
| G | 36.04 | S | WHOACC_D | N | 3 | 2 | Roster \# of other HH mem on trip G36 | N | N | N | N | Y | N |
| G | 36.05 | S | WHOACC_E | N | 3 | 2 | Roster \# of other HH mem on trip G36 | N | N | N | N | Y | N |
| G | 36.06 | S | WHOACC_F | N | 3 | 2 | Roster \# of other HH mem on trip G36 | N | N | N | N | Y | N |
| G | 36.07 | S | WHOACC_G | N | 3 | 2 | Roster \# of other HH mem on trip G36 | N | N | N | N | Y | N |
| G | 36.08 | S | WHOACC_H | N | 3 | 2 | Roster \# of other HH mem on trip G36 | N | N | N | N | Y | N |
| G | 36.09 | S | WHOACC_I | N | 3 | 2 | Roster \# of other HH mem on trip G36 | N | N | N | N | Y | N |
| G | 36.1 | S | WHOACC_J | N | 3 | 2 | Roster \# of other HH mem on trip G36 | N | N | N | N | Y | N |
| G | 38 | S | WHODROVE | N | 3 | 2 | ID of HH mem who drove on trip G38 | N | N | N | N | Y | N |
| D | 15 | N | WHOMAIN | C | 2 | 2 | Who drives veh most of time | N | N | Y | N | N | N |
| G | 20 | N | WHYFROM | C | 2 | 2 | 1995 purpose - from | N | N | N | N | Y | N |
| G | 20 | N | WHYTO | C | 2 | 2 | 1995 purpose - to | N | N | N | N | Y | N |
| G | 20 | WHYTRP | WHYTRP 90 | C | 2 | 2 | Purpose of trip (1990 definition) | N | N | N | N | Y | N |
| G | 20 | N | WHYTRP95 | C | 2 | 2 | Purpose of trip (1995 definition) | N | N | N | Y | Y | N |
| F | 8.14 | N | WKBYAIR | C | 2 | 2 | Get to work usually by airplane | N | Y | N | N | N | N |
| F | 8.1 | N | WKBYAMTR | C | 2 | 2 | Get to work usually by AmTRAK | N | Y | N | N | N | N |
| F | 8.01 | N | WKBYAUTO | C | 2 | 2 | Get to work usually by auto | N | Y | N | N | N | N |
| F | 8.16 | N | WKBYBIKE | C | 2 | 2 | Get to work usually by bicycle | N | Y | N | N | N | N |
| F | 8.09 | N | WKBYBUS | C | 2 | 2 | Get to work usually by bus | N | Y | N | N | N | N |
| F | 8.19 | N | WKBYHOME | C | 2 | 2 | Worked from home | N | Y | N | N | N | N |
| F | 8.07 | N | WKBYMCYC | C | 2 | 2 | Get to work usually by motorcycle | N | Y | N | N | N | N |
| F | 8.08 | N | WKBYOPOV | C | 2 | 2 | Get to work usually by other POV | N | Y | N | N | N | N |
| F | 8.2 | N | WKBYOTHR | C | 2 | 2 | Get to work by other means | N | Y | N | N | N | N |
| F | 8.05 | N | WKBYOTTK | C | 2 | 2 | Get to work usually by other truck | N | Y | N | N | N | N |
| F | 8.06 | N | WKBYRV | C | 2 | 2 | Get to work usually by RV | N | Y | N | N | N | N |
| F | 8.13 | N | WKBYSBWY | C | 2 | 2 | Get to work usually by elev. rail/subway | N | Y | N | N | N | N |

Progid: disk2:[nsnpts.share]report.sas Date: 26SEP97
1990 Variable Names: $\mathrm{N}=\mathrm{No}$ Comparable 1990 Variable

[^18]NPT
isting of All NPTS Variables By Alphabetical Order
Public Use File

	Item	1990	Target	Var	Var	Var		HH	Per	Veh	Seg	Tday	Tper
Section	ID	Var	Var	Type	Length	Width	Labels	Var	Var	Var	Var	Var	Var
F	8.18	N	WKBYSCBS	C	2	2	Get to work usually by school bus	N	Y	N	N	N	N
F	8.12	N	WKBYSTCR	C	2	2	Get to work usually by strtcar/trolley	N	Y	N	N	N	N
F	8.15	N	WKBYTAXI	C	2	2	Get to work usually by taxi	N	Y	N	N	N	N
F	8.11	N	WKBYTRAN	C	2	2	Get to work usually by commuter train	N	Y	N	N	N	N
F	8.04	N	WKBYTRUK	C	2	2	Get to work usually by pickup truck	N	Y	N	N	N	N
F	8.03	N	WKBYUV	C	2	2	Get to work usually by UV	N	Y	N	N	N	N
F	8.02	N	WKBYVAN	C	2	2	Get to work usually by van	N	Y	N	N	N	N
F	8.17	N	WKBYWALK	C	2	2	Get to work usually by walking	N	Y	N	N	N	N
F	20	N	WKFMHM2M	C	2	2	Worked from home any day last two month?	N	Y	N	N	N	N
F	19	N	WKFMHMLW	C	2	2	Worked from home any day last week?	N	Y	N	N	N	N
F	21	N	WKFMHMXX	C	2	2	How often worked from home last 2 months	N	Y	N	N	N	N
G	8	S	WORKDAYS	N	3	2	Days per week on job	N	Y	N	N	N	N
D	12	S	WORKER	C	2	2	Respondent is a worker	N	Y	N	Y	Y	Y
*	*	*	WORKLOC	N	4	2	Work location	N	Y	N	N	N	N
F	4.2	N	WORKSTAT	C	2	2	State of workplace	N	Y	N	N	N	N
*	*	WRKRCNT	WRKCOUNT	N	3	2	No. of workers in HH	Y	Y	Y	Y	Y	Y
G	3	S	WRKDRIVE	C	2	2	Drive lisensed vehicle in work	N	Y	N	N	N	N
G	6	N	WRKMILES	N	3	3	Travel day miles driven on job	N	Y	N	N	N	N
F	9	S	WRKTRANS	C	2	2	Main means of transportation to work	N	Y	N	N	N	N
G	5	N	WRKTRPS	C	2	2	10 or more trips on job during day	N	Y	N	N	N	N
G	7	S	WRKVTYPE	C	2	2	Type vehicle driven on job	N	Y	N	N	N	N
CLAR	*	*	WTEMPLDN	N	4	6	Jobs per square mile, census tract	N	Y	N	N	N	N
*	*	S	WTHHFIN	N	8	11.5	Final household weight	Y	N	Y	N	N	N
CLAR	*	*	WTINDAGR	N	4	3	Pct $16+$ workers, agr/mining/const, CT	N	Y	N	N	N	N
CLAR	*	*	WTINDFIN	N	4	3	Pct $16+$ workers, fin/ins/rl est ind, CT	N	Y	N	N	N	N
CLAR	*	*	WTINDMAN	N	4	3	Pct 16+ workers, manuf. industries, CT	N	Y	N	N	N	N
CLAR	*	*	WTINDRET	N	4	3	Pct 16+ workplace pop, retl trd ind, CT	N	Y	N	N	N	N
CLAR	*	*	WTINDSVC	N	4	3	Pct 16+ workers, service industries, CT	N	Y	N	N	N	N
CLAR	*	*	WTINDTRN	N	4	3	Pct 16+ workers, tran/comm/ util ind, CT	N	Y	N	N	N	N
CLAR	*	*	WTINDWHL	N	4	3	Pct 16+ workers, wholesale trade ind, CT	N	Y	N	N	N	N
*	*	S	WTPERFIN	N	8	11.5	Final person wt person-nonresp adjusted	N	Y	N	N	N	N
*	*	S	WTTRDFIN	N	8	11.2	Final travel day trip weight	N	N	N	Y	Y	N
*	*	S	WTTRPFIN	N	8	11.3	Final travel period trip weight	N	N	N	N	N	Y
E	8	S	YEARMILE	N	5	6	How many miles did you drive per year	N	Y	N	N	N	N
E	8	*	YMILEFLG	C	2	2	Yearmile mileage was capped at 200,000	N	Y	N	N	N	N

Progid: disk2:[nsnpts.share]report.sas Date: 26SEP97
1990 Variable Names: $N=$ No Comparable 1990 Variable $S=$ Same Name in 1990

## APPENDIX I

## VARIABLE LISTS

This Appendix contains:

ASCII FILE LAYOUT are presented in the following order:
HHOLD95
PERSON95
VEHICL95
DAYTRP95
SEGTRP95
PERTRP95

SAS PROC CONTENTS are presented in the following order:
DAYTRP 95
HHOLD95
PERSON95
PERTRP95
SEGTRP 95
VEHICL95

NOTE that the Proc Contents header was removed from all but the first page of each file to reduce the amount of printing.

## ASCII FILE LAYOUT

FILE LAYOUT FOR HHOLD95.ASC

Number of data records: Date of last update:		42033		Dec	Nulls	Column Position
		08/29				
Field	Field Name	Type	Width			
1	CENSUS_D	Character	2		No	1-2
2	CENSUS_R	Character	2		No	3-4
3	HHVEHCNT	Numeric	4		No	5-8
4	MSASIZE	Character	2		No	9-10
5	VARSTRAT	Numeric	4		No	11-14
6	BUSBLOCK	Numeric	4		No	15-18
7	BUSMILE	Numeric	4		No	19-22
8	BUS_AVL	Character	2		No	23-24
9	BUS_DIST	Numeric	14	2	No	25-38
10	HOUSEID	Numeric	8		No	39-46
11	DRVRCNT	Numeric	4		No	47-50
12	HHELGCNT	Numeric	4		No	51-54
13	HHFAMINC	Character	2		No	55-56
14	HHRESP	Character	2		No	57-58
15	HHSIZE	Numeric	4		No	59-62
16	HHSTATE	Character	2		No	63-64
17	HHSTFIPS	Numeric	4		No	65-68
18	HH_HISP	Character	2		No	69-70
19	HH_RACE	Character	2		No	71-72
20	HOMEOWN	Character	2		No	73-74
21	HOMETYPE	Character	2		No	75-76
22	HSTORIES	Character	2		No	77-78
23	HH_0TO4	Numeric	4		No	79-82
24	LIF_CYC	Character	2		No	83-84
25	NUMADLT	Numeric	4		No	85-88
26	INELGCNT	Numeric	4		No	89-92
27	HHMSA	Character	4		No	93-96
28	MSTR_MON	Numeric	4		No	97-100
29	MSTR_YR	Numeric	4		No	101-104
30	NONFMFLG	Character	2		No	105-106
31	NOTELWKS	Character	2		No	107-108
32	NOTELYR	Character	2		No	109-110
33	OTHERPTR	Character	2		No	111-112
34	P10_AGE	Numeric	4		No	113-116
35	P10_DRVR	Character	2		No	117-118
36	P10_REL	Character	2		No	119-120
37	P10_SEX	Character	2		No	121-122
38	P10_STAT	Character	2		No	123-124
39	P10_WKR	Character	2		No	125-126
40	P1_AGE	Numeric	4		No	127-130
41	P1_DRVR	Character	2		No	131-132
42	P1_REL	Character	2		No	133-134
43	P1_SEX	Character	2		No	135-136
44	P1_STAT	Character	2		No	137-138
45	P1_WKR	Character	2		No	139-140
46	P2_AGE	Numeric	4		No	141-144
47	P2_DRVR	Character	2		No	145-146


HHOLD95.ASC					
48	P2_REL	Character	2	No	147-148
49	P2_SEX	Character	2	No	149-150
50	P2_STAT	Character	2	No	151-152
51	P2_WKR	Character	2	No	153-154
52	P3_AGE	Numeric	4	No	155-158
53	P3_DRVR	Character	2	No	159-160
54	P3_REL	Character	2	No	161-162
55	P3_SEX	Character	2	No	163-164
56	P3_STAT	Character	2	No	165-166
57	P3_WKR	Character	2	No	167-168
58	P4_AGE	Numeric	4	No	169-172
59	P4_DRVR	Character	2	No	173-174
60	REF_EDUC	Character	2	No	175-176
61	P4_REL	Character	2	No	177-178
62	P4_SEX	Character	2	No	179-180
63	P4_STAT	Character	2	No	181-182
64	P4_WKR	Character	2	No	183-184
65	P5_AGE	Numeric	4	No	185-188
66	P5_DRVR	Character	2	No	189-190
67	P5_REL	Character	2	No	191-192
68	P5_SEX	Character	2	No	193-194
69	P5_STAT	Character	2	No	195-196
70	P5_WKR	Character	2	No	197-198
71	P6_AGE	Numeric	4	No	199-202
72	P6_DRVR	Character	2	No	203-204
73	P6_REL	Character	2	No	205-206
74	P6_SEX	Character	2	No	207-208
75	P6_STAT	Character	2	No	209-210
76	P6_WKR	Character	2	No	211-212
77	P7_AGE	Numeric	4	No	213-216
78	P7_DRVR	Character	2	No	217-218
79	P7_REL	Character	2	No	219-220
80	P7_SEX	Character	2	No	221-222
81	P7_STAT	Character	2	No	223-224
82	P7_WKR	Character	2	No	225-226
83	P8_AGE	Numeric	4	No	227-230
84	P8_DRVR	Character	2	No	231-232
85	P8_REL	Character	2	No	233-234
86	P8_SEX	Character	2	No	235-236
87	P8_STAT	Character	2	No	237-238
88	P8_WKR	Character	2	No	239-240
89	P9_AGE	Numeric	4	No	241-244
90	P9_DRVR	Character	2	No	245-246
91	P9_REL	Character	2	No	247-248
92	P9_SEX	Character	2	No	249-250
93	P9_STAT	Character	2	No	251-252
94	P9_WKR	Character	2	No	253-254
95	RAIL	Character	2	No	255-256
96	REF_AGE	Numeric	4	No	257-260
97	REF_DRVR	Character	2	No	261-262
98	REF_SEX	Character	2	No	263-264
99	REF_StAT	Character	2	No	265-266
100	REF_WKR	Character	2	No	267-268
101	RESP_CNT	Numeric	4	No	269-272
102	STCBLOCK	Numeric	4	No	273-276
103	STCMILE	Numeric	4	No	277-280
104	STC_AVL	Character	2	No	281-282

I- 3

HHOLD95.ASC						
105	STC_DIST	Numeric	14	2	No	283-296
106	SUBBLOCK	Numeric	4		No	297-300
107	SUBMILE	Numeric	4		No	301-304
108	SUB_AVL	Character	2		No	305-306
109	SUB_DIST	Numeric	14	2	No	307-320
110	SUM_STAT	Character	3		No	321-323
111	TDAY_MON	Numeric	4		No	324-327
112	TDAY_YR	Numeric	4		No	328-331
113	TELNUMCT	Character	2		No	323-333
114	TEL_HHS	Character	2		No	334-335
115	TPER_BMO	Numeric	4		No	336-339
116	TPER_BYR	Numeric	4		No	340-343
117	TPER_EMO	Numeric	4		No	344-347
118	TPER_EYR	Numeric	4		No	348-351
119	TRNBLOCK	Numeric	4		No	352-355
120	TRNMILE	Numeric	4		No	356-359
121	TRN_AVL	Character	2		No	360-361
122	TRN_DIST	Numeric	14	2	No	362-375
123	WRKCOUNT	Numeric	4		No	376-379
124	WTHHFIN	Numeric	14	2	No	380-393
125	HHCMSA	Character	4		No	394-397
126	URBAN	Character	2		No	398-399
127	SUBSTRAT	Numeric	4		No	400-403
128	GHMXIN	Numeric	8		No	404-411
129	HBPPOPDN	Numeric	7		No	412-418
130	HBPPOPNO	Numeric	7		No	419-425
131	HBPLTPOV	Numeric	5		No	426-430
132	HBPHSGD	Numeric	5		No	431-435
133	HBPCOLGD	Numeric	5		No	436-440
134	HBP 65P	Numeric	5		No	441-445
135	HBPFORBN	Numeric	5		No	446-450
136	HBPHISP	Numeric	5		No	451-455
137	HBPRCCAU	Numeric	5		No	456-460
138	HBPRCAA	Numeric	5		No	461-465
139	HBPRCASN	Numeric	5		No	466-470
140	HBPRCOTH	Numeric	5		No	471-475
141	HTPPOPDN	Numeric	7		No	476-482
142	HTPPOPNO	Numeric	7		No	483-489
143	HTPLTPOV	Numeric	5		No	490-494
144	HTPHSGD	Numeric	5		No	495-499
145	HTPCOLGD	Numeric	5		No	500-504
146	HTP65P	Numeric	5		No	505-509
147	HTPFORBN	Numeric	5		No	510-514
148	HTPHISP	Numeric	5		No	515-519
149	HTPRCCAU	Numeric	5		No	520-524
150	HTPRCAA	Numeric	5		No	525-529
151	HTPRCASN	Numeric	5		No	530-534
152	HTPRCOTH	Numeric	5		No	535-539
153	HBHUR	Character	1		No	540
154	HBHRESDN	Numeric	7		No	541-547
155	HBHHSSNG	Numeric	5		No	548-552
156	HBHHSMLT	Numeric	5		No	553-557
157	HBHHSOTH	Numeric	5		No	558-562
158	HBHTNOWN	Numeric	5		No	563-567
159	HBHTNRNT	Numeric	5		No	568-572
160	HBHRECNT	Numeric	5		No	573-577
161	HBHMEDHS	Numeric	7		No	578-584

I- 4

## HHOLD95.ASC

162	HBHINMED	Numeric	7	No	$585-591$
163	HBHINCL	Numeric	5	No	$592-596$
164	HBHINCM1	Numeric	5	No	$597-601$
165	HBHINCM2	Numeric	5	No	$602-606$
166	HBHINCH	Numeric	5	No	$607-611$
167	HTHUR	Character	1	No	612
168	HTHRESDN	Numeric	7	No	$613-619$
169	HTHHSSNG	Numeric	5	No	$620-624$
170	HTHHSMLT	Numeric	5	No	$625-629$
171	HTHHSOTH	Numeric	5	No	$630-634$
172	HTHTNOWN	Numeric	5	No	$635-639$
173	HTHTNRNT	Numeric	5	No	$640-644$
174	HTHRECNT	Numeric	5	No	$645-649$
175	HTHMEDHS	Numeric	7	No	$650-656$
176	HTHINMED	Numeric	7	No	$657-663$
177	HTHINCL	Numeric	5	No	$664-668$
178	HTHINCM1	Numeric	5	No	$669-673$
179	HTHINCM2	Numeric	5	No	$674-678$
180	HTHINCH	Numeric	5	No	$679-683$
181	HTEEMPDN	Numeric	7	No	$684-690$
182	HTINDRET	Numeric	5	No	$691-695$

FILE LAYOUT FOR PERSON95.ASC

Number of data records: Date of last update:		$\begin{aligned} & 95360 \\ & 08 / 29 / 97 \end{aligned}$		Nulls	Column   Position
Field	Field Name	Type	Width		
1	HOUSEID	Numeric	8	No	1-8
2	PERSONID	Numeric	4	No	9-12
3	PROXY	Character	2	No	13-14
4	R_AGEFLG	Character	2	No	15-16
5	REF_ROST	Numeric	4	No	17-20
6	R_AGE	Numeric	4	No	21-24
7	R_SEX	Character	2	No	25-26
8	R_RELAT	Character	2	No	27-28
9	DRIVER	Character	2	No	29-30
10	DTCONJ	Character	2	No	31-32
11	DTPAVE	Character	2	No	33-34
12	DTNTFMLR	Character	2	No	35-36
13	DTACDT	Character	2	No	37-38
14	DTWALK	Character	2	No	39-40
15	DTPOLLTN	Character	2	No	41-42
16	DTTIEUP	Character	2	No	43-44
17	DTSTRTS	Character	2	No	45-46
18	DTCRIME	Character	2	No	47-48
19	PTUSED	Character	2	No	49-50
20	PTCROWD	Character	2	No	51-52
21	PTTIMEON	Character	2	No	53-54
22	PTNTCLN	Character	2	No	55-56
23	PTCRIME	Character	2	No	57-58
24	PTTRANSF	Character	2	No	59-60
25	PTCOST	Character	2	No	61-62
26	PTTMND	Character	2	No	63-64
27	PTCARND	Character	2	No	65-66
28	FQSTBELT	Character	2	No	67-68
29	NSBFGET	Character	2	No	69-70
30	NSBBROKE	Character	2	No	71-72
31	NSBSHORT	Character	2	No	73-74
32	NSBLONG	Character	2	No	75-76
33	NSBBACK	Character	2	No	77-78
34	NSBPSNG	Character	2	No	79-80
35	NSBDRVR	Character	2	No	81-82
36	NSBSPVEH	Character	2	No	83-84
37	NSBTOWN	Character	2	No	85-86
38	NSBSPPER	Character	2	No	87-88
39	NSBOTHER	Character	2	No	89-80
40	NSBHURRY	Character	2	No	91-92
41	NSBSPCLH	Character	2	No	93-94
42	NSBNOASK	Character	2	No	95-96
43	NSBMED	Character	2	No	97-98
44	NSBNLIKE	Character	2	No	99-100
45	NSBTOWRK	Character	2	No	101-102
46	NSBPOLIC	Character	2	No	103-104
47	NSBWTHR	Character	2	No	105-106
48	YEARMILE	Numeric	6	No	107-112
49	YMILEFLG	Character	2	No	113-114
50	EDUC	Character	2	No	115-116
51	JOBLSTWK	Character	2	No	117-118

I- 6

	5.ASC					
52	GT1JBLWK	Character	2		No	119-120
53	WORKSTAT	Character	2		No	121-122
54	DISTTOWK	Numeric	14	2	No	123-136
55	UNITDIST	Character	2		No	137-138
56	TIMELEAV	Numeric	4		No	139-142
57	TIMETOWK	Numeric	4		No	143-146
58	WKBYAUTO	Character	2		No	147-148
59	WKBYVAN	Character	2		No	149-150
60	WKBYUV	Character	2		No	151-152
61	WKBYTRUK	Character	2		No	153-154
62	WKBYOTTK	Character	2		No	155-156
63	WKBYRV	Character	2		No	157-158
64	WKBYMCYC	Character	2		No	159-160
65	WKBYOPOV	Character	2		No	161-162
66	WKBYBUS	Character	2		No	163-164
67	WKBYAMTR	Character	2		No	165-166
68	WKBYTRAN	Character	2		No	167-168
69	WKBYSTCR	Character	2		No	169-170
70	WKBYSBWY	Character	2		No	171-172
71	WKBYAIR	Character	2		No	173-174
72	WKBYTAXI	Character	2		No	175-176
73	WKBYBIKE	Character	2		No	177-178
74	WKBYWALK	Character	2		No	179-180
75	WKBYSCBS	Character	2		No	181-182
76	WKBYHOME	Character	2		No	183-184
77	WKBYOTHR	Character	2		No	185-186
78	WRKTRANS	Character	2		No	187-188
79	WAITAMTR	Numeric	4		No	189-192
80	WAITBUS	Numeric	4		No	193-196
81	WAITSBWY	Numeric	4		No	197-200
82	WAITSTCR	Numeric	4		No	201-204
83	WAITTRAN	Numeric	4		No	205-208
84	SITAMTR	Character	2		No	209-210
85	SITBUS	Character	2		No	211-212
86	SITSBWY	Character	2		No	213-214
87	SITSTCR	Character	2		No	215-216
88	SITTRAN	Character	2		No	217-218
89	SIT2AMTR	Character	2		No	219-220
90	SIT2BUS	Character	2		No	221-222
91	SIT2SBWY	Character	2		No	223-224
92	SIT2STCR	Character	2		No	225-226
93	SIT2TRAN	Character	2		No	227-228
94	PAYTOPRK	Character	2		No	229-230
95	PARKAMNT	Numeric	14	2	No	231-244
96	PARKCODE	Character	2		No	245-246
97	USULDRV	Character	2		No	247-248
98	ALWYSDRV	Character	2		No	249-250
99	NCIRRHR	Character	2		No	251-252
100	NCNOONE	Character	2		No	253-254
101	NCINCVNT	Character	2		No	255-256
102	NCNEEDCR	Character	2		No	257-258
103	NCSHRTDI	Character	2		No	259-260
104	NCOTHRES	Character	2		No	261-262
105	NCONLY	Character	2		No	263-264
106	NCNEVER	Character	2		No	265-266
107	NCNLIKE	Character	2		No	267-268
108	NCLVFAR	Character	2		No	269-270


PERSON95.ASC						
109	NCCOMCR	Character	2		No	271-272
110	NPT2FRWK	Character	2		No	273-274
111	NPT2MCTM	Character	2		No	275-276
112	NPT2EXPV	Character	2		No	277-278
113	NPTOTHTG	Character	2		No	279-280
114	NPTNTCNV	Character	2		No	281-282
115	NPTFMHM	Character	2		No	283-284
116	NPTOTHER	Character	2		No	285-286
117	NPTLVCLS	Character	2		No	287-288
118	NPTDLPT	Character	2		No	289-290
119	NPTHVCAR	Character	2		No	291-292
120	NPTCOMCR	Character	2		No	293-294
121	WKFMHMLW	Character	2		No	295-296
122	WKFMHM2M	Character	2		No	297-298
123	WKFMHMXX	Character	2		No	299-300
124	WRKDRIVE	Character	2		No	301-302
125	WRKTRPS	Character	2		No	303-304
126	WRKMILES	Numeric	4		No	305-308
127	WRKVTYPE	Character	2		No	309-310
128	WORKDAYS	Numeric	4		No	311-314
129	DIARYCMP	Character	2		No	315-316
130	DIARYHAV	Character	2		No	317-318
131	DIARYGET	Character	2		No	319-320
132	NONFMINC	Character	2		No	321-322
133	CENSUS_D	Character	2		No	323-324
134	CENSUS_R	Character	2		No	325-326
135	WTPERFIN	Numeric	14	2	No	327-340
136	REF_EDUC	Character	2		No	341-342
137	OUTCNTRY	Character	2		No	343-344
138	SAMEPLC	Character	2		No	345-346
139	INTRVMON	Numeric	4		No	347-350
140	INTRVYR	Numeric	4		No	351-354
141	WORKER	Character	2		No	355-356
142	HHVEHCNT	Numeric	4		No	357-360
143	MSASIZE	Character	2		No	361-362
144	VARSTRAT	Numeric	4		No	363-366
145	DRVRCNT	Numeric	4		No	367-370
146	HHFAMINC	Character	2		No	371-372
147	HHRESP	Character	2		No	373-374
148	HHSIZE	Numeric	4		No	375-378
149	HH_HISP	Character	2		No	379-380
150	HH_RACE	Character	2		No	381-382
151	LIF_CYC	Character	2		No	383-384
152	HHMSA	Character	4		No	385-388
153	MSTR_MON	Numeric	4		No	389-392
154	MSTR_YR	Numeric	4		No	393-396
155	RAIL	Character	2		No	397-398
156	REF_AGE	Numeric	4		No	399-402
157	REF_SEX	Character	2		No	403-404
158	TDAY_MON	Numeric	4		No	405-408
159	TDAY_YR	Numeric	4		No	409-412
160	WRKCOUNT	Numeric	4		No	413-416
161	HHCMSA	Character	4		No	417-420
162	SUBSTRAT	Numeric	4		No	421-424
163	GWKXIN	Numeric	8		No	425-432
164	HBPPOPDN	Numeric	7		No	433-439
165	HBHUR	Character	1		No	440

PERSON95.ASC

166	HBHRESDN	Numeric	7	No	$441-447$
167	HBHINMED	Numeric	7	No	$448-454$
168	WTEMPLDN	Numeric	8	No	$455-262$
169	WTINDAGR	Numeric	5	No	$463-467$
170	WTINDMAN	Numeric	5	No	$468-472$
171	WTINDTRN	Numeric	5	No	$473-477$
172	WTINDWHL	Numeric	5	No	$478-482$
173	WTINDRET	Numeric	5	No	$483-487$
174	WTINDFIN	Numeric	5	No	$488-492$
175	WTINDSVC	Numeric	5	No	$493-497$
176	WORKLOC	Numeric	5	No	$498-502$

FILE LAYOUT FOR VEHICL95.ASC

Number of data records: Date of last update:		$75217$		Dec	Nulls	Column Position
Field	Field Name	Type	Width			
1	HOUSEID	Numeric	8		No	1-8
2	VEHID	Numeric	4		No	9-12
3	ANNUALZD	Numeric	14	5	No	13-26
4	ANN_FLG	Character	2		No	27-28
5	ANN_EDIT	Character	2		No	29-30
6	ANN_OUT	Character	2		No	31-32
7	CENSUS_D	Character	2		No	33-34
8	CENSUS_R	Character	2		No	35-36
9	MSASIZE	Character	2		No	37-38
10	ANNMILES	Numeric	14	2	No	39-52
11	HHVEHCNT	Numeric	4		No	53-56
12	MAINDRVR	Character	2		No	57-58
13	MAKECODE	Character	2		No	59-60
14	MILELIMT	Character	2		No	61-62
15	MODLCODE	Character	3		No	63-65
16	PURCHMON	Numeric	4		No	66-69
17	VEH12MNT	Character	2		No	70-71
18	VEHMILES	Numeric	6		No	72-77
19	VEHNEW	Character	2		No	78-79
20	VEHTYPE	Character	2		No	80-81
21	VEHYEAR	Numeric	4		No	82-85
22	WHOMAIN	Character	2		No	86-87
23	PURCHYR	Numeric	5		No	88-92
24	VARSTRAT	Numeric	4		No	93-96
25	DRVRCNT	Numeric	4		No	97-100
26	HHELGCNT	Numeric	4		No	101-104
27	HHFAMINC	Character	2		No	105-106
28	HHSIZE	Numeric	4		No	107-110
29	HH_HISP	Character	2		No	111-112
30	HH_RACE	Character	2		No	113-114
31	LIF_CYC	Character	2		No	115-116
32	HHMSA	Character	4		No	117-120
33	MSTR_MON	Numeric	4		No	121-124
34	MSTR_YR	Numeric	4		No	125-128
35	RAIL	Character	2		No	129-130
36	SUM_STAT	Character	3		No	131-133
37	TDAY_MON	Numeric	4		No	134-137
38	TDAY_YR	Numeric	4		No	138-141
39	WRKCOUNT	Numeric	4		No	142-145
40	WTHHFIN	Numeric	14	2	No	146-159
41	HHCMSA	Character	4		No	160-163
42	OD_DAY1	Numeric	4		No	164-167
43	OD_MON1	Numeric	4		No	168-171
44	OD_YR1	Numeric	4		No	172-175
45	OD_DAY2	Numeric	4		No	176-179
46	OD_MON2	Numeric	4		No	180-183
47	OD_YR2	Numeric	4		No	184-187
48	OD_READ1	Numeric	6		No	188-193
49	OD_READ2	Numeric	6		No	194-199
50	SUBSTRAT	Numeric	4		No	200-203
51	HBPPOPDN	Numeric	7		No	204-210

VEHICL95.ASC

52	HBHUR
53	HBHRESDN
54	HBHINMED
55	ANULZDSE


Character	1	No	211
Numeric	7	No	$212-218$
Numeric	7	No	$219-225$


| Numeric | 14 | 215 No 239 |
| :--- | :--- | :--- | :--- |

FILE LAYOUT FOR DAYTRP95.ASC


52	WHERE	Character	1		No	147
53	WHOACC_A	Numeric	4		No	148-151
54	WHOACC_B	Numeric	4		No	152-155
55	WHOACC_C	Numeric	4		No	156-159
56	WHOACC_D	Numeric	4		No	160-163
57	WHOACC_E	Numeric	4		No	164-167
58	WHOACC_F	Numeric	4		No	168-171
59	WHOACC_G	Numeric	4		No	172-175
60	WHOACC_H	Numeric	4		No	176-179
61	WHOACC_I	Numeric	4		No	180-183
62	WHOACC_J	Numeric	4		No	184-187
63	WHODROVE	Numeric	4		No	188-191
64	WHYFROM	Character	2		No	192-193
65	WHYTO	Character	2		No	194-195
66	WHYTRP90	Character	2		No	196-197
67	OVERLAP	Character	1		No	198
68	HHTRIPID	Numeric	4		No	199-202
69	PERSONID	Numeric	4		No	203-206
70	STRTTIME	Numeric	5		No	207-211
71	TRANSFER	Character	2		No	212-213
72	TRPMILES	Numeric	14	2	No	214-227
73	TRPTRANS	Character	2		No	228-229
74	TRVL_MIN	Numeric	5		No	230-234
75	VARSTRAT	Numeric	4		No	235-238
76	WHYTRP95	Character	2		No	239-240
77	WTTRDFIN	Numeric	14	2	No	241-254
78	DRVRCNT	Numeric	4		No	255-258
79	HHFAMINC	Character	2		No	259-260
80	HH_HISP	Character	2		No	261-262
81	HH_RACE	Character	2		No	263-264
82	LIF_CYC	Character	2		No	265-266
83	HHMSA	Character	4		No	267-270
84	MSTR_MON	Numeric	4		No	271-274
85	MSTR_YR	Numeric	4		No	275-278
86	RAIL	Character	2		No	279-280
87	REF_AGE	Numeric	4		No	281-284
88	REF_SEX	Character	2		No	285-286
89	TDAY_MON	Numeric	4		No	287-290
90	TDAY_YR	Numeric	4		No	291-294
91	WRKCOUNT	Numeric	4		No	295-298
92	HHCMSA	Character	4		No	299-302
93	VTR_FLG	Character	2		No	303-304
94	SUBSTRAT	Numeric	4		No	305-308
95	HBPPOPDN	Numeric	7		No	309-315
96	HBHUR	Character	1		No	316
97	HBHRESDN	Numeric	7		No	317-323
98	HBHINMED	Numeric				324-330

FILE LAYOUT FOR SEGTRP95.ASC

Number of data records: Date of last update:		3779		Dec	Nulls	Column
		08/29/97				
Field	Field Name	Type	Width			Position
1	HOUSEID	Numeric	8		No	1-8
2	PROXY	Character	2		No	9-10
3	R_AGE	Numeric	4		No	11-14
4	R_SEX	Character	2		No	15-16
5	CENSUS_D	Character	2		No	17-18
6	CENSUS_R	Character	2		No	19-20
7	WORKER	Character	2		No	21-22
8	DRIVER	Character	2		No	23-24
9	HHVEHCNT	Numeric	4		No	25-28
10	HOWFARU	Character	2		No	29-30
11	MSASIZE	Character	2		No	31-32
12	TRPNUM	Numeric	4		No	33-36
13	HHTRIPID	Numeric	4		No	37-40
14	PERSONID	Numeric	4		No	41-44
15	SEG1TIME	Numeric	5		No	45-49
16	SEG1TRAN	Character	2		No	50-51
17	SEG1_MIN	Numeric	5		No	52-56
18	SEG2TIME	Numeric	5		No	57-61
19	SEG2TRAN	Character	2		No	62-63
20	SEG2_MIN	Numeric	5		No	64-68
21	SEG3TIME	Numeric	5		No	69-73
22	SEG3TRAN	Character	2		No	74-75
23	SEG3_MIN	Numeric	5		No	76-80
24	SEG4TIME	Numeric	5		No	81-85
25	SEG4TRAN	Character	2		No	86-87
26	SEG4_MIN	Numeric	5		No	88-92
27	SEGNUM	Character	1		No	93
28	STRTTIME	Numeric	5		No	94-98
29	TRANSFER	Character	2		No	99-100
30	TRPMILES	Numeric	14	2	No	101-114
31	TRPTRANS	Character	2		No	115-116
32	TRVL_MIN	Numeric	5		No	117-121
33	VARSTRAT	Numeric	4		No	122-125
34	WHYTRP95	Character	2		No	126-127
35	WTTRDFIN	Numeric	14	2	No	128-141
36	DRVRCNT	Numeric	4		No	142-145
37	HHFAMINC	Character	2		No	146-147
38	HHSIZE	Numeric	4		No	148-151
39	HH_HISP	Character	2		No	152-153
40	HH_RACE	Character	2		No	154-155
41	LIF_CYC	Character	2		No	156-157
42	HHMSA	Character	4		No	158-161
43	RAIL	Character	2		No	162-163
44	TDAY_MON	Numeric	4		No	164-167
45	TDAY_YR	Numeric	4		No	168-171
46	WRKCOUNT	Numeric	4		No	172-175
47	HHCMSA	Character	4		No	176-179
48	SUBSTRAT	Numeric	4		No	180-183

## FILE LAYOUT FOR PERTRP95.ASC

Number of data records: Date of last update:		29647		Dec	Nulls	Column
Field	Field Name	Type	Width			Position
1	PROXY	Character	2		No	1-2
2	R_AGE	Numeric	4		No	3-6
3	R_SEX	Character	2		No	7-8
4	DRIVER	Character	2		No	9-10
5	CENSUS_D	Character	2		No	11-12
6	CENSUS_R	Character	2		No	13-14
7	WORKER	Character	2		No	15-16
8	HHVEHCNT	Numeric	4		No	17-20
9	MSASIZE	Character	2		No	21-22
10	TRIPNUM	Numeric	4		No	23-26
11	VARSTRAT	Numeric	4		No	27-30
12	HOUSEID	Numeric	8		No	31-38
13	DRVRCNT	Numeric	4		No	39-42
14	HHFAMINC	Character	2		No	43-44
15	HHSIZE	Numeric	4		No	45-48
16	HH_HISP	Character	2		No	49-50
17	HH_RACE	Character	2		No	51-52
18	LIF_CYC	Character	2		No	53-54
19	HHMSA	Character	4		No	55-58
20	MSTR_MON	Numeric	4		No	59-62
21	MSTR_YR	Numeric	4		No	63-66
22	RAIL	Character	2		No	67-68
23	SUM_STAT	Character	3		No	69-71
24	TDAY_MON	Numeric	4		No	72-75
25	TDAY_YR	Numeric	4		No	76-79
26	TPER_BMO	Numeric	4		No	80-83
27	TPER_BYR	Numeric	4		No	84-87
28	TPER_EMO	Numeric	4		No	88-91
29	TPER_EYR	Numeric	4		No	92-95
30	TOWHYPAS	Character	2		No	96-97
31	WRKCOUNT	Numeric	4		No	98-101
32	HHCMSA	Character	4		No	102-105
33	COUNTRY	Character	3		No	106-108
34	DESTSTAT	Character	2		No	109-110
35	HHTRPID	Numeric	4		No	111-114
36	PERSONID	Numeric	4		No	115-118
37	RET_MON	Character	2		No	119-120
38	RET_YR	Character	2		No	121-122
39	TOWHYTRP	Character	2		No	123-124
40	TO_TRANS	Character	2		No	125-126
41	WTTRPFIN	Numeric	14	2	No	127-140
42	CALCDIST	Numeric	14	2	No	141-154
43	DRVR_TPT	Character	2		No	155-156
44	SUBSTRAT	Numeric	4		No	157-160
45	HBPPOPDN	Numeric	7		No	161-167
46	HBHUR	Character	1		No	168
47	HBHRESDN	Numeric	7		No	169-175
48	HBHINMED	Numeric	7		No	176-182

Libref: DOT_PUBU
Engine: V611
Physical Name: C:\SASSTUFF\NPTS95PU\SSDFLS

\#	Name	Memty
1	DAYTRP95	DATA
2	HHOLD95	DATA
4	PERSON95	DATA
5	PERTRP95	DATA
6	SEGTRP95	DATA
7	VEHICL95	DATA

## CONTENTS PROCEDURE

Data Set Name: DOT_PUBU. DAYTRP95	Observations:	409025	
Member Type:	DATA	Variables:	98
Engine:	V611		Indexes:
Created:	$15: 22$ Wednesday, August 27, 1997	Observation Length:	316
Last Modified: 15:25 Wednesday, August 27, 1997	Deleted Observations:	0	
Protection:		Compressed:	NO
Data Set Type:		Sorted:	NO
Label:			


_----Engine/Host Dependent Informatio	
Data Set Page Size:	9728
Number of Data Set Pages:	13636
File Format:	607
First Data Page:	2
Max Obs per Page:	30
Obs in First Data Page:	21

-----Alphabetic List of Variables and Attributes-----

12	AWAYHOME	Char	2	34		Reason started day away from home
6	CENSUS_D	Char	2	18		Census division
7	CENSUS_R	Char	2	20		Census region
13	CHAIN	Num	4	36		Trip chain number for this person
14	CHAINTRP	Num	4	40		\# of trip within chain
15	DATEFLG	Char	2	44		Intrv date imputed as trav day plus 1
16	DAYNIGHT	Char	2	46		Trip started AM or PM G17A
17	DIFFDATE	Num	4	48		Days between travel \& interview dates
18	DRIVER	Char	2	52		Person is a driver D9
78	DRVRCNT	Num	4	240		Number of drivers in HH
19	DRVR_FLG	Char	2	54		$1=$ person drove on trip
31	DWELTIME	Num	5	85		Time spent at destination of prev trip
20	EDITMILE	Char	2	56		$1=$ trip miles were edited
21	EDITMODE	Char	2	58		$1=$ transportation mode was edited
36	EDITNONH	Char	2	102		$1=$ variable NONHHCNT was edited
22	EDIT_MIN	Char	2	60		$1=$ trip duration was edited
23	FROM_A	Char	1	62		Where trip chain started (H,W, S)
24	FRSTHM	Char	2	63		$1=p e r s o n s$ 1st trip began at home
98	HBHINMED	Num	7	309		Median household income, BG
97	HBHRESDN	Num	7	302		HU density (units/square mile), BG
96	HBHUR	Char	1	301		Urban/rural code, block group
95	HBPPOPDN	Num	7	294		Population density, block group
92	HHCMSA	Char	4	284		CMSA identification code
79	HHFAMINC	Char	2	244		HH family income category
25	HHMEMDRV	Char	2	65		$1=$ household member drove G37
83	HHMSA	Char	4	252		MSA identification code
26	HHSIZE	Num	4	67		Total number of persons in HH
68	HHTRIPID	Num	4	196		Trip number for household travel day


28	HHVEHCNT	Num	4	75		No. of vehicles in household (derived)
80	HH_HISP	Char	2	246		Hispanic status of ref. person
29	HH_ONTRP	Num	4	79		\# of HH members on the trip (derived)
81	HH_RACE	Char	2	248		Race of reference person
1	HOUSEID	Num	6	0		Household identification number
30	HOWFARU	Char	2	83		Units of reported dist: B) locks, M) iles
9	INTRVMON	Num		24		Person interview date - month
10	INTRVYR	Num	4	28		Person interview date - year
82	LIF_CYC	Char	2	250		Family life cycle
32	MATCH	Num	4	90		ID of matching prev. reported trip
33	MSASIZE	Char	2	94		Size of MSA of household
84	MSTR_MON	Num	4	256		Date of master interview - month
85	MSTR_YR	Num	4	260		Date of master interview - year
34	NONHHACC	Char	2	96		$1=$ non-HH members on trip
35	NONHHCNT	Num	4	98		\# of non-HH members on trip
37	NUMONTRP	Num	4	104		Total \# of persons on trip (derived)
67	OVERLAP	Char	1	195		$=1$ if trip part of travel period trip
38	PASSPURP	Char	2	108		Trip purpose for passenger
69	PERSONID	Num	4	200		Person ID number
39	PREVREP	Char	2	110		This trip also reported by other HH mem
3	PROXY	Char	2	10		Proxy respondent for person data
41	PUBTRANS	Char	2	116		Used public transit ( $8<$ trptrans<14)
86	RAIL	Char	2	264		Presence/absence of rail
87	REF_AGE	Num	4	266		Age of reference person (yr)
8	REF_EDUC	Char	2	22		Education of HH reference person
88	REF_SEX	Char	2	270		Sex of ref person
4	R_AGE	Num	4	12		Age of sample person
5	R_SEX	Char	2	16		Sex of sample person
42	SEGMENTD	Char	2	118		$1=$ if trip is segmented
43	SITMOST	Char	2	120		Sit or stand most on trip
44	STANDSIT	Char	2	122		1=sat, 2=stood, 3=both on trip
70	STRTTIME	Num	5	204		Start time of trip
94	SUBSTRAT	Num	4	290		Substratum within VARSTRAT
89	TDAY_MON	Num	4	272		Travel day date (MM)
90	TDAY_YR	Num	4	276		Travel day date (YY)
45	TO_B	Char	1	124		Where trip chain ended
71	TRANSFER	Char	2	209		=01 if changed mode from/to pub trans
2	TRAVDAY	Num	4	6		Travel day - day of week
46	TRAVWKND	Char	2	125		Travel day on weekend ( $1=\mathrm{Y}, 2=\mathrm{N}$ )
47	TRPHHACC	Char	2	127		Other HH mem were also on trip?
48	TRPHHVEH	Char	2	129		Was HH vehicle used on trip?
72	TRPMILES	Num	8	211	6.1	Distance (miles)
40	TRPNUM	Num	4	112		Travel day trip number for sample person
49	TRPNUM_A	Num	4	131		Person trip \# of first trip in chain
50	TRPNUM_B	Num	4	135		Person trip \# of last trip in chain
73	TRPTRANS	Char	2	219		Mode of transportation code
74	TRVL_MIN	Num	5	221		Travel time (min)
75	VARSTRAT	Num	4	226		Sample stratum
27	VEHID	Num	4	71		HH vehicle number
93	VTR_FLG	Char	2	288		1=POV trip, respondent drove
51	WAIT_MIN	Num	5	139		Time waited for transportation (min)
52	WHERE	Char	1	144		H=home, W=work, S=other-specify
53	WHOACC_A	Num	4	145		Roster \# of other HH mem on trip G36
54	WHOACC_B	Num	4	149		Roster \# of other HH mem on trip G36
55	WHOACC_C	Num	4	153		Roster \# of other HH mem on trip G36
56	WHOACC_D	Num	4	157		Roster \# of other HH mem on trip G36
57	WHOACC_E	Num	4	161		Roster \# of other HH mem on trip G36
58	WHOACC_F	Num	4	165		Roster \# of other HH mem on trip G36
59	WHOACC_G	Num	4	169		Roster \# of other HH mem on trip G36
60	WHOACC_H	Num	4	173		Roster \# of other HH mem on trip G36


61	WHOACC_I	Num	4	177	Roster \# of other HH mem on trip G36
62	WHOACC_J	Num	4	181	Roster \# of other HH mem on trip G36
63	WHODROVE	Num	4	185	ID of HH mem who drove on trip G38
64	WHYFROM	Char	2	189	1995 purpose - from
65	WHYTO	Char	2	191	1995 purpose - to
66	WHYTRP90	Char	2	193	Purpose of trip (1990 definition)
76	WHYTRP 95	Char	2	230	Purpose of trip (1995 definition)
11	WORKER	Char	2	32	Respondent is a worker
91	WRKCOUNT	Num	4	280	No. of workers in HH
77	WTTRDFIN	Num	8	232	Final travel day trip weight

```
[***]---> PROCC.SAS 1995 PUBLIC USE <---[***]
15:04 Friday, September 5, 1997
```


## CONTENTS PROCEDURE

Data Set Name: DOT_PUBU. HHOLD95	Observations:	42033	
Member Type:	DATA	Variables:	182
Engine:	V611	Indexes:	0
Created:	10:58 Wednesday, August 20, 1997	Observation Length:	663
Last Modified: 10:59 Wednesday, August 20, 1997	Deleted Observations:	0	
Protection:		Compressed:	NO
Data Set Type:	Sorted:	NO	

Label:

-----Engine/Host Dependent Information-----	
Data Set Page Size:	16384
Number of Data Set Pages:	1753
File Format:	607
First Data Page:	2
Max Obs per Page:	24
Obs in First Data Page:	14

-----Alphabetic List of Variables and Attributes-----

6	BUSBLOCK	Num	4	14		Reported dist. to bus (blocks)
7	BUSMILE	Num	4	18		Reported dist. to bus (miles)
8	BUS_AVL	Char	2	22		Bus service available
9	BUS_DIST	Num	8	24	6.1	Distance to bus (miles)
1	CENSUS_D	Char	2	0		Census division
2	CENSUS_R	Char	2	2		Census region
11	DRVRCNT	Num	4	38		Number of drivers in HH
128	GHMXIN	Num	8	371		Basis for geocoding - household
156	HBHHSMLT	Num	5	520		Percent multiple unit housing, BG
157	HBHHSOTH	Num	5	525		Percent other housing, BG
155	HBHHSSNG	Num	5	515		Percent single family housing, BG
166	HBHINCH	Num	5	574		Percent HHs, income \$60000 and up, BG
163	HBHINCL	Num	5	559		Percent HHs, income < \$15000, BG
164	HBHINCM1	Num	5	564		Percent HHs, income \$15000-\$39999, BG
165	HBHINCM2	Num	5	569		Percent HHs, income \$40000-\$59999, BG
162	HBHINMED	Num	7	552		Median household income, BG
161	HBHMEDHS	Num	7	545		Median housing unit value, BG
160	HBHRECNT	Num	5	540		Percent units built last 10 years, BG
154	HBHRESDN	Num	7	508		HU density (units/square mile), BG
158	HBHTNOWN	Num	5	530		Percent owner-occupied housing, BG
159	HBHTNRNT	Num	5	535		Percent renter-occupied housing, BG
153	HBHUR	Char	1	507		Urban/rural code, block group
134	HBP 65P	Num	5	408		Percent 65 \& older, block group
133	HBPCOLGD	Num	5	403		Pcnt Colg Grads (over 25), block group
135	HBPFORBN	Num	5	413		Percent foreign born 1990, block group
136	HBPHISP	Num	5	418		Percent Hispanic, block group
132	HBPHSGD	Num	5	398		Pont HS grads (over 25), block group
131	HBPLTPOV	Num	5	393		Percent families below poverty, blk grp
129	HBPPOPDN	Num	7	379		Population density, block group
130	HBPPOPNO	Num	7	386		Current population, block group
138	HBPRCAA	Num	5	428		Percent African-Am., block group


139	HBPRCASN	Num	5	433
137	HBPRCCAU	Num	5	423
140	HBPRCOTH	Num	5	438
125	HHCMSA	Char	4	361
12	HHELGCNT	Num	4	42
13	HHFAMINC	Char	2	46
27	HHMSA	Char	4	84
14	HHRESP	Char	2	48
15	HHSIZE	Num	4	50
16	HHSTATE	Char	2	54
17	HHSTFIPS	Num	4	56
3	HHVEHCNT	Num	4	4
23	HH_0TO4	Num	4	70
18	HH_HISP	Char	2	60
19	HH_RACE	Char	2	62
20	HOMEOWN	Char	2	64
21	HOMETYPE	Char	2	66
10	HOUSEID	Num	6	32
22	HSTORIES	Char	2	68
181	HTEEMPDN	Num	7	651
170	HTHHSMLT	Num	5	592
171	HTHHSOTH	Num	5	597
169	HTHHSSNG	Num	5	587
180	HTHINCH	Num	5	646
177	HTHINCL	Num	5	631
178	HTHINCM1	Num	5	636
179	HTHINCM2	Num	5	641
176	HTHINMED	Num	7	624
175	HTHMEDHS	Num	7	617
174	HTHRECNT	Num	5	612
168	HTHRESDN	Num	7	580
172	HTHTNOWN	Num	5	602
173	HTHTNRNT	Num	5	607
167	HTHUR	Char	1	579
182	HTINDRET	Num	5	658
146	HTP 65P	Num	5	472
145	HTPCOLGD	Num	5	467
147	HTPFORBN	Num	5	477
148	HTPHISP	Num	5	482
144	HTPHSGD	Num	5	462
143	HTPLTPOV	Num	5	457
141	HTPPOPDN	Num	7	443
142	HTPPOPNO	Num	7	450
150	HTPRCAA	Num	5	492
151	HTPRCASN	Num	5	497
149	HTPRCCAU	Num	5	487
152	HTPRCOTH	Num	5	502
26	INELGCNT	Num	4	80
24	LIF_CYC	Char	2	74
04	MSASIZE	Char	2	8
08	MSTR_MON	Num	4	88
29	MSTR_YR	Num	4	92
30	NONFMFLG	Char	2	96
31	NOTELWKS	Char	2	98
32	NOTELYR	Char	2	100
25	NUMADLT	Num	4	76
33	OTHERPTR	Char	2	102
34	P10_AGE	Num	4	104
35	P10_DRVR	Char	2	108
36	P10_REL	Char	2	110
37	P10_SEX	Char	2	112
38	P10_STAT	Char	2	114

Percent Asian- Am., block group
Percent White, block group
Percent Other races, block group
CMSA identification code
\# of eligible persons in HH
HH family income category
MSA identification code
HH respondent
Total number of persons in HH
State postal code
State FIPS code
No. of vehicles in household (derived)
Number of persons in $H H$ age 0-4
Hispanic status of ref. person
Race of reference person
Tenure of housing unit
Type of housing unit
Household identification number
Stories in apt. building
Jobs per square mile, census tract
Percent multiple unit housing, CT
Percent other housing, CT
Percent single family housing, CT
Percent HHs, income $\$ 60000$ and up, CT
Percent HHs, income < \$15000, CT
Percent HHs, income \$15000-\$39999, CT
Percent HHs, income \$40000-\$59999, CT
Median household income, CT
Median housing unit value, CT
Percent units built last 10 years, CT
HU density (units/square mile), CT
Percent owner-occupied housing, CT
Percent renter-occupied housing, CT
Urban/rural code, census tract
Pct 16+ workplace pop, retl trd ind, CT
Percent 65 \& older, census tract
Pcnt Colg Grads (over 25), census tract
Percent foreign born 1990, census tract
Percent Hispanic, census tract
Pcnt HS grads (over 25), census tract
Percent families below poverty, cen. r.
Population density, census tract
Current population, census tract
Percent African-Am., census tract
Percent Asian- Am., census tract
Percent White, census tract
Percent Other races, census tract
\# of ineligible persons in HH
Family life cycle
Size of MSA of household
Date of master interview - month
Date of master interview - year
Non-family income reported for HH
No. of weeks w/o telephone service
Without phone service in past yer?
\# of adults in HH
Other public transit available
Age of person 10
Driver status of person 10
Person 10 relation to ref. person
Sex of person 10
Response status of person 10

39	P10_WKR	Char	2	116	Worker status of person 10
40	P1_AGE	Num	4	118	Age of person 1
41	P1_DRVR	Char	2	122	Driver status of person 1
42	P1_REL	Char	2	124	Person 1 relation to ref. person
43	P1_SEX	Char	2	126	Sex of person 1
44	P1_STAT	Char	2	128	Response status of person 1
45	P1_WKR	Char	2	130	Worker status of person1
46	P2_AGE	Num	4	132	Age of person 2
47	P2_DRVR	Char	2	136	Driver status of person 2
48	P2_REL	Char	2	138	Person 2 relation to ref. person
49	P2_SEX	Char	2	140	Sex of person 2
50	P2_STAT	Char	2	142	Response status of person 2
51	P2_WKR	Char	2	144	Worker status of person 2
52	P3_AGE	Num	4	146	Age of person 3
53	P3_DRVR	Char	2	150	Driver status of person 3
54	P3_REL	Char	2	152	Person 3 relation to ref. person
55	P3_SEX	Char	2	154	Sex of person 3
56	P3_STAT	Char	2	156	Response status of person 3
57	P3_WKR	Char	2	158	Worker status of person 3
58	P4_AGE	Num	4	160	Age of person 4
59	P 4_DRVR	Char	2	164	Driver status of person 4
61	P4_REL	Char	2	168	Person 4 relation to ref. person
62	P4_SEX	Char	2	170	Sex of person 4
63	P4_STAT	Char	2	172	Response status of person 4
64	P4_WKR	Char	2	174	Worker status of person 4
65	P5_AGE	Num	4	176	Age of person 5
66	P5_DRVR	Char	2	180	Driver status of person 5
67	P5_REL	Char	2	182	Person 5 relation to ref. person
68	P5_SEX	Char	2	184	Sex of person 5
69	P5_STAT	Char	2	186	Response status of person 5
70	P5_WKR	Char	2	188	Worker status of person 5
71	P6_AGE	Num	4	190	Age of person 6
72	P6_DRVR	Char	2	194	Driver status of person 6
73	P6_REL	Char	2	196	Person 6 relation to ref. person
74	P6_SEX	Char	2	198	Sex of person 6
75	P6_STAT	Char	2	200	Response status of person 6
76	P6_WKR	Char	2	202	Worker status of person 6
77	P7_AGE	Num	4	204	Age of person 7
78	P7_DRVR	Char	2	208	Driver status of person 7
79	P7_REL	Char	2	210	Person 7 relation to ref. person
80	P7_SEX	Char	2	212	Sex of person 7
81	P7_STAT	Char	2	214	Response status of person 7
82	P7_WKR	Char	2	216	Worker status of person 7
83	P8_AGE	Num	4	218	Age of person 8
84	P8_DRVR	Char	2	222	Driver status of person 8
85	P8_REL	Char	2	224	Person 8 relation to ref. person
86	P8_SEX	Char	2	226	Sex of person 8
87	P8_STAT	Char	2	228	Response status of person 8
88	P8_WKR	Char	2	230	Worker status of person 8
89	P9_AGE	Num	4	232	Age of person 9
90	P9_DRVR	Char	2	236	Driver status of person 9
91	P9_REL	Char	2	238	Person 9 relation to ref. person
92	P9_SEX	Char	2	240	Sex of person 9
93	P9_STAT	Char	2	242	Response status of person 9
94	P9_WKR	Char	2	244	Worker status of person 9
95	RAIL	Char	2	246	Presence/absence of rail
96	REF_AGE	Num	4	248	Age of reference person (yr)
97	REF_DRVR	Char	2	252	Driver status of reference person
60	REF_EDUC	Char	2	166	Education of HH reference person
98	REF_SEX	Char	2	254	Sex of ref person

\# Variable Type Len Pos Format Label

99	REF_STAT	Char	2	256		Response status of reference person
100	REF_WKR	Char	2	258		Worker status of reference person
101	RESP_CNT	Num	4	260		\# of respondents in HH
102	STCBLOCK	Num	4	264		Reported dist to streetcar (blocks)
103	STCMILE	Num	4	268		Reported dist to streetcar (miles)
104	STC_AVL	Char	2	272		Streetcar service available
105	STC_DIST	Num	8	274	6.1	Distance to streetcar (miles)
106	SUBBLOCK	Num	4	282		Reported dist to subway (blocks)
107	SUBMILE	Num	4	286		Reported dist to subway (miles)
127	SUBSTRAT	Num	4	367		Substratum within VARSTRAT
108	SUB_AVL	Char	2	290		$01=$ if subway service is available
109	SUB_DIST	Num	8	292	6.1	Distance to subway
110	SUM_STAT	Char	3	300		Summary status code for household
111	TDAY_MON	Num	4	303		Travel day date (MM)
112	TDAY_YR	Num	4	307		Travel day date (YY)
113	TELNUMCT	Char	2	311		No. of phone numbers in HH
114	TEL_HHS	Char	2	313		No. of HHs this phone number serves
115	TPER_BMO	Num	4	315		Travel period beginning date (MM)
116	TPER_BYR	Num	4	319		Travel period beginning date (YY)
117	TPER_EMO	Num	4	323		Travel period ending date (MM)
118	TPER_EYR	Num	4	327		Travel period ending date (YY)
119	TRNBLOCK	Num	4	331		Reported dist to train (blocks)
120	TRNMILE	Num	4	335		Reported dist to train (miles)
121	TRN_AVL	Char	2	339		$01=$ if commuter train service available
122	TRN_DIST	Num	8	341	6.1	Distance to commuter train
126	URBAN	Char	2	365		Urbanized area code
5	VARSTRAT	Num	4	10		Sample stratum
123	WRKCOUNT	Num	4	349		No. of workers in HH
124	WTHHFIN	Num	8	353		Final household weight

```
[***]---> PROCC.SAS 1995 PUBLIC USE <---[***]
 15:04 Friday, September 5, 1997
```


## CONTENTS PROCEDURE

Data Set Name: DOT_PUBU. PERSON95	Observations:	95360	
Member Type:	DATA	Variables:	176
Engine:	V611	Indexes:	0
Created:	10:59 Wednesday, August 20, 1997	Observation Length:	479
Last Modified: 11:00 Wednesday, August 20, 1997	Deleted Observations:	0	
Protection:		Compressed:	NO
Data Set Type:	Sorted:	NO	


-----Engine/Host Dependent Informatio	
Data Set Page Size:	14848
Number of Data Set Pages:	3181
File Format:	607
First Data Page:	2
Max Obs per Page:	30
Obs in First Data Page:	15

-----Alphabetic List of Variables and Attributes-----

98	ALWYSDRV	Char	2	234		Always the driver?
133	CENSUS_D	Char	2	308		Census division
134	CENSUS_R	Char	2	310		Census region
129	DIARYCMP	Char	2	300		Who completed diary
131	DIARYGET	Char	2	304		Can get diary now
130	DIARYHAV	Char	2	302		Have the diary now
54	DISTTOWK	Num	8	120	6.2	One-way distance to work
9	DRIVER	Char	2	26		Person is a driver D9
145	DRVRCNT	Num	4	346		Number of drivers in HH
13	DTACDT	Char	2	34		Worry about traffic accident
10	DTCONJ	Char	2	28		Highway congestion
18	DTCRIME	Char	2	44		Worry about crimes against motorists
12	DTNTFMLR	Char	2	32		Unfamiliar local areas or neighborhood
11	DTPAVE	Char	2	30		Rough pavement on highways
15	DTPOLLTN	Char	2	38		Air pollution by cars, trucks, and uses
17	DTSTRTS	Char	2	42		Rough pavement on neighborhood strets
16	DTTIEUP	Char	2	40		Traffic tie-ups or road constructio
14	DTWALK	Char	2	36		Poor walkways or sidewalks
50	EDUC	Char	2	112		Highest grade or yr of school complted
28	FQSTBELT	Char	2	64		How often wear seat belt when drivig
52	GT1JBLWK	Char	2	116		Have more than one job last week
163	GWKXIN	Num	8	404		Basis for geocoding - workplacelocation
167	HBHINMED	Num	7	427		Median household income, BG
166	HBHRESDN	Num	7	420		HU density (units/square mile), BG
165	HBHUR	Char	1	419		Urban/rural code, block group
164	HBPPOPDN	Num	7	412		Population density, block group
161	HHCMSA	Char	4	396		CMSA identification code
146	HHFAMINC	Char	2	350		HH family income category
152	HHMSA	Char	4	364		MSA identification code
147	HHRESP	Char	2	352		HH respondent
148	HHSIZE	Num	4	354		Total number of persons in HH
142	HHVEHCNT	Num	4	336		No. of vehicles in household (derived)


149	HH_HISP	Char	2	358		Hispanic status of ref. person
150	HH_RACE	Char	2	360		Race of reference person
1	HOUSEID	Num	6	0		Household identification number
139	INTRVMON	Num	4	326		Person interview date - month
140	INTRVYR	Num	4	330		Person interview date - year
51	JOBLSTWK	Char	2	114		Have full, part time job last wk or not
151	LIF_CYC	Char	2	362		Family life cycle
143	MSASIZE	Char	2	340		Size of MSA of household
153	MSTR_MON	Num	4	368		Date of master interview - month
154	MSTR_YR	Num	4	372		Date of master interview - year
109	NCCOMCR	Char	2	256		Not carpool-have company car
101	NCINCVNT	Char	2	240		Not carpool-it's inconvenient
99	NCIRRHR	Char	2	236		Not carpool-irregular/unusual hours
108	NCLVFAR	Char	2	254		Not carpool-live far from work
102	NCNEEDCR	Char	2	242		Not carpool-need car at/bfr/aft work
106	NCNEVER	Char	2	250		Not carpool-never thought of it
107	NCNLIKE	Char	2	252		Not carpool-don't like to do it
100	NCNOONE	Char	2	238		Not carpool-no one to carpool with
105	NCONLY	Char	2	248		Not carpool-only one works there
104	NCOTHRES	Char	2	246		Not carpool-other reasons
103	NCSHRTDI	Char	2	244		Not carpool-short distance/unnecessary
132	NONFMINC	Char	2	306		Individual income category
112	NPT2EXPV	Char	2	262		Public transp. too expensive
110	NPT2FRWK	Char	2	258		Public trans. not available at work
111	NPT2MCTM	Char	2	260		Public trans. takes too much time
120	NPTCOMCR	Char	2	278		Not used public trans. have com car
118	NPTDLPT	Char	2	274		Not used public trans. dont like to
115	NPTFMHM	Char	2	268		Public trans. stops too far from home
119	NPTHVCAR	Char	2	276		Not used public trans. have own car
117	NPTLVCLS	Char	2	272		Not used public trans. short distance
114	NPTNTCNV	Char	2	266		Public trans. schedule not convenient
116	NPTOTHER	Char	2	270		Not used public trans. for other easons
113	NPTOTHTG	Char	2	264		Need own vehicle to do other thins
33	NSBBACK	Char	2	74		Not wear seat belt when in back sat
30	NSBBROKE	Char	2	68		Not wear seat belt when broken/unavail
35	NSBDRVR	Char	2	78		Not wear seat belt when driver
29	NSBFGET	Char	2	66		Not wear seat belt when forget
40	NSBHURRY	Char	2	88		Not wear seat belt when in a hurry
32	NSBLONG	Char	2	72		Not wear seat belt when take long trip
43	NSBMED	Char	2	94		Not wear seat belt: medical reasons
44	NSBNLIKE	Char	2	96		Not wear seat belt: don't like to
42	NSBNOASK	Char	2	92		Not wear seat belt when not asked
39	NSBOTHER	Char	2	86		Not wear seat belt: other specify
46	NSBPOLIC	Char	2	100		Not wear seat belt:police not around
34	NSBPSNG	Char	2	76		Not wear seat belt when passenger
31	NSBSHORT	Char	2	70		Not wear seat belt when short trips
41	NSBSPCLH	Char	2	90		Not wear seat belt w/ certain clothes
38	NSBSPPER	Char	2	84		Not wear seat belt w/ a certain person
36	NSBSPVEH	Char	2	80		Not wear seat belt when in certain veh
37	NSBTOWN	Char	2	82		Not wear seat belt when in town/city
45	NSBTOWRK	Char	2	98		Not wear seat belt when going to work
47	NSBWTHR	Char	2	102		Not wear seat belt when good weather
137	OUTCNTRY	Char	2	322		Out of country
95	PARKAMNT	Num	8	222	7.2	Parking fee to pay at work
96	PARKCODE	Char	2	230		Unit of amount paid for parking at work
94	PAYTOPRK	Char	2	220		Pay parking at work?


2	PERSONID	Num	4	6	Person ID number
3	PROXY	Char	2	10	Proxy respondent for person data
27	PTCARND	Char	2	62	Having access to a car when you need it
25	PTCOST	Char	2	58	Cost of travel by public transportation
23	PTNTCLN	Char	2	54	Transit stations/vehicles not clean
20	PTCROWD	Char	2	48	Difficulty w/ crowding or getting a eat
22	PTCRIME	Char	2	52	Worry w/ crime on public transportaton
21	PTTIMEON	Char	2	50	Time spent on public transportation
26	PTTMND	Char	2	60	Public transp avail time of day needed
24	PTTRANSF	Char	2	56	Time and aggrevation with transferes
19	PTUSED	Char	2	46	How often used public transportation
155	RAIL	Char	2	376	Presence/absence of rail
156	REF_AGE	Num	4	378	Age of reference person (yr)
136	REF_EDUC	Char	2	320	Education of HH reference person
5	REF_ROST	Num	4	14	Reference roster number
157	REF_SEX	Char	2	382	Sex of ref person
6	R_AGE	Num	4	18	Age of sample person
4	R_AGEFLG	Char	2	12	Age imputed
8	R_RELAT	Char	2	24	Relationship to ref person
7	R_SEX	Char	2	22	Sex of sample person
138	SAMEPLC	Char	2	324	Same place all day
89	SIT2AMTR	Char	2	210	Usually sit or stand most on AMTRAK
90	SIT2BUS	Char	2	212	Usually sit or stand most on bus
91	SIT2SBWY	Char	2	214	Usually sit or stand most on subway
92	SIT2STCR	Char	2	216	Usually sit/stand most on strcr/trolley
93	SIT2TRAN	Char	2	218	Usually sit or stand most on comm train
84	SITAMTR	Char	2	200	Usually sit, stand or both on AMTRAK
85	SITBUS	Char	2	202	Usually sit, stand or both on bus
86	SITSBWY	Char	2	204	Usually sit/stand/both on rail/subway
87	SITSTCR	Char	2	206	Usually sit/stand/both on trtcr/trolley
88	SITTRAN	Char	2	208	Usually sit/stand/both oncommuter train
162	SUBSTRAT	Num	4	400	Substratum within VARSTRAT
158	TDAY_MON	Num	4	384	Travel day date (MM)
159	TDAY_YR	Num	4	388	Travel day date (YY)
56	TIMELEAV	Num	4	130	Time usually leave for work
57	TIMETOWK	Num	4	134	Minutes it took from home to work
55	UNITDIST	Char	2	128	Unit of distance to work
97	USULDRV	Char	2	232	Usually drive to work alone or carpool
144	VARSTRAT	Num	4	342	Sample stratum
79	WAITAMTR	Num	4	180	Minutes wait for AMTRAK
80	WAITBUS	Num	4	184	Minutes wait for bus
81	WAITSBWY	Num	4	188	Minutes wait for elevated rail/subway
82	WAITSTCR	Num	4	192	Minutes wait for streetcar/trolley
83	WAITTRAN	Num	4	196	Minutes wait for commuter train
71	WKBYAIR	Char	2	164	Get to work usually by airplane
67	WKBYAMTR	Char	2	156	Get to work usually by AMTRAK
58	WKBYAUTO	Char	2	138	Get to work usually by auto
73	WKBYBIKE	Char	2	168	Get to work usually by bicycle
66	WKBYBUS	Char	2	154	Get to work usually by bus
76	WKBYHOME	Char	2	174	Worked from home
64	WKBYMCYC	Char	2	150	Get to work usually by motorcycle
65	WKBYOPOV	Char	2	152	Get to work usually by other POV
77	WKBYOTHR	Char	2	176	Get to work by other means
62	WKBYOTTK	Char	2	146	Get to work usually by other truck
63	WKBYRV	Char	2	148	Get to work usually by RV
70	WKBYSBWY	Char	2	162	Get to work usually by elev. ail/subway
75	WKBYSCBS	Char	2	172	Get to work usually by schoolbus
69	WKBYSTCR	Char	2	160	Get to work usually by strtcar/trolley
72	WKBYTAXI	Char	2	166	Get to work usually by taxi
68	WKBYTRAN	Char	2	158	Get to work usually by commuter train

\# Variable Type Len Pos Format Label

61	WKBYTRUK	Char	2	144	Get to work usually by pickup truck
60	WKBYUV	Char	2	142	Get to work usually by UV
59	WKBYVAN	Char	2	140	Get to work usually by van
74	WKBYWALK	Char	2	170	Get to work usually by walking
122	WKFMHM2M	Char	2	282	Worked from home any last two month?
121	WKFMHMLW	Char	2	280	Worked from home any last week?
123	WKFMHMXX	Char	2	284	How often worked from home-2 months
128	WORKDAYS	Num	4	296	Days per week on job
141	WORKER	Char	2	334	Respondent is a worker
176	WORKLOC	Num	5	474	Work location
53	WORKSTAT	Char	2	118	State of workplace
160	WRKCOUNT	Num	4	392	No. of workers in HH
124	WRKDRIVE	Char	2	286	Drive lisensed vehicle in work
126	WRKMILES	Num	4	290	Travel day miles driven on job
78	WRKTRANS	Char	2	178	Main means of transportation to work
125	WRKTRPS	Char	2	288	10 or more trips on job during day
127	WRKVTYPE	Char	2	294	Type vehicle driven on job
168	WTEMPLDN	Num	5	434	Jobs per square mile, census tract
169	WTINDAGR	Num	5	439	Pct $16+$ workers, agr/mining/const, CT
174	WTINDFIN	Num	5	464	Pct 16+ workers, fin/ins/rl est ind, CT
170	WTINDMAN	Num	5	444	Pct 16+ workers, manuf. industries, CT
173	WTINDRET	Num	5	459	Pct 16+ workplace pop, retl trd ind, CT
175	WTINDSVC	Num	5	469	Pct 16+ workers, service industries, CT
171	WTINDTRN	Num	5	449	Pct 16+ workers, tran/comm/ util ind, T
172	WTINDWHL	Num	5	454	Pct 16+ workers, wholesale trade ind, CT
135	WTPERFIN	Num	8	312	Final person wt person-nonresp adjusted
48	YEARMILE	Num	6	104	How many miles did you drive per year
49	YMILEFLG	Char	2	110	Yearmile mileage was capped at 200,000

```
[***]---> PROCC.SAS 1995 PUBLIC USE <---[***]
 15:04 Friday, September 5, 1997
```

CONTENTS PROCEDURE

Data Set Name: DOT_PUBU. PERTRP95	Observations:	29647	
Member Type:	DATA	Variables:	48
Engine:	V611	Indexes:	0
Created:	$11: 06$ Wednesday, August 20, 1997	Observation Length:	165
Last Modified: 11:06 Wednesday, August 20, 1997	Deleted Observations: 0		
Protection:		Compressed:	NO
Data Set Type:		Sorted:	NO

Label:
-----Engine/Host Dependent Information-----
Data Set Page Size: 8192
Number of Data Set Pages: 606
File Format: 607
First Data Page: 1
Max Obs per Page: 49
Obs in First Data Page: 11
-----Alphabetic List of Variables and Attributes-----

\#	Variable	Type	Len	Pos	Label
42	CALCDIST	Num	5	132	Calc distance home to destination
5	CENSUS_D	Char	2	10	Census division
6	CENSUS_R	Char	2	12	Census region
33	COUNTRY	Char	3	103	Destination country code
34	DESTSTAT	Char	2	106	Destination state
4	DRIVER	Char	2	8	Person is a driver D9
13	DRVRCNT	Num	4	36	Number of drivers in HH
43	DRVR_TPT	Char	2	137	Person was the main driver on trip
48	HBHINMED	Num	7	158	Median household income, BG
47	HBHRESDN	Num	7	151	HU density (units/square mile), BG
46	HBHUR	Char	1	150	Urban/rural code, block group
45	HBPPOPDN	Num	7	143	Population density, block group
32	HHCMSA	Char	4	99	CMSA identification code
14	HHFAMINC	Char	2	40	HH family income category
19	HHMSA	Char	4	52	MSA identification code
15	HHSIZE	Num	4	42	Total number of persons in HH
35	HHTRPID	Num	4	108	Trip number for household travel eriod
8	HHVEHCNT	Num	4	16	No. of vehicles in household (derived)
16	HH_HISP	Char	2	46	Hispanic status of ref. person
17	HH_RACE	Char	2	48	Race of reference person
12	HOUSEID	Num	6	30	Household identification number
18	LIF_CYC	Char	2	50	Family life cycle
9	MSASIZE	Char	2	20	Size of MSA of household
20	MSTR_MON	Num	4	56	Date of master interview - month
21	MSTR_YR	Num	4	60	Date of master interview - year
36	PERSONID	Num	4	112	Person ID number
1	PROXY	Char	2	0	Proxy respondent for person data
22	RAIL	Char	2	64	Presence/absence of rail
37	RET_MON	Char	2	116	Return month of travel period trip
38	RET_YR	Char	2	118	Return year of travel period trip
2	R_AGE	Num	4	2	Age of sample person


\#	Variable	Type Len Pos	Format Label		
-_-------					
3	R_SEX	Char	2	6	Sex of sample person
44	SUBSTRAT	Num	4	139	Substratum within VARSTRAT
23	SUM_STAT	Char	3	66	Summary status code for household
24	TDAY_MON	Num	4	69	Travel day date (MM)
25	TDAY_YR	Num	4	73	Travel day date (YY)
30	TOWHYPAS	Char	2	93	Trip purpose for passenger
39	TOWHYTRP	Char	2	120	Trip purpose travel period trip
40	TO_TRANS	Char	2	122	Main transporation means - period trip
26	TPER_BMO	Num	4	77	Travel period beginning date (MM)
27	TPER_BYR	Num	4	81	Travel period beginning date (YY)
28	TPER_EMO	Num	4	85	Travel period ending date (MM)
29	TPER_EYR	Num	4	89	Travel period ending date (YY)
10	TRIPNUM	Num	4	22	Persons travel period trip number
11	VARSTRAT	Num	4	26	Sample stratum
7	WORKER	Char	2	14	Respondent is a worker
31	WRKCOUNT	Num	4	95	No. of workers in HH
41	WTTRPFIN	Num	8	124	Final travel period trip weight

```
[***]---> PROCC.SAS 1995 PUBLIC USE <---[***]

\section*{CONTENTS PROCEDURE}
\begin{tabular}{lllc}
Data Set Name: DOT_PUBU .SEGTRP95 & Observations: & 3779 \\
Member Type: & DATA & Variables: & 48 \\
Engine: & V611 & Indexes: & 0 \\
Created: & 11:00 Wednesday, August 20, 1997 & Observation Length: & 169 \\
Last Modified: 11:00 Wednesday, August 20, 1997 & Deleted Observations: 0 \\
& & & \\
Protection: & & Compressed: & NO \\
Data Set Type: & & & NO \\
Label: & & &
\end{tabular}
\begin{tabular}{lll}
_----Engine/Host Dependent & Information & \\
Data Set Page Size: & 8192 \\
Number of Data Set Pages: & 80 \\
File Format: & 607 \\
First Data Page: & 1 \\
Max Obs per Page: & 48 \\
Obs in First Data Page: & 11
\end{tabular}
-----Alphabetic List of Variables and Attributes-----
\begin{tabular}{|c|c|c|c|c|c|}
\hline 5 & CENSUS_D & Char & 2 & 14 & Census division \\
\hline 6 & CENSUS_R & Char & 2 & 16 & Census region \\
\hline 8 & DRIVER & Char & 2 & 20 & Person is a driver D9 \\
\hline 36 & DRVRCNT & Num & 4 & 127 & Number of drivers in HH \\
\hline 47 & HHCMSA & Char & 4 & 161 & CMSA identification code \\
\hline 37 & HHFAMINC & Char & 2 & 131 & HH family income category \\
\hline 42 & HHMSA & Char & 4 & 143 & MSA identification code \\
\hline 38 & HHSIZE & Num & 4 & 133 & Total number of persons in HH \\
\hline 13 & HHTRIPID & Num & 4 & 34 & Trip number for household travel day \\
\hline 9 & HHVEHCNT & Num & 4 & 22 & No. of vehicles in household (derived) \\
\hline 39 & HH_HISP & Char & 2 & 137 & Hispanic status of ref. person \\
\hline 40 & HH_RACE & Char & 2 & 139 & Race of reference person \\
\hline 1 & HOUSEID & Num & 6 & 0 & Household identification number \\
\hline 10 & HOWFARU & Char & 2 & 26 & Units of reported dist: B) locks, M)iles \\
\hline 41 & LIF_CYC & Char & 2 & 141 & Family life cycle \\
\hline 11 & MSASIZE & Char & 2 & 28 & Size of MSA of household \\
\hline 14 & PERSONID & Num & 4 & 38 & Person ID number \\
\hline 2 & PROXY & Char & 2 & 6 & Proxy respondent for person data \\
\hline 43 & RAIL & Char & 2 & 147 & Presence/absence of rail \\
\hline 3 & R_AGE & Num & 4 & 8 & Age of sample person \\
\hline 4 & R_SEX & Char & 2 & 12 & Sex of sample person \\
\hline 15 & SEG1TIME & Num & 5 & 42 & Start time for segment 1 \\
\hline 16 & SEG1TRAN & Char & 2 & 47 & Mode code for segment 1 \\
\hline 17 & SEG1_MIN & Num & 5 & 49 & Duration of segment 1 (min) \\
\hline 18 & SEG2TIME & Num & 5 & 54 & Start time for segment 2 \\
\hline 19 & SEG2TRAN & Char & 2 & 59 & Mode code for segment 2 \\
\hline 20 & SEG2_MIN & Num & 5 & 61 & Duration of segment 2 (min) \\
\hline 21 & SEG3TIME & Num & 5 & 66 & Start time for segment 3 \\
\hline 22 & SEG3TRAN & Char & 2 & 71 & Mode code for segment 3 \\
\hline 23 & SEG3_MIN & Num & 5 & 73 & Duration of segment 3 (min) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 24 & SEG4TIME & Num & 5 & 78 & & Start time for segment 4 \\
\hline 25 & SEG4TRAN & Char & 2 & 83 & & Mode code for segment 4 \\
\hline 26 & SEG4_MIN & Num & 5 & 85 & & Duration of segment 4 (min) \\
\hline 27 & SEGNUM & Char & 1 & 90 & & Number of segments (derived) \\
\hline 28 & STRTTIME & Num & 5 & 91 & & Start time of trip \\
\hline 48 & SUBSTRAT & Num & 4 & 165 & & Substratum within VARSTRAT \\
\hline 44 & TDAY_MON & Num & 4 & 149 & & Travel day date (MM) \\
\hline 45 & TDAY_YR & Num & 4 & 153 & & Travel day date (YY) \\
\hline 29 & TRANSFER & Char & 2 & 96 & & =01 if changed mode from/to pub trans \\
\hline 30 & TRPMILES & Num & 8 & 98 & 6.1 & Distance (miles) \\
\hline 12 & TRPNUM & Num & 4 & 30 & & Travel day trip number for respondent \\
\hline 31 & TRPTRANS & Char & 2 & 106 & & Mode of transportation code \\
\hline 32 & TRVL_MIN & Num & 5 & 108 & & Travel time (min) \\
\hline 33 & VARSTRAT & Num & 4 & 113 & & Sample stratum \\
\hline 34 & WHYTRP 95 & Char & 2 & 117 & & Purpose of trip (1995 definition) \\
\hline 7 & WORKER & Char & 2 & 18 & & Respondent is a worker \\
\hline 46 & WRKCOUNT & Num & 4 & 157 & & No. of workers in HH \\
\hline 35 & WTTRDFIN & Num & 8 & 119 & & Final travel day trip weight \\
\hline
\end{tabular}
```

[***]---> PROCC.SAS 1995 PUBLIC USE <---[***] 20
15:04 Friday, September 5, 1997

```

CONTENTS PROCEDURE
\begin{tabular}{lllc}
Data Set Name: DOT_PUBU. VEHICL95 & Observations: & 75217 \\
Member Type: & DATA & Variables: & 55 \\
Engine: & V611 & Indexes: & 0 \\
Created: & \(9: 42\) Friday, September 5, 1997 & Observation Length: & 211 \\
Last Modified: 9:42 Friday, September 5, 1997 & Deleted Observations: 0 \\
Protection: & & Compressed: & NO \\
Data Set Type: & & Sorted: & NO
\end{tabular}

Label:
\begin{tabular}{ll}
-----Engine/Host Dependent Information----- \\
Data Set Page Size: & 8192 \\
Number of Data Set Pages: & 1981 \\
File Format: & 607 \\
First Data Page: & 1 \\
Max Obs per Page: & 38 \\
Obs in First Data Page: & 4
\end{tabular}
-----Alphabetic List of Variables and Attributes-----
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 10 & ANNMILES & Num & 5 & 34 & 6. & Self-Reported annualized vmt \\
\hline 3 & ANNUALZD & Num & 8 & 14 & & Odometer based annualized vmt \\
\hline 5 & ANN_EDIT & Char & 2 & 24 & & Flag any edits/adjustments to ANNUALZD \\
\hline 4 & ANN_FLG & Char & 2 & 22 & & Reasons for missing ANNUALZD \\
\hline 6 & ANN_OUT & Char & 2 & 26 & & Flag identifying ANNUALZD outlier alues \\
\hline 55 & ANULZDSE & Num & 8 & 203 & & Standard error of ANNUALZD estimate \\
\hline 7 & CENSUS_D & Char & 2 & 28 & & Census division \\
\hline 8 & CENSUS_R & Char & 2 & 30 & & Census region \\
\hline 25 & DRVRCNT & Num & 4 & 82 & & Number of drivers in HH \\
\hline 54 & HBHINMED & Num & 7 & 196 & & Median household income, BG \\
\hline 53 & HBHRESDN & Num & 7 & 189 & & HU density (units/square mile), BG \\
\hline 52 & HBHUR & Char & 1 & 188 & & Urban/rural code, block group \\
\hline 51 & HBPPOPDN & Num & 7 & 181 & & Population density, block group \\
\hline 41 & HHCMSA & Char & 4 & 139 & & CMSA identification code \\
\hline 26 & HHELGCNT & Num & 4 & 86 & & \# of eligible persons in HH \\
\hline 27 & HHFAMINC & Char & 2 & 90 & & HH family income category \\
\hline 32 & HHMSA & Char & 4 & 102 & & MSA identification code \\
\hline 28 & HHSIZE & Num & 4 & 92 & & Total number of persons in HH \\
\hline 11 & HHVEHCNT & Num & 4 & 39 & & No. of vehicles in household (derived) \\
\hline 29 & HH_HISP & Char & 2 & 96 & & Hispanic status of ref. person \\
\hline 30 & HH_RACE & Char & 2 & 98 & & Race of reference person \\
\hline 1 & HOUSEID & Num & 8 & 0 & & Household identification number \\
\hline 31 & LIF_CYC & Char & 2 & 100 & & Family life cycle \\
\hline 12 & MAINDRVR & Char & 2 & 43 & & Does one HH mem. usually drive this veh \\
\hline 13 & MAKECODE & Char & 2 & 45 & & First 2 char of NASS code \\
\hline 14 & MILELIMT & Char & 2 & 47 & & \(=1\) if annmiles capped at 115K \\
\hline 15 & MODLCODE & Char & 3 & 49 & & Last 3 char of NASS code \\
\hline 9 & MSASIZE & Char & 2 & 32 & & Size of MSA of household \\
\hline 33 & MSTR_MON & Num & 4 & 106 & & Date of master interview - month \\
\hline 34 & MSTR_YR & Num & 4 & 110 & & Date of master interview - year \\
\hline 42 & OD_DAY1 & Num & 4 & 143 & & Date of first odometer reading - day \\
\hline 45 & OD_DAY2 & Num & 4 & 155 & & Date of second odomete reading - day \\
\hline
\end{tabular}

\section*{APPENDIX J DOCUMENTATION NOTES}

\section*{NOTES ON THE DATA FILES}

Conventions followed include the following:
Yes/No questions- coded as \(01=\) yes and \(02=\) no.
Calendar Dates- separate variables were constructed for the month, day and year of reported dates. An exception is the variable TDAY_ALL, in which the household's travel day date is formated (YYMMDD).

Times - all reported time variables are in military time from 0000 to 2359.

Legitimate skip codes- questions intentionally skipped in the instrument were generally denoted by a field filled with 9 's with a 4 in the last digit.

Dont know - responses of dont know or not ascertained were generally denoted by a field filled with 9's with an 8 in the last digit.

Refused - responses of refused were generally denoted by a field completedly filled with 9's

Survey weights- there is one only one weight variable on each file. It is the weight that is appropriate for use in preparing tabulations of data from that file.

\section*{NOTES ON SPECIFIC VARIABLES}

ANNUALZD Estimate of annual mileage for the vehicle, computed by Oak Ridge National Laboratory based upon two reported odometer readings and other data.

ANULZDSE Estimated standard error of the ANNUALZD value, computed by Oak Ridge National Laboratory.

BUS_DIST Responses in blocks have been converted to miles, using 9 blocks per mile (less than one block converted to 0.1 mile).

CALCDIST Straight-line (curve of the earth) distance between the geocoded
household location and the reported destination city for the travel period trip.

CHAIN NOTE: The chains described here were created to recode trip purposes to those used in the 1990 NPTS. They do NOT necessarily represent chains that would be created in a traditional trip chaining analysis.
Each trip reported for a respondent was assigned to a "chain", after ordering the persons travel day trips by STRTTIME from 4:00am to 3:59am.. Trips with missing STRTTIME values were sorted to the beginning of the list. All trips within a chain are sequentially numbered in the variable CHAINTRP. Variables TRPNUM_A and TRPNUM_B identify the first and last trips in each chain. The variables FROM_A and TO_B identify the origin and destination of the chains in terms of home, work or other location (H, W, S). Some of these chains do not begin or end at either home or work, as some respondents did not take such trips. Also, some persons reported only a single trip on travel day, such as returning home from vacation. It is possible to select a subset of chains that are anchored by home and work using FROM_A and TO_B. Note that some "Chains"involve only one or two trips and would be excluded from most trip chaining analyses.

DAYNGHT2 New variable to revised DAYNIGHT. The original DAYNIGHT was mis-coded on some records.

DISTTOWK Questionnaire responses of \(996=\) less than one block and \(997=\) one-half mile have been converted to miles using 9 blocks per mile. This travel day trip file variable has special codes of \(9993.0=\) no fixed workplace; 9994.0=legitimate skip; 9995.0=works at or out of home; 9998.0=not ascertained; and 9999.0=refused.

DRVR_FLG This variable was re-coded from 01 " meaning yes to 02 " on some records. 01 " indicates that the sample person drove on the trip, from the originally released data. (Changed August 1999)

DRVR_FLG was inaccurately coded "01" for trips other than personally operated vehicles (TRPTRANS modes "01" through "08"). For records where the TRPTRANS variable was not "01" through " 08 " but show the DRVR_FLG as being "01", that DRVR_FLG variable was changed to "02".

DRVR_TPT Imputed variable indicating that the respondent was the driver on the (personally-owned vehicle) travel period trip. The variable was imputed by Oak Ridge National Laboratory staff based on analysis of the travel
period trips reported by all members of the household.
DWELSEC2 This new variable corresponds to DWELTIM2, but in seconds. It is Anticipated that most people using this data set will be using the SAS software package. As SAS internal uses time variable in seconds, this was provided for ease in use to generate time calculations.

DWELTIME The time spent at the destination of the previous trip, as calculated from the variables STRTTIME and TRVL_MIN for travel day trips. Not computed for each persons first trip nor for trips where these variables were not known or refused. The DWELTIME values were used in defining trip chains and the 1990 NPTS trip purpose variables. Note that some of the reported trip start times and durations resulted in negative values of the variable DWELTIME; editing of trips for persons with negative values led to correction of some duplicate trip reporting and AM/PM reporting problems.

DWELTIM2 This is a new variable comparable to DWELTIME except that DWELTIM2 is the time spent at the destination of the current record and is calculated using the revised STRTTIM2 variable. This correctly coincides with the trip purpose of the destination, so if dwell times were estimated by purpose, the analysis would straightforward. Negative dwell times were set to missing.

The dwell times were calculated for the minutes spent at the destination of the previous trip, before the starting the current trip (the record on which the public use data set posted dwell time). This variable is missing for each persons first trip of the day, and when the start time of the trip (STRTTIME) or the minutes in travel (TRVL_MIN) were not known.

The negative dwell time occurred because of the respondents mistakes in relaying information about the start time of the previous trip, and the total minutes the trip took, in relation to the start time of the next trip. Of the 321,024 records with calculated dwell times 11,246 were negative. If these were included in an analysis, the average dwell time would be 117 minutes, if they are excluded, the average is 122 minutes.

DWEL2_HM This new variable corresponds to DWELTIME2, and in easy to read HH:MM format.

FROM_A See CHAIN

HHFAMINC The categories of household income were determined from responses to the questions in Section K and are coded as follows:
01 = less than \$5,000
\(02=\$ 5,000\) to \(\$ 9,999\)
\(03=\$ 10,000\) to \(\$ 14,999\)
\(04=\$ 15,000\) to \(\$ 19,999\)
\(05=\$ 20,000\) to \(\$ 24,999\)
\(06=\$ 25,000\) to \(\$ 29,999\)
07 = \$30,000 to \$34,999
\(08=\$ 35,000\) to \(\$ 39,999\)
\(09=\$ 40,000\) to \(\$ 44,999\)
\(10=\$ 45,000\) to \(\$ 49,999\)
\(11=\$ 50,000\) to \(\$ 54,999\)
\(12=\$ 55,000\) to \(\$ 59,999\)
13 = \$60,000 to \$64,999
14 = \$65,000 to \$69,999
\(15=\$ 70,000\) to \(\$ 74,999\)
\(16=\$ 75,000\) to \(\$ 79,999\)
\(17=\$ 80,000\) to \(\$ 99,999\)
\(18=\$ 100,000\) and over

HHTRIPID A sequential numbering of the travel day trips reported by all members of the household. These numbers run from 1 to 72 and from 101 to 119; the latter are trips recorded in supplemental files. Missing trip number indicate that some reported trips have been deleted or combined with other trips.

HHZIP Note that \(00098=\) not ascertained and \(00099=\) refused.
LIF_CYC The life cycle variable was derived from the household's reported number of adults, number and age of children, and whether or not any persons were reported to be retired. Households were classified as follows:
\begin{tabular}{llll}
No. Adults & Any retired? & Youngest Child & LIF_CYC \\
1 & no & none present & 1 \\
2 or more & no & none present & 2 \\
1 & N/A & \(0-5\) & 3 \\
2 or more & N/A & \(0-5\) & 4
\end{tabular}
\begin{tabular}{llll}
1 & \(\mathrm{~N} / \mathrm{A}\) & \(6-15\) & 5 \\
2 or more & \(\mathrm{N} / \mathrm{A}\) & \(6-15\) & 6 \\
1 & \(\mathrm{~N} / \mathrm{A}\) & \(16-21\) & 7 \\
2 or more & \(\mathrm{N} / \mathrm{A}\) & \(16-21\) & 8 \\
1 & yes & none present & 9 \\
2 or more & yes & none present & 10
\end{tabular}

MATCH A variable whose value is the HHTRIPID for a previously reported trip.
MSASIZE Classification of the households by MSA population:
\[
\begin{aligned}
1 & =\text { Less than } 250,000 \\
2 & =250,000-499,999 \\
3 & =500,000-999,999 \\
4 & =1,000,000-2,999,999 \\
5 & =3,000,000 \text { or more } \\
94 & =\text { not in an MSA or legitimate skip }
\end{aligned}
\]

Pi_STAT The Pi_STAT variables indicate the response status of each household member (\(\mathrm{i}=1,2, \ldots\)) in the variables P1_STAT, P2_STAT, etc. The codes for these variables are the following:
\begin{tabular}{ll}
Code & Description \\
1 & Ineligible - too young \\
2 & Other ineligible \\
3 & Complete - self interview \\
4 & Complete - proxy interview \\
5 & No contact made \\
6 & Refused \\
7 & Contact made - time expired \\
8 & Other non-interview
\end{tabular}

Pi_REL One of the household members is identified as the household' reference person; that is, the person or one of the persons who owns or rents the home. The reference person may or may not be the household respondent. The Pi_REL variables show the relationship of each household member (all ages included) to the reference person, as reported in question D-7.

PREVREP A variable that indicates the trip had been reported previously, by another respondent from the same household, prior to the current persons interview. When several family members were present on a trip, several travel questions were asked only of the first person who reported the trip.

PTCRIME Worry with crime on public transportation". Data labels were reversed in the public use data set, with PTNTCLN. This variable is correction to the original release.

PTNTCLN Transit stations/vehicle not clean" Data labels were reversed in the Public use data set, with PTCRIME. This variable is correction to the original release.

PUBTRANS Variable indicating public transit was the main means of transportation for the trip. For the 1995 NPTS, public transit includes travel by bus, Amtrak, commuter train, streetcar/trolley, and subway/elevated rail.

R_AGE The variable R_AGE is reported by individual year of age from ages 5-75. For confidentiality reasons, ages 76-102 are consolidated in groups as follows:

77 = Ages 76-79
82 = Ages 80-84
88 = Ages 85-102
The consolidated numbers above reflect the arithmetic mean of the ages for each group, thus they can be used in computing average age.

RAIL Primary stratification variable defined in order to over-sample large (at least 1,250,000 population) urban areas with subway/elevated rail systems. Due to special sample allocations needed to implement the add-on samples in New York and Massachusetts, the variable did not apply for the New York City and Boston areas.

RET_YR The value 98 indicates that the date was not determined.
STC_DIST Responses in blocks have been converted to miles, using 9 blocks per mile (less than one block converted to 0.1 mile).

STRTTIM2 New variable revising STRTTIME. There were some inconsistencies in The original STRTTIME.

STRTTIME was mis-coded as '1099'. When examine the trip records
before and after is was found that the actual time should have been coded as '1059', '1200', '159' or '9998'. The STRTTIME and STRTTIM2 variables are the trip begin times in military time format.

SUB_DIST Responses in blocks have been converted to miles, using 9 blocks per mile (less than one block converted to 0.1 mile).

SUBSTRAT Sub-stratum within each VARSTRAT major stratum. SUBSTRAT \(=1\) indicates the household telephone number was selected from blocks of 100 telephone numbers containing zero listed numbers; SUBSTRAT \(=2\) indicates selection from sub-stratum of blocks containing one or more listed numbers per 100-block.

TO_B See CHAIN

TRPMILES This variable gives the distance in miles of the recorded trip. Actual distance was coded from 0-1200 miles. Less than a mile is re-coded on the TRPMILES variable in the original release.

9,338 records coded as one block or less (9996) are re-coded as . 1 22,265 records coded as less than half a mile (9997) are re-coded as . 5

Trip of less than a mile were supposed to be coded as either 9996 (less than one block) or 9997 (half mile). In the original Public Use Dataset, some trips were coded as .5 for half a mile or less, and some as 9997. The changes were made to consistently code these variable and to eliminate unnecessary code for estimating miles.

TRPNUM The identification of the travel day trips reported by a household member. The CATI program allowed up to 15 trips in the trip roster; additional trips were recorded in supplemental files and numbered from 21 to 39 . Missing trip numbers indicate that some reported trips were deleted or combined with other trips.

TRIPNUM2 This new variable compares to TRPNUM. This variable TRIPNUM2 is used to be used to chronologically reorder the trips within each persons records. Resorting the file by HOUSEID, PERSONID and TRIPNUM2 enables a user to more accurately examine trip chaining.

TRPNUM_A See CHAIN.
TRPNUM_B See CHAIN

TRN_DIST Responses in blocks have been converted to miles, using 9 blocks per mile (less than one block converted to 0.1 mile).

TRVL_MIN Note the special codes of \(9998=\) not ascertained and \(9999=\) refused.
URBAN Defined for the 1995 NPTS based upon the population density of the Census block containing the household. Urban (01) = at least 1,000 persons per square mile; not urban (02) = less than 1,000 persons per square mile; and not ascertained (98) = the household location was not geocoded.

VARSTRAT This variable identifies the geographic strata used in sample selection. To protect respondent confidentiality, particularly in the add-on areas, the definition of the specific codes for this variable are not published.

VEHTYPE The vehicle type, sport utility vehicle, was added in the 1995 survey. In the 1990 NPTS, most of the sport utility vehicles were classified as automobiles.

VTR_FLG Variable used to count vehicle trips. Value of 01 indicates the trip was a privately-owned vehicle trip and the respondent was the driver; 02 = either not a privately-owned vehicle trip, or the respondent was not the driver.

WHYTRP95 Question G-20 determined the purpose of each trip in the 1995 NPTS. There were 17 possible purpose codes, including to return home. Interviewers used purpose 15, to change means of transportation, only when they couldnt determine another purpose for the trip; these trips were recoded or combined with adjacent trips during editing. Each travel day trip was also assigned a FROM and TO purpose, WHYFROM and WHYTO, based on the responses to questions G-12 through G-21. These two variables may be used to describe trips in another way, for example, a trip from home to school.

\section*{WHY FROM See WHYTRP95}

WHYTRP90 The 1995 NPTS travel day trips were also recoded to mimic the 1990 NPTS trip purpose definitions. The 1990 trip purpose codes differed in several ways from the 1995 purpose codes. Returning home was not a 1990 NPTS trip purpose; rather, the trip purpose was assigned to the activity that was the main reason the person was away from home. If one of the reasons was work, the return trip home was assigned work as its purpose. If there were multiple purposes for being away from home and
work was not one of them, then the activity the person spent the most time at before leaving that activity was assigned as the main purpose for the return trip home.

\section*{WHYTO See WHYTRP95}

WKFMHMLW This variable includes a yes=01 value for those persons who said they worked at home in response to questions F-4 or F-5.

WKFMHM2M The variable includes a yes=01 value for those persons who said they worked at home in response to questions F-4, F-5, or F-19.

WKFMHMXX This variables includes a value of \(01=\) two or more days a week for each person who said they worked at home in response to questions F-4 or F-5.

WORKER Response to question D-12 of the household interview, verified or corrected by the person interview response to question F-2.

WTHHFIN Final household weight, adjusted for non-response and non-coverage. Used to weight all household- and vehicle-level data.

WTPERFIN Final adjusted person weight, adjusted for non-response and noncoverage. Used to weight all person-level data.

WTTRDFIN Final travel day weight, used to weight data from the travel day trip file and the segmented travel day trip file. Calculated as 365 times each persons WTPERFIN, to adjust trip-level data to annual estimates.

YEARMIL2 A new variable comparable to YEARMILE. This variable was corrected based on findings since the original release of the data.

Numerous data users had questioned the earlier annual average miles driven because there were declines in per driver VMT between 1990 and 1995 in virtually all age/gender categories other than me 65 or older.

This seemed incongruous, given the overall strong increase in travel during this time. Upon checking, we found that in 1990 only 2 percent of the drivers reported driving no miles during the year, while 9 percent of drivers reported driving no miles in 1995. Of the 9 percent, a significant number indicated that they actually did drive, either on their assigned Travel Day or as the primary driver of one of the household vehicles.

Because we believe that the report of "no miles"is an error for these drivers, these zero-values were changed to "miles not reported". After this edit, only about one and a half percent of all drivers remained in the "ho miles category." The new estimates of vehicle miles of travel in each age group for 1995 shown in the following table.

VMT per Driver by Age and Sex
Revised October 1998, Office of Highway Information Management, FHWA
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline Age & \multicolumn{2}{|c|}{ Male } & \multicolumn{2}{c|}{ Female } \\
\hline & \multicolumn{1}{|c|}{1990} & \multicolumn{1}{l|}{1995} & \%change & \multicolumn{1}{l|}{1990} & \multicolumn{1}{l|}{1995} & \%change \\
\hline \(16-19\) & 9,543 & 8,203 & \(-14.0 \%\) & 7,387 & 6,870 & \(-7.0 \%\) \\
\hline \(20-34\) & 18,310 & 17,980 & \(-1.8 \%\) & 11,174 & 12,001 & \(+7.4 \%\) \\
\hline \(35-54\) & 18,871 & 18,859 & \(0.0 \%\) & 10,539 & 11,463 & \(+8.8 \%\) \\
\hline \(55-64\) & 15,224 & 15,844 & \(+4.1 \%\) & 7,211 & 7,795 & \(+8.1 \%\) \\
\hline \(65+\) & 9,162 & 10,320 & \(+12.6 \%\) & 4,750 & 4,788 & \(+0.1 \%\) \\
\hline ALL (1) & 16,536 & 16,553 & \(0.0 \%\) & 9,528 & 10,143 & +6.45 \\
\hline
\end{tabular}

The revised data show modest increases of generally less than \(10 \%\) for most age/gender groups. The big exception is the 16-19 year-old group, where miles declined between 1990 and 1995. This is probably the result of changes in the survey weighting process between 1990 and 1995, which resulted in a large increase in the number of persons age 16-19. Of course, with more individuals in this teenage group in 1995, the average miles per driver would decline. Other factors at work may also include delayed licensing laws and/or higher auto insurance premiums for young drivers.

For men, the most dramatic increases in travel were for those 65 and older. Younger men, namely those 20-54 may finally be reaching saturation in their travel. Women's travel shows a very different pattern, with declines in the youngest group (16-19), consistent increases of 7 to 8 percent for those 20 through 64, and no change in average travel for those 65 and older.

WTTRPFIN Final travel period weight, used to weight data from the travel period trip file. Calculated as WTTRDFIN divided by 14, to adjust trip-level data to annual estimates.

\section*{APPENDIX K \\ CALCULATION OF ANNUALIZED MILEAGE ESTIMATES BASED ON ODOMETER READINGS}

Odometer readings for NPTS vehicles were recorded for different time intervals (Table K-1). Mileage differences between odometer readings recorded for individual vehicles reflect driver and household characteristics, as well as seasonal effects on driving.

Table K-1
Time Interval between Two Odometer Readings Recorded for NPTS Vehicles
\begin{tabular}{|l|c|}
\hline \begin{tabular}{l}
Percent of NPTS \\
vehicles*
\end{tabular} & Time interval between two readings \\
\hline \(1 \%\) & \(\leq 11 / 2\) months \\
\hline \(24 \%\) & \(11 / 2-2\) month \\
\hline \(25 \%\) & \(2-33 / 4\) months \\
\hline \(25 \%\) & \(33 / 4-6\) months \\
\hline \(20 \%\) & \(6-101 / 2\) months \\
\hline \(5 \%\) & \(101 / 2-187 / 8\) months \\
\hline
\end{tabular}
* Applied to 42,319 vehicles that have two valid recording dates.

In this appendix, we discuss a method used to "annualize" the number of miles driven between two odometer readings to an estimate of annual driving. In essence, this method adjusts individual vehicle's mileage rates for seasonality. In Section K.1, we discuss data screening necessary before fitting an annualization model and computing annualized estimates. This was an important step, unfortunately, because more than half of the NPTS vehicles were not suitable for this annualization procedure. In Section K.2, the choice of statistical model-a linear model-for the seasonality adjustments is discussed. In Section K.3, we describe the mechanics of computing the annualized estimates as well as standard errors for the estimates. Though brief, part of Section K. 3

K- 1
is technical. Technical background may be found in most any text on linear models, for example, Searle (1971). In Section K.4, we discuss: (1) some adjustments to the annualized driving estimates, and (2) outlier screening and data quality flags based on the annualized estimates. Finally, we outline data-quality limitations in Section K.5.

\section*{K. 1 Preliminary Data Screening}

There were 75,217 vehicles sampled in the 1995 NPTS. Data on many (44\%) of them were incomplete, however, in the sense that one or more of the starting and ending odometer readings or one or both of the recording dates were missing. Some of the remaining 56\% "complete" observations were anomalous: negative amount of driving between two recording dates, or the difference between odometer readings implying more than 1,440 miles (\(=24\) hour \(\times 60\) miles/hour) of driving per day. About \(0.6 \%\) of the 75,217 vehicles had a recording period shorter than six weeks, and were excluded from the annualization process since we believe that such short periods would tend to lead to anomalous annualized estimates. Since driver characteristics influence the amount of driving done in the driver's designated vehicle, 5.5 percent of the vehicles were excluded from the annualization calculations because they did not have a designated "primary" driver. Also, motorcycles and vehicles with "other" and "don't know" vehicle types were excluded. As summarized in Table K. 2 , this screening procedure reduced the original 75,217 vehicles to 36,109 vehicles for which annualized mileage estimates were made.

The NPTS data on odometer mileages and days-of-recording exhibit a lot of variability. This makes annualization difficult, and impacts the quality of the annualized estimates. Among the 36,109 vehicles remaining after the preliminary data screening, 378 (about 1\%) had a difference between two odometer readings exceeding 160,000 miles per year and 580 of them had their differences more than 115,000 miles per year. The 115,000 mile figure was considered to be a reasonable upper limit for the annual miles driven in a vehicle, and was used as a cap for the self-reported annual mileage estimates. Users of the annualized estimates should understand the limits imposed by outliers and data variability.

K- 2

Table K. 2 Preliminary Data Screening of the 1995 NPTS Vehicles
\begin{tabular}{|l|r|r|}
\hline \multicolumn{1}{|c|}{ Data Problem } & \begin{tabular}{c}
Number of \\
Vehicles
\end{tabular} & Percent \\
\hline \hline \begin{tabular}{l}
Incomplete data - odometer readings and/or \\
recording dates missing
\end{tabular} & 32,811 & 43.60 \\
\hline \begin{tabular}{l}
Negative differences between 2 odometer \\
readings
\end{tabular} & 1,040 & 1.40 \\
\hline \begin{tabular}{l}
Differences between 2 odometer readings too \\
lagge (more than 1,440 miles per day)
\end{tabular} & 53 & 0.07 \\
\hline \begin{tabular}{l}
Odometer readings recorded less than six weeks \\
apart
\end{tabular} & 419 & 0.56 \\
\hline Incomplete data and negative odometer & 33 & 0.04 \\
\hline Negative miles and less than six weeks of data & 16 & 0.02 \\
\hline Mileage too large and less than six weeks of data & 5 & 0.00 \\
\hline No primary driver associated with the vehicle & 4,099 & 5.50 \\
\hline Motorcycles, "other," "don't know" vehicle types & 632 & 0.84 \\
\hline \hline Vehicles with usable data (none of the above) & 36,109 & 48.00 \\
\hline \hline Total 1995 NPTs Vehicles & \(\mathbf{7 5 , 2 1 7}\) & \(\mathbf{1 0 0 . 0 0}\) \\
\hline
\end{tabular}

\section*{K. 2 Choice of Model}

The choice of a predictive statistical model should depend on: (1) knowledge of the modeled process; (2) properties of the input data with respect to the number of observations, tendency to have outliers, goodness of model fit, etc.; and (3) mathematical tractability. Mathematical tractability refers to ease of doing computations. Linear models tend to be tractable; nonlinear models can be intractable, for example, because of startingvalue or convergence problems. Mathematical tractability is especially important in our application because of the large number of observations and the large number of potential

K- 3
predictors: education level of the primary driver, MSA size, vehicle age and type, and so on. Because the NPTS data are noisy with respect to the goal of estimating the annual miles of driving based on odometer readings, data variability and the tendency to have outliers are an important consideration. The coefficient of variation of our final prediction model is 1.83 , and the \((36,109)\) regression residuals are right skewed, typical of high noise scenarios. While the average of the residuals was of course zero, their 1 and 99 percentiles, for example, were -74.6 and 391.2 miles per year, indicating a wide range of the residuals.

A natural model for the total miles observed for an individual vehicle is
\[
\begin{equation*}
\text { total miles } \propto\left(\sum_{\text {day } i} \theta_{i}\right) \times(\text { factor for class }) \times \text { error } \tag{1}
\end{equation*}
\]
where "day \(i\) " refers to the days in an interval of recording, \(\theta_{i}\) is the contribution for day-of-the-year ior perhaps "month-day-of-week" (e.g., January Sunday, November Wednesday); and "factor for class" is a multiplier determined by the class. A class is defined as a particular combination of demographics, vehicle age and type, and other variables. These variables are called class variables. The "factor for class" should be greater than one for classes of vehicles in which their primary drivers drive a lot, and less than one for classes of vehicles in which their primary drivers do not drive much. Because a mileage total is modeled here, both the class and error adjustments enter multiplicatively. Because mileages in the NPTS survey were recorded for intervals of varying starting dates and lengths, the summation is needed in (1), rather than a single \(\theta\)-term, representing an individual month or day. The variable-length intervals thus make annualization more difficult.

Unfortunately, the model (1) is not as tractable as we would like. It is nonlinear. Although appropriate for right-skewed data, a logarithmic transformation does not make the model linear because of the summation. Logarithms may, in any case, be
\[
\text { K- } 4
\]
inappropriate for annualization because they introduce bias. To see this, consider a simple example. Suppose we have just 12 vehicles, each observed for exactly one month, January through December, and suppose there is just one class of vehicles (i.e., these 12 vehicles have identical independent variables). Also suppose there are no day-of-theweek effects, and for simplicity, assume a year is twelve months with exactly thirty days each. Then the annualized mileage per day (mpd) estimate for each vehicle should be the arithmetic mean of the mpd's for all vehicles. On the other hand, if we transform to the log scale, the annualized log mpd estimate for each vehicle would be the arithmetic mean of the log-mpd's for all vehicles. Then the question becomes how we compute the annualized mpd from the annualized log-mpd. If we just take the anti-log of the annualized \(\log\)-mpd, we get the geometric mean of the mpd's. (The geometric mean is the anti-log of the arithmetic mean of the logs.) It is well-known that the geometric mean is always less than or equal to the arithmetic mean, and that inequality is strict unless all observations are the same. Thus the anti-log of the annualized log-mpd is biased.

If the mpd's were known to be log-normal, we could mathematically correct for the bias. Unfortunately, there is no good basis for assuming log-normality here. In general, there is no way to correct for the bias induced by the log transformation without making some kind of parametric distribution assumption. Thus, although the model (1) is sensible, it has the disadvantage of being nonlinear, not amenable to the log transformation, which would not linearize it anyway, and not very tractable.

To overcome the aforementioned problems, we considered the model
\[
\text { rate }=\frac{\text { total miles between } 2 \text { readings }}{\text { number of days }}=
\]
\[
\begin{equation*}
\text { intercept }+\frac{1}{\text { number of days }}\left(\sum_{\text {month-day } i} \theta_{i}\right)+(\text { term for class })+\text { error. } \tag{2}
\end{equation*}
\]

This model is linear, and is thus more tractable than model (1). It is similar to (1), but, K- 5
because the dependent variable is a rate rather than a total, the additive (rather than multiplicative) adjustments for class and error are reasonable. For the sake of simplicity, we also took \(\theta_{i}\) to represent month-day (i.e., month-day-of-week) here rather than day of the year. Thus, for example, if there are two January Sundays in a period of recording, then the \(\theta\) term for January Sundays would be added in twice. The "number of days" denominator is necessary because the \(\theta\) 's represent contributions to the total-the more days, the more \(\theta\) 's-whereas the overall expression is a rate (miles per day).

Here is a simplified example. (A complete example, involving all of the levels of all of the class variables used to fit the model, would be less clear than a simplified one.) Suppose there are just two class variables, say, vehicle age class and vehicle type. Then the class term in our model might be of the form
\[
\alpha_{i}+\beta_{j}+\gamma_{i j}
\]
where \(\alpha_{i}\) is the contribution above the intercept for the \(i^{\text {th }}\) vehicle age class (main effect of age), \(\beta_{j}\) is the contribution above the intercept for the \(j^{\text {th }}\) vehicle type (main effect of vehicle type), and \(\gamma_{i j}\) is the contribution above and beyond the \(\alpha_{i}+\beta_{j}\) for the \(i^{\text {th }}\) vehicle age class and the \(j^{\text {th }}\) vehicle type jointly (two-way interaction of vehicle age and type). Suppose a vehicle's mileage is recorded for January 1-8, 1995 (an overly short interval taken for simplicity). Since 1995 began with a Sunday, this interval represents two January Sundays, and one-each for the other January weekdays. If the vehicle age class is "1" (less than one year old) and the vehicle type is " 2 " (= van), then the model (2) is
\[
\text { rate }=\text { intercept }+\frac{1}{8}\left(2 \theta_{1}+\theta_{2}+\theta_{3}+\ldots+\theta_{7}\right)+\alpha_{1}+\beta_{2}+\gamma_{12}+\text { error, }
\]
where \(\theta_{1}, \ldots, \theta_{7}\) are the terms for January days of the week, Sunday through Saturday. Because the model is linear, estimates of the \(\alpha, \beta, \gamma\), and \(\theta\) terms can be computed using software such as the SAS GLM (general linear model) procedure. Then, by revising the
\[
\text { K- } 6
\]
expression involving the \(\theta\) 's, an annualized rate can be estimated. In the revision, the expression involving the \(\theta\) 's in the model (2) is changed to
\[
\frac{1}{365.25} \sum_{\text {month-day } i} \frac{\text { Days in month of month-day } i}{7} \theta_{i}
\]
where the sum now extends over all \(7 \times 12=84\) month-days in a year. These calculations are discussed further in the next subsection.

A model similar to model (2) was derived by Kunert, Hu, and Young (1995) in their analysis of the 1990 NPTS data. Odometer readings were not recorded in the 1990 NPTS. Rather, the amount of driving was recorded for a single designated travel day. Thus, their model had terms to adjust the driving for the particular "travel day." The adjustments in our case are for intervals of, in most cases, many travel days. The class terms in our model were taken from the Kunert et al model, with the following two exceptions: (1) We added terms for the number of drivers in the household. (2) We included all two-way interaction terms. The household driver terms were added on the basis of engineering judgement. Assessing the importance of any of these model terms is difficult. This is because with sample sizes as large as the NPTS data's and with numerous terms for each class variable (because of the interactions) nearly every variable had some statistically significant terms. Fortunately, our primary task here is prediction—annualizing mileage estimates; assessing the importance of the various factors is secondary.

\section*{K. 3 Computation of the Annualized Estimates}

This section contains technical material that may be beyond the interest of the casual reader. The GLM procedure in SAS was used to fit the annualization model. Class variables were education level and age of the primary driver (SAS variable name educ and r_age, respectively), household composition (lif_cyc), vehicle age (created from variable vehyear), vehicle type class (vehtype), size of MSA (msasize), census division (census_d),
and household number of drivers per vehicle (created from variables hhvehcnt and drvrcnt). There are \(3,175,000\) possible combinations of these classes; obviously not all are represented in the NPTS data. In theory, the two-way interaction model provides some smoothing to adjust out anomalies in low-frequency (i.e., small sample-size) classes.

The multipliers (independent variables) of the terms for "month-day" (the \(\theta\)-terms) were computed in a preliminary SAS data step. These multipliers were entered into a linear model with all main effects and two-way interactions for the class variables. As an intercept term was included in the model, the last \(\left(84^{\text {th }}\right) \theta\) was dropped. (See, for example, Searle, 1971. This reduction to full rank results in no loss of generality; the other independent variables and corresponding parameters are similarly reduced in the GLM algorithm.) The resulting model had 994 degrees of freedom. After data screening (see below), 36,109 observations were used to fit the model, or about 36 observations per degree of freedom (i.e., model parameter).

After fitting the model with SAS' proc GLM, annualized estimates could be computed with it. According to the model,
\[
Y=X \hat{\beta}+R,
\]
where \(Y\) is the vector of observed average daily mileages (based on odometer readings), \(X\) is the matrix of independent variables (reduced to full rank), \(\hat{\beta}\) is the (reduced) vector of model parameter estimates, and \(R\) is the vector of residuals. To "annualize" the observed mileage rates, we simply revise \(X\) so that it reflects, for each vehicle, travel for a year rather than for the recording time period for that vehicle. Thus each month-day term is set to
\[
\begin{equation*}
\frac{\text { number days in month }}{7 \times 365.25} \text {. } \tag{3}
\end{equation*}
\]

With the number of days in February taken to be 28.25, the sum of these terms over days-of-the-week and months (for one year) is 1 . Call this modification of \(X, X^{*}\). With \(X^{*}\) and the same \(\hat{\beta}\) (and \(X^{*} \hat{\beta}\) the seasonally adjusted mean) and the residual vector \(R\), a vector of seasonally-adjusted annualized estimates is
\[
Y^{*}=X^{*} \hat{\beta}+R .
\]

To compute the standard errors of these annualized estimates, notice that
\[
\begin{gathered}
Y^{*}=X^{*} \hat{\beta}+R=X^{*}\left(X^{\prime} X\right)^{-1} X^{\prime} Y+(I-P) e \\
=X^{*} \beta+X^{*}\left(X^{\prime} X\right)^{-1} X^{\prime} e+(I-P) e=X^{*} \beta+\left(P^{*}+I-P\right) e,
\end{gathered}
\]
where \(P=X\left(X^{\prime} X\right)^{-1} X^{\prime}, P^{*}=X^{*}\left(X^{\prime} X\right)^{-1} X^{\prime}, \beta\) is the "true" parameter vector, and \(e\) is the vector of errors (\(Y=X \beta+e\)). Here "'" denotes matrix transpose. We have also used here the fact that \(R=(I-P) e\). Therefore (using a property of the variance of linear functions), where \(V\) denotes the variance of an individual \(y\)-value (daily mileage rate),
\[
\operatorname{Cov}\left(Y^{*}\right)=V\left(P^{*}+I-P\right)\left(P^{*}+I-P\right)^{\prime}=V\left(P^{*} P^{* \prime}+P^{*}(I-P)+(I-P) P^{* \prime}+I-P\right) .
\]

It is straightforward to verify that \(P^{*}(I-P)=0\). It follows that
\[
\operatorname{Cov}\left(Y^{*}\right)=V P^{*} P^{* \prime}+V(I-P),
\]
and that for \(y^{*}\) an element of \(Y^{*}\) and \(x^{*}\) and \(r\), the corresponding elements of \(X^{*}\) and \(R\),
\[
\operatorname{stderr}\left(y^{*}\right)=\left[\left(\operatorname{stderr}\left(x^{*} \hat{\beta}\right)\right)^{2}+(\operatorname{stderr}(r))^{2}\right]^{1 / 2} .
\]

The standard error of \(y^{*}\) is straightforward to compute in SAS, because \(\operatorname{stderr}\left(x^{*} \hat{\beta}\right)\) is the standard error of a predicted mean value, and \(\operatorname{stderr}(r)\) is the standard error of a residual, both of which can be output directly with proc GLM.

The above seasonally-adjusted daily mileage rates and their standard errors were converted to annual rates (miles driven per year) and standard errors by multiplying them by 365.25. In addition to these annualized estimates (SAS variable annualzd) and standard errors (stderr), alternative "crude" estimates (mtd365) were computed by multiplying 365.25 by each crude daily rate (i.e., the difference between odometer readings for a vehicle divided by the number of days in the recording period of that vehicle.) Standard errors (std365) for these estimates were also computed, as above, except no month-day terms were included in the linear model. Crude mileage estimates and standard errors can likewise be computed for any time period, in particular, the periods for which the odometer readings were taken.

\section*{K. 4 Outlier Screening}

Despite the extensive preliminary data screening, the remaining data and annualized estimates are noisy. Certain common-sense restrictions are violated. For example, some of the annualized estimates are less than the difference between odometer readings (for periods of less than one year). Some of the annualized estimates are negative. To understand how this can happen, remember that the dependent variable of the model is a daily rate (odometer mileage per day of recording). The annualized daily rate can easily be less than the crude daily rate of the dependent variable, and, especially when the corresponding residual is negative and large, the annualized rate can be less than the difference between two odometer readings itself. The model has no constraint to automatically prevent this.

Estimates that violated common-sense restrictions were adjusted as follows. For vehicles whose recording period was less than one year, if the annualized estimate was
less than the difference between two odometer mileage (this includes negative estimates), the annualized estimate was set to be the difference between two odometer readings itself. For any annualized estimate whose recording period was more than 365 days, a negative annualized estimate was set to the crude estimate (\(m t d 365\)), and an annualized estimate greater than the corresponding difference between two odometer readings was set to be the difference between two odometer readings. Also, annualized estimates greater than 115,000 were set to be 115,000 . This cap was set to be consistent with the cap used on the self-reported estimates of annual driving (annmiles). These changes were made with the following frequencies.

Table K-3. Codes for Adjustments to Annualized Estimates of Driving
\begin{tabular}{|l|c|c|l|}
\hline Code & Frequenc & Percent & Meaning \\
\hline \hline \begin{tabular}{l}
(no \\
code)
\end{tabular} & 32,289 & 89.4 & No adjustment was made \\
\hline 1 & 3,800 & 10.5 & \begin{tabular}{l}
Number of days between two readings less than \\
366, and annualized estimate less than difference \\
between odometer readings; annualized set to \\
difference between odometer readings.
\end{tabular} \\
\hline 2 & 16 & .0 & \begin{tabular}{l}
Number of days between two readings greater \\
than 365, and annualized estimate greater than \\
difference between odometer readings; annualized \\
set to difference between odometer readings.
\end{tabular} \\
\hline 3 & 4 & .0 & \begin{tabular}{l}
Number of days between two readings greater than \\
365, and annualized estimate negative; annualized \\
set to crude estimate*.
\end{tabular} \\
\hline \hline Total & 36,109 & 100.0 & (All) \\
\hline
\end{tabular}
*The crude estimate is 365.25 times the odometer difference divided by days in observation period.

Although adjustments of Code 1 had to be made for 3,800 household vehicles, the adjustments were minor in nearly all cases, amounting to less than 2,000 miles for all but 799 household vehicles, and less than 5,000 miles for all but 111 vehicles (.3\% of 36,109). (A SAS variable ann_edit flags these adjustments, though per a modification discussed in the next section.)

After making these adjustments, each adjusted annualized estimate was compared to its "crude" analog (mtd365) and to a corresponding self-reported estimate (annual miles driven reckoned by driver). Outlier codes were then assigned on the basis of these comparisons and subjectively determined thresholds (Table K-4). Because the selfreported estimates were considered less reliable than the crude estimates, the thresholds are tighter for the crude-vs-annualized comparisons. Codes based on comparisons of the
\[
\text { K- } 12
\]
annualized and the crude estimates were only assigned if the difference exceeded 5,000 miles. Codes based on comparisons of the annualized and the self-reported estimates were only assigned if the difference exceeded 10,000 miles. The outlier codes are recorded as numeric codes (SAS variable ann_out) as indicated in Table K-4. Out of the 36,109 vehicles whose annual miles driven were estimated based on their odometer readings, \(32,153(89 \%)\) are considered to have reasonable annualized estimates (i.e., not outliers).

Table K-4. Outliers Codes of Annualized Estimates of Driving
\begin{tabular}{|l|l|c|c|l|}
\hline Code & \begin{tabular}{l}
Numeric \\
Code (for \\
SAS output)
\end{tabular} & Frequency & Percent & Criteria \\
\hline \hline \begin{tabular}{l}
(no \\
code)
\end{tabular} & (no code) & 32,153 & 89.0 & Not an outlier \\
\hline a & 2 & 1,164 & 3.2 & \begin{tabular}{l}
Annualized \\
\(\mid\) Annualized \(<\) Reported \({ }^{\text {b }} / 4\) and
\end{tabular} \\
\hline b & 5 & 2,293 & 6.3 & \begin{tabular}{l}
Annualized \(\mid>4 \times\) Reported and \\
\(\mid\) Annualized - Reported \(\mid>10,000\)
\end{tabular} \\
\hline A & 1 & 336 & 0.9 & \begin{tabular}{l}
Annualized \(<\) Crude \\
\(\mid\) c \(/ 2\) and \\
\(\mid\) Annualized - Crude \(\mid>5,000\)
\end{tabular} \\
\hline Aa & 3 & 83 & 0.2 & (A and a) \\
\hline B & 4 & 75 & 0.2 & \begin{tabular}{l}
Annualized \(>2 \times\) Crude and \\
\(\mid\) Annualized - Crude \(\mid>5,000\)
\end{tabular} \\
\hline Bb & 6 & 5 & 0.0 & (B and b) \\
\hline \hline Total & & 36,109 & 100.0 & (all) \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Estimates of annual driving based on two odometer readings (annualzd).
\({ }^{\mathrm{b}}\) Driver self-reported annual mileage estimate (annmiles).
\({ }^{c} 365.25\) times the difference between odometer readings divided by days in observation time interval (mtd365).

\section*{K-. 5 Limitations}

K- 13

The outlier flags in Table K-4 could indicate either data quality problems or issues pertinent to the annualization model. Data quality problems are those embedded in the information collected from the survey respondents. Issues pertinent to the model are those resulting from the annualization process. As previously mentioned, there are data quality problems. Most of the time the flags indicate such problems. To illustrate more generally the magnitude of these data problems, we calculated the correlation between the annualized and crude estimates to be 0.998 . Thus there is very good agreement between the annualized estimates and the actual data (i.e., differences between two odometer readings). However, the correlation between either the annualized or crude estimates and the self-reported estimates is only 0.11 , indicating that the self-reported miles driven in a year bear little relationship to the annual miles driven esti ated based on the odometer readings. Now, if we restrict attention to the 32,153 observations that were not assigned any of the outlier flags in Table K-4, then the correlation between the annualized and the self-reported estimates increases considerably to 0.62 . This implies that if we remove the problematic data, then the self-reported miles driven in a year relate significantly more to the annual miles driven estimated based on the odometer readings than if problematic data were included in the calculation (0.62 vs. 0.11 , respectively). This
illustrates that the magnitude of the data quality problems is substantial compared to the issues related to the annualization process.

For another example of data quality problems, we compare the average annual miles driven per vehicle (i.e., VMT) by age of the vehicle (Figure K.1). The first set of
 averages are for all 36,109 annualized estimates with a mileage cap of 115,000 , while the second set are for the

32,153 unflagged annualized estimates.
For the 32,153 unflagged estimates, the steadily decreasing trend of annual miles driven with vehicle age seems much more consistent with those observed in other data sources than the corresponding, much less even, results for the 36,109 vehicles. In these data, the cap was used to deal with anomalous, high mileages. Without the mileage-cap, the comparison becomes even more polar. For this reason, annualized estimates that exceeded 115,000 miles were capped at 115,000 in the final NPTS data set. Quality flags (ann_edit) in the final NPTS data set are summarized in Table K-5. To maintain reasonable analysis results, users are urged not to overlook these data quality flags.

Table K-5 Final Codes for Adjustments to the Final Annualized Estimates
\begin{tabular}{|l|c|c|l|}
\hline Code & Frequenc & Percent & Criteria \\
\hline \hline \begin{tabular}{l}
(no \\
code)
\end{tabular} & 31,721 & 87.8 & No adjustment \\
\hline 1 & 3,799 & 10.5 & \begin{tabular}{l}
Number of days less than 366, and annualized \\
estimate less than difference between odometer \\
readings; annualized set to odometer difference.
\end{tabular} \\
\hline 2 & 16 & .0 & \begin{tabular}{l}
Number of days greater than 365, and annualized \\
estimate greater than difference between odometer \\
readings; annualized set to odometer difference.
\end{tabular} \\
\hline 3 & 4 & .0 & \begin{tabular}{l}
Number of days greater than 365, and annualized \\
estimate negative; annualized set to crude estimate*.
\end{tabular} \\
\hline 4 & 568 & 1.6 & \begin{tabular}{l}
None of above, but mileage exceeds 115,000; \\
capped at 115,000 miles.
\end{tabular} \\
\hline 5 & 1 & .0 & As in 1 above, and capped at 115,000 \\
\hline \hline Total & 36,109 & 100.0 & (All) \\
\hline
\end{tabular}
* The crude estimate is 365.25 times the odometer difference divided by the number of days in the reporting period.

References: Kunert, U., Hu, P., and Young, J. (1995). "Framework for the Expansion and the Analysis of the 1995 Nationwide Personal Transportation Survey Odometer Reading Data," (unpublished report).

Searle, S. R. (1971). Linear Models, John Wiley \& Sons, New York.

\section*{APPENDIX L \\ TRACT AND BLOCK GROUP VARIABLES}

WHY ADD THESE VARIABLES

TYPICAL NPTS HOUSEHOLD

SOURCE OF
TRACT AND
BLOCK GROUP DATA

These variables were added to describe the characteristics of the areas where the NPTS survey respondents live and work. This allows the data analyst to look for patterns in travel behavior, not only by individual characteristics, but by neighborhood characteristics. The data user can examine how characteristics such as population density, mix of housing type and housing value, and characteristics of the population in the neighborhood such as age, income, and race/ethnicity may affect individual travel behavior.

For example, the respondents from our typical NPTS household, Keith and Terry, live in a townhouse and have a combined annual household income of \(\$ 35,000-\$ 40,000\). The neighborhood that they live in (at the tract level) is a mix of single family homes and townhouses and apartments. Single family homes make up only \(20 \%\) of the housing units in this census tract. Keith and Terry's income is above the median household income in that tract, which is \(\$ 27,000\). Is their travel more like people who live in townhouses in other neighborhoods, or is their travel more like other people who live in single family detached houses in their neighborhood or other neighborhoods like it ? The tract and block group variables allow an examination of these similarities and differences.

The data contained in these variables was derived from 1990 Census data and estimated forward to 1995 by Claritas, Inc. An annual demographic update is developed by this company to serve as a source of estimates of population, household, and housing unit characteristics. These estimates are made at relatively small units of geography, such as census tracts and block groups, which make this update effective for use in supplementing the NPTS data. The update is a comprehensive process that relies on a number of data sources, including regional and city planning agencies, federal agencies (e.g., Bureau of Labor Statistics, Bureau of Census, Bureau of Economic Analysis) U.S. Postal Service, the direct mail industry, the real estate industry, and experts in the fields of geographic information systems and mapmaking.

WORKPLACE CHARACTERISTICS

WHY
WORKPLACE

VARIABLE
NAMING
SCHEME

In addition to the characteristics of the residential neighborhood, characteristics of the workplace location were also appended to the file. Because these workplace variables are only present if the respondent is a worker, they are found on the Person file along with the other personal characteristics.

Previous studies have shown that mode choice is a function not just of residential density, but also of employment density, (Reference: work by Larry Frank and Gary Pivo), characteristics of the workplace are as important and residential characteristics. Different types of jobs and industries offer different opportunities and impedances in travel choices.

The variable names were designed so that:
- many of these variables would fall together in an alphabetic listing, and
- the variable name would help in describing the contents.

The naming scheme is:
\begin{tabular}{ll}
First letter - & H for household descriptor \\
& W for workplace descriptor
\end{tabular}

Second letter - B for block group level data T for tract level data

Third letter of
Household variables - \(\quad \mathrm{H}\) for housing characteristic \(P\) for population characteristic.

For example, HTHRESDN is a household descriptor, at the tract level, describing a housing characteristic, specifically, residential density (RESDN).

The last 5 letters of the variable describe the data in the variable, e.g. LTPOV = below poverty. Note that letters \(4-5\) or 4-6 may serve a grouping function as well. For example, the three variables listed below describe the type of housing, and HS is used as letters 4-5 in all three variables:

HBHHSMLT - percent multiple unit housing, block group

The variables, which can be identified in the codebook by the designation "CLAR" in the Section column, are:

HOUSEHOLD
DESCRIPTOR,
BLOCK
GROUP LEVEL

\section*{HOUSEHOLD DESCRIPTOR, TRACT LEVEL}

HBHHSMLT - percent multiple unit housing HBHHSOTH - percent other housing HBHHSSNG - percent single family housing HBHINCH - percent households, income \$60,000 or more HBHINCL - percent households, income less than \$15,000 HBHINCM1 - percent households, income \$15,000-\$39,999 HBMINCM2 - percent households, income \$40,000-\$59,999 HBHINMED - median household income HBHMEDHS - median housing unit value HBHRECNT - percent housing units built in last 10 years HBHRESDN - housing units per square mile HBHTNOWN - percent owner-occupied housing HBHTNRNT - percent renter-occupied housing HBHUR - urban/rural code (see below) HBP65P - percent of population 65 and older HBPCOLGD - percent of population college grads HBPFORBN - percent of population foreign born HBPHISP - percent of population Hispanic HBPHSGD - percent high school grads of 25+ population HBPLTPOV - percent families below poverty HBPPOPDN - population density (persons per square mile) HBPOPNO - current population HBPRCAA - percent African-American HBPRCASN - percent Asian-American HBPRCCAU - percent white HBPRCOTH - percent other race

These are the same as the Block Group variables, but a "T" (tract) replaces the "B" (block group) in the second letter of the variable name. There are 2 additional household descriptor variables at the tract level that are related to the amount of employment in the residence census tract:

HTEEMPDN - jobs per square mile
HTINDRET - percent of the workplace population in retail trade.

Both of these were added to give a picture of the degree of business activity at the residence end. The second variable, retail trade employment, provides a measure of the accessibility to goods and services. This is useful in determining if there is a chance for mode substitution, such as walking instead of driving.

WORKPLACE DESCRIPTOR

URBAN-
RURAL CONTINUUM

All of the workplace descriptors are at the census tract level.
WTEMPLDN - jobs per square mile
WTINDAG - percent of workers in agriculture, mining, or construction
WTINDFIN - percent of workers in finance, insurance or real estate
WTINDMAN - percent of workers in manufacturing industries WTINDRET - percent of workers in retail trade industries WTINDSVC - percent of workers in service industries WTINDTRN - percent of workers in transportation, communication or public utilities
WTINDWHL - percent of workers in wholesale trade industries.

The remainder of the Appendix describes the urban/rural continuum developed by Claritas, Inc. These variables:

HTHUR: Urban/rural code, census tract
HTBUR: Urban/rural code, block group
should not be confused with the variable URBAN, which is the urbanized area status of the sample household. The categories of the Urban/Rural Continuum, and the distribution of NPTS households within these categories, are:
\begin{tabular}{|l|l|l|l|l|}
\hline & \begin{tabular}{l}
Households \\
in NPTS \\
block \\
group level
\end{tabular} & \begin{tabular}{l}
Percent of \\
households \\
block
\end{tabular} & \begin{tabular}{l}
Household \\
s in NPTS \\
tract level
\end{tabular} & \begin{tabular}{l}
Percent of \\
households \\
tract level
\end{tabular} \\
\hline Urban & 5,960 & 14.18 & 6,006 & 14.29 \\
\hline Second City & 8,811 & 20.96 & 8,549 & 20.34 \\
\hline Suburb & 10,017 & 23.83 & 10,179 & 24.22 \\
\hline Town & 10,243 & 24.37 & 10,139 & 24.12 \\
\hline Rural & 6,669 & 15.87 & 6,827 & 16.24 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|c|c|}
\hline Subtotal & 41,700 & 99.21 & 41,700 & 99.21 \\
\hline \begin{tabular}{l}
Not \\
Ascertained
\end{tabular} & 333 & 0.79 & 333 & 0.79 \\
\hline Total & 42,033 & \(100.0 \%\) & 42,033 & \(100.0 \%\) \\
\hline
\end{tabular}

BACKGROUND OF URBANRURAL

URBANRURAL VARIABLE

Claritas, Inc. developed an urban-rural dimension to incorporate into their lifestyle cluster system, which is used primarily for research and marketing applications. The goal was to establish objective classifications that were less boundary-dependent than previous topologies.

The classification that is reflected in the Urban/Rural variable is based on population density, but not just the density of a specific geography, but the density in context of its surrounding area, or "contextual density". To establish this classification, the United States was divided into a grid to reduce the impact of variation in size (land area) of census tracts and block groups. Density was converted into centiles, that is, the raw numbers (persons per square mile) were translated into a scale from 0 to 99.
"Rural" (centiles 19 and less) and "small town" (centiles 20 to 39) definitions are based solely on the density. Population centers were defined if a route through the 8 neighboring cells could be constructed in which the density of successive cells was decreasing or equal. Population centers with centiles greater than 79 were designated "urban." Other centers were classified as "second cities." Finally, "suburban" areas of the population centers were defined, using both the cell density and the cell's density relative to the population center's density.

Reference: David R. Miller and Ken Hodges, "A Population Density Approach to Incorporating an Urban-Rural Dimension into Small Area Lifestyle Clusters." Paper presented at the Annual Meeting of the Population Association of America, Miami, Florida, May 1994.

\section*{APPENDIX M \\ TRIP PURPOSE CODING AND TRIP PURPOSE VARIABLES}

PURPOSE OF The NPTS is the only source of national data on the purposes of APPENDIX

OVERVIEW
The trip purposes used in the 1995 NPTS are:
Work
Work-related
Return to work (for work-based trips)
Family and Personal Business
Shopping
Medical or dental
Take someone somewhere (dropoff)
Pick up someone
Other family \& personal business
School
Religious activity
Social \& Recreational
Vacation
Visit friends and relatives
Out to eat
Other social and recreational

Return Home
Other
Each trip purpose is defined in the Glossary (Appendix D). The individual purposes are listed on the travel day and travel period files. Depending on the application, the user may want to aggregate the appropriate purposes into the major categories, Family and Personal Business and Social and Recreational.

The 1995 NPTS trip purpose, WHYTRP95, was determined by
question G. 20 for each reported travel day trip. Question G. 20 reads "What was the main purpose of the trip to (destination)?" There were 17 possible purpose codes, including to return home. Interviewers used purpose \#15, change means of transportation, only when they couldn't determine another purpose for the trip. These change means trips were recoded or combined with adjacent trips during editing.

Each travel day trip was also assigned a FROM and TO purpose, WHYFROM and WHYTO, based on the responses to questions G. 12 through G.21, the inventory of the day's trips and the purpose of each. These two variables, WHYFROM and WHYTO may be used to describe trips in another way. For example, a trip "from home to school", rather than a trip "to school".

PURPOSE CHANGES IN 1995

The 1995 trip purposes represent a fairly significant departure from the purposes used in earlier NPTSs. For the typical user, the trip purpose changes were probably the most significant questionnaire content change in 1995.

The 1995 NPTS uses a FROM and TO concept of trip purposes of trip purposes, so if you went :
\begin{tabular}{lll}
FROM & TO & \begin{tabular}{l}
1995 TRIP \\
PURPOSE
\end{tabular} \\
home & drop off child at school & \begin{tabular}{l}
Drop off
\end{tabular} \\
child's school & work & Work \\
work & lunch & Eat out \\
lunch & work & Return to work \\
work & grocery store & Shopping \\
grocery store & home & Return home
\end{tabular}

Notice that the 1995 trip purpose is descriptive of why you made the one-way trip. The reasons for this coding scheme are primarily:
- to obtain better data on trip chaining, i.e., stopping someplace on the way to or from your primary destination,
like stopping to drop off a child at school or stopping at the store on the way home from work
- to have a coding scheme that was more direct than the purpose coding used in the earlier NPTSs
- to have a coding scheme that did NOT require the interviewer to memorize and apply a page full of rules for when to code a trip to what category.

To get a better idea of the differences between the 1995 NPTS and the 1990 (and earlier) NPTSs, the table above is repeated, showing how these trips would have been coded in 1990.
\begin{tabular}{llll}
FROM & TO & \begin{tabular}{l}
1995 \\
PURPOSE
\end{tabular} & \begin{tabular}{l}
1990 \\
PURPOSE
\end{tabular} \\
home & drop off \\
child at school
\end{tabular}\(\quad\) Dropoff \(\quad\) Other fam and pers

In looking at this table there are four items of note:
- the 1995 trip purposes are more direct
- the purpose "other family and personal business" has been split into:
-other family and personal business,
- take someone somewhere, and -pickup someone.
- "eating out" has been made a separate own purpose. (In 1990 it was included in "other family and personal business" if you went out to eat from work or school. All

M-3
other trips to eat out were coded as "other social and recreational").
- the 1990 trip purpose coding used a round-trip scheme, so that the trip to work and from work were both coded as "work". This was mainly done to assign both parts of the trip to the reason the travel was made, thus avoiding the use of "return home"or "return to work". If the return trips are still problematic for the user, the 1995 datafile contains several variable that allow a recode of the return trips.

\section*{COMPARISON} 1995-1990

The following comparison shows each of the trip purposes collected in 1995 and the corresponding purpose, if applicable, in 1990:

1995

Work
Work-related
Return to work

Shopping
School
Religious activity
Medical/dental
Other family \& personal
Take someone somewhere
Pick up someone
Vacation
Visit friends or relatives
Went out to eat

Other social/rec
Change means
Other, specify
Return home

1990

Work
Work-related
* used reason for outgoing trip
Shopping School/church
School/church
Medical/dental
Other family \& personal
Other family \& personal
Other family \& personal
Vacation
Visit friends or relatives
* if from work, Other family \& personal
* not from work, Other social/rec
Other social/rec * not collected Other, specify
* used reason for outgoing trip

Note that Pleasure Driving was a trip purpose in 1990, but in 1995
trips for this reason are simply included in Other social and recreational.

\section*{NEW PURPOSES}

The new purposes added in 1995 are:
Return to work
Take someone somewhere
Pick up someone
Went out to eat
Return home.

The process of showing the 1990 trip purpose on the file, in addition to the 1995 purpose, required a considerable number of intermediate steps.

In the 1990 trip purpose scheme, if there was more than one trip before the return home trip, the main reason for the travel was the reason used for the return trip. Thus, one of the steps in the recoding process was to determine the main reason by creating trip chains and measuring the time spent at each destination. The chains were defined by travel ending at home, at work, or someplace else. The following variables on the NPTS Travel Day file were developed for this process:

CHAIN - trip chain number for this person - \(\quad\) See Appendix J Notes on Specific Variables for a more complete description of the chaining process.

NOTE THAT THE TRIP CHAINS ON THE 1995 NPTS FILE WERE CREATED FOR THE PURPOSE OF RECODING 1995 TRIP PURPOSES TO 1990 PURPOSES. GIVEN THIS, THERE ARE CHAINING CONVENTIONS THAT MAY NOT BE USED IN A TYPICAL TRIP CHAINING ANALYSIS.

CHAINTRP - sequential number of the trip within the chain
DWELTIME- time spent at the destination of the previous trip
FROM_A and TO_B - the origin or destination of the chain, in terms of home, work or someplace else

STRTTIME - starting time of the trip, which was used to put the trips in order before creating the chains

TRPNUM_A and TRPNUM_B - these are the trip numbers of the first and last trips in each chain

The data user should note that these trip chains were created to recode the 1995 trip purpose to the 1990 purpose scheme, and they include "chains" that would be excluded from most trip chaining analyses. There are an abundance of variables on the 1995 NPTS Travel Day file that can be applied to a user-defined trip chaining scheme.

\section*{APPENDIX N GEOGRAPHIC CODES}
```

NOTE on Geographic Codes - If the respondent's household is located in a state
that is not specifically identified on the data files, then the frequency for
that state in the Codebook will show as zero. NPTS interviews were conducted
in all 50 states, but if the state is not being identified, the numberin that
state will not be disclosed.

```

\section*{CONSOLIDATED STATISTICAL METROPOLITAN AREA CODES}
```

CMSA The codes for the variable HHCMSA are as follows:
1 6 0 2 Chicago-Gary-Kenosha, IL-IN-WI CMSA
1642 Cincinnati-Hamilton, OH-KY-IN CMSA
1692 Cleveland-Akron, OH CMSA
1 9 2 2 Dallas-Fort Worth, TX CMSA
2 0 8 2 Denver-Boulder-Greeley, CO CMSA
2 1 6 2 Detroit-Ann Arbor-Flint, MI CMSA
3 3 6 2 Houston-Galveston-Brazoria, TX CMSA
4 4 7 2 ~ L o s ~ A n g e l e s - R i v e r s i d e - O r a n g e ~ C o u n t y , ~ C A ~ C M S A ~
4 9 9 2 ~ M i a m i - F o r t ~ L a u d e r d a l e , ~ F L ~ C M S A ~
5 0 8 2 Milwaukee-Racine, WI CMSA
5 6 0 2 New York-No. New Jersey-Long Island, NY-NJ-CT-PA CMSA
6 1 6 2 ~ P h i l a d e l p h i a - W i l m i n g t o n - A t l a n t i c ~ C i t y , ~ P A - N J - D E - M D ~ C M S A ~
6 4 4 2 Portland-Salem, OR-WA CMSA
6 9 2 2 ~ S a c r a m e n t o - Y o l o , ~ C A ~ C M S A ~
7 3 6 2 San Francisco-Oakland-San Jose, CA CMSA
7 6 0 2 Seattle-Tacoma-Bremerton, WA CMSA
8 8 7 2 Washington-Baltimore, DC-MD-VA-WV CMSA

```

\title{
MSA's with 1 Million or more Population Alphabetic Order
}
\begin{tabular}{|c|c|c|}
\hline Code & MSA Name & 7/95 pop \\
\hline 520 & Atlanta, GA MSA & 3,431,983 \\
\hline 720 & Baltimore, MD PMSA & 2,469,985 \\
\hline 875 & Bergen-Passaic, NJ PMSA & 1,308,655 \\
\hline 1123 & Boston-Worcester-Lawrence-Lowell-Brockton,MA-NH NECMA & 5,768,968 \\
\hline 1280 & Buffalo-Niagara Falls, NY MSA & 1,184,052 \\
\hline 1520 & Charlotte-Gastonia-Rock Hill, NC-SC MSA & 1,289,177 \\
\hline 1600 & Chicago, IL PMSA & 7,724,770 \\
\hline 1640 & Cincinnati, OH-KY-IN PMSA & 1,591,837 \\
\hline 1680 & Cleveland-Lorain-Elyria, OH PMSA & 2,224,974 \\
\hline 1840 & Columbus, OH MSA & 1,437,512 \\
\hline 1920 & Dallas, TX PMSA & 2,957,910 \\
\hline 2080 & Denver, CO PMSA & 1,831,308 \\
\hline 2160 & Detroit, MI PMSA & 4,320,203 \\
\hline 2680 & Fort Lauderdale, FL PMSA & 1,412,165 \\
\hline 2800 & Fort Worth-Arlington, TX PMSA & 1,491,965 \\
\hline 3120 & Greensboro--Winston-Salem--High Point, NC MSA & 1,123,840 \\
\hline 3283 & Hartford, CT NECMA & 1,115,223 \\
\hline 3360 & Houston, TX PMSA & 3,710,844 \\
\hline 3480 & Indianapolis, IN MSA & 1,476,865 \\
\hline 3760 & Kansas City, MO-KS MSA & 1,663,453 \\
\hline 4120 & Las Vegas, NV-AZ MSA & 1,138,758 \\
\hline 4480 & Los Angeles-Long Beach, CA PMSA & 9,138,789 \\
\hline 4920 M & Memphis, TN-AR-MS MSA & 1,068,891 \\
\hline 5000 M & Miami, FL PMSA & 2,031,336 \\
\hline 5015 M & Middlesex-Somerset-Hunterdon, NJ PMSA & 1,080,450 \\
\hline 5080 M & Milwaukee-Waukesha, WI PMSA & 1,457,939 \\
\hline 5120 & Minneapolis-St. Paul, MN-WI MSA & 2,723,137 \\
\hline 5190 M & Monmouth-Ocean, NJ PMSA & 1,050,052 \\
\hline 5360 & Nashville, TN MSA & 1,093,836 \\
\hline 5380 & Nassau-Suffolk, NY PMSA & 2,659,476 \\
\hline 5483 N & New Haven-Bridgeport-Stamford-Waterbury-Danbury,CT NECMA & 1,625,513 \\
\hline 5560 & New Orleans, LA MSA & 1,315,294 \\
\hline 5600 N & New York, NY PMSA & 8,570,212 \\
\hline 5640 N & Newark, NJ PMSA & 1,936,096 \\
\hline 5720 & Norfolk-Virginia Beach-Newport News, VA-NC MSA & 1,540,446 \\
\hline 5775 & Oakland, CA PMSA & 2,195,411 \\
\hline 5880 & Oklahoma City, OK MSA & 1,015,174 \\
\hline 5945 & Orange County, CA PMSA & 2,563,971 \\
\hline 5960 & Orlando, FL MSA & 1,390,574 \\
\hline 6160 & Philadelphia, PA-NJ PMSA & 4,950,866 \\
\hline 6200 & Phoenix-Mesa, AZ MSA & 2,563,582 \\
\hline 6280 & Pittsburgh, PA MSA & 2,394,702 \\
\hline 6440 & Portland-Vancouver, OR-WA PMSA & 1,710,260 \\
\hline 6780 & Riverside-San Bernardino, CA PMSA & 2,949,387 \\
\hline 6840 & Rochester, NY MSA & 1,088,516 \\
\hline 6920 & Sacramento, CA PMSA & 1,456,955 \\
\hline 7040 & St. Louis, MO-IL MSA & 2,547,686 \\
\hline 7160 & Salt Lake City-Ogden, UT MSA & 1,199,323 \\
\hline
\end{tabular}

N-2
\begin{tabular}{lll}
7240 & San Antonio, TX MSA & \(1,460,809\) \\
7320 & San Diego, CA MSA & \(2,644,132\) \\
7360 & San Francisco, CA PMSA & \(1,645,815\) \\
7400 & San Jose, CA PMSA & \(1,565,253\) \\
7600 & Seattle-Bellevue-Everett, WA PMSA & \(2,197,451\) \\
8280 & Tampa-St. Petersburg-Clearwater, FL MSA & \(2,180,484\) \\
8840 & Washington, DC-MD-VA-WV PMSA & \(4,509,932\)
\end{tabular}

\section*{MSA's with 1 Million or more Population Population Order- Ascending}
\begin{tabular}{|c|c|c|}
\hline Code & MSA Name & 7/95 pop \\
\hline 5880 & Oklahoma City, OK MSA & 1,015,174 \\
\hline 5190 & Monmouth-Ocean, NJ PMSA & 1,050,052 \\
\hline 4920 & Memphis, TN-AR-MS MSA & 1,068,891 \\
\hline 5015 & Middlesex-Somerset-Hunterdon, NJ PMSA & 1,080,450 \\
\hline 6840 & Rochester, NY MSA & 1,088,516 \\
\hline 5360 & Nashville, TN MSA & 1,093,836 \\
\hline 3283 & Hartford, CT NECMA & 1,115,223 \\
\hline 3120 & Greensboro--Winston-Salem--High Point, NC MSA & 1,123,840 \\
\hline 4120 & Las Vegas, NV-AZ MSA & 1,138,758 \\
\hline 1280 & Buffalo-Niagara Falls, NY MSA & 1,184,052 \\
\hline 7160 & Salt Lake City-Ogden, UT MSA & 1,199,323 \\
\hline 1520 & Charlotte-Gastonia-Rock Hill, NC-SC MSA & 1,289,177 \\
\hline 875 & Bergen-Passaic, NJ PMSA & 1,308,655 \\
\hline 5560 & New Orleans, LA MSA & 1,315,294 \\
\hline 5960 & Orlando, FL MSA & 1,390,574 \\
\hline 2680 & Fort Lauderdale, FL PMSA & 1,412,165 \\
\hline 1840 & Columbus, OH MSA & 1,437,512 \\
\hline 6920 & Sacramento, CA PMSA & 1,456,955 \\
\hline 5080 & Milwaukee-Waukesha, WI PMSA & 1,457,939 \\
\hline 7240 & San Antonio, TX MSA & 1,460,809 \\
\hline 3480 & Indianapolis, IN MSA & 1,476,865 \\
\hline 2800 & Fort Worth-Arlington, TX PMSA & 1,491,965 \\
\hline 5720 & Norfolk-Virginia Beach-Newport News, VA-NC MSA & 1,540,446 \\
\hline 7400 & San Jose, CA PMSA & 1,565,253 \\
\hline 1640 & Cincinnati, OH-KY-IN PMSA & 1,591,837 \\
\hline 5483 & New Haven-Bridgeport-Stamford-Waterbury-Danbury, CT NECMA & 1,625,513 \\
\hline 7360 & San Francisco, CA PMSA & 1,645,815 \\
\hline 3760 & Kansas City, MO-KS MSA & 1,663,453 \\
\hline 6440 & Portland-Vancouver, OR-WA PMSA & 1,710,260 \\
\hline 2080 & Denver, CO PMSA & 1,831,308 \\
\hline 5640 & Newark, NJ PMSA & 1,936,096 \\
\hline 5000 & Miami, FL PMSA & 2,031,336 \\
\hline 8280 & Tampa-St. Petersburg-Clearwater, FL MSA & 2,180,484 \\
\hline 5775 & Oakland, CA PMSA & 2,195,411 \\
\hline 7600 & Seattle-Bellevue-Everett, WA PMSA & 2,197,451 \\
\hline 1680 & Cleveland-Lorain-Elyria, OH PMSA & 2,224,974 \\
\hline 6280 & Pittsburgh, PA MSA & 2,394,702 \\
\hline 720 & Baltimore, MD PMSA & 2,469,985 \\
\hline 7040 & St. Louis, MO-IL MSA & 2,547,686 \\
\hline 6200 & Phoenix-Mesa, AZ MSA & 2,563,582 \\
\hline 5945 & Orange County, CA PMSA & 2,563,971 \\
\hline 7320 & San Diego, CA MSA & 2,644,132 \\
\hline 5380 & Nassau-Suffolk, NY PMSA & 2,659,476 \\
\hline 5120 & Minneapolis-St. Paul, MN-WI MSA & 2,723,137 \\
\hline 6780 & Riverside-San Bernardino, CA PMSA & 2,949,387 \\
\hline 1920 & Dallas, TX PMSA & 2,957,910 \\
\hline 520 & Atlanta, GA MSA & 3,431,983 \\
\hline 3360 & Houston, TX PMSA & 3,710,844 \\
\hline
\end{tabular}

N-4
\begin{tabular}{lr}
2160 Detroit, MI PMSA & \(4,320,203\) \\
8840 Washington, DC-MD-VA-WV PMSA & \(4,509,932\) \\
6160 Philadelphia, PA-NJ PMSA & \(4,950,866\) \\
1123 Boston-Worcester-Lawrence-Lowell-Brockton, MA-NH & \(5,768,968\) \\
NECMA & \(7,724,770\) \\
1600 Chicago, IL PMSA & \(8,570,212\) \\
5600 New York, NY PMSA & \(9,138,789\)
\end{tabular}

\title{
State Postal Code
} (For referencing hHSTATE)

\section*{State Postal Code}

State

AL
AK
AZ
AR
CA
CO
CT
DE
DC
FL
GA
HI
ID
IL
IN
IA
KS
KY
LA
ME
MD
MA
MI
MN
MS
MO
MT
NE
NV
NH
NJ
NM
NY
NC
ND
OH

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
District of Columbia
Florida
Georgia
Hawaii
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada
New Hampshire
New Jersey
New Mexico
New York
North Carolina
North Dakota
Ohio

\title{
State Postal Code \\ (For referencing HHSTATE)
}
\begin{tabular}{ll}
State Postal Code & State \\
OK & Oklahoma \\
OR & Oregon \\
PA & Pennsylvania \\
PR & Puerto Rico \\
RI & Rhode Island \\
SC & South Carolina \\
SD & South Dakota \\
TN & Tennessee \\
TX & Texas \\
UT & Utah \\
VT & Vermont \\
VA & Virginia \\
WA & Washington \\
WV & West Virginia \\
WI & Wisconsin \\
WY & Wyoming
\end{tabular}

\section*{APPENDIX O - MAKE AND MODEL CODES FOR NPTS VEHICLE FILE}

The codes used for vehicle make and model are from the National Accident Sampling Sytem (NASS), a major database of the National Highway Traffic Safety Administration (NHTSA).

This Appendix contains the portion of the NASS documentation identifying the codes. Within the Appendix, the codes in are in numerical order by vehicle make. A listing in alphabetic order is provided below.
\begin{tabular}{lllllr}
& Page No. & Make & Lancia & O-44 & 40 \\
Acura & O-60 & 54 & Land Rover & O-68 & 62 \\
Alfa Romeo & O-33 & 31 & Lexus & O-65 & 59 \\
American Motors & O-4 & 01 & Lincoln & O-17 & 13 \\
AM General & O-6 & 03 & Mazda & O-45 & 41 \\
Audi & O-34 & 32 & Mercedes Benz & O-46 & 42 \\
Austin/ & & & Mercury & O-18 & 14 \\
Austin Healy & O-35 & 33 & Merkur & O-62 & 56 \\
Avanti & O-31 & 29 & MG & O-48 & 43 \\
BMW & O-36 & 34 & Mitsubishi & O-58 & 52 \\
Buick & O-20 & 18 & Nissan & O-38 & 35 \\
Cadillac & O-21 & 19 & Oldsmobile & O-26 & 21 \\
Checker & O-31 & 29 & Other domestic & O-31 & 29 \\
Chevrolet & O-22 & 20 & Other foreign & O-70 & 69 \\
Chrysler & O-7 & 06 & Peugeot & O-49 & 44 \\
Daihatsu & O-66 & 60 & Plymouth & O-12 & 09 \\
Datsun & O-38 & 35 & Pontiac & O-27 & 22 \\
Dodge & O-8 & 07 & Porsche & O-50 & 45 \\
Eagle & O-14 & 10 & Renault & O-51 & 46 \\
Fiat & O-40 & 36 & Saab & O-53 & 47 \\
Ford & O-15 & 12 & Saturn & O-29 & 24 \\
GMC & O-28 & 23 & Sterling & O-67 & 61 \\
Grumman & O-30 & 25 & Studebaker & O-31 & 29 \\
Honda & O-41 & 37 & Subaru & O-54 & 48 \\
Hyundai & O-61 & 61 & Suzuki & O-59 & 53 \\
Imperial & O-11 & 08 & Toyota & O-55 & 49 \\
Infiniti & O-64 & 58 & Triumph & O-56 & 50 \\
Isuzu & O-42 & 38 & Volkswagen & O-32 & 30 \\
Jaguar & O-43 & 39 & Volvo & O-57 & 51 \\
Jeep & O-5 & 02 & Yugo & O-63 & 57 \\
Kaiser & O-5 & 02 & & &
\end{tabular}

Page No. Make

\section*{GV05}

Variable Name: Vehicle Make (specify):

\section*{Element Values:}

\section*{Passenger Vehicles/Light Trucks (01-69)}

\begin{tabular}{ll}
49 Toyota & \(\mathrm{O}-55\) \\
50 Triumph & \(\mathrm{O}-56\) \\
51 Volvo & \(\mathrm{O}-57\) \\
52 Mitsubishi & \(\mathrm{O}-58\) \\
53 Suzuki & \(\mathrm{O}-59\) \\
54 Acura & \(\mathrm{O}-60\) \\
55 Hyundai & \(\mathrm{O}-61\) \\
56 Merkur & \(\mathrm{O}-62\) \\
57 Yugo & \(\mathrm{O}-63\) \\
58 Infiniti & \(\mathrm{O}-64\) \\
59 Lexus & \(\mathrm{O}-65\) \\
60 Daihatsu & \(\mathrm{O}-66\) \\
61 Sterling & \(\mathrm{O}-67\) \\
62 Land Rover & \(\mathrm{O}-68\) \\
63 KIA & \(\mathrm{O}-69\) \\
69 Other foreign & \(\mathrm{O}-70\)
\end{tabular}

GV06
Variable Name: Vehicle Model (specify):

\section*{Element Values:}

\section*{MAKE "01" AMERICAN MOTORS*}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 001 & Rambler/American & Rogue, Scrambler, 220, 440 & all & 3 & 3 \\
\hline 002 & Rebel/Matador 5 & \multicolumn{2}{|l|}{Barcelona, Classic all Brougham, 550, 660, 770Matador (-78), Marlin} & \multicolumn{2}{|l|}{\[
114^{\prime \prime} \mathrm{WB}=4 \stackrel{4}{4} \mathrm{H}
\]} \\
\hline 003 & Ambassador & Brougham, DPL, SST, DL, Limited, 880, 990 & all & 5 & 5 \\
\hline 004 & Pacer & Limited, DL & 75-80 & 2 & 2 \\
\hline 005 & AMX & (2 seater only) & 68-70 & 2 & 2 \\
\hline 006 & Javelin & SST, AMX (71-74) & all & 2 & 2 \\
\hline 007 & Hornet/Concord & Sportabout, Limited, DL, SC-360, SST, AMX (75-78) & all & 2 & 2 \\
\hline 008 & Spirit/Gremlin & Limited, DL, Custom, X, GT (83-on) AMX (79-on) & all & 2 & 2 \\
\hline 009 & Eagle & Concord based & 80-87 & 3 & 3 \\
\hline 010 & Eagle SX-4 & Spirit/Gremlin based & 81-84 & 2 & 2 \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}
* Alliance, Encore, Premier--See Renault - Make "46"

GV06
(2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Variab \\
MAKE
\end{tabular} & & Model (specify): [cont'd.] ncludes KAISER-JEEP) & & & \\
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 401 & CJ-2/CJ-3/CJ-4 & Military & -66 & \[
\begin{aligned}
& 81 " W B=1 \\
& 101^{\prime \prime} W B=2
\end{aligned}
\] & \[
\begin{aligned}
& 7^{* *} \\
& 7^{* *}
\end{aligned}
\] \\
\hline 402 & CJ-5/CJ-6/CJ-7/CJ8 & Scrambler, Golden Eagle, Renegade, Laredo, Wrangler & 67-on & \[
\begin{aligned}
& 84 " W B=1 \\
& 104 " W B=3
\end{aligned}
\] & 7** \\
\hline 403 & YJ-series & Wrangler & 86-on & 1 & 7** \\
\hline 404 & Cherokee & Limited, Loredo, Pioneer, Briarwood Grand & \[
\begin{aligned}
& 84-\text { on } \\
& \text { 92-on }
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
7^{7 * *}
\] \\
\hline 421 & Cherokee & Wide Track, Chief, Commando, Jeepster & -83 & 2 & 7** \\
\hline 431 & Grand Wagoneer & Custom, Brougham Limited, Wagoneer & 71-91 & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & \[
7_{7^{* *}}^{* *}
\] \\
\hline 481 & Pickup & J-10, J-20, Honcho & all & per WB & \(7 * *\) \\
\hline 482 & Comanche & Chief & 86-92 & \[
\begin{aligned}
& 111 " \mathrm{WB}=3 \\
& 119^{\prime \prime} \mathrm{WB}=4
\end{aligned}
\] & \[
7^{7^{* *}}
\] \\
\hline 498 & Other light truck & & - & - & - \\
\hline 499 & Unknown light truck & & - & - & - \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}

MAKE "03" AM GENERAL

GV06
(3)
\begin{tabular}{ll}
Variable Name: & Vehicle Model (specify): [cont'd.] \\
MAKE "06" & CHRYSLER
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & E MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 009 & Cordoba & Crown, 300, LS & 75-83 & 4 & 4 \\
\hline 010 N & New Yorker/Newport/ 5th Avenue/Imperial (excludes all FWD) & Custom, Royal, Brougham, Town and Country, 300 (-71) & \[
\begin{aligned}
& -78 \\
& 79-81 \\
& 82-89
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 5 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 5 \\
& 4
\end{aligned}
\] \\
\hline 014 & New Yorker/E Class/ Imperial (90-93)/5th Avenu & FWD vehicles, Turbo ue & 83-93 & 3 & 9*** \\
\hline 015 & Laser & Turbo, XE, XT & 84-86 & 2 & 9*** \\
\hline 016 L & LeBaron & Medallion, Salon (RWD), Landau, LX FWD except GTS or GTC Sport Coupe & \[
\begin{aligned}
& 77-81 \\
& 82-o n
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 9^{* * *}
\end{aligned}
\] \\
\hline 017 & LeBaron GTS/GTC & \begin{tabular}{l}
GTS-Turbo \\
GTC-Sport Coupe
\end{tabular} & \[
\begin{aligned}
& 85-\text {-on } \\
& 87 \text {-on }
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 9^{* * *} \\
& 9^{* * *}
\end{aligned}
\] \\
\hline 031 & TC (Maserati Sport) & Turbo Convertible & 88-91 & 1 & 1 \\
\hline 035 & Conquest & TSI, Turbo & 87-89 & 2 & 2 \\
\hline 041 & Concorde & & 93-on & 4 & 4 \\
\hline 042 & LHS & New Yorker (94-on) & 94-on & 4 & 9*** \\
\hline 043 & Sebring & & 95-on & 3 & 3 \\
\hline 044 & Cirrus & & 95-on & 3 & 9*** \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 441 & Town and Country & Minivan & 90-on & 5 & 7** \\
\hline 498 & Other light truck & & & & \\
\hline 499 & Unknown light truck & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}
** Code 7 applies to front and rear impacts. Use size code for stiffness for side impacts.
*** Code 9 applies only to frontal impacts. Use size code for stiffness for side or rear impacts.

GV06
(4)

\section*{Variable Name: Vehicle Model (specify): [cont'd.] \\ MAKE "07" \\ DODGE}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline CODE & E MODEL & & INCLUDES & YEAR & SIZE & & \multicolumn{2}{|l|}{STIFFNESS} \\
\hline 001 & Dart & & Custom, Swinger, Sport, GT, Demon, Special, Special Edition, 170, 270, 340, 360 & \[
\begin{aligned}
& \hline 62-70 \\
& 71-76
\end{aligned}
\] & \(111 "\)
\(108 "\) & \[
\begin{aligned}
& W B=4 \\
& W B=3
\end{aligned}
\] & 4
3 & \multirow[b]{2}{*}{4} \\
\hline 002 & Coronet/Charger (-78)/ Magnum & & \multicolumn{2}{|l|}{Brougham, Custom, Superbee, Crestwood, Deluxe, XE, R/T, SE, 440, 500, Police} & -79 & 4 & & \\
\hline 003 & Polara/Monaco Royal Monaco & & Custom, Special, Crestwood, Brougham, Police, Taxi & \[
\begin{aligned}
& -76 \\
& 77-78
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 4
\end{aligned}
\] & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 5 \\
& 4
\end{aligned}
\]} \\
\hline 004 & Viper & & RT/10, GTS & 92-on & 2 & & \multicolumn{2}{|l|}{2} \\
\hline 005 & Challenger & & R/T, T/A, Rallye & 70-74 & 3 & & \multicolumn{2}{|l|}{3} \\
\hline 006 & Aspen & & Custom, Special Edition, Police, R/T, Sport & 76-80 & \[
\begin{aligned}
& 113 " \\
& 109 "
\end{aligned}
\] & \[
\begin{aligned}
& W B=4 \\
& W B=3
\end{aligned}
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\]} \\
\hline 007 & Diplomat & & Medallion, Salon, S & 77-89 & 4 & & \multicolumn{2}{|l|}{4} \\
\hline 008 & Omni/Charger (83 on) & & 024, DeTomaso, Miser, GLH, GLHS, Shelby, Charger 2.2, America, Expo & 78-90 & 2 & & \multicolumn{2}{|l|}{2} \\
\hline 009 & \multicolumn{3}{|l|}{Mirada} & 80-83 & 4 & & \multicolumn{2}{|l|}{4} \\
\hline 010 & St. Regis & \multicolumn{2}{|l|}{Police, Taxi} & 79-81 & 5 & & \multicolumn{2}{|l|}{5} \\
\hline 011 & Aries (K) & \multicolumn{2}{|l|}{Custom, SE, LE} & 81-89 & 2 & & \multicolumn{2}{|l|}{9***} \\
\hline 012 & 400 & \multicolumn{2}{|l|}{LS} & 82-83 & 2 & & \multicolumn{2}{|l|}{9***} \\
\hline 013 & Rampage (car based pickup) & \multicolumn{2}{|l|}{2.2, GT, Sport} & 82-84 & 2 & & \multicolumn{2}{|l|}{2} \\
\hline 014 & 600 & \multicolumn{2}{|l|}{ES, Turbo} & 83-88 & 2 & & \multicolumn{2}{|l|}{9***} \\
\hline 015 & Daytona & \multicolumn{2}{|l|}{\begin{tabular}{l}
Turbo Z, Shelby Z, Pacifica, \\
C/S Competition, IROC R/T
\end{tabular}} & 84-94 & 2 & & \multicolumn{2}{|l|}{9***} \\
\hline 016 & Lancer & \multicolumn{2}{|l|}{Pacifica, Turbo, ES, Shelby} & 85-89 & 3 & & \multicolumn{2}{|l|}{9***} \\
\hline 017 & Shadow & ES, Turbo & & 87-on & 2 & & \multicolumn{2}{|l|}{9***} \\
\hline 018 & Dynasty & & & 88-on & 3 & & 9** & \\
\hline 019 & Spirit & \multicolumn{2}{|l|}{ES, Shelby, R/T} & 89-94 & 3 & & \multicolumn{2}{|l|}{9***} \\
\hline 020 & Neon & \multicolumn{2}{|l|}{Expresso} & 94-on & 3 & & \multicolumn{2}{|l|}{9***} \\
\hline 033 & \multicolumn{3}{|l|}{Challenger all imported} & 78-83 & 2 & & \multicolumn{2}{|l|}{2} \\
\hline 034 & Colt (excludes Vista) & \multicolumn{2}{|l|}{RS, Turbo, Custom, GTS, DL, E, Premier, Deluxe, Carousel, GT} & \[
\begin{aligned}
& 74-76 \\
& 77-80 \\
& 80-94
\end{aligned}
\] & & \[
W B=1
\] & \multicolumn{2}{|l|}{2} \\
\hline 035 & Conquest & \multicolumn{2}{|l|}{Turbo} & 84-86 & 2 & & \multicolumn{2}{|l|}{2} \\
\hline
\end{tabular}
*** Code 9 applies only to frontal impacts. Use size code for stiffness for side or rear impacts.

GV06
(5)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "07" DODGE (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & MODEL & INCLUDES & YEAR & SIZE STIF & STIFFNESS \\
\hline 039 & Stealth & & 91-on & 2 & 2 \\
\hline 040 & Monaco & & 90-92 & 3 & 3 \\
\hline 041 & Intrepid & & 93-on & 4 & 4 \\
\hline 042 & Avenger & 95-on & 3 & 3 & \\
\hline 043 & Stratus & & 95-on & 3 & 9*** \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 401 & Raider & Sport & 86-on & 1 & 8** \\
\hline 421 & Ramcharger & & all & 3 & 8** \\
\hline 441 & Vista & \(4 \times 4\) & 84-91 & 3 & 7** \\
\hline 442 & Caravan & Mini-Ram, 112 and 119 WB, SE, ES & 84-on & \[
\begin{aligned}
& 112^{\prime \prime} \mathrm{WB}=4 \\
& 119^{\prime \prime} \mathrm{WB}=5
\end{aligned}
\] & \[
\begin{gathered}
7^{* *} \\
7^{* *}
\end{gathered}
\] \\
\hline 461 & B-series vans & Sportsman, Royal, Maxiwagon, Ram B150-B350, Tradesman & all & 7 & \(7{ }^{* *}\) \\
\hline 470 & Van derivative & Kary Van & all & 7 & 7** \\
\hline 471 & \begin{tabular}{l}
D50, Colt P/U \\
Ram 50/Ram 100
\end{tabular} & & \[
\begin{aligned}
& -82 \\
& 83-\mathrm{on}
\end{aligned}
\] & per WB per WB & \[
\begin{aligned}
& 8^{* *} \\
& 8^{* *}
\end{aligned}
\] \\
\hline 472 & Dakota & & 87-on & \[
\begin{aligned}
& 112^{\prime \prime} \mathrm{WB}=3 \\
& 124^{\prime \prime} \mathrm{WB}=6
\end{aligned}
\] & 8** \\
\hline 481 & D, W-series pickup W100-W350 & Ram, Custom, Royal, Miser, D100-D350, & all & per WB & 8** \\
\hline 482 & Ram & 1500/2500/3500 P/U & 94-on & per WB & 8** \\
\hline 498 & Other light truck & & - & - & - \\
\hline 499 & Unknown light truck & & & & \\
\hline
\end{tabular}
** Applies to front and rear impacts. Use size value for side impacts.
*** Code 9 applies only to frontal impacts. Use size code for stiffness for side or rear impacts.

GV06
(6)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "07" DODGE (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline CODE MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 881 Medium/Heavy: CBE & & all & N/A & N/A \\
\hline 882 Medium/Heavy: COE low entry & & all & N/A & N/A \\
\hline 883 Medium/Heavy: COE high entry & & all & N/A & N/A \\
\hline 884 Medium/Heavy: Unknown engine location & & all & N/A & N/A \\
\hline 890 Medium/Heavy: COE entry position unknown & & all & N/A & N/A \\
\hline 898 Other medium/heavy truck N/A & & & all & N/A \\
\hline 899 Unknown medium/heavy truck & & all & N/A & N/A \\
\hline 981 Medium bus (not van based) & & all & N/A & N/A \\
\hline 988 Other bus & & all & N/A & N/A \\
\hline 989 Uknown bus type & & & & \\
\hline 998 Other vehicle & & & & \\
\hline 999 Unknown vehicle & & - & - & - \\
\hline
\end{tabular}

GV06
(7)
\(\begin{array}{ll}\text { Variable Name: } & \text { Vehicle Model (specify): [cont'd.] } \\ \text { MAKE "09" } & \text { PLYMOUTH }\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIF & ESS \\
\hline 001 & Valiant/Duster (-76)/ Scamp & 100, 200, Brougham, Signet Custom, Special 340/360, 340, 360, Twister & -76 & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \hline 108 " W B=3 \\
& 111^{\prime \prime} W B=4
\end{aligned}
\]} & \[
\begin{aligned}
& \hline 3 \\
& 4
\end{aligned}
\] \\
\hline 002 & Satellite/Belvedere & Belvedere I/II, GTX, Roadrunner (-74), Sebring, Sebring Plus, Superbird, Brougham & -74 & \multicolumn{2}{|l|}{4} & \multirow[t]{2}{*}{4} \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
003 \\
5
\end{array}
\]} & \multirow[t]{2}{*}{Fury} & \multicolumn{2}{|l|}{I, II, III, Roadrunner (75),} & -74 & 5 & \\
\hline & & Salon, VIP, Sport, Suburban & 75-78 & \multicolumn{2}{|l|}{4} & 4 \\
\hline 004
4 & Gran Fury & Sedan, Brougham, Custom Sport, Suburban & 75-81 & \[
\begin{aligned}
& 5 \\
& 82-89
\end{aligned}
\] & 4 & 5 \\
\hline 005 & Barracuda & Formula, S, 340, AAR, ‘Cuda Gran Coupe & 65-73 & \multicolumn{2}{|l|}{3} & 3 \\
\hline 006 & Volare & Custom, Premier, Roadrunner (76-on), Police & 76-80 & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 109 " W B=3 \\
& 113^{\prime \prime} W B=4
\end{aligned}
\]} & \[
\begin{aligned}
& 3 \\
& 4
\end{aligned}
\] \\
\hline 007 & Caravelle & Turbo, SE & 85-89 & \multicolumn{2}{|l|}{3} & 9*** \\
\hline \[
\begin{array}{r}
008 \\
2
\end{array}
\] & Horizon & \begin{tabular}{l}
TC-3, Miser, Turismo 2.2, \\
Custom, SE, Duster (85-on) America, Expo
\end{tabular} & & 78-90 & \multicolumn{2}{|l|}{2} \\
\hline 011 & Reliant (K) & SE, LE & 81-89 & \multicolumn{2}{|l|}{2} & 9*** \\
\hline 013 & Scamp (car based pickup) & GT, 2.2 & 82-84 & \multicolumn{2}{|l|}{2} & 2 \\
\hline 017 & Sundance & Turbo & 87-on & \multicolumn{2}{|l|}{2} & 9*** \\
\hline 019 & Acclaim & LX, LE & 89-on & \multicolumn{2}{|l|}{3} & 9*** \\
\hline 020 & Neon & Expresso & 94-on & \multicolumn{2}{|l|}{3} & 9*** \\
\hline 031 & Cricket & & 71-72 & \multicolumn{2}{|l|}{2} & 2 \\
\hline \[
\begin{array}{r}
032 \\
1
\end{array}
\] & Arrow & Fire Arrow, GS, GT & & \multicolumn{2}{|l|}{76-80 1} & \\
\hline \[
\begin{array}{r}
033 \\
2
\end{array}
\] & Sapparo & all imported & & \multicolumn{2}{|l|}{78-83 2} & \\
\hline 034 & Champ/Colt (excludes Vista) & Turbo, Custom Station Wagon (84-on) & \[
\begin{array}{r}
79-94 \\
84-94
\end{array}
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 1 \\
& 103 " W B=3
\end{aligned}
\]} & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] \\
\hline 035 & Conquest & TSI & 84-89 & \multicolumn{2}{|l|}{2} & \multirow[t]{2}{*}{2} \\
\hline 036 & \multicolumn{2}{|l|}{CHANGED TO CODE 037 IN 1990} & & & & \\
\hline \[
\begin{array}{r}
037 \\
2
\end{array}
\] & Laser & RS, Turbo & & 89-on & 2 & \\
\hline \[
{ }_{9^{* * *}}
\] & \multicolumn{2}{|l|}{Breeze} & & 96-on & 3 & \multirow[b]{2}{*}{TBD} \\
\hline 039 & \multicolumn{2}{|l|}{Prowler} & 96-on & \multicolumn{2}{|l|}{TBD} & \\
\hline 398 & \multicolumn{2}{|l|}{Other automobile} & - & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{-}} & \multirow[t]{2}{*}{-} \\
\hline 399 & Unknown automobile & & & & & \\
\hline
\end{tabular}
*** Code 9 applies only to frontal impacts. Use size code for stiffness for side or impacts.

GV06
(8)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "09"
PLYMOUTH (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & MODEL & INCLUDES & YEAR & \multicolumn{2}{|l|}{SIZE STIFFNESS} \\
\hline 421 & Trailduster & & all & 3 & 8** \\
\hline 441 & Vista & \(4 \times 4\) & 87-on & 3 & 7** \\
\hline 442 & Voyager (minivan) & SE, LX & 84-on & \[
\begin{aligned}
& 112^{\prime \prime} W B=4 \\
& 119 " W B=5
\end{aligned}
\] & \[
\begin{aligned}
& 7^{* *} \\
& 7^{* *}
\end{aligned}
\] \\
\hline 461 & Van-fullsize (B-series) & Voyager, Sport, Premier & all & 7 & 7** \\
\hline 471 & Arrow pickup (foreign) & & all & per WB & 8** \\
\hline 498 & Other light truck & & - & - & - \\
\hline 499 & Unknown light truck & & - & - & - \\
\hline 999 & Unknown vehicle & & - & & - \\
\hline
\end{tabular}

GV06
(9)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "12" FORD
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 001 & Falcon & Sprint, GT, Futura & thru-70 & 4 & 3 \\
\hline 002 & Fairlane & Torino & thru 19 thru-70 & \[
\begin{gathered}
70 \\
4
\end{gathered}
\] & 4 \\
\hline 003 & Mustang/Mustang II & Mach, Boss, Grande, Cobra Ghia, SVO, GT, LX, Shelby & \[
\begin{aligned}
& 65-73 \\
& 74-\mathrm{on}
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 2
\end{aligned}
\] \\
\hline 004 & Thunderbird (all sizes) & \begin{tabular}{l}
Landau, Heritage, Turbo coupe, Elan, Fila \\
SC, Sport, LX
\end{tabular} & \[
\begin{aligned}
& 72-76 \\
& 58-71 \\
& 77-79 \\
& 55-57 \\
& 80-88 \\
& 89-o n
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 4 \\
& 4 \\
& 3 \\
& 3 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 4 \\
& 4 \\
& 3 \\
& 3 \\
& 4
\end{aligned}
\] \\
\hline 005 & LTD II & S, Squire, Brougham & 77-79 & 4 & 4 \\
\hline 006 & LTD/Custom/Galaxie (all sizes) & XL, Landau, Ranch Wagon, Country Squire, S, 500 , Brougham, XL, GT & \[
\begin{aligned}
& \text { thru-77 } \\
& 78-82 \\
& 83-86
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 4 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 4 \\
& 3
\end{aligned}
\] \\
\hline 007 & Ranchero & Falcon/Fairlane based Torino/LTD II based & \[
\begin{aligned}
& \text { thru-71 } \\
& 72-79
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 4
\end{aligned}
\] \\
\hline 008 & \multicolumn{2}{|l|}{Maverick Grabber} & 70-77 & 3 & 3 \\
\hline 009 & Pinto & Pony, MPG, ESS & 71-80 & 1 & \multirow[t]{2}{*}{\begin{tabular}{l}
1-Front \\
2-Rear \\
4
\end{tabular}} \\
\hline 010 & Torino/Gran Torino/Elite & GT, Cobra, Sport, Squire, Brougham & 71-76 & 4 & \\
\hline 011 & Granada & ESS, Ghia & 75-82 & 3 & 3 \\
\hline 012 & Fairmont & Futura, Sport Coupe & 78-83 & 3 & 3 \\
\hline 013 & Escort/EXP & L, GL, GLX, SS, GT, LX & 81-on & 1 & 9*** \\
\hline 015 & Tempo & L, GL, GLX, Sport, \(4 \times 4\) & 84-94 & 2 & 9*** \\
\hline 016 & Crown Victoria & & 81-on & 4 & 4 \\
\hline 017 & Taurus & MT-5, L, GL, LX, SHO & 86-on & 3 & 3 \\
\hline 018 & Probe GL, LX, & GT & 88-on & 2 & 2 \\
\hline 031 & English Ford & Cortina & & per WB & per WB \\
\hline 032 & Fiesta & Sport, Ghia & 78-80 & 1 & 1 \\
\hline 033 & Festiva & & 88-93 & 1 & 1 \\
\hline 034 & Laser & & all & per WB & per WB \\
\hline 035 & Contour & & 94-on & 3 & 9*** \\
\hline 036 & Aspire & & 94-on & 1 & 1 \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & - & - & - \\
\hline
\end{tabular}
*** Code 9 applies only to frontal impacts. Use size code for stiffness for side or rear impacts.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
GV06 \\
(10)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Variable Name: Vehicle} & Model (specify): [cont'd.] & & & & \\
\hline \multicolumn{2}{|l|}{MAKE "12"} & Continued) & & & & \\
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIF & ESS \\
\hline \[
401
\] & \begin{tabular}{l}
Bronco II/Bronco (-77)/ \\
Explorer
\end{tabular} & \multicolumn{2}{|l|}{Eddie Bauer, XL, XLT, Limited, Eddie Bauer} & 83-89 & \multicolumn{2}{|l|}{1} \\
\hline 421 & Bronco-fullsize & Eddie Bauer, Custom, XL, XLT & 78-on & 3 & & 8** \\
\hline 422 & Expedition & & 97-on & TBD & & TBD \\
\hline 441 & Aerostar & XLT, Cargo Van & 85-on & 7 & & 7** \\
\hline \[
442_{7^{* *}}
\] & Windstar & & & 94-on & 5 & \\
\hline 461 & E-series vans & Econoline, Clubwagon, Chateau, E150-E350 & all & 7 & & 7** \\
\hline 470 & Van derivative & Parcel van & all & 7 & & 7** \\
\hline \[
\begin{gathered}
471 \\
8^{* *}
\end{gathered}
\] & Ranger & Supercab, \(4 \times 4\), STX, Splash & & \begin{tabular}{l}
82-on \\
114" W
\end{tabular} & \[
\begin{gathered}
108 " \\
B=4
\end{gathered}
\] & \(=3\)
\(8 * *\) \\
\hline 472 & Courier & Imported pickup & all & 7 & & 7** \\
\hline 481 & F-series pickup & F100-F350 & all & per WB & & 8** \\
\hline 498 & Other light truck & & - & - & & - \\
\hline 499 & Unknown light truck & & & & & \\
\hline 881 & Medium/Heavy CBE & F-5 through F-8, L-series, FT-series & all & N/A & & N/A \\
\hline 882 & Medium/Heavy COE low entry & C/CT series & all & N/A & & N/A \\
\hline 883 & Medium/Heavy COE high entry & C/CLT series & all & N/A & & N/A \\
\hline 884 & Medium/Heavy: Unknown engine location & & all & N/A & & N/A \\
\hline 890 & Medium/Heavy: COE entry position unknow & & all & N/A & & N/A \\
\hline 898 & Other medium/heavy truck & & - & - & & - \\
\hline 899 & Unknown medium/heavy tr & uck & - & - & & - \\
\hline 981 & Medium bus & B-series (not van based) & all & N/A & & N/A \\
\hline 988 & Other bus & & all & N/A & & N/A \\
\hline 989 & Unknown bus type & & & & & \\
\hline 998 & Other vehicle & & - & - & & - \\
\hline 999 & Unknown vehicle & & - & - & & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
GV06 \\
(11) \\
Variable Name: \\
Vehicle Model (specify): [cont'd
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{MAKE "13"} & \multicolumn{4}{|l|}{LINCOLN} \\
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 001 & Continental/Town Car & Continental (-81), Town Car (82-on) & \[
\begin{aligned}
& \text { thru-79 } \\
& 80-\text { on }
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 5
\end{aligned}
\] \\
\hline 002 & Mark & I, II, III, IV, V LSC, all Signature/Designer Series VI VII VIII & \[
\begin{gathered}
-70 \\
71-80 \\
80-83 \\
84-\text {-n } \\
93-\text { on }
\end{gathered}
\] & \[
\begin{aligned}
& 4 \\
& 5 \\
& 4 \\
& 3 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 5 \\
& 4 \\
& 3 \\
& 4
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 005 \\
& 4
\end{aligned}
\] & Continental (82-on) 5 & All Sig & /Designe & 3 & \(82-87\)
3 \\
\hline 011 & Versailles & & 77-80 & 3 & 3 \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 421 & Navigator & & 97-on & TBD & TBD \\
\hline 498 & Other light truck & & & & \\
\hline 499 & Unknown light truck & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}

GV06
(12)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "14" MERCURY (MERKUR: See "56")
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 002 & Cyclone & GT, CJ, Spoiler & thru-71 & 4 & 4 \\
\hline 003 & Capri-domestic & RS, Turbo, GS, Black Magic & 79-86 & 2 & 2 \\
\hline 004 & Cougar/XR7 & XR-7, RS, LS, GS, Eliminator, Bougham, Villager, (includes all body styles) & \[
\begin{aligned}
& 67-76 \\
& 77-79 \\
& 80-88 \\
& 89-\text { on }
\end{aligned}
\] & \[
\begin{gathered}
4 \\
114 " W B=4 \\
118 " W B=5 \\
3 \\
4
\end{gathered}
\] & \[
\begin{aligned}
& 4 \\
& 4 \\
& 5 \\
& 3 \\
& 4
\end{aligned}
\] \\
\hline 006 & Marquis/Monterey & Marauder, X-100, Parklane, S-55, Custom, Brougham, Montclair, Grand Marquis & \[
\begin{gathered}
\text {, thru-78 } \\
79-82 \\
82-\text { on }
\end{gathered}
\] & \[
\begin{aligned}
121 " W B & =5 \\
124^{\prime \prime} W B & =6 \\
4 & =6 \\
106^{\prime \prime} W B & =3 \\
114^{\prime \prime} W B & =4
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 6 \\
& 4 \\
& 3 \\
& 4
\end{aligned}
\] \\
\hline 008 & Comet & Caliente, GT, Voyager, 202, Capri (66-67) & \[
\begin{aligned}
& 62-67 \\
& 71-77
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 3
\end{aligned}
\] \\
\hline 009 & Bobcat & Runabout, Villager & 75-80 & 1 & 1-Front 2-Rear \\
\hline 010 & Montego & Comet (68-70), GT, MX, Villager, Brougham & \[
\begin{aligned}
& 68-73 \\
& 72-76
\end{aligned}
\] & \[
\begin{gathered}
3 \\
114 " W B=3 \\
118^{\prime \prime} W B=4
\end{gathered}
\] & \[
\begin{aligned}
& 3 \\
& 3 \\
& 4
\end{aligned}
\] \\
\hline 011 & Monarch & Ghia & 75-80 & 3 & 3 \\
\hline 012 & Zephyr & GS, Z-7 & 78-83 & 3 & 3 \\
\hline 013 & Lynx/LN-7 (82-83) & L, LS, GS, RS, XR-3 & 81-87 & 1 & 9*** \\
\hline 015 & Topaz & L, LS, GS, \(4 \times 4\) & 84-on & 2 & 9*** \\
\hline 017 & Sable & LS, GS & 86-on & 3 & 3 \\
\hline 031 & Capri - foreign & Capri II
\[
2+2
\] & \[
\begin{aligned}
& 70-77 \\
& 89-94
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 1
\end{aligned}
\] \\
\hline 033 & Pantera & deTomaso & 72-74 & 2 & 2 \\
\hline 036 & Tracer & L, GL & 88-on & 1 & 1 \\
\hline 037 & Mystique & & 94-on & 3 & 9*** \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 401 & Mountaineer & & 96-on & 3 & 7** \\
\hline 443 & Villager & LS, GS & 93-on & 4 & 7** \\
\hline 498 & Other light truck & & & & \\
\hline 499 & Unknown light truck & & & & \\
\hline
\end{tabular}
\(\underset{\substack{\text { GVO6 } \\(13)}}{ }\)
Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "14" MERCURY (MERKUR: See "56")
CODE MODEL INCLUDES YEAR SIZE STIFFNESS

999 Unknown vehicle
** Applies to front and rear impacts. Use size value for side impacts.
*** Code 9 applies only to frontal impacts. Use size code for stiffness for side or rear impacts.

GV06
(14)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "18" BUICK
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & M MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 001 & Special/Skylark & GS, GS-350, GS-400, GS-455, GS California, Sport wagon, Custom & thru 72 & 4 & 4 \\
\hline 002 & LeSabre/Centurion/ Wildcat & Wagon, Luxus, Invicta, Custom, Limited T-Type & \[
\begin{gathered}
-76 \\
77-85 \\
86-\mathrm{on}
\end{gathered}
\] & \[
\begin{aligned}
& 6 \\
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 4 \\
& 9^{\star * *}
\end{aligned}
\] \\
\hline 003 & \begin{tabular}{l}
Electra/Electra 225/ \\
Park Avenue (91-on)
\end{tabular} & Limited, Park Avenue, Ultra & \[
\begin{gathered}
-76 \\
77-84 \\
85-\mathrm{on}
\end{gathered}
\] & \[
\begin{aligned}
& 6 \\
& 5 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 5 \\
& 9^{* * *}
\end{aligned}
\] \\
\hline 004 & Roadmaster & Estate Wagon, Limited & 91-96 & 4 & 4 \\
\hline 005 & Riviera & S-Type, T-Type & \[
\begin{aligned}
& 63-65 \\
& 66-76 \\
& 77-85 \\
& 86-93 \\
& 94-\text { on }
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 5 \\
& 4 \\
& 3 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 5 \\
& 4 \\
& 9^{* * *} \\
& 9^{* * *}
\end{aligned}
\] \\
\hline 007 & Century & Luxus, T-Type, FWD (82-on) Custom, Regal (72-77) & thru 77 78-81 82-on & \[
\begin{aligned}
& 4 \\
& 3 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 3 \\
& 9^{* * *}
\end{aligned}
\] \\
\hline 008 & Apollo/Skylark* & Skylark (75)*, S/R & 73-76 & 4 & 4 \\
\hline 010 & Regal & Turbo, Luxus, Grand National, GNX, T-Type & 78-88 & 3 & 3 \\
\hline 012 & Skyhawk & S-Type, Roadhawk, T-Type, GT & \[
\begin{aligned}
& 75-81 \\
& 82-o n
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 9^{* * *}
\end{aligned}
\] \\
\hline 015 & Skylark (76-85) & (except 75), S/R, S, Limited, Sport, T-Type & \[
\begin{aligned}
& 76-79 \\
& 80-85
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 9^{* * *}
\end{aligned}
\] \\
\hline 018 & Somerset/Skylark** & Skylark (86-on)**, Somerset, GS Regal, Custom, Limited, T-Type & 85-on & 3 & 9*** \\
\hline 020 & Regal (FWD) & Limited & 88-on & 3 & 9*** \\
\hline 021 & Reatta & & 88-91 & 2 & 2 \\
\hline 031 & Opel Kadett & & -75 & 2 & 2 \\
\hline 032 & Opel Manta & 1900, Luxus, Rallye, Sports Coupe & -75 & 2 & 2 \\
\hline 033 & Opel GT & & -75 & 2 & 2 \\
\hline 034 & Opel Isuzu & Deluxe, Sport & 76-79 & 1 & 1 \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline \[
{ }_{* * *}^{999}
\] & Unknown vehicle ode 9 applies only to fr & tal impacts. Use size code for stiff & side or & acts. & - \\
\hline
\end{tabular}

GV06
(15)

Variable Name: Vehicle Model (specify): [cont'd.]

\section*{MAKE "19" CADILLAC}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline \multirow[t]{4}{*}{003} & Deville/Fleetwood & Coupe de Ville, Sedan de Ville, & -76 & 6 & 6 \\
\hline & (except Limousine) & Fleetwood Bougham, Fleetwood 60 Special, & RWD 77-96 & 5 & 5 \\
\hline & & d'Elegance & FWD 85-on & 4 & 9*** \\
\hline & Deville & Concourse & 94-on & 4 & 9*** \\
\hline 004 & Limousine & Fleetwood 75, Formal DeVille-based & all & 6 & 6 \\
\hline \multirow[t]{3}{*}{005} & Eldorado & Biarritz, El-doro, Touring Coupe & -78 & 6 & 6 \\
\hline & & & 79-85 & 4 & 4 \\
\hline & & & 86-on & 3 & 9*** \\
\hline 006 & Commercial Series & Ambulance/Hearse & all & 6 & 6 \\
\hline 009 & Allante' & & 87-on & 2 & 2 \\
\hline \multirow[t]{2}{*}{014} & Seville & Elegante & 76-85 & 4 & 4 \\
\hline & & STS & 86-on & 3 & 9*** \\
\hline 016 & Cimarron & D'oro & 82-88 & 2 & 9*** \\
\hline 017 & Catera & RWD & 97-on & TBD & TBD \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}
*** Code 9 applies only to frontal impacts. Use size code for stiffness for side or rear impacts.

GV06
(16)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "20" CHEVROLET
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & M MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 001 & Chevelle/Malibu & Classic, Concours, S-3, Laguna, Nomad, 300, Greenbriar, Estate, Deluxe, SS 396/454 & \[
\begin{aligned}
& 64-77 \\
& 78-83
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 3
\end{aligned}
\] \\
\hline 002 & Impala/Caprice & Biscayne, Belair, Super Sport, Classic, Classic Brougham, Townsman Brookwood, Kingswood & -76
\(77-\) on & \[
\text { St. } \underset{4}{\mathrm{Wgn}}=6
\] & \[
\begin{aligned}
& 5 \\
& 6 \\
& 4
\end{aligned}
\] \\
\hline 004 & Corvette & Stingray & \[
\begin{aligned}
& 53-62 \\
& 63-\text { on }
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 2
\end{aligned}
\] \\
\hline 006 & Corvair & Monza, Corsa, 500, Yenko & 60-69 & N/A & N/A \\
\hline 007 & El Camino & Royal Knight, SS & \[
\begin{aligned}
& 59-60 \\
& 64-77 \\
& 78-\text { on }
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 4 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 8^{\star *} \\
& 8^{\star *} \\
& 8^{* *}
\end{aligned}
\] \\
\hline 008 & Nova (-79) & Chevy II, LN, LE, Concours SS-350/396, Rally & 62-79 & 4 & 4 \\
\hline 009 & Camaro & SS, RS, LT, Berlinetta, IROC-Z, Z28 & 67-on & 3 & 3 \\
\hline 010 & Monte Carlo (RWD only) & LS, SS, Aerocoupe, Landau & \[
\begin{aligned}
& 70-77 \\
& 78-88
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 3
\end{aligned}
\] \\
\hline 011 & Vega & GT, Cosworth & 71-77 & 2 & 2 \\
\hline 012 & Monza & Spyder, \(2+2\), Towne Coupe & 75-80 & 2 & 2 \\
\hline 013 & Chevette & S, Scooter, CS & 76-87 & \[
\begin{aligned}
& 2 \mathrm{dr}-1 \\
& 4 \mathrm{dr}-2
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] \\
\hline 015 & Citation & X-11, Citation II & 80-85 & 3 & \(9^{* * *}\) \\
\hline 016 & Cavalier & CS, RS, Z24, LS & 82-on & 2 & 9*** \\
\hline 017 & Celebrity & CS, Eurosport, VR & 82-on & 3 & \(9^{* * *}\) \\
\hline 019 & Beretta/Corsica & GT & 88-on & 3 & 9*** \\
\hline 020 & Lumina & Z-34, Euro & 90-on & 3 & \(9^{* * *}\) \\
\hline 031 & Spectrum & & 85-on & 1 & 1 \\
\hline 032 & Nova/Geo Prizm & CL, NUMMI-built vehicle & 85-on & 2 & 9*** \\
\hline 033 & Sprint/Geo Sprint & & 85-on & 1 & 1 \\
\hline 034 & Geo Metro & LSi, Xfi & 89-on & 1 & 1 \\
\hline 035 & Geo Storm & Gsi & 85-on & 1 & 1 \\
\hline 036 & Monte Carlo (FWD only) & Z34 & 95-on & 3 & 9*** \\
\hline 037 & Malibu & & 97-on & TBD & TBD \\
\hline 398 & Other automobile & & & & \\
\hline
\end{tabular}

GV06
(17)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "20" CHEVROLET
CODE MODEL INCLUDES YEAR SIZE STIFFNESS

399 Unknown automobile
** Applies to front and rear impacts. Use size value for side impacts.
*** Code 9 applies only to frontal impacts. Use size code for stiffness for side or rear impacts.

GV06
(18)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "20" CHEVROLET (Continued)

GV06
(19)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "20" CHEVROLET (Continued)
CODE MODEL INCLUDES YEAR SIZE STIFFNESS

999 Unknown vehicle
** Applies to front and rear impacts. Use size value for side impacts.

GV06
(20)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "21" OLDSMOBILE
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 001 & Cutlass (RWD-only) & Supreme, S, LS, Salon Brougham, Vista Cruiser, F85 (thru 72) Rallye 350, Hurst Olds, 442, Calais, Classic (88) & \[
\begin{gathered}
-77 \\
78-88
\end{gathered}
\] & \[
\begin{aligned}
& 4 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 3
\end{aligned}
\] \\
\hline 002 & Delta 88 & Royale, Custom, Delta, Jetstar 88, Delmont 88, Starfire (thru 66), Custom Cruiser & \[
\begin{gathered}
-76 \\
77-85 \\
86-o n
\end{gathered}
\] & \[
\begin{aligned}
& 6 \\
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 4 \\
& 9^{* * *}
\end{aligned}
\] \\
\hline 003 & Ninety-Eight & Regency, Luxury & \[
\begin{gathered}
-76 \\
77-84 \\
85-\mathrm{on}
\end{gathered}
\] & \[
\begin{aligned}
& 6 \\
& 5 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 5 \\
& 4
\end{aligned}
\] \\
\hline 005 & Toronado & XSR, Trofeo, Brougham Custom & \[
\begin{aligned}
& 66-78 \\
& 79-85 \\
& 86-92
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 4 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 4 \\
& 3
\end{aligned}
\] \\
\hline 006 & Commercial Series & Ambulance/Hearse & all & 6 & 6 \\
\hline 012 & Starfire & SX, GT & 75-80 & 2 & 2 \\
\hline 015 & Omega & X-body type & \begin{tabular}{l}
RWD 75-79 \\
FWD 80-85
\end{tabular} & \[
\begin{aligned}
& 4 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 9
\end{aligned}
\] \\
\hline 016 & Firenza & S, LS, SX, Cruiser, GT & 82-88 & 2 & 9*** \\
\hline 017 & Ciera & Cutlass Ciera, Brougham, ES & 82-on & 3 & \(9^{* * *}\) \\
\hline 018 & Calais & GT, ES, 500 & 85-91 & 3 & \(9^{* * *}\) \\
\hline 020 & Cutlass (FWD) & Supreme & 88-on & 3 & \(9^{* * *}\) \\
\hline 021 & Achieva & SC & 92-on & 3 & \(9^{* * *}\) \\
\hline 022 & Aurora & & 94-on & 4 & 9*** \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 401 & Bravada & & 91-on & 2 & 7** \\
\hline 441 & Silhouette & & 90-on & 3 & 7** \\
\hline 498 & Other light truck & & & & \\
\hline 499 & Unknown light truck & & & & \\
\hline 998 & Other vehicle & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}
** Applies to front and rear impacts. Use size value for side impacts.
*** Code 9 applies only to frontal impacts. Use size code for stiffness for side or rear impacts.

GV06
(21)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "22" PONTIAC
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & M MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 001 & Lemans/Tempest (thru 79) & Safari, T-37, Luxury, Grand Sport, GTO (-73), GT-37, Sprint, Judge Grand AM (73-75) Grand Lemans & \[
\begin{gathered}
\text { thru } 77 \\
78-79
\end{gathered}
\] & \[
\begin{aligned}
& 4 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 3
\end{aligned}
\] \\
\hline 002 & Bonneville/Catalina/
Parisienne & \begin{tabular}{l}
Brougham, Grand Safari, Safari, Grandville, 2+2 Executive, Starchief \\
SE, SSE, SSEi
\end{tabular} & \[
\begin{gathered}
-68 \\
69-76 \\
77-81 \\
82-84 \\
87-0 n \\
83-84
\end{gathered}
\] & \[
\begin{aligned}
& 5 \\
& 6 \\
& 4 \\
& 3 \\
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 6 \\
& 4 \\
& 3 \\
& 4 \\
& 4
\end{aligned}
\] \\
\hline 005 & Fiero & 2M4, 2M6, GT, SE & 84-88 & 1 & 1 \\
\hline 008 & Ventura & II, SJ, Sprint, GTO (74-on) Custom & 71-77 & 4 & 4 \\
\hline 009 & Firebird/Trans AM & Esprit, Formula, GTA, Redbird, Yellowbird, Skybird, SE & \[
\begin{aligned}
& 67-81 \\
& 82-\mathrm{on}
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 2
\end{aligned}
\] \\
\hline 010 & Grand Prix (RWD) & J, LJ, SJ, Brougham, 2+2 & \[
\begin{aligned}
& 63-72 \\
& 73-77 \\
& 78-87
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 4 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 4 \\
& 3
\end{aligned}
\] \\
\hline 011 & Astre & Safari, SJ, Custom & 75-77 & 2 & 2 \\
\hline 012 & Sunbird (thru 80) & Safari, Sport, Formula & 76-80 & 2 & 2 \\
\hline 013 & T-1000/1000 & & 81-87 & \[
\begin{aligned}
& 2 \mathrm{dr}-1 \\
& 4 \mathrm{dr}-2
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] \\
\hline 015 & Phoenix & LJ, SJ & \[
\begin{aligned}
& 77-79 \\
& 80-84
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 9^{* * *}
\end{aligned}
\] \\
\hline 016 & J2000/Sunbird Sunfire & Sunbird(84-on), LE, SE, GT, Convertible GT/SE & \[
\begin{aligned}
& 82-94 \\
& 95-\mathrm{on}
\end{aligned}
\] & 2 & 9*** \\
\hline 017 & 6000 & STE, SE, LE & 82-on & 3 & 9*** \\
\hline 018 & Grand AM & SE, LE & \[
\begin{gathered}
80 \\
85-\mathrm{on}
\end{gathered}
\] & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 9^{* * *}
\end{aligned}
\] \\
\hline 020 & Grand Prix (FWD) & SE, McLaren Turbo, GTP & 88-on & 3 & 9*** \\
\hline 031 & Lemans (88-on) & SE, Tempest (Canadian) & 88-on & 2 & 2 \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 441 & Trans Sport & & 90-on & 3 & 7** \\
\hline 498 & Other light truck & & - & - & - \\
\hline 499 & Unknown light truck & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline \[
\begin{array}{rr}
* * \\
* * * & \mathrm{Al} \\
\mathrm{C}
\end{array}
\] & pplies to front and rear impa Code 9 applies only to frontal & acts. Use size value for side impacts. impacts. Use size code for stiffness for side & side or re & & \\
\hline
\end{tabular}

GV06
(22)

Variable Name: Vehicle Model (specify): [cont'd.]

\section*{MAKE "23" GMC}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\[
\begin{aligned}
& \text { GV06 } \\
& (23)
\end{aligned}
\]} \\
\hline \multicolumn{7}{|l|}{Variable Name: Vehicle Model (specify): [cont'd.]} \\
\hline \multicolumn{3}{|l|}{MAKE "24"} & \multicolumn{4}{|l|}{SATURN} \\
\hline CODE & E & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 001 & SL & & SL1, SL2, SL3 & 91-on & 3 & 3 \\
\hline 002 & SC & & SC1, SC2 & 91-on & 2 & 2 \\
\hline 003 & SW & & SW1, SW2 & 93-on & 3 & 3 \\
\hline 004 & EV & & EV1 (electric vehicle) & 97-on & TBD & TBD \\
\hline \multicolumn{7}{|l|}{398 Other automobile} \\
\hline \multicolumn{7}{|l|}{399 Other automobile} \\
\hline 999 & Unkn & nown & & - & - & - \\
\hline
\end{tabular}

MAKE "25"
GRUMMAN

GV06
(24)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "29"
OTHER DOMESTIC MANUFACTURERS
\begin{tabular}{lllccc}
CODE & \multicolumn{1}{c}{ MODEL } & \multicolumn{1}{c}{ INCLUDES } & YEAR & SIZE & STIFFNESS \\
\hline 001 & Studebaker & Lark, Gran Turismo, Hawk, & thru-66 & per WB & = size \\
002 & Chuiser, all associated subseries & all & per WB & \(=\) size \\
398 & Other make & \begin{tabular}{l}
Marathon, Superba, Taxi, \\
Aerobus
\end{tabular} & thru-82 & per WB & \(=\) size \\
399 & Unknown make & \begin{tabular}{l}
Desoto, Excaliber, Stutz, \\
Hudson, Packard, Consulier
\end{tabular} & all & per WB & \(=\) size
\end{tabular}

GV06
(25)

Variable Name: Vehicle Model (specify): [cont'd.]
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{MAKE "30"} & \multicolumn{4}{|l|}{VOLKSWAGEN} \\
\hline CODE & M MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & Karmann Ghia & & -74 & 1 & 1 \\
\hline 032 & Beetle 1300/1500 & flat windshield, 94.5" WB & -77 & 1 & 1 \\
\hline 033 & Super Beetle & distinguished by curved windshield, 95.3" WB & 71-80 & 2 & 1 \\
\hline 034 & 411/412 & Squareback/Fastback & 71-74 & 2 & 1 \\
\hline 035 & Squareback/Fastback & Type 3, 1600 & -74 & 1 & 1 \\
\hline 036 & Rabbit & L, GTI, Sport, LS, Custom, DL, Deluxe & 75-84 & 1 & 1 \\
\hline 037 & Dasher & & 74-81 & 2 & 2 \\
\hline 038 & Scirocco & 16V & 75-88 & 1 & 1 \\
\hline 040 & Jetta & GL, GLI & 81-92 & 2 & 2 \\
\hline 041 & Quantum & Synco & 82-88 & 2 & 2 \\
\hline 042 & Golf & Synco, GTI, Cabriolet, GT, GL & 85-92 & 2 & 1 \\
\hline 043 & Rabbit pickup & car/based pickup & 80-83 & 1 & 1 \\
\hline 044 & Fox & GL & 87-on & 1 & 1 \\
\hline 045 & Corrado & & 89-on & 2 & 2 \\
\hline 046 & Passat & & 90-on & 2 & 2 \\
\hline 047 & Jetta III & & 93-on & 2 & 2 \\
\hline 048 & Golf III & & 93-on & 2 & 2 \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & - & - & - \\
\hline 401 & The Thing (181) & & 73-75 & 1 & 1 \\
\hline 441 & Vanagon/Camper & Bus, Kombi, Van & -89 & 1 & 7** \\
\hline 442 & Eurovan & & 92-on & 7 & 7** \\
\hline 498 & Other light truck & & - & - & - \\
\hline 499 & Unknown light truck & & & & \\
\hline 998 & Other vehicle & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}
** Applies to front and rear impacts. Use size value for side impacts.

GV06
(26)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "31" ALFA ROMEO
\begin{tabular}{lllccc}
CODE & \multicolumn{1}{c}{ MODEL } & YEAR & SIZE & STIFFNESS \\
\hline 031 & Spider & \begin{tabular}{l}
All roadsters, Veloce, 1750/2000 \\
roadsters
\end{tabular} & all & 1 & 1 \\
032 & Sports Sedan & \begin{tabular}{l}
All 4 door sedans; Milano (86), \\
Giulia, Super, Berlina, Alfetta, \\
1750/2000 sedans
\end{tabular} & all & per WB & = size \\
033 & Sprint Veloce & \begin{tabular}{l}
All 2-door coupes; Alfetta GT, \\
\(1750 / 2000\) GTV, Sprint GT
\end{tabular} & all & per WB & = size \\
034 & GTV-6 & & \(81-\) on & 1 & 1 \\
035 & 164 & \(89-o n\) & 3 & 3 \\
398 & Other automobile & - & - & - \\
399 & Unknown automobile & & - & - & -
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{MAKE "32"} & \multicolumn{4}{|l|}{AUDI} \\
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & Super 90 & & 70-72 & 2 & 2 \\
\hline 032 & 100
A6 & S, LS, GL Quattro (89-on) & \[
\begin{aligned}
& 70-77 \\
& 89-94 \\
& 95-\mathrm{on}
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] \\
\hline 033 & Fox & & 74-79 & 2 & 2 \\
\hline 034 & 4000 & Quattro, Coupe GT, CS, S & 80-88 & 2 & 2 \\
\hline 035 & 5000 & Quattro, CS, S, Turbo & 78-88 & 3 & 3 \\
\hline 036 & \[
\begin{aligned}
& 80 \\
& 90
\end{aligned}
\] & Quattro Quattro & \[
\begin{aligned}
& 88-92 \\
& 88-95
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] \\
\hline 037 & 200 & Quattro & 89-92 & 3 & 3 \\
\hline 038 & V-8 Quattro & & 90-94 & 3 & 3 \\
\hline 039 & Coupe Quattro & & 90-93 & 2 & 2 \\
\hline 040 & \[
\begin{aligned}
& \text { S4 } \\
& \text { S6 }
\end{aligned}
\] & & \[
\begin{aligned}
& 93-94 \\
& 95-\mathrm{on}
\end{aligned}
\] & 3 & 3 \\
\hline 041 & Cabriolet & & 94-on & 2 & 2 \\
\hline 042 & A4 & & 96-on & TBD & TBD \\
\hline 043 & A3 & & 96-on & 2 & 2 \\
\hline 044 & A8 & & 96-on & TBD & TBD \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}

GV06
(27)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "33" AUSTIN/AUSTIN HEALEY
\begin{tabular}{llcccc}
CODE & \multicolumn{1}{c}{ MODEL } & YEAR & SIZE & STIFFNESS \\
\hline 031 & Marina & GT & all & 2 & 2 \\
032 & America & all & 1 & 1 \\
033 & Healey Sprite & & all & 1 & 1 \\
034 & Healy 3000 & Healy 100 & all & 1 & 1 \\
035 & Mini & all & 1 & 1 \\
398 & Other automobile & - & - & - \\
399 & Unknown automobile & & & & - \\
999 & Unknown vehicle & - & - & -
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{MAKE "34"} & \multicolumn{4}{|l|}{BMW} \\
\hline CODE & MODEL & Includes & YEAR & SIZE & STIFFNESS \\
\hline 031 & 1600, 2002 & Tii, 1800, 2000CS & -76 & 2 & 2 \\
\hline 032 & Coupe & 2800CS, 3.0CS & 69-76 & 3 & 3 \\
\hline 033 & Bavaria Sedan & 2500, 2800 & 69-74 & 3 & 3 \\
\hline 034 & 3 -series & \[
\begin{aligned}
& 318 \mathrm{i}, 318 \mathrm{ti}, 320 \mathrm{i}, 325 \mathrm{e}, 325 \mathrm{es}, 325 \mathrm{i} \text {, } \\
& 328 \text {, M3 }
\end{aligned}
\] & 77-on & 2 & 2 \\
\hline 035 & 5-series & 524i, 528i, 530i, 533i, 535i, TD 525i (wagon), M5, 540iA, 540i & \[
\begin{aligned}
& 75 \text {-on } \\
& 93-\text { on }
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] \\
\hline 036 & 6-series & 630, 633, 635, csi, M6 & 77-on & 3 & 3 \\
\hline 037 & 7 -series & 733i, 735i, L7, 740i, 750iL & 78-on & 3 & 3 \\
\hline 038 & 8 -series & 850, 840ci & 90-on & per WB & per WB \\
\hline 039 & Z3 & & 96 -on & TBD & TBD \\
\hline 398 & Other automobile & & - & - & - \\
\hline \multirow[t]{2}{*}{399} & Unknown automobile & & & & \\
\hline & Motorcycles & & & & \\
\hline 701 & 0-50cc & & & & \\
\hline 702 & \(51-124 \mathrm{cc}\) & & & & \\
\hline 703 & 125-349cc & & & & \\
\hline 704 & 350-449cc & & & & \\
\hline 705 & 450-749cc & & & & \\
\hline
\end{tabular}

GV06
(28)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "34" BMW
\begin{tabular}{llllll}
CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline
\end{tabular}

Motorcycles
706 750cc-over
709 Unknown cC
799 Unknown motored cycle
999 Unknown vehicle

GV06
(29)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "35" NISSAN/DATSUN
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & M MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & F10 & & 77-78 & 1 & 1 \\
\hline 032 & 200/240 SX & & \[
\begin{aligned}
& 78-83 \\
& 84-0 n
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] \\
\hline 033 & 1200/210/B210 & Honeybee & 71-82 & 1 & 1 \\
\hline 034 & Z-car, ZX & \[
\begin{aligned}
& 240 / 260 / 280 Z, 300 \mathrm{ZX}, \text { Turbo } \\
& 2+2 \\
& 2+2
\end{aligned}
\] & \[
\begin{aligned}
& 70-\mathrm{on} \\
& 75-78 \\
& 79-\mathrm{on}
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 3 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 3 \\
& 2
\end{aligned}
\] \\
\hline 035 & 310 & & 79-82 & 1 & 1 \\
\hline 036 & 510 & PL & \[
\begin{aligned}
& 68-73 \\
& 78-81
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 1
\end{aligned}
\] \\
\hline 037 & 610 & PL & 73-76 & 2 & 2 \\
\hline 038 & 710 & PL & 74-77 & 2 & 2 \\
\hline 039 & 810/Maxima & & 77-on & 3 & 3 \\
\hline 040 & Roadster & SPL 311, SRL 311, 1600, 2000, convertible & -70 & 1 & 1 \\
\hline 041 & PL411, RL411 & & -67 & 1 & 1 \\
\hline 042 & Stanza & XE & 82-92 & 2 & 2 \\
\hline 043 & Sentra & & 83-on & 1 & 1 \\
\hline 044 & Pulsar & NX, EXA (86-on & 83-90 & 2 & 2 \\
\hline 045 & Micra & & 87-on & 1 & 1 \\
\hline 046 & NX 1600/2000 & & 92-on & 2 & 2 \\
\hline 047 & Altima & & 93-on & 2 & 2 \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 401 & Pathfinder & MPV, \(4 \times 4\) & 86-on & 3 & 8** \\
\hline \[
441
\] & Van & XE, GXE & & 88-on & 1 \\
\hline 442 & Axxess & & 89-90 & 3 & \(7^{* *}\) \\
\hline 443 & Quest & & 93-on & 4 & 7 \\
\hline 471 & Datsun/Nissan Pickup & PL620, King Cab, Hardbody & 73-on & per WB & 8** \\
\hline 498 & Other light truck & Patrol (1960) & - & - & - \\
\hline 499 & Unknown light truck & & & & \\
\hline
\end{tabular}
** Applies to front and rear impacts. Use size values for side impacts.

GV06
(30)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "35" NISSAN/DATSUN (Continued)
\begin{tabular}{llccc}
CODE & MODEL & YEAR & SIZE & STIFFNESS \\
\hline 883 & \begin{tabular}{l}
Medium/Heavy COE \\
high entry
\end{tabular} & all & \(\mathrm{N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) \\
898 & Other medium/heavy truck & all & \(\mathrm{N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) \\
899 & Unknown medium/heavy truck & - & & \\
999 & Unknown vehicle & - & -
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{MAKE "36"} & \multicolumn{4}{|l|}{FIAT} \\
\hline CODE & - MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & 124 (Coupe/Sedan) & Sport & 67-75 & 1 & 1 \\
\hline 032 & 124 Spider/Racer & Spider 2000/1500 & 68-83 & 1 & 1 \\
\hline 033 & Brava-131 & & 75-82 & 2 & 2 \\
\hline 034 & 850 (Coupe/Spyder) & & 67-73 & 1 & 1 \\
\hline 035 & 128 & & 72-79 & 2 & 2 \\
\hline 036 & X-1/9 & & 75-83 & 1 & 1 \\
\hline 037 S & Strada & & 79-83 & 2 & 2 \\
\hline 398 & Other automobile & 600, 1100 & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 882 & Medium/Heavy COE low entry & & all & N/A & N/A \\
\hline 883 & Medium/Heavy COE high entry & & all & N/A & N/A \\
\hline 890 & Medium/heavy COE entry position unknown & & all & N/A & N/A \\
\hline 898 & Other medium/heavy truck & & all & N/A & N/A \\
\hline 899 & Unknown medium/heavy tru & & & & \\
\hline 999 U & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}

GV06
(31)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "37" HONDA (ACURA: See "54")
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & Civic/CRX & 1300, 1500, CVCC, DX, EX, VX CRX, S, Si, HF, 4WD Wagon & all & 1 & 1 \\
\hline & del Sol & & 93-on & 1 & 1 \\
\hline 032 & Accord & LX, CVCC, SE-i, LX-i, EX, EX wagon 6-cylinder LX/EX & \begin{tabular}{l}
-81 \\
82-86 \\
87-on
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 9^{* * *} \\
& 9^{* * *}
\end{aligned}
\] \\
\hline 033 & Prelude & Si & \[
\begin{aligned}
& 80-83 \\
& 84-o n
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 9^{* * *}
\end{aligned}
\] \\
\hline 034 & 600 & Coupe, Sedan & all & 1 & 1 \\
\hline 398 & Other automobile & & & & \\
\hline 399 & Unknown automobile & & & & \\
\hline 401 & Passport & & 94-on & 3 & 8** \\
\hline 441 & Odyssey & & \(95-\) on & per wb & per wb \\
\hline 498 & Other light truck & & - & - & - \\
\hline 499 & Unknown light truck & & & & \\
\hline & Motorcycle & & & & \\
\hline 701 & 0-50cc & & & & \\
\hline 702 & 51-124cc & & & & \\
\hline 703 & 125-349cc & & & & \\
\hline 704 & 350-449cc & & & & \\
\hline 705 & 450-749cc & & & & \\
\hline 706 & 750 cc or greater & & & & \\
\hline 709 & Unknown cc & & & & \\
\hline \multicolumn{6}{|c|}{All Terrain Cycles/Vehicles} \\
\hline 731 & 0-50cc & includes all ATCs/ATVs & & & \\
\hline 732 & 51-124cc & designed solely for & & & \\
\hline 733 & 125-249cc & off-road use. & & & \\
\hline 734 & 350 cc or greater & & & & \\
\hline 739 & Unknown CC & & & & \\
\hline 799 & Unknown motored cycle & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}

\footnotetext{
** Applies to front and rear impacts. Use size values for side impacts.
*** Code 9 applies only to frontal impacts. Use size code for stiffness for side or rear impacts.
}

GV06
(32)

Variable Name: Vehicle Model (specify): [cont'd.]

\section*{MAKE "38" ISUZU}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & I-Mark & S, RS, Turbo & 85-89 & 1 & 1 \\
\hline 032 & Impulse & Turbo, RS & 84-on & 2 & 2 \\
\hline 033 & Stylus & & 90-on & 2 & 2 \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 401 & Trooper/Trooper II & Deluxe, LS & 84-on & 2 & 7** \\
\hline 402 & Rodeo & & 91-on & 3 & 8** \\
\hline 403 & Amigo & & 89-94 & 2 & 8** \\
\hline 441 & Oasis & & 96-on & TBD & TBD \\
\hline 471 & P'up (pickup) Hombre & \(4 \times 4\) & \[
\begin{aligned}
& \text { Thru } 95 \\
& 96-\text { on }
\end{aligned}
\] & 3 & 8** \\
\hline 498 & Other light truck & & - & - & - \\
\hline 499 & Unknown light truck & & & & \\
\hline 881 & Medium/Heavy - CBE & & all & N/A & N/A \\
\hline 882 & Medium/Heavy COE low entry & & all & N/A & N/A \\
\hline 883 & Medium/Heavy COE high entry & & all & N/A & N/A \\
\hline 884 & Medium/Heavy unknown engine location & & all & N/A & N/A \\
\hline 890 & Medium/Heavy COE entry position unknown & & all & N/A & N/A \\
\hline 898 & Other medium/heavy truck & & all & N/A & N/A \\
\hline 899 & Unknown medium/heavy tru & & & & \\
\hline 981 & Conventional front engine & & & & \\
\hline 982 & Front engine/flat front & & & & \\
\hline 983 & Rear engine/flat front & & & & \\
\hline 988 & Other bus & & & & \\
\hline 989 & Unknown bus type & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}

GV06
(33)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "39" JAGUAR
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & M MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & XJ-S Coupe & & 76-on & 3 & 3 \\
\hline 032 & XJ6/12 Sedan/Coupe & L, XJ, C, 340/420 Sedan & all & 3 & 3 \\
\hline 033 & XKE & \[
\begin{aligned}
& \text { V12, Roadster, } 120 \\
& 2+2
\end{aligned}
\] & all & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] \\
\hline 034 & X100 & & 97-on & TBD & TBD \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}

MAKE "40"
\begin{tabular}{llccc}
CODE & MODEL & INCLUDES & YEAR & SIZE \\
\hline 031 & Beta Sedan - HPE & -80 & 2 & 2 \\
032 & Beta Coupe - Zagato & -82 & 1 & 1 \\
033 & Scorpion & -78 & 1 & 1 \\
398 & Other automobile & - & - & - \\
399 & Unknown automobile & & &
\end{tabular}

999 Unknown vehicle

GV06
(34)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "41" MAZDA
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & RX2 & & 72-74 & 2 & 2 \\
\hline 032 & RX3 & & 72-78 & 1 & 1 \\
\hline 033 & RX4 & & 74-78 & 2 & 2 \\
\hline 034 & RX7 & S, GS, GSL, SE & 79-on & 2 & 2 \\
\hline 035 & GLC/Protege
\[
323
\] & DX, Protege (90-on) & \[
\begin{gathered}
\text { 77-on } \\
-94
\end{gathered}
\] & 1 & 1 \\
\hline 036 & Cosmo & & 76-78 & 2 & 2 \\
\hline 037 & 626 & GT, GS, GSL, SE & 79-on & 2 & 2 \\
\hline 038 & 808 & & 72-77 & 1 & 1 \\
\hline 039 & Mizer & & 76 & 1 & 1 \\
\hline 040 & R-100 & & -72 & 1 & 1 \\
\hline 041 & 616/618 & & -72 & 2 & 2 \\
\hline 042 & 1800 & & -72 & 2 & 2 \\
\hline 043 & 929 & & 88-96 & 3 & 3 \\
\hline 044 & MX-6 & Turbo & 88-on & 2 & 2 \\
\hline 045 & Miata & & 90-on & 1 & 1 \\
\hline 046 & MX-3 & GS & 92-on & 1 & 1 \\
\hline 047 & Millenia & & \(95-\) on & 3 & 3 \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 401 & Navajo & & 91-on & 3 & 8** \\
\hline 441 & MPV & & 89-on & 3 & 7** \\
\hline 471 & Mazda pickup & B-2000, B-2200, B-2600, SE-5, LX, Cab Plus, B-4000 & \[
\begin{gathered}
\text { all } \\
94-\text {-on }
\end{gathered}
\] & per WB per WB & \[
\begin{aligned}
& 8^{* *} \\
& 8^{* *}
\end{aligned}
\] \\
\hline 498 & Other light truck & & - & - & - \\
\hline 499 & Unknown light truck & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}
** Applies to front and rear impacts. Use size value for side impacts.

GV06
(35)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "42" MERCEDES BENZ
(Check "INCLUDES" comments carefully to determine proper code.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & M MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & \[
\begin{aligned}
& \text { 200/220/230/240/250/260/ } \\
& \text { 280/300/320 }
\end{aligned}
\] & Sedan and 5 passenger "C" only, SD, TD, TE, CE, E. DOES NOT inc (75 on), 300 SD - see code 037 & \[
S E^{\text {all }}
\] & 3 & 3 \\
\hline 032 & 230/280 SL & 2 seater only & all & 1 & 1 \\
\hline 033 & \[
\begin{aligned}
& 300 / 350 / 380 / 450 / 500 \mathrm{SL} \\
& 560 \mathrm{SL}
\end{aligned}
\] & 2 seater only, 300/500 SL (90-on) & all & 2 & 2 \\
\hline 034 & 350/380/420/450/560 SLC & & all & 4 & 4 \\
\hline 035 & 280/300 SEL & & all & 4 & 4 \\
\hline 036 & \[
\begin{aligned}
& \text { 380/420/450/500/560 SEL } \\
& \text { and 500/560 SEC/350 SDL/ } \\
& 300 \text { SDL }
\end{aligned}
\] & & all & 4 & 4 \\
\hline 037 & 300 SE/380/450 SE & 280 S, 280 SE (75 on), 300 SD Sedan/350 SD & all & 4 & 4 \\
\hline 038 & 600, 6.9 Sedan & Pullman & all & 6 & 6 \\
\hline 039 & 190 & D, E, 2.3, 2.5 & all & 3 & 3 \\
\hline 040 & 300 & CE Cabriolet & 93-on & 3 & 3 \\
\hline 041 & 400/500 E & SE & 92-on & 3 & 3 \\
\hline 042 & 220/280 C & & 94-on & 3 & 3 \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 401 & AAV & & 97-on & TBD & TBD \\
\hline 470 & Van derivative & Kurbstar & 82-on & N/A & N/A \\
\hline 498 & Other light truck & & - & - & - \\
\hline 499 & Unknown light truck & & & & \\
\hline 881 & Medium/Heavy - CBE & & all & N/A & N/A \\
\hline 882 & Medium/Heavy - COE low entry & & all & N/A & N/A \\
\hline 883 & Medium/Heavy - COE high entry & & all & N/A & N/A \\
\hline 884 & Medium/Heavy: Unknown engine location & & all & N/A & N/A \\
\hline 890 & Medium/Heavy: COE entry position unknown & & all & N/A & N/A \\
\hline 898 & Other medium/heavy & & all & N/A & N/A \\
\hline 899 & Unknown medium/heavy & & - & - & - \\
\hline 981 & Medium bus & & all & N/A & N/A \\
\hline 988 & Other bus & & - & - & - \\
\hline
\end{tabular}

GV06
(36)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "42"

\section*{MERCEDES BENZ}
(Check "INCLUDES" comments carefully to determine proper code.)
CODE MODEL INCLUDES YEAR SIZE STIFFNESS

989 Unknown type bus
999 Unknown vehicle

GV06
(37)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "43" MG
\begin{tabular}{lllcc}
CODE & MODEL & INCLUDES & YEAR & SIZE \\
\hline 031 & Midget & MKIII, 1500 & -79 & 1 \\
032 & MGB & & \(76-79\) & 1 \\
033 & MGB & GT & \(67-75\) & 1 \\
034 & MGA & all & 1 & 1 \\
035 & TA/TC/TD/TF & & all & 1 \\
036 & MGC & -69 & 1 & 1 \\
398 & Other automobile & GT & - & 1 \\
399 & Unknown automobile & & - & 1 \\
999 & Unknown vehicle & & - & - \\
\hline
\end{tabular}

GENERAL VEHICLE FORM
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{MAKE "44"} & \multicolumn{4}{|l|}{PEUGEOT} \\
\hline CODE & MODEL & Includes & YEAR & SIZE & STIFFNESS \\
\hline 031 & 304 & & 71-73 & 3 & 3 \\
\hline 032 & 403 & & -67 & 3 & 3 \\
\hline 033 & 404 & Station Wagon & -70 & 3 & 3 \\
\hline 034 & 504/505 & STI, STX, Turbo, S, GL, GLS, Liberte Station Wagon & 70-91 & \[
\begin{aligned}
& 3 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 4
\end{aligned}
\] \\
\hline 035 & 604 & SL, D & 77-84 & 3 & 3 \\
\hline 036 & 405 & Mi-16 & 89-91 & 3 & 9*** \\
\hline 398 & Other automobile & & - & - & - \\
\hline \multirow[t]{2}{*}{399} & Unknown automobile & & & & \\
\hline & Motorcycle & & & & \\
\hline \[
\begin{aligned}
& 701 \\
& 702 \\
& 709 \\
& 799
\end{aligned}
\] & \[
\begin{aligned}
& \text { 0- } 50 \mathrm{cc} \\
& \text { 51-124cc } \\
& \text { Unknown cc } \\
& \text { Unknown motored cycle }
\end{aligned}
\] & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}
*** Code 9 applies only to frontal impacts. Use size code for stiffness for side or rear impact.

GV06
(38)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "45" PORSCHE
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & 911 & L, S, E, T, SC, Carrera, Panorama & \[
\begin{aligned}
& \hline \text { ter all } \\
& 96 \text {-on }
\end{aligned}
\] & 1 & 1 \\
\hline 032 & 912 & E, T & -69 & 1 & 1 \\
\hline 033 & 914 & S, 1.8, 2.0, 914/6 & 70-76 & 2 & 2 \\
\hline 034 & 924 & Turbo, S & 77-88 & 1 & 1 \\
\hline 035 & 928 & S & 78-on & 2 & 2 \\
\hline 036 & 930 & Turbo & 79 & 1 & 1 \\
\hline 037 & 944 & Turbo, S & 83-91 & 1 & 1 \\
\hline 038 & 959 & & 89-94 & 1 & 1 \\
\hline 039 & & & 92-95 & 1 & 1 \\
\hline 040 & 986 & & 96-on & 1 & 1 \\
\hline 398 & Other automobile & Spyder, Speedster, 356 & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{MAKE "46"} & \multicolumn{4}{|l|}{RENAULT} \\
\hline CODE & MODEL & includes & YEAR & SIZE & STIFFNESS \\
\hline 031 & LeCar & 5 & 76-83 & 2 & 2 \\
\hline 032 & Dauphine/10/R-8/Caravelle & all models & thru-71 & 1 & 1 \\
\hline 033 & 12 & R12L, R12TL & 72-77 & 2 & 2 \\
\hline 034 & 15 & R15TL & 73-76 & 2 & 2 \\
\hline 035 & 16 & R16 & 69-72 & 3 & 3 \\
\hline 036 & 17 & R17, Gordini Coupe, R17TL & 73-80 & 2 & 2 \\
\hline 037 & R18i & Sportwagon & 81-on & 2 & 2 \\
\hline 038 & Fuego & TL, TS, GTL, GTS, Turbo & 82-85 & 2 & 2 \\
\hline 039 & Alliance/Encore GTA, Convertible & L, DL, Limited, X-37 & \(83-\) on & 2 & 2 \\
\hline 041 & Alpine & GT & 87-on & per WB & per WB \\
\hline 044 & Medallion & DL, LX & 87-only & 3 & 3 \\
\hline 045 & Premier & & 87-only & 3 & 3 \\
\hline 398 & Other automobile & & - & - & - \\
\hline
\end{tabular}

GV06
(39)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "46" RENAULT
CODE MODEL INCLUDES YEAR SIZE STIFFNESS

399 Unknown automobile
999 Unknown vehicle

GV06
(40)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "47" SAAB
\begin{tabular}{lllccc}
CODE & \multicolumn{1}{c}{ MODEL } & YEAR & SIZE & STIFFNESS \\
\hline 031 & \(99 / 99 E / 900\) & S, Turbo, Cabriolet & all & 2 & 2 \\
032 & Sonnett & II, III, V-4 & \(68-74\) & 1 & 1 \\
033 & \(95 / 96 / 97\) & S, Turbo & -73 & 2 & 2 \\
034 & 9000 & CS & \(85-0 n\) & 3 & 3 \\
398 & Other automobile & Monte Carlo 850 & \(93-o n\) & & - \\
399 & Unknown auotmobile & & - & - & - \\
999 & Unknown vehicle & & - & - & -
\end{tabular}

MAKE "48"
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & DL/FE/G/GF/GL/GLF/STD/ Loyale & 4 wheel drive, Turbo & \[
\begin{aligned}
& 72-89 \\
& 90-94
\end{aligned}
\] & per WB & = size \\
\hline 032 & Star & & 70-71 & 2 & 2 \\
\hline 033 & 360 & & 69-70 & 1 & 1 \\
\hline 034 & Legacy & Brighton, Outback, Outback II & 89-on & 2 & 2 \\
\hline 035 & XT/XT6 & 4WD Turbo, convertible, DL & 86-on & 2 & 2 \\
\hline 036 & Justy & DL, GL & 87-94 & 1 & 1 \\
\hline 037 & SVX & & 92-on & 3 & 3 \\
\hline 038 & Impreza & Outback, Outback II & \(93-\) on & 2 & 2 \\
\hline 043 & Brat & DL, GL & 78-on & 2 & 2 \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}

GV06
(41)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "49" TOYOTA
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & M MODEL & INCLUDES Y & YEAR & SIZE & STIFFNESS \\
\hline 031 & Corona & Mark II, Custom, 1900, 2000, Deluxe & -82 & 2 & 2 \\
\hline 032 & Corolla & 1100, 1200, 1600, SR-5, LE, Deluxe, Custom, FX16 & \[
\begin{gathered}
69-85 \\
\text { FWD 86-on }
\end{gathered}
\] & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 9^{* * *}
\end{aligned}
\] \\
\hline 033 & Celica & 1900, 2000, GT, ST, GTS (-93) & 72-on & 2 & 2 \\
\hline 034 & Supra & Celica Supra, Soarer & 79-on & 3 & 3 \\
\hline 035 & Cressida & & 78-92 & 3 & 3 \\
\hline 036 & Crown & 2300, 2600 & -71 & 3 & 3 \\
\hline 037 & Carina & 2000 & 72-73 & 2 & 2 \\
\hline 038 & Tercel & Corolla Tercel, 4WD Wagon & 80-on & 2 & 2 \\
\hline 039 & Starlet & & 81-84 & 1 & 1 \\
\hline 040 & Camry & LE, Deluxe, XLE, Coupe & 83-on & 3 & 3 \\
\hline 041 & MR-2 & & 85-95 & 1 & 1 \\
\hline 042 & Paseo & & 92-on & 1 & 1 \\
\hline 043 & Avalon & & 95-on & 3 & 3 \\
\hline 398 & Other automobile & 2000 GT Coupe (1960s) & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 401 & 4-Runner & & 85-on & 3 & 8** \\
\hline 402 & RAV-4 & & 96-on & TBD & TBD \\
\hline 421 & Landcruiser & & 76-on & 3 & 8** \\
\hline 441 & Minivan Previa & LE, Cargo & \[
\begin{aligned}
& 84-90 \\
& 91-\mathrm{on}
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 7^{* *} \\
& 7^{* *}
\end{aligned}
\] \\
\hline 471 & Pickup & \begin{tabular}{l}
SR-5, Extra Cab, Sport, \\
LN44, Chinook, Wonder Wagon
\end{tabular} & 74-on & per WB & 8** \\
\hline 472 & Tacoma & & 95-on & TBD & TBD \\
\hline 481 & T-100 & & 93-on & per WB & 8** \\
\hline 498 & Other light truck & & - & - & - \\
\hline 499 & Unknown light truck & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}
** Applies to front and rear impacts. Use size value for side impacts.
*** Code 9 applies only to frontal impacts. Use size code for stiffness for side or rear impact.

GENERAL VEHICLE FORM

GV06
(42)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "50"
TRIUMPH
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & Spitfire & I, II, III, IV, 1500 & -81 & 1 & 1 \\
\hline 032 & GT-6 & MK3 & 67-73 & 1 & 1 \\
\hline 033 & TR4 & TR2, TR3, TR4A & -68 & 1 & 1 \\
\hline 034 & TR6 & & 69-76 & 1 & 1 \\
\hline 035 & TR7/8 & & 75-81 & 1 & 1 \\
\hline 036 & Herald & Vitesse & - & - & - \\
\hline 037 & Stag & & 71-73 & 2 & 2 \\
\hline 398 & Other automobile & 2000, 1200 series & - & - & - \\
\hline \multirow[t]{2}{*}{399} & Unknown automobile & & & & \\
\hline & Motorcycles & & & & \\
\hline 701 & 0-50cc & & & & \\
\hline 702 & 51-124cc & & & & \\
\hline 703 & 125-349cc & & & & \\
\hline 704 & 350-449cc & & & & \\
\hline 705 & 450-749cc & & & & \\
\hline 706 & 750cc or greater & & & & \\
\hline 709 & Unknown cc & & & & \\
\hline 799 & Unknown motored cycle & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}

GV06
(43)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "51" VOLVO (Includes Volvo/White and Volvo/GM Heavy Trucks)
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & E MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & 122 & S & -68 & 3 & 3 \\
\hline 032 & 142/144/145 & S, E, GL, GLS, Deluxe & -74 & 3 & 3 \\
\hline 033 & 164 & S, E & 69-75 & 3 & 3 \\
\hline 034 & 240/242/244/245 & DL, GL, GLE, GLT, Deluxe & 75-on & 3 & 3 \\
\hline 035 & 262/264/265 & GL & 76-82 & 3 & 3 \\
\hline 036 & 1800 & E, S, ES & -73 & 2 & 2 \\
\hline 038 & \[
\begin{aligned}
& 760 \\
& 780
\end{aligned}
\] & GLE, Turbo & \[
\begin{aligned}
& 83-90 \\
& 87-92
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] \\
\hline 039 & 740 & GLE, GT, Turbo, GL & 86-92 & 3 & 3 \\
\hline 040 & 940 & GLE, Turbo, SE & 91-on & 3 & 3 \\
\hline 041 & 960 & & 92-on & 3 & 3 \\
\hline 042 & 850 & GLT, Wagon & 93-on & 3 & 3 \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 881 & Medium/Heavy CBE & & all & N/A & N/A \\
\hline 882 & Medium/Heavy COE low entry & & all & N/A & N/A \\
\hline 883 & Medium/Heavy COE high entry & & all & N/A & N/A \\
\hline 884 & Medium/Heavy: Unknown engine location & & all & N/A & N/A \\
\hline 890 & Medium/Heavy: COE entry position unknown & & all & N/A & N/A \\
\hline 898 & Other medium/heavy truck & & all & N/A & N/A \\
\hline 899 & Unknown medium/heavy truck & uck & - & - & - \\
\hline 981 & Medium bus & & all & N/A & N/A \\
\hline 988 & Other bus & & all & N/A & N/A \\
\hline 989 & Unknown type bus & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}

GV06
(44)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "52" MITSUBISHI
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & M MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & Starion & \(2+2\), LE, Turbo & 83-90 & 2 & 2 \\
\hline 032 & Tredia & L, LS, Turbo & 83-88 & 2 & 2 \\
\hline 033 & Cordia & L, Turbo & 83-88 & 2 & 2 \\
\hline 034 & Galant & ECS, Sigma (thru 88) & 85-on & 3 & 3 \\
\hline 035 & Mirage & L, Turbo & 85-on & 1 & 1 \\
\hline 036 & Precis & & 88-on & 1 & 1 \\
\hline 037 & Eclipse & & 90-on & 2 & 2 \\
\hline 038 & Sigma & & 89-90 & 3 & 3 \\
\hline 039 & 3000GT & Spyder, VR-4 & 91-on & 2 & 2 \\
\hline 040 & Diamante & & 92-on & 3 & 3 \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 401 & Montero & Sport & 85-on & 1 & 8** \\
\hline 441 & Minivan & LS & 87-on & 1 & 7** \\
\hline 442 & Expo Wagon & LRV, Sport & 92-95 & \[
\begin{aligned}
& 99.2^{\prime \prime} \mathrm{WB}=2 \\
& 107.1 \mathrm{WB}=3
\end{aligned}
\] & \[
\begin{aligned}
& 7^{* *} \\
& 7^{* *}
\end{aligned}
\] \\
\hline 471 & Pickup & Mighty Max, SPX, \(4 \times 4\) & all & 3 & 8** \\
\hline 498 & Other light truck & & - & - & - \\
\hline 499 & Unknown light truck & & & & \\
\hline 882 & Medium/Heavy - COE low entry & FUSO FE & all & N/A & N/A \\
\hline 898 & Other medium/heavy truck & & - & - & - \\
\hline 899 & Unknown medium/heavy truck & & & & \\
\hline 981 & Conventional front engine & & & & \\
\hline 982 & Front engine/flat front & & & & \\
\hline 983 & Rear engine/flat front & & & & \\
\hline 988 & Other bus & & & & \\
\hline 989 & Unknown type bus & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}
** Applies to front and rear impacts. Use size value for side impacts.

\section*{GV06}
(45)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "53" SUZUKI
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & SA310 & GLX & 86-on & 1 & 1 \\
\hline 034 & Swift & GTi, GTX & 89-on & 1 & 1 \\
\hline 035 & Esteem & & 95-on & TBD & TBD \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 401 & Samurai & Standard, Deluxe & 85-95 & 1 & 8** \\
\hline 402 & Sidekick & Sidekick Sport & 89-on & 2 & 8** \\
\hline 403 & X-90 & & 96-on & TBD & TBD \\
\hline 498 & Other light truck & & - & - & - \\
\hline 499 & Unknown light truck & & & & \\
\hline & Motorcycles & & & & \\
\hline 701 & 0-50cc & & & & \\
\hline 702 & 51-124cc & & & & \\
\hline 703 & 125-349cc & & & & \\
\hline 704 & 350-449cc & & & & \\
\hline 705 & 450-749cc & & & & \\
\hline 706 & 750 cc -over & & & & \\
\hline 709 & Unknown cc & & & & \\
\hline & All Terrain \(\underline{\text { Cycles/Vehicles }}\) & & & & \\
\hline 731 & 0-50cc & includes all ATCs/ATVs & & & \\
\hline 732 & 51-124cc & designed solely for & & & \\
\hline 733 & 125-349cc & off-road use. & & & \\
\hline 734 & 350 cc or greater & & & & \\
\hline 739 & Unknown cc & & & & \\
\hline 799 & Unknown motored cycle & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}
** Applies to front and rear impacts. Use size value for side impacts.

GV06
(46)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "54"
\begin{tabular}{lllcc}
CODE & \multicolumn{1}{c}{ MODEL } & YEAR & SIZE & STIFFNESS \\
\hline 031 & Integra & RS, LS, GS & \(86-0 n\) & 2 \\
032 & Legend & & \(86-95\) & 3
\end{tabular}
*** Code 9 applies only to frontal impacts. Use size code for stiffness for side or rear impact.
\begin{tabular}{lllll}
\begin{tabular}{c}
MAKE "55" \\
CODE
\end{tabular} & \begin{tabular}{c}
HYUNDAI \\
MODEL
\end{tabular} & INCLUDES & YEAR & SIZE
\end{tabular} STIFFNESS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\[
\begin{aligned}
& \text { GV06 } \\
& (47)
\end{aligned}
\]} \\
\hline \multicolumn{6}{|l|}{Variable Name: Vehicle Model (specify): [cont'd.]} \\
\hline \multicolumn{6}{|l|}{MAKE "56" MERKUR} \\
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & XR4Ti & Turbo & 85-89 & 3 & 3 \\
\hline 032 & Scorpio & Turbo & 87-90 & 3 & 3 \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automob & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}

GV06
(48)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "57" YUGO
\begin{tabular}{llccc}
CODE & MODEL & INCLUDES & YEAR & SIZE
\end{tabular} STIFFNESS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{MAKE "58"} & \multicolumn{4}{|l|}{INFINITI} \\
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & M30 & & 90-92 & 3 & 3 \\
\hline 032 & Q45 & & 90-on & 4 & 4 \\
\hline 033 & G20 & & 91-on & 2 & 2 \\
\hline 034 & J30 & & 93-on & 3 & 3 \\
\hline 035 & 130 & & 96-on & per WB & per WB \\
\hline 398 & Other automobile & & - & - & - \\
\hline \[
\begin{aligned}
& 401 \\
& \text { TBD }
\end{aligned}
\] & T30 & & & 97-on & TBD \\
\hline 498 & Other light truck & & & & \\
\hline 499 & Unknown light truck & & & & \\
\hline 399 & Unknown automobile & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{MAKE "59'} & \multicolumn{4}{|l|}{LEXUS} \\
\hline CODE & - MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & ES-250/ES-300 & & 90-on & 3 & 3 \\
\hline 032 & LS-400 & & 90-on & 4 & 4 \\
\hline 033 & SC-300/SC-400 & 2-door Coupe & 92-on & 3 & 3 \\
\hline 034 & GS-300 & & 94-on & 3 & 3 \\
\hline 398 & Other automobile & & - & - & - \\
\hline 399 & Unknown automobile & & & & \\
\hline 421 & LX 450 & & 96-on & 3 & 8** \\
\hline 498 & Other light truck & & & & \\
\hline 499 & Unknown light truck & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline **8 & Applies to front and re & pacts. Use size val & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\[
\begin{aligned}
& \text { GV06 } \\
& \text { (50) }
\end{aligned}
\]} \\
\hline \multicolumn{6}{|l|}{Variable Name: Vehicle Model (specify): [cont'd.]} \\
\hline \multicolumn{2}{|l|}{MAKE "60"} & \multicolumn{4}{|l|}{DAIHATSU} \\
\hline CODE & MODEL & Includes & YEAR & SIZE & STIFFNESS \\
\hline 031 C & Charade & & 90-92 & 3 & 3 \\
\hline 398 O & Other automobile & & - & - & - \\
\hline \multicolumn{6}{|l|}{399 Unknown automobile} \\
\hline 401 R & Rocky & & 90-92 & & \\
\hline 498 O & Other light truck & & - & - & - \\
\hline 499 U & Unknown light truck & & & & \\
\hline 999 U & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\begin{tabular}{l}
MAKE "61" \\
CODE
\end{tabular} & \multicolumn{2}{c}{ STERLING } & & \\
\hline 031 & \(827 S\) & INCLUDES
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{MAKE "62"} & \multicolumn{4}{|l|}{LAND ROVER} \\
\hline CODE & MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 401 & Discovery (LR) & & 94-on & 2 & \(7{ }^{* *}\) \\
\hline 422 & Defender 90 (LR) & & 94-on & 1 & 7** \\
\hline 421 & County LWB (RR) Count Classic (RR) & & \[
\begin{gathered}
-94 \\
94-\mathrm{on}
\end{gathered}
\] & \[
\begin{aligned}
& 3 \\
& 2
\end{aligned}
\] & \[
\frac{7^{* *}}{7^{* *}}
\] \\
\hline 422 & 4.0 SE (RR) & & 95-on & 3 & 7** \\
\hline 498 & Other light truck & & & & \\
\hline 499 & Unknown light truck & & & & \\
\hline 999 & Unknown vehicle & & - & - & - \\
\hline
\end{tabular}

GV06
(51)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "63" KIA
\begin{tabular}{llccc}
CODE & MODEL & YEAR & SIZE & STIFFNESS \\
\hline 031 & Sephia & all & per WB & \(=\) size \\
398 & Other automobile & - & - & - \\
399 & Unknown automobile & - & - & - \\
401 & Sportage & \(96-\mathrm{on}\) & - & - \\
498 & Other light truck & & & \\
499 & Unknown light truck & - & - & -
\end{tabular}

GV06
(52)

Variable Name: Vehicle Model (specify): [cont'd.]
MAKE "69" OTHER FOREIGN
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & M MODEL & INCLUDES & YEAR & SIZE & STIFFNESS \\
\hline 031 & Aston Martin & Lagonda, Vantage, Volante, Saloon & all & per WB & = size \\
\hline 032 & Bricklin & & all & per WB & = size \\
\hline 033 & Citreon & & all & per WB & \(=\) size \\
\hline 034 & Delorean & & all & per WB & \(=\) size \\
\hline 035 & Ferrari & & all & per WB & = size \\
\hline 036 & Hillman & & all & per WB & \(=\) size \\
\hline 037 & Jensen & Healy & all & per WB & \(=\) size \\
\hline 038 & Lamborghini & Countach 5000S, Jalpa & all & per WB & \(=\) size \\
\hline 039 & Lotus & Europe, Esprit & all & per WB & = size \\
\hline 040 & Maserati & Biturbo & all & per WB & \(=\) size \\
\hline 041 & Morris & Minor & all & per WB & = size \\
\hline 042 & Rolls Royce/Bentley & Cloud/shadow series & all & per WB & = size \\
\hline 044 & Simca & & all & per WB & = size \\
\hline 045 & Sunbeam & & all & per WB & \(=\) size \\
\hline 046 & TVR & & all & per WB & = size \\
\hline 048 & Desta & & all & per WB & \(=\) size \\
\hline 049 & Reliant & & all & per WB & = size \\
\hline 052 & Bertone & & all & per WB & = size \\
\hline 053 & Lada & & all & per WB & = size \\
\hline 398 & Other make & & all & per WB & = size \\
\hline 399 & Unknown make & & & & \\
\hline
\end{tabular}

\section*{APPENDIX P \\ NPTS AND CENSUS JOURNEY TO WORK}

\section*{USING NPTS AND CENSUS JOURNEY TO WORK}

\section*{SUPPLEMENT EACH OTHER}

The Census journey-to-work data provide a wealth of data on commuting, particularly data that is valid for small geographic areas, such as a city, town, place or census tract. NPTS provides coverage on travel for all purposes, not just commuting, and NPTS provides greater detail on travel characteristics than Census. However, NPTS data may not be valid for individual states or metro areas.

\section*{HOW TO USE NPTS DATA AT A STATEWIDE OR REGIONAL LEVEL}

There are two ways NPTS may be used. First, NPTS can provide default values for data such as trip rates from areas of similar size in your region of the county.

Second, the 1995 NPTS data may allow for the construction of synthetic datasets for states or metro areas. This is a researchable concept that must be tested. With the 1990 NPTS, there were limited variables which could be used to select a "similar population" to reflect one's own region. These were variables such as MSA size categories and residential zipcode population densities. In the 1995 NPTS, many variables have been added to describe the residential area and the workplace location of respondents, without disclosing the actual geography. Among the many variables are:
- population density at the tract and block group,
- median household income and median housing value at the tract and block group,
- employment density at the tract level,
- housing tenure (own/rent) at the tract and block group level, and
- types of industries at the workplace location.

For a complete description of these variables, see Appendix L.

\section*{TO USE NPTS WITH CENSUS JOURNEY TO WORK}

These two datasets may be used to supplement each other, but the user needs to be aware of the differences in the two sources, as described below.

\section*{COMPARISON OF NPTS AND CENSUS JOURNEY TO WORK}

\section*{POPULATION COVERAGE}
- Census journey-to-work data covers the entire country with a sampling rate of approximately 1 in 12 households and a simple random-sampling procedure, meaning that all households throughout the country had an equal probability of being included
- NPTS covers the entire country, but uses a stratified sampling procedure. The overall sampling rate is approximately 1 in 4800 households, but the sampling strategy means that households in some areas have a greater probability of being selected than households in other areas
- With the addition to the data release of the add-on samples, the overall sampling rate changes to about 1 in 2400 households, but the differences in probabilities of households in add-on areas become much greater than households in other areas.
- The census samples from a sampling frame that purportedly includes all mailing addresses in the U.S.
- The NPTS samples from a sampling frame that effectively includes all residential telephone numbers in the U.S., so that households without telephones are excluded from the sample. In addition, households in which persons are out of the home so much of the time that the telephone was never answered, or an answering machine was the only response received will not have participated in the survey.
- See summary of differences in Table P-1.

\section*{DIFFERENCES IN TRAVEL COVERAGE BETWEEN NPTS AND CENSUS}
- Census requests details only about the journey to work
- NPTS requests details about all travel made by persons in the household, whether employed or not, and including travel for all purposes
- Census requests data about the "usual" journey to work, at least in reference to the week preceding the census, or the last full week the person worked
- NPTS requests travel data for a specific day for eavh household.
- \(\quad\) Census collects limited data on the journey to work, including collecting only the main mode of travel (defined as the mode used for the longest time)
- NPTS collects data on both the usual or typical journey to work as well as the actual work trip, if a work trip was made on the household's travel day. For travel day trips, extensive data is collected on each trip, including data about all modes of travel used on any trip in which transit or Amtrak was used for a part of the trip.

\section*{DIFFERENCES IN SAMPLE SIZE AND GEOGRAPHY}
- On the average, the Census journey-to-work data will contain data on about 40,000 households in an urban area of 1 million population.
- On the average, the NPTS will contain data on only about 80 households in an urban area of 1 million population.
- Similar contrasts will exist at other levels of jurisdiction, except for add-on areas.
- The most important implication of this is that journey-to-work data can be used for individual urban areas, even relatively small ones, while NPTS cannot provide reliable results for individual urban areas, except for addon areas.

Table P-1
COMPARISON OF NPTS AND CENSUS JOURNEY TO WORK
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ ITEM } & \multicolumn{1}{c|}{ NPTS } & \multicolumn{1}{c|}{ CENSUS JTW } \\
\hline Sampling Frame & \begin{tabular}{l}
all residential telephone \\
numbers in U.S.
\end{tabular} & \begin{tabular}{l}
all household mailing \\
addresses in U.S.
\end{tabular} \\
\hline Sampling Rate & \begin{tabular}{l}
approximately 1 in 2400 \\
households
\end{tabular} & 1 in 12 households \\
\hline Sample Size & \begin{tabular}{l}
about 80 households in a \\
metro area of 1 million \\
people, except add-ons
\end{tabular} & \begin{tabular}{l}
about 40,000 households \\
in a metro area of 1 million \\
people
\end{tabular} \\
\hline Sampling Procedure & list-assisted sample & simple random sample \\
\hline Survey Instrument & \begin{tabular}{l}
one-day travel diary and \\
telephone interview
\end{tabular} & \begin{tabular}{l}
mail-out self-administered \\
survey form (long form of \\
the decennial census)
\end{tabular} \\
\hline Travel Coverage & all travel for one day & \begin{tabular}{l}
typical journey to work in \\
previous week
\end{tabular} \\
\hline Persons Reporting & \begin{tabular}{l}
Everyone 5 years and \\
older
\end{tabular} & Workers \\
\hline Period Coverage & full year & \begin{tabular}{l}
week prior to April 1 of \\
decennial Census year
\end{tabular} \\
\hline Travel Details & \begin{tabular}{l}
Usual trip - all modes, \\
main mode, time trip \\
started, travel time, trip \\
distance \\
Travel day - mode, time, \\
vehicle occupancy, etc.
\end{tabular} & \begin{tabular}{l}
Usual trip - main mode, \\
time trip started, travel \\
time
\end{tabular} \\
\hline Frequency & \begin{tabular}{l}
currently every 5 to 7 \\
years, possibly a \\
continuous survey in the \\
future
\end{tabular} & every 10 years \\
\hline
\end{tabular}

Reference: Stopher, Peter and Metcalf, Helen M. A., PlanTrans, Draft of Training Modules for NPTS Data Releases, Summer, 1997

\section*{APPENDIX Q}

\section*{LINKED \& UNLINKED TRIPS}

\section*{DEFINITIONS}

Understanding the difference between linked and unlinked trips is critical primarily for understanding transit trips. One problem pertains to how transit trips are reported. If you take a bus, then transfer to another bus, this is counted as 2 trips for the FTA National Transit Database (Section 15). However, this is considered one trip in regional transportation planning models.
\begin{tabular}{|l|l|l|l|}
\hline Origin & Destination & Mode & Purpose \\
\hline Home & Bus transfer station & Bus & \begin{tabular}{l}
change to another \\
bus
\end{tabular} \\
\hline \begin{tabular}{l}
Bus transfer \\
station
\end{tabular} & Work & Bus & to work \\
\hline
\end{tabular}

Another transit trip linking issue relates to access and egress to the transit service. Transit trips may begin with a walk trip, a passenger ride in a car ("kiss and ride"), driving to a park \& ride lot, or may involve both bus and rail. These access and egress choices may occur at both ends of the trip.

For the individual travelling, they view the entire sequence of home to work as one trip. For the transportation planner, this same travel may be considered as one linked trip composed of three unlinked trips.
\begin{tabular}{|l|l|l|}
\hline Origin & Destination & Mode \\
\hline HOME & Park \& Ride Lot & Drive alone in private veh \\
\hline Park \& Ride Lot & 14th St and 7th Ave & Bus \\
\hline 14th St \& 7th Ave & \begin{tabular}{l}
WORK: 18th St and 8th \\
Ave
\end{tabular} & Walk \\
\hline
\end{tabular}

The purpose of all three links is to reach the WORK destination. In the NPTS file, these are considered "segmented trips" and are only collected for trips in which at least one link or segment is on public transportation or Amtrak.

Note that during the NPTS telephone interview, the respondent could select a purpose of "changing travel mode," but these trips were subsequently edited into the segmented
trips during the data cleaning phase.

\section*{TRIP CHAINING}

Linked and unlinked trips differs from the concept of trip chaining. Trip chains typically either begin or end at HOME or WORK and may include stops for different activities, but most likely have the same travel mode.
\begin{tabular}{|l|l|l|l|}
\hline Origin & Destination & Activity/Purpose & Travel Mode \\
\hline HOME & School & Drop off child & Drive w/passenger \\
\hline School & Grocery Store & \begin{tabular}{l}
Buy doughnuts for \\
office
\end{tabular} & Drive Alone \\
\hline Grocery Store & WORK & Work & Drive Alone \\
\hline
\end{tabular}

One travel demand model for an MPO (Boise, Idaho) has incorporated trip chaining into a regional model using a tour-based approach. A tour was defined as a sequence of trip segments that start at home and end at home, with home-based WORK tours and home-based OTHER tours. (Citation: Yoran Shiftan and Stephen Decker, "A Practical Method to Estimate Trip Chaining" 1995 ITE Compendium of Technical Papers.) Cambridge Systematics (Thomas Rossi and Yoran Shiftan) are conducting additional work on tour-based models for Portland, Oregon metropolitan area as part of the U.S. DOT Travel Model Improvement Program (TMIP).

\section*{APPENDIX R \\ RELATED DATA SOURCES}

\section*{PURPOSE}

Many of the questions posed for the NPTS data require additional analysis of related data sources. Appendix P contains a comparison of NPTS and Census Journey to Work data. There are several other datasets that are often used in conjuction with NPTS. Summaries of these datasets are contained in this Appendix and were provided by the Bureau of Transportation Statistics, Directory of Transportation Data Sources. The related data sources, listed in subject order are:

Commuting:
Census of Transportation Planning Package (CTPP)
Census Journey to Work

Demographics:
Public-Use Microdata Sample (PUMS)

Energy Use:
Residential Energy Consumption Survey (RECS)
Residential Transportation Energy Consumption Survey (RTECS)

Long-Distance Travel:
American Travel Survey (ATS)
National Travel Survey (NTS)

Motor Vehicle Accidents:
Fatal Accident Reporting System (FARS)
National Accident Sampling System (NASS)
Crashworthiness Data System
General Estimates System

Transit Use:
National Transit Database

Transportation Costs:
Consumer Expenditure Survey

\title{
Census of Population and Housing, 1990: Census Transportation Planning Package (CTPP)
}

Mode
Highway, Transit
Abstract
The CTPP is a set of cost reimbursable special tabulations, produced for the Department of Transportation in each state. The detailed cross-tabulations have been designed to meet the needs of state and local transportation planners, and are provided for counties, places of 2,500 or more inhabitants and custom-defined Traffic Analysis Zones (TAZs). The CTPP is a continuation of the 1970 and 1980 Urban Transportation Planning Package programs. Geographic Coverage: The CTPP statewide tabulations will provide data for persons who live or work in the state. Data will be tabulated for the state, each county, county subdivision (only available for 9 states for workplace data), and place of 2,500 or more persons. Totals for state parts of MSAs, CMSAs, and PMSAs will also be provided, as will urbanized area totals (place of residence data only). The statewide tabulations will consist of six parts: Part A, tabulations by place of residence; Part B, tabulations by place of work; Part C tabulations by place of residence by place of work; Part D, tabulations by place of residence for areas of 75,000 or more persons; Part E, tabulations by place of work for areas of 75,000 or more persons; Part F, tabulations of place of residence by place of work for areas of 75,000 or more persons. Urban tabulations are produced for the Metropolitan Planning Organizations (MPOs) in each area where the Census TIGER/Line files contain address ranges. Data will be tabulated for either standard census geography like census tracts of block groups, or for locally- defined, custom geographic areas like TAZs. Subtotals for study area, CTPP Region, MSA, CMSA, PMSA, and urbanized area (place of residence data only) will also be provided. The urban tabulation will consist of seven parts: Part 1, tabulations by small area of residence; Part 2 tabulations by small area of work; Part 3, tabulations of small area of residence by small area of work; Part 4, tabulations of large area of residence; Part 6, tabulations of super district of residence by super district of work for regions with 1 million more persons; Part 7, tabulations by census tract of work; and Part 8, tabulations of small area of residence by small area of work for regions with one million or more persons. There is no Part 5 in the urban element 1990 CTPP.
Source of Data
1990 Census of Population and Housing. Approximately 17.7 million housing units were sampled nationwide.

Attributes:
Geographic Coverage of Data: See Abstract
Time Span of Data Source: 1990
Update Frequency: Decennial
File Format: ASCII, EBCDIC
Media: 9-track Tape, 6250/1600 bpi; Tape Cartridge, IBM 3480 Compatible; CD- ROM (parts A, B, C)
Significant Features/Limitations
1990 Census data are base on a sample, and subject to sampling and nonsampling errors.
Sponsoring Organization
Department of Commerce, Bureau of the Census, Journey-to-Work and Migration Statistics Branch
Availability
CD-ROM: DOT/Bureau of Transportation Statistics, 400 7th Street, SW, Room 3430, Washington, DC 20590; telephone, (202) 366-DATA; fax, (202) 366-3640. CD-ROM
currently available for Parts A, B, and C only. Urban data available in Spring 1996. Tapes:
Contact state transportation agency or local metropolitan planning organization.
Contact for Additional Information:

\author{
Ms. Celia Boertlein \\ Subject-Matter Specialist \\ DOC/Bureau of the Census, Journey-to-Work and Migration Statistics Branch (301) 457-2454, FAX: (301) 457-2481 \\ EMAIL: psalopek@census.gov \\ Ms. Gloria Swieczkowski \\ Subject-Matter Specialist \\ DOC/Bureau of the Census, Journey-to-Work and Migration Statistics Branch (301) 457-2454, FAX: (301) 457-2481 \\ EMAIL: psalopek@census.gov \\ Ms. Carol Faber \\ Subject-Matter Specialist \\ DOC/Bureau of the Census, Journey-to-Work and Migration Statistics Branch (301) 457-2454, FAX: (301) 457-2481 \\ EMAIL: psalopek@census.gov
}

\title{
Census of Population and Housing, 1990: Subject Summary Tape File 20 (SSTF 20) - Journey-to-Work in the United States [D]
}

Mode
Highway, Transit
Abstract
This data base includes summary characteristics of economic, social, and housing data from the 1990 census. Characteristics related to journey-to-work include place of work, means of transportation to work, travel time to work, time leaving home to go to work, and private vehicle occupancy for workers 16 years old and over.
Source of Data
1990 Census of Population and Housing. Approximately 17.7 million housing units were sampled nationwide.
Attributes
Geographic Coverage of Data: SSTF 20 provides residence data for the United States, metropolitan areas, central cities, and balance of metropolitan areas in the aggregate, non-metropolitan areas in the aggregate, individual metropolitan areas, and central cities within each metropolitan area.

Time Span of Data Source: 1990
Update Frequency: Decennial
File Format: ASCII, EBCDIC
Media: 9-track Tape, 6250/1600 bpi; Tape Cartridge, IBM 3480 Compatible; CD-ROM;
CD-ROM with extract capability forthcoming
Significant Features/Limitations
1990 Census data are based on a sample, and subject to sampling and nonsampling errors. Sponsoring Organization

Department of Commerce, Bureau of the Census, Journey-to-Work and Migration Statistics Branch
Availability
DOC/Bureau of the Census, Customer Services, Washington, DC 20233; telephone, (301) 457-4100. Price determined by media selected. CD-ROM with extract software should be available in Winter 1996.
Contact for Additional Information
Mr. Phillip A. Salopek
Subject-Matter Specialist
DOC/Bureau of the Census, Journey-to-Work and Migration Statistics Branch (301) 457-2454, FAX: (301) 457-2481

EMAIL: psalopek@census.gov
Ms. Celia Boertlein
Subject-Matter Specialist
DOC/Bureau of the Census, Journey-to-Work and Migration Statistics Branch (301) 457-2454, FAX: (301) 457-2481

EMAIL: psalopek@census.gov

\section*{Census of Population and Housing, 1990 : Public Use Microdata Sample (PUMS)}

Mode
Highway, Transit
Abstract:
PUMS are computerized files containing most population and housing characteristics for a sample of individual long-form census records. Characteristics related to journey-to-work include place of work, means of transportation to work, travel time to work, time leaving home to go to work, and private vehicle occupancy for workers 16 years old and over.
Source of Data
1990 Census of Population and Housing. Approximately 17.7 million housing units were sampled nationwide.
Attributes
Geographic Coverage of Data: U.S. totals, state, District of Columbia., The 5\% PUMS files present most population and housing characteristics on the sample questionnaire for a 5-percent sample of housing units. It shows data for all states and various subdivisions within them including most counties with 100,000 or more inhabitants individually, and groups of counties elsewhere. The 1\% PUMS files present most population and housing characteristics on the sample questionnaire for a 1-percent sample of housing units. It shows data for all metropolitan territory and most MAs with 100,000 or more inhabitants individually, and groups of MAs elsewhere. The 3\% Elderly PUMS files present most population and housing characteristics on the sample questionnaire for a 3-percent sample of all housing units which have one or more persons who are 60 years old or older. It shows data for all metropolitan area territory and most MAs with 100,000 or more inhabitants individually, and groups of MAs elsewhere.
Time Span of Data Source: 1990
Update Frequency: Decennial
File Format: ASCII, EBCDIC
Media: 9-track Tape, 6250/1600 bpi; Tape Cartridge, IBM 3480 Compatible; CD-ROM
Significant Features/Limitations
These records contain no names or addresses, and geographic identification is sufficiently broad to protect confidentiality. 1990 Census data are based on a sample, and subject to sampling and nonsampling errors.
Sponsoring Organization
Department of Commerce, Bureau of the Census, Journey-to-Work and Migration Statistics Branch
Availability
Tape, CD-ROM: DOC/Bureau of the Census, Customer Services, Washington, DC 20233; telephone, (301) 457-4100. Price determined by file size.
Contact for Additional Information
Mr. Phillip A. Salopek
Subject-Matter Specialist
DOC/Bureau of the Census, Journey-to-Work and Migration Statistics Branch
(301) 457-2454, FAX: (301) 457-2481

EMAIL: psalopek@census.gov
Ms. Celia Boertlein
Subject-Matter Specialist
DOC/Bureau of the Census, Journey-to-Work and Migration Statistics Branch
(301) 457-2454, FAX: (301) 457-2481

EMAIL: psalopek@census.gov
Ms. Gloria Swieczkowski
Subject-Matter Specialist
DOC/Bureau of the Census, Journey-to-Work and Migration Statistics Branch (301) 457-2454, FAX: (301) 457-2481

EMAIL: psalopek@census.gov

\title{
Residential Energy Consumption Survey (RECS), 1990: Residential Transportation Energy Consumption Survey (RTECS), 1991
}

Mode
Multimodal
Abstract
This database contains 1990 RECS basic data on housing unit characteristics, annualized 1990 fuel consumption and expenditures and end-use estimates for space heating, air conditioning, water heating and appliances. The 1991 RTECS contains basic data on motor vehicle stock, vehicle miles traveled, Vehicle Identification Number (VIN) data and motor fuel consumption and expenditures. It also includes complete documentation for the survey data files. The 1990 RECS data file on 9 track tape include a SAS file description that can be used to create SAS datasets.
Source of Data
Interviews with households.
Attributes
Geographic Coverage of Data: U.S. totals, Census divisions
Time Span of Data Source: 1990/RECS; 1991/RTECS
First Developed: 1980/RECS; 1983/RTECS
Update Frequency: Triennial
Last Update: 1990/RECS; 1991/RTECS
Number of Records: ~5-6,000/RECS; 3,000/RTECS
File Size: 3MB, uncompressed
File Format: ASCII, dBase
Media: 9-track Tape, 1600/6250 bpi; Diskette, Printed source
Significant Features/Limitations
The smallest unit of analysis is the household and household vehicle. However, the finest geographic identification available is the Census division.
Corresponding Print Source
Residential Energy Consumption Survey, 1980, 1981, 1982, 1984, 1987, 1990
Residential Transportation Energy Consumption Survey, 1983, 1985, 1988, 1991
Sponsoring Organization
Department of Energy, Energy Information Administration, Office of Energy Markets and End Use
Availability
National Energy Information Center, Washington, DC, 20585; telephone, (202) 586-1119 or Office of Scientific and Technical Information (OSTI); telephone, (615) 576-8401; Internet: http://www.eia.doe.gov or National Technical Information Service, Springfield, VA 22161; telephone, (703) 487-4650. The 1993 RECS data are now available but contain only three variables relating to transportation: DRIVEMON - number of drivers in household, DRIVECAR - have regular use of vehicle, VEHICLES - number of vehicles. The 1994 RTECS data should be available in 1996.
Contact for Additional Information
Mr. Robert Latta (RECS)
Data Manager
DOE/EIA, EI-631
(202) 586-1385, FAX: (202) 586-0018

EMAIL: rlatta@eia.doe.gov
Mr. Ron Lambrecht (RTECS)
Data Manager
DOE/EIA, EI-632
(202) 586-4962, FAX: (202) 586-0018

EMAIL: rlambrec@eia.doe.gov

\section*{American Travel Survey 1995}

Mode
Multimodal
Abstract
The American Travel Survey 1995 measures interstate and intermetropolitan passenger travel nationwide by trip and traveler characteristics for all modes and for intermodal combinations.
Source of Data
Survey of \(\sim 80,000\) households in the United States.
Attributes
Geographic Coverage of Data: United States
Time Span of Data Source: 1995
First Developed: 1994
Update Frequency: Quinquennial
Last Update: 1977
Number of Records: TBD
File Size: TBD
File Format: TBD
Media: Electronic, Printed Sources
Sponsoring Organization
Department of Transportation, Bureau of Transportation Statistics
Availability
DOT/Bureau of Transportation Statistics, 400 7th Street, SW, Room 3430, Washington, DC 20590; telephone, (202) 366-3282; fax, (202) 366-3640.
Contact for Additional Information
Ms. Susan Lapham
Survey Manager
DOT/BTS, K-20
(202) 366-9913, FAX: (202) 366-3640

EMAIL: susan.lapham@bts.gov

\section*{National Travel Survey}

Mode
Multimodal
Abstract
This survey measures the travel activity of U.S. adult residents. The survey, conducted continuously since 1979, is based on telephone interviews with a national probability sample of 1,500 U.S. adults each month. Results from all client questions are proprietary and may be tabulated against all other trip and demographic data collected through the survey at no additional cost. For the National Travel Survey, a trip is defined as traveling away from home in one direction of 100 miles or more, with and without overnight stay.
Source of Data
Survey of 1,500 U.S. Adults.
Attributes
Geographic Coverage of Data: United States
Time Span of Data Source: Current year
First Developed: Ongoing
Update Frequency: 1994
Sponsoring Organization
Travel Industry Association of America
Availability
TIAA, Attn Publication Department, 1100 New York Avenue, NW, Suite 450, Washington, DC 20078-2188, telephone, (202) 408-1832; fax, (202) 408-1255.
Contact for Additional Information
Staff
TIAA, Publication Department
(202) 408-1832, FAX: (202) 408-1255

\section*{Fatal Accident Reporting System (FARS)}

Mode
Highway
Abstract
This system provides a census of all fatal traffic crashes in the U.S. It was developed to assist NHTSA in identifying traffic safety problems, developing and implementing vehicle and driver countermeasures, and evaluating motor vehicle safety standards and highway safety initiatives.
Source of Data
Under cooperative agreements with NHTSA, state employees extract data from medical examiners, coroners, emergency medical, and police accident reports. Data are also extracted from driver, vehicle and roadway classification records.
Attributes
Geographic Coverage of Data: 50 states, District of Columbia, Puerto Rico
Time Span of Data Source: 1975-1993
First Developed: 1975
Update Frequency: Semiannual
Last Update: 05/93
Number of Records: ~300,000/year
File Size: 30MB
File Format: SAS, Sequential, TPL
Media: CD-ROM, Tape, Printed source
Significant Features/Limitations
Fatal crash data only. Detailed information on crash, vehicle, driver and occupant characteristics. Thirty day fatalities, no nonfatal crash data. CD-ROM contains data for 1988-1993.

Corresponding Print Source
Fatal Accident Reporting System: A Review of Information on Fatal Traffic Crashes in the United States annual reports, 1975-1993
Sponsoring Organization
Department of Transportation, National Highway Traffic Safety Administration, National Center for Statistics and Analysis

\section*{Availability}

CD-ROM: DOT/Bureau of Transportation Statistics, 400 7th Street, SW, Room 3430, Washington, DC 20590, telephone, (202) 366-3282; fax, (202) 366-3640. Tape: DOT/RSPA, Volpe National Transportation Systems Center, DTS-44, 55 Broadway, Cambridge, MA 02142; telephone (617) 494-2640; fax, (617) 494-3633. Price, \$170/year user manual provided with tape purchase. Printed Source: DOT/NHTSA, National Center for Statistics and Analysis, NRD-30, 400 7th Street, SW, Washington, DC 20590; telephone, (202) 366-4709; fax, (202) 366-7078.

Contact for Additional Information
Mr. Chuck Venturi
Data Collection
DOT/NHTSA, NRD-30
(202) 366-4709, FAX: (202) 366-7078

Ms. Delmas Johnson
Data Analysis
DOT/NHTSA, NRD-30
(202) 366-5373, FAX: (202) 366-7078

\section*{National Accident Sampling System Crashworthiness Data System (NASS/CDS)}

Mode
Highway
Abstract
This system provides information on a nationally representative sample of police-reported crashes involving at least one towed passenger car, light truck, van or utility vehicle in the U.S. The NASS CDS was derived from the NASS CSS (Continuous Sampling System) when the focus on traffic crashes was shifted to a passenger vehicle crashworthiness system. This change was made to identify traffic safety problems, develop and implement vehicle and driver countermeasures, and evaluate motor vehicle safety standards.
Source of Data
Data are extracted, by contracted researchers, from police accident reports, vehicle and scene inspections, medical examinersÕ and coronersÕ reports, emergency room, and hospital records, driver and occupant interviews, and witnesses in 24 sites across the United States.
Attributes
Geographic Coverage of Data: National sample (24 sites) of police-reported crashes
Time Span of Data Source: 1988-present
First Developed: 1988
Update Frequency: Annual
Last Update: 09/95
Number of Records: 5,000 crashes/year
File Size: 9.5MB
File Format: SAS, Sequential
Media: Tape, CD-ROM
Significant Features/Limitations
Nationally representative sample of towed passenger vehicle crashes; detailed injury information on those individuals who were injured or killed; detailed vehicle inspection for damage information on towed vehicles involved in the crash; availability of injury and vehicle damage information dictated by the level of cooperation with hospitals, tow yards, drivers, etc.
Sponsoring Organization
Department of Transportation, National Highway Traffic Safety Administration, National Center for Statistics and Analysis
Availability
DOT/RSPA, Volpe National Transportation Systems Center, DTS-44, 55 Broadway, Cambridge, MA 02142; telephone, (617) 494-2640; fax, (617) 494-3633. Price, \(\$ 150\) per tape/year. User manual provided with tape purchase.
Contact for Additional Information
Mr. Lee Franklin
Data Collection
DOT/NHTSA, NRD-30
(202) 366-5390, FAX: (202) 366-5374

EMAIL: 1franklin@nhtsa.dot.gov
Mr. Terry Klein
Data Analysis
DOT/NHTSA, NRD-30
(202) 366-0328, FAX: (202) 366-7078

EMAIL: tklein@nhtsa.dot.gov

\section*{National Accident Sampling System General Estimates System (NASS/GES)}

Mode
Highway
Abstract
This system provides information on a probability sample of all severities of police-reported traffic crashes in the U.S. GES was created to identify highway safety problem areas, provide a basis for regulatory and consumer initiatives, and form the basis for cost and benefit analyses of highway safety initiatives.
Source of Data
NHTSA-contracted coders enter the GES data directly from sampled police accident reports.
Data are from 60 geographic sites across the U.S. Data collectors make weekly, biweekly, or monthly visits to approximately 400 police agencies within 60 sites where they select a random sample of Police Accident Reports (PARS).

\section*{Attributes}

Geographic Coverage of Data: National sample (60 sites) of police-reported crashes
Time Span of Data Source: 1988-present
First Developed: 1988
Update Frequency: Annual
Last Update: 1994 data year
Number of Records: ~245,696/year
File Size: 38.6MB
File Format: SAS, Flat File
Media: CD-ROM, Tape, Printed source
Significant Features/Limitations
National estimates with measurable errors. Information on all severities of crashes and vehicle types. Data from police accident reports only. CD-ROM contains data for 19881994.

Corresponding Print Source
General Estimates System: A Review of Information on Police-Reported Traffic Crashes in the United States annual reports, 1988-1991
1992-1994 Traffic Safety Facts annual reports
Sponsoring Organization
Department of Transportation, National Highway Traffic Safety Administration, National Center for Statistics and Analysis
Availability
CD-ROM: DOT/Bureau of Transportation Statistics, 400 7th Street, SW, Room 3430, Washington, DC 20590; telephone, (202) 366-3282; fax, (202) 366-3640. Tape: DOT/RSPA, Volpe National Transportation Systems Center, DTS-44, 55 Broadway, Cambridge, MA 02142, telephone, (617) 494-2640; fax, (617) 494-3633. Printed Source: DOT/NHTSA, National Center for Statistics and Analysis, NRD-30, 400 7th Street, SW, Washington, DC 20590; telephone, (202) 366-5362/5378; fax, (202) 366-7078.
Contact for Additional Information
Mr. Gary Toth
Data Collection
DOT/NHTSA, NRD-30
(202) 366-5378, FAX: (202) 366-7078

EMAIL: gtoth@nhtsa.dot.gov

\section*{National Transit Database [D]}

Mode
Multimodal
Abstract
The National Transit Database contains detailed financial and operating data for over 500 transit agencies, including information on capital expenditures, revenues, expenses, vehicle inventories, employees, maintenance, energy, and safety and modal data on transit service supplied and consumed for over 13 report years. These data are required under Section 15 of the Federal Transit Act (FT Act) which provides for the establishment of a uniform system of accounts and records plus a reporting system for the collection and dissemination of data on public mass transit. Data are provided for over 500 transit agencies, including systems operated by transit authorities, states, city departments, and private operators under contract to public agencies.
Source of Data
The database contains annual financial and operating data filed directly by transit agencies.
Attributes
Geographic Coverage of Data: U.S. totals
Time Span of Data Source: Calendar year
First Developed: 1978
Update Frequency: Annual
Number of Records: Not available
File Size: 15MB
File Format: Various formats
Media: ASCII files, 9-Track Tape, Diskette, special data subsets, Lotus spreadsheets, Printed source
Corresponding Print Source
National Transit Database Ñ Data Tables
Transit Profiles: Agencies in Areas Exceeding 200,000
Transit Profiles: Agencies in Areas with less than 200,000
Transit Profiles: Thirty Largest Transit Agencies
Sponsoring Organization
Department of Transportation, Federal Transit Administration, Office of Program Guidance and Support
Performing Organization
Department of Transportation, Research and Special Programs Administration, Volpe
National Transportation Systems Center, Service Assessment Division
Availability
DOT/RSPA/Volpe Center, Service Assessment Division, DTS-49, 55 Broadway,
Cambridge, MA 02142; telephone, (617) 494-3459, fax, (617) 494-3260.
Contact for Additional Information
Mr. Doug Kerr
Technical Manager
DOT/FTA, TPM-20
(202) 366-1656, FAX: (202) 366-7951

EMAIL: kerrd@tgm.dot.gov
Ms. Linda Barnes
Technical Manager
DOT/FTA, TPM-20
(202) 366-6471, FAX: (202) 366-7951

EMAIL: barnesl@tgm.dot.gov
Mr. William Lyons
Program Manager
DOT/RSPA, Volpe Center - DTS-49
(617) 494-2579, FAX: (617) 494-3260

EMAIL: lyonsw @ volpe1.dot.gov
Ms. Dorothy Nicholas
Data ManagerDOT/RSPA, Volpe Center - DTS-49
(617) 494-3459, FAX: (617) 494-3260

EMAIL: nicholas@volpe1.dot.gov

\section*{Consumer Expenditure Survey}

Mode
Multimodal
Abstract
The Consumer Expenditure Survey collects information from American households on their expenditures, income, and family characteristics. The data include household expenditures on all expenditure categories including transportation items such as vehicle purchase, vehicle maintenance, gasoline and motor oil, public transportation, and airline travel. The data are shown by classes of households, such as by income, age, family size, and region.
Source of Data
There are two Consumer Expenditure Survey components: a quarterly interview survey in which approximately 5,000 consumer units are interviewed per quarter; and a weekly diary survey in which approximately 5,000 consumer units per year keep diaries.

\section*{Attributes}

Geographic Coverage of Data: U.S. totals. Data are also published by the 4 Census regions and for 26 selected metropolitan areas
Time Span of Data Source: 1980-1993
First Developed: 1980
Update Frequency: Annual/integrated interview \& diary surveys; Quarterly/interview survey
Media: Tape, Diskette, Printed source
Significant Features/Limitations
Integrated data are published in an annual report. Interview data are published in a quarterly report. Micro-level data from each survey are available annually on public-use tapes. Summary level integrated data are available on diskette.
Sponsoring Organization
Department of Labor, Bureau of Labor Statistics, Division of Consumer Expenditure Surveys
Availability
DOL/BLS, Division of Consumer Expenditure Surveys, 2 Massachusetts Avenue, NE, Washington, DC 20212-0001; telephone, (202) 606-6900; fax, (202) 606-7006. Historical reports: Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone, (202) 783-3238.
Contact for Additional Information
Ms. Stephanie Shipp
General Information
DOL/BLS, Division of Consumer Expenditure Surveys
(202) 606-6900, FAX: (202) 606-7006

EMAIL: shipp_s@bls.gov
Ms. Maureen Gray
Public-Use Tapes Information
DOL/BLS, Division of Consumer Expenditure Surveys
(202) 606-6900, FAX: (202) 606-7006

EMAIL: gray_m@bls.gov
Mr. John Rogers
Diskettes Information
DOL/BLS, Division of Consumer Expenditure Surveys
(202) 606-6900, FAX: (202) 606-7006

EMAIL: rogers_j@bls.gov```

[^0]: Household Weight Sums by Region

[^1]: Percent multiple unit housing, CT

[^2]: HTHINCL N 3 *
 Percent Hhs, income < \$15000, CT

[^3]: C

[^4]: Response status of person 2

[^5]: SITTRAN C 2

[^6]: Progid: disk46:[wmynpts.pubfiles]cbrp_tday.sas Date: 24SEP97

[^7]: Final travel day trip weight

[^8]: H density (units/square mile), BG

[^9]: Progid: disk46:[wmynpts.pubfiles]cbrp_tper.sas Date: 23SEP97

[^10]: S = Same Name in 1990

[^11]: $\mathrm{N}=\mathrm{No}$ Comparable 1990

[^12]: S $=$ No Comparable 1990

[^13]: $N=$ No Comparable 1990

[^14]: $\mathrm{N}=\mathrm{No}$ Comparable 1990

[^15]: $N=N o$ Comparable 1990

[^16]: $N=N o$ Comparable 1990

[^17]: $N=N O$ Comparable 1990
 $S=$ Same Name

[^18]: $\mathrm{S}=\mathrm{No}$ Comparable 1990

