NUCLEAR DATA FOR THE PRODUCTION OF THERAPEUTIC RADIONUCLIDES

INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2010

FOREWORD

This technical report summarises and concludes an IAEA Coordinated Research Project devoted to comprehensive measurements and evaluations of the neutron and charged-particle induced cross sections for the production of therapeutic radionuclides for medical applications. Nuclear reactors, cyclotrons and accelerators are used for the production of radionuclides for both diagnostic and therapeutic purposes in nuclear medicine. The physical basis of their production routes is described through the interaction of neutrons and charged particles with matter. These processes have to be well understood in order to produce radionuclides of high purity in an efficient manner. The concerted and collaborative efforts described here deal specifically with the production and use of therapeutic radionuclides. An earlier Coordinated Research Project (CRP) of the IAEA was devoted to diagnostic radionuclides and monitoring reactions (IAEA-TECDOC-1211).

Although some of the production methods are well established, there are no evaluated and recommended nuclear data sets available. This situation has been emphasized at specific IAEA meetings:

- Summary Report of Advisory Group Meeting on Long-term Needs for Nuclear Data Development, 28 November 1 December 2000, IAEA Report INDC(NDS)-423, D.W. Muir and M. Herman (Eds), IAEA, Vienna, May 2001,
- Summary Report of Consultants' Meeting on Nuclear Data for Production of Therapeutic Radioisotopes, 27 February 1 March 2002, IAEA Report INDC(NDS)-432, R.C. Haight and R. Paviotti-Corcuera (Eds), IAEA, Vienna, April 2002.

Over the previous thirty years, many laboratories have reported a significant body of experimental data relevant to medical radionuclide production, and charged-particle data centres have compiled most of these data. However, no systematic effort had been devoted to their standardization and assembly. Under these circumstances, the IAEA decided to undertake and organize a Co-ordinated Research Project (CRP) on Nuclear Data for the Production of Therapeutic Radionuclides. The IAEA project was initiated in 2003, and focused on production data of radionuclides for therapeutic purposes embracing current and possible future needs.

The assembly of a credible database involved new measurements on production of some specific radionuclides via charged-particle induced reactions, and the evaluation of cross-section data to quantify both neutron and charged-particle induced reactions. Adoption and development of calculational tools in order to predict unknown cross-section data was also required.

The CRP involved nine experts from nine institutes and national radionuclide production centres. Participants met at three Research Coordination Meetings held in Vienna from 25 to 27 June 2003 (INDC(NDS)-444), 15 to 19 November 2004 (INDC(NDS)-465), and 29 May to 2 June 2006 (INDC(NDS)-0501). This publication constitutes the Final Report of the CRP.

The CRP produced a much needed database both for reactor and accelerator production, and this handbook covering reactions used for medically important therapeutic radionuclides. These recommended cross sections are now accurate enough to meet the demands of all current applications and foreseen developments, although further improvements in the evaluation methodology may lead to future updates. The database is available cost-free on the following Web page: http://www-nds.iaea.org/medical/

The IAEA wishes to thank all the participants of the project for their invaluable contributions to the preparation of the database. Guidance was provided throughout the project by S.M. Qaim (Forschungszentrum Jülich, Germany), and extensive coordination work was undertaken by F. Tárkányi (Institute of Nuclear Research, Hungary). The IAEA staff members responsible for this project and the resulting report were R. Paviotti-Corcuera and R. Capote Noy of the Division of Physical and Chemical Sciences. Participants in these measurements and evaluation studies dedicate their work and results to the memories of E. Menapace (ENEA, Italy) and Y.N. Shubin (IPPE, Russia).

CONTRIBUTING AUTHORS

E. Běták	Slovak Academy of Science, Slovakia
A.D. Caldeira	Centro Técnico Aeroespacial, Brazil
R. Capote	International Atomic Energy Agency
B.V. Carlson	Instituto Tecnologico de Aeronáutica, Brazil
H.D. Choi	Seoul National University, Korea
F.B. Guimarães	Centro Técnico Aeroespacial, Brazil
A.V. Ignatyuk	Institute of Physics and Power Engineering, Russian Federation
S.K. Kim	Seoul National University, Korea
B. Kiraly	Hungarian Academy of Sciences, Hungary
S.F. Kovalev	Institute of Physics and Power Engineering, Russian Federation
E. Menapace [†]	ENEA, Italy
M. Nortier	Los Alamos National Laboratory, USA
P. Pompeia	Centro Técnico Aeroespacial, Brazil
S.M. Qaim	Forschungszentrum Jülich, Germany
B. Scholten	Forschungszentrum Jülich, Germany
Yu.N. Shubin [†]	Institute of Physics and Power Engineering, Russian Federation
JCh. Sublet	CEA Cadarache, France
F. Tarkanyi	Hungarian Academy of Sciences, Hungary

TECHNICAL ASSISTANCE

A.L. Nichols

International Atomic Energy Agency

CONTENTS

1.	INTF	INTRODUCTION1							
	<i>S.M.</i>	Qaim							
	1.1.	General Remarks	1						
	1.2.	Criteria for Choice of a Therapeutic Radionuclide							
	1.3.	Significance of Nuclear Data	2						
	1.4.	Scope of Evaluation Work	4						
	1.5.	Evaluation Methodology							
	1.6.	Contents of the Document							
	1.7.	Availability of Data	6						
	Refer	ences	6						
2.	NEW	V EXPERIMENTAL DATA	7						
	F. Ta	rkanyi, S.M. Qaim							
	Refer	ences	13						
3.	NUC	LEAR REACTION MODELLING: PARTICLE EMISSION	21						
	A.V. 1	gnatyuk, Yu.N. Shubin, R. Capote							
	3.1.	Nuclear Reaction Models	21						
	3.2.	ALICE-91 and ALICE-IPPE							
	3.3.	GNASH	24						
	3.4.	EMPIRE							
	3.5.	Comparison of Modelling Results							
	Refer	ences							
4.	NUC E. Bĕ	LEAR REACTION MODELLING: NEUTRON CAPTURE	31						
	4.1.	Introduction							
	4.2.	Gamma Emission in the MeV Region							
	4.3.	Reactions - General							
	4.4.	Basic Parameters of the Calculations							
	4.5.	Conclusions	33						
	Refer	ences	34						
5.	MET	HODS OF FITTING	37						
		Ignatyuk, Yu.N. Shubin							
	5.1.	Padé Fit	37						
	Refer	ences	39						
6.	NUC JCh	DUCTION OF THERAPEUTIC RADIONUCLIDES BY MEANS OF LEAR REACTORS . Sublet, B.V. Carlson, A.D. Caldeira, F.B. Guimarães, P. Pompeia, H.D. Choi, Qaim, R. Capote							
	6.1.	Introduction	<i>I</i> 1						
			41						
	6.2.	Evaluation of Fission Yields for the Production of ⁹⁰ Y, ¹³¹ I and ¹³⁷ Cs Radionuclides	43						
	6.3.	Nuclear Data for the Production of ⁶⁴ Cu, ^{114m} In, ¹⁶⁶ Ho, ¹⁶⁹ Yb,							
		¹⁷⁷ Lu, ¹⁸⁶ Re and ¹⁸⁸ Re Radionuclides Through Capture Channels and Decay	47						

6.4.	Nuclea	r Data for the Production of ⁹⁰ Y, ¹⁰³ Pd, ¹²⁵ I, ¹²⁶ I, ¹⁴⁹ Pm, ¹⁵³ Sm,	
		nd ²¹³ Bi Radionuclides Through Capture Channels and Decay	
	6.4.1.	Introduction	65
	6.4.2.	Production of ⁹⁰ Y	
	6.4.3.	Production of ¹⁰³ Pd by means of the ¹⁰² Pd(n,γ) ¹⁰³ Pd Reaction	69
	6.4.4.	Production of ¹²⁵ I by means of the ¹²⁴ Xe(n,γ) ¹²⁵ Xe Reaction and	
		Subsequent β^+/EC Decay	72
	6.4.5.	Production of ¹²⁶ I by means of the ¹²⁵ I(n,γ) ¹²⁶ I Reaction	72
	6.4.6	Production of ¹⁴⁹ Pm by means of the ¹⁴⁸ Nd(n,γ) ¹⁴⁹ Nd Reaction and	15
	0.7.0	Subsequent β^- Decay	77
	6.4.7.	Production of ¹⁵³ Sm by means of the ¹⁵² Sm(n,γ) ¹⁵³ Sm Reaction	
		Production of Sill by means of the $\frac{187}{18}$ Decenter $\frac{188}{18}$ Decenter	80
	6.4.8	Production of ¹⁸⁸ Re by means of the ¹⁸⁷ Re(n, γ) ¹⁸⁸ Re Reaction	83
	6.4.9.	Production of ²¹³ Bi by means of the Decay Chains $^{233}U \rightarrow ^{229Th} \rightarrow ^{225}Ra \rightarrow ^{225}Ac \text{ and } ^{225}Ac \rightarrow ^{221}Fr \rightarrow ^{217}At \rightarrow ^{213}Bi$	85
6.5.		ation and Evaluation of (n,γ) Cross Sections for the Production of	
	^{32}P , ^{105}I	Rh, ¹³¹ I and ¹⁹² Ir Radionuclides	89
	6.5.1.	Evaluation Methods	
	6.5.2.	³² P Production	90
	6.5.3.	¹⁰⁵ Rh Production	93
	6.5.4.	¹³¹ I Production	
	6.5.5.	¹⁹² Ir Production	
	6.5.6.	Validation and Derived Integral Quantities	
6.6.		r Data for the Production of 32 P, 64 Cu, 67 Cu, 89 Sr, 90 Y	
5.0.		Sm Radionuclides Through Charge-exchange (n,p) Channel	110
	6.6.1.	⁶⁷ Zn(n,p) ⁶⁷ Cu Reaction	
		$^{64}Zn(n,p)^{64}Cu$ Reaction	
	6.6.2.	2n(n,p) Cu Reaction	121
	6.6.3.	${}^{90}Zr(n,p){}^{90}Y$ Reaction	126
	6.6.4.	89 Y(n,p) ⁸⁹ Sr Reaction	
	6.6.5.	153 Eu(n,p) 153 Sm Reaction	
	6.6.6.	$^{32}S(n,p)^{32}P$ Reaction	128
Refere	ences		133
СЦАІ	DCED D	ARTICLE PRODUCTION OF ^{64,67} Cu, ⁶⁷ Ga, ^{86g} Y, ¹⁰³ Pd, ^{111g} ,	
^{114m} In	^{124,125}	^{69g} Yb, ^{177g} Lu, ^{186g} Re, ^{192g} Ir, ^{210,211} At AND ²²⁵ Ac	143
			••••• 175
		Nortier, R. Capote, A.V. Ignatyuk, B. Scholten, S.F. Kovalev, enapace, Yu.N. Shubin	
7.1.	•	d-particle Production of ⁶⁴ Cu	144
7.2.		d-particle Production of ⁶⁷ Cu	
7.3.		d-particle Production of ⁶⁷ Ga	
7.4.		d-particle Production of ^{86g} Y	
7.5.	Charge	d-particle Production of ¹⁰³ Pd	208
7.6.	Charge	d-particle Production of ^{111g} In	200
7.0. 7.7.	Charge	d-particle Production of ^{114m} In	232
		d-particle Production of ¹²⁴ I	
7.8.	Charge	d-particle Production of ¹²⁵ I	203
7.9.	Charge	a-particle Production of 1	282
7.10.	Charge	d-particle Production of ^{169g} Yb	291
7.11.		d-particle Production of ^{177g} Lu	
7.12.		d-particle Production of ^{186g} Re	
7.13.		d-particle Production of ¹⁹² gIr	
7.14.	Charge	d-particle Production of ²¹¹ At	336
7.15.	Charge	d-particle Production of ²²⁵ Ac	349
Refer	ences		357
Refere	inces		337

7.

1. INTRODUCTION

S.M. Qaim

1.1. General Remarks

Radioactivity plays an important role in medical science in terms of beneficial applications in both diagnosis and therapy. The former entails the introduction of a short-lived radionuclide attached to a suitable pharmaceutical into the patient and measurement of the accumulation and movement of activity from outside. This process is called "emission tomography" and involves the measurement of either a single low-energy γ -ray (i.e. Single Photon Emission Tomography (SPECT)), or coincidences between the two 511-keV photons formed in the annihilation of a positron (i.e. Positron Emission Tomography (PET)). The major governing principle in all diagnostic studies is that the radiation dose to the patient is as low as possible.

Two modalities exist in the therapeutic use of radioactivity. The first and most commonly followed procedure involves the use of external beams of electrons, X-rays and γ rays from radioactive sources (e.g. ⁶⁰Co), high-energy γ rays from accelerators, and hadrons (e.g. neutrons, protons and heavy ions). The second modality involves the introduction of certain radionuclides to a given part of the body (e.g. joints, organ and tumour) either mechanically or via a biochemical pathway. Mechanical introduction is called *brachytherapy*, whereas the biochemical pathway is known as *endoradiotherapy*.

External radiation therapy is outside the scope of the present studies. The concerted and collaborative efforts described here deal specifically with the production and use of radionuclides. An earlier Coordinated Research Project (CRP) of the IAEA was devoted to diagnostic radionuclides (IAEA-TECDOC-1211); the present effort is related to therapeutic radionuclides.

1.2. Criteria for Choice of a Therapeutic Radionuclide

The major criteria for the choice of a radionuclide for endotherapeutic use are suitable decay characteristics and appropriate biochemical reactivity [1.1]. As regards decay properties, the desired half-life is between 6 h and 7 d and the emitted corpuscular radiation should have a suitable linear energy transfer (LET) and range in the tissue. The ratio of non-penetrating (corpuscular radiation) to penetrating (photon) radiation should be high, and the daughter should be short-lived or stable. As regards biochemical reactivity, the situation is more stringent than that for a diagnostic radiopharmaceutical, since the stability of the therapeutical entity is demanded over a much longer time period than that in the case of a diagnostic pharmaceutical. Thus, the basis for successful endoradiotherapy [1.1] incorporates:

- 1. selective concentration and prolonged retention of the radiotherapeutical in the tumour, and
- 2. minimum uptake in normal tissue.

As a result of the above criteria, the choice falls on about 30 radionuclides. Most of them are β -emitters, although several are α -, X-ray and Auger or conversion electron emitters. The ranges of the various types of emitted corpuscular radiation in the tissue are shown in Fig.1.1.

Auger electrons have a range of about 10 μ m and can only have a therapeutic effect if they reach the cell nucleus, e.g. by bringing the radioactive atoms to the DNA. On the other hand, α particles have a range of about 100 μ m and can have a therapeutic effect if they reach the cell membrane, e.g. by attachment of the α emitter to a receptor ligand. β -particles have ranges of about 1 mm and more, depending upon their energies, leading to therapeutic effects even if they reach the cell environment. Achieving beneficial therapeutic effects with Auger electrons and α particles involves a very subtle approach and demands great skills in biochemistry, radiopharmacology and production of the radiotherapeutical. Therapeutic applications have been more straightforward, through not very specific, in the case of β -particles.

FIG. 1.1. Correlation between type and energy of corpulscular radiation and the range in tissue (adapted from Refs. [1.1-1.3]).

1.3. Significance of Nuclear Data

Radioactive decay data play a key role in the therapeutic application of a radionuclide [1.3, 1.4] and knowledge of the energy and intensity of the ionising radiation is crucial. The effect of low-energy, high-intensity electrons emitted following EC and IT decay is not negligible. Therefore, for widely used therapeutic radionuclides, all sources of secondary electrons must be taken into account.

Overall, the available database on decay characteristics of radionuclides used in radiotherapy is extensive [1.5, 1.6], although there may be some deficiencies for individual radioisotopes. Thus, the Auger electron spectra are occasionally not known to the desired accuracy, and some of the positron emitters introduced recently as therapeutic radionuclides may have uncertain β^+ -branching ratios. A few therapeutic radionuclides emit very low intensity γ rays (e.g. ⁶⁴Cu, ¹⁰³Pd and ²¹¹At) – those γ rays are of little significance in therapy, although some experimentalists tend to choose them for nuclear reaction, and would benefit from specific measurements and evaluations. A recent study of this type dealt with the radionuclide ⁶⁴Cu [1.7], and similar work to clarify the decay data would be beneficial.

Whereas the radioactive decay data are of prime importance in the choice of a radionuclide for therapeutic application, the *nuclear reaction data* are of great significance in the optimisation of the production processes, i.e. achieving the maximum yield of desired radionuclide combined with the minimum level of impurities. Since the radionuclides are produced using both reactors and cyclotrons accurate knowledge of the relevant neutron as well as charged-particle induced reaction cross-section data is essential.

The most important reaction for the production of radionuclides in a nuclear reactor is the (n,γ) process. However, during irradiation only a small fraction of the target nuclei is activated and the radionuclide formed is of low specific activity (i.e. activity/unit mass is low). Many therapeutic radionuclides such as ¹⁵³Sm (T_{1/2} = 46.3 h) and ¹⁹²Ir (T_{1/2} = 73.8 d) are produced via this route, and therefore their specific activity remains rather low. The same problem applies to the product of the double neutron capture process, e.g. ¹⁸⁸W formed in the sequence ¹⁸⁶W(n, γ)¹⁸⁷W(n, γ)¹⁸⁸W (T_{1/2} = 69.0 d). The specific activity is enhanced if the daughter product is used instead of the (n, γ) reaction product. Two important therapeutic radionuclides, ¹³¹I (T_{1/2} = 8.0 d) and ¹²⁵I (T_{1/2} = 59.4 d), are produced with high specific activity via the reaction sequences ¹³⁰Te(n, γ)^{131m,g}Te $\stackrel{\beta}{\rightarrow}$ ¹³¹I and ¹²⁴Xe(n, γ)¹²⁵Xe $\stackrel{EC}{\rightarrow}$ ¹²⁵I, respectively. Another possibility involves the preparation of a generator system, for example the

generator system ${}^{188}W \xrightarrow{\beta^{-}188}Re$ whereby the short-lived daughter ${}^{188}Re$ (T_{1/2} = 17.0 h) is periodically milked from the parent.

Two other processes, viz. nuclear fission and the (n,p) reaction, are also occasionally used for the production of therapeutic radionuclides. The two most prominent therapy-related radionuclides produced via fission are ¹³¹I ($T_{\frac{1}{2}} = 8.0$ d) and ⁹⁰Sr ($T_{\frac{1}{2}} = 28.6$ y) – the former is used directly in endoradiotherapy and the latter is utilized in the preparation of the ⁹⁰Sr/⁹⁰Y generator system. As far as the (n,p) reaction is concerned, the fission neutron spectrum-averaged cross section is generally low, although the process is in common use with regard to the production of ³²P and ⁸⁹Sr via the ³²S(n,p)³²P and ⁸⁹Y(n,p)⁸⁹Sr reactions, respectively.

As far as the cyclotron production of therapeutic radionuclides is concerned, a large number of processes may be utilized. Data requirements are stringent since many competing reactions occur. While radionuclide production data using protons, deuterons, ³He and α -particles are commonly available, protons and deuterons have been most commonly utilized because these reactions lead to higher yields. The ultimate choice of a production process depends upon the availability of a suitable cyclotron and the required target material.

⁶⁴Cu (T_{1/2} = 12.7 h) is an important emerging therapeutic nuclide that constitutes an excellent example to elucidate all the points discussed above. This radionuclide decays via three modes, namely β⁻ emission (38.4%), β⁺-emission (17.8%) and EC (43.8%). The β⁺-branching and intensity of the weak 1346-keV γ ray have been recently determined with higher precision, and the known decay characteristics allow a combination of radioimmunotherapy and positron emission tomography. As far as production is concerned, the ⁶³Cu(n,γ)⁶⁴Cu reaction was originally used, but this process has been abandoned and the ⁶⁴Zn(n,p)⁶⁴Cu reaction has been adopted. Although the fission-spectrum averaged cross section of this reaction is low (69 mb), good purity product in sufficient yield is obtained if highly enriched ⁶⁴Zn is used as the target material. On the other hand, if ^{nat}Zn is used as target material, the resulting ⁶⁴Cu is contaminated with large quantities of ⁶⁷Cu. Several other methods for the production of high specific-activity ⁶⁴Cu have been suggested utilizing a cyclotron, as listed in Table 1.1. The (p,n) and (d,2n) reactions on highly enriched ⁶⁴Ni lead to high-yield and high-purity ⁶⁴Cu, but the target material is expensive. Sufficient ⁶⁴Cu is produced from the ⁶⁸Zn (p,αn) reaction, although a very clean separation from the much stronger matrix ⁶⁷Ga activity is mandatory. Furthermore, if the proton energy exceeds 35 MeV, the amount of co-produced ⁶⁷Cu becomes excessive.

Production route	Suitable energy range (MeV)	Calculated integral yield
		(MBq/µA·h)
⁶⁴ Zn(n,p) ⁶⁴ Cu	fission spectrum	14.5*
⁶⁴ Ni(d,2n) ⁶⁴ Cu	$19 \rightarrow 15$	389
⁶⁴ Ni(p,n) ⁶⁴ Cu	$12 \rightarrow 9$	241**
66 Zn(d, α) 64 Cu	$13 \rightarrow 7$	6.6
$^{nat}Zn(d,x)$ ⁶⁴ Cu	$25 \rightarrow 10$	50
68 Zn(p, α n) 64 Cu	$35 \rightarrow 20$	~ 100

TABLE 1.1. ROUTES FOR PRODUCTION OF HIGH SPECIFIC-ACTIVITY ⁶⁴ CU

* Activity/mg Zn at $\Phi_n = 8.7 \times 10^{13} \text{ n cm}^{-2} \text{ s}^{-1}$ for 150 h.

** Presently the method of choice.

Similarly, the ${}^{66}Zn(d,\alpha){}^{64}Cu$ and ${}^{64}Zn(d,2p){}^{64}Cu$ reactions also appear to be suitable methods of production. The ${}^{nat}Zn(d,x){}^{64}Cu$ reactions at $E_d \le 25$ MeV are particularly noteworthy – the use of ${}^{nat}Zn$ would lead to a considerable savings in the cost of the target material. A significant number of production routes are feasible for the production of ${}^{64}Cu$. Nonetheless, the preferred choice lies with

the 64 Ni(p,n) 64 Cu reaction, despite the high cost of the target material, because of the high yield and high purity produced by means of a small cyclotron.

1.4. Scope of Evaluation Work

Nuclear reaction data are important for medical applications and no concerted efforts are being made to define the most appropriate reactions and optimum conditions. Therefore, the IAEA established the following three Coordinated Research Projects (CRPs) in a sequential manner:

- 1. Data for production of diagnostic radionuclides and for charged-particle beam monitoring CRP has been completed and the final document was published as IAEA-TECDOC-1211, 2001 (database is updated periodically).
- 2. Data for production of therapeutic radionuclides CRP was completed in 2006 (this document represents a primary outcome of this particular piece of work).
- 3. Data for external radiation therapy CRP has just begun.

The studies undertaken in connection with the CRP on therapeutic radionuclides focused on the evaluation of production data. Participants at an IAEA Consultants' Meeting recommended the evaluation of production data for about 25 radionuclides. During the course of the resulting CRP, further radionuclides were added to the list of requirements. All of those radionuclides were divided into two groups:

- (a) well-established and commonly used therapeutic radionuclides;
- (b) emerging therapeutic radionuclides that are potentially important their application in medicine has been demonstrated at least once, but further medical work is needed to establish them fully.

As has been discussed above, therapeutic radionuclides are produced by means of both nuclear reactors and cyclotrons. Therefore, evaluations are required of both neutron and charged-particle induced reactions. Although many reactions can be applied to the production of a radionuclide (especially charged-particle irradiations), only one or two reactions are either commonly used or are potentially useful for each radionuclide. Therefore, emphasis has been placed on the more important reactions.

Each radionuclide needs to be treated individually. First the reactor methods of production are considered (i.e. neutron-induced reactions), and thereafter the cyclotron methods of production (i.e. charged-particle induced reactions). Data for all three processes in reactor production, namely (n,γ) , (n,f) and (n,p), were considered. Data for proton and deuteron induced reactions up to approximately 70 MeV are needed, and α -particle induced reaction data are also required in a few special cases.

The major aim of the present work has been to evaluate the production data of all reactor and cyclotron produced therapeutic radionuclides, whether of direct importance today or of potential interest in the future. However, emphasis was placed on the most effective routes of production, i.e. preferably on reactions meeting the four basic criteria of high yield, high radionuclidic purity, high chemical purity and high specific activity.

1.5. Evaluation Methodology

The assembly of a credible database involved the evaluation of cross-section data to quantify both neutron and charged-particle induced reactions. While the evaluation procedures for neutron data are well established, the equivalent methodology for charged-particle data is still developing. The methodology used during the previous CRP on diagnostic radionuclides was followed for the charged-particle data. Evaluation work consisted of the following steps:

Compilation of data and new experimental studies

Most of the experimental data are available in EXFOR, and therefore significant reliance was placed on that database. However, for completeness extensive literature surveys were also performed, and data not available in EXFOR were compiled. New measurements were also undertaken. All of the available data were then considered in a comprehensive evaluation.

Nuclear model calculations

Standard model calculations were performed when evaluating the (n,γ) , (n,p) and (n,f) reactions and the recommended cross sections are based on the methodology used in energy-related work (e.g. files on fission and activation products, and dosimetry).

Two types of calculational code were used for the evaluations of the charged-particle data: precompound exciton model (ALICE-IPPE code), and the Hauser-Feshbach formalism incorporating precompound effects (GNASH, STAPRE and EMPIRE II codes).

Fitting of data

Averaging and fitting methods were employed in the evaluation of all charged-particle induced reactions. Only partial success was achieved in reproducing the experimental data by model calculations, and therefore more reliance was placed on the data fitting methods.

1.6. Contents of the Document

The coordinated research project (CRP) was initiated in 2003 and brought to completion at the end of 2006. This technical document summarizes the results of the CRP and presents the evaluated data for general use. New experimental data that were measured during the course of the CRP are described in Chapter 2, while the nuclear model calculations and fitting procedure are considered in Chapters 3, 4 and 5. Detailed results of all of the evaluations are summarized in Chapters 6 and 7 – these chapters constitute the main body of the report, and quantify the major features of the CRP. Both well-established therapeutic radionuclides and the emerging radionuclides have been specified and quantified in this report.

All of the collected experimental data are given for each individual charged-particle induced reaction. After careful analysis, only the most reliable and concordant data were considered in the evaluations. Thereafter, the results of various calculations and evaluations are described and compared with the selected experimental data. Recommended curves are presented which agree very closely with the experimental data; based on these curves, the recommended numerical values of the reaction cross sections have also been tabulated. As well as the major production routes, some other reactions that generate adjacent impurities have been treated in the same way. Since many users prefer information on integral production yields rather than cross sections, the expected yields of various products were calculated from the recommended excitation functions. The recommended cross sections and yields are believed to be accurate enough to meet the demands of most of the presently envisaged applications.

The evaluated excitation curves for the two types of neutron induced reactions are presented and the integrated cross sections for fission neutron spectra are deduced. These cross sections can be used with confidence to calculate the activation of various materials. Accurate cumulative yields are also given for radionuclides formed via the fission process.

Only scanty cross section information was available for some nuclear processes. Several reactorproduced low specific-activity radionuclides required investigation by alternative cyclotron production routes. Thus, a considerable amount of new experimental data was obtained during the course of the CRP, as given separately in Chapter 2. Publications based on the CRP work are also listed.

1.7. Availability of Data

The database developed during this project and the resulting evaluated data are given in graphical and numerical form within the present report. Calculated yields of the cyclotron-produced radionuclides are also given.

All of these data can be obtained electronically from the Web site <u>http://www-nds.iaea.org/medportal/</u>

in the Therapeutical Radioisotopes Production Section. The data is also available from the Nuclear Data Section ENDF retrieval interface at <u>http://www-nds.iaea.org/exfor/endf.htm</u> (See special libraries).

REFERENCES

- [1.1] QAIM, S.M., Therapeutic Radionuclides and Nuclear Data, Radiochim. Acta **89** (2001) 297-302.
- [1.2] LEWINGTON, V.J., Targeted Radionuclide Therapy for Bone Metastases, Eur. J. Nucl. Med. Mol. Imaging 20 (1993) 66-74.
- [1.3] STÖCKLIN, G., QAIM, S.M., RÖSCH, F., The Impact of Radioactivity on Medicine, Radiochim. Acta **70/71** (1995) 249-272.
- [1.4] VOLKERT, W.A., GOECKLER, W.F., ERHARDT, G.J., KETERING, A.R., Therapeutic Radionuclides: Production and Decay Property Considerations, J. Nucl. Med. 32 (1991) 174-185.
- [1.5] BROWNE, E. FIRESTONE, R.B., Table of Radioactive Isotopes, SHIRLEY, V.S. (Ed.), Wiley, London (1986).
- [1.6] Nuclear Data Sheets, Elsevier, Orlando, Florida, USA; ENSDF database (Evaluated Nuclear Structure Data File): *www.nndc.bnl.gov/ensdf*.
- [1.7] QAIM, S.M., BISINGER, T., HILGERS, K., NAYAK, D., COENEN, H.H., Positron Emission Intensities in the Decay of ⁶⁴Cu, ⁷⁶Br and ¹²⁴I, Radiochim. Acta **95** (2007) 67-73.
- [1.8] INTERNATIONAL ATOMIC ENERGY AGENCY, Charged Particle Cross-Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions, IAEA-TECDOC-1211, IAEA, Vienna, Austria, 2001.

2. NEW EXPERIMENTAL DATA

F. Tárkányi and S.M. Qaim

During the course of the compilation process, the compilers noted that the available experimental information for some charged-particle induced production routes was not satisfactory for the preparation of recommended data:

- available information on the related production cross-section data was so inadequate that the evaluation process proved to be impossible to implement;
- there were significant contradictions between the reported experimental data, which could not be resolved on the basis of the information in the reports;
- isotopic cross-section data could be checked by measuring excitation functions on targets with natural isotopic composition;
- during the evaluation process, new candidate reactions arose for which information on the available cross-section data was inadequate.

Although a few new experiments were performed, these studies were limited by the available time and financial resources concerning the procurement of enriched target materials. The irradiations involved charged-particle beams at different cyclotrons in Debrecen, Jülich, Brussels and Sendai by means of the stacked foil irradiation technique. Particle fluxes were determined with the aid of well measured monitor reactions, and the resulting activities were determined by means of gamma-ray, x-ray or alpha-particle spectrometry, with or without chemical separation. Nuclear data used during the evaluations were taken from the latest on line databases. "New measurements" involved experimental work on nuclear reactions recommended by the CRP, and covered the period 2003-2007.

A summary of the new cross-section and yield measurements performed as part of the CRP is given in Table 2.1. Only one study involved the measurement of new decay data for 64 Cu and 124 I (Qaim *et al*, 2007).

A few measurements were also undertaken on (n,p) reactions leading to the formation of the ${}^{32}P$, ${}^{64}Cu$, ${}^{67}Cu$, ${}^{89}Sr$, ${}^{90}Y$ and ${}^{153}Sm$ therapeutic radionuclides. A 14-MeV d(Be) broad neutron spectrum as generated at the Jülich cyclotron CV 28 was used. Those integral measurements served as a basis for testing the evaluated excitation functions of the respective (n,p) reactions.

Cross-section and yield data

Author Reference	Reaction	Target	Beam monitoring	Activity measurement	Stopping power (sp); Decay data (dd)	Energy range (MeV); No. of points	Reference; EXFOR entry no.
Hilgers et al. (2003)	⁶⁸ Zn(p,an) ⁶⁴ Cu	⁶⁸ Zn(98%) electrodeposition on Au foil	$^{nat}Cu(p,x)^{62,65}Zn,$ $^{nat}Ti(p,x)^{48}V$	511-HPGe, chemical separation	sp: Williamson (1966) dd: Firestone (1998);	8.5-44.6; 22	D0069
Hilgers et al. (2003)	$^{66}Zn(d,\alpha)^{64}Cu$	⁶⁶ Zn(99%) electrodeposition on Au foil	$^{nat}Ni(d,x)^{61}Cu,$ $^{nat}Fe(d,x)^{56}Co$	511-HPGe, chemical separation	sp: Williamson (1966) dd: Firestone (1998);	5.4-13.8; 10	D0069
Hilgers et al. (2003)	$^{nat}Zn(d,x)^{64}Cu$	^{nat} Zn electrodeposition on Au foil	$^{nat}Ni(d,x)^{61}Cu,$ $^{nat}Fe(d,x)^{56}Co$	511-HPGe, chemical separation	sp: Williamson (1966) dd: Firestone (1998);	8.9-13.2; 8	D0069
Groppi <i>et al.</i> (2004)	$^{nat}Zn(d,x)^{64}Cu$	^{nat} Zn foil	$^{27}\text{Al}(d,x)^{24}\text{Na},$ $^{nat}\text{Ti}(d,x)^{48}\text{V}$	γ-HPGe, no chemical separation	sp: SRIM (2000) dd: Firestone (1998);	5-19; <i>17</i> +yield	O0778
Spahn <i>et al.</i> (2004)	⁶⁴ Zn(n,p) ⁶⁴ Cu, ⁶⁷ Zn(n,p) ⁶⁷ Cu, ⁸⁹ Y(n,p) ⁸⁹ Sr	Oxide pellets	14 MeV d(Be) Break-up neutrons ${}^{27}Al(n,\alpha)^{24}Na$	γ-HPGe chemical separations	dd: Firestone (1998);	Spectrum averaged σ	no EXFOR entry compiled
Tárkányi <i>et al.</i> (2004)	$^{nat}Zn(d,x)^{64}Cu,$ $^{nat}Zn(d,x)^{67}Cu$	^{nat} Zn foil	$^{nat}Ni(d,x)^{61}Cu,$ $^{nat}Cu(d,x)^{65}Zn,$ $^{nat}Al(d,x)^{24}Na$	γ-HPGe, no chemical separation	sp: Andersen (1977); dd: Lund database	15.5-48.9; <i>19</i> 15.5-48.9 <i>19</i>	D4144

Table 2.1. Summary of experiments on cross-section measurements

Table 2.1 cont'd

Author Reference	Reaction	Target	Beam monitoring	Activity measurement	Stopping power (sp); Decay data (dd)	Energy range (MeV); No. of points	Reference; EXFOR entry no.
Tárkányi <i>et al.</i> (2005)	$^{nat}Zn(p,x)^{64}Cu,$ $^{nat}Zn(p,x)^{67}Ga$	^{nat} Zn foil	$^{nat}Al(p,x)^{22,24}Na,$ $^{nat}Cu(p,x)^{56,58}Co,^{62,65}Zn$	γ-HPGe, no chemical separation	sp: Andersen (1977); dd: NUDAT	25.6-67.4; 9 25.6-67.4; 9	E1921 O1310 O1351 D4149
Tárkányi <i>et al.</i> (2005)	¹¹⁴ Cd(p,n) ^{114m} In	¹¹⁴ Cd(99%) electrodeposition on Cu and Al foils	^{nat} Cu(p,x) ^{62,,65} Zn, IAEA-TECDOC-1211	γ-HPGe, no chemical separation	sp: Andersen (1977); dd: NUDAT	4.89-35.75; 38	D4160
Tárkányi <i>et al.</i> (2005)	¹¹⁴ Cd(d,2n) ^{114m} In	¹¹⁴ Cd(99%) electrodeposition on Cu foil	$\overset{nat}{}\text{Ti}(d,x)^{48}\text{V},$ $\overset{nat}{}\text{Fe}(d,x)^{56}\text{Co},$ $\overset{nat}{}\text{Cu}(d,x)^{65}\text{Zn},$ IAEA-TECDOC-1211	γ-HPGe, no chemial separation	sp: Andersen (1977); dd: NUDAT	6.41-20.74; 16	D4160
Tárkányi <i>et al.</i> (2005)	¹¹⁶ Cd(p,3n) ^{114m} In	^{nat} Cd foil	^{nat} Cu(p,x) ^{62,65} Zn, IAEA-TECDOC-1211	γ-HPGe, no chemical separation	sp: Andersen (1977); dd: NUDAT	19-50; <i>32</i>	D4160
Tárkányi <i>et al.</i> (2005)	¹¹⁴ Cd(p,x) ^{114m} In	^{nat} Cd foil	^{nat} Cu(p,x) ^{62,65} Zn, IAEA-TECDOC-1211	γ-HPGe, no chemical separation	sp: Andersen(1977); dd: NUDAT	7.4-18.76; <i>16</i>	D4160
Tárkányi <i>et al.</i> (2005)	¹¹⁴ Cd(d,x) ^{114m} In	^{nat} Cd foil	$\overset{\text{nat}}{\overset{\text{nat}}{\leftarrow}}\text{Ti}(d,x)^{48}\text{V},$ $\overset{\text{nat}}{\overset{\text{nat}}{\leftarrow}}\text{Fe}(d,x)^{56}\text{Co},$ $\overset{\text{nat}}{\overset{\text{cu}}{\leftarrow}}\text{Cu}(d,x)^{65}\text{Zn},$ IAEA-TECDOC-1211	γ-HPGe, no chemical separation	sp: Andersen (1977); dd: NUDAT	5.1-20.64; 20	D4160

Author Reference	Reaction	Target	Beam monitoring	Activity measurement	Stopping power (sp); Decay data (dd)	Energy range (MeV); No. of points	Reference; EXFOR entry no.
Tárkányi <i>et al.</i> (2005)	$^{nat}Cd(p,x)^{114m}In$ $^{nat}Cd(p,x)^{111}In$	^{nat} Cd foil	$^{nat}Cu(p,x)^{56}Co, {}^{62,65}Zn, {}^{nat}Cd(p,x)^{22,24}Na, IAEA-TECDOC-1211$	γ-HPGe no chemical separation	sp: Andersen (1977); dd: NUDAT	7.5-74.5; 40 7.5-74.5; 47	D4160
Spahn <i>et al.</i> (2005)	¹⁶⁹ Tm(p,n) ¹⁶⁹ Yb	Tm ₂ O ₃ sedimentation on Al foil	^{nat} Cu(p,x) ^{62,65} Zn, IAEA-TECDOC-1211	γ-HPGe no chemical separation	sp: Williamson (1966); dd: Firestone (1998)	4.8-44.9; 27	D4148
Hilgers <i>et al.</i> (2005)	¹⁹² Os(p,n) ¹⁹² Ir	¹⁹² Os(84.5%) electrodeposition on Ni foil	$^{nat}Cu(p,x)^{62,65}Zn,$ $^{nat}Ti(p,x)^{48}V,$ IAEA-TECDOC-1211	γ-HPGe no chemical separation	sp: Williamson (1966) dd: Firestone (1998);	6.4-13.8; 20	O1274
Hermanne et al. (2005)	$^{209}\text{Bi}(\alpha,2n)^{211}\text{At}$ $^{209}\text{Bi}(\alpha,3n)^{210}\text{At}$	Bi evaporation on Cu foil	^{nat} Cu(α,x) ⁶⁷ Ga, ⁶⁵ Zn, IAEA-TECDOC-1211	α-Si, γ-HPGe, no chemical separation	sp: Andersen (1977); dd: Browne (1986)	21.1-39.9; 21 31.0-39.9; 14	O1272
Kozempel et al. (2006)	⁶⁴ Zn(d,2p) ⁶⁴ Cu	⁶⁴ Zn(99.4%) disk	^{nat} Ti(d,x) ⁴⁸ V, IAEA-TECDOC-1211	γ-HPGe, no chemical separation	sp: SRIM (2003); dd: Firestone (1998)	12.9-18.2	O1508

Table 2.1 cont'd

Author Reference	Reaction	Target	Beam monitoring	Activity measurement	Stopping power(sp); Decay data (dd)	Energy range (MeV); No. of points	Reference; EXFOR entry no.
Tárkányi <i>et al.</i> (2006)	¹⁸⁶ W(p,n) ¹⁸⁶ Re	^{nat} W	^{nat} Cu(p,x) ^{62,,65} Zn, IAEA-TECDOC-1211	γ-HPGe no chemical separation	sp: Andersen (1977); dd: NUDAT	5.66-33.41; 29	D4163
Alfarano et al. (2006)	$^{209}\text{Bi}(\alpha,2n)^{211}\text{At}$	Bi foil covered by Al	^{nat} Cu(α,x) ⁶⁷ Ga, ⁶⁵ Zn, IAEA-TECDOC-1211	α-Si, γ-HPGe, chemical separation	Firestone (1998)	yield	D0413
Al Abyad <i>et al.</i> (2006)	${}^{64}Zn(n,p){}^{64}Cu$ ${}^{32}S(n,p){}^{32}P,$ ${}^{90}Zr(n,p){}^{90}Y,$ ${}^{153}Eu(n,p){}^{153}Sm$ ${}^{67}Zn(n,p){}^{67}Cu$	^{nat} S, ^{nat} ZrO ₂ , ^{nat} Eu ₂ O ₃ ^{nat} Zn	14 MeV d(Be) break-up neutrons $^{27}Al(n,\alpha)^{24}Na$	γ-HpGe, no chemical separation		Spectrum averaged σ	22857
Tárkányi <i>et al</i> (2007)	$^{nat}Cd(d,x)^{114m}In$	^{nat} Cd foil	$\overset{\text{nat}}{\underset{\substack{\text{nat}\\\text{ref}}}{\overset{\text{nat}}{\underset{\text{ref}}}}} Fe(d,x)^{22,24}Na,$ $\overset{\text{nat}}{\underset{\text{ref}}{\overset{\text{nat}}}} Fe(d,x)^{56}Co,$ $\overset{\text{nat}}{\underset{\text{ref}}{\overset{\text{nat}}}} Cu(d,x)^{65}Zn,$ $IAEA-TECDOC-1211$	γ-HPGe, no chemical separation	sp: Andersen (1977); dd: NUDAT	6.5-39.8; 26	D4179
Tárkányi <i>et al.</i> (2007)	¹⁶⁹ Tm(d,2n) ¹⁶⁹ Yb	Tm ₂ O ₃ sedimentation on Al foil	^{nat} Ti(d,x) ⁴⁸ V, IAEA-TECDOC-1211	γ-HPGe, no chemical separation	sp: Andersen (1977); dd: NUDAT	4.41-20.51; <i>19</i>	D4180
Tárkányi et al. (2007)	¹⁹² Os(d,2n) ¹⁹² Ir	¹⁹² Os(84.5%) electrodeposition on Ni foil	^{nat} Ti(d,x) ⁴⁸ V, ^{nat} Cu(d,x) ⁶¹ Cu, IAEA-TECDOC-1211	γ-HPGe, no chemical separation	sp: Andersen (1977); dd: NUDAT	5.2-20.7; 12	D4192

Table 2.1 cont'd

Author Reference	Reaction	Target	Beam monitoring	Activity measurement	Stopping power(sp); Decay data (dd)	Energy range (MeV); No. of points	Reference; EXFOR entry no.
Tárkányi <i>et al.</i> (2007)	$^{nat}Cd(d,x)^{111}In$	^{nat} Cd foil	$^{nat}Al(d,x)^{22,24}Na,$ $^{nat}Fe(d,x)^{56}Co,$ $^{nat}Cu(d, ,x)^{65}Zn,$ IAEA-TECDOC-1211	γ-HPGe, no chemical separation	sp: Andersen(1977); dd: NUDAT	4.9-39.8; 27	No Cd(d,x)
Tarkanyi et al. (2007)	¹⁸⁶ W(p,n) ¹⁸⁶ Re	^{nat} W	^{nat} Ti(p,x) ⁴⁸ V, IAEA-TECDOC-1211	γ-HPGe, no chemical Separation	sp: Andersen (1977); dd: NUDAT	5.57-31.07; 33	D4193
Hermanne et al. (2007)	⁶⁴ Ni(d,2n) ⁶⁴ Cu	^{nat} Ni	^{nat} Ti(d,x) ⁴⁸ V, IAEA-TECDOC-1211	γ-HPGe, no chemical separation	sp: Andersen (1977); dd:NUDAT	4.2-20.4; 24	D4182
Hermanne et al. (2007)	¹⁶⁹ Tm(d,2n) ¹⁶⁹ Yb	Tm ₂ O ₃ sedimentation on Al foil	$^{nat}Al(d,x)^{22,24}$ Na, $^{nat}Cu(d,x)^{65}Zn$, IAEA-TECDOC-1211	γ-HPGe, no chemical separation	sp: Andersen (1977); dd: NUDAT	19.71-38.55; 9	no
Hermanne et al. (2007)	¹¹⁶ Cd(p,3n) ^{114m} In	¹¹⁶ Cd(99%) electrodeposition on Cu foil	^{nat} Cu(p,x) ^{62,63,65} Zn, IAEA-TECDOC-1211	γ-HPGe, no chemical separation	sp: Andersen (1977) dd: NUDAT	18.0-37.0; 15	D4229
Qaim et al. (2007)	¹⁵⁰ Nd(α,n) ¹⁵³ Sm	^{nat} Nd ₂ O ₃ sedimentation on Al foil	^{nat} Ti(α,x) ⁵¹ Cr, IAEA-TECDOC-1211	γ-HPGe, no chemical separation	sp: Williamson (1966) dd: Firestone (1998);	15.0-25.0;	D4191

REFERENCES

A. Journal Publications

HILGERS, K., STOLL, T., SKAKUN, Y., COENEN, H.H., QAIM, S.M. Cross-section measurements of the nuclear reactions $^{nat}Zn(d,x)^{64}Cu$, $^{66}Zn(d,\alpha)^{64}Cu$ and $^{68}Zn(p,\alpha n)^{64}Cu$ Appl. Radiat. Isot. **59** (2003) 343-351

TÁRKÁNYI, F., TAKÁCS, S., SZELECSÉNYI, F., DITRÓI, F., HERMANNE, A., SONCK, M. Excitation functions of deuteron induced nuclear reactions on natural tungsten up to 50 MeV Nucl. Instrum. Methods B **211** (2003) 319-330

SPAHN, I., COENEN, H.H., QAIM, S.M. Enhanced production possibility of the therapeutic radionuclides ⁶⁴Cu^{, 67}Cu and ⁸⁹Sr via (n,p) reactions induced by fast spectral neutron. Radiochim. Acta **92** (2004) 183-186

GROPPI, F., BONARDI, M.L., BIRATTARI, C., GINI, L., MAINARDI, C., MENAPACE, E., ABBAS, K., HOLZWARTH, U., STROOSNIJDER, R.M.F. Thin-target excitation functions and optimisation of NCA ⁶⁴Cu and ^{66,67}Ga production by deuteron induced nuclear reactions on natural zinc target, for radiometabolic therapy and for PET Nucl. Instrum. Methods B **213** (2004) 373-377

TÁRKÁNYI, F., TAKÁCS, S., DITRÓI, F., HERMANNE, A., SONCK, M., SHUBIN, Yu.N. Excitation functions of deuteron induced nuclear reactions on natural zinc up to 50 MeV Nucl. Instrum. Methods B **217** (2004) 531-550

TÁRKÁNYI, F., TAKÁCS, S., HERMANNE, A., VAN DEN WINKEL, P., VAN DER ZWART, R., SKAKUN, Y., SHUBIN, Yu.N., KOVALEV, S.F. Investigation of the production of the therapeutic radioisotope ^{114m}In through proton and deuteron induced nuclear reactions on cadmium Radiochim. Acta **93** (2005) 561-569

TÁRKÁNYI, F., DITRÓI, F., CSIKAI, Gy., TAKÁCS, S., UDDIN, M.S., HAGIWARA, M., BABA, M., SHUBIN, Yu.N., DITYUK, A.I. Activation cross sections of long-lived products of proton-induced nuclear reactions on zinc Appl. Radiat. Isot. **62** (2005) 73-81

SPAHN, I., TAKÁCS, S., SHUBIN, Yu.N., TÁRKÁNYI, F., COENEN, H.H., QAIM, S.M. Cross-section measurement of the ¹⁶⁹Tm(p,n) reaction for the production of the therapeutic radionuclide ¹⁶⁹Yb and comparison with its reactor-based generation Appl. Radiat. Isot. **63** (2005) 235-239

HERMANNE, A., TÁRKÁNYI, F., TAKÁCS, S., SZÛCS, Z., SHUBIN, Yu.N., DITYUK, A.I. Experimental study of the cross sections of alpha-particle induced reactions on ²⁰⁹Bi Appl. Radiat. Isot. **63** (2005) 1-9

HILGERS, K., SUDÁR, S., QAIM, S.M.,

Experimental study and nuclear model calculations on the $^{192}Os(p,n)^{192}Ir$ reaction: Comparison of reactor and cyclotron production of the therapeutic radionuclide ^{192}Ir Appl. Radiat. Isot **63** (2005) 93-98

ALFARANO, A., ABBAS, K., HOLZWARTH, U., BONARDI, M., GROPPI, F., ALFASSI, Z., MENAPACE, E., GIBSON, P.N. Thick target yield measurement of ²¹¹At through the nuclear reaction ²⁰⁹Bi(α , 2n) J. Phys.: Conference Series **41** (2006) 115-122.

TÁRKÁNYI, F., TAKÁCS, S., SZELECSÉNYI, F., DITRÓI, F., HERMANNE, A., SONCK, M. Excitation functions of proton induced nuclear reactions on natural tungsten up to 34 MeV Nucl. Instrum. Methods B **252** (2006) 160-174

TÁRKÁNYI, F., KIRÁLY, B., DITRÓI, F., TAKÁCS, S., CSIKAI, Gy., HERMANNE, A., UDDIN, M.S., HAGIWARA, M., BABA, M., IDO, T., SHUBIN, Yu.N., KOVALEV, S.F. Activation cross sections on cadmium: Proton induced nuclear reactions up to 80 MeV Nucl. Instrum. Methods B **245** (2006) 379-394

KIRÁLY, B., TÁRKÁNYI, F., TAKÁCS, S., KOVÁCS, Z. Excitation functions of proton induced nuclear reactions on natural tellurium up to 18 MeV for validation of isotopic cross sections J. Radioanal. Nucl. Chem. **270** (2006) 369-378.

KOZEMPEL, J., ABBAS, K., SIMONELLI, F., ZAMPESE, M., HOLZWARTH, U., GIBSON, N., LESETICKY, L. A novel method for N.C.A. ⁶⁴Cu production by the Zn(d,2p)⁶⁴Cu reaction and dual ion-exchange column chromatography

Appl. Radiat. Isot. **64** (2006) 1001-1005.

AL-ABYAD, M., SPAHN, I., SUDÁR, S., MORSY, M., COMSAN, M.N.H., CSIKAI, J., QAIM, S.M., COENEN, H.H.

Nuclear data for production of the therapeutic radionuclides ³²P, ⁶⁴Cu, ⁶⁷Cu, ⁸⁹Sr, ⁹⁰Y and ¹⁵³Sm via the (n,p) reaction: Evaluation of excitation function and its validation via integral cross-section measurement using a 14 MeV d(Be) neutron source Appl. Radiat. Isot. **64** (2006) 717-724.

TAKÁCS, S., TÁRKÁNYI, F., KIRÁLY, B., HERMANNE, A., SONCK, M. Evaluated activation cross sections of longer-lived radionuclides produced by deuteron-induced reactions on natural copper Nucl. Instrum. Methods B **251** (2006) 56-65.

HERMANNE, A., TAKACS, S., GOLDBERG, M.B., LAVIE, E., SHUBIN, Yu.N., KOVALEV, S.

Deuteron-induced reactions on Yb: Measured cross sections and rationale for production pathways of carrier-free, medically relevant radionuclides Nucl. Instrum. Methods B **247** (2006) 223-231.

TÁRKÁNYI, F., KIRÁLY, B., DITRÓI, F., TAKÁCS, S., CSIKAI, J., HERMANNE, A., UDDIN, M.S., HAGIWARA, M., BABA, M., IDO, T., SHUBIN, Yu.N., KOVALEV, S.F. Activation cross sections on cadmium: Deuteron induced nuclear reactions up to 40 MeV Nucl. Instrum. Methods B 259 (2007) 817-828.

QAIM, S.M., SPAHN, I., KANDIL, S.A., COENEN, H.H. Nuclear data for production of 88 Y, 140 Nd, 153 Sm and 169 Yb via novel routes Radiochim. Acta 95 (2007) 313-317.

TAKÁCS, S., TÁRKÁNYI, F., KIRÁLY, B., HERMANNE, A., SONCK, M. Evaluated activation cross sections of longer-lived radionuclides produced by deuteron induced reactions on natural nickel Nucl. Instrum. Methods B 260 (2007) 495-507.

HERMANNE, A., TÁRKÁNYI, F., TAKÁCS, S., KOVALEV, S.F., IGNATYUK, A. Activation cross sections of the ⁶⁴Ni(d,2n) reaction for the production of the medical radionuclide ⁶⁴Cu Nucl. Instrum. Methods B 258 (2007) 308-312.

TÁRKÁNYI, F., HERMANNE, A., TAKÁCS, S., HILGERS, K., KOVALEV, S.F., IGNATYUK, A.V., QAIM, S.M.,

Study of the 192 Os(d,2n) reaction for production of the therapeutic radionuclide 192 Ir in no-carrier added form

Appl. Radiat. Isot. 65 (2007) 1215-1220.

TÁRKÁNYI, F., HERMANNE, A., TAKÁCS, S., DITRÓI, F., KOVALEV, F., IGNATYUK, A.V.

New measurement and evaluation of the excitation function of the ${}^{186}W(p,n)$ nuclear reaction for production of the therapeutic radioisotope ¹⁸⁶Re Nucl. Instrum. Methods B 264 (2007) 389-394.

QAIM, S.M., BISINGER, T., HILGERS, K., NAYAK D., COENEN H.H. Positron emission intensities in the decay of ⁶⁴Cu, ⁷⁶Br and ¹²⁴I Radiochim. Acta 95 (2007) 67-73.

TÁRKÁNYI, F., HERMANNE, A., TAKÁCS, S., DITRÓI, F., SPAHN, I., KOVALEV, S.F., IGNATYUK, A., QAIM, S.M. Activation cross sections of the 169 Tm(d,2n) reaction for production of the therapeutic radionuclide 169Yb

Appl. Radiat. Isot. 65 (2007) 663-668.

CONFERENCE PROCEEDINGS

NEW EXPERIMENTAL DATA

TÁRKÁNYI, F., DITRÓI, F., TAKÁCS, S., MAHUNKA, I., CSIKAI, J., UDDIN, M.S., HAGIWARA, M., BABA, M., IDO T., HERMANNE, A., SHUBIN, Yu.N., DITYUK, A. I. "Excitation functions of proton-induced reactions on ^{nat}Sn and ^{nat}Cd: Relevance to the production of ¹¹¹In and ^{114m}In for medical applications", Int. Conf. Nuclear Data for Science and Technology, 26 September – 1 October 2004, Santa Fe, NM, USA, HAIGHT, R.C., CHADWICK, M.B., KAWANO, T., TALOU, P. (Eds), AIP Conference Proceedings 769, Part 2, Melville, New York, USA (2005) 1662-1665.

TÁRKÁNYI, F., HERMANNE, A., TAKÁCS, S., DITRÓI, F., KIRÁLY, B., KOVALEV, S.F., IGNATYUK, A.

"Investigation of new routes for production of the therapeutic radionuclides ¹⁶⁹Yb and ¹⁶⁵Er", 9th Int. Symposium on the Synthesis and Applications of Isotopes and Isotopically Labelled Compounds, Edinburgh, UK, 16-20 July 2006; J. Labelled Compd. Radiopharm., Supplement **50** (2007) 99.

HERMANNE, A., TÁRKÁNYI, F., TAKÁCS, S., SZÛCS, Z.

"Experimental study of the cross sections of alpha-particle induced reactions on ²⁰⁹Bi", Int. Conf. Nuclear Data for Science and Technology, 26 September - 1 October 2004, Santa Fe, NM, USA, HAIGHT, R.C., CHADWICK, M.B., TALOU, P., KAWANO, T. (Eds), AIP Conference Proceedings 769, Part 1, Melville, New York, USA (2005) 957-960.

HERMANNE, A., TÁRKÁNYI, F., TAKÁCS, S., DITRÓI, F., BABA, M., OHTSUKI, T., SPAHN, I., KOVALEV, S.F., IGNATYUK, A., QAIM, S.M.

"Excitation functions for production of medically relevant radioisotopes in deuteron irradiations of Pr and Tm targets", 9th Int. Symp. Synthesis and Applications of Isotopes and Isotopically Labelled Compounds, Edinburgh, UK, 16-20 July 2006; J. Labelled Compd. Radiopharm., Supplement **50** (2007) 102.

SPAHN, I., AL-ABYAD, M., HILGERS, K., SUDÁR, S., TÁRKÁNYI, F., QAIM, S.M., COENEN, H.H.

"Nuclear reaction data for new production routes of the therapeutic radionuclides ³²P, ⁸⁹Sr, ¹⁵³Sm, ¹⁶⁹Yb and ¹⁹²Ir", 7th Int. Symp. Technetium in Chemistry and Nuclear Medicine, Bressanone, Italy, 6-9 September 2006, MAZZI, U. (Ed.), Padova, Italy, SGEP (2006) 577.

RELEVANT CONFERENCE LECTURES RELATED TO THE CRP

TÁRKÁNYI, F., TAKÁCS, S., HERMANNE, A., VAN DEN WINKEL, P., VAN DER ZWART, R.

"Investigation of the production of the therapeutic radioisotope 114m In through proton and deuteron induced nuclear reactions on cadmium", 6th Int. Conf. Nuclear and Radiochemistry, NRC6, Aachen, Germany, 29 August – 3 September 2004.

TÁRKÁNYI, F., DITRÓI, F., TAKÁCS, S., MAHUNKA, I., CSIKAI, Gy., UDDIN, M.S., HAGIWARA, M., BABA, M., IDO, T., HERMANNE, A., SHUBIN, Yu.N., DITYUK, A.I. "Excitation functions of proton induced reactions on ^{nat}Sn and ^{nat}Cd relevance to the production of ¹¹¹In and ^{114m}In for medical applications", Int. Conf. Nuclear Data for Science and Technology, Santa Fe, USA, 26 September – 1 October 2004 (Abstract: LA-UR-04-5900, Los Alamos, p. 279).

HERMANNE, A., TÁRKÁNYI, F., TAKÁCS, S., SZÛCS, Z., SHUBIN, Yu.N., DITYUK, A.I. "Experimental study of the cross sections of reactions induced by alpha-particles on ²⁰⁹Bi", Int. Conf. Nuclear Data for Science and Technology, Santa Fe, USA, 26 September – 1 October 2004 (Abstract: LA-UR-04-5900, Los Alamos, p. 124).

TÁRKÁNYI, F., DITRÓI, F., TAKÁCS, S., CSIKAI, J., KIRÁLY, B., HERMANNE, A., UDDIN M.S., HAGIWARA, M., BABA, M., IDO, T., SHUBIN Yu.N., KOVALEV, S.F. "Activation cross sections of proton induced nuclear reactions on cadmium up to 80 MeV", European Physical Society, 19th Nuclear Physics Divisional Conf. New Trends in Nuclear Physics Applications and Technologies, ENPDC 19, Pavia, Italy, 5-9 September 2005 (Europhysics Conference Abstracts, Vol. 29F (2005) p. 127).

TÁRKÁNYI, F., BETAK, E., CAPOTE NOY, R., CARLSON, B.V., CHOI, H.D., IGNATYUK, A., MENAPACE, E., NORTIER, F.M., PAVIOTTI DE CORCUERA, R., QAIM, S.M., SCHOLTEN, B., SHUBIN Yu.N., SUBLET J.-C.

"Nuclear reaction cross section database for production of therapeutic radioisotopes", Asia-Pacific Symp. Radiochemistry-05, APSORC-05, Peking, China, 17-21 October 2005, (Abstracts book, S6-O-03 p. 209).

TÁRKÁNYI, F., BETAK, E., CAPOTE NOY, R., CARLSON, B.V., CHOI, H.D., MENAPACE, E., NORTIER F.M., PAVIOTTI DE CORCUERA, R., QAIM, S.M., SCHOLTEN, B., SHUBIN, Yu.N., SUBLET, J.-C.

"Compilation and evaluation of nuclear reaction cross sections for production of therapeutic radionuclides", 5th Int. Conf. Isotopes, Brussels, Belgium, 25-29 April 2005 (Abstract: p. 51).

TAKÁCS, S., TÁRKÁNYI, F., HERMANNE, A.

"Evaluation of deuteron induced nuclear reactions on copper and nickel", 6th Int. Meeting Industrial Radiation and Radioisotope Measurement Applications, Hamilton, Ontario, Canada, 20-24 June 2005 (Abstract: p. 56).

NORTIER, F.M., BETAK, E., CAPOTE NOY, R., CARLSON, B.V., CHOI, H.D., QAIM, S.M., PAVIOTTI DE CORCUERA, R., SHUBIN, Yu.N., SUBLET, J.-C., TÁRKÁNYI, F. "Nuclear data for production of therapeutic radionuclides", 229th American Chemical Society National Meeting and Exposition, San Diego, CA, USA, 13-17 March 2005. SPAHN, I., AL-ABYAD, M., HILGERS, K., TÁRKÁNYI, F., QAIM, S.M., COENEN, H.H. "Kernreaktionsdaten neuer Produktionswege für die Therapienuklide ³²P,^{64,67}Cu, ⁸⁹Sr, ¹⁶⁹Yb und ¹⁹²Ir", 13. Arbeitstagung der AG Radiochemie/Radiopharmazie, Seefeld/Tirol, Austria, 6-8 October 2005 (Abstract: p. 27).

SPAHN, I., HILGERS, K., TÁRKÁNYI, F., COENEN, H.H., QAIM, S.M. "New production routes for some therapeutic radionuclides", 16th Int. Symposium on Radiopharmaceutical Chemistry, Iowa City, Iowa, USA, 24-28 June, 2005 (J. Labelled Compd. Radiopharm., Supplement, Vol. 48 (2005) S106).

SPAHN, I., HILGERS, K., TÁRKÁNYI, F., COENEN, H.H., QAIM, S.M.

"Neue Produktionswege für einige Therapienuklide", Annual Meeting of the Society of German Chemists, Düsseldorf, Germany, 11-14 September 2005, (Abstract: GDCh-Jahrestagung 2005, Chemie schafft neue Strukturen. Kurzreferate p. 503).

TÁRKÁNYI, F., HERMANNE, A., TAKÁCS, S., DITRÓI, F., CSIKAI, J., KIRÁLY, B., UDDIN, M.S., HAGIWARA, M., BABA, M., IDO, T., SHUBIN, Yu.N., KOVALEV, S.F., IGNATYUK, A.

"Investigation of charged particle induced routes for production of ¹⁰³Pd", MARC-VII Methods and Applications of Radioanalytical Chemistry, Kailua-Kona, Hawaii, USA, 3-7 April 2006, (Abstract: p. 135).

TÁRKÁNYI, F., HERMANNE, A., TAKÁCS, S., DITRÓI, F., SPAHN, I., QAIM, S.M., KOVALEV, S.F., IGNATYUK, A.

"Activation cross sections of the ¹⁶⁹Tm(d,2n) reaction for the production of the therapeutic radionuclide", 15th Radiochemical Conf., Mariánské Lázne, Czech Republic, 23-28 April 2006, (Booklet of abstracts: p. 184).

TÁRKÁNYI, F., BETAK, E., CAPOTE NOY, R., CARLSON, B.V., CHOI, H.D., MENAPACE, E., NORTIER, F.M., PAVIOTTI DE CORCUEARA, R., QAIM, S.M., SCHOLTEN, B., SHUBIN, Yu.N., SUBLET, J.-C.

"Nuclear reaction cross section database for production of therapeutic radioisotopes", 11th Int. Workshop on Targetry and Target Chemistry, Cambridge, UK, 28-31 August 2006 (Abstract: pp. 108-109).

TÁRKÁNYI, F., BETAK, E., CAPOTE NOY, R., CARLSON, B.V., CHOI, H.D., HERMANNE, A., IGNATYUK, A.V., MENAPACE, E., NORTIER, F.M., QAIM, S.M., SCHOLTEN, B., SHUBIN, Yu.N., SUBLET, J.-C., TAKÁCS, S.

"Nuclear reaction databases for production of diagnostic and therapeutic radioisotopes", 15th Radiochemical Conf., Mariánské Lázne, Czech Republic, 23-28 April 2006 (Booklet of abstracts: p. 297).

SPAHN, I., AL-ABYAD, M., HILGERS, K., SUDÁR, S., TÁRKÁNYI, F., QAIM, S.M., COENEN, H.H.

"Nuclear reaction data for new production routes of the therapeutic radionuclides ³²P, ⁸⁹Sr¹⁵³Sm, ¹⁶⁹Yb and ¹⁹²Ir", 7th Int. Symp. on Technetium in Chemistry and Nuclear Medicine, Bressanone, Italy, 6-9 September 2006.

KIRÁLY, B., TÁRKÁNYI, F., TAKÁCS, S., KOVÁCS, Z.

"Measurements of excitation functions of proton induced nuclear reactions on elemental tellurium up to 18 MeV for validation of isotopic cross sections", 15th Radiochemical Conf., Mariánské Lázne, Czech Republic, 23-28 April 2006 (Booklet of abstracts: P5-6 p. 206).

HERMANNE, A., TÁRKÁNYI, F., TAKÁCS, S., KOVALEV, S.F., IGNATYUK, A.

"Activation cross sections of the ⁶⁴Ni(d,2n) reaction for the production of the medical radionuclide ⁶⁴Cu", 9th Int. Symp. on the Synthesis and Applications of Isotopes and Isotopically Labelled Compounds, Edinburgh, UK, 16-20 July 2006 (Book of Abstracts: p. 136).

TÁRKÁNYI, F., HERMANNE, A., TAKÁCS, S., DITRÓI, F., KIRÁLY, B., KOVALEV, S.F., IGNATYUK, A.V.

"Investigation of new routes for production of the therapeutic radionuclides ¹⁶⁹Yb and ¹⁶⁵Er", 17th Int. Symp. Radiopharmaceutical Sciences, ISRS 17, Aachen, Germany, 30 April - 4 May 2007.

HERMANNE, A., TÁRKÁNYI, F., TAKÁCS, S., DITRÓI, F., BABA, M., OHTSUKI, T., SPAHN, I., KOVALEV, S.F., IGNATYUK, A., QAIM, S.M.

"Excitation functions for production of medically relevant radioisotopes in deuteron irradiations of Pr and Tm targets", 17th Int. Symp. Radiopharmaceutical Sciences, ISRS 17, Aachen, Germany, 30 April - 4 May 2007 (2007).

TÁRKÁNYI, F., HERMANNE, A., TAKÁCS, S., DITRÓI, F., KIRÁLY, B., FENYVESI, A., VAN DEN WINKEL, P., ADAM-REBELES, R., BABA, M., UDDIN, M.S., KOVALEV, S.F., IGNATYUK, A.V., SPAHN, I., HILGERS, K., SCHOLTEN, B., QAIM, S.M.

"Investigation of the production of therapeutic radioisotopes at cyclotrons", 18th Int. Conf. Cyclotrons and Their Applications, Giardini Naxos, Italy, 30 September - 5 October 2007 (Book of Abstracts: p. 98 THXCR04).

CAPOTE NOY, R., BETÁK, E., CARLSON, B.V., CHOI, H.D., IGNATYUK, A., MENAPACE, E., NORTIER, F.M., SCHOLTEN, B., SHUBIN, Yu.N., SUBLET, J.-C., TÁRKÁNYI, F.T., QAIM, S.M.

"IAEA Coordinated Research Programme: Nuclear data for the production of therapeutic radionuclides", Int. Conf. Nuclear Data for Science and Technology, ND 2007, Nice, France 22-27 April 2007.

3. NUCLEAR REACTION MODELLING: PARTICLE EMISSION

A.V. Ignatyuk, Yu.N. Shubin⁺ and R. Capote

Theoretical models of nuclear processes play an important role in all stages of nuclear data evaluation for both a general understanding of the physical phenomena related to the analyzed data and to estimate the required cross sections in cases where data are contradictive or not fully available. A brief description is given of the models and codes used in the studies for the present project. The ALICE, GNASH and EMPIRE codes were used for most calculations, while TALYS code was used for some neutron capture cases and will be explained in the next Chapter. All employed nuclear reaction codes are based on rather similar models of nuclear processes, but differ essentially in their detail and input parameters. A discussion of the main differences between the calculated cross sections is given in the final section.

3.1. Nuclear Reaction Models

Nuclear reaction theory is based to a significant extent on the compound nucleus model proposed by Bohr more than seventy years ago [3.1]. A nuclear reaction can be considered as proceeding in two stages: the formation of the compound nucleus by the collision of projectile with a target nucleus and the decay of the resulting compound nucleus into pairs of reaction products. The corresponding reaction cross section can be expressed by the following equation:

$$\sigma(a,b) = \sigma_c(a)P_b / \sum_{b'} P_{b'} , \qquad (3.1)$$

where $\sigma_c(a)$ is the cross section for the compound nucleus formed by projectile *a*, and *P*_b is the probability of the compound nucleus decaying into the corresponding outgoing channel *b*. The denominator of Eq. (3.1) includes the sum over all possible decay channels. The decay probability of the compound nucleus can be given in the form:

$$P_b(e_b) = \frac{g_b \mu_b e_b \sigma_c^*(e_b)}{\pi^2 \hbar^3} \frac{\rho_b(U_b)}{\rho_c(U_c)}, \qquad (3.2)$$

where e_b is the energy of the emitted particle, $g_b = 2s_b+1$ is the statistical factor connected with the spin s_b of the particle, μ_b is the reduce mass, $\sigma_c^*(e_b)$ is the cross section for the inverse reaction, and ρ_b and ρ_c are the level densities for the residual and compound nucleus at the corresponding excitation energies. All component energies are connected by the relationship $U_c=U_b+B_b+e_b$, where B_b is the binding energy of the particle in the compound nucleus. The sum of the decay probabilities over all channels including the integrals over energies of emitted particles determines directly the inverse value of the average lifetime of the compound nucleus with the given excitation energy.

Eq. (3.2) demonstrates the evident statistical form of the nuclear reaction description. All specific features of the dynamics of the nuclear process are related to the inverse reaction cross section, while other components estimate the phase space accessible for the reaction products. Such a description is very similar to the particle evaporation from a liquid surface, and for this reason the above description is referred to as the evaporation model or Weisskopf-Ewing formula [3.2].

A more rigorous consideration of the nuclear process defines compound reaction cross sections in terms of the Hauser-Feshbach-Moldauer formula [3.3-3.5]:

$$\sigma(a,b) = \pi \lambda_a^2 \sum_{J\pi} g_s^J \frac{T_a^{J\pi} T_b^{J\pi}}{\sum_c T_c^{J\pi}} F_{ab,c}^{J\pi} , \qquad (3.3)$$

where $\hat{\lambda}_a$ is the wave length of the incident particle, $T_a^{J\pi}$ are the transmission coefficients for the given angular momentum J and parity π , and $F_{ab,c}$ is the width fluctuation correction for differences between the averaged ratio of fluctuating decay widths and the ratio of the averaged widths [3.5]. This correction is only important for low energies of incident particles when the number of open reaction channels are rather small.

Consider a large number of channels in which the sum of the transmission coefficients in the numerator and denominator of Eq. (3.3) can be replaced by integrals of the form:

$$\sum_{c} T_{c} = \sum_{l,j,I} \int_{0}^{U_{\text{max}}} \int_{0}^{U_{max}} T_{lj}(E_{c})\rho(U,I)dU , \qquad (3.4)$$

which contain the level densities of the residual nuclei. The sum in Eq. (3.4) is taken over all combinations of the angular momenta and spins of the reaction products, including the given quantum characteristics of the compound nucleus. With an increase in the number of channels, the level density plays an increasingly important role in the correct description of reaction cross sections that pass through the compound nucleus stage.

The transmission coefficients are usually calculated by means of the optical model [3.4] and such an approach has been used successfully by many authors to describe a large amount of experimental data on neutron-induced reaction cross sections at energies below 10 MeV. At higher energies, the influence of the angular-momentum conservation law on the selection of reaction channels decreases particularly for the light-particle reactions, and the descriptions of reaction cross sections on the basis of the evaporation model (3.2) and the more rigorous formulae (3.3) become very similar.

An increase of projectile energy above several MeV increases the probability that the projectile or some products of the intranuclear collisions escape from the nucleus before the compound nucleus stage considered above. Such occurrences are usually referred to as precompound or preequilibrium processes. The simplest correspond to the first projectile collisions or excitation of low-lying collective nuclear levels, and are defined as direct reactions that have been well developed as the Distorted Wave Born Approximation (DWBA) or the Coupled-Channels (CC) approaches [3.6, 3.7].

Nucleon emission from more complex preequilibrium transitions has been considered by adopting the exciton model [3.8] as proposed by Griffin. The intermediate states of the excited nucleus in this model can be classified by the number of excited particles and holes or quasi-particles (n=p+h), and the emission of nucleons from each intermediate state can be described by equations, which differ from those of the evaporation model (3.1) and (3.2) through the explicit definition of *n*-exciton states:

$$P_n(e_b) = \frac{g_b \mu_b e_b \sigma_c^*(e_b)}{\pi^2 \hbar^3} \frac{\rho_{n-1}(U_b)}{\rho_n(U_c)} , \qquad (3.5)$$

where $\rho_n(U)$ are the densities of the corresponding states with a given excitation energy. The total probability of the preequilibrium nucleon emission can be obtained as the sum over all preequilibrium

states for the product of Eq. (3.5) and the average lifetime of the n-exciton states τ_n . This lifetime can be estimated as the inverse of the transition rate from n-exciton states to more complex n+2-exciton states, and can be written as the equation:

$$\tau_n^{-1}(U_c) \approx \lambda_{n \to n+2} = \frac{2\pi}{\hbar} \left| M \right|^2 \rho_{n,f}(U_c) , \qquad (3.6)$$

where $|M|^2$ is the averaged matrix element for the corresponding transitions, and $\rho_{n,f}$ is the density of the corresponding final states [3.9].

Various modifications of the preequilibrium model were proposed in Refs. [3.10-3.16]. These publications include more detailed discussions of the corresponding relationships for the level densities and transition rates, as well as examples of applications of such models to the analysis of numerous experimental data. A more substantial list of references and applications can be found in the monograph on preequilibrium nuclear reactions [3.17].

Combined preequilibrium plus compound models have been incorporated into many computer codes, the most popular of which are ALICE, GNASH, and the recently released EMPIRE and TALYS codes. All of these programs were used to calculate the reaction cross sections included in the present studies. We will discuss the main features of these codes, which are important in understanding the divergences between calculations, and represent a means of estimating the uncertainties of such calculations.

3.2. ALICE-91 and ALICE-IPPE

ALICE-91 is one of the more recent versions of the widely distributed ALICE code developed by Blann [3.18], and based on the hybrid preequilibrium model and Weisskopf-Ewing formulae. The hybrid model considers explicitly the transition rates for colliding particles instead of averaging over all n-exciton states. The corresponding relationship of the hybrid model may be written as follows:

$$\frac{d\sigma_{ab}}{de_b} = \sigma_c(e_a) \sum_{n=n_0}^{\overline{n}} \frac{X_b^n \rho_{n-1}(U_b)}{\rho_n(U_c)} \frac{\lambda_{con}(e_b)}{\lambda_{con}(e_b) + \lambda_+(e_b)} D_n de_b , \qquad (3.7)$$

where X_b^n is the relative contribution of an emitted particle (proton or neutron) to the density of *n*-exciton states, λ_{con} is the rate of nucleon emission in the continuum, λ_+ is the competing rate for a transition after two-body collisions to more complex *n*+2-exciton states, and the factor D_n is a depletion factor which represents the fraction of the population surviving decay prior to reaching the *n*-exciton configuration. The summation term in Eq. (3.7) covers configurations from n_0 to equilibrium corresponding to the number of excitons $\overline{n} \approx 2gt$, where g is the single-particle density of nucleons and t is the temperature of the excited nucleus.

The continuum emission rate is determined by the common relationship:

$$\lambda_{con}(e) = \frac{g_s m e \sigma_c^*(e)}{\pi^2 \hbar^3 g} , \qquad (3.8)$$

where all quantities are the same as in Eq. (3.2).

Blann has estimated the rate of transition to more complex states on the basis of nucleon mean-free-path calculations through the equation:

$$\lambda_{+}(e) = [1.4 \cdot 10^{21}(e+B_{\nu}) - 6.0 \cdot 10^{18}(e+B_{\nu})^{2}] \text{ sec}^{-1}, \qquad (3.9)$$

where B_{ν} is the nucleon (proton or neutron) binding energy in the nucleus and all energies are given in MeV.

Comparing Eqs. (3.7), (3.8) and (3.9) with Eqs. (3.5) and (3.6), we can see that the main difference between the hybrid and standard preequilibrium models relates to the determination of the matrix elements responsible for the transition to more complex states. However, this difference has a relatively weak influence on the results of most calculations, because for both models the strength of the matrix element $|\mathbf{M}|^2$ is adjusted to the available experimental data on spectra of emitted nucleons. Analysis of such data shows that λ_+ should be reduced by a factor of 5 relative to Eq. (3.9) to achieve an agreement of the hybrid model calculations with experimental data [3.12].

A more consistent consideration of the two-body collisions was obtained for the geometry dependent hybrid model [3.19], in which the dependence of the mean free path and the density of particle-hole excitations on the defuse distribution of nuclear matter in nuclei was taken into account. A much better description of the emitted nucleon spectra was achieved for this model.

The ALICE-91 code contains both versions of the hybrid model, although only the nucleon emission was included at the preequilibrium stage. α -particle and deuteron (or other light cluster) emissions are possible from the equilibrium compound stage solely. Gamma-ray emission from the compound nucleus was added in ALICE-91 to improve the description of the excitation functions for the charge-particle induced reactions at near threshold regions.

ALICE-91 uses two simple models for the level density of the compound nuclei: the standard Fermi-gas model with the corresponding pairing correction, or the back-shifted Fermi-gas model. There is also the option to include level density parameters from the Kataria and Ramamurthy prescription that simulate shell effects [3.20]. Calculations of the absorption cross sections by the optical model normally use the default parameters, which have been verified by the analysis of a large amount of experimental data [3.21].

The ALICE-IPPE code is the ALICE-91 version modified by the Obninsk group to include the preequilibrium cluster emission and the generalized superfluid model for the nuclear level densities [3.22]. An approach developed by Iwamoto and Harada [3.15] was used to simulate the cluster emission of α -particles, deuterons and tritons. The level density model includes both the energy-dependent shell effects and the corresponding collective enhancement of the level densities. A more complete description of these models can be found in the RIPL Handbook [3.23], which also contains references to the original papers and recommended model parameters. ALICE-IPPE calculations use the same optical potential parameters for neutrons and protons as ALICE-91, but for α -particles and deuterons such parameters were slightly modified to reproduce the available experimental data on the absorption cross sections at low energies [3.24, 3.25].

3.3. GNASH

The GNASH code is based on the Hauser-Feshbach formalism plus the preequilibrium model with full angular momentum conservation. Calculations can be carried out with rather large schemes of low-lying

discrete levels which is very important for neutron-induced reactions at low energies. A reasonably complete description of the current version of GNASH is given in Ref. [3.26] – this code has been used extensively by many people to produce evaluated data for national nuclear data libraries.

All particle transmission coefficients are introduced into the GNASH calculations from the external input file that is obtained from either the spherical or coupled-channel optical model. The code calculates the contribution of direct processes to the excitation functions by means of the introduction of additional input data.

Preequilibrium emission calculations can be undertaken by means of the PRECO-B code developed by Kalbach [3.27] and adopted in GNASH. Preequilibrium configurations are classified according to the number of particles and holes excited, and the exciton model involves solving a series of master equations that describe the equilibration of an excited nucleus through a series of two-body collisions producing more complex configurations of particle-hole pairs. The matrix element in expressions for the transition rates similar to Eq. (3.6) was parameterized in GNASH as the exciton-number dependent function:

$$M^{2} = \frac{k}{A^{3}e} \sqrt{\frac{e}{7MeV}} \sqrt{\frac{e}{2MeV}} \qquad \text{for } e < 2 \text{ MeV} , \qquad (3.10)$$
$$= \frac{k}{A^{3}e} \sqrt{\frac{e}{7MeV}} \qquad \text{for } 2 < e < 7 \text{ MeV} ,$$
$$= \frac{k}{A^{3}e} \qquad \text{for } 7 < e < 15 \text{ MeV} ,$$
$$= \frac{k}{A^{3}e} \sqrt{\frac{15MeV}{e}} \qquad \text{for } e > 15 \text{ MeV} ,$$

where $e=U_c/n$ and U_c is expressed in MeV; and the constant k is usually set equal to 130-160 MeV. The cluster preequilibrium emission was included on the basis of a phenomenological description developed by Kalbach [3.28].

The above preequilibrium model does not take into account angular momentum effects. Some simple approaches to estimate the spin populations of the residual nuclei following preequilibrium decay have been developed for GNASH. Three options are available for the population in the continuum region:

- i) the calculated compound-nucleus spin distribution weighting of the preequilibrium cross section components,
- ii) pure level density spin distribution for the weighting, and

iii) the particle-hole spin distributions for the corresponding weighting.

Distributions of the preequilibrium components among the discrete levels are obtained by extrapolating the dependency of the preequilibrium cross section energy to the nuclear level energies.

GNASH provides the user with three alternative models for the determination of the level density of compound nuclei:

Gilbert-Cameron approach,

back-shifted Fermi-gas model,

Ignatyuk form of that Fermi-gas model that includes the energy-dependent shell effects.

Parameters for each model can be adjusted automatically to the input data describing the density of the neutron resonances. A similar adjustment can be done for the gamma-ray widths.

The GNASH code used by the Obninsk group has been slightly modified to include the width fluctuation corrections of Eq. (3.3) omitted in the original version, and to add the collective enhancement into the description of the level density.

3.4. EMPIRE

The EMPIRE code includes the most full set of nuclear reaction models needed for a practical evaluation of nuclear data over a wide energy range, including the optical and direct reaction models, preequilibrium exciton model, and the full-featured Hauser-Feshbach model [3.29, 3.30]. A comprehensive paper on EMPIRE capabilities has recently been published [3.31] and we refer interested readers to the detailed technical information about this code contained within this particular reference.

The coupled-channel ECIS03 code [3.32] has been incorporated into EMPIRE-2.19, and was used for optical model calculations employing global potentials from the RIPL-2 database [3.22]. Pre-equilibrium emission was taken into account by the PCROSS or HMS modules [3.31]; the former features the one-component exciton model with gamma, nucleon and cluster emission (Iwamoto-Harada model), while the latter is an implementation by Chadwick of the Hybrid Monte-Carlo Simulation approach to the pre-equilibrium emission of nucleons as proposed by M. Blann [3.33].

Among the various models describing level densities implemented in EMPIRE, the present calculations adopted that described as "EMPIRE specific". This formalism uses the super-fluid model below and the Fermi gas model above the critical excitation energy. Deformation-dependent collective effects on the level densities due to nuclear vibration and rotation (rotational and vibrational enhancements and their temperature-dependent damping) are taken into account. The shell correction, pairing and asymptotic value of the level density parameter have been calculated using RIPL-2 recommendations as starting values.

3.5. Comparison of Mmodelling Results

The cross sections of 103 Rh(p,n) 103 Pd and 103 Rh(d,2n) 103 Pd reactions are shown in Figs. 3.1 and 3.2 in comparison with the available experimental data. These calculations involved the use of the same optical potential and level density parameters for all reaction channels. The cross sections calculated for the different codes agree reasonably well for the region, where the processes for the compound nucleus dominate; but for higher energies in which the contributions of the preequilibrium processes are rather large, significant discrepancies arise between the models. These discrepancies relate either to different parameterizations of the transition rates of Eq. (3.6), or to the corresponding matrix elements of the various codes (Eq. (3.9)). The descriptions of the transition rate include some adjusted parameters in all codes, and uncertainties in these parameters are the main source of the resulting uncertainties of the calculated cross- sections.

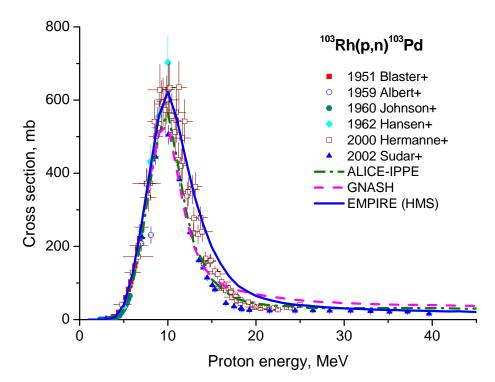


FIG. 3.1. Experimental data for the ${}^{103}Rh(p,n){}^{103}Pd$ reaction cross section in comparison with calculations by different codes

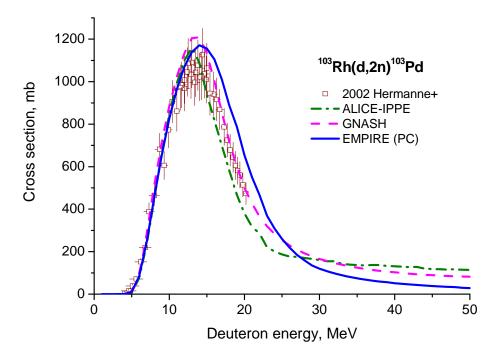


FIG. 3.2. Experimental data for the ${}^{103}Rh(d,2n){}^{103}Pd$ reaction cross section in comparison with calculations by different codes

REFERENCES

- [3.1] BOHR, N., Neutron Capture and Nuclear Constitution, Nature 137 (1936) 344-348.
- [3.2] WEISSKOPF, V.F., EWING, D.H., On the Yield of Nuclear Reactions with Heavy Elements, Phys. Rev. 57 (1940) 472-485.
- [3.3] HAUSER, W., FESHBACH, H., The Inelastic Scattering of Neutrons, Phys. Rev. 87 (1952) 366-373.
- [3.4] FESHBACH, H., PORTER, C.E., WEISKOPF, V.F., Model for Nuclear Reactions with Neutrons, Phys. Rev. **96** (1954) 448-464.
- [3.5] MOLDAUER, P., Theory of average neutron reaction cross section in the resonance region, Phys. Rev. **123** (1961) 968-978.
- [3.6] AUSTERN, N., Direct Nuclear Reaction Theories. Wiley-Interscience, New York, 1970.
- [3.7] SATCHLER, G.R., Direct Nuclear Reactions, Clarendon, Oxford, 1983.
- [3.8] GRIFFIN, J.J., Statistical Model of Intermediate Structure, Phys. Rev. Lett. 17 (1966) 478-481.
- [3.9] WILLIAMS, F.C., Particle-hole State Density in the Uniform Spacing Model, Nucl. Phys. A 166 (1971) 231-240.
- [3.10] BLANN, M., Extensions of Griffin's Statistical Model for Medium-Energy Nuclear Reactions, Phys. Rev. Lett. **21** (1968) 1357-1360.
- [3.11] HARP, G.D., MILLER, J.M., Precompound Decay from a Time-Dependent Point of View, Phys. Rev. C **3** (1971) 1847-1855.
- [3.12] BLANN, M., Hybrid Model for Pre-Equilibrium Decay in Nuclear Reactions, Phys. Rev. Lett. 27 (1971) 337-340.
- [3.13] GADIOLI, E., GADIOLI-ERBA E., SONA P.G., Intermediate-state Decay Rates in the Exciton Model, Nucl. Phys. A 217 (1973) 589-610.
- [3.14] FESHBACH, H., KERMAN, A., KOONIN, S., Statistical Theory of Multi-step Compound and Direct Reactions, Ann. Phys. 125 (1980) 429-476.
- [3.15] IWAMOTO, A., HARADA, K., Mechanism of Cluster Emission in Nucleon-induced Preequilibrium Reactions, Phys. Rev. C 26 (1982) 1821–1834.
- [3.16] NISHIOKA, H., WEIDENMULLER, H.A., YOSHIDA, S., Statistical Theory of Precompound Reactions: The Multistep Direct Process, Ann. Phys. **183** (1988) 166-187.
- [3.17] GADIOLI, E., HODGSON, P.E., Pre-equilibrium Nuclear Reactions, Clarendon Press, Oxford, 1992.
- [3.18] BLANN, M., Recent Progress And Current Status of Preequilibrium Reaction Theories And Computer Code ALICE, Technical Report UCRL-JC-109052 (1991).
- [3.19] BLANN, M., Hybrid Model for Pre-Equilibrium Decay in Nuclear Reactions, Phys. Rev. Lett. 27 (1972) 337-340.
- [3.20] KATARIA, S.K., RAMAMURTHY, V.S., Macroscopic Systematics of Nuclear Level Densities, Nucl. Phys. A 349 (1980) 10-28.
- [3.21] BLANN, M., VONACH, H.K., Global Test of Modified Precompound Decay Models, Phys. Rev. C 28 (1983) 1475-1492.
- [3.22] DITYUK, A.I., KONOBEYEV, A.YU., LUNEV, V.P., SHUBIN, Yu.N., New Advanced Version of Computer Code ALICE – IPPE, Rep. INDC(CCP)-410, IAEA, Vienna (1998).
- [3.23] BELGYA, T., BERSILLON, O., CAPOTE, R., FUKAHORI, T., ZHIGANG, G., GORIELY, S., HERMAN, M., IGNATYUK, A.V., KAILAS, S., KONING, A., OBLOZINSKY, P., PLUJKO, V. and YOUNG, P., Handbook For Calculations of Nuclear Reaction Data, RIPL-2, IAEA-TECDOC-1506, IAEA, Vienna (2006). Available online at <u>http://www-nds.iaea.org/RIPL-2/</u>
- [3.24] AUCE, A., CARLSON, A.R.F., COX, A. J., INGEMARSSON, A., JOHANSSON, R., RENBERG, P.U., SUNDBERG, O., TIBELL, G., Reaction Cross-Sections for 38, 65, and 97 MeV Deuterons on Targets from ⁹Be to ²⁰⁸Pb, Phys. Rev. C 53 (1996) 2919-2925.

- [3.25] AVRIGEANU, M., OERTZEN, W., PLOMPEN, A.J.M., Optical Model Potentials for Alphaparticles Scattering Around the Coulomb Barrier on A~100 Nuclei, Nucl. Phys. A 723 (2003) 104-126.
- [3.26] YOUNG, P.G., ARTHUR, E.D., CHADWICK, M.B., pp. 227-404 in Nuclear Reaction Data and Nuclear Reactors, A.GANDINI, G. REFFO (Eds), World. Sci., Singapore, 1996.
- [3.27] KALBACH, C., PRECOA: Programme for Calculating Pre-equilibrium Particle Energy Spectra, Report CEN-DPh-N/BE/74/3, 1974.
- [3.28] KALBACH, C., The Griffin Model, Complex Particles and Direct Nuclear Reactions, Z. Phys. A 283 (1977) 401-411.
- [3.29] HERMAN, M., "EMPIRE-II statistical model code for nuclear reaction calculations", pp. 137-230 in vol. 5 of ICTP Lecture Notes, Workshop on nuclear reaction data and nuclear reactors: Physics, design and safety, 13 March - 14 April 2000, Trieste, Italy, N. PAVER, M. HERMAN, A. GANDINI (Eds), ICTP, Trieste (2001).
- [3.30] HERMAN, M., CAPOTE, R., CARLSON, B.V., OBLOZINSKY, P., SIN, M., TRKOV, A., WIENKE, H. and ZERKIN, V., EMPIRE 2.19 release. Available online at <u>http://www.nndc.bnl.gov/empire</u>
- [3.31] HERMAN, M., CAPOTE, R., CARLSON, B.V., OBLOZINSKY, P., SIN, M., TRKOV, A., WIENKE, H. and ZERKIN, V., EMPIRE: Nuclear Reaction Model Code System for Data Evaluation, Nucl. Data Sheets 108 (2007) 2657-2717.
- [3.32] RAYNAL, J., "Optical model and coupled-channels calculations in nuclear physics", p. 281 in Computing as a language of physics, ICTP International Seminar Course, Trieste, Italy, 2-10 August 1971, IAEA, Vienna (1972), J. Raynal, ECIS code, distributed by NEA DATA BANK, OECD, Paris.
- [3.33] BLANN, M., New Precompound Decay Model, Phys. Rev. C 54 (1996) 1341-1349.

4. NUCLEAR REACTION MODELLING - CAPTURE REACTIONS

E. Běták

4.1. Introduction

The (n,γ) reactions can serve as the means of production of some radiopharmaceuticals either directly (⁸⁹Sr, ¹⁰³Pd, ¹⁵³Sm and others) or via suitable generators and/or precursors (e.g. ¹²⁵Xe serves as a precursor for ¹²⁵I). This reactor-based method of production is well established in some cases (⁸⁹Sr and ¹²⁵I), but more often the necessary radionuclide is preferentially produced by other reactions (e.g., see Refs. [4.1, 4.2]). A primary aim is not only to create the desired radionuclide, but to produce sufficient amounts that are uncontaminated by other isotopes that arise from either the target impurities or competing reactions.

Nuclear reactions evolve through several very different regions with increasing incident energy, beginning with the thermal and resonance regions before reaching the continuum. Whereas the thermal and especially the resonance regions are of vital importance to isotope production in reactors where the (n,γ) reactions take practically the whole strength, the continuum region is of much less interest because of the very low cross sections, the main strength being taken away by the open nucleon channels. Correspondingly, experimental data in the continuum are rare, so that reliable predictions of the excitation functions based on model calculations are very important.

4.2. Gamma Emission in the MeV Region

EMPIRE-II v. 2.19 [4.3] and TALYS [4.4, 4.5] represent suitable computer codes for the calculation of nuclear reactions, and they represent significant inprovements over previously employed codes such as PEQAG [4.6] and DEGAS [4.7], as well as older versions of EMPIRE-II (e.g. version 2.18 [4.8]). At excitation energies above 10 MeV, both EMPIRE and TALYS are based on the pre-equilibrium single-particle radiative mechanism, which has been elaborated in previous codes. However, whereas one can use simple exciton-model codes at nucleon energies exceeding 10 MeV and sufficiently far from the closed shells like the simple PEQAG code [4.6] or the spin-dependent successor DEGAS [4.7], sophisticated nuclear reaction codes can now be used with confidence to include an extensive number of approaches and cover rather wide energy ranges. Such complex coding systems are coupled to large libraries of parameters if estimates are required for reactions that are not just tailored to simple statistical pre-equilibrium calculations. Two codes of this type have been recently released, namely EMPIRE-II (version 2.18 in 2002 [4.8] and version 2.19 three years later $[4.3]^1$ and TALYS in 2005 and at the end of 2006 [4.4, 4.5, 4.9]. They possess similar underlying physics at the pre-equilibrium stage (e.g., same single-nucleon radiative mechanism formula for the γ emission is used both in EMPIRE and in TALYS), and both of them use very extensive tables of the various recommended parameters.

The single-particle radiative mechanism has proved to be very successful at incident energies below about 30 MeV [4.10, 4.11], and also gives a reliable description at energies as low as about 5 MeV [4.12, 4.13]. Therein, the γ emission is associated with a decrease of the exciton number ² n ($\Delta = -2$) or leaves this quantity unchanged ($\Delta n = 0$), and the emission rates can be expressed as follows:

$$\lambda_{\gamma}(n, E, \varepsilon_{\gamma}) = \frac{\varepsilon_{\gamma}^2 \sigma_{GDR}(\varepsilon_{\gamma})}{\pi^2 \hbar^3 c^2} \frac{\sum_{m=n,n-2} b(m, \varepsilon_{\gamma}) \omega(m, E - \varepsilon_{\gamma})}{\omega(n, E)}, \qquad (4.1)$$

¹ The main differences between the two versions of EMPIRE-II may be characterized as the replacement of the data libraries by more recent versions, addition of further subroutines and elimination of some minor bugs.

² Exciton number *n* is the sum of the excited particles *p* above and holes *h* below the Fermi level, n = p + h.

where *E* denotes the excitation energy of the nucleus (composite system), ε_{γ} is the γ energy, $\sigma_{GDR}(\varepsilon_g)$ is the photoabsorption cross section, ω are the exciton state densities, and the branching ratios are defined as follows:

$$b(n-2,\varepsilon_{\gamma}) = \frac{\omega(2,\varepsilon_{\gamma})}{g(n-2) + \omega(2,\varepsilon_{\gamma})}$$
$$b(n,\varepsilon_{\gamma}) = \frac{gn}{gn + \omega(2,\varepsilon_{\gamma})}.$$
(4.2)

However, with the inclusion of spin, the above expressions become much more complicated. Fortunately, the branching ratios factorize [4.14]:

$$b_{mS}^{nJ} = \frac{y_m^n x_{mS}^{nJ}}{y_m^m x_{mS}^{mJ} + y_m^{m+2} x_{mS}^{m+2J}},$$
(4.3)

where y are the energy-dependent functions that are identical to Eq. (4.2) that becomes:

$$y_n^n = gn,$$

$$y_n^{n+2} = g^2 \varepsilon_{\gamma},$$
(4.4)

in the case of the equidistant-spacing scheme, and x arise from the spin couplings (for details, see Ref. [4.14]).

The photo-absorption cross section σ_{GDR} is usually defined in the form of the giant dipole resonance approximated by the corresponding Lorentzian (or double-humped Lorentzian in the case of deformed nuclei).

Important differences for the pre-equilibrim stage of the reaction may be summarized as follows:

- i) the basic approach to the pre-equilibrium stage consists of the two components in TALYS (i.e. distinguishing between the neutrons and the protons), whereas a one-component formulation with a charge factor is used in EMPIRE;
- ii) one-particle radiation mechanism is used for the γ emission in EMPIRE, but TALYS includes the quasi-deuteron (two-particle)³, which may cause some differences at excitation energies above about 30 MeV (albeit very small);
- iii) although the level densities using the default option are the same in both codes (with parameters taken from RIPL [4.15, 4.16]), different semi-microscopic approaches are available for advanced users;
- iv) classical optical model is used to calculate the particle transmission coefficients T_l in EMPIRE with parameters from the libraries, and the local and global parametrization of Koning and Delaroche [4.17] is employed in TALYS (this difference influences the γ emission only via the competition with that of the particles).

Previous pre-equilibrium calculations of the radiative capture reactions in the MeV region were undertaken by means of the PEQAG code [4.6]. Generalizations with spin PEGAS and DEGAS [4.7]

³ The quasi-deuteron mechanism is also included in EMPIRE-II v. 2.19, but is considered for the photonuclear reactions only and not for the γ emission.

as well as the EMPIRE code (v. 2.18 Mondovi) [4.8] demonstrated the level of sensitivity of the calculations to the details of the level density parameters (necessary for the evaluation of the state densities (ω)) and also to facets of GDR. Overall, calculations are reasonably reliable for reactions far from the closed shells and close enough to the line of beta stability, and somewhat questionable near closed and even doubly-closed shells, where one has to pay utmost care to the proper choice of level densities (e.g. see Ref. [4.12]). There is no straightforward solution for nuclei close to the drip lines, and the spread of calculations performed with different model assumptions and/or codes may suitably serve as a rough estimate as to how reliable or weak the prediction of cross sections and related quantities may be.

4.3. Reactions – General

The need to produce isotopes for diagnostic and therapeutic purposes has stimulated calls for further measurements and evaluations of the (n,γ) reactions at energies below 20 MeV. Within the IAEA Coordinated Research Programme, some very desirable isotopes for therapeutic needs have been identified and studied [4.18, 4.19, 4.20]. With public access to two excellent codes being granted in 2005, one has the opportunity to predict the excitation curves with much improved reliability than ever before. Generally, there are not many data defining (n,γ) reactions in the continuum region [4.21]. Studies up to about 3 MeV exist for neutron reactions on ¹⁵²Sm and ¹⁹¹Ir, and experimental data up to nearly 20 MeV are available for the ¹⁶⁵Ho (n,γ) reaction for which the cross sections referring to the ground and isomeric states can be separated.

We present data together with calculations of TALYS [4.4, 4.5] and two versions of EMPIRE-II (v. 2.18 [4.8] and v. 2.19 [4.3]) in a subsequent section of this report. Essentially, we kept the default parameters in EMPIRE, while allowing for full inclusion of pre-equilibrium emission and γ cascades. Details of the form of the Giant Dipole Resonance (which enters calculations of the γ emission via the detailed balance principle) and other parameters did not exhibit much influence on the resulting excitation functions calculated using EMPIRE-II v. 2.18 [4.18], and therefore we also applied this approach to version 2.19 and TALYS⁴.

4.4. Basic Parameters of the Calculations

One needs reliable data for at least twenty-one nuclei (three nuclei for each reaction considered, the composite system, plus two nuclei after the neutron and after the proton emissions). Assuming that the best available up-to-date information is contained in RIPL-2 [4.15, 4.16] and other IAEA NDS libraries [4.21], both EMPIRE and TALYS are able to access and use these available parameters. When the recommended values in RIPL-2 are not applicable, other data have to be sought and used. We have studied the influence of different level densities and the form of the Giant Dipole Resonance ⁵, and found that they are not essential for the reactions studied [4.18, 4.20] – these calculations were not undertaken within the critical region of doubly-magic nuclei, and other less certain input data can be suitably adopted in such studies.

4.5. Conclusions

We have carried out calculations of the excitation curves of (n,γ) reactions on seven selected targets leading to medically-suitable therapeutic isotopes at energies above the resonance region up to 20 MeV. These calculations have shown the influence of different level densities on the calculated production cross sections (albeit rather small).

⁴ Essential to include the γ cascades at all stages of the process, but the details of the GDR form are only of marginal influence at our energies [18, 20]; GDR parameters taken from the RIPL-2 recommendations [4.15, 4.16] give the best overall fit, although other GDR parameters are also available for some of the nuclei.

⁵ Also includes recent recommendations for GDR parameters by Varlamov et al. [4.22].

A combination of different computer codes is necessary ⁶, together with cross-checking of all the adopted parameters against the available data for other reactions by the same projectiles that have been more frequently measured. This complex approach minimizes the uncertainties of the parameters and increase the predictive validity of the calculations when there are insufficient experimental data, as typically the situation for these reactions).

REFERENCES

- [4.1] QAIM, S.M., Therapy related radioisotopes, SMR-1148-38, ICTP, Trieste, 1999.
- [4.2] RURARZ, E., TYS, J., Mozliwosci produkcji radioizotopow medycznych z wykorzystaniem Warszawskiego cyklotronu, (*in Polish*, "Possibilities of the production of medical radioisotopes using the Warsaw cyclotron"), Warsaw, Poland, 1998.
- [4.3] HERMAN, M., OBLOŽINSKÝ, P., CAPOTE NOY, R., TRKOV, A., ZERKIN, V., SIN, M., CARLSON, B., EMPIRE modular system for nuclear reaction calculations (version 2.19, Lodi), NNDC, Brookhaven National Lab., Upton, New York, USA, 2005.
- [4.4] KONING, A.J., HILAIRE, S., DUIJVESTIJN, M.C., TALYS: comprehensive nuclear reaction modelling, pp. 1154-1159 in Proc. Int. Conf. on Nuclear Data for Science and Technology, 26 September - 1 October 2004, Santa Fe, NM, USA, HAIGHT, R.C., CHADWICK, M.B., KAWANO, T., TALOU, P. (Eds), AIP Conference Proceedings 769, Part II, Melville, New York, USA, 2005.
- [4.5] KONING, A.J., HILAIRE, S., DUIJVESTIJN, M.C., TALYS: a nuclear reaction program, 21297/04.62741/P FAI/AK/AK, NRG, Petten, the Netherlands, 2004.
- [4.6] BĚTÁK, E., PEQAG: a PC version of fully pre-equilibrium computer code with gamma emission, INDC(CSR)-016, IAEA, Vienna, Austria, 1989.
- [4.7] BĚTÁK, E., OBLOŽINSKÝ, P., PEGAS: Pre-equilibrium-equilibrium gamma-and-spin code (PC version), INDC(SLK)-001, IAEA, Vienna, Austria, 1993.
- [4.8] HERMAN, M., EMPIRE-II statistical model code for nuclear reaction calculations (version 2.18, Mondovi), IAEA-NDS-CD-10, IAEA, Vienna, Austria, 2002.
- [4.9] KONING, A.J., HILAIRE, S., DUIJVESTIJN, M., TALYS what is TALYS? *http://www.talys.eu/*
- [4.10] BĚTÁK, E., DOBEŠ, J., Gamma emission in the pre-equilibrium exciton model, Phys. Lett. 84B (1979) 368-370.
- [4.11] AKKERMANS, J.M., GRUPPELAAR, H., Analysis of continuum gamma-ray emission in precompound-decay reactions, Phys. Lett. **157B** (1985) 95-100.
- [4.12] BĚTÁK, E., KOPECKY, J., CVELBAR, F., Another possible manifestation of the energydependent width of the giant dipole resonance, Phys. Rev. C 46 (1992) 945-951.
- [4.13] CVELBAR, F., BĚTÁK, E., LIKAR, A., Pre-equilibrium and direct-semi-direct model calculations of nucleon radiative capture excitation functions on heavy nuclei, J. Phys. G 21 (1995) 377-384.
- [4.14] OBLOŽINSKÝ, P., Pre-equilibrium γ rays with angular momentum coupling, Phys. Rev. C 35 (1987) 407-414.
- [4.15] International Atomic Energy Agency, Handbook for calculations of nuclear reaction data, Reference input parameter library, IAEA-TECDOC-1034, Vienna, Austria, 1998.
- [4.16] BELGYA, T., BERSILLON, O., CAPOTE NOY, R., FUKAHORI, T., GE ZHIGANG, GORIELY, S., HERMAN, M., IGNATYUK, A.V., KAILAS, S., KONING, A.J., OBLOŽINSKÝ, P., PLUJKO, V., YOUNG, P.G., Handbook for calculations of nuclear reaction data, RIPL-2, Reference input parameter library-2, IAEA-TECDOC-1506, Vienna, Austria, 2006; http://www-nds.iaea.or.at/ripl-2/
- [4.17] KONING, A.J., DELAROCHE, J.P., Local and global nucleon optical models from 1 keV to 200 MeV, Nucl. Phys. A **713** (2003) 231-310.
- [4.18] SUBLET, J.-Ch., CAPOTE NOY, R., Nuclear Data for the Production of Therapeutic Radionuclides, Summary Rep. 2nd Research Coordination Meeting, 15 19 November 2004, IAEA, Vienna, Austria, INDC(NDS)-465, IAEA, Vienna, Austria, 2004.

⁶ Both TALYS and EMPIRE-II are not single computer codes, but sophisticated systems able to switch from one mechanism (and code) to another in accord with the specific conditions.

- [4.19] SUBLET, J.-Ch., CAPOTE NOY, R., Nuclear Data for the Production of Therapeutic Radionuclides, Summary Report of Third Research Coordination Meeting, 29 May 2 June 2006, IAEA, Vienna, Austria, INDC(NDS)-0501, IAEA, Vienna, 2006.
- [4.20] SUBLET, J.-Ch., PAVIOTTI-CORCUERA, R., Nuclear Data for the Production of Therapeutic Radionuclides, Summary Rep. 1st Research Coordination Meeting, 25 27 June 2003, IAEA, Vienna, Austria, INDC(NDS)-444, IAEA, Vienna, Austria, 2003.
- [4.21] <u>http://www-nds.iaea.or.at/exfor/</u> EXFOR-CINDA for applications. database and retrieval systems. version 1.63i (CD-ROM), IAEA, Vienna, Austria, 2004.
- [4.22] VARLAMOV, A.V., VARLAMOV, V.V., RUDENKO, D.S., STEPANOV, M.E., Atlas of Giant Dipole Resonances. Parameters and Graphs of Photonuclear Reaction Cross Sections, INDC(NDS)-394, IAEA, Vienna, Austria, 1999.

5. METHODS OF FITTING

A.V. Ignatyuk and Yu.N.Shubin

The status of an experimental data set is judged appropriate for statistical analysis when a reasonable number of independent measurements have been published that do not show inexplicable discrepancies and reliable error estimations are available for all points. Often, such fits use analytical functions, the most prominent being polynomials. A more general class of analytical functions are rational functions defined as the ratio of two polynomials. These functions have a capability to approximate nuclear reaction cross sections in the resonance region, behaviour exhibited in the present project by several light nuclei. A method of fitting has been developed by the IPPE group, Obninsk, and applied to the data in the present project, as described below.

5.1. Padé Fit

The approximation proposed by Padé over hundred years ago [5.1] has become one of the most important interpolation techniques of statistical mathematics [5.2 -5.4]. A Padé approximant for a function f(x) is the rational function:

$$p_L(x) = R_L(x) / Q_L(x)$$
, (5.1)

where R and Q are the polynomials described by L coefficients that match exactly the function f(x) in L points

$$p_L(x_j) = f(x_j), \quad j = 1, 2, \dots L.$$
 (5.2)

We do not show the degrees of the polynomials R and Q explicitly since the description is based on the recurrent solution where these degrees are defined internally. Until recently, two obstacles hindered an application of the Padé approximation to data processing and analysis: (a) difficulty of realization since rational approximants unlike polynomials lead to complicated nonlinear systems of equations in the least-squares method; (b) a special form of approximant instability - possible real pole-zero pairs (noise doublets).

Both of these two difficulties can be circumvented by undertaking a recursive calculation of many approximants differing by a choice of interpolation knots along with their statistical optimization by discrete sorting.

Eqs. (5.1) and (5.2) result in a system of linear equations for coefficients which may be solved using either determinants or recurrent expressions. The simplest recurrent expression is represented by the following equation:

$$p_{L}(x) = \frac{R_{L-1}(x) + \gamma_{L}(x - x_{L-1})R_{L-2}}{Q_{L-1}(x) + \gamma_{L}(x - x_{L-1})Q_{L-2}} , \qquad (5.3a)$$

where the coefficient *L* can be readily determined from the condition:

$$p_L(x_L) = f(x_L) , \qquad (5.3b)$$

and the initial polynomials are constant:

$$R_0(x) = 0, \quad R_1(x) = f(x_1), \quad Q_0(x) = 1, \quad Q_1(x) = 1$$
 (5.3c)

Eq. (5.3) satisfies the definition (Eq. (5.1)) and condition (Eq. (5.2)).

Consider an experimental data set with N points. Essential stages of the Padé approximation for these data are defined as the following:

- chose an initial set of L supporting points (interpolation knots) amongst the experimental data points ($L \ll N$),
- apply the recurrent algorithm (Eq. (5.3)) to these L points and interpolate with a rational function $p_L(x)$,
- compute $p_L(x)$ for all experimental points and minimize the deviation functional:

$$\chi^{2} = \sum_{j=1}^{N} (p_{L}(x_{j}) - f_{j})^{2} / \sigma_{j}^{2} \quad .$$
(5.4)

Minimization is carried out by adopting an iteration using the concept of discrete optimization (sorting). Thus, one goes over all possibilities of choosing L points from the available experimental points N, construct corresponding approximants, compute Eq. (5.4) and determine the minimum. Once this process is completed, L is changed and the iteration is repeated until an overall minimum is found from amongst all discrete possibilities available.

One of the advantages of the discrete optimization technique as compared to the continuous least-squares method (LSM) is the possibility of using manifold functionals. Theoretical estimates show that the mean quadratic deviation of the approximant (found by the discrete optimization) from the continuous LSM solution is about $(N/L)^{1/2}$ times less than the LSM deviation from the exact curve (valid for L << N). Thus, the approximant is statistically equivalent to the LSM solution.

As a rational function, the Padé approximant can be expressed by a set of polynomial coefficients or by a set of coefficients of the pole expansion. The last expansion is based on the analytical properties of the rational functions in the complex plane. One uses a complex variable z = x + iy and replaces $p_L(x)$ by $p_L(z)$ which can be defined as the following:

$$p_L(z) = c + \sum_l \frac{a_l}{z - \eta_l} + \sum_k \frac{\alpha_k (z - \varepsilon_k) + \beta_k}{(z - \varepsilon_k)^2 + \gamma_k^2} \quad .$$

$$(5.5)$$

This equation can also be called the resonance expansion, in which ε_k and γ_k are the energy and the total half-width of the k-th resonance level, and α_k and β_k are the partial widths and interference parameters. The first sum corresponds to the real poles, while the second sum relates to the complex poles.

A prominent disturbing feature of the numerically generated rational approximants is the appearance of real poles (zero denominators) inside the approximation interval which is physically meaningless and

makes the approximant unusable. These poles are closely accompanied by real zeros of the numerator, constituting noise doublets that prevented wide use of Padé approximants in data fitting.

The noise doublets are not only neutralized but become useful, corresponding to the terms with $z \approx \eta_{\ell}$ inside the interval of approximation with relatively small coefficients a_{l} in the first sum of Eq. (5.5). These terms are cancelled in the present method and eliminated from the sum, and the regularization generates satisfactory results. Normally, the noise doublets appear with increasing L at the final stages of the approximation and indicate, together with statistical criteria, that the analytical information is exhausted.

The situation may be different if some points in the input experimental data deviate abnormally from the general trend. Under such circumstances, the noise doublets appear at relatively low L near such 'bad' points, describing them by local singularities rather than by smooth components. When the singularities are eliminated, the resulting regularized curve ignores the particularly bad points – this approach identifies points with aberrations automatically. From the point of view of statistical mathematics, the method of discrete optimization is equivalent to the least-squares technique, and therefore the experimental data set must be statistically consistent. When there are several sets of experimental data and discrepancies between different sets are significantly larger than their declared uncertainties, the statistical processing of the data is possible only after data selection by an expert. This situation was found to occur fairly frequently in the present project, so that critical analysis and selection of experimental data had to be applied to all reactions.

The Padé code constructs the approximating rational function and calculates the coefficients of the pole expansion for each resonance (Eq. (5.5)). Thus, we have an analytical expression which can be easily calculated at any energy point. A simple version of the Padé code is applicable to cases with a limited number of experimental points, parameters and span of experimental data (N \leq 500, L \leq 40, $F^{max} / F^{min} \leq$ 10⁶), and is already suitable for many practical situations. The method is also very convenient for calculations of error bands and covariance matrices. A more detailed description of the method can be found in Ref. [5.5], with more general outlines in Refs [5.6, 5.7].

REFERENCES

- [5.1] PADÉ, H.E., Sur la représentation d'une fonction par des fractions rationnelles, Ann. L'École Norm. 9/3 (1892) 3–93.
- [5.2] BAKER JR., G.A., GAMMEL, J.L. (Eds), The Padé Approximants in Theoretical Physics, Academic Press, New York (1970).
- [5.3] GRAVES-MORRIS, P.R. (Ed.), Padé Approximants and Their Applications, Academic Press, New York (1973).
- [5.4] BAKER Jr., G.A., Essentials of Padé Approximants, Acadademic Press, New York (1975).
- [5.5] VINOGRADOV, V.N., GAI, E.V., RABOTNOV, N.S., Analytical Approximation of Data in Nuclear and Neutron Physics, Energoatomizdat, Moscow (1987) in Russian.
- [5.6] BADIKOV, S.A., GAI, E.V., GUSEINOV, M.A., RABOTNOV, N.S., "Padé Approximants in Curve Fitting and Resonance Analysis", Proc. 3rd IMSL User Group Europe Conf., Bologna, Italy, 26 – 28 March 1990, p. B11.
- [5.7] BADIKOV, S.A., GAI, E.V., GUSEINOV, M.A., RABOTNOV, N.S., Nuclear Data Processing, Evaluation, Transformation and Storage with Padé – Approximants, pp. 182-187 in Proc. Int. Conf. on Nuclear Data for Science and Technology, Jülich, Germany, 1991, QAIM, S.M. (Ed.), Springer-Verlag, Berlin (1992).

6. PRODUCTION OF THERAPEUTIC RADIONUCLIDES BY MEANS OF NUCLEAR REACTORS

J.-Ch. Sublet, B.V. Carlson, A.D. Caldeira, F.B. Guimarães, P. Pompeia, H.D. Choi, S.K. Kim, S.M. Qaim, R. Capote

6.1. Introduction

This chapter deals with nuclear data for reactor production of about 20 radionuclides distributed over the whole Chart of the Nuclides. They are either already routinely used in radionuclide therapy or show some potential for therapeutic applications. Among them ¹³¹I ($T_{1/2}$ = 8.02d) is by far the most important therapeutic radionuclide, having an established place in the management of follicular thyroid carcinoma. The other radioidine, ¹²⁵I ($T_{1/2}$ = 59.41 d), is commonly used in brachytherapy but more important is its use in Auger electron therapy, provided suitable chemical compounds can be proposed.

Four radionuclides, namely ³²P ($T_{\frac{1}{2}}$ = 14.26 d), ⁸⁹Sr ($T_{\frac{1}{2}}$ = 50.5 d), ¹⁵³Sm ($T_{\frac{1}{2}}$ = 1.91 d) and ¹⁸⁶Re ($T_{\frac{1}{2}}$ = 3.72 d), are often used in metastatic bone pain treatment. The radionuclide ¹⁸⁶Re as well as another radiorhenium, ¹⁸⁸ Re ($T_{\frac{1}{2}}$ = 16.98h), being analogues of technetium, are also potentially useful for many other applications since they form good metal chelates. The same is valid for ⁶⁴Cu ($T_{\frac{1}{2}}$ = 12.7 h) and ⁶⁷Cu ($T_{\frac{1}{2}}$ = 2.58 d). They are of great therapeutic interest, especially in radio-immunotherapy, because they can form diversified metal chelates. The radionuclide ⁶⁴Cu has an added advantage of combining positron emission tomography (PET) with internal radionuclide therapy.

The radionuclide ⁹⁰Y ($T_{\frac{1}{2}}$ = 2.67 d) has been used for radiation synovectomy in the arthritides and for labelling monoclonal antibodies (WAbs) and glass microspheres for intracavity therapy. Several other trivalent metal radionuclides like ¹⁴⁹Pm ($T_{\frac{1}{2}}$ = 2.21 d), ¹⁶⁶Ho ($T_{\frac{1}{2}}$ = 1.12 d), ¹⁶⁹Yb ($T_{\frac{1}{2}}$ = 32.0 d) and ¹⁷⁷Lu ($T_{\frac{1}{2}}$ = 6.71 d) find some application in metastatic bone marrow treatment.

The radionuclides ¹⁰³Pd ($T_{\frac{1}{2}}$ = 16.96 d) and ¹⁹²Ir ($T_{\frac{1}{2}}$ = 73.83 d) are commonly used in brachytherapy, the former in the form of seeds for treatment of prostate cancer and the latter as wires for treating deep-lying tumours. The long-lived ¹³⁷Cs ($T_{\frac{1}{2}}$ = 30.17 y) finds application as an external source of low-energy β^{-} particles for irradiation of retina or some other soft tissue.

The radionuclide ¹⁰⁵Rh($T_{\frac{1}{2}}$ = 1.47 d) is used in labelling of monoclonal antibodies (WAbs), and the radionuclide ^{114m}In ($T_{\frac{1}{2}}$ = 49.5 d), being an analogue of ¹¹¹In, is of potential interest in Auger electron therapy. The radionuclide ²¹³Bi ($T_{\frac{1}{2}}$ = 45.6 min) is an α -emitter. It can be attached to WAbs and is then best suited for treatment of rapidly accessible cancer cells or leukemia.

The radionuclide ¹²⁶I ($T_{\frac{1}{2}}$ = 13.11 d), also treated in this chapter, is not a therapeutic radionuclide. Its production is discussed only because it could be a disturbing activity in the soft radiation emitting therapeutic radionuclide ¹²⁵I.

The production of radionuclides in a nuclear reactor generally utilizes the (n,γ) process. The yields achieved are generally high, but the desired product is of low specific radioactivity (defined as the radioactivity per unit mass of the product). It is a disadvantage since most of the therapeutic applications demand radionuclides with as little mass of the inactive element as possible. Higher specific radioactivity is achieved if the radioactive daughter of a neutron capture product, rather than the capture product itself, is of therapeutic interest. Several such cases are:

 ${}^{104}\text{Ru}(n,\gamma){}^{105}\text{Ru}(\beta^{-}){}^{105}\text{Rh}$ ${}^{124}\text{Xe}(n,\gamma){}^{125}\text{Xe}(\text{EC}){}^{125}\text{I}$ ${}^{130}\text{Te}(n,\gamma){}^{131\text{m,g}}\text{Te}(\beta^{-}){}^{131}\text{I}$ ${}^{164}\text{Dy}(n,\gamma){}^{165\text{m,g}}\text{Dy}(n,\gamma){}^{166}\text{Dy}(\beta^{-}){}^{166}\text{Ho}$

 176 Yb(n, γ) 177 Yb(β^{-}) 177 Lu 186 W(n, γ) 187 W(n, γ) 188 W(β^{-}) 188 Re

The radionuclides ¹⁰⁵Rh, ¹²⁵I, ¹³¹I and ¹⁸⁸Re are really produced via the indirect route, but the radionuclides ¹⁶⁶Ho and ¹⁷⁷Lu are partly produced via the indirect route and partly via the direct (n,γ) reaction, the resulting specific radioactivity in the latter case being appreciably lower.

For achieving higher specific radioactivity, in production of some radionuclides either (n,p) reaction or fission process is used. The radionuclides ³²P and ⁸⁹Sr, for example, are preferentially produced via the (n,p) reaction and the radionuclides ⁹⁰Sr and ¹³⁷Cs are obtained via the fission process. The purified ⁹⁰Sr is used for preparing a ⁹⁰Sr⁹⁰Y generator. In the case of ¹³¹I, on the other hand, both fission and the indirect (n, γ) process (mentioned above) are commonly used.

For some therapeutic radionuclides charged particle induced reactions have proven to be superior to the reactor irradiations, both in terms of practical yield and specific radioactivity. They are ⁶⁴Cu, ⁶⁷Cu, ¹⁰³Pd, ^{114m}In and ¹⁸⁶Re. On the other hand, no meaningful alternative charged-particle induced reaction was found for the (n, γ) produced radionuclides ¹⁵³Sm, ¹⁶⁹Yb, ¹⁷⁷Lu and ¹⁹²Ir. In the case of ²¹³Bi the presently used method involves the chemical isolation of this product from the nuclear waste. A charged particle induced reaction process on the radioactive target material ²²⁶Ra is in development. All the charged-particle induced reactions, whether of real practical value in the production of therapeutic radionuclides or only of academic interest with regard to production, are treated in Chapter 7.

The present chapter comprises five reactions. The radionuclides produced via the fission process are discussed in Section 6.1 and those via the (n,p) reaction in Section 6.5. The (n, γ) produced radionuclides are given in Sections 6.2, 6.3 and 6.4. The grouping of the radionuclides in those three sections is arbitrary and related to the assignment undertaken by three different goups. As a result some differences in style and presentation were inevitable. For ²¹³Bi only decay data were considered but it is placed in Section 6.3 along with the other cases studied by Carlson *et al.*

6.2. Evaluation of Fission Yields for the Production of ⁹⁰Y, ¹³¹I and ¹³⁷Cs Radionuclides

Many of the therapeutic radionuclides used worldwide can be produced as fragments emitted from the fissioning of actinides. The usual fissile isotope is ²³⁵U, although other fissionable isotopes can be used in the same manner. Energy-dependent fission yields for more than a thousand fission fragments have been quantified and stored in tabulated form as special purpose files within the major nuclear applications libraries such as JEFF-3.1 [6.1], JENDL-3.3 [6.2] and ENDF/B-VII [6.3]. Typical two-peaked energydependent mass and charge distributions of these fission products are shown in Figs. 6.1 to 6.4 - strontium radionuclides can be found in the light fragment peak, while iodine and caesium are located in the heavy fragment peak. As shown in these figures, rather good agreement exists between theory and measurement for those fragments in the peaks with the higher yields, while rather large discrepancies occur for the lower probability fragments. All the radionuclides under investigation are to be found in the better characterised regions of the fission yield curves. One may note that when defined in terms of charge, strontium is even, while iodine and caesium are odd with lower yields due to the odd-even effect (although this phenomenon is greatly reduced with increasing neutron energy to give higher fission yields). However, the majority of radionuclide production centres rely on facilities that operate in the thermal energy range. One needs to differentiate between the independent and cumulative yields listed in the data files:

- (a) independent yields represent nuclide production directly from fission;
- (b) cumulative yields account for the production of the nuclei both directly from fission and from the decay of other nuclides produced by fission.

The cumulative yields are of interest in radionuclide production rather than the more academic independent yields.

Data uncertainties can be derived from two different sources: (a) evaluated fission yield files, or (b) analysis of the experimental chain and cumulative yields, such as the compilation from Nexia Solutions Ltd [6.4]. Uncertainty data in the evaluated files are rather poorly defined and are largely related to the evaluation processes and constraints, the date of the evaluation, etc. The second data source is judged to be more reliable and forms the basis of the recommendation made in this work. Table 6.1 lists the thermal, 400-keV and 14-MeV fission yields and uncertainties for the radionuclides of interest from all selected libraries. The quoted uncertainties of the independent yields are noticeably larger than the cumulative yields as would be expected, but in some cases the cumulative yields appear too precise given the available measurements.

⁹⁰Sr undergoes 100% beta decay to ⁹⁰Y with a half-life of 28.869 years. ⁸⁹Sr undergoes beta decay to stable ⁸⁹Y with a half-life of 50.57 days, and a 20% lower cumulative yield; thus, this possible impurity will not cause any serious problems in the preparation of the ⁹⁰Y generator.

⁹⁰Y decay properties: $T_{\frac{1}{2}} = 2.671 \text{ d} \pm 0.12\%$; 100% β[°](⁹⁰Zr) with an average <β> energy of 933.82 keV and average $\langle \gamma \rangle$ energy of 1.236 eV.

¹³¹I decay properties: $T_{\frac{1}{2}} = 8.023 \text{ d} \pm 0.02\%$; $\beta \tilde{\circ} 98.91\%$ (^{131g}Xe), 1.09% (^{131m}Xe), with an average < β > energy of 192.43 keV and average $\langle \gamma \rangle$ energy of 381.54 keV. ¹³⁷Cs decay properties: $T_{\gamma_2} = 30.041 \text{ d} \pm 0.10\%$; $\beta \circ 5.6\%$ (^{137g}Ba), 94.4% (^{137m}Ba) with an average $\langle \beta \rangle$

energy of 187.87 keV and average $\langle \gamma \rangle$ energy of 1.6443 eV.

The recommended cumulative yields are given in Table 6.2 with a new set of uncertainties derived from reliable experimental chain and cumulative yields. These data have the advantage of being based on a retrievable source, and satisfy a set of statistically correct criteria. Although higher than 1.0% at thermal neutron energies, they rely on a set of published measurements and statistical analysis without adjustments that enforce consistency with physical constraints.

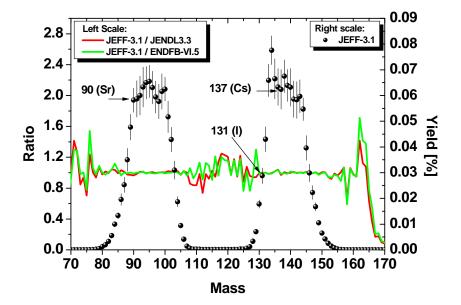


FIG. 6.1. Fission yield mass distribution of ^{235}U at thermal neutron energy.

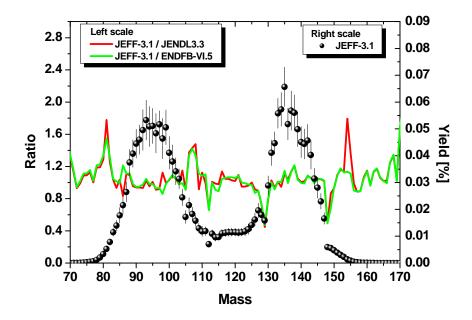


FIG. 6.2. Fission yield mass distribution of ²³⁵U at 14-MeV neutron energy.

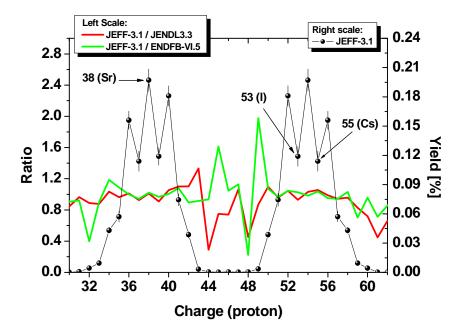


FIG. 6.3. Fission yield charge distribution of ²³⁵U at thermal neutron energy.

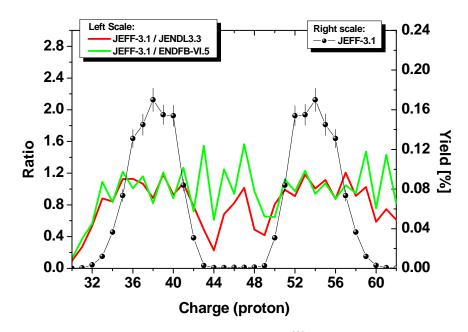


FIG. 6.4. Fission yield charge distribution of ^{235}U at 400-keV neutron energy.

Source	Radionuclid	1	Uncertainty	%	Cumulative	Uncertainty	%
Files	Z A	Yield			Yield		
	38-Sr-89						
JEFF-3.1 (th)	38 89	2.183E-05	8.003E-06	36.7%	4.689E-02	5.678E-03	12.1%
	38-Sr-90						
JEFF-3.1 (th)	38 90	3.134E-04	1.180E-04	37.7%	5.729E-02	1.319E-03	2.3%
JEFF-3.1 (th)	38 90	1.248E-04	4.608E-05	36.9%	5.221E-02	1.830E-03	3.5%
JEFF-3.1 (th)	38 90	2.109E-03	7.407E-04	35.1%	4.408E-02	1.808E-03	4.1%
JENDL-3.3 (th)	38 90	3.560E-04			5.900E-02		
JENDL-3.3 (th)	38 90	2.190E-04			5.430E-02		
JENDL-3.3 (th)	38 90	7.600E-04			4.660E-02		
ENDF/B-VII.0 (th)	38 90	7.371E-04	4.422E-05	6.0%	5.781E-02	5.781E-04	1.0%
ENDF/B-VII.0 (th)	38 90	3.431E-04	1.544E-04	45.0%	5.465E-02	3.825E-04	0.7%
ENDF/B-VII.0 (th)	38 90	1.123E-03	7.191E-04	64.0%	4.592E-02	1.837E-03	4.0%
	53-I-131						
JEFF-3.1 (th)	53 131	1.364E-05	4.745E-06	34.8%	2.878E-02	3.166E-04	1.1%
JEFF-3.1 (th)	53 131	4.434E-05	1.671E-05	37.7%	3.365 E-02	5.384E-04	1.6%
JEFF-3.1 (th)	53 131	2.678E-03	9.195E-04	34.3%	4.110E-02	1.356E-03	3.3%
JENDL-3.3 (th)	53 131	4.150E-05			2.880E-02		
JENDL-3.3 (th)	53 131	3.200E-05			3.180E-02		
JENDL-3.3 (th)	53 131	1.050E-03			3.990E-02		
ENDF/B-VII.0 (th)	53 131	3.915E-05	4.307E-06	11.0%	2.890E-02	2.890E-04	1.0%
ENDF/B-VII.0 (th)	53 131	1.080E-05	6.918E-06	64.1%	3.219E-02	4.507E-04	1.4%
ENDF/B-VII.0 (th)	53 131	1.201E-03	7.690E-04	64.0%	4.101E-02	1.640E-03	4.0%
	55-Cs-137						
JEFF-3.1 (th)	55 137	7.225E-04	2.557E-04	35.4%	6.221E-02	6.936E-04	1.1%
JEFF-3.1 (th)	55 137	1.225E-03	4.398E-04	35.9%	5.889E-02	9.572E-04	1.6%
JEFF-3.1 (th)	55 137	1.138E-02	3.203E-03	28.1%	5.567E-02	1.308E-02	23.5%
JENDL-3.3 (th)	55 137	1.580E-03			6.270E-02		
JENDL-3.3 (th)	55 137	2.990E-03			6.200E-02		
JENDL-3.3 (th)	55 137	8.890E-03			4.920E-02		
ENDF/B-VII.0 (th)	55 137	5.999E-04	6.599E-05	11.0%	6.188E-02	3.094E-04	0.5%
ENDF/B-VII.0 (th)	55 137	2.283E-03	7.307E-04	32.0%	6.221E-02	3.110E-04	0.5%
ENDF/B-VII.0 (th)	55 137	9.475E-03	3.032E-03	32.0%	4.926E-02	2.955E-03	6.0%

TABLE 6.1.FISSION YIELDS AT THERMAL (th), 400-keV (.4) AND 14-MeV (14) NEUTRON ENERGIES
FOR ²³⁵U

TABLE 6.2. RECOMMENDED FISSION YIELDS AND UNCERTAINTIES OF $^{\rm 235}{\rm U}$

Radionuclide Z A	Cumulative Yield	Uncertainty %	Number of Experiments	Weighted Mean
38-Sr-90	28.869 y	± 0.19%	•	
38 90	5.729E-02	7.0%	7+	5.77E-02
38 90	5.221E-02	6.0%	4+	5.27E-02
38 90	4.408E-02	4.0%	3+	4.41E-02
53-I-131	8.040 d =	± 0.12%		
53 131	2.878E-02	9%	15+	2.88E-02
53 131	3.365E-02	5%	11+	3.36E-02
53 131	4.110E-02	5.0%	5+	4.09E-02
55-Cs-137	30.172 y	± 0.54%		
55 137	6.221E-02	8.0%	11+	6.21E-02
55 137	5.889E-02	8.0%	7+	6.02E-02
55 137	5.567E-02	10.0%	1+	5.90E-02

7+ means 7 direct experimental studies of the isotope; + refers to measurements on the element that are also relevant.

6.3. Nuclear Data for the Production of ⁶⁴Cu, ^{114m}In, ¹⁶⁶Ho, ¹⁶⁹Yb, ¹⁷⁷Lu, ¹⁸⁶Re and ¹⁸⁸Re Radionuclides Through Capture Channels and Decay

Newly evaluated cross sections have been reviewed below, including consideration of the decay schemes of the specified nuclides. The evaluated data files are produced in ENDF format [6.5] for neutron energies up to 60 MeV, and include uncertainty data. This experimental information has been retrieved from the EXFOR database [6.6] by means of the original ENDVER/Gui package [6.7] and the SAFEPAQ-II application [6.8]. All the data processing and manipulation has been performed using the NJOY-99, ENDF Utility and PREPRO-2007 codes [6.9, 6.10]. The differential experimental data are plotted as excitation functions, while the integral data are derived and compared with integral experimental information [6.11-6.13], whenever possible.

Rhenium-186 production: $^{185}Re(n,\gamma)^{186}Re$ reaction

The ¹⁸⁵Re(n, γ)¹⁸⁶Re reaction channel is present in many evaluated nuclear application libraries and model code calculations. Existing evaluations have been analysed, and demonstrate good agreement for the thermal neutron capture cross-sections and resonance integrals between evaluations and measurements (Tables 6.3. and 6.4.). A long-lived isomer exists with a relatively low production cross-section at thermal energy (~ 0.3 barn) that decays by isomeric transition only. The recommended neutron capture cross-sections and uncertainty bands are shown as functions of neutron energy in Fig. 6.5 for the ¹⁸⁵Re(n, γ)^{186g+m}Re, ^{186g}Re and ^{186m}Re reactions, along with various measurements.

¹⁸⁶Re decay properties: $T_{\frac{1}{2}} = 3.77 \text{ d} \pm 0.19\%$; 93.1% β° (¹⁸⁶Os), 6.9% β^{+} (¹⁸⁶W), with an average $\langle \beta \rangle$ energy of 337.26 keV and average $\langle \gamma \rangle$ energy of 20.305 keV. This radionuclide possesses indices for ingestion and inhalation of 1.5 x 10⁻⁹ and 1.1 x 10⁻⁹ Sv/Bq, respectively.

^{186m}Re decay properties: $T_{\frac{1}{2}} = 200,000 \text{ y} \pm 25.4\%$; 100% IT (¹⁸⁶Re).

¹⁸⁶Rh has several current and potential applications, including investigations as a pain palliant for cancerous metastases in bones and for antibody labelling in targeted radiotherapy.

Laboratory-year	σ [b]	Δσ [b]	$\sigma^{m}(\Delta\sigma)$ [b]
ANL-1947	101	20	_
ORL-1960	127	36	_
GA-1968	114	30	_
LRL-1978	116	6	_
MU-2006	112	2	0.34 (0.1)
KfK Chart	_	_	0.34
this work	112	10%	0.34

TABLE 6.3.THERMAL NEUTRON CAPTURE CROSS
SECTION OF ¹⁸⁵Re

m means metastable

Laboratory- year	Min. energy [eV]	RI [b]	ΔRI [b]
STF-1966	0.5	1650	90
LRC-1968	0.5	1790	60
GHT-1974	0.5	1419	77
LRL-1978	0.5	1810	150
MU-2006	_	1727	50
this work		1729	5%

TABLE 6.4.RESONANCE INTEGRAL FOR THE
CAPTURE CROSS SECTION OF ¹⁸⁵Re

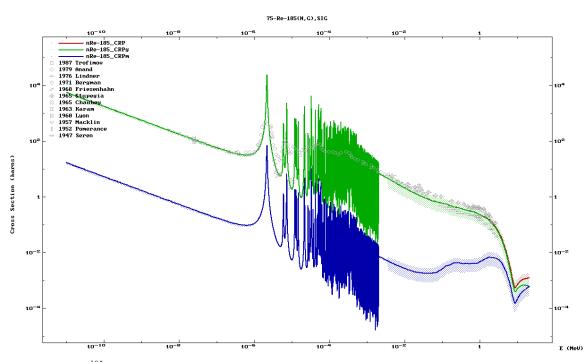


FIG. 6.5. ¹⁸⁵Re neutron capture cross section – shaded areas constitute the uncertainty bands.

Rhenium-188 production: ${}^{186}W(n,\gamma){}^{187}W(n,\gamma){}^{188}W(\beta\bar{\ }){}^{188}Re$ double capture and beta decay reaction

The double neutron capture and decay channel is important in the production of ¹⁸⁸Re when no carrier is added. While the first capture reaction has been evaluated and validated by both differential and integral measurements (Tables 6.5 and 6.6), the second reaction is based purely on theoretical model calculations with only one known study of the resonance integral and thermal cross section. An uncertainty of 10% in the ¹⁸⁷W(n, γ) cross section of 71 barn at thermal neutron energy is acceptable for production purposes. A single level Breit-Wigner formalism has been used to represent a single resonance while maintaining the thermal cross section [6.14].

¹⁸⁸Re decay properties: $T_{\frac{1}{2}} = 16.98 \text{ h} \pm 0.12\%$; 100% β ° (¹⁸⁸Os), with an average $\langle \beta \rangle$ energy of 780.20 keV and average $\langle \gamma \rangle$ energy of 57.881 keV. This radionuclide is identified with indices for ingestion and inhalation of 1.4 x 10⁻⁹ and 5.4 x 10⁻¹⁰ Sv/Bq, respectively.

¹⁸⁷W decay properties: $T_{\frac{1}{2}} = 23.85 \text{ h} \pm 0.34\%$; 100% β ° (¹⁸⁷Re).

¹⁸⁸W decay properties: $T_{\frac{1}{2}} = 69.78 \text{ d} \pm 0.07\%$; 100% β [°] (¹⁸⁸Re).

TABLE 6.5. THERMAL NEUTRON CAPTURE CROSS SECTION OF ¹⁸⁶W

Laboratory-	σ[b]	Δσ [b]
year		
AGA-1966	37.8	1.2
MOL-1967	35.4	8.0
ORL-1977	37.0	1.5
MUN-1987	38.5	8.0
MU-2006	38.1	0.5
this work	37.5	5%

TABLE 6.6. RESONANCE INTEGRAL FOR THE CAPTURE CROSS SECTION OF $^{186}\mathrm{W}$

Laboratory-year	Min. energy [eV]	RI [b]	ΔRI [b]
BGK-1969	0.5	345	99
GHT-1974	0.5	410	4.
ORL-1977	0.5	490	15
LRL-1978	0.5	426	32
MU-2006	_	480	15
this work		519	25%

TABLE 6.7.RESONANCE INTEGRAL FOR THE
CAPTURE CROSS SECTION OF ¹⁸⁷W

ORL-1966	0.5	2760	550
this work		1652	75%
Laboratory- year	Min. energy [eV]	RI [b]	ΔRI [b]

TABLE 6.8.THERMAL NEUTRON CAPTURE
CROSS SECTION OF ¹⁸⁷W

this work	71	10%
ORL-1977	70	10
ORL-1966	64	10
year		
Laboratory-	σ [b]	Δσ [b]

The first capture channel has been validated through experimental integral studies involving many different neutron spectra, including fusion, fission and high energy, as demonstrated by the highly satisfactory C/E values depicted in Fig. 6.6 [6.11]. Uncertainty in the cross section is shown as a shaded band around C/E = 1 value, while each C/E value has an uncertainty range that corresponds to the experimental uncertainty.

Recommended neutron capture cross sections and uncertainty bands for the $^{186}W(n,\gamma)^{187}W$ and $^{187}W(n,\gamma)^{188}W$ reactions are shown as functions of neutron energy in Figs. 6.7 and 6.8 respectively, along with various measurements.

FIG. 6.6. Calculated/Experimental (C/E) values for $^{186}W(n,\gamma)$ reaction.

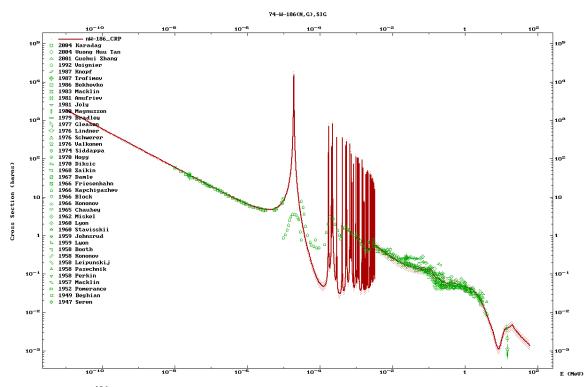


FIG. 6.7. ¹⁸⁶W neutron capture cross-section – shaded area constitutes the uncertainty band.

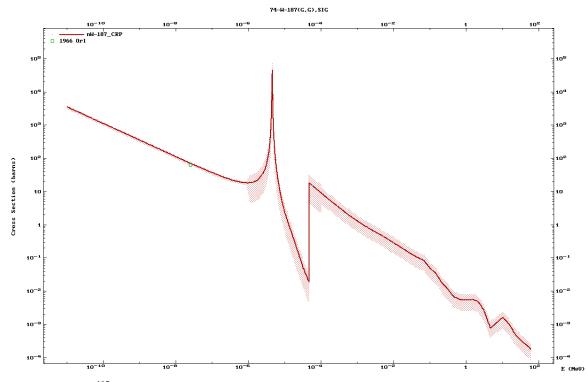


FIG. 6.8. ¹⁸⁷W neutron capture cross section – shaded area constitutes the uncertainty band.

Copper-64 production: ${}^{63}Cu(n,\gamma){}^{64}Cu$ reaction

Cross-section data for the ${}^{63}Cu(n,\gamma){}^{64}Cu$ reaction in many libraries have been carefully evaluated because this reaction has been adopted as a standard in dosimetry. The decay scheme has been re-evaluated at Jülich to produce the following recommended data: 38.4% β , 17.8% β^+ and 43.8% electron capture, and an emission probability of 0.54% for the 1346-keV gamma-ray emission. The ${}^{63}Cu(n,\gamma){}^{64}Cu$ reaction is still occasionally used and a high flux reactor can lead to reasonable yields, although the preferred production route is by means of a cyclotron.

 ^{64}Cu decay properties: $T_{\frac{1}{2}}$ = 12.701 h \pm 0.02%; 38.4% β° (^{64}Zn), 43.8% electron capture and 17.8% β^{+} (^{64}Ni), with average $<\!\beta\!>$ energy of 125.88 keV and average $<\!\gamma\!>$ energy of 190.08 keV. This radionuclide possesses indices for ingestion and inhalation of 1.2 x 10^{-10} and 1.2 x 10^{-10} Sv/Bq, respectively.

⁶⁴Cu is one of the most important emerging therapeutic radionuclides that can be adopted to undertake a combination of radiotherapy and positron emission tomography.

Only one resonance parameter file exists, with the resolved resonance parameters for Multi Level Breit Wigner taken mainly from the work of Mughabghab up to 153 keV [6.12], with a 50-keV cut-off for JENDL-3.2 (JENDL-3.3, 99D) and a 99.5-keV cut-off for ENDF/B-VI revision 2 (revisions 6 and 8 up to 150 MeV). A 50-keV cut-off has been made because many levels are missing above 50 keV – only the total widths have been measured (Rohr G. *et al.* (1968), [6.15]), and γ - γ data are non-existent. The 100-keV cut-off in ENDF/B-VII has been adopted because an even poorer fit occurs above this energy. Nevertheless, a thermal value of 4.50 ± 0.2 b from Mughabghab [6.12] is consistent with other thermal

measurements, and the IRDF-2002 resonance integral of 4.92 b with thermal cross section of 4.47 b are perfectly acceptable (see Tables 6.9 and 6.10).

Laboratory-year	Min. energy [eV]	RI [b]	ΔRI [b]
ANL-1964	0.55	5.0	-
GHT-1972	0.55	4.7	0.3
NPL-1974	0.1	2.79	0.18
ORL-1977	0.5	5.3	0.1
LRL-1978	0.5	5.15	0.10
MU-2006	_	4.97	0.08
this work		4.92	5%

TABLE 6.9.RESONANCE INTEGRAL FOR THE CAPTURE
CROSS SECTION OF 63 Cu

TABLE 6.10. THERMAL NEUTRON CAPTURE
CROSS SECTION OF ⁶³Cu

this work	4.47	2%
MU-2006	4.50	±0.2
ORL-1977	4.45	±0.5
NPL-1974	4.44	±0.2
ORL-1960	4.66	±0.5
Laboratory-year	σ [b]	Δσ [b]

A single "calculated integral experiment" (C/E) value in the 252 Cf spontaneous fission spectrum for the capture channel as shown in Fig. 6.9 [6.11] does not reflect the confidence that one can place in this reaction channel based on comparison with the differential measurements. The experimental uncertainty does not seem to be realistic, while the cross section appears to be reasonably well founded.

The recommended neutron capture cross sections and uncertainty band for the ${}^{63}Cu(n,\gamma){}^{64}Cu$ reaction are shown as a function of neutron energy in Fig. 6.10, along with various measurements.

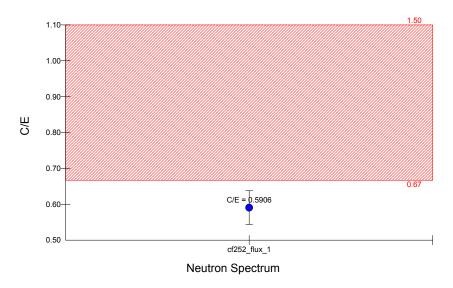
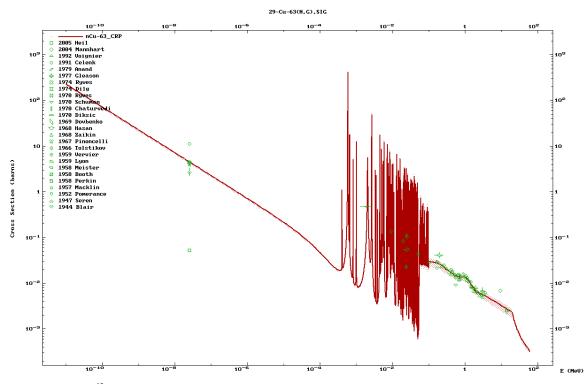



FIG. 6.9. Integral validation of experimental study of ⁶³Cu neutron capture.

FIG. 6.10. ⁶³*Cu neutron capture cross section – shaded area constitutes the uncertainty band.*

Indium-114m production: $^{113}In(n,\gamma)^{114m}$ In reaction

Data quantifying the ¹¹³In(n,γ)¹¹⁴In (^{114m}In) reaction channel exit in many evaluated libraries, although this particular reaction channel is rarely defined in terms of the two branches apart from in EAF [6.14] and JENDL-3.2/A, where the energy dependent branching ratio has been calculated from systematics. However, experimental information in the thermal and MeV ranges point to a different branching ratio of 0.42 at thermal energy increasing to 0.5 at 14 MeV. The first metastable channel has been better measured

than the ground channel, although the existence of other metastable levels does seem to be supported in the literature (¹¹⁴ⁿIn with a half-life of 42 ms). A total thermal cross section of 12.0 ± 1.1 b from Mughabghab [6.12] agrees reasonably well with the various measurements (Table 6.11). The proposed total resonance integral fits well with the calculated value, although the metastable resonance integral would appear to be high (Table 6.12).

^{114m}In decay properties: $T_{\frac{1}{2}} = 50.0 \text{ d} \pm 0.4\%$; 3.5% β^+ (¹¹⁴Cd), 96.5% IT (¹¹⁴In) with an average $<\beta>$ energy of 140.90 keV and average $<\gamma>$ energy of 88.989 keV. This radionuclide is associated with indices for ingestion and inhalation of 4.1 x 10⁻⁹ and 9.3 x 10⁻⁹ Sv/Bq, respectively.

¹¹⁴In decay properties: $T_{\frac{1}{2}} = 1.198 \text{ m} \pm 0.1\%$; 99.5% β° , 0.5% β^{+} with an average $\langle \beta \rangle$ energy of 769.23 keV and average $\langle \gamma \rangle$ energy of 4.369 keV.

TABLE 6.11. THERMAL NEUTRON CAPTURE CROSSSECTION OF ¹¹³In

Laboratory-year	σ [b]	Δσ [b]	σ ^m [b)
	0 [0]	2 3	L /
MTR-1963m	—	0.8	8.1
MTR-1963g	3.9	0.4	—
ROS-1968m	-	0.7	7.5
ROS-1968g	3.1	0.7	_
GHT-1972m	_	0.4	9.45
MU-2006	12.0	1.1	_
this work	12	10%	7.8

m means metastable

TABLE 6.12. RESONANCE INTEGRAL FOR THE CAPTURE CROSS SECTION OF ^{113}In

Laboratory-year	Min. energy [eV]	RI [b]	ΔRI [b]
GHT-1969	0.55	258	10
CNE-1970	0.5	243	29
GHT-1973	0.55	258	18
MU-2006	_	320	30
MU-2006m	_	220	15
this work		321	10%
g		112	
m		209	

Without further experimental measurements in the resonance range, the total capture cross section has been adopted directly from EAF-2007 [6.14], while the branching ratio has been modified to follow more precisely the experimental information available at high energies (Table 6.13).

Laboratory-year	Energy [eV]	m/g branching ratio	Δ branching ratio
MTR-1963	2.53E-01	2.1	0.1
KFK-1966	7.80E+03	2.1	0.3
KFK-1966	3.00E+04	2.7	0.5
KFK-1966	6.40E+04	5.1	1.0
ROS-1968	2.53E-01	2.6	0.1
LOK-1968	3.68E+05	3.2	0.3
LOK-1968	1.00E+06	3.5	0.3

TABLE 6.13. EXPERIMENTAL M/G BRANCHING RATIO OF ¹¹³In

The recommended neutron capture cross sections and uncertainty bands are shown as functions of neutron energy in Fig. 6.11 for the ${}^{113}In(n,\gamma){}^{114g+m}In$, ${}^{114g}In$ and ${}^{114m}In$ reactions, along with various measurements.

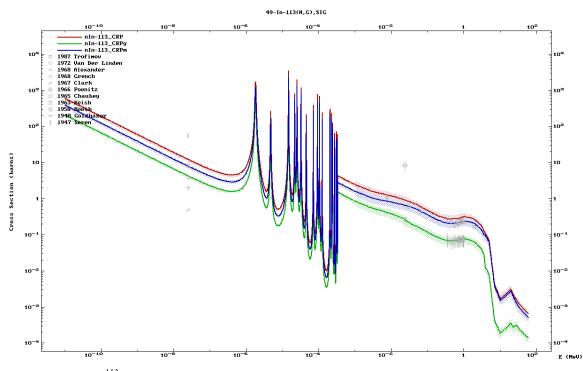


FIG. 6.11. ¹¹³In neutron capture cross section – shaded areas constitute the uncertainty bands.

Holmium-166 production: ${}^{164}Dy(n,\gamma){}^{165}Dy(n,\gamma){}^{166}Dy(\beta){}^{166}Ho$ double capture and beta decay reaction

While the ¹⁶⁴Dy(n,γ)¹⁶⁵Dy reaction channel has been well studied and exits in many libraries (Tables 6.14 and 6.15), the ¹⁶⁵Dy(n,γ)¹⁶⁶Dy reaction channel is much more ill-defined (Tables 6.16 and 6.17) and can only be derived by means of model calculations. The capture reaction for the first branch has been validated by both differential and integral measurements of the metastable product with surprisingly good agreement for such an exotic radionuclide. Under such reassuring circumstances, a calculated/experimental ratio (C/E) of 0.85 is judged to be reliable (Fig. 6.12 [6.11]), despite the lack of knowledge of the experimental neutron flux below 1 keV at the Fusion Neutron Source in JAERI where

the integral experiment was performed. Unexpectedly, the experimental and effective cross-section uncertainties agree rather well for such an exotic cross section.

¹⁶⁶Ho decay properties: $T_{\frac{1}{2}} = 1.117 \text{ d} \pm 0.07\%$; 100% β ° (¹⁶⁶Er) with an average $\langle \beta \rangle$ energy of 69.475 keV and average $\langle \gamma \rangle$ energy of 30.211 keV. This radionuclide is associated with indices for ingestion and inhalation of 1.4 x 10⁻⁹ and 6.5 x 10⁻¹⁰ Sv/Bq, respectively.

¹⁶⁵Dy decay properties: $T_{\frac{1}{2}} = 2.33 \text{ h} \pm 0.26\%$; 100% β ō.

 ^{165m}Dy decay properties: $T_{\frac{1}{2}}$ = 1.26 m \pm 0.48%; 2.4% $\beta\bar{\circ}$ and 97.6% IT.

¹⁶⁶Dy decay properties: $T_{\frac{1}{2}} = 3.40 \text{ d} \pm 0.12\%$; 100% β [°].

OF	DY		
Laboratory-year	σ[b]	Δσ [b]	$\sigma^{m}(\Delta\sigma)$ [b]
MNZ-1954	507	_	_
MAU-1962g	951	—	_
OSL-1962g	1100	—	_
OSL-1972	2800	140	_
OSL-1972m	—	—	1700(240)
NPL-1974	2700	100	_
SAC-1977	2695	_	_
ANR-1991g	1056	_	-
MU-2006	2650	70	_
this work	2650	15%	1669

TABLE 6.14. THERMAL NEUTRON CAPTURE CROSS SECTION OF 164 DV

m means metastable

TABLE 6.15. RESONANCE INTEGRAL FOR THE
CAPTURE CROSS SECTION OF ¹⁶⁴Dy

Laboratory- year	Min. energy [eV]	RI [b]	ΔRI [b]
GHT-1974m	0.5	470	20
KJL-1975	0.5	335	27
KTO-2001	0.5	649	24
ANR-2005	0.5	527	89.
MU-2006	-	341	20
this work		342	50%

TABLE 6.16. THERMAL NEUTRON CAPTURE
CROSS SECTION OF 165 Dy

this work	3573	10%
MU-2006	3600	300
JAE-1981	3530	300
JAE-1981	2000	—
OSL-1972	3900	_
Laboratory-year	$\sigma^{g}[b]$	Δσ [b]

TABLE 6.17. RESONANCE INTEGRAL FOR THE
CAPTURE CROSS SECTION OF ¹⁶⁵Dy

Laboratory-	Min. energy [eV]	RI [b]	$\Delta RI[b]$
OSL-1972	0.5	22000	3000
MU-2006	_	22000	3000
this work		20181	15%

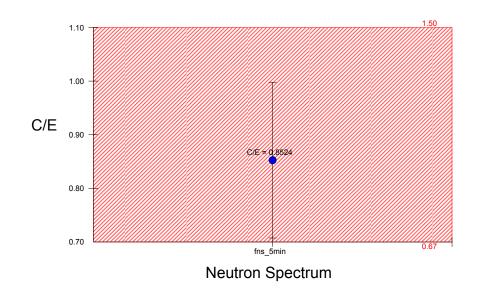


FIG. 6.12. Integral validation of experimental study of ¹⁶⁴Dy neutron capture.



FIG. 6.13. ¹⁶⁴Dy neutron capture cross section – shaded areas constitute the uncertainty bands.

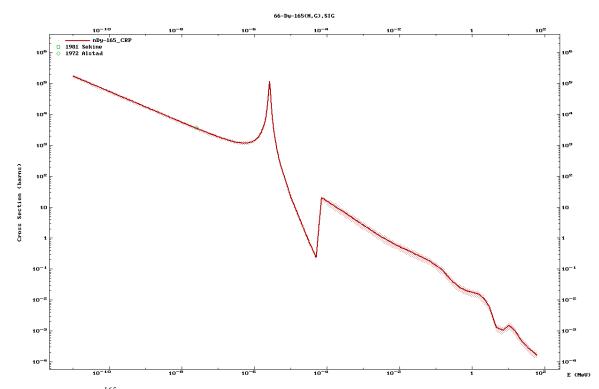


FIG. 6.14. ¹⁶⁵Dy neutron capture cross section – shaded area constitutes the uncertainty band.

Ytterbium-169 production: $^{168}Yb(n,\gamma)^{169}Yb$ reaction

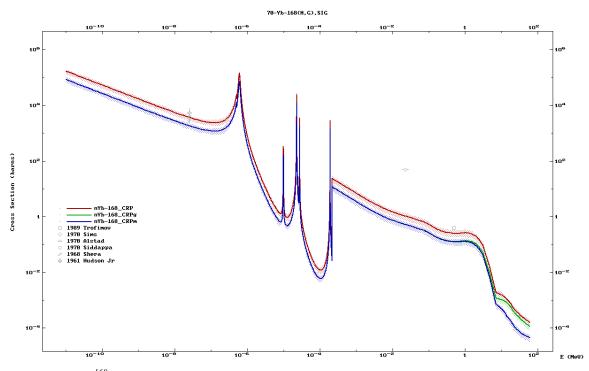
The 168 Yb(n, γ) 169 Yb reaction channel exits in only a few libraries, and the excitation function is mainly based on model calculations.

¹⁶⁹Yb decay properties: $T_{\frac{1}{2}} = 32.01 \text{ d} \pm 0.6\%$; 100% β^+ (¹⁶⁹Tm) with an average $<\beta>$ energy of 111.80 keV and average $<\gamma>$ energy of 313.26 keV. This radionuclide is associated with indices for ingestion and inhalation of 7.1 x 10⁻¹⁰ and 3.0 x 10⁻⁹ Sv/Bq, respectively.

^{169m}Yb decay properties: $T_{\frac{1}{2}} = 46.0 \text{ s} \pm 4\%$; IT 100% with an average < β > energy of 24.2 keV.

¹⁶⁹Yb is an Auger-electron emitter that is gaining interest for therapeutic applications.

An evaluation was performed by means of a model calculation [6.14] and systematically-derived branches (set at a ratio of 0.5 up to a neutron energy of 30 keV, and increasing to 0.8 thereafter). Rather elderly reduced sets of experimental differential measurements were used, and the thermal cross section has been renormalized to specific studies (Tables 6.18 and 6.19).


TABLE 6.18. THERMAL NEUTRON CAPTURE
CROSS SECTION OF ¹⁶⁸Yb

2300	170
2600	60
4400	200
3660	50
2840	600
5500	2640
σ[b]	Δσ [b]
	5500 2840 3660 4400

TABLE 6.19. RESONANCE INTEGRAL FOR THE CAPTURE CROSS SECTION OF ¹⁶⁸Yb

Laboratory-year	Min. energy [eV]	RI [b]	ΔRI [b]
KJL-1969	0.5	14700	1900
CNE-1970	_	35706	1714
OSL-1970	_	38000	2000
CPO-1970	0.55	19800	4200
CPO-1970	0.55	21000	4200
GHT-1973	_	23040	5440
LRL-1978	0.5	16600	1700
MU-2006	_	21300	1000
this work		21238	25%

Recommended neutron capture cross sections and uncertainty bands for the 168 Yb(n, γ) ${}^{169g+m}$ Yb, 169g Yb and 169m Yb reactions are shown as functions of neutron energy in Fig. 6.15, along with various measurements.

FIG. 6.15. ¹⁶⁸Yb neutron capture cross section – shaded areas constitute the uncertainty bands.

Lutetium-177 production: ${}^{176}Yb(n,\gamma){}^{177}Yb(\beta){}^{177}Lu$ and ${}^{176}Lu(n,\gamma){}^{177}Lu$ reactions

The 176 Yb(n, γ) 177 Yb reaction channel exits in specific libraries, and is mainly based on model calculations. All data have been assessed, and specific evaluations selected for the ground and metastable states.

¹⁷⁷Lu decay properties: $T_{\frac{1}{2}} = 6.64 \text{ d} \pm 0.3\%$; 100% β[°] (¹⁷⁷Hf) with average <β> energy of 147.34 keV and average <γ> energy of 33.423 keV. ¹⁷⁷Lu is associated with indices for ingestion and inhalation of 5.3 x 10⁻¹⁰ and 1.2 x 10⁻⁹ Sv/Bq, respectively.

 ^{177m}Lu decay properties: $T_{\frac{1}{2}}$ = 160.3 d \pm 2.5%; 77.4% β $^{\circ}$ and 22.6% IT (^{177}Lu) with an average $<\!\beta\!>$ energy of 82.07 keV and average $<\!\gamma\!>$ energy of 167.77 keV. ^{177n}Lu has been observed with $T_{\frac{1}{2}}$ of 7.0 m; 50% β $^{\circ}$ and 50% IT (^{177}Lu) with an average $<\!\beta\!>$ energy of

^{1//n}Lu has been observed with T_{γ_2} of 7.0 m; 50% β° and 50% IT (^{1//}Lu) with an average $\langle \beta \rangle$ energy of 276.76 keV and average $\langle \gamma \rangle$ energy of 1741.7 keV.

¹⁷⁷Yb decay properties: $T_{\frac{1}{2}} = 1.911 \text{ h} \pm 6\%$; 100% β ° (¹⁷⁷Lu) with an average $\langle \beta \rangle$ energy of of 420.0 keV and average $\langle \gamma \rangle$ energy of 199.13 keV.

 177m Yb decay properties: T $_{\frac{1}{2}}$ = 6.41 s ± 0.3%; 100% IT with an average
 $<\beta>$ energy of 178.2 keV and average
 $<\gamma>$ energy of 150.0 keV.

¹⁷⁷Lu is used in palliative therapy via interstitial implantation as a liquid gel injection.

CROSS SECTION OF ¹⁷⁶ Yb			
Laboratory-year	σ[b]	Δσ [b]	
OSL-1970	2.40	0.2	
LRL-1978	3.02	0.5	
MU-2006	2.85	0.5	
this work	2.85	17.5%	

TABLE 6.20. THERMAL NEUTRON CAPTURE
CROSS SECTION OF ¹⁷⁶Yb

TABLE 6.21. RESONANCE INTEGRAL FOR THE CAPTURE CROSS SECTION OF $^{176}\mathrm{Yb}$

Laboratory-year	Min. energy [eV]	RI [b]	ΔRI [b]
LRL-1970	0.5	1.33	0.13
OSL-1970	0.4	2.7	0.3
GHT-1973	0.55	14.4	1.2
KJL-1975	0.5	9.2	1.8
MU-2006	_	6.9	0.6
this work		6.77	10%

An evaluation of the 176 Yb(n, γ) 177 Yb reaction was performed by means of a model calculation [6.14] and systematically-derived branches (set at a ratio of 0.5 up to a neutron energy of 30 keV, and increasing to 0.76 thereafter). A reliable set of experimental differential measurements were adopted, particularly above the resonance region. There is room for improvement in this evaluation with respect to the branching ratio and resonance integral if new experimental studies are performed (see Tables 6.20 and 6.21).

The ¹⁷⁶Lu(n,γ)¹⁷⁷Lu reaction channel exits in a few libraries, and is mainly based on model calculations. First resonances and keV-region measurements provide confidence in the predicted excitation function (Tables 6.22 and 6.23), and the cross section of the longer-lived metastable state has been measured at thermal neutron energy. However, the ¹⁷⁶Yb route of production of ¹⁷⁷Lu is recommended because of the carrier-free nature of the end product.

Laboratory-year	σ[b]	Δσ [b]	$\sigma^{m}[b]$
ANL-1947	3640	728	_
HAR-1960	2100	150	_
LRL-1967m	_	2.0	7.0
MUN-1976m	_	0.7	2.1
MU-2006	2020	70	_
MU-2006	_	0.7	2.8
this work	2097	8%	2.1

TABLE 6.22. THERMAL NEUTRON CAPTURE CROSS SECTION OF ^{176}Lu

m means metastable

Laboratory-year	Min. energy [eV]	RI [b]	∆RI [b]
GH-1974	0.55	1069	41
MUN-1976m	0.55	3.8	1
LRL-1978	0.5	1480	80
MU-2006	_	1087	40
MU-2006m	_	4.7	1.4
this work		919	10%
m		0.9	

TABLE 6.23. RESONANCE INTEGRAL FOR THE CAPTURE CROSS-SECTION OF $^{176}\mathrm{Lu}$

m means metastable

Recommended neutron capture cross sections and uncertainty bands for the 176 Yb (n,γ) ${}^{177g+m}$ Yb, 177g Yb and 177m Yb reactions are shown as functions of neutron energy in Fig. 6.16, along with various measurements, while the equivalent data for the 176 Lu (n,γ) ${}^{177g+m}$ Lu, 177g Lu and 177m Lu reactions are depicted in Fig. 6.17.

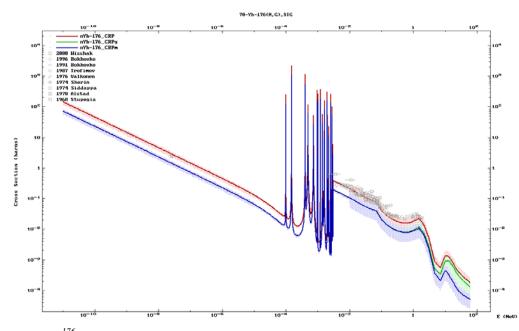


FIG. 6.16. ¹⁷⁶Yb neutron capture cross section – shaded areas constitute the uncertainty bands.

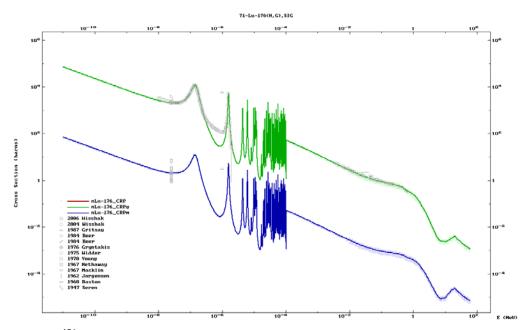


FIG. 6.17. ¹⁷⁶Lu neutron capture cross section – shaded areas constitute the uncertainty bands.

Acknowledgements

The authors wish to acknowledge R.A. Forrest, J. Kopecky, R.W. Mills, O. Serot and V. Zerkin for their valuable contributions.

6.4. Nuclear Data for the Production of ⁹⁰Y, ¹⁰³Pd, ¹²⁵I, ¹²⁶I, ¹⁴⁹Pm, ¹⁵³Sm, ¹⁸⁸Re and ²¹³Bi Radionuclides Through Capture Channels and Decay

6.4.1. Introduction (Refs [6.5, 6.15 – 6.21])

We have examined the experimental and evaluated data for the neutron capture reactions that produce the radioactive isotopes 90 Y, 103 Pd, 125 I (from the β^- decay of 125 Xe), 126 I, 149 Pm (from the β -decay of 129 Nd), 153 Sm and 188 Re, along with the 213 Bi-producing decay chain initiated by the decay of 233 U. The experimental data available in the EXFOR library [6.15] for the neutron capture reactions were initially compiled and checked for their normalization to standards. These data were then compared with theoretical calculations using the EMPIRE-II code [6.16] and with previous evaluations in the ENDF-formatted libraries using the NJOY99 code [6.17]. BROND-2, JENDL-3.3, JEFF-3.1 and ENDF/B-VI databases were used in the comparison, with the ENDF/B-VII library added to these data sets on release. The unshielded spectrum-averaged capture cross sections were also calculated using the PREPRO processing codes and the ENDF-formatted libraries. Resulting capture resonance integrals, along with the thermal capture cross sections from the various evaluations, were compared with the experimental data, as well as with the evaluated values of Mughabghab.

No serious discrepancies were observed between the EMPIRE-II calculations and the available evaluations – these particular comparisons were between the experimental data from the EXFOR library and the available evaluations. The evaluation that described the experimental data most precisely was recommended, although small adjustments were sometimes made in attempts to improve agreement. Since only one evaluation of neutron-induced reactions on ¹²⁵I was found in the ENDF-formatted libraries, a new evaluation was prepared that was based on the behaviour expected from the scarce experimental data in the thermal region, from systematics in the resonance region, and from EMPIRE-II calculations based on systematics in the continuum region. A crude capture cross-section covariance file was included in all evaluations, except for ⁸⁹Y when the ENDF/B-VII evaluation provides a reasonably detailed covariance file. Our covariance files were prepared solely to reproduce the uncertainty (variance) in the spectrum-averaged capture cross section in the thermal, resonance and continuum region, and are not intended for wider use.

We examined the information in the ENDF-formatted decay data libraries for the decay of the radionuclides of interest: 90 Y, 103 Pd, 125 Xe, 125 I, 149 Nd, 149 Pm, 153 Sm, 188 Re, 213 Bi and the α -emitting decay chain 225 Ac $\rightarrow {}^{221}$ Fr $\rightarrow {}^{217}$ At $\rightarrow {}^{213}$ Bi, as well as the decay chain that produces 225 Ac (233 U $\rightarrow {}^{225}$ Ra $\rightarrow {}^{225}$ Ac).

6.4.2. Production of ⁹⁰Y (Refs [6.22-6.52]) by means of the ⁸⁹Y(n,γ)⁹⁰Y reaction

⁹⁰Y has a J^π = 2⁻ ground state with a half-life of $T_{1/2}$ = 64.053(20) h that decays only by β⁻ emission. There is also a J^π = 7⁺ isomeric state at E_x = 682.04(6) keV with a half-life of $T_{1/2}$ = 3.19(6) h that undergoes decay almost exclusively to the ground state, but possesses an extremely small branching ratio of 1.8 × 10⁻⁵ for β⁻ emission. Q-value of the β⁻decay of ⁹⁰Y is 2280.1(16) keV, with an average light-particle (electron) energy of 933.614(13) keV and negligible γ-ray energy. The most recent version of the radioactive decay file can be found in the ENDF/B-VII nuclear applications library, based on the the ENSDF evaluation of Browne (Fig. 6.18).

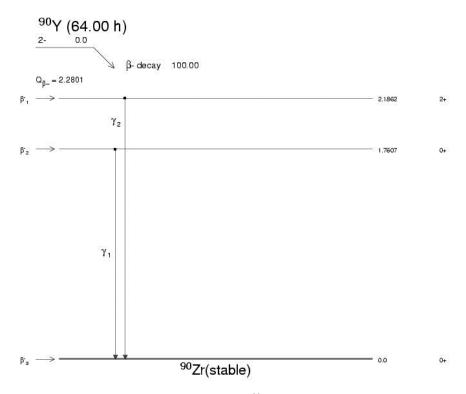


FIG. 6.18. Decay scheme of ⁹⁰Y from the MIRD library.

Experimental values of the thermal capture cross section and capture resonance integral are available from EXFOR (Tables 6.24 and 6.25 below). A simple weighted mean of the experimental values of the thermal capture cross section furnishes the value adopted by Mughabghab. However, the adopted value for the resonance capture integral is about twice the weighted mean of the two available data determinations.

Lead author	Publication date	(n,γ) (b)
Seren	1947	1.24 (0.25)
Pomerance	1951	1.38 (0.14)
Benoist	1951	1.25 (0.20)
Lyon	1956	1.26 (0.08)
Rustad	1966	1.28 (0.01)
Ryves	1971	1.21 (0.05)
Takiue	1978	1.31 (0.04)
this work	-	1.28 (0.01)
Mughabghab	2006	1.28 (0.02)

TABLE 6.24. THERMAL NEUTRON CAPTURE CROSS SECTION DATA OF ⁸⁹Y (extracted from EXFOR)

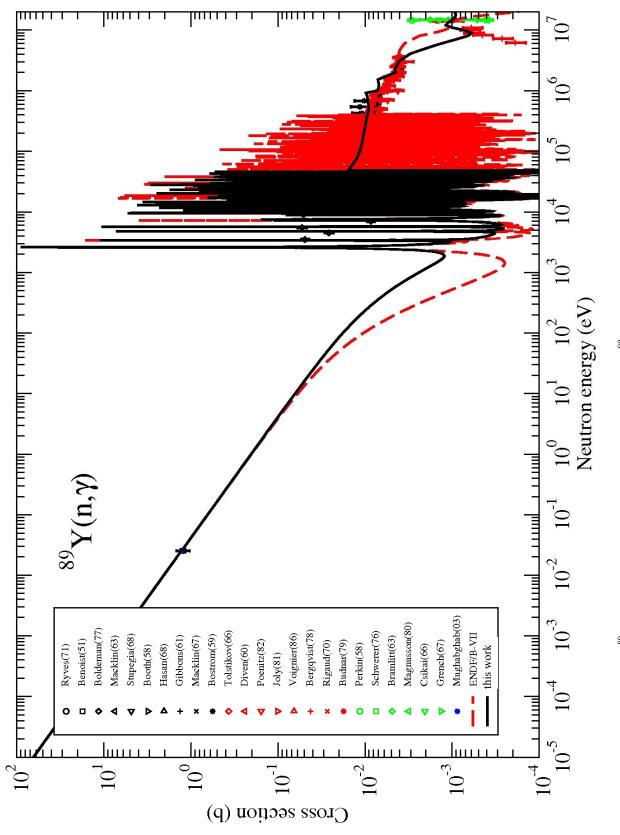

/	
Publication date	RI (b)
1950	0.72 (0.22)
1971	0.44 (0.06)
-	0.46 (0.06)
2006	1.00 (0.10)
	1950 1971 -

TABLE 6.25. CAPTURE RESONANCE INTEGRAL DATA OF ⁸⁹Y(extracted from EXFOR)

TABLE 6.26. SPECTRUM-AVERAGED CAPTURE CROSS SECTIONSFROM EVALUATIONS OF ⁸⁹Y

Library	Resonance integral (b)	Maxwellian fission integral (mb)
ENDF/B-VI.8	0.892	4.76
ENDF/B-VII.0	0.840	6.34
JEFF-3.1	0.895	4.77
JENDL-3.3	0.840	6.34

JENDL-3.3, JEFF-3.1, ENDF/B-VI and ENDF/B-VII evaluations were compared with the experimental (n,tot), (n,el), (n, γ), (n,p), (n, α), (n,2n) and (n,inl) data found in the EXFOR library. The JEFF-3.1 evaluation is essentially identical to that of ENDF/B-VI, and all four evaluations agree well with respect to total, elastic, (n, α) and (n,2n) cross section data; the JENDL-3.3 evaluation shows slightly better agreement with the available inelastic data, while the JEFF-3.1 and ENDF/B evaluations are in better agreement with the (n,p) data. All evaluations provide a reasonably good description of the capture cross section (Fig. 6.19), but underestimate the accepted value of the capture resonance integral by 10% to 15% (Table 6.26).

6.4.3. Production of ¹⁰³Pd by means of the ¹⁰²Pd(n,γ)¹⁰³Pd reaction (Refs [6.53-6.55])

¹⁰³Pd is a low-energy x-ray emitter used increasingly for brachytherapy. The $J^{\pi} = 5/2^+$ ground state decays exclusively by electron capture with a half-life of $T_{1/2} = 16.991(19)$ d. Q-value for this decay mode is 543.1(8) keV, with an average light-particle (electron) energy of 4.90(14) keV and an average γ -ray energy of 14.4(3) keV. The most recent version of the radioactive decay file can be found in the ENDF/B-VII library, based on the the ENSDF evaluation of De Frenne and Jacobs (Fig. 6.20).

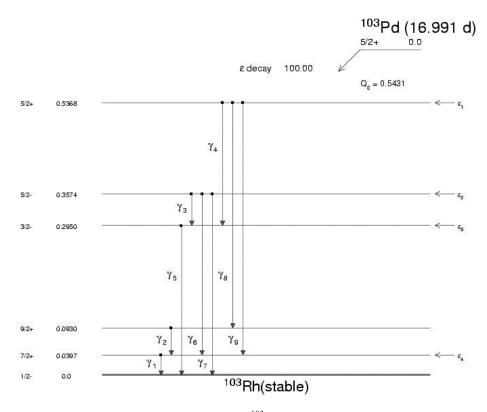


FIG. 6.20. Decay scheme of ¹⁰³Pd from the MIRD library.

The single experimental value of the thermal capture cross section found in EXFOR as well as the experimental values of the thermal capture cross section and the capture resonance integral published by Duncan and Krane are given in Tables 6.27 and 6.28. The values of Duncan and Krane were adopted by Mughabghab.

TABLE 6.27. THERMAL NEUTRON CAPTURE CROSS SECTION DATA OF ¹⁰²Pd (extracted from EXFOR)

01		
Lead author	Publication date	(n,γ) (b)
Meinke	1953	4.80 (1.44)
Duncan	2005	1.82 (0.20)
this work	-	1.88 (0.20)
Mughabghab	2006	1.82 (0.20)

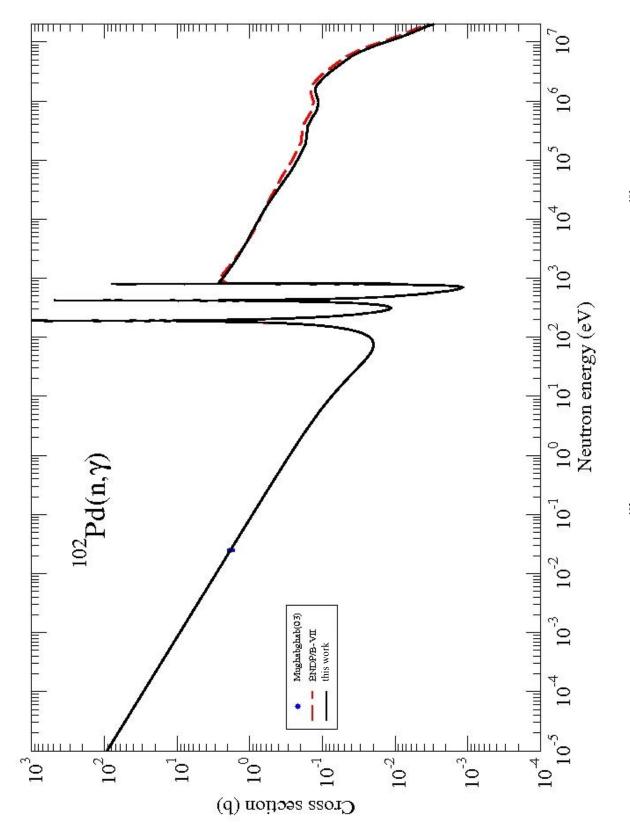

Lead author	Publication date	RI (b)
Duncan	2005	23.0 (4.0)
this work	-	23.0 (4.0)
Mughabghab	2006	23.0 (4.0)

TABLE 6.28CAPTURE RESONANCE INTEGRAL DATA OF ¹⁰²Pd
(extracted from EXFOR)

TABLE 6.29. SPECTRUM-AVERAGED CAPTURE CROSS SECTIONSFROM EVALUATIONS OF ¹⁰²Pd

Library	Resonance integral (b)	Maxwellian fission integral (mb)
ENDF/B-VI.8	8.969	130.0
ENDF/B-VII.0	16.98	130.0
JEFF-3.1	13.08	47.26
JENDL-3.3	19.41	109.8
this work	16.73	111.3

JENDL-3.3, JEFF-3.1, ENDF/B-VI and ENDF/B-VII evaluations were compared with the (n,2n) and (n,p) data found in the EXFOR library, as well as with the newly recommended values of the thermal capture cross section and resonance integral. JENDL-3.3 overestimates the (n,2n) cross-section data slightly, while the ENDF/B-VII evaluation underestimates them slightly. The JENDL-3.3 evaluation best describes the anomalously small (n,p) cross-section data. However, only ENDF/B-VII reproduces the newlyaccepted value of the thermal capture cross section, whereas none of the evaluations reproduce the accepted value of the capture resonance integral (Table 6.29). An attempt was made to improve the agreement with the experimental value of the resonance integral by adding the JENDL-3.3 data in the unresolved resonance region to the ENDF/B-VII file, which contains no such data. The unresolved resonance region was taken to extend from 820 eV (just above the last resolved resonance) to 100 keV, and the p- and d-wave strength functions were increased slightly within the systematics. This approach resulted in the capture resonance integral decreasing from 17.0 to 16.7 b, about one and a half standard deviations below the accepted value of 23 ± 4 barns. Further changes in the unresolved resonance parameters would take the data beyond the range expected from systematics and would only increase the resonance integral slightly - this representation is the best that can be achieved with the available data. The ENDF/B-VII capture cross section for the ${}^{102}Pd(n,\gamma){}^{103}Pd$ reaction and the modified data described above are shown in Fig. 6.21.

6.4.4. Production of ¹²⁵I by means of the ¹²⁴Xe(n, γ)¹²⁵Xe reaction and subsequent β^+/EC decay (Refs [6.56-6.61])

With $J^{\pi} = 1/2^{(+)}$ and a half-life of $T_{1/2} = 16.9(2)$ h, ¹²⁵Xe decays by β^+ emission/electron capture. A shortlived $J^{\pi} = 9/2^{(-)}$ isomeric state also exists at $E_x = 252.60(14)$ keV with a half-life of $T_{1/2} = 56.9(9)$ s that undergoes IT decay exclusively to the ground state. Both ¹²⁵Xe and the ¹²⁵I decay product are of interest – the latter has been tested as a treatment for hyperthyroidism and lung cancer. ¹²⁵I has a $J^{\pi} = 5/2^+$ ground state with a half-life of $T_{1/2} = 59.400(10)$ d, and also decays by β^+ emission/electron capture. The Q-value of the ¹²⁵I β^+ /EC decay mode is 185.77(6) keV, with an average light-particle (electron) energy of 16.51(19) keV and average γ -ray energy of 41.07(62) keV. The most recent version of the ¹²⁵I radioactive decay file can be found in the ENDF/B-VII library, based on the the ENSDF evaluation of Katakura (Fig. 6.22).

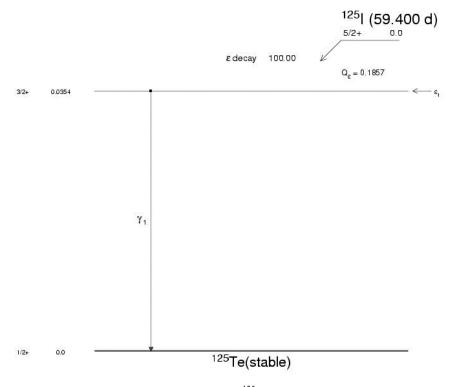
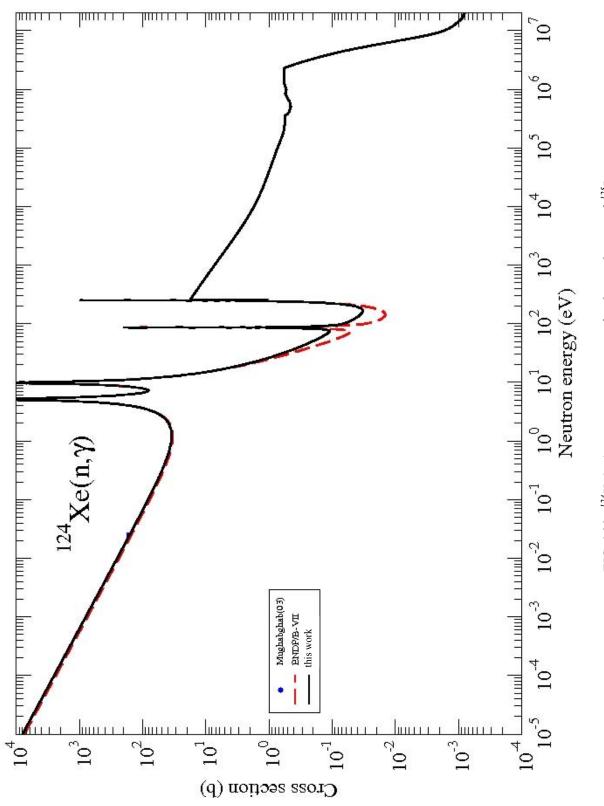


FIG. 6.22. Decay scheme of ^{125}I from the MIRD library.

The experimental values of the thermal capture cross section and capture resonance integral taken from the EXFOR library are given in Tables 6.30 and 6.31. Mughabghab adopts the more recent value of Bresesti *et al.* for the resonance capture integral, and increases the uncertainty slightly. He also recommends a thermal cross-section value larger than the experimental values we obtained from the EXFOR library.

Lead author	Publication date	$\sigma(n,\gamma)$ (b)
Tobin	1958	74.4
Harper	1961	115
Eastwood	1963	94 (9.4)
Bresesti	1964	110 (11)
Kondaiah	1968	144 (11)
this work	-	114 (11)
Mughabghab	2006	165 (11)

TABLE 6.30. THERMAL NEUTRON CAPTURE CROSS SECTION DATAOF ¹²⁴Xe (extracted from EXFOR)


TABLE 6.31. CAPTURE RESONANCE INTEGRAL DATA OF ¹²⁴Xe(extracted from EXFOR)

Lead author	Publication date	RI (b)
Eastwood	1963	2100 (210)
Bresesti	1964	3600 (500)
this work	-	2300 (200)
Mughabghab	2006	3600 (700)

TABLE 6.32. SPECTRUM-AVERAGED CAPTURE CROSS SECTIONSFROM EVALUATIONS OF ¹²⁴Xe

Library	Resonance integral (b)	Maxwellian fission integral (mb)
ENDF/B-VI.8	3048	106.9
ENDF/B-VII.0	3189	444.3
JEFF-3.1	3050	92.59
JENDL-3.3	2964	570.6
this work	3191	444.3

JENDL-3.3, JEFF-3.1, ENDF/B-VI and ENDF/B-VII evaluations were compared with the (n,2n) data found in the EXFOR library, as well as with the accepted values of the thermal capture cross section and resonance integral. The JEFF-3.1 evaluation is essentially identical to that of ENDF/B-VI, and all four evaluations reproduce the thermal capture cross–section, while the JENDL-3.3 and ENDF/B-VII evaluations give improved fits to the experimental (n,2n) data. Although ENDF/B-VII best reproduces the accepted value of the capture resonance integral (Table 6.32), an anomalously low thermal elastic cross section results. Comparison with the other evaluations revealed this behaviour to be the result of not including a negative energy resonance. The ENDF/B-VI value for the thermal elastic cross section can be recovered by re-introducing the negative energy resonance at -100 eV with a neutron width of 2.05 eV and a radiative width of 0.11 eV (modifications of the capture cross section that result are negligible). Both the ENDF/B-VII capture cross section for the ¹²⁴Xe(n, γ)¹²⁵Xe reaction in the production of ¹²⁵Xe and the modified data described above are shown in Fig. 6.23.

6.4.5. Production of ¹²⁶I by means of the ¹²⁵I(n,γ)¹²⁶I reaction (Ref [6.58, 6.62])

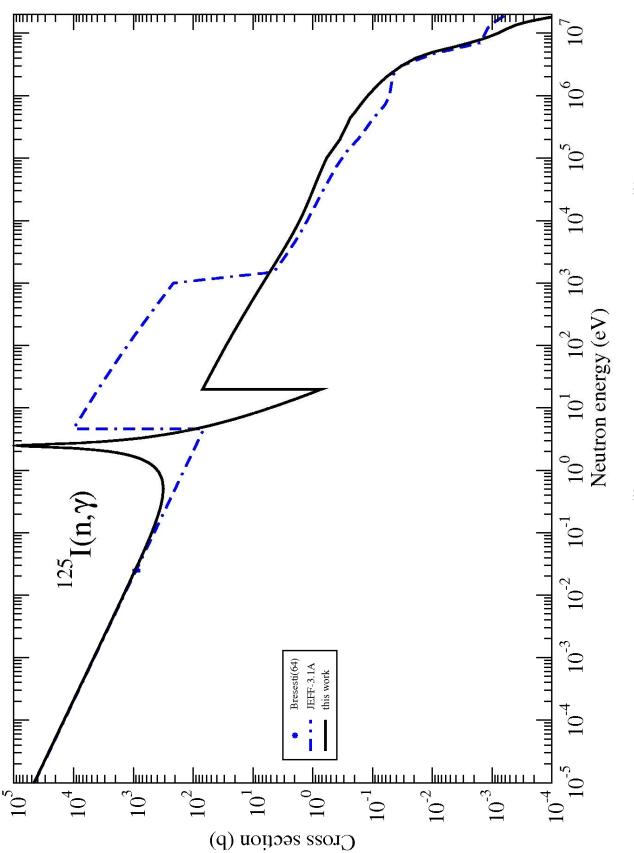
¹²⁶I has a $J^{\pi} = 2^{-}$ ground state with a half-life of $T_{1/2} = 12.93(5)$ h that undergoes 52.7% decay by β^{+} emission/electron capture with a Q value of 2155(4) keV, and by 47.3% β^{-} emission with a Q value of 1258(5) keV. As the neutron capture production cross section for ¹²⁶I is extremely large, this radionuclide could be an important contaminant of ¹²⁵I, when produced by means of reactor irradiation such as in the ¹²⁴Xe(n, γ)¹²⁵Xe \rightarrow ¹²⁵I reaction (see Section 6.3.4). The two existing experimental values for the thermal capture cross section and the one known value of the capture resonance integral are listed in Tables 6.33 and 6.34. Spectrum–averaged evaluated cross sections are given in Table 6.35.

	- (
Lead author	Publication date	$\sigma(n,\gamma)$ (b)
Harper	1961	890
Bresesti	1964	894 (90)
this work	_	892 (90)

TABLE 6.33. THERMAL NEUTRON CAPTURE CROSS SECTION DATA OF ¹²⁵I (extracted from EXFOR)

TABLE 6.34. CAPTURE RESONANCE INTEGRAL DATA OF ¹²⁵I(extracted from EXFOR)

Lead author	Publication date	RI (b)
Bresesti	1964	13730 (2000)


TABLE 6.35. CAPTURE RESONANCE INTEGRALDATA FROM EVALUATIONS OF 125 I

Library	Resonance integral (b)
JEFF-3.1A	14910
this work	9300

No ¹²⁵I reaction data other than the values tabulated above were found in the EXFOR library, and only one evaluation was found in the JEFF-3.1A library. Therefore, we attempted to prepare an alternative set of data:

- (a) above 100 keV, the EMPIRE-II code was used with default input parameters obtained from the RIPL-2 library;
- (b) the unresolved resonance parameters of the ENDF/B-VII evaluation of ¹³¹I were adopted in the energy range from 20 eV to 100 keV;
- (c) a negative-energy resonance and a single, artificial positive-energy resolved resonance were used in the resonance region in order to obtain a thermal capture cross section in agreement with the experimental observation, along with a resonance integral as large as possible (9300 b, which is still about 30% below the experimental value).

JEFF-3.1A also reproduces the thermal capture cross section, but furnishes a capture resonance integral of 14910 b, which is about 10% larger than the experimental value although within the defined uncertainty. The latter is generated in a somewhat artificial manner, as can be seen in the plot of the capture cross section $^{125}I(n,\gamma)^{126}I$ of the two evaluations shown in Fig. 6.24. However, if the objective of the evaluation is to reproduce the experimental values of the spectrum-averaged production cross sections, the JEFF-3.1A evaluation is adequate and can be recommended.

6.4.6. Production of ¹⁴⁹Pm by means of the ¹⁴⁸Nd(n,γ)¹⁴⁹Nd reaction and subsequent β^- decay (Refs [6.35, 6.63-6.84])

¹⁴⁹Nd has a $J^{\pi} = 5/2^{-}$ ground state with a half-life of $T_{1/2} = 1.728(1)$ h that decays exclusively by β^{-} emission with a Q-value of 1690(3) keV. The ¹⁴⁹Pm decay product of interest has been tested as a treatment for hyperthyroidism and lung cancer. ¹⁴⁹Pm has a $J^{\pi} = 7/2^{+}$ ground state with a half-life of $T_{1/2} = 53.08(5)$ h, and also decays exclusively by β^{-} emission. Q-value of the ¹⁴⁹Pm β^{-} decay mode is 1071(4) keV, with an average light-particle (electron) energy of 364.7(14) keV and average γ -ray energy of 11.9(8) keV. The most complete recent version of the ¹⁴⁹Pm radioactive decay file can be found in the JEFF3.1 library, based on the the ENSDF evaluation of Szucs, Johns and Singh (Fig. 6.25).

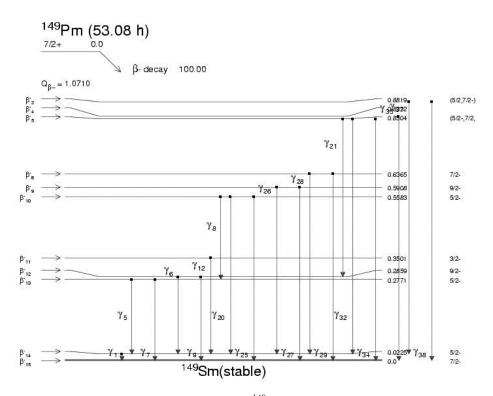


FIG. 6.25. Decay scheme of ¹⁴⁹Pm from the MIRD library.

Experimental values of the thermal capture cross section and the capture resonance integral that are available in the EXFOR library are listed in Tables 6.36 and 6.37. Simple weighted means of the experimental thermal capture cross sections and capture resonance integrals furnish values close to those adopted by Mughabghab, but with approximately half of the adopted uncertainty.

JENDL-3.3, JEFF-3.1, ENDF/B-VI and ENDF/B-VII evaluations were compared with the experimental (n,tot), (n,el), (n, γ), (n,p), (n, α) and (n,2n) data found in the EXFOR library. All evaluations agree well with the measured total and elastic cross-section data, but only the JENDL-3.3 and ENDF/B-VII files are in good agreement with the (n,2n) data and the small (n,p) and (n, α) experimental cross sections. The ENDF/B-VII evaluation provides a slightly better description of the experimental data above the resonance region, as can be seen in Fig. 6.26 and also uses the most recent resonance parameters set. Johnsrud *et al.* [6.80] capture data were renormalized by a factor of 2.58/3.7 to take into account the accepted value of the ¹⁴⁸Nd thermal neutron capture cross section. Only the evaluated data in JENDL-3.3 yield a result in agreement with the accepted value of the capture resonance integral, while the ENDF/B-VII evaluation furnishes a result that is approximately 10% too high (Table 6.38). However, if the radiative width of the first physical resonance at 155 eV can be reduced from 52 ± 8 to 44 MeV as suggested by Mughabghab, a slight increase of the capture width of the negative energy resonance from 39 to 48.5 MeV recovers the agreement with the thermal

capture cross section. The calculated capture resonance integral of the modified ENDF/B-VII evaluation is 14.65 b, well within the uncertainty limits of the Mughabghab value.

Lead author	Publication date	$\sigma(n,\gamma)$ (b)
Pomerance	1952	3.30 (0.99)
Walker	1953	3.70 (0.90)
Ruiz	1964	2.54 (0.18)
Alstad	1967	2.50 (0.20)
Gryntakis	1976	2.45 (0.14)
Heft	1978	2.58 (0.07)
this work	-	2.56 (0.06)
Mughabghab	2006	2.58 (0.14)

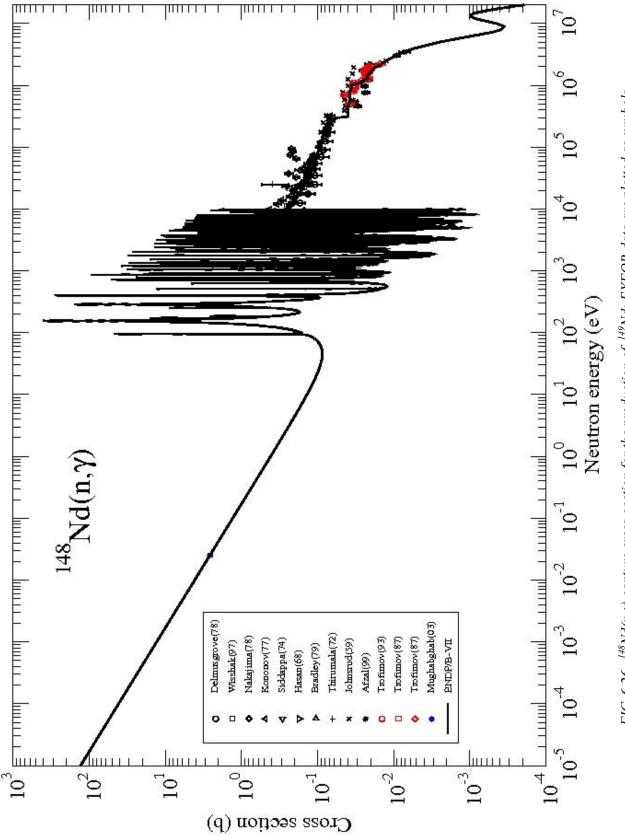

TABLE 6.36. THERMAL NEUTRON CAPTURE CROSS SECTION DATAOF ¹⁴⁸Nd (extracted from EXFOR)

TABLE 6.37. CAPTURE RESONANCE INTEGRAL DATA OF ¹⁴⁸Nd(extracted from EXFOR)

Lead author	Publication date	RI (b)
Ruiz	1964	18.7 (0.5)
Alstad	1967	14.0 (2.0)
Ricabarra	1973	11.7 (1.0)
Van Der Linden	1974	14.0 (0.7)
Steinnes	1975	14.1 (1.3)
Gryntakis	1976	13.8 (1.0)
Heft	1978	16.5 (3.0)
this work	-	14.0 (0.5)
Mughabghab	2006	14.0 (1.0)

TABLE 6.38. SPECTRUM-AVERAGED CAPTURE CROSS SECTIONSFROM EVALUATIONS OF ¹⁴⁸Nd

Library	Resonance integral (b)	Maxwellian fission integral (mb)
ENDF/B-VI.8	19.44	58.75
ENDF/B-VII.0	15.96	25.04
JEFF-3.1	19.84	35.81
JENDL-3.3	14.68	27.63
this work	14.65	25.04

6.4.7. Production of ¹⁵³Sm by means of the ¹⁵²Sm(n,γ)¹⁵³Sm reaction (Refs [6.23, 6.30, 6.69, 6.71, 6.76, 6.77, 6.83 - 6.103])

¹⁵³Sm exhibits promise as an analgesic for use in painful bone metastases. This radionuclide has a $J^{\pi} = 3/2^+$ ground state with a half-life of $T_{1/2} = 46.284(4)$ h that decays exclusively by β⁻ emission. There is also a short-lived $J^{\pi} = 11/2^-$ isomeric state at $E_x = 98.4(2)$ keV with a half-life of $T_{1/2} = 10.6(2)$ ms that undergoes 100% IT decay to the ground state. Q-value for β⁻ decay is 807.6 (7) keV, with an average light-particle (electron) energy of 266.3 (63) keV and an average γ-ray energy of 61.2 (4) keV. The most recent version of the radioactive decay file can be found in the ENDF/B-VII library, based on the the ENSDF evaluation of Helmer (Fig. 6.27).

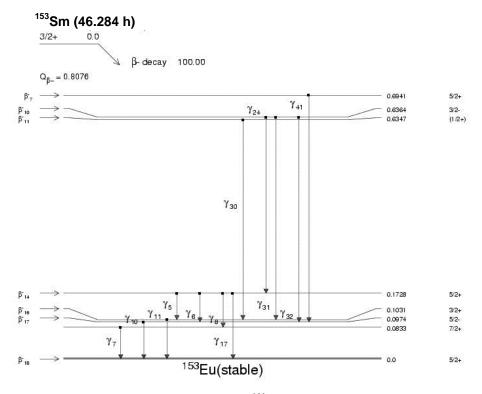
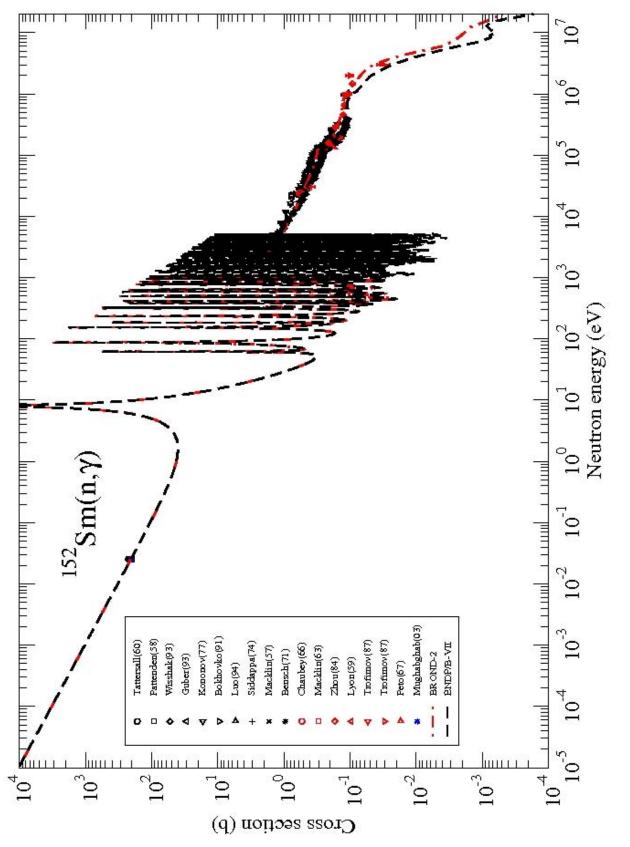


FIG. 6.27. Decay scheme of ¹⁵³Sm from the MIRD library.

The experimental values of the thermal capture cross section and capture resonance integral available in the EXFOR library are listed in Tables 6.39 and 6.40. Simple weighted means of these data furnish values close to those adopted by Mughabghab, but with approximately half of the adopted uncertainty.

Lead author	Publication date	$\sigma(n,\gamma)$ (b)
Seren	1947	138 (28)
Walker	1956	250 (50)
Pattenden	1958	200 (60)
Fehr	1960	215 (10)
Tattersall	1960	224 (7)
Cabell	1962	209 (9)
Heft	1978	204 (9)
This work	-	213 (4)
Mughabghab	2006	206 (6)


TABLE 6.39. THERMAL NEUTRON CAPTURE CROSS-SECTION DATAOF ¹⁵²Sm (extracted from EXFOR)

	,	
Lead author	Publication date	RI (b)
Harris	1950	1560 (138)
Fehr	1960	2740 (150)
Tattersall	1960	2850 (300)
Cabell	1962	3160 (104)
Hayodom	1969	2920
Steinnes	1972	2530 (150)
Van Der Linden	1974	3140 (157)
Heft	1978	3050 (360)
This work	-	2940 (60)
Mughabghab	2006	2970 (100)

TABLE 6.40. CAPTURE RESONANCE INTEGRAL DATA OF ¹⁵²Sm(extracted from EXFOR)

TABLE 6.41. SPECTRUM-AVERAGED CAPTURE CROSS SECTIONS FROM EVALUATIONS OF $^{152}\mathrm{Sm}$

Library	Resonance integral (b)	Maxwellian fission integral (mb)
BROND-2	2963	88.80
ENDF/B-VI.8	2975	90.28
ENDF/B-VII.0	2975	69.77
JEFF-3.1	2976	91.14
JENDL-3.3	2761	99.58
this work	2975	69.77

BROND-2, JENDL-3.3, JEFF-3.1, ENDF/B-VI and ENDF/B-VII evaluations were compared with the experimental (n,tot), (n, γ), (n,p), (n, α) and (n,2n) data found in the EXFOR library. All five evaluations agree well with the total cross-section data, but only the BROND-2, JENDL-3.3 and ENDF/B-VII evaluations are in good agreement with the (n,2n) data. The experimental (n,p) and (n, α) cross-section data are small at approximately 5 and 2 mb, respectively, for 14 MeV, and are well described by the JENDL-3.3 and ENDF/B-VII evaluations, but not considered in BROND-2. All three of these evaluations recommend data that provide a good description of the experimental capture cross section. Peto *et al.* [6.103] data at 3 MeV were renormalized by a factor of 25.42/35.2 to take into account the accepted value for the ¹⁹⁷Au neutron capture cross section at that energy. Only BROND-2 and ENDF/B-VII yield results in agreement with the accepted value of the capture resonance integral (Table 6.41): the ENDF/B-VII evaluation provides a much more extensive set of resolved resonances, while the BROND-2 evaluation gives a slightly better description of the data at high energies (Fig. 6.28). We recommend the ENDF/B-VII evaluation because this file contains a more extensive set of resolved resonances and is more complete at higher energies.

6.4.8. Production of ¹⁸⁸Re by means of the ¹⁸⁷Re(n,γ)¹⁸⁸Re reaction (Refs [6.23, 6.30, 6,64, 6.69, 6.71, 6.83, 6.84, 6.97, 6.99, 6.104-6.114])

¹⁸⁸Re has a $J^{\pi} = 1^{-}$ ground state with a half-life of $T_{1/2} = 17.0040(22)$ h, and decays exclusively by β^{-} emission. There is also a short-lived $J^{\pi} = (6)^{-}$ isomeric state at $E_x = 0.172$ MeV with a half-life of $T_{1/2} = 18.59(4)$ m that undergoes 100% IT decay to the ground state. Q-value for β^{-} decay is 2120.4 (4) keV, with an average light-particle (electron) energy of 777.6 (54) keV and an average γ -ray energy of 61.3 (3) keV. The most recent version of the radioactive decay file can be found in the ENDF/B-VII library, based on the ENSDF evaluation of Singh (Fig. 6.29).

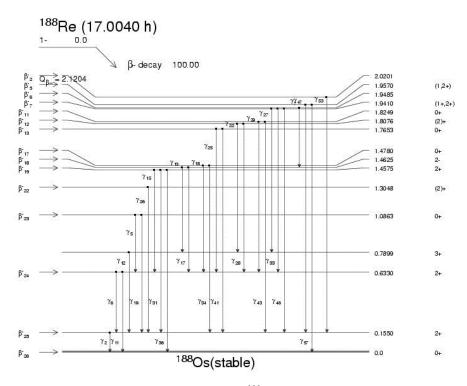


FIG. 6.29. Decay scheme of ¹⁸⁸Re from the MIRD library.

Experimental values of the thermal capture cross section and capture resonance integral taken from in the EXFOR library are listed in Tables 6.42 and 6.43. Simple weighted means of these data furnish values close to those adopted by Mughabghab, although the uncertainty of the capture resonance integral is approximately a factor of two lower (\pm 12 compared with \pm 20 barns).

Lead author	Publication date	σ(n,γ) (b)
Seren	1947	75.3 (15.0)
Pomerance	1952	63.0 (5.0)
Lyon	1960	67.0 (6.7)
Karam	1963	88.0 (14.0)
Friesenhahn	1968	75.0 (4.0)
Heft	1978	75.0 (1.0)
This work	-	74.5 (0.9)
Mughabghab	2006	76.4 (1.0)

TABLE 6.42. THERMAL NEUTRON CAPTURE CROSS SECTION DATA OF ¹⁸⁷Re (extracted from EXFOR)

TABLE 6.43. CAPTURE RESONANCE INTEGRAL DATA OF ¹⁸⁷Re
(extracted from EXFOR)

Lead author	Publication date	RI (b)
Harris	1950	275 (83)
Sher	1966	308 (20)
Pierce	1968	323 (20)
Van Der Linden	1974	311 (30)
Heft	1978	318 (50)
This work	-	314 (12)
Mughabghab	2006	300 (20)

TABLE 6.44. SPECTRUM-AVERAGED CAPTURE CROSS SECTIONSFROM EVALUATIONS OF ¹⁸⁷Re

Library	Resonance integral (b)	Maxwellian fission integral (mb)
ENDF/B-VI.8	292.8	117.1
ENDF/B-VII.0	292.8	117.1
JEFF-3.1	287.1	120.3
This work	292.8	117.1

The three most recent evaluations are essentially identical (JEFF-3.1, ENDF/B-VI and ENDF/B-VII), and have been compared with the experimental (n,tot), (n, γ) and (n,2n) data found in the EXFOR database. These three evaluations agree well with the total cross-section data and reasonably well with the (n,2n) data, which is difficult to measure due to the extremely long-lived isomeric state of ¹⁸⁶Re (T_{1/2} = 2.0 x 10⁵ y). The evaluations also agree reasonably well with the capture cross section, as shown in Fig. 6.31. Data determined by Stupegia *et al.* [6.111] were renormalized by a factor of 76.4/110, to take into account the accepted value of the thermal cross section used as the monitor in this particular measurement. These evaluations are also in excellent agreement with the accepted values for the thermal capture cross section and the capture resonance integral, as noted in Tables 6.43 and 6.44. Experimental (n,p) and (n, α) cross sections of approximately 4 and 1 mb, respectively, at about 14 MeV can also be found in the EXFOR database, but they have not been included in the evaluations due to their low values. Given the good agreement of the evaluations with the existing experimental data, any one of them could be taken as a reference.

6.4.9. Production of ²¹³Bi by means of the decay chains ²³³U \rightarrow ^{229Th} \rightarrow ²²⁵Ra \rightarrow ²²⁵Ac and ²²⁵Ac \rightarrow ²²¹Fr \rightarrow ²¹⁷At \rightarrow ²¹³Bi (Refs [6.115-6.122])

²¹³Bi has a $J^{\pi} = 9/2^{-}$ ground state with a half-life of $T_{1/2} = 45.59(6)$ m, and undergoes 97.91(3)% β^{-} decay with a Q-value of 1422(9) keV, and 2.09(3)% α emission with a Q-value of 5982(6) keV. The average light-particle (electron) energy is 442.9(24) keV, while the average γ -ray energy is 127.4(13) keV and the average α energy is 124.5(29) keV. The most recent version of the radioactive decay file can be found in the ENDF/B-VII library, based on the ENSDF evaluation of Akovali (Fig. 30).

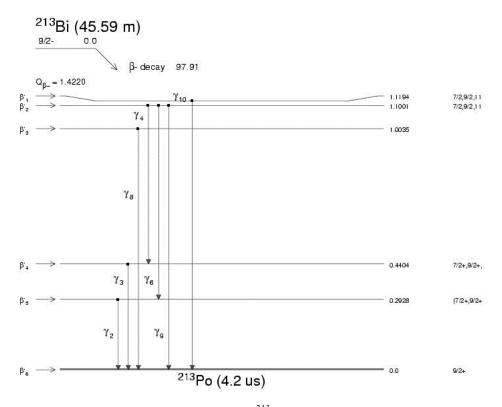
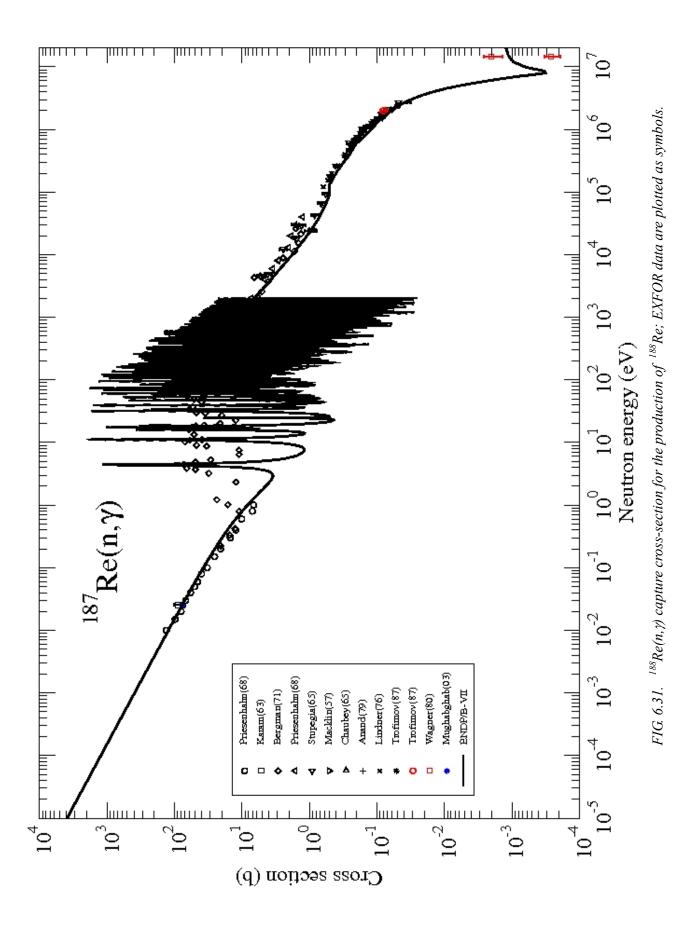



FIG. 6.30. Decay scheme of ²¹³Bi from the MIRD library.

Decay data for the other radionuclides in the decay chain are well-described by the corresponding ENDF/B-VII data files, all based on evaluations by Akovali (except for ²³³U which is best described by the JEFF-3.1 data file) (Table 6.45).

The primary production route for ²¹³Bi is through purification of ²²⁹Th from reactor-produced ²³³U, but the demand for ²¹³Bi could soon exhaust the limited supply of ²²⁹Th. Direct production of ²²⁹Th through irradiation of ²²⁶Ra in a high-flux reactor seems to offer a promising alternative, but requires more study.

DEC	AYCHAIN	
Radionuclide	Half-life $(T_{1/2})$	Decay modes
²³³ U	$1.592(2) \times 10^5$ y	α 100%, SF < 6×10 ⁻⁹ %
²²⁹ Th	7340(160) y	α 100%
²²⁵ Ra	14.9(2) d	$\beta^{-} 100\%$
²²⁵ Ac	10.0(1) d	α 100%
²²¹ Fr	4.9(2) m	α 100%, $\beta^- < 0.1\%$
²¹⁷ At	32.3(4) ms	α 99.993(3)%, β^{-} 0.007(3)%
²¹³ Bi	45.59(6) m	$\beta^{-}97.91(3)\%$, $\alpha 2.09(3)\%$

TABLE 6.45. HALF-LIVES AND DECAY MODES OF THE $^{233}U \rightarrow ^{213}BI$ DECAY CHAIN

6.5. Calculation and Evaluation of (n,γ) Cross Sections for the Production of ³²P, ¹⁰⁵Rh, ¹³¹I and ¹⁹²Ir Radionuclides

Developments in the application of radionuclides within nuclear medicine have enhanced their adoption as external irradiation sources and internal treatments including brachytherapy, metabolic therapy and radioimmunotherapy. The present work is concerned with the evaluation of specific (n,γ) cross sections that are required for the production of the therapeutic isotopes of ^{32}P , ^{105}Rh , ^{131}I and ^{192}Ir in a nuclear reactor spectrum. ^{32}P , ^{131}I and ^{192}Ir are well established radioisotopes in routine clinical use, while ^{105}Rh is a β^{-} -decaying transition metal with the potential to emerge as a suitable isotope for medical application.

Nuclear structure and decay data have been adopted from the ENSDF library [6.21] along with relevant publications therein, and summaries are given in the various figures and tables. The experimental reaction data were obtained from EXFOR [6.15]. Significant quantities of experimental cross-section data exist over the thermal and resonance region for all of the reactions in this work, while few data exist in the high-energy region above 1 MeV. Nuclear isomeric states formed in the ¹³⁰Te(n,γ)¹³¹Te(β^{-})¹³¹I and ¹⁹¹Ir(n,γ)¹⁹²Ir reactions are of great concern, and measured cross sections are scarce except for a few at thermal neutron energy. Under these circumstances, isomeric (n,γ) cross sections were theoretically predicted by means of the TALYS code [6.123]. The thermal neutron capture cross section at 2200 m/s was obtained by weighted averaging of the experimental data on the basis of inverse variance. Calculated cross sections in the thermal and resolved resonance regions were produced by NJOY [6.17] using the resonance parameters of Mughabghab *et al.* [6.124] and those in the selected library. The unresolved resonance cross sections were taken from the existing ENDF/B-VI [6.5] or JENDL-3.3 [6.125] libraries. TALYS calculations were carried out for the high energy region above resonance by fitting and fine tuning the available experimental data to the optical model potentials (OMP).

Evaluated data were produced in ENDF format for neutron energies up to 20 MeV. Integral data were produced and compared with the library whenever possible in order to validate the recommended data.

6.5.1. Evaluation Methods

Experimental data were taken from EXFOR and plotted by means of the IAEA utility codes ENDVER [6.126] and ZVView [6.127]. Original references were traced for each EXFOR entry in order to check the data input if the publication was accessible. All the EXFOR items are listed in the present documentation, while some of the data were not considered in the evaluation process because no uncertainties had been assigned or the data were outliers. Overall, two errors were found in EXFOR, and were reported in the description section.

The (n,γ) reaction cross sections were evaluated in three energy regions:

(i) Thermal energy region – there were many experimental datasets at the thermal neutron energy of 2200 m/s. An average cross section was produced by weighting the inverse variance. Resolved cross sections for the final isomeric states of ¹³⁰Te(n, γ)¹³¹Te and ¹⁹¹Ir(n, γ)¹⁹²Ir reaction were also considered. While resolved measured data for the 2200 m/s cross section were few and widely discrepant ($\sigma_{\gamma 0}^{g}$, $\sigma_{\gamma 0}^{m}$ for ¹³¹Te and $\sigma_{\gamma 0}^{g}$, $\sigma_{\gamma 0}^{m1}$, $\sigma_{\gamma 0}^{m2}$ for ¹⁹²Ir), EXFOR data for the isomeric branching ratio (δ_2) were available to derive meaningful average data for the ¹³⁰Te(n, γ)¹³¹Te reaction. Data for the isomeric branching ratio (δ_2) of ^{192m2}Ir had to be re-calculated from the latest half-life value. Resolved isomeric cross sections for the 2200 m/s neutron were produced from the total radiative capture cross section and branching ratios.

(ii) Resonance region – any new attempt to improve the parameters was beyond the scope of our work, and hence the established parameters of Mughabghab *et al.* [6.124] and FILE 2 of ENDF/B-VI [6.5] or JENDL-3.3 [6.125] were adopted for each reaction to produce the resolved resonance cross section

and equivalent data in the thermal energy region by means of the Breit-Wigner formula. The ambiguous gamma widths of any negative resonances were slightly tuned to produce the 2200 m/s cross section determined in this work. Apart from ¹⁰⁵Ru, unresolved resonance regions were not evident in the experimental data sets, and could therefore be treated as high-energy regions in the TALYS calculations.

(iii) High energy region – TALYS predictions were performed on the basis of the default OMPs, level densities and nuclear structure information required to calculate scattering and reaction equilibrium of the Hauser-Feshbach type and pre-equilibrium theories. Results were compared with the experimental data sets. When the prediction needed to be improved, least-squares fits to the experimental data were performed for total and/or (n,γ) cross sections by means of the following equation:

$$\frac{\chi^2}{v} = \frac{1}{v} \sum_{i} \frac{\left[N\sigma_{cal}(E_i) - \sigma_{exp}(E_i)\right]^2}{\delta_i^2}$$
(6.1)

where $\sigma_{exp}(E_i)$ and $\sigma_{cal}(E_i)$ are the experimental and calculated cross sections at the *i*-th energy, respectively, δ_i is the associated uncertainty, N is the normalization factor, and v is the degree of freedom for the fit. Since an automatic parameter search is not yet available in TALYS [6.123], a manual fit by a combination of grid search and estimate has been undertaken through a process of modifying the potential depths of the real, imaginary and spin-orbit components of the spherical OMPs and normalizing the cross sections [6.128]. When the fit was unsatisfactory, slight changes to the radius and diffuseness parameters were attempted. When no experimental cross sections were available, predictions were performed by adopting the data set in TALYS. As a consequence of the significant predictive power of TALYS, only modest amounts of work were required for most of the reactions in this study.

6.5.2. ³²P production

³²P has the half-life of 14.262(14) day, and decays 100% by β⁻-emission with no concomitant γ rays. The Q-value for β⁻-decay is 1710.66(21) keV, and the average β⁻-energy is 694.9(3) keV. Reaction cross sections for the ³¹P(n,γ)³²P reaction are listed in Table 6.46. The thermal (n,γ) cross–section ($\sigma_{\gamma 0}$) is 172(4) mb and is based on the eight data sets in EXFOR [6.15] and a recent measurement [6.129]. All of the retrieved EXFOR data and the recommended excitation function are shown in Fig. 6.32.

Thermal and resonance cross sections were produced by using the parameters in JENDL-3.3. The gamma width for negative energy resonance at ~ 5.9 keV was slightly modified to 2.07 eV in order to tune the thermal cross section. Over the energy region of 545 keV to 20 MeV, the cross sections were determined by TALYS calculation on the basis of the default parameters, including local OMPs taken from Koning [6.130] and RIPL [6.131]. Consistency between the calculations and measured data at 14 MeV is reasonable, and improvement on the existing libraries is evident. EXFOR data by Macklin and Mughabghab at 30 keV [6.132] are consistent with calculation, although there were EXFOR compilation errors involving the energy and data uncertainty. The derived integral cross section is of astrophysical interest whereby the spectrum comprises a Maxwellian of T = 30 keV multiplied by v/<v>, in which v is the velocity of the neutron [6.132]. Stepping features that appear in the cross section between 1.5 and 7 MeV arise from the thresholds of new channels that include inelastic scattering.

Author	Year of publication	Thermal (n,γ) cross section [b]
Seren	1947	0.230 (46)
Pomerance	1951	0.150 (15)
Grimeland	1955	0.19 (2)
Jozefowitz	1963	0.172 (8)
Kappe	1966	0.1850 (74)
Ishikawa	1973	0.17 (1)
Salama	1986	0.143 (12)
Zeng	1989	0.177 (5)
Sun (unpublished)	2003	0.166 (2)
Mughabghab evaluation	1981	0.172 (6)
this work	average cross section	0.172 (4)

TABLE 6.46. THERMAL NEUTRON CAPTURE CROSS SECTION OF ³¹ P – Data taken fro	эm
EXFOR	

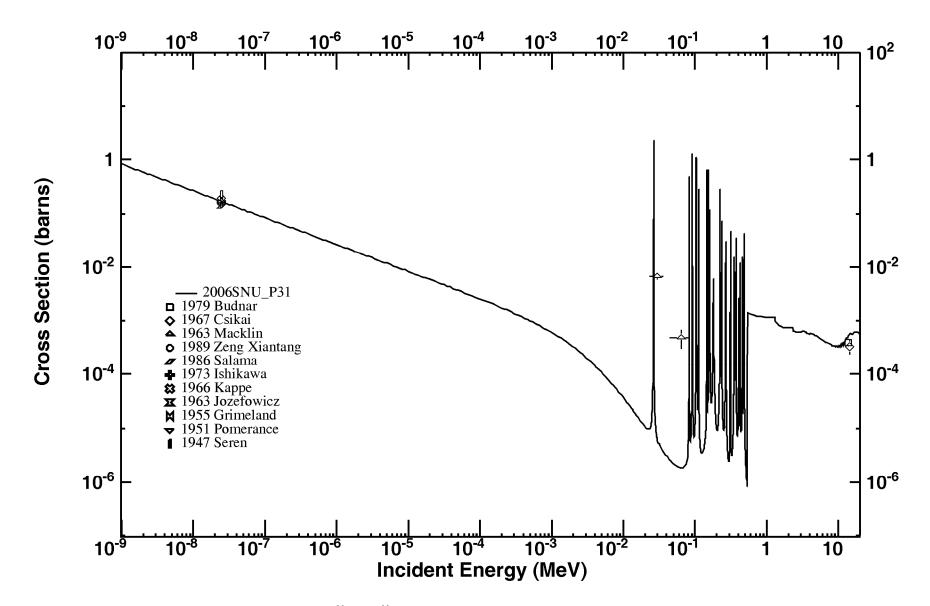


FIG. 6.32. ${}^{31}P(n, \gamma){}^{32}P$ cross sections, with EXFOR data plotted as symbols.

6.5.3. ¹⁰⁵Rh production

¹⁰⁵Rh decays to ¹⁰⁵Pd by β^- -decay with a half-life of 35.36(6) h. The Q-value for β^- -decay is 566.2(29) keV, and the average β^- -energy is 152.3(18) keV. ¹⁰⁵Rh was selected for evaluation because of the therapeutic medical applications of this isotope [6.133] and therefore the ¹⁰⁴Ru(n, γ)¹⁰⁵Ru reactor-based reaction was considered in detail. The partial decay scheme for ¹⁰⁵Ru and ¹⁰⁵Rh is shown in Fig. 6.33.

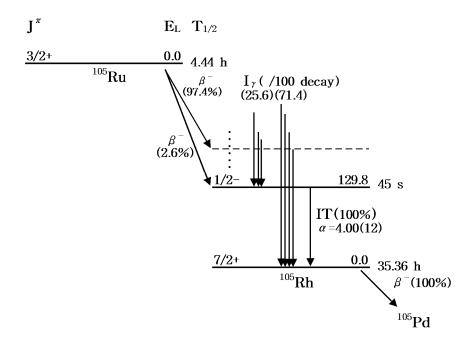


FIG. 6.33. Partial decay scheme of 105 Ru and 105 Rh from the 104 Ru $(n, \gamma)^{105}$ Ru reaction.

Even though an extensive set of experimental data was retrieved from EXFOR in the resonance and high energy range above 10 keV, only two experimental data points exist for the 2200 m/s thermal cross section [6.69, 6.134]. Since they are consistent, the most recent thermal cross section value of 466(15) mb was adopted [6.69]. Both the thermal and resonance cross sections were derived from the parameters of Mughabghab *et al.* [6.124], with a modification to the gamma width (0.14 eV) for the negative energy resonance (-941 eV). Data from the JENDL library were adopted in the unresolved resonance region of 11 to 300 keV [6.125]. Over the energy region from 0.3 to 20 MeV, a TALYS calculation was normalized to the experimental data set by adopting a normalization factor of 1.9 (reduced χ^2 of 9.6) and combining smoothly within the unresolved resonance region. The calculated cross section at 14 MeV is 3 mb which is larger than the most recent experimental value of 0.86 (15) mb wagner and Warhanek [6.114], although close to the average of all available data including the two previous measurements [6.47, 6.135]. Fig. 6.34 shows the data fitted to the experimental data set.

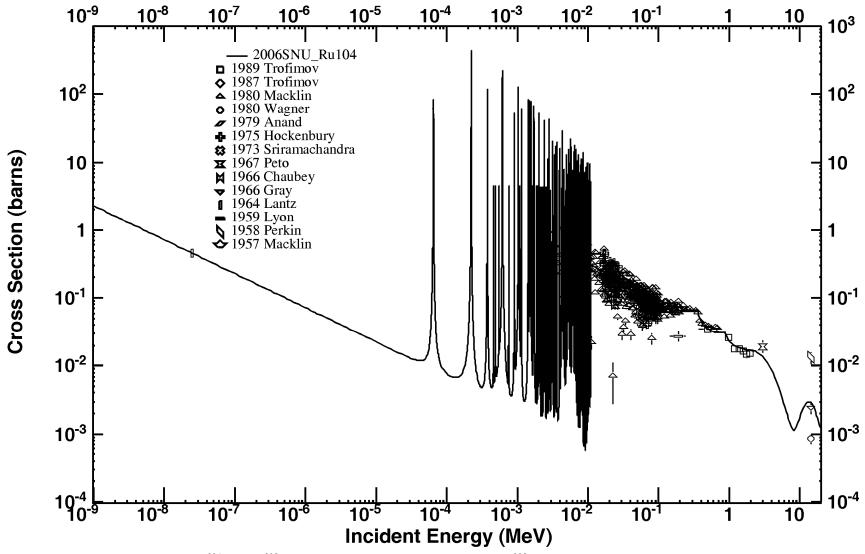


FIG. 6.34. 104 Ru $(n, \gamma)^{105}$ Ru cross sections for the production of 105 Rh, with EXFOR data plotted as symbols.

6.5.4. ¹³¹I production

¹³¹I can be produced by fission-product extraction from ²³⁵U burnt in a nuclear reactor or from the ¹³⁰Te(n, γ)¹³¹Te reaction. ¹³¹I undergoes 100% β ⁻decay with a half-life of 8.0207(1) d. Isomeric and ground states of ¹³¹Te are produced from the ¹³⁰Te(n, γ)¹³¹Te reaction: ^{131m}Te (182.25 keV, 11/2⁻, t_{ν_2} of 30 h) has a longer half-life than ^{131g}Te (3/2⁺, t_{ν_2} of 25 min). Fig. 6.35 shows the decay scheme of ¹³¹Te, while Table 6.47 lists a brief summary of the decay data.

Radionuclide	Half-life	Decay mode	Radiation	Energy (keV) Branching ratio (%)
^{131m} Te	30 (2) h	β ⁻ (77.8%)		
		IT (22.2%)	γ ray	182.25 (0.85%)
			ce	ce-K, 150.4 (14.4%)
				ce-L, 177.3 (5.44%)
^{131g} Te	25.0 (1) m	β ⁻ (100%)	< β ⁻ >	381.1 (9.96%)
				614.9 (21.7%)
				817.3 (59.3%)
		γ rays	149.7 (68.8%)	
				452.3 (18.2%)
¹³¹ I	8.02070 (11) d	β ⁻ (100%)	< β ⁻ >	96.6 (7.3%)
				192 (90%)
			γ rays	364.5 (82%)
				637 (7.2%)

TABLE 6.47. DECAY DATA FOR GROUND AND ISOMERIC STATES OF ¹³¹Te AND FOR ¹³¹I – Data taken from ENSDF

IT: isomeric transition.

ce: conversion electron.

 $<\beta^->$: average β^- -energy.

The cross sections retrieved from the existing libraries are plotted in Fig. 6.36 ENDF/B-VI, JENDL-3.3 and JEFF-3.1 libraries give the total capture cross sections without resolving the final states of ground and isomeric ¹³¹Te [6.136]. The JEFF library adopts data to be found in ENDF/B-VI, while JENDL contains re-calculated cross sections in the resonance and high energy regions.

Experimental data for the 2200 m/s capture cross sections were taken from EXFOR. Measured data for the total ($\sigma_{\gamma 0}$) or individual final state ($\sigma_{\gamma 0}{}^{g}$ and $\sigma_{\gamma 0}{}^{m}$) exist with derived quantities based on the isomeric ratios (δ_1 , δ_2) as defined by:

$$\delta_1(E) = \frac{\sigma_{\gamma}^g(E)}{\sigma_{\gamma}^m(E)} \text{ and } \qquad \delta_2(E) = \frac{\sigma_{\gamma}^m(E)}{\sigma_{\gamma}^g(E) + \sigma_{\gamma}^m(E)}$$
(6.2)

where $\sigma_{\gamma}^{g}(E)$ and $\sigma_{\gamma}^{m}(E)$ are the capture cross sections for the final ground and isomeric states, respectively, at neutron energy E. Seven EXFOR data points also exist for the isomeric branching ratio (δ_2) at a neutron energy of 2200 m/s. Weighted averages of the total ($\sigma_{\gamma 0}$) cross section and isomeric branching ratio (δ_2) at 25.3 meV (thermal point) were calculated after excluding all data with no assigned uncertainty: $\sigma_{\gamma 0}$ of 204(10) mb and δ_2 (25.3 meV) of 0.058(3). Seren *et al.* [6.23] and Sehgal [6.137] were not considered in this averaging process for the isomeric branching ratio (δ_2) because their data possessed no uncertainties. Thermal $\sigma_{\gamma 0}{}^{g}$, $\sigma_{\gamma 0}{}^{m}$ and δ_1 were derived, as listed in Tables 6.48 and 6.49.

FIG. 6.35. Decay scheme of ¹³¹Te from the ¹³⁰Te $(n, \gamma)^{131}$ Te reaction for the production of ¹³¹I.

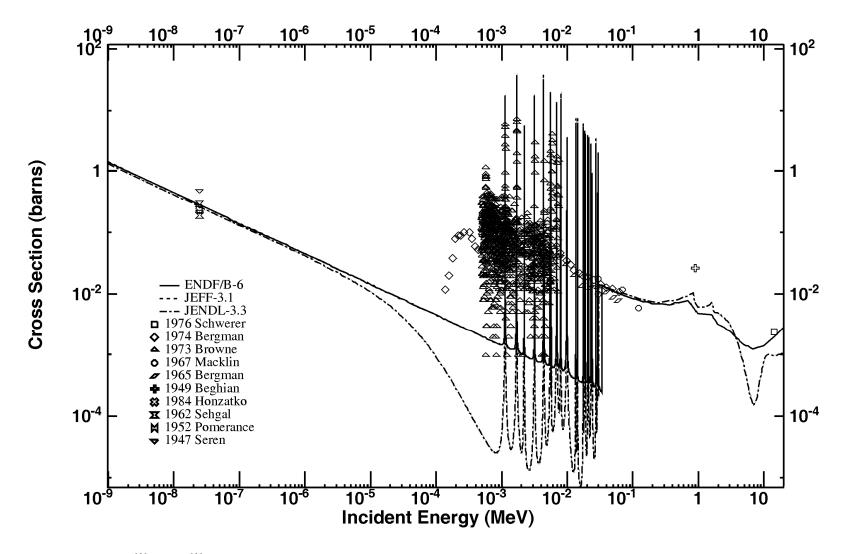


FIG. 6.36. $^{130}Te(n, \gamma)^{131}Te$ reaction cross section retrieved from existing libraries – EXFOR data are plotted as symbols.

Author	Year of Publication	Thermal neutron capture cross section [mb]		
	Tublication	$\sigma_{\gamma 0}$	$\sigma_{\gamma 0}{}^{ m g}$	$\sigma_{\gamma 0}{}^m$
Seren [6.23]	1947	230 (44)	222 (44)	< 8 (3)
Pomerance	1952	500 (250)	_	_
Sehgal [6.137]	1962	310 (61)	270 (60)	40 (10)
Mangal	1962	_	161 (24)	_
Honzatko	1984	193 (20)	_	_
Tomandl-1	2003	186 (13)	_	_
Tomandl-2	2003	240 (20)	_	_
Mughabghab evaluation	1981	290 (61)	270 (60)	20 (10)
this study	average cross section	204 (10)	192 (10)	12 (1)

TABLE 6.48. THERMAL NEUTRON CAPTURE CROSS SECTIONS OF ¹³⁰Te – Data taken from EXFOR

Resonance cross sections were produced by adopting the parameters in JENDL-3.3 [6.125]. A modification to the gamma width (0.06 eV) of the negative energy resonance of -89.5 eV reproduced the thermal cross section. Over the energy region of 31 keV to 20 MeV, TALYS calculations were undertaken to obtain $\sigma_{\gamma}^{\text{g+m}}(E)$, $\sigma_{\gamma}^{\text{g}}(E)$ and $\sigma_{\gamma}^{\text{m}}(E)$, and fine tuning of the spherical OMP was carried out to fit $\sigma_{\text{tot}}(E)$ manually to derive values that were within 2% of the global OMPs (Fig. 6.37). Predictions involving the inelastic channel and comparisons with experimental data have been performed by noting that the low-lying excited states (2⁺ and 3⁻) of ¹³⁰Te are deformed and can be described by the one-phonon vibrational model [6.138-6.140]. Hence, a coupled channel calculation based on the harmonic vibrational model was performed by means of the TALYS code. Deformation parameters of the 2⁺ state at 839.5 keV and the 3⁻ state at 2.73 MeV were taken from RIPL-2 [6.141], and the tuned OMPs from this work were used for the spherical component of the potential. The gamma-ray strength function of Kopecky and Uhl was used for the E1 transition, while the Brink-Axel function was adopted for the other transitions to evaluate the capture cross section [6.123]. This analysis demonstrated that the $\sigma_{\gamma}^{\text{g+m}}(E)$ and $\sigma_{\gamma}^{\text{g}}(E)$ cross sections in the radiative capture channels were rather insensitive to the choice of OMPs and the coupling strengths of the inelastic channel.

Author	Year of publication	Isomeric ratios for thermal neutron capture		
		δ_1	δ_2	
Seren [6.23]	1947	27.8	0.03	
Sehgal [6.137]	1962	6.8	0.13	
Mangal	1962	20.4	_	
Namboodiri	1966	_	0.059 (3)	
Bondarenko	2000	_	0.053 (5)	
Reifarth	2002	_	0.067 (5)	
Tomandl-I	2003	_	0.054 (2)	
Tomandl-II	2003	_	0.059 (4)	
Mughabghab evaluation	1981	13.5	0.07 (4)	
this study	average	16	0.058 (3)	

TABLE 6.49. ISOMERIC RATIOS FOR THERMAL NEUTRON CAPTURE CROSS SECTION OF ^{130}Te – Data taken from EXFOR

Slight improvements in the calculation of $\sigma_{\gamma}^{g+m}(E)$ and $\sigma_{\gamma}^{g}(E)$ were achieved by tuning the normalization factor and level density parameter a. The EXFOR data set originating from Dovbenko *et al.* [6.142] for $\sigma_v^{g}(E)$ had erroneously been defined as millibarns, and was used in the data analysis after being corrected to barns. The resulting fit improved the TALYS prediction for all reaction channels of ¹³⁰Te + n including inelastic and (n, γ) . Fig. 6.38 shows the results of the model calculation for the capture channel, along with the EXFOR data. Although the discrepancy between the calculation and experimental $\sigma_{\nu}^{g}(E)$ around 2 MeV could not be eliminated, the overall consistency has been improved and an isomeric excitation function was derived. Total capture cross sections $\sigma_v^{g+m}(E)$ over the energy range 10 keV to 1 MeV are consistent with the data of Bergman and Romanov [6.143], Macklin and Gibbons [6.37] and Dovbenko et al. [6.142], even though the calculation underpredicts the sparse measurements in the region above 1 MeV. The oldest measurement by Beghian and Halban [6.144] has a large uncertainty (~ 50%) and deviates significantly from the observed trend. Ground state cross sections in the high-energy region are consistent with the studies of Dovbenko et al. [6.142]. TALYS calculations are also in good agreement with both sets of experimental data at 14 MeV. Experimental isomeric cross-section data over the entire energy range are sparse, with no assignment of uncertainties. The 14.6-MeV data by Schwerer et al. [6.48] is defined as ≤ 1.85 mb, and therefore direct comparison is not feasible. Fig. 6.39 shows calculations of the total cross section and EXFOR data for the elastic, inelastic and (n, γ) channels, while the resulting isomeric branching ratios are defined as a function of neutron energy in Fig. 6.40. The thermal isomeric branching ratio (δ_2) remains fairly constant up to 30.5 keV, which supports the use of this value for data normalization at these energies.

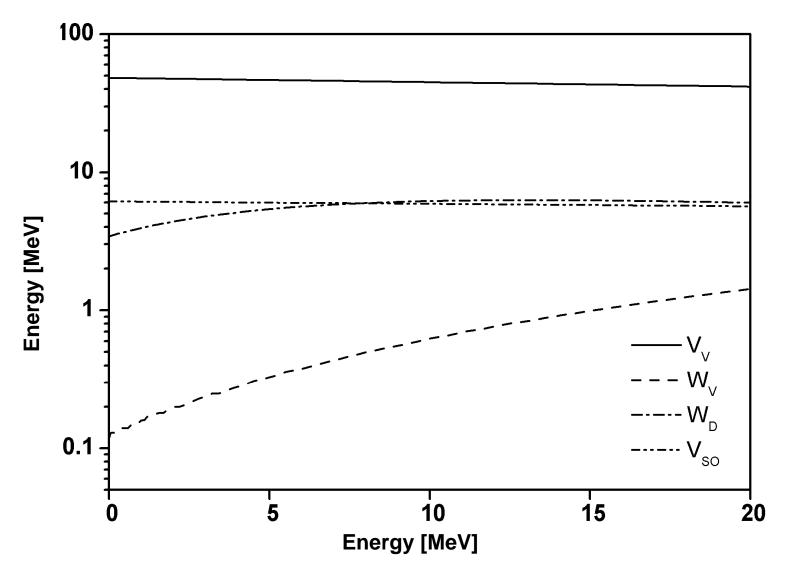


FIG. 6.37. Energy variation of the depth of the optical model potential – other parameters were fixed during the fit (a = 0.665 fm, r = 1.22 fm, etc.).

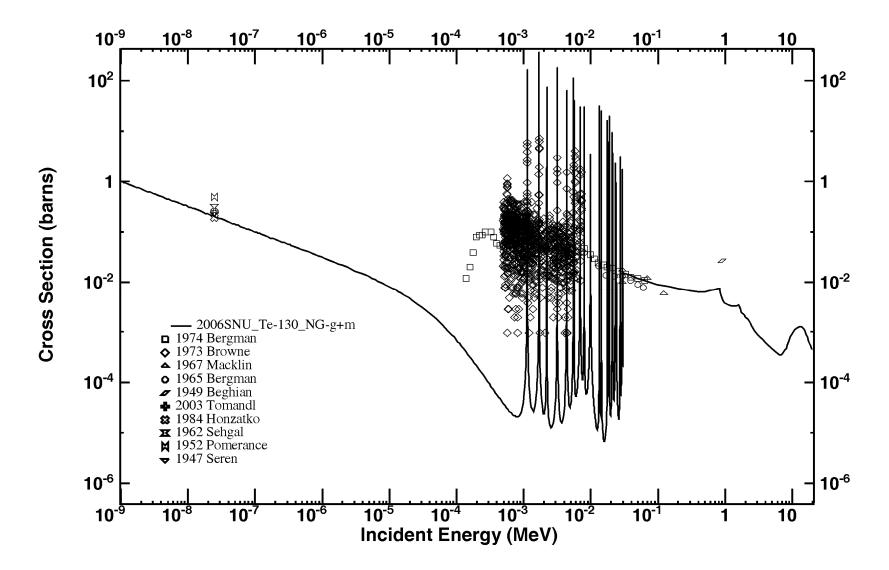


FIG. 6.38(a) Total capture cross section $\sigma_{\gamma}^{g+m}(E)$ of the ${}^{130}Te(n,\gamma){}^{131}Te$ reaction – EXFOR data plotted as symbols.

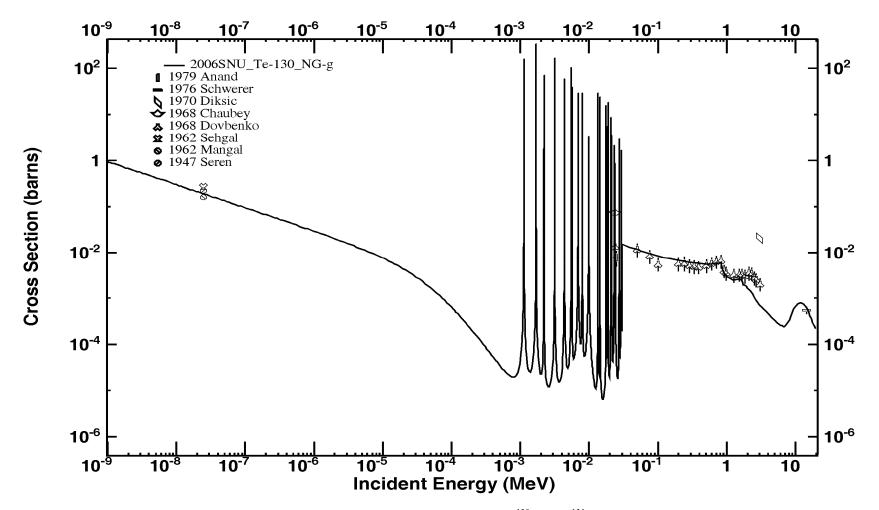


FIG. 6.38(b) Capture cross section for the ground state $\sigma_{\gamma}^{g}(E)$ of the $^{130}Te(n,\gamma)^{131}$ Te reaction – EXFOR data plotted as symbols.

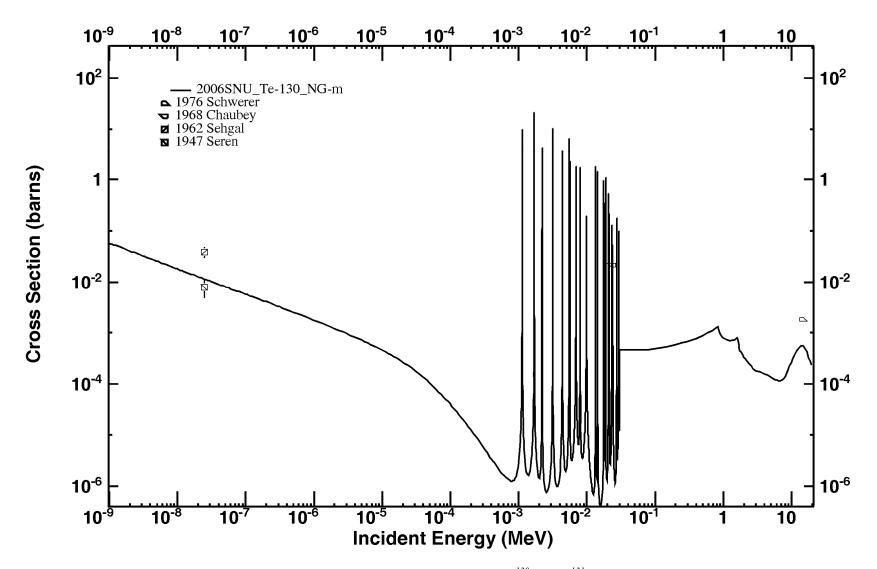


FIG. 6.38(c) Capture cross section for the isomeric state $\sigma_{\gamma}^{m}(E)$ of the ¹³⁰Te(n, $\gamma)^{131}$ Te reaction – EXFOR data plotted as symbols.

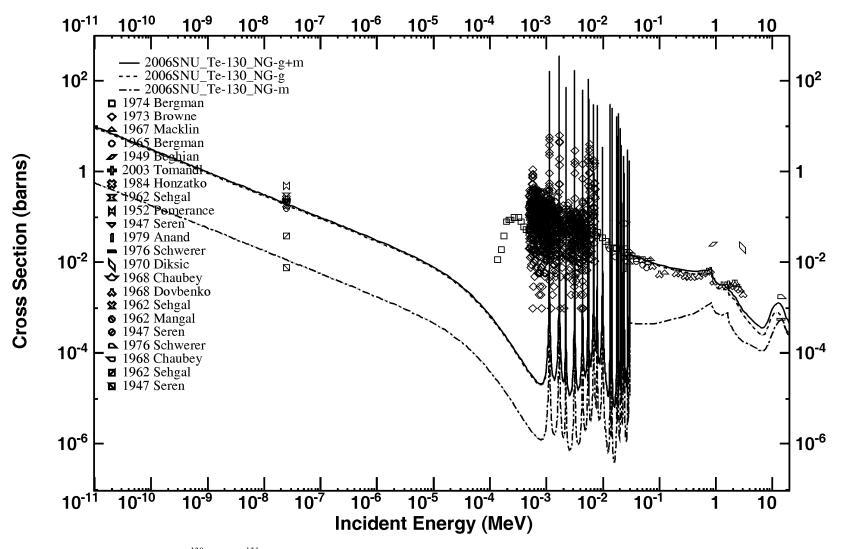


FIG. 6.38(d) $^{130}Te(n, \gamma)^{131}$ Te reaction cross sections plotted on a single scale, together with EXFOR data as symbols.

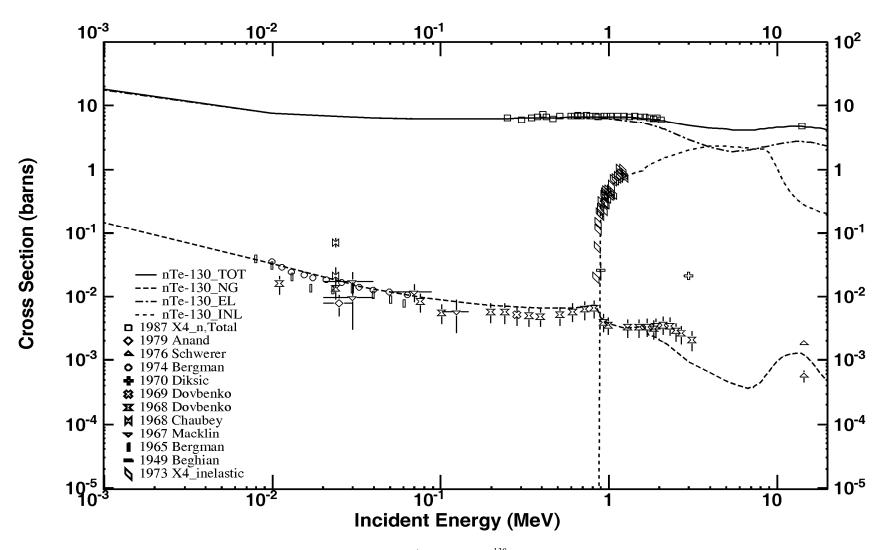


FIG. 6.39. Cross sections $\sigma_{tot}(E)$, $\sigma_{el}(E)$, $\sigma_{inel}(E)$ and $\sigma_{\gamma}^{g+m}(E)$ for the ¹³⁰Te+n reaction from 1 keV to 20 MeV shown as continuous, dot-dashed, dotted and dashed lines, respectively – EXFOR data are shown as symbols.

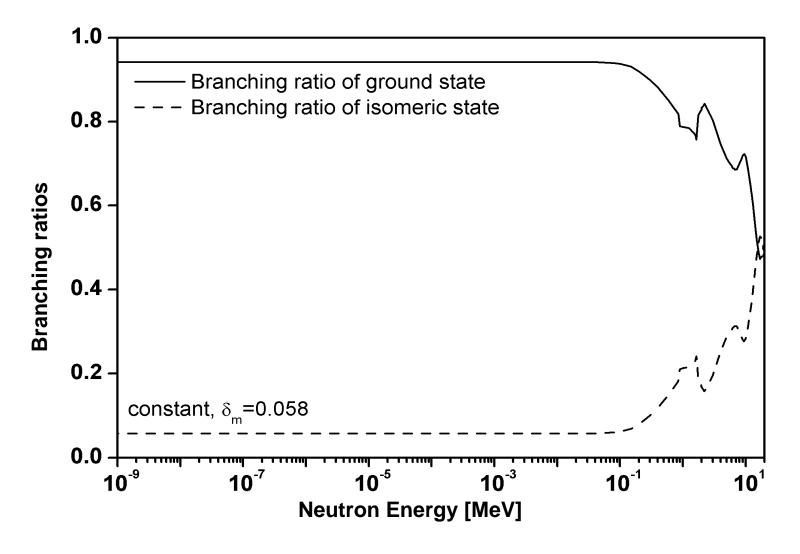


FIG. 6.40. Branching ratios for the ${}^{130}Te(n, \gamma){}^{131}Te$ reaction.

6.5.5. ¹⁹²Ir production

¹⁹²Ir is commonly used for non-destructive testing in a wide range of industrial applications. More recent medical studies have resulted in the successful adoption of this radionuclide in the field of brachytherapy. Reactor production by means of the ¹⁹¹Ir(n,γ)¹⁹²Ir reaction results in the formation of the ground and two isomeric states of ¹⁹²Ir, although few measurements exist to quantify the cross sections of the isomeric states.

Simplified structure and decay data for ¹⁹²Ir are summarized in Fig. 6.41 and Table 6.50 [6.21, 6.145]. The deformed ground state (4⁺) of the odd-odd ¹⁹²Ir nucleus has a half-life of 73.827(13) d and decays mainly to ¹⁹²Pt by β^- -decay (95.13%) and ¹⁹²Os by electron capture decay (4.87%), while the first isomeric state (56.720 keV, 1⁻) has a half-life of 1.45(5) min and decays mainly to the ground state by a single isomeric transition (99.9825%). The spin-parity, level energy and decay characteristics of the ground and the first isomeric states are well defined [6.145, 6.146].

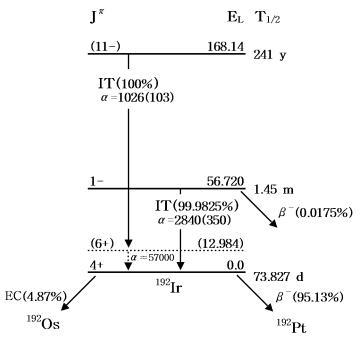


FIG. 6.41. Decay scheme of ¹⁹²Ir produced from the ¹⁹¹Ir(n, γ)¹⁹²Ir reaction.

Experimental studies of the second isomeric state are scarce following the first observation of this radionuclide in 1959 [6.147]. This isomeric state (168.14 keV, 11⁻) has a reasonably long half-life of 241(9) y and is reported to undergo 100% decay to a low-lying state (12.984 keV, 6⁺) through a highly-converted isomeric transition [6.145]. Although the spin-parity and decay scheme remain uncertain, the most recent evaluation recommends 11⁻, 168.14 keV [6.145] nuclear level based on an assumed decay to a predicted state at 12.984 keV (6⁺) by the Nilsson model [6.148] and multipolarity of E5 [6.149] as shown in Fig. 6.41. However, the most extensive measurement suggests that the second isomeric state has an energy and spin-parity of 155.16 keV and 9⁺, with M5 IT decay to the ground state defined from IBFFM predictions [6.150]. No experimental observations exist to clarify the feeding transitions to the second isomeric state, even though an unmatched neighboring state exists at 173 keV. Further experimental studies are merited to determine the spin-parity, energy and decay of the second isomeric state, including the activation cross section and quantification of the low-lying 6⁺ state.

Radionuclide	Half-life	Decay mode	Main radiation	Energy (keV) Branching ratio (%)
^{192m2} Ir	241 (9) y	IT (100%)	γ ray	155.16 (0.0974%)
			ce	ce-L, 142 (74.6%)
				ce-M+, 153 (24.6%)
				ce-K, 79.1 (0.65%)
^{192m1} Ir	1.45 (5) m	β ⁻ (0.0175%)		
		IT (99.9825%)	ce	ce-L, 43.3 (72.4%)
				ce-M, 53.5 (21%)
				ce-N+, 56.0 (6.5%)
			γ ray	56.71 (0.003%)
^{192g} Ir	73.827 (13) d	β ⁻ (95.13%)	< β ⁻ >	
		EC (4.87%)		71.6 (5.6%)
				162.1 (41.4%)
				209.9 (48%)
			γ rays	296.0 (28.7%)
				308.5 (29.7%)
				316.5 (82.7%)
				468.1 (47.8%)

TABLE 6.50. DECAY DATA FOR	GROUND AND ISOMERIC STATES OF ¹⁹² Ir	– Data are from
ENSDF		

IT: isomeric transition.

ce: conversion electron.

EC : electron capture.

 $<\beta^->$: average β^- -energy.

There are five EXFOR entries that address the total capture cross section at 25.3 meV, while five data sets also exist in the high energy region from keV to several MeV. Resolved measurements for the individual isomeric states are scarce, and the existing data libraries do not provide resolved isomeric and ground cross sections in a consistent manner. For example, ENDF/B-VI and JEFF-3.1 contain total capture cross–sections, while the RNAL database gives only the cross section for the second isomeric state [6.151]. NGATLAS [6.152] and EAF [6.153] quantify all the resolved cross sections separately, although their descriptions of the thermal and high-energy cross sections are inadequate.

Table 6.51 lists all the thermal cross section data retrieved from EXFOR and some of the evaluated values extracted from specific libraries. Averaged experimental data for the total (n,γ) cross section $(\sigma_{\gamma 0})$ at 25.3 meV give a value of 962 (11) mb. The most recent data by Masyanov *et al.* [6.154] was excluded in the averaging process since this derived cross section is a resonance measurement and represents the contribution of positive energy resonances to thermal neutron capture. Only two data sets exist that resolve the first isomeric and ground states at a neutron energy of 2200 m/s, although they are totally inconsistent (Keish [6.155]; Arino *et al.* [6.156]).

Author		Year of publication	Year of Thermal neutron capture cross section [b] publication					
		puonoution	$\sigma_{\gamma 0}$	$\sigma_{\gamma 0}{}^{\mathrm{g}}$	${\sigma_{\gamma 0}}^{m1}$	$\sigma_{\gamma 0}{}^{m2}$		
Se	eren	1947	1000 (200)	—	260 (104)			
Har	bottle	1963	_	—	_	$0.38\left({}^{+24}_{-11} ight)$		
Ke	eisch	1963	910 (67)	300 (30)	610 (60)	_		
А	Arino		_	1200 (300)	300 (50)	_		
S	Sims		1120 (25)	_	_	_		
H	Heft		922 (13)	—	_	_		
Mas	yanov	1992	279 (3)	_	_	_		
	Mughabghab	1984	954 (10)	309 (30)	645 (32)	0.16 (7)		
	NGATLAS	1997	954	309	645	0.16		
Evaluations	EAF	2001	965	273	692	0.16		
	this work		962 (11)	317 (58)	645 (120)	0.13 (6)		

TABLE 6.51. THERMAL NEUTRON CAPTURE CROSS SECTIONS OF ¹⁹¹Ir – Experimental data taken from EXFOR

Experimental data for the second isomeric state are limited to the study of Harbottle [6.157], which is based on a half-life of 650 (+430/–90) y. A simple estimate of the thermal neutron capture cross section generates a recommended half-life of 241 y to give $\sigma_{\gamma 0}^{m2}$ of 0.13 b that is similar to the values to be found in NGATLAS and EAF. Due to the scarcity and inconsistency of the experimental data set for the $\sigma_{\gamma 0}^{g}$ and $\sigma_{\gamma 0}^{m1}$ cross sections, the data of Keish [6.155] have been adopted for the isomeric ratio to determine the resolved, first isomeric and ground state cross sections. This procedure results in thermal cross sections of $\sigma_{\gamma 0} 962(11), \sigma_{\gamma 0}^{g} 317(58)$ and $\sigma_{\gamma 0}^{m1} 645(120)$ b.

Resonance cross sections were adopted from the parameters in ENDF/B-VI. A minor modification was made to the gamma width (0.0837 eV) of the negative energy resonance (-0.854 eV) in order to match the thermal cross section. Over the range from 0.3 keV to 20 MeV, experimental total cross sections $\sigma_{\gamma}(E)$ have been tuned by means of the OMPs and adoption of a normalization factor of 1.524 (reduced χ^2 of 1.3). Since no experimental data exist for $\sigma_{tot}(E)$ or $\sigma_{el}(E)$ in this region, only capture cross-section data were included in the fit. Hence, $\sigma_{\gamma}^{g}(E)$, $\sigma_{\gamma}^{m1}(E)$ and $\sigma_{\gamma}^{m2}(E)$ were predicted from the calculated branching ratios. Fig. 6.42 depicts the recommended cross sections, while Fig. 6.43 shows the branching ratios. The total cross-section data of Sriramachandra *et al.* were defined as outliers [6.158], and there are few or no experimental data in the high-energy region for comparison with the calculated $\sigma_{\gamma}^{g}(E)$, $\sigma_{\gamma}^{m1}(E)$ and $\sigma_{\gamma}^{m2}(E)$.

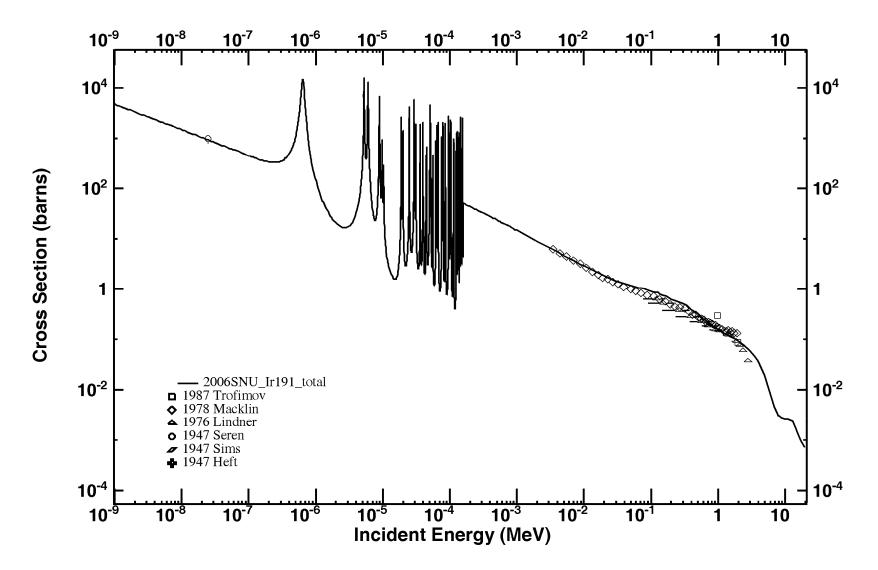


FIG. 6.42(a) Total capture cross section $\sigma_{\gamma}^{g^{+m}}(E)$ of the ¹⁹¹Ir(n, γ)¹⁹²Ir reaction – EXFOR data are plotted as symbols.

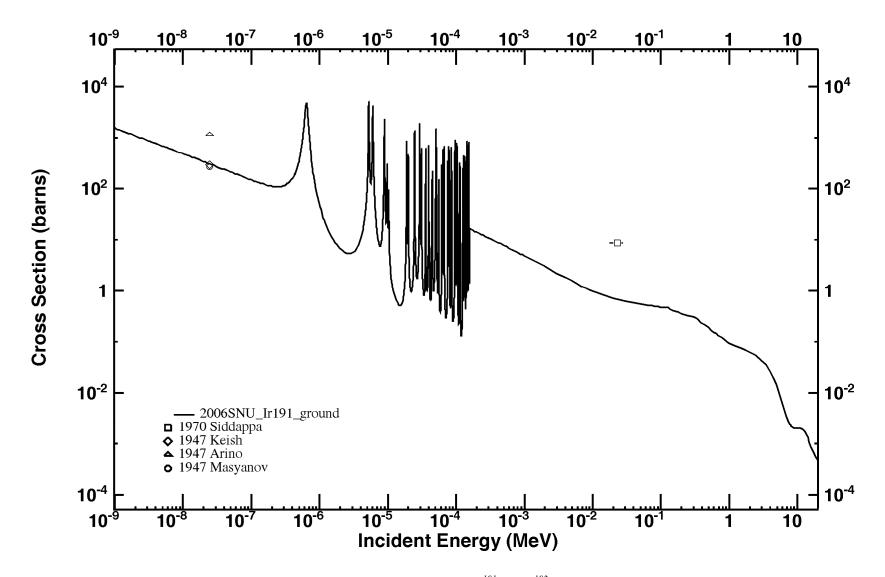


FIG. 6.42(b) Capture cross section of the ground state $\sigma_{\gamma}^{g}(E)$ of the ¹⁹¹Ir(n, γ)¹⁹²Ir reaction – EXFOR data are plotted as symbols.

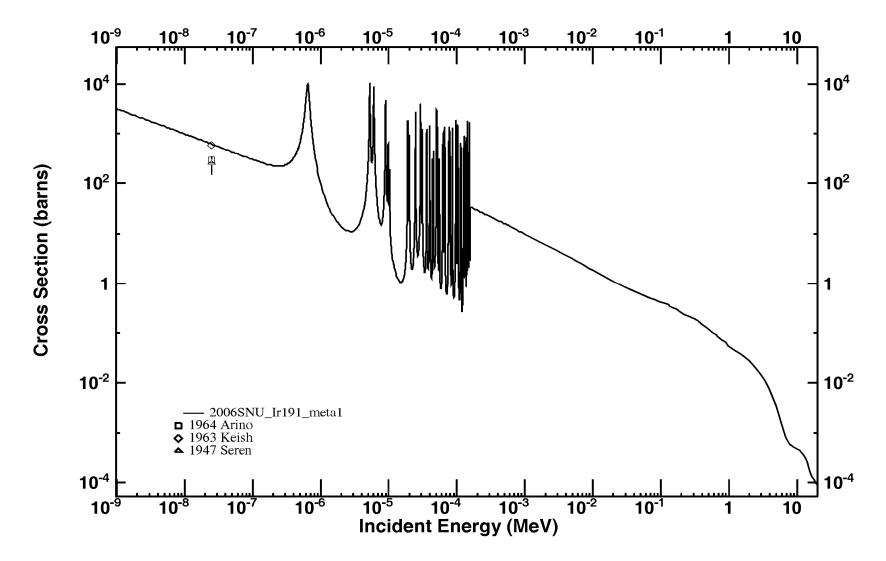


FIG. 6.42(c) Capture cross section of the first isomeric state $\sigma_{\gamma}^{ml}(E)$ of the ¹⁹¹Ir(n, γ)¹⁹²Ir reaction – EXFOR data are plotted as symbols.

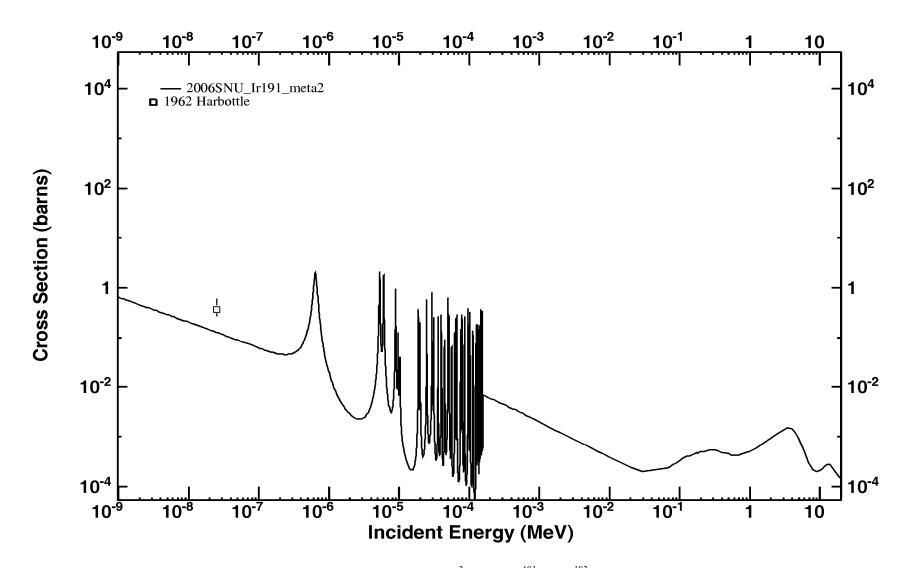


FIG. 6.42(d) Capture cross section of the second isomeric state $\sigma_{\gamma}^{m2}(E)$ of the ¹⁹¹Ir(n, γ)¹⁹²Ir reaction – EXFOR datum is plotted as a symbol.

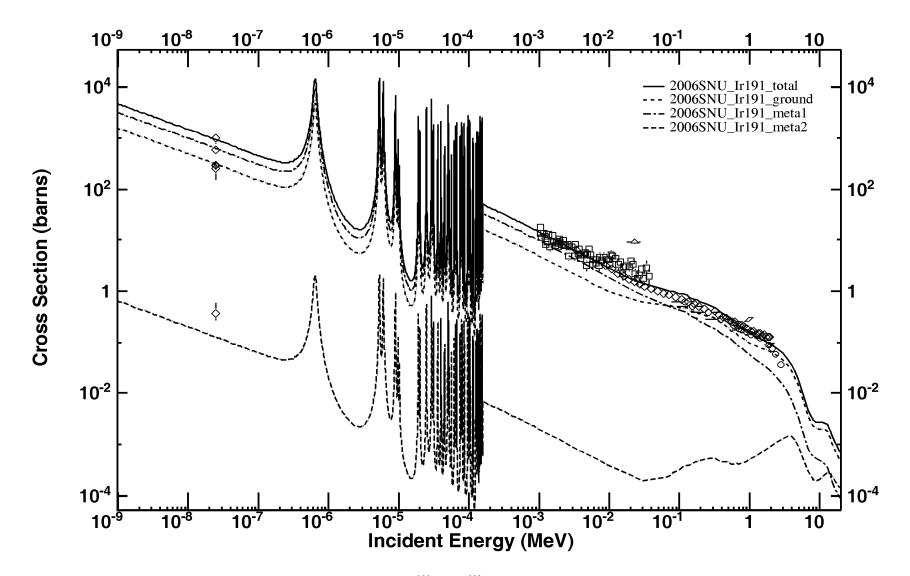


FIG. 6.42(e) Proposed cross sections of 191 Ir(n, γ)¹⁹²Ir reaction, together with EXFOR data plotted as symbols.

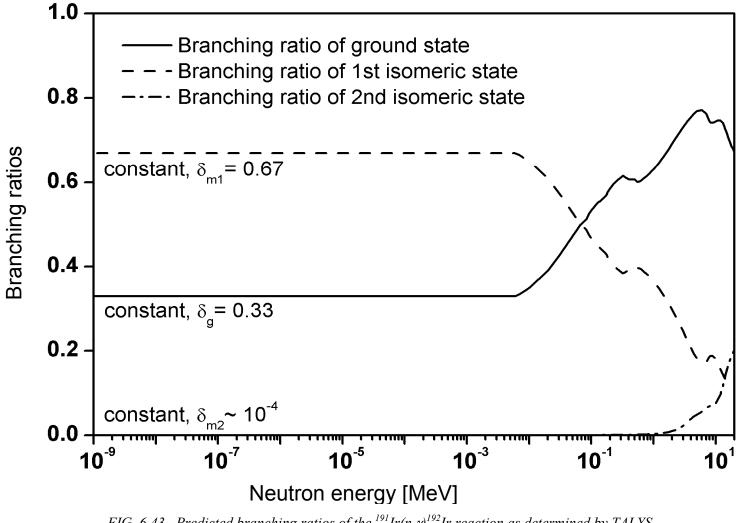


FIG. 6.43. Predicted branching ratios of the $^{191}Ir(n, \gamma)^{192}Ir$ reaction as determined by TALYS.

6.5.6. Validation and Derived Integral Quantities

Integral quantities for the Maxwellian and fission neutron spectra and resonance integrals were produced by means of INTER [6.159]. The temperature for the Maxwellian spectrum was defined by T = 300K and integration was limited from 10^{-5} to 10 eV. A Maxwellian fission spectrum with an effective temperature T = 1.35 MeV was adopted, and integration was implemented from 1 keV to 20 MeV. The 1/E spectrum was adopted for the resonance integral over the energy range from 0.55 eV to 2 MeV. The data are compared with the experimental studies to be found in EXFOR and other sources: Tables 6.52 to 6.55 show the quantities derived from the cross sections produced in this work as compared with the values taken from various national libraries and experimental studies.

TABLE 6.52. INTEGRAL QUANTITIES FOR THE CROSS SECTION OF THE ${}^{31}P(n,\gamma){}^{32}P$
REACTION AS DERIVED IN THIS WORK AND COMPARED WITH VARIOUS
OTHER DATA SOURCES INCLUDING EXFOR

	Sources	σ _{γ0} (2200 m/s) [b]	<σ _γ > Maxwellian (300 K) [b]	Resonance integral [b]	Fission	section [b] 14-MeV
	Mughabghab evaluation	0.172 (6)	-	0.085 (10)	spectrum –	_
	ENDF/B-VI	0.199	0.197	0.149	1.47×10 ⁻³	3.00×10 ⁻³
	JENDL-3.3	0.166	0.166	0.0765	1.01×10 ⁻³	9.90×10 ⁻⁴
	this work	0.172 (4)	0.172	0.0785	8.65×10 ⁻⁴	5.49×10 ⁻⁴
E	Harris 1950			~ 0.10		
X F	Macklin 1956			0.092		
O R	Hayodom 1969			0.144 (10)		

The resonance integral derived for the ${}^{31}P(n,\gamma)^{32}P$ reaction would appear to be inconsistent with the relatively elderly measurements, underlining the need for new measurements and reassessments of the resonance parameters. Quantification of the resonance integral for the ${}^{104}Ru(n,\gamma){}^{105}Ru$ reaction is tentatively based on only one EXFOR entry because the various measurements are inconsistent by multiples of their uncertainties. Similar inconsistentencies in the resonance integrals are seen in the ${}^{130}Te(n,\gamma){}^{131}Te$ reaction that may arise from the inability to reproduce the resonance structure in the lower energy region below 1 keV. A better set of resonance parameters for this reaction would be extremely useful [6.12]. Resonance integrals have been obtained for ${}^{191}Ir(n,\gamma){}^{192g}Ir$, ${}^{192m1}Ir$, ${}^{192m2}Ir$ with their associated cross-section data. The lowest positive energy resonance is located at 0.65 eV which is close to the Cd cutoff energy such that the measured resonance integrals were calculated with lower limits of integration of 0.50, 0.55 and 0.62 eV as tabulated in Table 6.55 for comparison with the EXFOR data. The resonance integral for the total (n,γ) reaction channel is consistent with the values of Masyanov *et al.* [6.154] and van der Linden *et al.* [6.71]. However, the predicted cross sections for the final isomeric states are highly marginal since few or no experimental data exist in the resonance and high-energy regions.

		$\sigma_{\gamma 0}$	$<_{\sigma_{\gamma}}>$	Resonance	Fast cross	section [b]
	Sources	(2200 m/s) [b]	Maxwellian (300 K) [b]	integral [b]	Fission spectrum	14-MeV
	Mughabghab evaluation	0.32 (2)	_	4.3 (1)	_	_
	ENDF/B-VI	0.437	0.437	6.54	3.19×10 ⁻²	9.09×10 ⁻⁴
	JENDL-3.3	0.323	0.323	6.53	3.23×10 ⁻²	1.09×10 ⁻³
	this work	0.466 (15)	0.466	6.58	2.51×10 ⁻²	3.04×10 ⁻³
	Lantz 1964			4.6 (4)		
E	Linden 1972			6.5 (3)		
X F	Ricabarra 1972			4.36		
O R	Bereznai 1977			5.9 (25)		
	Heft 1978			7.70 (65)		

TABLE 6.53. INTEGRAL QUANTITIES FOR THE CROSS SECTION OF THE $^{104}{\rm Ru}(n,\gamma)^{105}{\rm Ru}$ REACTION

TABLE 6.54. INTEGRAL QUANTITIES FOR THE CROSS SECTION OF THE $^{130}\text{Te}(n,\gamma)^{131}\text{Te}$ REACTION

		$\sigma_{\gamma 0}$		Resonance	Fast cross section [b]	
	Sources	(2200 m/s) [b]	Maxwellian (300K) [b]	integral [b]	Fission spectrum	14-MeV
	Aughabghab aluation (total)	0.290 (61)	_	0.46 (5)	_	_
ENI	DF/B-VI (total)	0.290	0.290	0.344	4.48×10 ⁻³	1.95×10 ⁻³
JEN	NDL-3.3 (total)	0.270	0.270	0.275	5.56×10 ⁻³	1.00×10 ⁻³
	total	0.204 (10)	0.204	0.239	2.47×10 ⁻³	1.40×10 ⁻³
this work	ground	0.192 (10)	0.192	0.225	2.08×10 ⁻³	8.09×10 ⁻⁴
	isomeric	0.012 (1)	0.012	0.015	3.88×10 ⁻³	5.94×10 ⁻⁴
E X	Ricabarra 1968			0.48 (14)		
F	Browne 1973			0.258 (32)		
O R	Linden 1974			0.34 (3)		

		$\sigma_{\gamma 0}$	$< \sigma_{\gamma} >$	Resonance	Fast cross section [b]		
	Libraries	(2200 m/s) [b]	Maxwellian (300K) [b]	integral I ₀ [b]	Fission spectrum	14-MeV	
	Iughabghab evaluation)	954 (10)	_	3500 (100)	-	_	
E	ENDF/B-VI	955	952	3424	0.185	6.08×10 ⁻³	
	JEFF-3.1	958	954	3423	0.185	6.08×10 ⁻³	
	total	962 (11)	959	3429 ^{a,b}	0.181	2.06×10 ⁻³	
this	ground	317 (58)	316	1132 ^a	0.110	1.50×10 ⁻³	
work	meta1	645 (120)	642	2296 ^{a,c}	0.070	2.79×10 ⁻⁴	
	meta2	0.13 (6)	0.13	0.46 ^a	8.04×10 ⁻⁴	2.78×10 ⁻⁴	
	Harris 1950			3270 (230) ^d			
	Sims 1968			4800 (240) ^d			
E X F	Koehler 1968			4074 (285) ^e 940 (160) ^f			
0	Linden 1974			3480 (382) ^a			
R	Heft 1978			5320 (480) ^d			
	Masyanov 1992 [6.154]			3410 (70) ^d			

TABLE 6.55. INTEGRAL QUANTITIES FOR THE CROSS SECTION OF THE $^{191}\mbox{Ir}(n,\gamma)^{192}\mbox{Ir}$ REACTION

^a Lower limit of resonance integral of 0.55 eV. ^b $I_0^{tot}(0.50 \text{eV}) = 3558 \text{ b}, I_0^{tot}(0.62 \text{ eV}) = 2940 \text{ b}.$ ^c $I_0^{m1}(0.62 \text{eV}) = 1969 \text{ b}.$ ^d Lower limit of resonance integral of 0.5 eV. ^e Lower limit of resonance integral of 0.62 eV.

^f Value for the first isomeric state with lower integral limit 0.62 eV.

6.6. Nuclear Data for the Production of ³²P, ⁶⁴Cu, ⁶⁷Cu, ⁸⁹Sr, ⁹⁰Y and ¹⁵³Sm Radionuclides Through Charge-exchange (n,p) Channel

Radionuclides emitting low-range highly ionising radiation (β^- and α -particles, Auger and conversion electrons) are of increasing significance in internal radiotherapy. Most of them are produced at nuclear reactors, but new possibilities for production in spallation neutron sources are also being explored. Usually the neutron capture production is employed in nuclear reactors. Another important production process is the fission of ²³⁵U which gives rise to "no-carrier-added" (nca) products. The (n,p) reaction is also utilized in the reactor production to obtain a product of high specific activity, although cross sections with fission neutrons are rather low. Four such radionuclides are ³²P (T $_{\frac{1}{2}} = 14.3$ d), ⁶⁴Cu (T $_{\frac{1}{2}} = 12.7$ h), ⁶⁷Cu (T $_{\frac{1}{2}} = 61.9$ h) and ⁸⁹Sr (T $_{\frac{1}{2}} = 50.5$ d); they are produced via the (n,p) reaction on the target nuclei ³²S, ⁶⁴Zn, ⁶⁷Zn and ⁸⁹Y, respectively. Over recent years the production of ⁶⁴Cu and ⁶⁷Cu has shifted mainly to cyclotrons [6.161], but ³²P and ⁸⁹Sr are still produced via the (n,p) reaction at nuclear reactors. Two other therapeutic radionuclides, namely ⁹⁰Y(T $_{\frac{1}{2}} = 64.8$ h) and ¹⁵³Sm (T $_{\frac{1}{2}} = 46.75$ h) are available via the fission-produced ⁹⁰Sr/⁹⁰Y generator system and the ¹⁵²Sm(n, γ)-reaction, respectively, although the latter is of low specific activity. They could also possibly be generated via the (n,p) reaction on ⁹⁰Zr and ¹⁵³Eu, respectively. The production of these six radionuclides via the charge-exchange (n,p) reaction will be covered in this section.

6.6.1. 67 Zn(n,p) 67 Cu reaction

Cross sections for the ${}^{67}Zn(n,p){}^{67}Cu$ reaction in the production of ${}^{67}Cu$ are shown in Fig. 6.44. While experimental data also exist at thermal neutron energy, much of the experimental data appears to be incorrect. The three sources of evaluated cross-section data originate from JEFF-3.1/A [6.136], JENDL-Activation File [6.160] and the file calculated and assembled by Qaim and co-workers for this project [6.161]. A combination of $1/\sqrt{E}$ in the thermal and resonance region with calculated data in the fast neutron region was used by Qaim *et al.* to produce their curve for the excitation function. JEFF-3.1/A also includes thermal and resonance regions, while the Japanese evaluation is restricted to the fast neutron region. There are big discrepancies among the different evaluations for neutron energies above 14 MeV.

Integral experimental data for spectrum-averaged cross sections are listed for the ${}^{67}Zn(n,p){}^{67}Cu$ reaction in Table 6.56. The cross sections from JEFF-3.1/A were used as input for INTER to obtain spectrum-averaged fission cross sections. $\langle \sigma_{n,p} \rangle = 1.02$ mb for the ${}^{67}Zn(n,p)$ reaction, which is consistent with the latest measurement by Horibe *et al.* [6.162]. Similar results were derived for the JENDL-activation library. However, the Qaim *et al.* evaluation overestimates both fission and Cf-252 spectrum-averaged cross sections.

Considering the integral benchmarks performance and the existence of thermal and resonance data, we recommend the JEFF-3.1/A evaluation be adopted for this reaction. The recommended data is available online at the IAEA Nuclear Data Section webpage (see <u>http://www-nds.iaea.org/exfor/endf.htm</u>, special libraries).

	Courses	Spectrum-averaged cross section [mb]			
	Sources	Fission	Cf-252(a)	Others	
Library	Qaim calculation, STAPRE [6.161]	1.32	1.48	35.8 (b)	
	JEFF-3.1/A [6.136]	1.02	1.13	42.8 (b)	
	JENDL-Activation [[6.160]	1.02	1.15	36.4 (b)	
evaluation	Calamand 1974 [6.13]	1.07 (4)	_	_	
measurement	Horibe 1989 [6.162]	1.01 (9)	-	_	
	Brodskaja 1977 [6.15]	0.92 (7)	-	_	

TABLE 6.56.INTEGRAL QUANTITIES FOR THE CROSS SECTION OF THE 67Zn(n,p)67Cu
REACTION COMPARED WITH VALUES FROM VARIOUS OTHER DATA
SOURCES INCLUDING EXFOR

(a) Cf-252 neutron spectrum, with effective temperature T= 1.42 MeV and integration limits from 1 keV to 20 MeV. (b) 14-MeV neutron spectrum, with the same integration limits.

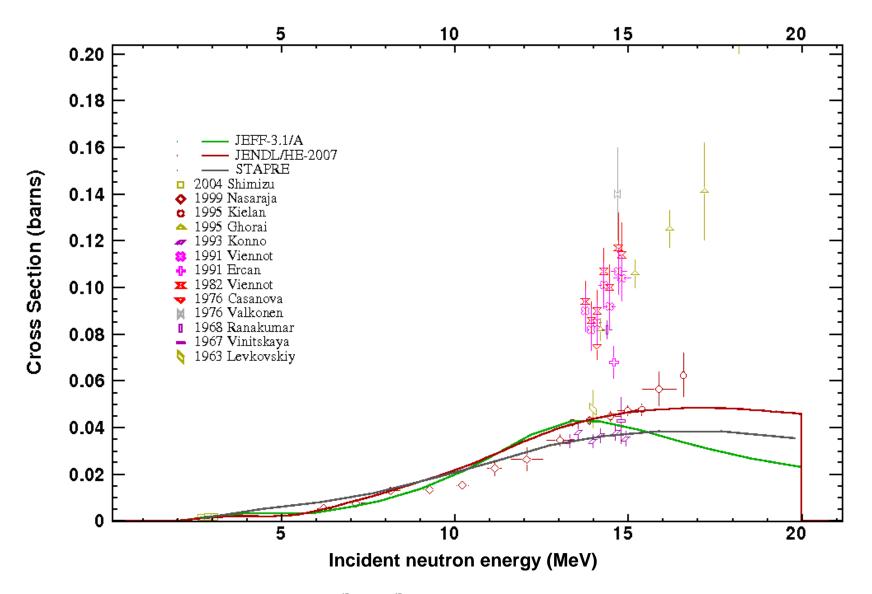


FIG. 6.44. Cross-section data of the ${}^{67}Zn(n,p){}^{67}Cu$ reaction, with EXFOR data [6.15] plotted as symbols.

6.6.2. 64 Zn(n,p) 64 Cu reaction

Cross sections for the 64 Zn(n,p) reaction in the production of 64 Cu are shown in Fig. 6.45(a). Data sets derived by Qaim *et al.* (RNAL) [6.161] and Zolotarev in his update for the IRDF-2002 [6.165] dosimetry evaluation [6.165, 6.166] are included along with other data files and the EXFOR data. Zolotarev carried out a very careful selection and correction/normalization of available experimental data [6.166] – experimental data rejected by Zolotarev are shown in Fig. 6.45(b). Differences between original and corrected experimental data are significant as shown in Figs. 6.45(a) and 6.45(c). Some discrepancies remain above 14 MeV, but the experimental database used in Zolotarev evaluation (Fig. 6.45(c)) seems more consistent than the original uncorrected set (Fig. 6.45(a)). Therefore we recommend the Zolotarev evaluation [6.165, 6.166] be adopted, which is listed in Table 6.57.

TABLE 6.57. EVALUATED							
64 Zn(n,p) 64 Cu	REACTION	N IN	THE	NEUTRON	ENERGY	RANGE	FROM
THRESHOLD	TO 20 MeV.	•					

Neutron energy (MeV) from to	Cross section (mb)	Uncer- tainty (%)	Neutron energy (MeV) from to	Cross section (mb)	Uncer- tainty (%)
0.500 - 1.750	0.435	11.81	7.750 - 8.000	233.431	2.43
1.750 - 2.000	4.528	4.25	8.000 - 8.500	237.672	2.31
2.000 - 2.250	10.941	3.61	8.500 - 9.000	242.455	2.13
2.250 - 2.500	23.187	3.24	9.000 - 9.500	246.769	2.00
2.500 - 2.750	42.689	2.93	9.500 - 10.000	251.112	2.06
2.750 - 3.000	67.682	2.74	10.000 - 11.000	257.083	2.20
3.000 - 3.250	93.146	2.69	11.000 - 11.500	259.162	2.32
3.250 - 3.500	114.482	2.71	11.500 - 12.000	254.580	2.37
3.500 - 3.750	130.332	2.73	12.000 - 12.500	243.880	2.36
3.750 - 4.000	141.779	2.68	12.500 - 13.000	227.746	2.27
4.000 - 4.250	150.467	2.55	13.000 - 13.500	208.260	2.12
4.250 - 4.500	157.680	2.36	13.500 - 14.000	187.776	1.92
4.500 - 4.750	164.211	2.18	14.000 - 14.500	168.057	1.81
4.750 - 5.000	170.482	2.06	14.500 - 15.000	150.067	2.01
5.000 - 5.250	176.690	2.02	15.000 - 15.500	134.146	2.49
5.250 - 5.500	182.896	2.07	15.500 - 16.000	120.273	3.06
5.500 - 5.750	189.089	2.18	16.000 - 16.500	108.258	3.58
5.750 - 6.000	195.213	2.31	16.500 - 17.000	97.857	3.99
6.000 - 6.250	201.193	2.42	17.000 - 17.500	88.831	4.34
6.250 - 6.500	206.949	2.50	17.500 - 18.000	80.964	4.68
6.500 - 6.750	212.400	2.55	18.000 - 18.500	74.072	5.13
6.750 - 7.000	217.481	2.56	18.500 - 19.000	68.001	5.81
7.000 - 7.250	222.141	2.55	19.000 - 19.500	62.625	6.79
7.250 - 7.500	226.351	2.52	19.500 - 20.000	57.839	8.11
7.500 - 7.750	230.107	2.48			

Spectrum-averaged cross sections for the ⁶⁴Zn(n,p) ⁶⁴Cu reaction are shown in Table 6.58. Since all the experimental data before the 1980s were considered in the evaluations by Calamand [6.13] and Mannhart [6.168, 6.169], only measurements reported afterwards have been listed in this table. The latest evaluations for the ⁶⁴Zn(n,p) reaction recommend $\langle \sigma_{n,p} \rangle$ in the ²³⁵U thermal fission spectra of approximately 40 mb, which is supported by the most recent measurement of Cohen *et al.* [6.167].

	C	Spectrum-averaged cross section [mb]				
	Sources	Fission	Cf-252 ^a	Others		
library	RNAL (Qaim) [6.161]	40.4	44.5	201 ^b		
	JEF-2.2	44.2	48.4	193 ^b		
	IRDF-2002 [6.164]	38.7	42.4	177 ^b		
	RRDF-2006 [6.165, 6.166]	39.3 / 38.9 [6.165]	43.1 / 42.7 [6.165]	178 ^b		
evaluation	Calamand 1974 [6.13]	31.0 (23)	_	_		
	Mannhart 1989 [6.168]	_	40.47 (75)	_		
	Mannhart 2003 [6.169]	35.39 (1.07)	40.59 (67)	_		
	Zolotarev 2008 [6.166]	38.9 (2.8)	42.3 (0.9)	-		
measurement	Cohen 2005 [6.167]	37.4 (14)	_	_		
	Kobayashi 1990	31.7 (18)	_	_		
	Benabdallah 1985	_	38.2 (15)	_		
	Kobayashi 1984	_	41.8 (17)	_		
	Spahn 2004 [6.163]	_	_	132 (25) ^c		

TABLE 6.58. INTEGRALQUANTITIESFORTHECROSSSECTIONOFTHE64Zn(n,p)64CuREACTIONCOMPAREDWITHVALUESFROMVARIOUSOTHERDATA SOURCES INCLUDING EXFOR

^a Cf-252 neutron spectrum, with effective temperature T = 1.42 MeV and integration limits from 1 keV to 20 MeV.
 ^b 14-MeV neutron spectrum, with the same integration limits.

^c 14-MeV d(Be) neutron spectrum.

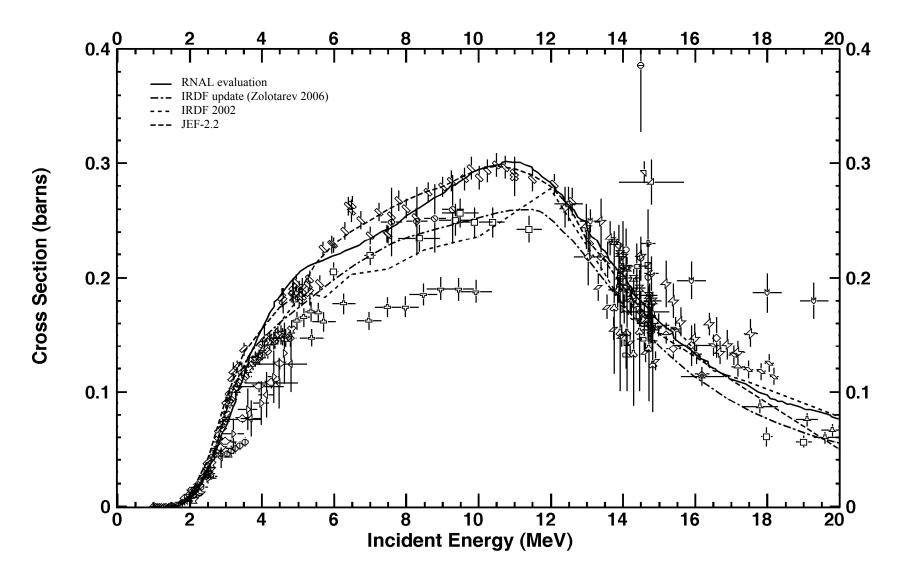


FIG. 6.45(a). Evaluated cross section data of the ${}^{64}Zn(n,p){}^{64}Cu$ reaction in comparison with IRDF-2002 and un-corrected experimental data [6.15].

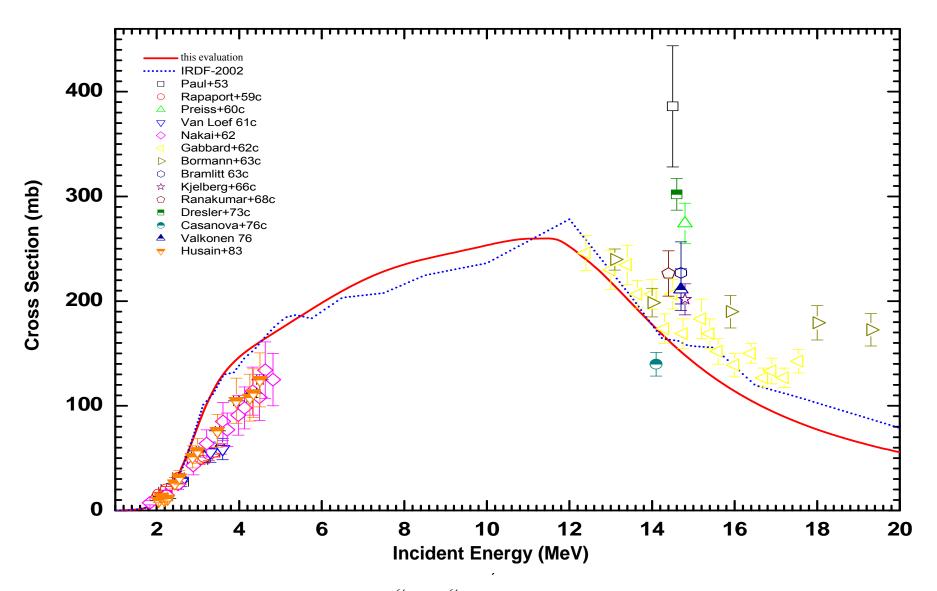


FIG. 6.45(b). Recommended cross section data of the ${}^{64}Zn(n,p){}^{64}Cu$ reaction in comparison with IRDF-2002 and rejected experimental data [6.15] – reprinted from Ref. [6.166].

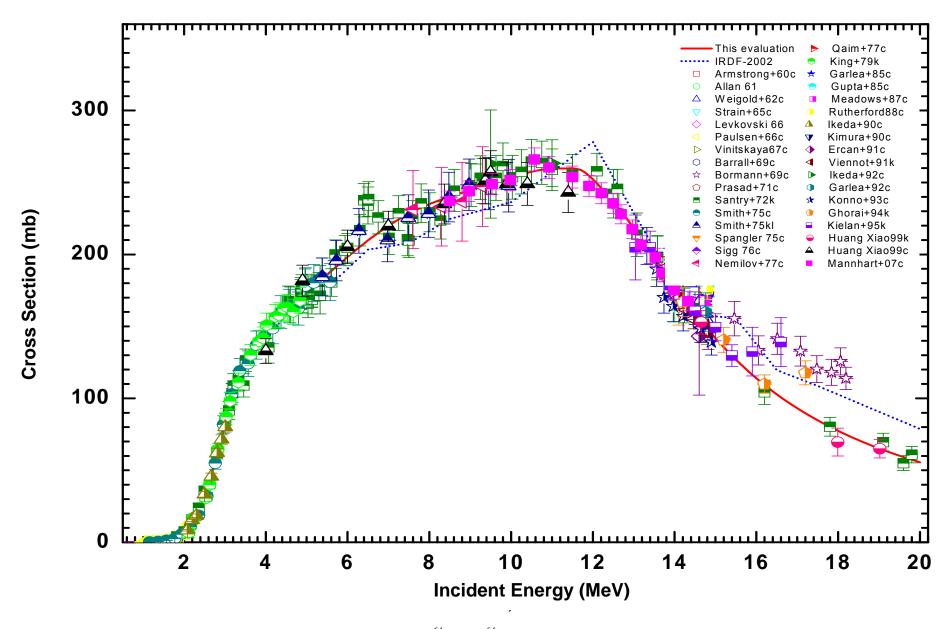


FIG. 6.45(c) Recommended cross section data of the ${}^{64}Zn(n,p){}^{64}Cu$ reaction in comparison with IRDF-2002 and experimental data – reprinted from Ref. [6.166].

6.6.3. 90 Zr(n,p) 90 Y reaction

Experimental cross sections for the 90 Zr(n,p) 90 Y reaction given in the EXFOR database are reproduced in Fig. 6.46. Ignatyuk and co-workers carried out a new evaluation in 2005 to update the Russian dosimetry library RRDF-2006 [6.170, 6.171]. The excitation function from threshold to 21 MeV was obtained by means of a theoretical model calculation with the modified GNASH code that was guided by available experimental data [6.172-6.178]; all experimental data were corrected to the new standards. Data of Bayhurst and Prestwood [6.172], Mukherjee and Bakhru [6.173] and Carroll and Stooksberry [6.174] measured above 12 MeV were corrected for the contribution from the Zr-91(n,x)Y-90m+g reaction as these measurements used natural targets. Data from Refs. [6.172] and [6.174] were renormalized to the factors Fc = 0.76391 and Fc = 0.77555, respectively. Experimental data of Nemilov and Trofimov [6.176] were renormalized to the theoretically calculated integral of the cross sections over the energy range from 7.60 to 9.30 MeV, resulting in a correction factor Fc = 0.49621. All corrected experimental data sets were fitted using Pade functions. Data measured by Qaim *et al.* [6.178] were found to be the most consistent. The resulting RRDF-06 dosimetry file was adopted as the recommended data set for the ${}^{90}Zr(n,p)^{90}Y$ reaction, and is also shown in Fig. 6.46.

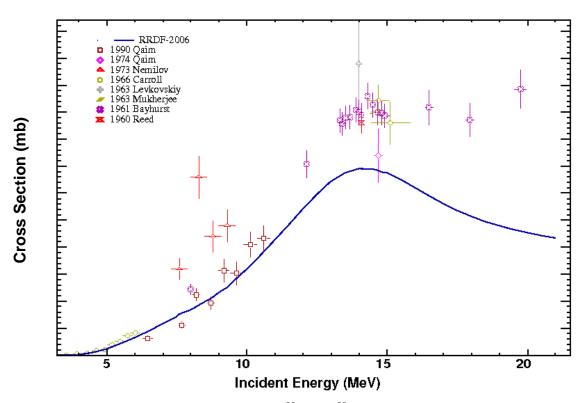


FIG. 6.46. Excitation function of the ${}^{90}Zr(n,p){}^{90}Y$ reaction – EXFOR contains references to experimental data.

6.6.4. 89 Y(n,p) 89 Sr reaction

The experimental cross-section data for the ⁸⁹Y(n,p)⁸⁹Sr reaction are plotted in Fig. 6.47 (all from EXFOR) as a function of neutron energy. The results of Tewes *et al.* (1960) are rather low, and they can not be checked because no details are available; furthermore the Csikai and Nagy (1967) value is rather high. Both sets of data have been rejected. There are several experimental data points around 14 MeV, but only two data sets exist over wide energy ranges (Bayhurst et al. [6.172] and Klopries *et al.* [6.179]). All of these data are consistent. STAPRE calculations reported by Klopries *et al.* [6.179] and EMPIRE 2.19 studies are also shown in Fig. 6.47. There is very good agreement between experiment and model calculations. Therefore, we adopted the STAPRE curve as the standard excitation function of the ⁸⁹Y(n,p)⁸⁹Sr reaction. The recommended data is available online at the IAEA Nuclear Data Section webpage (see http://www-nds.iaea.org/exfor/endf.htm, special libraries).

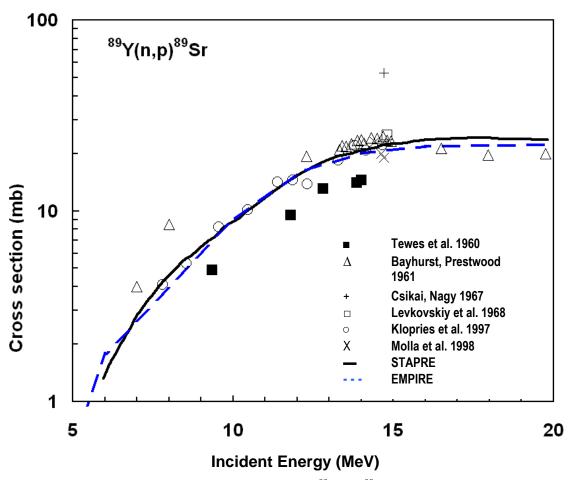


FIG. 6.47. Excitation function of the ${}^{89}Y(n,p){}^{89}Sr$ reaction – EXFOR contains references to experimental data.

Integral experimental data for spectrum-averaged cross sections for the 89 Y(n,p) 89 Sr reaction have been measured [6.161], in which the fast neutron field was generated via break-up of 14-MeV deuterons on a thick beryllium target. An experimentally determined cross section of 0.91 ± 0.20 mb agrees within uncertainty with the calculated integral value of 1.05 mb based on the recommended STAPRE calculation.

6.6.5. ¹⁵³Eu(n,p)¹⁵³Sm reaction

Only a few data points around 14 MeV have been reported for the ${}^{153}Eu(n,p){}^{153}Sm$ reaction. Experimental data together with the results of STAPRE and EMPIRE 2.19 calculations are shown in Fig. 6.49 as a function of neutron energy. The encircled data of Coleman *et al.* (1959) and Pruys *et al.* (1975) appear to be rather high, and were therefore rejected. Data represented by the curve given by the STAPRE calculation were adopted as the recommended excitation function of the ${}^{153}Eu(n,p){}^{153}Sm$ reaction.

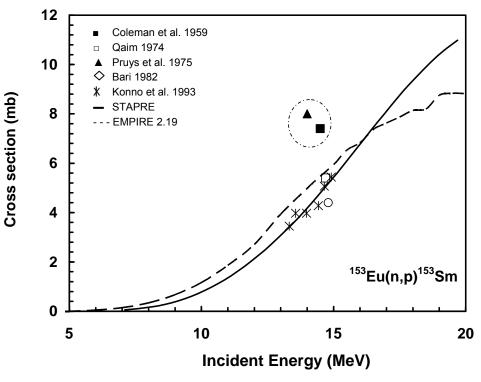


FIG. 6.48. Excitation function of the ${}^{153}Eu(n,p){}^{153}Sm$ reaction – EXFOR contains references to experimental data.

The spectrum-averaged cross section of the ${}^{153}\text{Eu}(n,p){}^{153}\text{Sm}$ reaction induced by 14-MeV d(Be) break-up neutrons was integrally measured via the activation technique [6.161]. An experimentally determined cross section of 0.26 \pm 0.04 mb agrees within uncertainty with the calculated integral value of 0.30 mb based on the recommended STAPRE calculation.

6.6.6. ${}^{32}S(n,p){}^{32}P$ reaction

The excitation function for the ${}^{32}S(n,p){}^{32}P$ reaction is shown in Fig. 6.49(a). References to all experimental data are to be found in the EXFOR database. While nuclear model calculations with STAPRE and EMPIRE 2.19 codes describe the overall trend of the excitation function, they do not reproduce the fine structures. A better fit of the experimental data was achieved in the IRDF-2002 evaluation [6.164].

Zolotarev has re-evaluated the excitation function in order to update the IRDF-2002 library [6.165, 6.166, 6.164]. A careful selection and correction/normalization of available experimental data was undertaken [6.166]. Fig. 6.49(b) shows the re-evaluated excitation function for the ${}^{32}S(n,p){}^{32}P$ reaction over the neutron energy range from 1.0 to 5.0 MeV, and Fig. 6.49(c) the equivalent data from threshold to 21.0 MeV compared with the cross sections of IRDF-2002 and experimental data. Over the neutron energy range from 1.5 to 20 MeV, the re-evaluated excitation function is seen to be in better agreement with the corrected experimental data than the IRDF-2002 evaluation; therefore we recommend the Zolotarev evaluation [6.165, 6.166] to be adopted as the standard excitation function of this reaction. The recommended data are listed in Table 6.59.

TABLE 6.59.	EVALUAT	ED CROSS S	ECTI	IONS A	AND THEIR	UNCERTAI	NTIES FC	OR THE
	${}^{32}S(n,p){}^{32}P$	REACTION	IN	THE	NEUTRON	ENERGY	RANGE	FROM
	THRESHO	LD TO 21 MeV	/					

Neutron energy (MeV) from to	Cross section (mb)	Uncer- tainty (%)	Neutron energy (MeV) from to	Cross section (mb)	Uncer- tainty (%)
0.958 - 2.000	2.266	10.94	8.000 - 8.500	337.897	2.87
2.000 - 2.200	37.243	3.72	8.500 - 9.000	345.442	2.87
2.000 = 2.200 2.200 = 2.400	77.314	3.33	9.000 - 9.500	356.385	3.04
2.200 - 2.400 2.400 - 2.600	84.928	3.32	9.500 - 9.500 9.500 - 10.000	370.121	3.04
2.600 - 2.800	88.674	3.27	10.000 - 10.500	385.822	2.99
2.800 - 2.800 2.800 - 3.000	114.865	3.34	10.000 = 10.000 10.500 - 11.000	395.288	2.99
3.000 - 3.200	161.191	3.34	10.300 - 11.000 11.000 - 11.500	393.101	2.81
3.200 - 3.400	172.418	3.86	11.000 - 11.000 11.500 - 12.000	378.428	2.37
3.400 - 3.600	220.489	3.43	12.000 - 12.500	354.514	2.08
3.600 - 3.800	183.632	3.88	12.500 - 12.500 12.500 - 13.000	325.756	1.86
3.800 - 4.000	194.915	4.44	12.500 - 15.000 13.000 - 13.500	295.609	1.65
4.000 - 4.200	336.752	4.22	13.500 - 14.000	266.173	1.46
4.200 - 4.400	339.058	3.95	14.000 - 14.500	238.544	1.33
4.400 - 4.600	291.271	3.58	14.500 - 15.000	213.217	1.33
4.600 - 4.800	264.011	3.45	14.000 - 15.000 15.000 - 15.500	190.365	1.41
4.800 - 5.000	251.888	3.55	15.500 - 16.000	169.985	1.58
5.000 - 5.200	248.468	3.78	16.000 - 16.500	151.989	1.77
5.200 - 5.400	255.711	3.99	16.500 - 17.000	136.237	1.94
5.400 - 5.600	276.922	3.97	17.000 - 17.500	122.564	2.08
5.600 - 5.800	304.713	3.68	17.500 - 18.000	110.792	2.20
5.800 - 6.000	324.063	3.33	18.000 - 18.500	100.742	2.34
6.000 - 6.500	331.551	3.11	18.500 - 19.000	92.239	2.52
6.500 - 7.000	329.358	2.96	19.000 - 20.000	82.158	2.96
7.000 - 7.500	335.908	2.84	20.000 - 21.000	72.418	3.98
7.500 - 8.000	340.682	2.83		,	2.70

Evaluated excitation functions for the ${}^{32}S(n,p){}^{32}P$ reaction have been tested against integral experimental data from Refs. [6.180, 6.181]. Calculated average cross sections for ${}^{235}U$ thermal fission and ${}^{252}Cf$ spontaneous fission neutron spectra are compared with the IRDF-2002 and experimental data in Table 6.60. Data calculated from the re-evaluated excitation functions for ${}^{235}U$ thermal fission and ${}^{252}Cf$ spontaneous fission neutron spectra agree well with the experimental data, while discrepancies exist between the IRDF-2002 and experimental data of about 6.4% and 3.2% for the ${}^{235}U$ and ${}^{252}Cf$ spectra, respectively.

TABLE 6.60.CALCULATED AND MEASURED AVERAGED CROSS SECTIONS FOR THE
 $^{32}S(n,p)^{32}P$ REACTION IN ^{235}U THERMAL FISSION AND ^{252}Cf SPONTANEOUS
FISSION NEUTRON SPECTRA.

Type of neutron field	Average c	C/E [6.181]	
	Calculated	Measured	
²³⁵ U thermal fission neutron spectrum	68.195 [A] 64.501 [B]	69.080 ± 1.361 [6.181]	0.9872 0.9337
²⁵² Cf spontaneous fission neutron spectrum	74.106 [A] 70.230 [B]	73.240 ± 2.695 [6.180] 72.540 ± 2.532 [6.181]	1.0216 0.9682

[A] present evaluation.

[B] IRDF-2002 (IRDF-90 version 2), Ref. [6.164].

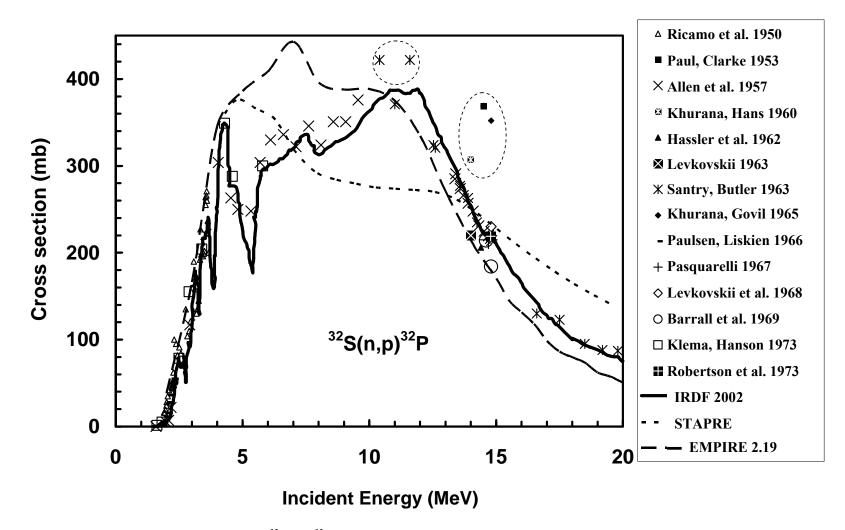
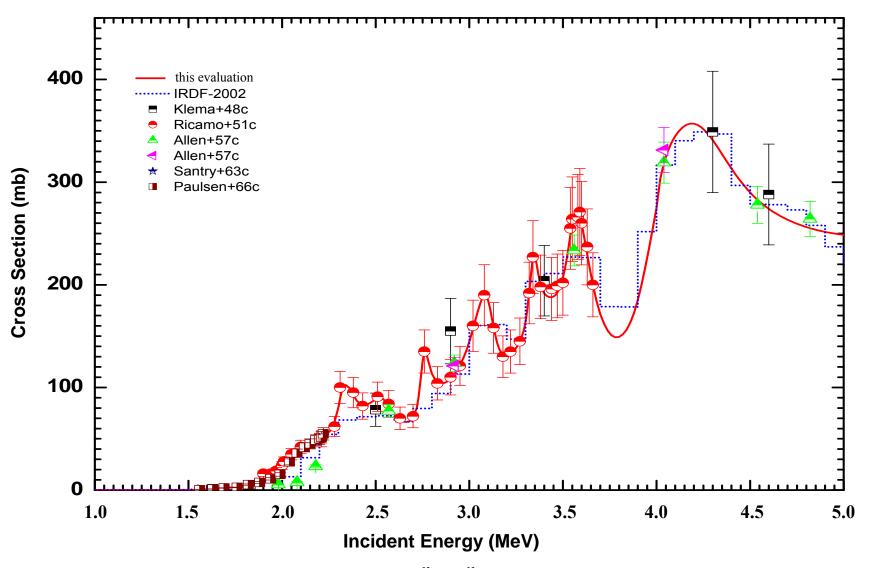



FIG. 6.49(a) Excitation function of the ${}^{32}S(n,p){}^{32}P$ reaction – EXFOR contains references to experimental data. Discrepant data are encircled, and the results of STAPRE and EMPIRE 2.19 model calculations and the curve given in the IRDF-2002 dosimetry file are also shown.

FIG. 6.49(b) Re-evaluated excitation function of the ${}^{32}S(n,p){}^{32}P$ reaction in the energy range from threshold to 5 MeV in comparison with IRDF-2002 and selected experimental data – reprinted from [6.166].

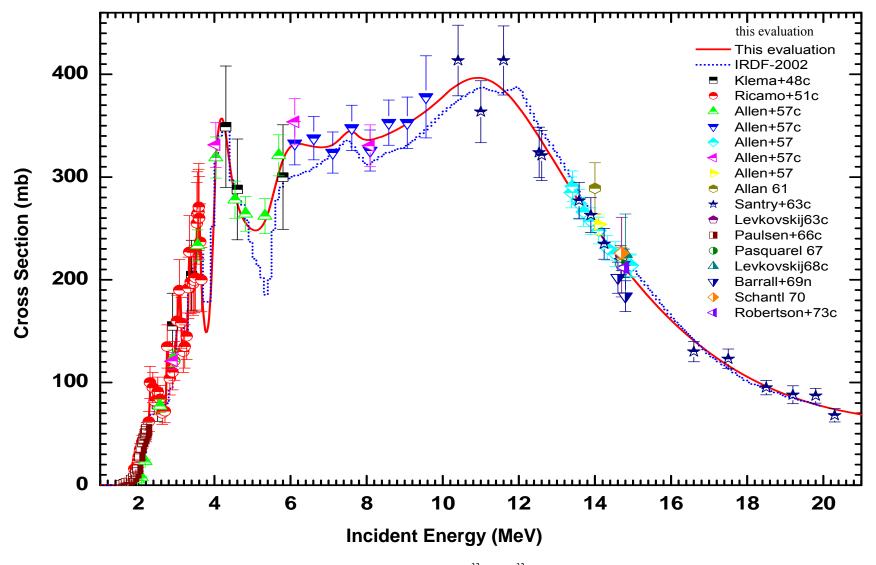


FIG. 6.49(c) Re-evaluated excitation function of the ${}^{32}S(n,p){}^{32}P$ reaction in the energy range from threshold to 20 MeV in comparison with IRDF-2002 and experimental data – reprinted from [6.166].

REFERENCES

- [6.1] "The JEFF-3.1 library", JEFF report 21, NEA/OECD No. 6190, 2006; ISBN 92-64-02314-3, 2006; <u>http://www.nea.fr/html/dbdata/projects/nds_jef.htm</u>
- [6.2] "Descriptive Data of JENDL-3.3 (Part I and II)", SHIBATA, K. (Ed.), JAERI-Data/Code 2002-026 (2003); <u>http://wwwndc.tokai-sc.jaea.go.jp/jendl/j33/j33.html</u>
- [6.3] CHADWICK, M.B., et al., ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology., Nucl. Data Sheets 107 (2006) 2931-3060; <u>http://www.nndc.bnl.gov/exfor7/endf00.htm</u>
- [6.4] MILLS, R.W., private communication, Nexia Solutions Ltd., 2006.
- [6.5] HERMAN, M. (Ed.), "ENDF-6 Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and ENDF/B-VII (Rev. June 2005)", Rep. BNL-NCS-44945-05-Rev., National Nuclear Data Center, Brookhaven Natl Lab. (2005), <u>http://www.nndc.bnl.gov/endf/</u>
- [6.6] "Experimental Nuclear Reaction Data –EXFOR"; http://www-nds.iaea.org/exfor/exfor00.htm
- [6.7] "ENDVER/Gui ENDF File Verification Support Package"; http://www-nds.iaea.org/ndspub/endf/endver/
- [6.8] FORREST, R.A., "SAFEPAQ-II User Manual", UKAEA FUS 454, issue 7, January 2007; http://www.fusion.org.uk/easy2007/index.html
- [6.9] "RSICC peripheral shielding routine collection NJOY-99.0", PSR-480 code package; http://www-rsicc.ornl.gov/
- [6.10] "ENDF Utility Codes Release 7.02 and Pre-processing Code PREPRO-2007"; http://www.nndc.bnl.gov/nndcscr/endf/
- [6.11] FORREST, R.A., KOPECKY, J., PILLON, M., SEIDEL, K., SIMAKOV, S.P., BEM, P., HONUSEK, M., SIMECKOVA, E., "Validation of EASY-2005 using integral measurements", UKAEA FUS 526, January 2006; http://www.fusion.org.uk/easy2007/index.html
- [6.12] MUGHABGHAB, S.F., "Atlas of Neutron Resonances", Elsevier Science, 2006, ISBN-13: 978-0-444-52035-7.
- [6.13 CALAMAND, A., "Cross Section for Fission Neutron Spectrum Induced Reactions", pp. 273-324 in Handbook on Nuclear Activation Cross Sections, Technical Reports Series No. 156, IAEA, Vienna, Austria (1974).
- [6.14] FORREST, R.A., KOPECKY, J., SUBLET, J.-Ch., "The European Activation File: EAF-2007 neutron-induced cross section library", UKAEA FUS 535, January 2007; http://www.fusion.org.uk/easy2007/index.html
- [6.15] ZERKIN, V. (Ed.), "EXFOR+CINDA for Applications: Database and Retrieval System, Version 1.70, January 2005", CD-ROM, Nuclear Data Section, IAEA, Vienna, Austria (2003), and <u>http://www.nndc.bnl.gov/exfor3/</u>
- [6.16] HERMAN, M., "EMPIRE-II A modular system for nuclear reaction calculations", http://www.nndc.bnl.gov/empire219/.
- [6.17] MacFARLANE, R.E., "NJOY99: Code System for Producing, Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Data", PSR-480(NJOY99.0), LANL (2000).
- [6.18] MUGHABGHAB, S.F., "Thermal neutron capture cross sections, resonance integrals and g-factors", INDC(NDS)-440, IAEA, Vienna, Austria, 2003.
- [6.19] SHIBATA, K., *et al.*, Japanese Evaluated Nuclear Data Library, Version 3, Revision-3: JENDL-3.3, J. Nucl. Sci. Technol. **39** (2002) 1125-1136.
- [6.20] YOUNG, P.G., "Handbook for Calculation of Nuclear Reaction Data : Reference Input Parameter Library", IAEA-TECDOC-1034, IAEA, Vienna (1998) 41-63.
- [6.21] TULI, J.K., "Evaluated Nuclear Structure Data File A Manual for Preparation of Data Sets", Rep. BNL-NCS-51655-01/02-Rev. (2001), National Nuclear Data Center, Brookhaven Natl Lab., Upton, NY, http://www.nndc.bnl.gov/nndc/ensdf/.
- [6.22] BROWNE, E., Nuclear Data Sheets for A = 90, Nucl. Data Sheets 82 (1997) 379.
- [6.23] SEREN, L., FRIEDLANDER, H.N., TURKEL, S.H., Thermal Neutron Activation Cross Sections, Phys. Rev. **72** (1947) 888-901.
- [6.24] POMERANCE, H., Thermal neutron capture cross sections, Phys. Rev. 83 (1951) 641-645.

- [6.25] BENOIST, P., KOWARSKI, L., NETTER, F., Measurement of thermal neutron absorption measurement by pile oscillation, J. Phys. **12** (1951) 584-589.
- [6.26] LYON, W.S., REYNOLDS, S.A., private communication to EXFOR, Oak Ridge Natl Lab. (1956).
- [6.27] RUSTAD, B.M., MELKONIAN, E., HAVENS Jr., W.W., "Coherent, incoherent and capture cross sections of ⁸⁹Y", New York Ops. Off. Rep. NYO-72-28 (1966).
- [6.28] RYVES, T.B., PERKINS, D.R., Further activation thermal neutron capture cross sections and resonance integrals, J. Nucl. Energy **25** (1971) 129-131.
- [6.29] TAKIUE, M., ISHIKAWA, H., Thermal neutron reaction cross section measurements for fourteen nuclides with a liquid scintillation spectrometer, Nucl. Instrum. Meth. Phys. Res. 148 (1978) 157.
- [6.30] HARRIS, S.P., MUEHLHAUSE, C.O., THOMAS, G.E., Low energy neutron resonance scattering and absorption, Phys. Rev. **79** (1950) 11-18.
- [6.31] BOLDEMAN, J.W., ALLEN, B. J., DE L. MUSGROVE, A.R., MACKLIN, R.L., The neutron capture cross-section of ⁸⁹Y, Nucl. Sci. Eng. **64** (1977) 744-748.
- [6.32] MACKLIN, R.L., GIBBONS, J.H., INADA, T., Neutron capture cross sections near 30 keV using a Moxon-Rae detector, Nucl. Phys. **43** (1963) 353-362.
- [6.33] STUPEGIA, D.C., SCHMIDT, M., REEDY, C.R., MADSON, A.A., Neutron capture between 5 keV and 3 MeV, J. Nucl. Energy **22** (1968) 267-281.
- [6.34] BOOTH, R., BALL, W.P., MacGREGOR, M.H., Neutron activation cross sections at 25 keV, Phys. Rev. **112** (1958) 226-229.
- [6.35] HASAN, S.S., CHAUBEY, A.K., SEHGAL, M.L., Neutron activation cross-sections at 24 keV, Nuovo Cimento B 58 (1968) 402-406.
- [6.36] GIBBONS, J.H., MACKLIN, R.L., MILLER, P.D., NEILER, J.H., Average radiative capture cross sections for 7- to 170-keV neutrons, Phys. Rev. **122** (1961) 182-201.
- [6.37] MACKLIN, R.L., GIBBONS, J.H., Capture-cross-section studies for 30- to 220-keV neutrons using a new technique, Phys. Rev. **159** (1967) 1007-1012.
- [6.38] BOSTROM, N.A., MORGAN, I.L., PRUD'HOMME, J.T., OKHUYSEN, P.L., HUDSON Jr., O.M., Neutron interactions in lithium, carbon, nitrogen, aluminum, argon, manganese, yttrium, zirconium, radiolead and bismuth, Wright Air Devel. Centre Rep. WADC-TN-59-107 (1959).
- [6.39] TOLSTIKOV, V.A., KOROLEVA, V.P., KOLESOV, V.E., DOVBENKO, A.G., Fast neutron radiative capture by ⁸⁹Y, Atomnaya Energiya (USSR) **21** (1966) 506-507.
- [6.40] DIVEN, B.C., TERRELL, J., HEMMENDINGER, A., Radiative capture cross sections for fast neutrons, Phys. Rev. **120** (1960) 556-569.
- [6.41] POENITZ, W.P., "Fast-neutron capture-cross-section measurements with the Argon National Laboratory large-liquid-scintillator tank", Argonne Natl Lab. Rep. ANL-83-4 (1982) 239-247.
- [6.42] JOLY, S., VOIGNER, J., GRENIER, G., DRAKE, D.M., NILSSON, L., "Measurements of fast neutron capture cross sections using a NaI spectrometer", Centre d'Etudes Nucleaires Saclay Rep. CEA-R-5089 (1981).
- [6.43] VOIGNIER, J., JOLY, S., GRENIER, G., Capture cross sections and gamma-ray spectra from the interaction of 0.5 to 3.0 MeV neutron with nuclei in the mass range A = 63 to 209, Nucl. Sci. Eng. **112** (1992) 87-94.
- [6.44] BERGQVIST, I., PAELSSON, B., NILSSON, L., LINDHOLM, A., DRAKE, D.M., ARTHUR, E., McDANIELS, D.K., VARGHESE, P., Radiative capture of fast neutrons by ⁸⁹Y and ¹⁴⁰Ce, Nucl. Phys. A 295 (1978) 256-268.
- [6.45] RIGAUD, F., ROTURIER, J., IRIGARAY, J.L., PETIT, G.Y., LONGO, G., SAPORETTI, F., Radiative neutron capture on Si, Rb, Sr and Y in the dipole giant resonance region, Nucl. Phys. A 154 (1970) 243-260.
- [6.46] BUDNAR, M., CVELBAR, F., HODGSON, E., HUDOKLIN, A., IVKOVIC, V., LIKAR, A., MIHAILOVIC, M.V., MARTINCIC, R., NAJZER, M., PERDAN, A., POTOKAR, M., RAMSAK, V., "Prompt gamma-ray spectra and integrated cross sections for the radiative capture of 14 MeV neutrons for 28 natural targets in the mass region from 12 to 208", INDC(YUG)-6, 1979.
- [6.47] PERKIN, J.L., O'CONNOR, L.P., COLEMAN, R.F., Radiative capture cross sections for 14.5 MeV neutrons, Proc. Phys. Soc. **72** (1958) 505-513.

- [6.48] SCHWERER, O., WINKLER-ROHATSCH, M., WARHANEK, H., WINKLER, G., Measurement of cross sections for 14 MeV neutron capture, Nucl. Phys. A 264 (1976) 105-114.
- [6.49] BRAMLITT, E.T., FINK, R.W., Rare nuclear reactions induced by 14.7-MeV neutrons, Phys. Rev. **131** (1963) 2649-2663.
- [6.50] MAGNUSSON, G., ANDERSSON, P., BERQUIST, I., 14.7 MeV neutron capture cross section measurements with activation technique, Phys. Scrip. **21** (1980) 21-26.
- [6.51] CSIKAI, J., PETO, G., BUCZKO, M., MILLIGY, Z., EISSA, N., Radiative capture crosssections for 14.7-MeV neutrons, Nucl. Phys. A 95 (1967) 229-234.
- [6.52] GRENCH, H.A., COOP, K.L., MENLOVE, H.O., VAUGHN, F.J., A study of the spin dependence of the nuclear level density by means of the ${}^{89}Y(n,\gamma){}^{90g,90m}Y$ reactions with fast neutrons, Nucl. Phys. A **94** (1967) 157-176.
- [6.53] DE FRENNE, D., JACOBS, E., Nuclear Data Sheets for A = 103, Nucl. Data Sheets 93 (2001) 447.
- [6.54] MEINKE, W., Half-life of ¹⁰⁹Pd and neutron activation cross section of ¹⁰²Pd, Phys. Rev. **90** (1953) 410-412.
- [6.55] DUNCAN, C.L., KRANE, K.S., Neutron capture cross section of ¹⁰²Pd, Phys. Rev. C 71 (2005) 054322:1-5.
- [6.56] KATAKURA, J., Nuclear Data Sheets for A = 125, Nucl. Data Sheets **86** (1999) 955.
- [6.57] TOBIN, J.M., SAKO, J.H., Thermal Neutron Absorption Cross Section of Xenon-124, J. App. Phys. **29** (1958) 1373.
- [6.58] HARPER, P.V., SIEMENS, W.D., LATHROP, K.A., ENDLICH, H., "Production and use of ¹²⁵I", Argonne Cancer Res. Hospital Rep. (1961).
- [6.59] EASTWOOD, T., BROWN, F., "Neutron capture cross sections for Kr and Xe isotopes", Canadian report to EANDC (1963).
- [6.60] BRESESTI, M., CAPPELLANI, F., DEL TURCO, A.M., ORVINI, E., The thermal neutron capture cross-section and the resonance capture integral of ¹²⁴Xe, J. Inorg. Nucl. Chem. **26** (1964) 9-14.
- [6.61] KONDAIAH, E., RANAKUMAR, N., FINK, R.W., Thermal neutron activation cross sections for Kr and Xe isotopes, Nucl. Phys. A **120** (1968) 329-336.
- [6.62] BRESESTI, M., BRESESTI DEL TURCO, A.M., NEUMANN, H., ORVINI, E., The thermal neutron capture cross-section and resonance integral of ¹²⁵I, J. Inorg. Nucl. Chem. 26 (1964) 1625-1631.
- [6.63] SZUCS, J.A., JOHNS, M.W., SINGH, B., Nuclear Data Sheets for A = 129, Nucl. Data Sheets **46** (1985) 1.
- [6.64] POMERANCE, H., Thermal neutron capture cross sections, Phys. Rev. 88 (1952) 412-413.
- [6.65] WALKER, W.H., THODE, H.G., Relative abundances and neutron capture cross sections of the neodymium isotopes, Phys. Rev. **90** (1953) 447-448.
- [6.66] RUIZ, C.P., PETERSON Jr., J.P., RIDER, B.F., Thermal-neutron cross section and resonance capture integral of neodymium-148, Trans. Am. Nucl. Soc. 7 (1964) 270-271.
- [6.67] ALSTAD, J., JAHNSEN, T., PAPPAS, A.C., Thermal neutron capture cross sections and resonance capture integrals of the lanthanide nuclei ¹⁴⁰Ce, ¹⁴²Ce, ¹⁴⁶Nd, ¹⁴⁸Nd, ¹⁵⁰Nd and ¹⁵⁹Tb, J. Inorg. Nucl. Chem. **29** (1967) 2155-2160.
- [6.68] GRYNTAKIS, E.M., Examination of the dependence of the effective cross section from the neutron temperature, measurements of the neutron temperature and determination of some cross sections for neutron capture and neutron fission, private communication, Technische Universität München (1976).
- [6.69] HEFT, R.E., A consistent set of nuclear-parameter values for absolute instrumental neutron activation analysis, Conf. Computers in Activ. Analysis and Gamma-ray Spectroscopy, Mayaguez, Puerto Rico, 1978, Trans. Am. Nucl. Soc. Suppl. **28** (1978) 43-44.
- [6.70] RICABARRA, M.D., TURJANSKI, R., RICABARRA, G.H., Measurement and evaluation of the activation resonance integral of ¹⁴⁶Nd, ¹⁴⁸Nd and ¹⁵⁰Nd, Can. J. Phys. **51** (1973) 1454-1462.
- [6.71] VAN DER LINDEN, R., DE CORTE, F., HOSTE, J., A compilation of infinite dilution resonance integrals II, J. Radioanal. Chem. **20** (1974) 695-706.
- [6.72] STEINNES, E., Resonance activation integrals of some lanthanide nuclides, J. Inorg. Nucl. Chem. **37** (1975) 1591-1592.

- [6.73] De L. MUSGROVE, A.R., ALLEN, B.J., BOLDEMAN, J.W., MACKLIN, R.L., Nonstatistical effects in the radiative capture cross-sections of the neodymium isotopes, Int. Conf. Neutron Phys. Nucl. Data, Harwell (1978).
- [6.74] WISSHAK, K., VOSS, F., KAEPPELER, F., GUBER, K., KAZAKOV, L., REFFO, G., "Stellar neutron capture cross sections of the Nd isotopes", FZKA-5967 (1997).
- [6.75] NAKAJIMA, Y., ASAMI, A., KAWARASAKI, Y., FURUTA, Y., Neutron capture cross section measurements of ¹⁴³Nd, ¹⁴⁵Nd, ¹⁴⁶Nd and ¹⁴⁸Nd, Int. Conf. Neutron Phys. Nucl. Data, Harwell (1978).
- [6.76] KONONOV, V.N., JURLOV, B.D., POLETAEV, E.D., TIMOKHOV, V.M., MANTUROV, G.N., Average neutron radiative capture cross-section in the energy range 5 - 30 keV for in, Ta, Au and Nd, Sm, Eu, Gd, Er isotopes, Yad. Konst. 22 (1977) 29.
- [6.77] SIDDAPPA, K., SRIRAMACHANDRA MURTY, M., RAMA RAO, J., Neutron activation cross-sections in rare earths and heavier nuclei, Ann. Phys. **83** (1974) 355-366.
- [6.78] BRADLEY, T., PARSA, Z., STELTS, M.L., CHRIEN, R.E., "Stellar nucleosynthesis and the 24- keV neutron capture cross sections of some heavy nuclei", Int. Conf. Nucl. Cross Sections for Technol., Knoxville, TN, 22 October 1979, Brookhaven Natl Lab., BNL-26885 (1979).
- [6.79] THIRUMALA RAO, B.V., RAMA RAO, J., KONDAIAH, E., Neutron capture cross sections at 25 keV, J. Phys. Mathematical+General A **5** (1972) 468-470.
- [6.80] JOHNSRUD, A.E., SILBERT, M.G., BARSCHALL, H.H., Energy dependence of fastneutron activation cross section, Phys. Rev. **116** (1959) 927-936.
- [6.81] AFZAL ANSARI, M., SINGH, R.K.Y., GAUTAM, R.P., KAILAS, S., Fast neutron radiative capture cross-sections in fission product isotopes of neodymium, Ann. Nucl. Energy **26** (1999) 553-558.
- [6.82] TROFIMOV, Yu.N., Neutron radiation capture cross-sections for even neodim isotopes in the energy range 0.5 2.0 MeV, Vop. At. Nauki i Tekhn. Ser. Yad. Konst. (1993) 17.
- [6.83] TROFIMOV, Yu.N., "Neutron radiation capture cross-sections for nuclei of medium and large masses at the neutron energy 1 MeV", Proc. 1st Int. Conf. Neutron Physics, Kiev, Vol.3 (1987) 331.
- [6.84] TROFIMOV, Yu.N., Activation cross-sections for 31 nuclei at the neutron energy 2 MeV, Vop. At. Nauki i Tekhn. Ser. Yad. Konst. **4** (1987) 10.
- [6.85] HELMER, R.G., Nuclear Data Sheets for A = 153, Nucl. Data Sheets 107 (2006) 507.
- [6.86] WALKER, W.H., "The relative abundances and pile neutron capture cross sections of the isotopes of samarium, gadolinium, dysprosium and ytterbium", Phd thesis, McMaster University, Hamilton, Ontario (1956).
- [6.87] PATTENDEN, N.J., "Some neutron cross sections of importance to reactors ⁹⁹Tc, ¹⁴³Nd, ¹⁴⁵Nd, ¹⁴⁹Sm, ¹⁵¹Eu, ¹⁵³Eu, ¹⁵⁵Gd, ¹⁵⁷Gd, ²⁴⁰Pu", Proc. 2nd Int. At. Energy Conf., Geneva (1958).
- [6.88] FEHR, E., HANSEN, E., "Fission-product cross-section measurements", Knolls Atomic Power Lab. Rep. (1960).
- [6.89] TATTERSALL, R.B., ROSE, H., PATTENDEN, S.K., JOWITT, D., Pile oscillator measurements of resonance absorption integrals, J. Nucl. Energy A **12** (1960) 32-46.
- [6.90] CABELL, M.J., Neutron capture cross-section data for ¹⁵²Sm, J. Inorg. Nucl. Chem. 24 (1962) 749-753.
- [6.91] VICHAI HAYODOM, WUNLOP BOONKONG, SAKOW MAHAPANYAWONG, CHAVEE CHAIMONKON, "Resonance integral measurements", Atomic Energy for Peace, Bangkok report (1969).
- [6.92] STEINNES, E., Resonance activation integrals of some nuclides of interest in neutron activation analysis, J. Inorg. Nucl. Chem. **34** (1972) 2699-2703.
- [6.93] WISSHAK, K., GUBER, K., VOSS, F., KAEPPELER, F., REFFO, G., Neutron capture in ^{148,150}Sm – a sensitive probe of the s-process neutron density, Phys. Rev. C 48 (1993) 1401-1419.
- [6.94] GUBER, K., "Experimental determination of the stellar neutron capture cross sections of ¹⁴⁸Sm and ¹⁵⁰Sm and the consequences for the s-process", Kernforschungszentrum Karlsruhe, KFK-5170 (1993).
- [6.95] BOKHOVKO, M.V., KONONOV, V.N., RABOTNOV, N.S., VOEVODSKIY, A.A., MANTUROV, G.N., TIMOKHOV, V.M., "Neutron radiation cross-section, neutron

transmission and average resonance parameters for some fission product nuclei", Fiz.-Energ Institut Obninsk Rep. (1991).

- [6.96] LUO XIAO-BING, XIA YI-JUN, YANG ZHI-HUA, LIU MAN-TIAN, Measurement of neutron capture cross section for ¹⁵²Sm, Chin. J. Nucl. Phys. **16** (1994) 275-277.
- [6.97] MACKLIN, R.L., LAZAR, N.H., LYON, W.S., Neutron activation cross sections with Sb-Be neutrons, Phys. Rev. **107** (1957) 504-508.
- [6.98] BENSCH, F., LEDERMANN, H., "The activation cross section of several nuclides for neutrons of intermediate energies", report to EANDC (1971).
- [6.99] CHAUBEY, A.K., SEHGAL, M.L., Test of statistical theory of nuclear reactions at 24 keV, Phys. Rev. **152** (1966) 1055-61.
- [6.100] MACKLIN, R.L., GIBBONS, J.H., INADA, T., Neutron capture in the samarium isotopes and the formation of the elements of the solar system, Nature (London) **197** (1963) 369-370.
- [6.101] ZHOU ZUYING, CHEN YING, JIANG SONGSHENG, LUO DEXING, Measurements of 0.1-0.5 MeV neutron capture cross section for ¹⁸⁰Hf and ¹⁵²Sm, Chin. J. Nucl. Phys. 6 (1984) 174.
- [6.102] LYON, W.S., MACKLIN, R.L., Neutron activation at 195 keV, Phys. Rev. 114 (1959) 1619-1620.
- [6.103] PETO, G., MILLIGY, Z., HUNYADI, I., Radiative capture cross-sections for 3 MeV neutrons, J. Nucl. Energy **21** (1967) 797-801.
- [6.104] SINGH, B., Nuclear Data Sheets for A = 188, Nucl. Data Sheets 95 (2002) 387.
- [6.105] LYON, W.S., Reactor neutron activation cross sections for a number of elements, Nucl. Sci. Eng. 8 (1960) 378-380.
- [6.106] MENGE, E.E., ELLIS, W.H., KARAM, R.A., PARKINSON, T.F., "The nuclear properties of rhenium", Technical Rep. NP-13807 (1963).
- [6.107] FRIESENHAHN, S.J., GIBBS, D.A., HADDAD, E., FROHNER, F.H., LOPEZ, W.M., Neutron capture cross sections and resonance parameters of rhenium from 0.01 eV to 30 keV, J. Nucl. Energy 22 (1968) 191-210.
- [6.108] SHER, R., LE SAGE, L., CONNOLLY, T.J., BROWN, H.L., The resonance integrals of rhenium and tungsten, Trans. Am. Nucl. Soc. 9 (1966) 248-249.
- [6.109] PIERCE, C.R., SHOOK, D.F., BOGART, D., "Resonance integrals of rhenium for a wide range of sample sizes", NASA-Lewis Research Center, Cleveland, OH., USA, NASA-TN-D-4938 (1968).
- [6.110] BERGMAN, A.A., KAIPOV, D.K., KONKS, V.A., ROMANOV, S.A., Radiative capture of neutrons by rhenium isotopes, Neutron Phys. Conf., Kiev (1971).
- [6.111] STUPEGIA, D.C., SCHMIDT, M., MADSON, A.A., Fast neutron capture in Rhenium, J. Nucl. Energy A+B **19** (1965) 767-773.
- [6.112] ANAND, R.P., BHATTACHARYA, D., JHINGAN, M.L., KONDAIAH, E., Measurement of isotopic neutron capture cross-sections for ⁵¹V, ⁶³Cu, ⁷¹Ga, ⁷⁴Ge, ⁷⁵As, ⁹⁸Mo, ¹⁰⁰Mo, ¹⁰⁴Ru, ¹¹⁵In, ¹²⁸Te, ¹³⁰Te, ¹⁴⁰Ce, ¹⁴²Ce, ¹⁶⁵Ho at the neutron energy of (25 ± 5) keV, Nuovo Cimento A **50** (1979) 274.
- [6.113] LINDNER, M., NAGLE, R.J., LANDRUM, J.H., Neutron capture cross-sections from 0.1 to 3 MeV by activation measurements, Nucl. Sci. Eng. **59** (1976) 381-394.
- [6.114] WAGNER, M., WARHANEK, H., Activation measurements of neutron capture cross sections at 14.6 MeV and a critical survey of such data in the literature, Acta Phys. Austriaca 52 (1980) 23-37.
- [6.115] AKOVALI, Y.A., Nuclear Data Sheets for A = 213, Nucl. Data Sheets 66 (1992) 237.
- [6.116] AKOVALI, Y.A., Nuclear Data Sheets for A = 229, Nucl. Data Sheets 55 (1989) 555.
- [6.117] AKOVALI, Y.A., Nuclear Data Sheets for A = 225, Nucl. Data Sheets **60** (1990) 617.
- [6.118] AKOVALI, Y.A., Nuclear Data Sheets for A = 221, Nucl. Data Sheets **61** (1990) 623.
- [6.119] AKOVALI, Y.A., Nuclear Data Sheets for A = 217, Nucl. Data Sheets 100 (2003) 141.
- [6.120] NICHOLS, A.L., JEFF-3.1 decay data library (1979).
- [6.121] SONZOGNI, A.A., private communication, Brookhaven Natl Lab, (2007).
- [6.122] BOLL, R.A., GARLAND, M., MIRZADEH, S., "Reactor production of Thorium-229", pp. 1674-1675 in Proc. Int. Conf. on Nuclear Data for Science and Technology, Santa Fe, NM, USA, 26 September – 1 October 2004, HAIGHT, R.C., CHADWICK, M.B., TALOU, P., KAWANO, T. (Eds), AIP Conf. Proc. 769 (2005).

- [6.123] KONING, A.J., HILAIRE, S., DUIJVESTIJN, M.C., "TALYS: Comprehensive nuclear reaction modeling", pp. 1154-1159 in Proc. Int. Conf. on Nuclear Data for Science and Technology - ND2004, 26 September – 1 October 2004, Santa Fe, NM, AIP Conf. Proc. Vol. 769 (2005).
- [6.124] MUGHABGHAB, S.F., DIVADEENAM, M., HOLDEN, N.E., "Neutron Cross Sections, Vol. 1: Neutron Resonance Parameters and Thermal Cross Sections, Part A, Z = 1 60", Academic Press, New York, USA, 1981;
 MUGHABGHAB, S.F., "Neutron Cross Sections, Vol. 1: Neutron Resonance Parameters and Thermal Cross Sections, Part B, Z = 61 100", Academic Press, New York, USA (1984).
- [6.125] SHIBATA, K., KAWANO, T., NAKAGAWA, T., IWAMOTO, O., KATAKURA, J., FUKAHORI, T., CHIBA, S., HASEGAWA, A., MURATA, T., MATSUNOBU, H., OHSAWA, T., NAKAJIMA, Y., YOSHIDA, T., ZUKERAN, A., KAWAI, M., BABA, M., ISHIKAWA, M., ASAMI, T., WATANABE, T., WATANABE, Y., IGASHIRA, M., YAMAMURO, N., KITAZAWA, H., YAMANO, N., TAKANO, H., Japanese Evaluated Nuclear Data Library Version 3 Revision-3 : JENDL-3.3, J. Nucl. Sci. Technol. **39** (2002) 1125-1136.
- [6.126] TRKOV, A., "Program ENDVER", IAEA-NDS-77 Rev.0, Nuclear Data Section, IAEA, Vienna, Austria, 2001; <u>http://www-nds.iaea.org/ndspub/endf/endver/</u>
- [6.127] ZERKIN, V., "ZVView Graphic Software for Nuclear Data Analysis, Version 9.7", Nuclear Data Section, IAEA, Vienna, Austria, 2003; <u>http://www-nds.iaea.org/ndspub/zvview/</u>
- [6.128] KIM, S.K., PhD thesis, Department of Nuclear Engineering, Seoul National University, Seoul, Republic of Korea (2006).
- [6.129] SUN, G.M., PhD thesis, Department of Nuclear Engineering, Seoul National University, Seoul, Republic of Korea (2004).
- [6.130] KONING, A.J., DELAROCHE, J.P., Local and Global Nucleon Optical Models from 1 keV to 200 MeV, Nucl. Phys. A 713 (2003) 231-310.
- [6.131] INTERNATIONAL ATOMIC ENERGY AGENCY, "Handbook for Calculation of Nuclear Reaction Data: Reference Input Parameter Library", IAEA-TECDOC-1034, IAEA, Vienna (1998) 41-63.
- [6.132] MACKLIN, R.L., MUGHABGHAB, S.F., Neutron Capture by ³¹P, Phys. Rev. C **32** (1985) 379-383.
- [6.133] SUBLET, J.-Ch., CAPOTE NOY, R., "Nuclear Data for the Production of Therapeutic Radionuclides", Summary Report of Second Research Coordination Meeting", INDC(NDS)-465, IAEA, Vienna, Austria (2004) 14.
- [6.134] LANTZ, P., "Thermal-Neutron Cross Section and Resonance Integral of Ru-104", p. 11 in Chemistry Division Annual Progress Report for Period Ending 20 June 1964, ORNL-3679, Oak Ridge Natl Lab. (1964); EXFOR item 11929003.
- [6.135] GRAY, P.R., ZANDER, A.R., EBREY, T.G., Activation Cross Sections for Reactions of Rh and Ru with 14.7 MeV Neutrons, Nucl. Phys. **75** (1966) 215-225.
- [6.136] KONING, A.J., BERSILLON, O., FORREST, R.A., JACQMIN, R., KELLETT, M.A., NOURI, A., RULLHUSEN, P., "Status of the JEFF Nuclear Data Library", pp. 177-182 in Proc. Int. Conf. on Nuclear Data for Science and Technology – ND2004, Santa Fe, NM, USA, 26 September - 1 October 2004, AIP Conf. Proc. 769, Melville, NY, USA, 2005; http://www.nea.fr/html/dbdata/JEFF/
- [6.137] SEHGAL, M.L., Isomeric Cross-Section Ratios in (n,γ) Reactions, Phys. Rev. **128** (1962) 761-767.
- [6.138] RAMAN, S., NESTOR, J.C.W., TIKKANEN, P., Transition Probability from the Ground to the First-Excited 2+ State of Even-Even Nuclides, At. Data Nucl. Data Tables 78 (2001) 1-128.
- [6.139] KIBÉDI, T., SPEAR, R.H., Transition Probability from the Ground to the First-Excited 2^+ State of Even-Even Nuclides Reduced Electric-Octupole Transition Probabilities, B(E3;0₁⁺ \rightarrow 3₁⁻) - an Update, At. Data Nucl. Data Tables **80** (2002) 35-82.
- [6.140] MAKOFSKE, W., SAVIN, W., OGATA, H., KRUSE, T.H., Elastic and Inelastic Proton Scattering from Even Isotopes of Cd, Sn, and Te, Phys. Rev. **174** (1968) 1429-1441.

- BELGYA, T., BERSILLON, O., CAPOTE NOY, R., FUKAHORI, T., GE ZHIGANG, [6.141] GORIELY, S., HERMAN, M., IGNATYUK, A.V., KAILAS, S., KONING, A.J., OBLOŽINSKÝ, P., PLUJKO, V., YOUNG, P.G., "Handbook for calculations of nuclear reaction data, RIPL-2, Reference input parameter library-2", IAEA-TECDOC-1506, Vienna, Austria, 2006; http://www-nds.iaea.or.at/ripl-2/
- DOVBENKO, A.G., KOLESOV, V.E., KOROLEVA, V.P., TOLSTIKOV, V.A., SHUBIN, [6.142] Yu.N., Cross sections for Radiative Capture of 0.2-3 MeV Neutrons by Te¹²⁸ and Te¹³⁰, Sov. At. Energy 25 (1968) 1367-1368.
- BERGMAN, A.A., ROMANOV, S.A., Study of the Cross Sections for Radiative Capture [6.143] of Neutrons by Tellurium Isotopes and Their Application to the Theory of the Origin of the Elements, Sov. J. Nucl. Phys. 20 (1975) 133-137.
- BEGHIAN, L.E., HALBAN, H.H., Absorption Cross Section Measurement, Nature 163 [6.144] (1949) 366-367.
- BAGLIN, C.M., Nuclear Data Sheets for A = 192, Nucl. Data Sheets 84 (1998) 717-900. [6.145]
- SHIRLEY, V.S., Nuclear Data Sheets for A = 192, Nucl. Data Sheets 64 (1991) 205-322. [6.146]
- SCHARFF-GOLDHABER, G., McKEOWN, M., Triple Isomerism in Ir¹⁹², Phys. Rev. Lett. [6.147] **3** (1959) 47-50.
- BALODIS, M., "The Revised Nilsson Model Interpretation of Transitional Nucleus ¹⁹²Ir", [6.148] pp. 147-153 in Proc. 9th Int. Symp. on Capture Gamma-ray Spectroscopy and Related Topics, 8-12 October 1996, Budapest, Hungary, Vol. 1, Springer Hungarica (1997).
- SCHARFF-GOLDHABER, G., Multipole Order and Enhancement Factor of Long-lived [6.149] Isomeric Transition in ¹⁹²Ir, Bull. Am. Phys. Soc. 22 (1977) 545, BG1.
- [6.150] KERN, J., RAEMY, A., BEER, W., DOUSSE, J.C., SCHWITZ, W., BALODIS, M.K., PROKOFJEV, P.T., KRAMER, N.D., SIMONOVA, L.I., HOFF, R.W., GARDNER, D.G., GARDNER, M.A., CASTEN, R.F., GILL, R.L., EDER, R., von EGIDY, T., HAGN, E., HUNGERFORD, P., SCHEERER, H.J., SCHMIDT, H.H., ZECH, E., CHALUPKA, A., MURZIN, A.V., LIBMAN, A.V., KONONENKO, C., GIACOBBE, P., KONDUROV, I.A., LOGINOV, Yu.E., SUSHKOV, P.A., BRANT, S., PAAR, V., Nuclear Levels in ¹⁹²Ir, Nucl. Phys. A 534 (1991) 77-127.
- IAEA NUCLEAR DATA SECTION, "RNAL: Reference Neutron Activation Library", [6.151] IAEA-TECDOC-1285, IAEA, Vienna, Austria, 2002; http://wwwnds.iaea.org/ndspub/rnal/www/
- KOPECKY, J. (Ed.), "Atlas of Neutron Capture Cross Sections", INDC(NDS)-362, Nuclear [6.152] Data Section, IAEA, Vienna, Austria, 1997; http://www-nds.iaea.org/nngatlas2/
- FORREST, R.A., KOPECKY, J., SUBLET, J.-Ch., "The European Activation File : EAF-[6.153] 2003 Cross Section Library", UKAEA FUS 486, EURATOM/UKAEA Fusion Association (2002).
- MASYANOV, S.M., ANUFRIEV, V.A., SIVUKHA, V.I., Resonance Parameters of ¹⁹¹Ir, [6.154] ¹⁹³Ir, and ^{192g}Ir, At. Energy **73** (1992) 686-688.
- KEISCH, B., Yield Ratios of Isomers Produced by Neutron Activation, Phys. Rev. 129 [6.155] (1963) 769-775.
- [6.156] ARINO, H., KRAMER, H.H., MOLINSKI, V.J., TILSBURY, R.S., "Research in Activation Analysis", New York Operation Office Report, NYO-10175, Union Carbide Corporation, Tuxedo, New York (1964); EXFOR item 11817021. HARBOTTLE, G., The Half-lives of Tl²⁰⁴, Au¹⁹⁵, Ir¹⁹² and its long-lived Isomer Ir^{192m2},
- [6.157] Nucl. Phys. 41 (1963) 604-607.
- SRIRAMACHANDRA MURTY, M., SIDDAPPA, K., RAMA RAO, J., "p-wave Neutron [6.158] Capture in Heavy Nuclei at 25 keV", pp. 29-32 in Proc. Nuclear Physics and Solid State Physics Symposium, 27-30 December 1970, Madurai, Vol. II – Nuclear Physics, Department of Atomic Energy, Government of India (1970).
- PERRY, R.J., DEAN, C.J., "Version 6.8w of the INTER code at Winfrith", JEFDOC-487, [6.159] AEA Technology (1994) http://www.nndc.bnl.gov/nndcscr/endf/
- NAKAJIMA, Y., "Status of the JENDL Activation File", p. 50 in Proc. 1995 Symposium [6.160] on Nuclear Data, 16-17 November 1995, JAERI-Conf 06-008, JAERI, Tokai, Ibaraki-ken, Japan, 1996; http://wwwndc.tokai-sc.jaea.go.jp/jendl/jendl.html

[6.161] QAIM, S.M., Coordinated Research Project on Nuclear Data for Production of Therapeutic Radionuclides, private communication, Institut für Nuklearchemie, Forschungszentrum Jülich, May 2005; AL-ABYAD, M., SPAHN, I., SUDÁR, S., MORSY, M., COMSAN, M.N.H., CSIKAI, J., OAIM, S.M., COENEN, H.H., Nuclear Data for the Production of the Therapeutic

QAIM, S.M., COENEN, H.H., Nuclear Data for the Production of the Therapeutic Radionuclides ³²P, ⁶⁴Cu, ⁶⁷Cu, ⁸⁹Sr, ⁹⁰Y And ¹⁵³Sm via the (n,p) Reaction: Evaluation of Excitation Function and Its Validation via Integral Cross Section Measurement Using a 14-MeV d(Be) Neutron Source, Appl. Radiat. Isot. **64** (2006) 717-724.

- [6.162] HORIBE, O., MIZUMOTO, Y., KUSAKABE, T., CHATANI, H., "U-235 Fission Neutron Spectrum Averaged Cross Sections Measured for Some Threshold Reactions on Mg, Al, Ca, Sc, Ti, Fe, Co, Ni, Zn, Sr, Mo, Rh, In and Ce", pp. 923-930 in Proc. 50 Years with Nuclear Fission, 25-28 April 1989, National Academy of Sciences, Washington, D.C. and National Institute of Standards and Technology, Gaithersburg, MD, Vol. 2, American Nuclear Society (1989) (EXFOR 22140012).
- [6.163] SPAHN, I., COENEN, H.H., QAIM, S.M., Enhanced Production Possibility of the Therapeutic Radionuclides ⁶⁴Cu, ⁶⁷Cu and ⁸⁹Sr via (n,p) Reactions Induced by Fast Spectral Neutrons, Radiochim. Acta **92** (2004) 183-186.
- [6.164] BERSILLON, O., GREENWOOD, L.R., GRIFFIN, P.J., MANNHART, W., NOLTHENIUS, H.J., PAVIOTTI-CORCUERA, R., ZOLOTAREV, K.I., ZSOLNAY, E.M., McLAUGHLIN, P.K., TRKOV, A., "International Reactor Dosimetry File 2002", Technical Reports Series No. 452, IAEA, Vienna, Austria (2006).
- [6.165] ZOLOTAREV, K.I., Recommended Russian Dosimetry File RRDF-2006(BROND-3) MAT 3025, private communication to the IAEA, IPPE, Obninsk, May 2006.
- [6.166] ZOLOTAREV, K.I., "Re-evaluation of the excitation functions for the ²⁴Mg(n,p)²⁴Na, ³²S(n,p)³²P, ⁶⁰Ni(n,p)^{60m+g}Co, ⁶³Cu(n,2n)⁶²Cu, ⁶⁵Cu(n,2n)⁶⁴Cu, ⁶⁴Zn(n,p)⁶⁴Cu, ¹¹⁵In(n,2n)^{114m}In, ¹²⁷I(n,2n)¹²⁶I, ¹⁹⁷Au(n,2n)¹⁹⁶Au and ¹⁹⁹Hg(n,n')^{199m}Hg reactions", technical report INDC(NDS)-0526, IAEA, Vienna, Austria (2008).
- [6.167] COHEN, I.M., GUEVARA, S.R., ARRIBERE, M.A., KESTELMAN, A.J., ILJADICA, M.C.F., OHACO, R.A., SEGOVIA, M.S., YUNES, A.N., Determination of Nuclear Constants of Reactions Induced on Zinc by Short Irradiations with the Epithermal and Fast Components of a Reactor Neutron Spectrum, Radiochim. Acta 93 (2005) 543-546.
- [6.168] MANNHART, W., "Status of the Cf-252 Fission Neutron Spectrum Evaluation with Regard to Recent Experiments", Proc. Consultants' Meeting on Physics of Neutron Emission in Fission, INDC(NDS)-220/L, IAEA, Vienna (1989) 305-336; MANNHART, W., "Californium-252 Spectrum Averaged Neutron Cross-Sections", Handbook on Nuclear Activation Data, Technical Reports Series No. 273, IAEA, Vienna, Austria (1987) 413-437.
- [6.169] MANNHART, W., "Response of Activation Reactions in the Neutron Field of Spontaneous Fission of ²⁵²Cf", Summary Report of the Final Technical Meeting on International Reactor Dosimetry File: IRDF-2002, INDC(NDS)-448, IAEA, Vienna, Austria (2003) 61-71.
- [6.170] IGNATYUK, A.V., ZOLOTAREV, K.I., LUNEV, V.P., MANOKHIN, V.N., TERTYCHNYJ, G.Y.A., Analysis and Evaluation of the Spectra and Production Cross-Sections of Gamma-Rays. VANT, Ser. Yadernye Konstanty, Issue 1-2 (2002) 3-44.
- [6.171] ZOLOTAREV, K.I., Recommended Russian Dosimetry File RRDF-2006 (BROND-3) MAT 4025. Private communication to the IAEA, IPPE, Obninsk, May 2006.
- [6.172] BAYHURST, B.P., PRESTWOOD, R.J., (n,p) and (n,alpha) excitation functions of several nuclei from 7.0 to 19.8 MeV, J. Inorg. Nucl. Chem. **23** (1961) 173 (EXFOR 11462.010).
- [6.173] MUKHERJEE, S.K., BAKHRU, H., "Some (n,alpha) reaction cross-sections and the resulting radio-isotopes", p. 244 in Proc. Nuclear and Solid State Physics Symposium, Bombay. India, 1963 (EXFOR 31330.002).
- [6.174] CARROLL, E.E., STOOKSBERRY, R.W., Zirconium (n,p) cross-section measurements, Nucl. Sci. Eng. 25 (1966) 285.
- [6.175] LEVKOVSKIY, V.N., VINITSKAYA, G.P., KOVEL'SKAYA, G.E., STEPANOV, G.E., Empirical regularities in the (n,p) reaction cross-sections at the neutron energy 14-15 MeV, Zhurnal Eksperimental noi I Teoret. Fiziki **45** (1963) 305 (EXFOR 40016.010).
- [6.176] NEMILOV, Ju.A., TROFIMOV, Ju.N., Cross section of the ⁹⁰Zn(n,p)⁹⁰Y reaction, Vopr. At. Nauki i Tekhn., Serija Yadernye Konstanty **12** (1973) 61. (EXFOR 40211.002)

- [6.177] QAIM, S.M., STÖCKLIN, G., "Measurement and systematics of cross sections for common and low yield 14 MeV neutron induced nuclear reactions on structural materials and transmuted species", Proc. 8th Symposium on Fusion Technology, Noordwijkerhout, 17 - 21 June 1974, Report EUR-5182E (1974) 939 (EXFOR 20513.010).
- [6.178] QAIM, S.M., IBN MAJAH, M., WÖLFLE, R., STROHMAIER, B., Excitation functions and isomeric cross-section ratios for the ⁹⁰Zr(n,p)^{90m,g}Y and ⁹¹Zr(n,p)^{91m,g}Y processes, Phys. Rev. C42 (1990) 363.
- [6.179] KLOPRIES, R.M., DÓCZI, R., SUDÁR, S., CSIKAI, J., QAIM, S., M., Excitation functions of some neutron threshold reactions on ⁸⁹Y in the energy range of 7.8 to 14.7 MeV, Radiochim. Acta 77 (1997) 3-9.
- [6.180] KOBAYASHI, K., KIMURA, I., GOTOH, H., TOMINAGA, H., "Measurement of Average Cross Sections for some Threshold Reactions of Ti, Cr and Pb in the Californium-252 Spontaneous Fission Neutron Spectrum Field", pp 41-44 in NEANDC(J)-106/U, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki-ken, Japan, 1984.
- [6.181] MANNHART, W., "Validation of Differential Cross Sections with Integral Data", pp. 59-64 in Summary Report of the Technical Meeting on International Reactor Dosimetry File IRDF-2002, Greenwood, L.R. and Paviotti-Corcuera, R. (Eds), IAEA report INDC(NDS)-435, IAEA, Vienna, Austria, September 2002.

7. CHARGED-PARTICLE PRODUCTION OF ^{64,67}Cu, ⁶⁷Ga, ^{86g}Y, ¹⁰²Rh, ¹⁰³Pd, ^{111g,114m}In, ^{124,125}I, ^{169g}Yb, ^{177g}Lu, ^{186g}Re, ^{192g}Ir, ^{210,211}At and ²²⁵Ac

F. Tarkanyi, S.M. Qaim, M. Nortier, R. Capote, A.V. Ignatyuk, B. Scholten, S.F. Kovalev, B. Kiraly, E. Menapace and Yu.N. Shubin

This chapter is devoted to the evaluation of reaction cross sections for the most important accelerator produced radioisotopes used in internal radiotherapy. The chapter is divided into 15 parts, each corresponding to one radionuclide, as given below:

7.1.	Cu-64	7.8.	I-124
7.2.	Cu-67	7.9.	I-125
7.3.	Ga-67	7.10.	Yb-169g
7.4.	Y-86g	7.11.	Lu-177g
7.5.	Pd-103, Rh-102 (impurity)	7.12.	Re-186g
7.6.	In-111g	7.13.	Ir-192g
7.7.	In-114m	7.14.	At-211, At-210 (impurity)
		7.15.	Ac-225

All of the experimental data have been assembled and evaluated for each charged-particle induced reaction considered. After detailed assessment, only the most reliable data were used in the evaluations, as described below. Recommended excitation functions are presented that agree closely with the most respected measurements. Other important reactions that generate adjacent impurities have also been treated in the same manner.

Averaging and fitting methods were adopted in the evaluation of the charged-particle induced reactions. However, only partial success was achieved in reproducing the experimental data by modelling calculations, and therefore greater reliance was placed on the data fitting methods.

The resulting evaluated data in this section are given in graphical and numerical form. Calculated yields of these cyclotron-produced radionuclides are also given.

7.1. Charged-particle production of ⁶⁴Cu

Copper-64 is one of the most important emerging therapeutic radionuclides. This radionuclide is normally used as a dual-purpose agent, permitting the combination of therapy and positron emission tomography. Several hypoxin (⁶⁴Cu-ASTM), blood perfusion (⁶⁴Cu-PTSM) and cancer imaging tracers (⁶⁴Cu-labelled antibodies and peptides) have been studied.

A. Decay data

The decay scheme for 64 Cu has recently been evaluated [7.1], and the applicable updates to the decay data are incorporated in this assessment. A simplified decay scheme is shown in Fig, 7.1 and the main emissions as defined in Table 7.1 were taken from NuDat 2.4 [7.3].

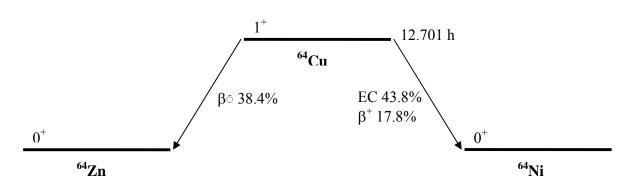


FIG. 7.1. Simplified decay scheme of ⁶⁴Cu [7.1, 7.3]

⁶⁴ Cu Decay mode:		β ⁻ 38.4%		
	$T_{1/2}$:		12.701 h	
Radiation	Intensity		Energy (MeV	
β^+	1.78×10^{-01}	[7 1]	2.782×10^{-01}	*
þ		[7.1]	6.531×10 ⁻⁰¹	**
γ^{\pm}	3.45×10^{-01}	[7.1]	5.110×10 ⁻⁰¹	
γ1	5.4×10 ⁻⁰³	[7.1]	1.346	
$K_{\alpha 1}$ X-ray	9.47×10 ⁻⁰²		7.478×10 ⁻⁰³	
$K_{\alpha 2}$ X-ray	4.85×10 ⁻⁰²		7.461×10 ⁻⁰³	
K_{β} X-ray	1.97×10^{-02}		8.260×10 ⁻⁰³	*
L X-ray	4.86×10^{-03}		8.500×10^{-04}	*
Auger-K	2.24×10^{-01}		6.540×10 ⁻⁰³	*
Auger-L	5.74×10 ⁻⁰¹		8.400×10^{-04}	*
6– 1	3.84×10 ⁻⁰¹	[7 1]	1.902×10^{-01}	*
β^{-}	3.04×10	[7.1]	5.787×10 ⁻⁰¹	**

* Average energy (MeV)

** Endpoint energy (MeV)

B. Production routes

⁶⁴Cu was originally produced by means of the ⁶³Cu(n,γ)⁶⁴Cu reaction (an evaluation of the data for this reaction is given in the Section 6.2). However, the low specific activity achieved in this process has resulted in alternative routes of production being developed, as specified in Table 7.2.

Target isotope	Natural abundance	Reaction	Q-value (MeV)	Threshold energy (MeV)
⁶⁴ Ni	0.926%	(p,n) (d,2n)	-2.5 -4.7	2.5 4.8
	⁶⁴ Zn 48.63%	(d,2p)	-2.0	2.1
	⁶⁶ Zn 27.90%	(d,a)	7.2	0.0
^{nat} Zn	⁶⁷ Zn 4.10%	(d,an)	0.2	0.0
	⁶⁸ Zn 18.75%	$(d,\alpha 2n)$	-10.0	10.3
	⁷⁰ Zn 0.62%	(d, a 4 n)	-25.7	26.5
⁶⁸ Zn	18.75%	(p,an)	-7.8	7.9

TABLE 7.2. INVESTIGATED PRODUCTION ROUTES [7.3, 7.4]	TABLE 7.2	. INVESTIGATED	PRODUCTION	ROUTES	[7.3, 7.4]
--	-----------	----------------	-------------------	--------	------------

C. ⁶⁴Ni(p,n)⁶⁴Cu reaction

Bibliography, evaluation and selection

Cross section

BLASER, J.P., BOEHM, F., MARMIER, P., SCHERRER, P., Anregungsfunktionen und Wirkungsquerschnitte der (p,n)-Reaktion (II), Helv. Phys. Acta **24** (1951) 441-464. EXFOR: P0033

BLOSSER, H.G., HANDLEY, T.H., Survey of (p,n) reactions at 12 MeV, Phys. Rev. 100 (1955) 1340-1344.

EXFOR: B0052

Detected particles: β^+ and β^- (Σ 58%). A single data point at 12 MeV was given with a large uncertainty (37%) and too high a value; therefore, data were rejected.

TANAKA, S., FURUKAWA, M., Excitation functions for (p,n) reactions with titanium, vanadium, chromium, iron and nickel up to 14 MeV, J. Phys. Soc. Jpn. **14** (1959) 1269-1275. EXFOR: B0043

Detected particles: β^+ and β^- (Σ 57%). Rejected because of energy shift and scattered values.

TREYTL, W.J., CARETTO Jr., A.A., Study of (p,n) reactions between 100 and 400 MeV, Phys. Rev. **146** (1966) 836-840.

EXFOR: C0389

Measuring method: β - γ coincidence. This cross-section measurement above 100-MeV proton energy was rejected.

GUZHOVSKIJ, B.Ja., BORKIN, I.M., ZVENIGORODSKIJ, A.G., RUDNEV, V.S., SOLODOVNIKOV, A.P., TRUSILLO, S.V., Isospin mixing of isobar analog resonances observed for the ^{59,61,63,65}Cu nuclei, Izv. Rossiiskoi Akademii Nauk, Ser. Fiz. **33** (1969) 129-144. EXFOR: F0704 *Scintillation detector*.

TANAKA, S., FURUKAWA, M., CHIBA, M., Nuclear reactions of nickel with protons up to 56 MeV, J. Inorg. Nucl. Chem. **34** (1972) 2419-2426. Exfor: B0020 Detected particles: β^+ (19%), β^- (38%) and annihilation radiation.

NEMASHKALO, B.A., MEL'NIK, Yu.P., STORIZHKO, V.E., SHEBEKO, K.V., Radiative capture of protons by ⁵⁴Cr and ⁶⁴Ni near the (p,n) threshold, Sov. J. Nucl. Phys. (Engl. Transl.) **37** (1983) 1-6. EXFOR: A0112

Detected radiation: γ photon.

Data in EXFOR are given incorrectly in μb (should be mb) and therefore are a factor of 1000 too low. Partial $(p,n\gamma_i)$ cross sections were measured near the threshold of the reaction for three prompt γ energies. This dataset was set aside from the compilation. Nevertheless, after fitting the three partial excitation functions and summing these data, the cross sections supported the other measurements.

SEVIOR, M.E., MITCHELL, L.W., ANDERSON, M.R., TINGWELL, C.W., SARGOOD, D.G., Absolute cross sections of proton induced reactions on ⁶⁵Cu, ⁶⁴Ni, ⁶³Cu, Aust. J. Phys. **36** (1983) 463-471. EXFOR: A0198 Detected particle: neutron.

LEVKOVSKIJ, V.N., Activation cross-section nuclides of average masses (A = 40 - 100) by protons and alpha-particles with average energies (E = 10 - 50 MeV), Levkovskij, V.N., Activation cross sections by protons and alphas, Moscow, 1991.

EXFOR: A0510

Ge(Li) detector.

Cross sections must be normalized by a factor of 0.8 as noted by Takács, S., Tárkányi, F., Sonck, M., Hermanne, A., Investigation of the $^{nat}Mo(p,x)^{96mg}Tc$ nuclear reaction to monitor proton beams: New measurements and consequences on the earlier reported data, Nucl. Instrum. Methods B 198 (2002) 183-196.

ANTROPOV, A.E., GUSEV, V.P., ZHURAVLEV, Yu.Yu., ZARUBIN, P.P., KOLOZHVARI, A.A., SMIRNOV, A.V., Total cross sections of (p,n) reaction on the nuclei of isotopes nickel and zinc at e/p = 5 - 6 MeV, Izv. Rossiiskoi Akademii Nauk, Ser. Fiz. **56** (1992) 198-205. EXFOR: A0543

Detected radiation: 1346-keV γ photon. Data are only given around the sharp resonance at about 5.1 MeV.

SZELECSÉNYI, F., BLESSING, G., QAIM, S.M., Excitation functions of proton induced nuclear reactions on enriched ⁶¹Ni and ⁶⁴Ni: Possibility of production of no-carrier-added ⁶¹Cu and ⁶⁴Cu at a small cyclotron, Appl. Radiat. Isot. **44** (1993) 575-580. EXFOR: D4020

Detected radiation: annihilation radiation (36%).

Data of $^{nat}Cu(p,x)^{62}Zn$ monitor reaction were taken from IAEA report INDC(NDS)-218/GZ (1989) which needed to be updated. These original data were multiplied by a factor of 1.15 in agreement with the authors and according to the studies of Takács, S., Tárkányi, F., Sonck, M., Hermanne, A., New cross sections and intercomparison of proton monitor reactions on Ti, Ni and Cu, Nucl. Instrum. Methods B 188 (2002) 106-111.

Yield

NICKLES, R.J., A shotgun approach to the chart of the nuclides: Radiotracer production with an 11 MeV proton cyclotron, Acta Radiologica, Suppl. **376** (1991) 69-71. EXFOR: no *Target: natural Ni*.

McCARTHY, D.W., SHEFER, R.E., KLINKOWSTEIN, R.E., BASS, L.A., MARGENEAU, W.H., CUTLER, C.S., ANDERSON, C.J., WELCH, M.J., Efficient production of high specific activity ⁶⁴Cu using a biomedical cyclotron, Nucl. Med. Biol. **24** (1997) 35-43. EXFOR: no

OBATA, A., KASAMATSU, S., McCARTHY, D.W., WELCH, M.J., SAJI, H., YONEKURA, Y., FUJIBAYASHI, Y., Production of therapeutic quantities of ⁶⁴Cu using a 12-MeV cyclotron, Nucl. Med. Biol. **30** (2003) 535-539. EXFOR: no

AVILA-RODRIGUEZ, M.A., NYE, J.A., NICKLES, R.J., Simultaneous production of high specific activity ⁶⁴Cu and ⁶¹Co with 11.4 MeV protons on enriched ⁶⁴Ni nuclei, Appl. Radiat. Isot. **65** (2007) 1115-1120. EXFOR: no

All experimental cross-section data are shown in Fig. 7.2, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.3. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.4. Yields determined from the recommended cross sections are presented in Fig. 7.5, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.3.

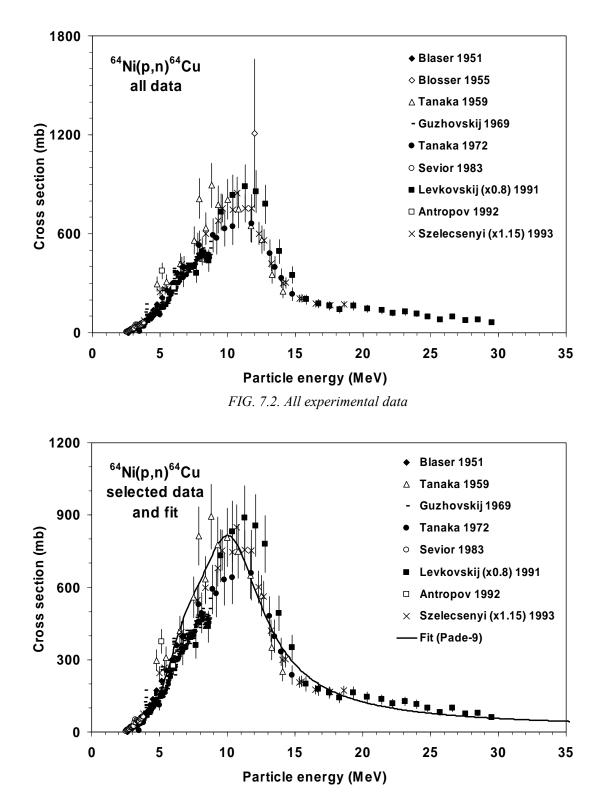


FIG. 7.3. Selected experimental data and the recommended curve (fit)

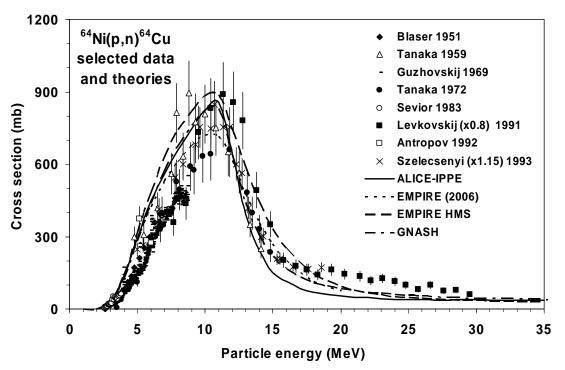


FIG. 7.4. Selected experimental data and theoretical calculations

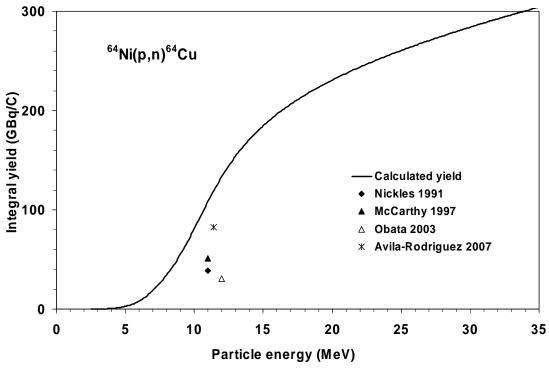


FIG. 7.5. Calculated integral yield curve based on the recommended cross sections

⁶⁴ Ni(p,n) ⁶⁴ Cu	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
2.5	0	0	0
3.0	10	3	0
3.5	29	19	0
4.0	56	56	1
4.5	97	127	1
5.0	156	254	3
5.5	236	463	5
6.0	331	786	8
6.5	425	1241	13
7.0	504	1827	19
7.5	568	2534	26
8.0	626	3356	34
8.0 8.5	687	4302	34 44
9.0	747	5379	55
9.5	795	6583	68
10.0	815	7889	81
10.5	797	9239	95
11.0	747	10568	109
11.5	676	11831	122
12.0	599	12995	134
12.5	525	14050	144
13.0	459	15000	154
13.5	402	15857	163
14.0	354	16630	171
14.5	314	17333	178
15.0	281	17975	185
15.5	252	18564	191
16.0	228	19110	196
16.5	208	19619	202
17.0	191	20094	207
17.5	176	20541	211
18.0	163	20963	215
18.5	151	21362	220
19.0	141	21743	223
19.5	132	22106	227
20.0	125	22453	231
20.5	118	22787	234
21.0	111	23108	238
21.5	106	23418	238
21.3	100	23418	241 244
22.0	96	24009	244 247
22.5	90 91	24009	247
23.0	87	24291 24565	250
24.0	84	24832	255
24.5	80	25092	258
25.0	77	25347	261

TABLE 7.3. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

Table 7.3. cont	'd
-----------------	----

⁶⁴ Ni(p,n) ⁶⁴ Cu	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
25.5	75	25595	263
26.0	72	25838	266
26.5	69	26075	268
27.0	67	26309	270
27.5	65	26538	273
28.0	63	26765	275
28.5	61	26986	277
29.0	59	27203	280
29.5	58	27417	282
30.0	56	27628	284
30.5	55	27835	286
31.0	53	28040	288
31.5	52	28242	290
32.0	51	28442	292
32.5	49	28640	294
33.0	48	28835	296
33.5	47	29028	298
34.0	46	29219	300
34.5	45	29408	302
35.0	44	29595	304

D. ⁶⁴Ni(d,2n)⁶⁴Cu reaction

Only one set of experimental data is available in the literature before 2007 for the ⁶⁴Ni(d,2n)⁶⁴Cu reaction (Zweit *et al.* (1991)). Cross sections were measured by the authors for deuterons incident on ^{nat}Ni. Monitor cross-section data used for the determination of the deuteron flux are in good agreement with IAEA evaluated data. The cross-section data shown in Figs. 7.6 – 7.8 are normalized for deuterons incident on enriched ⁶⁴Ni. Another upward adjustment of 7% was made to account for the most recently reported value of 17.8% for the total β^+ intensity of ⁶⁴Cu [7.1]. Old measurements agree reasonable well with newer measurements reported in 2007 (Takacs *et al.* (2007), Hermanne *et al.* (2007)). Cross sections predicted by theoretical calculations are higher than the measured data by almost a factor 2 as can be seen in Fig. 7.8. This discrepancy is partly explained by the fact that the deuteron break-up channel is not considered in those calculations.

The same authors who reported the older set of measured cross sections, also measured ⁶⁴Cu yields in the 15- to 19-MeV energy window on ^{nat}Ni and 96%-enriched ⁶⁴Ni (Zweit *et al.* (1991)). However, these thick-target yield measurements do not support their cross-section data. Integral ⁶⁴Cu yields for the 15- to 19-MeV energy range predicted on the basis of their reported cross sections are much lower than their reported thick-target yields. At most the relative values resulting from their yield measurements confirm the expected relative ⁶⁴Ni abundance in the targets used in the measurements. Therefore, users of the recommended curve for the ⁶⁴Ni(d,2n)⁶⁴Cu reaction should be aware that independent experimental thick-target yield measurements are still required for comparison before the present recommended data can be used with confidence. Yields determined from the recommended cross sections are presented in Fig. 7.9, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.4.

Bibliography, evaluation and selection

Cross section

ZWEIT, J., SMITH, A.M., DOWNEY, S., SHARMA, H.L., Excitation functions for deuteron induced reactions in natural nickel: Production of no-carrier-added ⁶⁴Cu from enriched ⁶⁴Ni targets for positron emission tomography, Appl. Radiat. Isot. **42** (1991) 193-197. EXFOR: D4056

Detected radiation: annihilation radiation (38%). Target: natural Ni. Original data were multiplied by 1.08 in accord with the 38/35.2 ratio of the intensity of the annihilation radiation.

TAKÁCS, S., TÁRKÁNYI, F., KIRÁLY, B., HERMANNE, A., SONCK, M., Evaluated activation cross sections of longer-lived radionuclides produced by deuteron induced reactions on natural nickel, Nucl. Instrum. Methods B **260** (2007) 495-507. EXFOR: D4178

Detected radiation: 1345.8-keV y (0.473%). Target: natural Ni.

HERMANNE, A., TÁRKÁNYI, F., TAKÁCS, S., KOVALEV, S.F., IGNATYUK, A., Activation cross sections of the ⁶⁴Ni(d,2n) reaction for the production of the medical radionuclide ⁶⁴Cu, Nucl. Instrum. Methods B **258** (2007) 308-312. EXFOR: D4182

Detected radiation: 1345-keV y (0.47%). Target: natural Ni.

Yield

ZWEIT, J., SMITH, A.M., DOWNEY, S., SHARMA, H.L., Excitation functions for deuteron induced reactions in natural nickel: Production of no-carrier-added ⁶⁴Cu from enriched ⁶⁴Ni targets for positron emission tomography, Appl. Radiat. Isot **42** (1991) 193-197. EXFOR: D4056

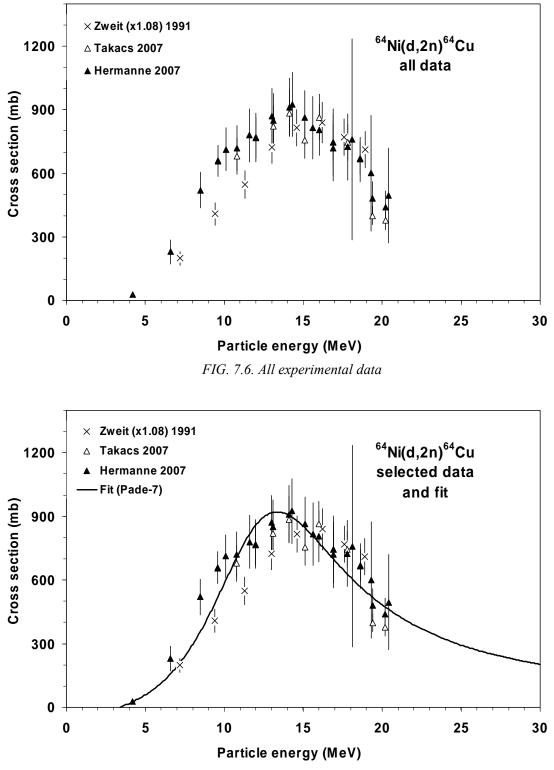


FIG. 7.7. Selected experimental data and the recommended curve (fit)

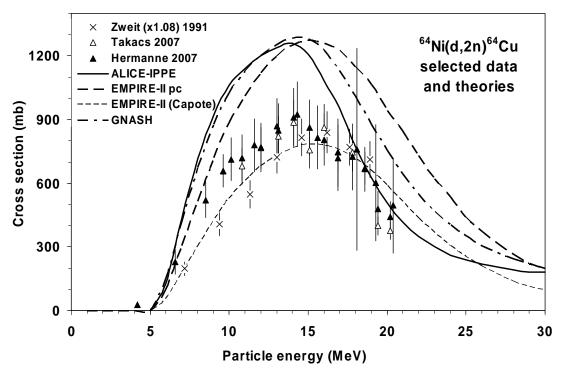


FIG. 7.8. Selected experimental data and theoretical calculations

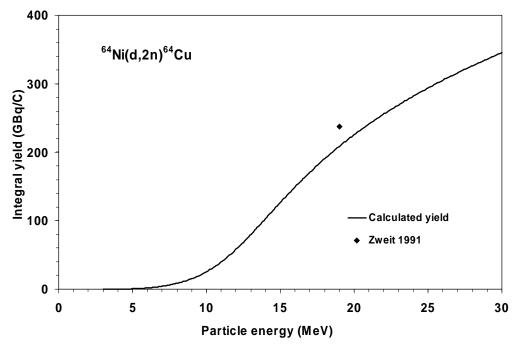


FIG. 7.9. Calculated integral yield curve based on the recommended cross sections

⁶⁴ Ni(d,2n) ⁶⁴ Cu	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
3.0	0	0	0
3.5	3	0	0
4.0	19	7	0
4.5	37	24	0
5.0	58	54	1
5.5	84	102	1
6.0	114	172	2
6.5	150	271	3
7.0	191	405	4
7.5	240	582	6
8.0	295	812	8
8.5	358	1104	11
9.0	428	1469	15
9.5	504	1918	20
10.0	583	2462	25
10.5	662	3105	32
11.0	738	3851	40
11.5	805	4697	40
12.0	859	5638	58
12.5	897	6658	68
13.0	917	7740	80
13.5	921	8861	80 91
13.5	921 909		103
		10007	
14.5	886	11160	115
15.0	853	12302	126
15.5	816	13422	138
16.0	775	14512	149
16.5	733	15568	160
17.0	691	16591	171
17.5	651	17574	181
18.0	613	18518	190
18.5	577	19425	200
19.0	543	20294	209
19.5	512	21132	217
20.0	483	21937	225
20.5	456	22710	233
21.0	432	23455	241
21.5	409	24172	248
22.0	389	24864	256
22.5	369	25533	262
23.0	352	26181	269
23.5	335	26808	276
24.0	320	27416	282
24.5	306	28005	288
25.0	293	28578	294
25.5	281	29134	299
26.0	270	29676	305

TABLE 7.4. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

Table 7.4 cont'd

⁶⁴ Ni(d,2n) ⁶⁴ Cu	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
26.5	259	30205	310
27.0	250	30721	316
27.5	240	31225	321
28.0	232	31716	326
28.5	224	32197	331
29.0	216	32667	336
29.5	209	33128	340
30.0	202	33579	345

E. ^{nat}Zn(d,x)⁶⁴Cu reaction

Five groups reported measurements on ^{nat}Zn for the $^{nat}Zn(d,x)^{64}Cu$ production route (Williams et al. (1963), Hilgers et al. (2003). Bonardi et al. (2003), Groppi et al. (2004) and Tarkanyi et al. (2004)) and data is presented in the Fig. 7.10. The italian group (Bonardi et al. (2003) and Groppi et al. (2004)) and Tarkanyi et al. (2004) counted the irradiated foils directly by means of the 1346-keV gamma line. Hilgers et al. (2003) performed chemical separations and counted the samples using coincidence counting of the 511-keV gamma emission. The cross-section values were adjusted to account for the most recent ⁶⁴Cu decay data [7.1]. Significant discrepancies exist with the Hilgers data, especially near the threshold of the reaction. Following communication with the authors of the Hilgers et al. (2003) paper, their measurements on ^{nat}Zn were ignored. Remaining four data sets were selected for Pade fit as shown in Fig. 7.11. Fig. 7.12 compares the four selected data sets with a theoretical curve obtained by means of the ALICE-IPPE code. While all four data sets are accepted for the determination of the recommended curve, users are reminded to use the recommended data with caution near the threshold. The recommended integral yield shows good agreement with Dmitriev et al. (1982) thick-target measurements as seen in Fig. 7.13, while corresponding numerical values for the recommended cross sections and vields are listed in Table 7.5.

The co-production of ⁶⁷Cu is of concern in the case of the ^{nat}Zn(d,x)⁶⁴Cu reaction, and therefore thick-target yield curves were calculated from the data of Tarkanyi *et al.* (2004) in order to evaluate the expected impurity levels. These curves and the thick-target yield measurement by Neirinckx *et al.* (1977) were used in the impurity evaluation. The ⁶⁷Cu impurity levels obtained on a thick target are presented in Fig. 7.14 and show good agreement. These data show that ⁶⁴Cu purity of > 99% is achievable up to 48-MeV deuteron energy for short irradiations. However, when longer bombardment times and appropriate decay times are required, the useful energy range to maintain a 99% purity level shifts to lower values and must be taken into account by the user.

Bibliography, evaluation and selection

Cross section

WILLIAMS, D.C., IRVINE Jr., J.W., Nuclear excitation functions and thick-target yields: Zn+d and 40 Ar(d, α), Phys. Rev. **130** (1963) 265-271. EXFOR: R0038

HILGERS, K., STOLL, T., SKAKUN, Y., COENEN, H.H., QAIM, S.M., Cross-section measurements of the nuclear reactions $^{nat}Zn(d,x)^{64}Cu$, $^{66}Zn(d,\alpha)^{64}Cu$ and $^{68}Zn(p,\alpha n)^{64}Cu$ for production of ^{64}Cu and technical developments for small-scale production of ^{67}Cu via the $^{70}Zn(p,\alpha)^{67}Cu$ process, Appl. Radiat. Isot. **59** (2003) 343-351.

EXFOR: D0069

Detected radiation: annihilation radiation (38%). Measurements on ^{nat}Zn were rejected because of the large disagreement with other equivalent data.

BONARDI, M.L., GROPPI, F., BIRATTARI, C., GINI, L., MAINARDI, C., GHIONI, A., MENAPACE, E., ABBAS, K., HOLZWARTH, U., STROOSNIJDER, M.F., Thin-target excitation functions and optimization of simultaneous production of NCA copper-64 and gallium-66,67 by deuteron induced nuclear reactions on a natural zinc target, J. Radioanal. Nucl. Chem. **257** (2003) 229-241.

EXFOR: no

Detected radiation: 1345.84-keV γ photon (0.473%). Measured yields were converted to cross-section data.

GROPPI, F., BONARDI, M.L., BIRATTARI, C., GINI, L., MAINARDI, C., MENAPACE, E., ABBAS, K., HOLZWARTH, U., STROOSNIJDER, R.M.F., Thin-target excitation functions and optimisation of NCA ⁶⁴Cu and ^{66,67}Ga production by deuteron induced nuclear reactions on natural zinc target, for radiometabolic therapy and for PET, Nucl. Instrum. Methods B **213** (2004) 373-377.

EXFOR: O0778 (Data of ⁶¹Cu and ⁶⁴Cu are mixed up in the Exfor database.)

Detected radiation: 1345.84-keV γ photon (0.473%). Measured yields were converted to cross-section data.

TÁRKÁNYI, F., TAKÁCS, S., DITRÓI, F., HERMANNE, A., SONCK, M., SHUBIN, YU., Excitation functions of deuteron induced nuclear reactions on natural zinc up to 50 MeV, Nucl. Instrum. Methods B **217** (2004) 531-550.

EXFOR: D4144

Detected radiation: 1345.84-keV γ photon (0.473%).

Yield

DMITRIEV, P.P., KRASNOV, M.N., MOLIN, G.A., Yields of radioactive nuclides formed by bombardment of a thick target with 22-MeV deuterons, INDC(CCP)-210/L, 1983, translation from Nuclear Constants **4**(**48**) (1982) 38. EXFOR: A0194

NEIRINCKX, R.D., Simultaneous production of ⁶⁷Cu, ⁶⁴Cu and ⁶⁷Ga and labelling of bleomycin with ⁶⁷Cu or ⁶⁶Cu, Int. J. Appl. Radiat. Isot. **28** (1977) 802-804.

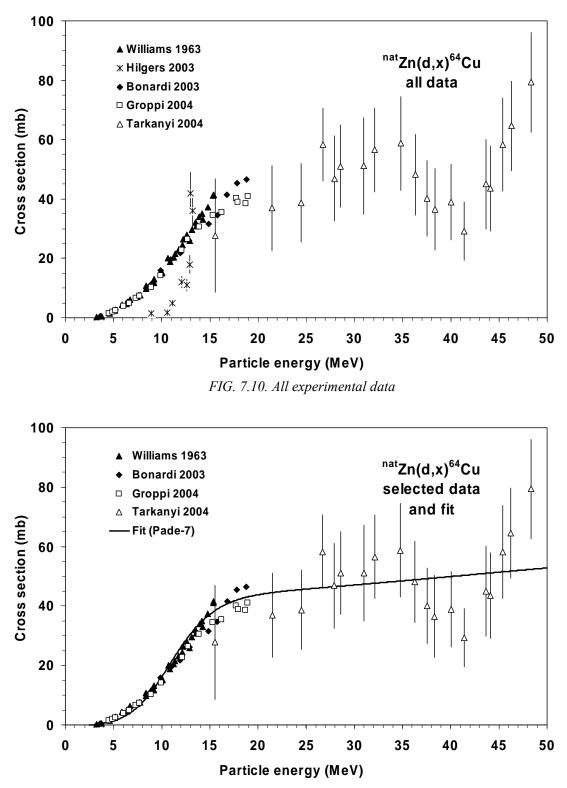


FIG. 7.11. Selected experimental data and the recommended curve (fit)

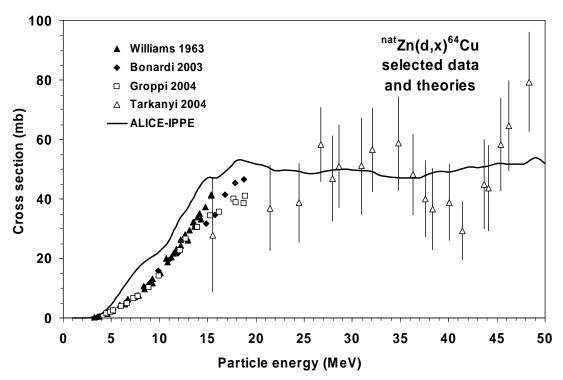


FIG. 7.12. Selected experimental data and theoretical calculations

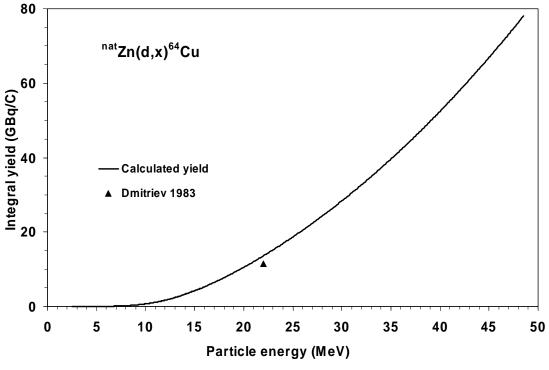


FIG. 7.13. Calculated integral yield curve based on the recommended cross section

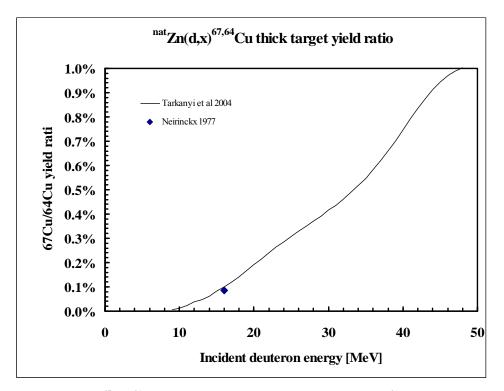


FIG. 7.14. ${}^{67}Cu/{}^{64}Cu$ thick-target yield ratio for the ${}^{nat}Zn(d,x){}^{64}Cu$ reaction

$^{nat}Zn(d,x)^{64}Cu$	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
2.5	0.0	0	0.00
3.0	0.1	0	0.00
3.5	0.3	0	0.00
4.0	0.6	0	0.00
4.5	0.9	1	0.01
5.0	1.4	2	0.02
5.5	1.9	3	0.03
6.0	2.7	5	0.05
6.5	3.6	7	0.08
7.0	4.7	11	0.11
7.5	6.0	16	0.16
8.0	7.6	22	0.22
8.5	9.4	30	0.31
9.0	11.5	40	0.41
9.5	13.7	53	0.54
10.0	16.1	68	0.70
10.5	18.6	87	0.89
11.0	21.2	109	1.12
11.5	23.7	134	1.12
12.0	26.2	163	1.68
12.5	28.5	196	2.01
13.0	30.6	232	2.38
13.5	32.6	232	2.79
14.0	34.3	314	3.23
14.5	35.8	360	3.70
15.0	37.2	409	4.20
15.5	38.4	460	4.73
16.0	39.4	514	5.29
16.5	40.3	571	5.87
17.0	41.0	630	6.47
17.5	41.0	691	7.10
18.0	42.2	754	7.75
18.5	42.2	819	8.42
19.0	43.1	886	9.11
19.5	43.5	955	9.81
20.0	43.8	1025	10.54
20.5 21.0	44.0 44.3	1097 1171	11.28 12.04
21.0	44.3 44.5	1247	12.04
21.3 22.0	44.3 44.7	1324	12.81
22.0 22.5	44.7	1324	
22.5 23.0	44.9 45.1		14.41
		1482	15.24
23.5	45.3	1564	16.07
24.0	45.4	1647	16.93
24.5	45.6	1732	17.80
25.0	45.7	1818	18.68
25.5	45.9	1906	19.58

TABLE 7.5. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

Table 7.5. cont'd

$^{nat}Zn(d,x)^{64}Cu$	Cross section	Integra	l vield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
26.0	46.0	1995	20.50
26.5	46.1	2085	21.43
27.0	46.3	2177	22.38
27.5	46.4	2271	23.34
28.0	46.5	2366	24.32
28.5	46.7	2462	25.31
29.0	46.8	2560	26.31
29.5	46.9	2660	27.34
30.0	47.1	2761	28.37
30.5	47.2	2863	29.43
31.0	47.4	2967	30.50
31.5	47.5	3073	31.58
32.0	47.6	3180	32.68
32.5	47.8	3289	33.80
33.0	47.9	3399	34.93
33.5	48.1	3510	36.08
34.0	48.2	3623	37.24
34.5	48.3	3738	38.42
35.0	48.5	3854	39.61
35.5	48.6	3972	40.82
36.0	48.8	4091	42.05
36.5	48.9	4212	43.29
37.0	49.0	4334	44.55
37.5	49.2	4458	45.82
38.0	49.3	4584	47.11
38.5	49.5	4711	48.42
39.0	49.6	4840	49.74
39.5	49.8	4970	51.08
40.0	49.9	5102	52.43
40.5	50.1	5235	53.80
41.0	50.2	5370	55.19
41.5	50.4	5507	56.60
42.0	50.5	5645	58.02
42.5	50.7	5785	59.45
43.0	50.8	5928	60.93
43.5	50.9	6071	62.40
44.0	51.1	6214	63.86
44.5	51.2	6360	65.37
45.0	51.4	6508	66.89
45.5	51.5	6658	68.43
46.0	51.7	6811	70.01
46.5	51.8	6962	71.55
47.0	52.0	7116	73.14
47.5	52.1	7273	74.75
48.0	52.2	7433	76.39
48.5	52.4	7590	78.01
48.5	52.4	7590	78.01

F. ⁶⁸Zn(p,2p3n)⁶⁴Cu reaction

The ${}^{68}Zn(p,x){}^{64}Cu$ reaction has been evaluated mainly as a possible route for ${}^{64}Cu$ impurity in the production of ${}^{67}Cu$ via the ${}^{68}Zn(p,2p){}^{67}Cu$ reaction. However, this reaction can also be utilized for the production of ${}^{64}Cu$. Three measured cross-section data sets exist for the ${}^{68}Zn(p,x){}^{64}Cu$ (Levkovskij *et al.* (1991), Hilgers *et al.* (2003) and Szelecsényi *et al.* (2005)) and are shown in Figs. 7.15 and 7.16. All data were adjusted in order to account for the most recent ${}^{64}Cu$ decay data [7.1]. The measurements by Levkovskij were also adjusted downward by 20%. The data of Hilgers *et al.* (2003) in the energy range of 23 to 35 MeV were deleted due to systematic errors in that energy range (information from authors). Fig. 7.17 compares an ALICE-IPPE and EMPIRE-HMS calculation with the measured data, and demonstrates that there is generally good agreement. Due to the production of the ${}^{67}Cu$ impurity at higher energies, the user should be aware that the useful energy range for the production of ${}^{64}Cu$ is below 40 MeV. Yields determined from the recommended cross sections are presented in Fig. 7.18, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.6.

Bibliography, evaluation and selection

Cross section

LEVKOVSKIJ, V.N., Activation cross-section nuclides of average masses (A = 40 - 100) by protons and alpha-particles with average energies (E = 10 - 50 MeV), in: Activation cross section by protons and alphas, Moscow, 1991.

EXFOR: A0510

Cross sections must be normalized by a factor of 0.8 as pointed out by Takács, S., Tárkányi, F., Sonck, M., Hermanne, A., Investigation of the $^{nat}Mo(p,x)^{96mg}Tc$ nuclear reaction to monitor proton beams: New measurements and consequences on the earlier reported data, Nucl. Instrum. Methods B 198 (2002) 183-196.

HILGERS, K., STOLL, T., SKAKUN, Y., COENEN, H.H., QAIM, S.M., Cross-section measurements of the nuclear reactions $^{nat}Zn(d,x)^{64}Cu$, $^{66}Zn(d,\alpha)^{64}Cu$ and $^{68}Zn(p,\alpha n)^{64}Cu$ for production of ^{64}Cu and technical developments for small-scale production of ^{67}Cu via the $^{70}Zn(p,\alpha)^{67}Cu$ process, Appl. Radiat. Isot. **59** (2003) 343-351.

EXFOR: D0069

Detected radiation: annihilation radiation (38%). Data were rejected because of the large disagreement with other equivalent data.

SZELECSÉNYI, F., STEYN, G.F., KOVÁCS, Z., VERMEULEN, C., VAN DER MEULEN, N.P., DOLLEY, S.G., VAN DER WALT, T.N., SUZUKI, K., MUKAI, K., Investigation of the ⁶⁶Zn(p,2pn)⁶⁴Cu and ⁶⁸Zn(p,x)⁶⁴Cu nuclear processes up to 100 MeV: Production of ⁶⁴Cu, Nucl. Instrum. Methods B **240** (2005) 625-637.

EXFOR: 01351

Detected radiation: 1345.8-keV γ photon (0.48%) and annihilation radiation (38%).

Yield

No data were found.

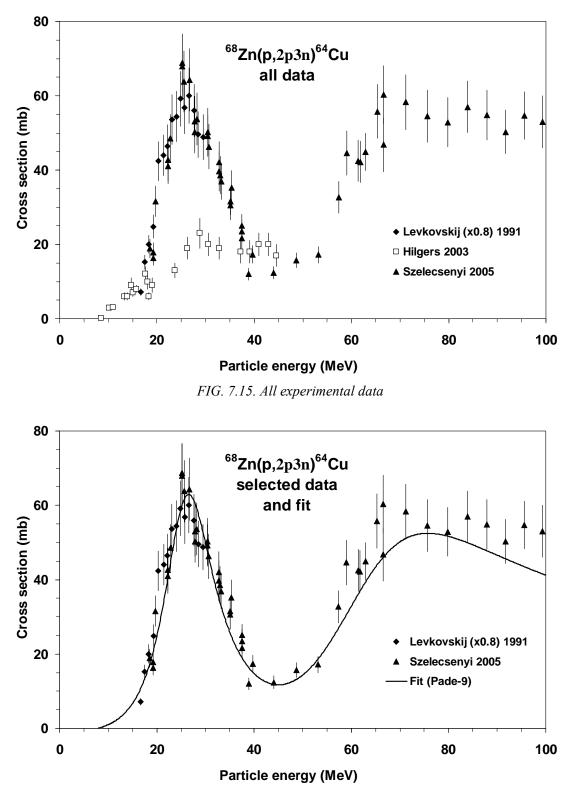


FIG. 7.16. Selected experimental data and the recommended curve (fit)

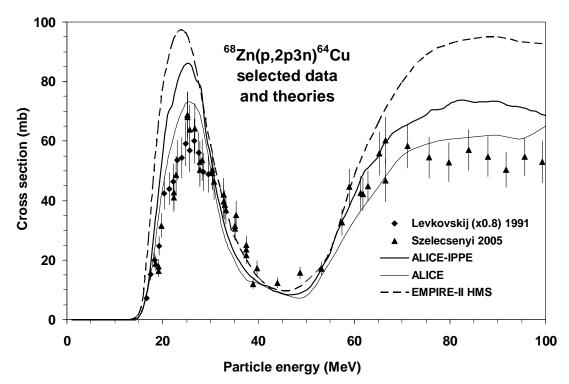


FIG. 7.17. Selected experimental data and theoretical calculations

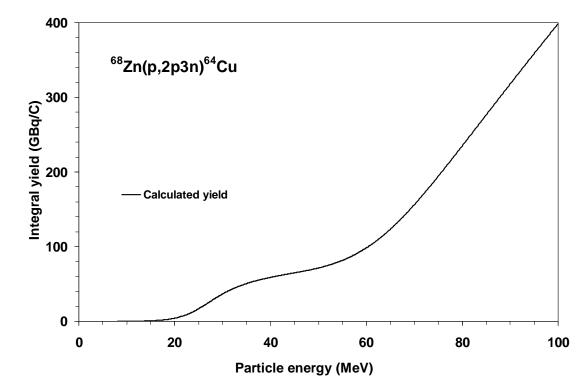


FIG. 7.18. Calculated integral yield curve based on the recommended cross sections

⁶⁸ Zn(p,2p3n) ⁶⁴ Cu	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
8.0	0.0	0	0.00
8.5	0.2	0	0.00
9.0	0.4	1	0.01
9.5	0.7	2	0.02
10.0	1.0	3	0.03
10.5	1.3	5	0.05
11.0	1.7	7	0.07
11.5	2.1	10	0.11
12.0	2.5	14	0.15
12.5	3.0	19	0.20
13.0	3.6	26	0.26
13.5	4.2	33	0.34
14.0	5.0	42	0.44
14.5	5.8	53	0.55
15.0	6.7	66	0.68
15.5	7.7	82	0.84
16.0	8.9	100	1.03
16.5	10.2	121	1.25
17.0	11.7	146	1.50
17.5	13.3	176	1.80
18.0	15.1	210	2.15
18.5	17.2	249	2.56
19.0	19.5	295	3.03
19.5	22.0	347	3.57
20.0	24.8	408	4.19
20.5	27.8	477	4.90
21.0	31.1	556	5.72
21.5	34.6	646	6.64
22.0	38.3	747	7.68
22.5	42.2	862	8.86
23.0	46.1	988	10.15
23.5	49.8	1128	11.59
24.0	53.4	1281	13.16
24.5	56.6	1446	14.86
25.0	59.2	1623	16.68
25.5	61.2	1810	18.61
26.0	62.5	2004	20.60
26.5	62.9	2204	22.65
27.0	62.6	2406	24.72
27.5	61.6	2608	26.81
28.0	60.0	2809	28.87
28.5	57.9	3006	30.89
29.0	55.4	3198	32.87
29.5	52.7	3383	34.77
30.0	49.9	3561	36.60
30.5	47.0	3731	38.35
31.0	44.1	3893	40.01

TABLE 7.6. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

⁶⁸ Zn(p,2p3n) ⁶⁴ Cu	Cross section	tion Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
31.5	41.4	4047	41.59
32.0	38.7	4193	43.09
32.5	36.2	4331	44.51
33.0	33.8	4461	45.85
33.5	31.6	4585	47.13
34.0	29.5	4702	48.33
34.5	27.6	4813	49.46
35.0	25.9	4917	50.54
35.5	24.2	5017	51.56
36.0	22.8	5111	52.53
36.5	21.4	5200	53.45
37.0	20.1	5285	54.32
37.5	19.0	5366	55.16
38.0	18.0	5444	55.95
38.5	17.0	5518	56.71
39.0	16.2	5589	57.44
39.5	15.4	5658	58.15
40.0	14.8	5724	58.83
40.5	14.2	5788	59.48
41.0	13.6	5849	60.12
41.5	13.2	5910	60.74
42.0	12.8	5969	61.35
42.5	12.4	6027	61.94
43.0	12.2	6084	62.53
43.5	12.0	6141	63.11
44.0	11.8	6197	63.69
44.5	11.7	6254	64.27
45.0	11.7	6310	64.86
45.5	11.7	6367	65.44
46.0	11.8	6425	66.04
46.5	11.9	6484	66.64
47.0	12.1	6545	67.26
47.5	12.4	6606	67.90
48.0	12.6	6670	68.56
48.5	13.0	6736	69.24
49.0	13.4	6805	69.94
49.5	13.8	6876	70.67
50.0	14.3	6951	71.44
50.5	14.9	7029	72.24
51.0	15.5	7111	73.08
51.5	16.1	7196	73.96
52.0	16.8	7286	74.89
52.5	17.6	7381	75.86
53.0	18.4	7481	76.89
53.5	19.2	7586	77.97
54.0	20.1	7697	79.11
54.5	21.0	7814	80.31
55.0	22.0	7937	81.57

⁶⁸ Zn(p,2p3n) ⁶⁴ Cu	Cross section	Integra	l vield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
55.5	23.0	8066	82.91
56.0	24.0	8203	84.31
56.5	25.0	8346	85.78
57.0	26.1	8497	87.33
57.5	27.2	8655	88.96
58.0	28.3	8821	90.66
58.5	29.5	8995	92.45
59.0	30.6	9178	94.32
59.5	31.8	9368	96.28
60.0	32.9	9567	98.32
60.5	34.0	9773	100.45
61.0	35.2	9989	102.67
61.5	36.3	10213	104.97
62.0	37.4	10445	107.36
62.5	38.5	10686	109.83
63.0	39.5	10935	112.39
63.5	40.6	11193	115.04
64.0	41.6	11459	117.77
64.5	42.5	11733	120.58
65.0	43.4	12014	123.48
65.5	44.3	12303	125.48
66.0	45.1	12601	120.43
66.5	45.9	12904	132.63
67.0	46.7	13215	135.82
67.5	40.7	13533	139.09
68.0	48.0	13857	142.42
68.5	48.6	14188	145.82
69.0	49.2	14524	149.27
69.5	49.2	14866	152.79
70.0	50.2	15213	156.36
70.5	50.6	15566	159.98
70.3	50.0	15923	163.66
71.5	51.3	16285	167.37
72.0	51.5	16651	171.13
72.5	51.8	17021	174.93
72.3	52.0	17394	174.93
73.5	52.0	17771	182.65
73.5 74.0	52.3	18151	182.03
74.0	52.5 52.4	18535	190.50
74.5	52.4	18920	190.30
75.5	52.4 52.5	19308	194.46
75.5	52.5 52.5	19699	202.46
76.0	52.5 52.4	20091	202.46 206.49
70.3	52.4 52.4	20091 20485	210.54
77.5	52.4 52.3	20485 20881	210.34 214.61
78.0	52.5 52.2	20881 21279	214.01 218.70
78.5	52.2 52.1	21279 21678	218.70 222.80
79.0	52.0	22077	226.91

⁶⁸ Zn(p,2p3n) ⁶⁴ Cu	Cross section	Integral yield		
Energy	(1 .)	$\left(\begin{array}{c} C \\ + \end{array} \right)$	$(\mathbf{C}\mathbf{D}_{\mathbf{T}} \mathbf{C})$	
(MeV)	(mb)	(µCi/µAh)	(GBq/C)	
79.5	51.8	22478	231.02	
80.0	51.6	22879	235.15	
80.5	51.5	23281	239.28	
81.0	51.3	23684	243.42	
81.5	51.1	24088	247.57	
82.0	50.8	24491	251.72	
82.5	50.6	24895	255.87	
83.0	50.4	25299	260.02	
83.5	50.1	25703	264.17	
84.0	49.9	26108	268.33	
84.5	49.6	26512	272.49	
85.0	49.4	26916	276.64	
85.5	49.1	27319	280.78	
86.0	48.8	27722	284.93	
86.5	48.5	28126	289.07	
87.0	48.3	28529	293.21	
87.5	48.0	28931	297.35	
88.0	47.7	29333	301.48	
88.5	47.4	29734	305.60	
89.0	47.1	30135	309.72	
89.5	46.9	30536	313.84	
90.0	46.6	30935	317.95	
90.5	46.3	31335	322.05	
91.0	46.0	31734	326.15	
91.5	45.7	32132	330.24	
92.0	45.4	32529	334.33	
92.5	45.2	32926	338.40	
93.0	44.9	33322	342.48	
93.5	44.6	33718	346.54	
94.0	44.3	34112	350.60	
94.5	44.1	34506	354.65	
95.0	43.8	34899	358.69	
95.5	43.5	35292	362.72	
96.0	43.3	35684	366.75	
96.5	43.0	36075	370.77	
97.0	42.7	36465	374.78	
97.5	42.5	36855	378.79	
98.0	42.2	37245	382.79	
98.5	42.0	37633	386.79	
99.0	41.7	38021	390.77	
99.5	41.5	38408	394.75	
100.0	41.2	38794	398.72	

7.2. Charged-particle production of ⁶⁷Cu

Copper-67 is the longest-lived copper radionuclide, with practical application in therapy. With a half-life of 2.6 d, 67 Cu emits β -particles with energy maxima ranging from 0.4 to 0.6 MeV that are ideal for cancer therapy. Along with 100% beta emission, 67 Cu also emits gamma photons of 92 and 184 keV that are suitable for gamma scintigraphy. This combination of suitable half-life, beta and gamma emissions makes 67 Cu a highly attractive radioisotope for cancer therapy; in particular, the short range of emitted β -particles and the capability of copper to form stable chemical complexes (with antibodies, peptides, etc.) make this radionuclide potentially very useful for internal radiotherapy. A simplified decay scheme is shown in Fig, 7.19 and the main emissions as defined in Table 7.7 were taken from NuDat 2.4 [7.3].

A. Decay data

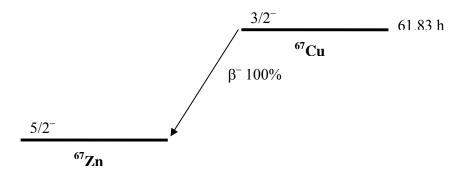


FIG. 7.19. Simplified decay scheme of ⁶⁷Cu [7.3]

67.0	Decay mode:	β ⁻ 100 %	
⁶⁷ Cu	T _{1/2} :	61.83 h	
Radiation	Intensity	Energy (MeV)	
β ⁻ 1	1.10×10 ⁻⁰²	5.100×10 ⁻⁰²	*
рт	1.10^10	1.820×10^{-01}	**
β ⁻ 2	5.70×10 ⁻⁰¹	1.210×10^{-01}	*
р <i>2</i>	5.70~10	3.910×10 ⁻⁰¹	**
β ⁻ 3	2.20×10 ⁻⁰¹	1.540×10^{-01}	*
ρ 5	2.20~10	4.830×10^{-01}	*
β ⁻ 4	2.00×10 ⁻⁰¹	1.890×10^{-01}	**
Рч		5.760×10^{-01}	
γ1	7.00×10^{-02}	9.127×10^{-02}	
ce-K, y 1	4.62×10^{-03}	8.161×10^{-02}	
ce-L, y 1	5.32×10^{-04}	9.007×10^{-02}	а
γ2	1.61×10^{-01}	9.331×10 ⁻⁰²	
ce-K, y 2	1.24×10^{-01}	8.365×10^{-02}	
ce-L, γ 2	1.48×10^{-02}	9.212×10 ⁻⁰²	а
γ3	4.87×10^{-01}	1.846×10^{-01}	
ce-K, y 3	7.60×10^{-03}	1.749×10^{-01}	
ce-L, y 3	8.04×10^{-04}	1.834×10^{-01}	а
γ4	1.15×10^{-03}	2.090×10^{-01}	
ce-K, y 4	9.25×10^{-06}	1.993×10^{-01}	
ce-L, y 4	9.43×10^{-07}	2.078×10^{-01}	а
γ5	7.97×10^{-03}	3.002×10^{-01}	
γ6	2.20×10^{-03}	3.935×10^{-01}	
$K_{\alpha 1}$ X-ray	3.83×10^{-02}	8.639×10^{-03}	
$K_{\alpha 2}$ X-ray	1.97×10^{-02}	8.616×10 ⁻⁰³	*
K_{β} X-ray	8.22×10^{-03}	9.570×10^{-03}	т -
L X-ray	2.13×10^{-03}	1.010×10^{-03}	*
Auger-K	7.00×10 ⁻⁰²	7.530×10^{-03}	
Auger-L	1.95×10^{-01}	9.900×10 ⁻⁰⁴	*

TABLE 7.7. MAIN EMISSIONS [7.2, 7.3]

* Average energy (MeV) * Endpoint energy (MeV) ^a Maximum energy (MeV) for the sub-shell

B. Production routes

Target isotope	Natural	Reaction	Q-value	Threshold energy
	abundance		(MeV)	(MeV)
⁶⁸ Zn	18.75%	(p,2p)	-10.0	10.1
⁷⁰ Zn	0.62%	(p,α)	2.6	0.0
Zn	0.62%	(p,α)	2.0	0.0

TABLE 7.8. INVESTIGATED PRODUCTION ROUTES [7.3, 7.4]

C. ⁶⁸Zn(p,2p)⁶⁷Cu reaction

Eight data sets are available in the literature for proton energies up to 200 MeV and are shown in Fig. 7.20. Five selected data sets up to 100 MeV are presented in Fig. 7.21. The selected data are compared with theoretical curves in Fig. 7.22, and show that results from the ALICE and EMPIRE codes disagree significantly and represent poor descriptions of the experimental data. Yields determined from the recommended cross sections are presented in Fig. 7.23, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.9. An important point to emphasize in practical production runs with thick targets is that a significant flux of energetic secondary neutrons is generated. This additional neutron flux often contributes to the production of the primary isotope or to some of the impurities. Thus, the formation of 67 Cu via the 68 Zn(n,d) and 68 Zn(n,np) reactions is also expected to contribute to the overall yield when producing this radioisotope via the 68 Zn(p,2p) 67 Cu reaction.

Bibliography, evaluation and selection

Cross section

COHEN, B.L., NEWMAN, E., HANDLEY, T.H., (p,pn)+(p,2n) and (p,2p) cross sections in medium weight elements, Phys. Rev. **99** (1955) 723-727.

EXFOR: B0049

Data were rejected. Authors state that the uncertainty for the ⁶⁷Cu cross sections is much higher than the 25% estimated for other cross sections.

MORRISON, D.L., CARETTO Jr., A.A., Recoil study of the ⁶⁸Zn(p,2p)⁶⁷Cu reaction, Phys. Rev. **133** (1964) B1165-B1170. EXFOR: R0047

McGEE, T., RAO, C.L., SAHA, G.B., YAFFE, L., Nuclear interactions of ⁴⁵Sc and ⁶⁸Zn with protons of medium energy, Nucl. Phys. A **150** (1970) 11-29. EXFOR: B0053

Data needed adjustment in order to account for improved IAEA monitor data. After adjustment, the resulting data still do not reproduce the expected shape of the excitation function, and therefore they were rejected.

MIRZADEH, S., MAUSNER, L.F., SRIVASTAVA, S.C., Production of no-carrier added ⁶⁷Cu, Appl. Radiat. Isot. **37** (1986) 29-36. EXFOR: 12970 One data point at 200 MeV - not considered in the fitting process.

LEVKOVSKIJ, V.N., Activation cross-section nuclides of average masses (A = 40 - 100) by protons and alpha-particles with average energies (E = 10 - 50 MeV), in: Activation cross sections by protons and alphas, Moscow, 1991.

EXFOR: A0510

Cross sections must be normalized by a factor of 0.8 as pointed out by Takács, S., Tárkányi, F., Sonck, M., Hermanne, A., Investigation of the $^{nat}Mo(p,x)^{96mg}Tc$ nuclear reaction to monitor proton beams: New measurements and consequences on the earlier reported data, Nucl. Instrum. Methods B 198 (2002) 183-196.

STOLL, T., KASTLEINER, S., SHUBIN, YU.N., COENEN, H.H., QAIM, S.M., Excitation functions of proton induced reactions on ⁶⁸Zn from threshold up to 71 MeV with specific reference to the production of ⁶⁷Cu, Radiochim. Acta **90** (2002) 309-313. EXFOR: O1002

Data in the energy range 35 to 45 MeV were deleted due to systematic errors in that energy range (information from authors).

BONARDI, M.L., GROPPI, F., MAINARDI, H.S., KOKHANYUK, V.M., LAPSHINA, E.V., MEBEL, M.V., ZHUIKOV, B.L., Cross-section studies on ⁶⁴Cu with zinc target in the proton energy range from 141 down to 31 MeV, J. Radioanal. Nucl. Chem. **264** (2005) 101-105. EXFOR: O1310

SZELECSÉNYI, F., STEYN, G.F., DOLLEY, S.G., KOVÁCS, Z., VERMEULEN, C., VAN DER WALT, T.N., New cross-section data on the ⁶⁸Zn(p,2p)⁶⁷Cu nuclear reaction: Production possibility of ⁶⁷Cu used for internal radiotherapy, Proc. 15th Pacific Basin Nuclear Conference, 15 - 20 October 2006, Sydney, Australia, CD-ROM. EXFOR: no

Yield

DMITRIEV, P.P., Systematics of nuclear reaction yields for thick target at 22 MeV proton energy, Vop. At. Nauki i Tekhn., Ser. Yad. Konst. 2 (1983) 57-61. EXFOR: A0195

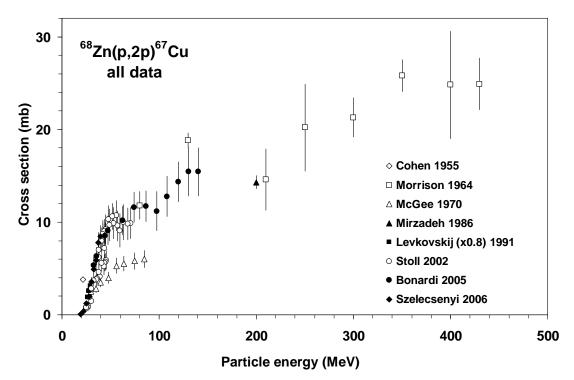


FIG. 7.20. All experimental data

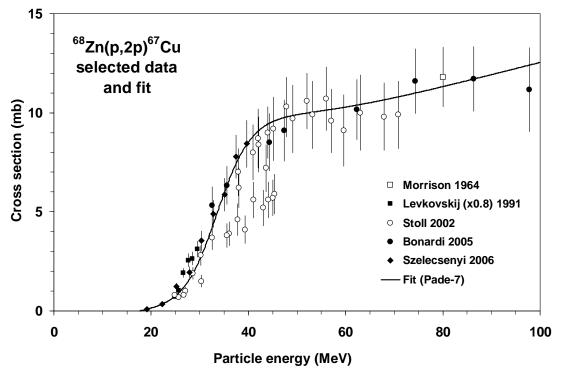


FIG. 7.21. Selected experimental data and the recommended curve (fit)

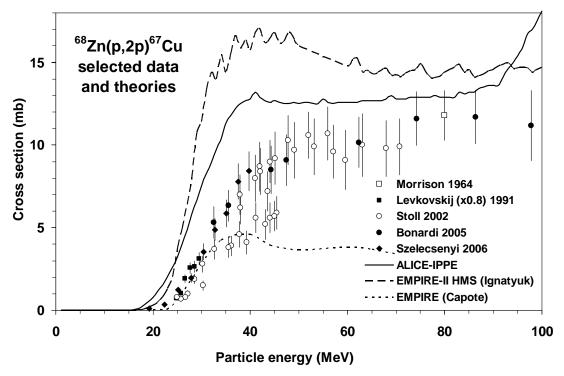


FIG. 7.22. Selected experimental data and theoretical calculations

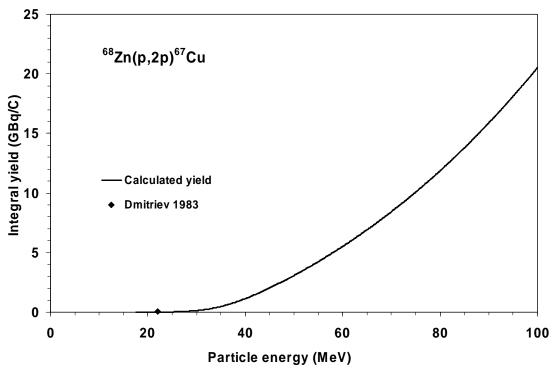


FIG. 7.23. Calculated integral yield curve based on the recommended cross sections

The co-production of 64 Cu via 68 Zn(p,x) 64 Cu reactions is of concern. Evaluated experimental cross-section data for the production of this impurity via the 68 Zn(p,x) 64 Cu reaction are presented in the Section 7.1. Based upon the good agreement between theoretical calculations and measurements for 64 Cu production and the reasonable similarity in trends observed in Fig. 7.22, ALICE data were used as a means of defining the first-order impurity level in the calculation of the 64 Cu/ 67 Cu yield ratios. Instantaneous thin-target and thick-target yield ratios for 64 Cu/ 67 Cu are shown in Fig. 7.24 as a function of the incident proton energy, indicating that the useful production energies are above 40 MeV. Also, for short bombardments and incident energies above 40 MeV, sufficient time must still be allowed after EOB for the 64 Cu to decay to acceptable impurity levels (i.e. several 64 Cu half lives). Shorter decay times are also required for longer bombardment times. An exit proton energy of about 40 MeV or slightly higher is recommended.

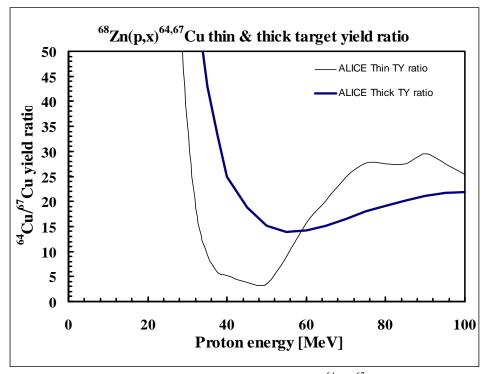


FIG. 7.24. Instantaneous thin-target and thick-target ⁶⁴Cu/⁶⁷Cu yield ratios obtained in the proton bombardment of enriched ⁶⁸Zn

⁶⁸ Zn(p,2p) ⁶⁷ Cu	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
17.5	0.00	0.0	0.000
18.0	0.02	0.0	0.000
18.5	0.05	0.0	0.000
19.0	0.08	0.1	0.001
19.5	0.11	0.1	0.001
20.0	0.14	0.2	0.002
20.5	0.18	0.3	0.003
21.0	0.22	0.4	0.004
21.5	0.27	0.5	0.005
22.0	0.31	0.7	0.007
22.5	0.37	0.9	0.009
23.0	0.43	1.1	0.011
23.5	0.50	1.4	0.014
24.0	0.58	1.7	0.018
24.5	0.66	2.1	0.022
25.0	0.76	2.6	0.026
25.5	0.87	3.1	0.032
26.0	0.99	3.7	0.038
26.5	1.13	4.4	0.045
27.0	1.29	5.2	0.053
27.5	1.46	6.1	0.063
28.0	1.65	7.2	0.074
28.5	1.86	8.4	0.086
29.0	2.08	9.8	0.101
29.5	2.33	11.4	0.117
30.0	2.60	13.2	0.135
30.5	2.89	15.2	0.156
31.0	3.19	17.4	0.179
31.5	3.51	20.0	0.205
32.0	3.84	22.7	0.234
32.5	4.19	25.8	0.266
33.0	4.54	29.2	0.300
33.5	4.89	32.9	0.339
34.0	5.24	37.0	0.380
34.5	5.59	41.4	0.425
35.0	5.94	46.0	0.473
35.5	6.27	51.1	0.525
36.0	6.59	56.4	0.580
36.5	6.90	62.1	0.638
37.0	7.18	68.1	0.700
37.5	7.46	74.4	0.765
38.0	7.71	81.0	0.832

 TABLE 7.9. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

⁶⁸ Zn(p,2p) ⁶⁷ Cu	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
38.5	7.94	87.8	0.903
39.0	8.15	95.0	0.976
39.5	8.35	102.4	1.052
40.0	8.52	110.0	1.131
40.5	8.68	117.9	1.211
41.0	8.83	125.9	1.294
41.5	8.96	134.2	1.380
42.0	9.07	142.7	1.467
42.5	9.18	151.4	1.556
43.0	9.27	160.2	1.647
43.5	9.35	169.2	1.739
44.0	9.43	178.4	1.833
44.5	9.49	187.7	1.929
45.0	9.55	197.2	2.026
45.5	9.60	206.8	2.125
46.0	9.65	216.5	2.225
46.5	9.69	226.4	2.326
47.0	9.73	236.4	2.429
47.5	9.76	246.5	2.533
48.0	9.80	256.7	2.639
48.5	9.83	267.1	2.745
49.0	9.85	277.6	2.853
49.5	9.88	288.2	2.962
50.0	9.90	298.9	3.072
50.5	9.92	309.7	3.183
51.0	9.94	320.6	3.295
51.5	9.96	331.7	3.409
52.0	9.98	342.8	3.523
52.5 53.0	10.00 10.02	354.1 365.4	3.639 3.756
53.5	10.02	376.9	3.874
53.5 54.0	10.04	376.9 388.5	3.993
54.0 54.5	10.08	388.5 400.2	4.113
55.0	10.08	400.2 412.0	4.113
55.5	10.09	423.9	4.357
56.0	10.11	436.0	4.481
56.5	10.15	448.1	4.605
57.0	10.15	460.3	4.731
57.5	10.19	472.7	4.858
58.0	10.21	485.2	4.986
58.5	10.23	497.7	5.116
59.0	10.25	510.4	5.246
59.5	10.27	523.3	5.378
60.0	10.29	536.2	5.511
60.5	10.31	549.2	5.645

Table 7.9 cont'd

⁶⁸ Zn(p,2p) ⁶⁷ Cu	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
61.0	10.33	562.4	5.780
61.5	10.35	575.6	5.916
62.0	10.37	589.0	6.054
62.5	10.39	602.5	6.192
63.0	10.41	616.1	6.332
63.5	10.44	629.9	6.474
64.0	10.46	643.7	6.616
64.5	10.48	657.7	6.760
65.0	10.51	671.8	6.905
65.5	10.53	686.0	7.051
66.0	10.55	700.4	7.198
66.5	10.58	714.8	7.347
67.0	10.60	729.4	7.497
67.5	10.63	744.1	7.648
68.0	10.65	758.9	7.800
68.5	10.68	73.9	7.954
69.0	10.08	789.0	8.109
69.5	10.70	89.0	8.265
70.0	10.76 10.78	819.6	8.423
70.5		835.0	8.582
71.0	10.81	850.6	8.743
71.5	10.84	866.4	8.904
72.0	10.86	882.2	9.067
72.5	10.89	898.2	9.232
73.0	10.92	914.3	9.397
73.5	10.95	930.6	9.565
74.0	10.97	947.0	9.733
74.5	11.00	963.5	9.903
75.0	11.03	980.2	10.074
75.5	11.06	997.0	10.247
76.0	11.09	1013.9	10.421
76.5	11.12	1030.9	10.596
77.0	11.14	1048.2	10.773
77.5	11.17	1065.5	10.951
78.0	11.20	1083.0	11.131
78.5	11.23	1100.6	11.312
79.0	11.26	1118.4	11.494
79.5	11.29	1136.2	11.678
80.0	11.32	1154.3	11.863
80.5	11.35	1172.4	12.050
81.0	11.38	1190.8	12.238
81.5	11.41	1209.2	12.428
82.0	11.44	1227.8	12.619
82.5	11.47	1246.6	12.812
83.0	11.50	1265.5	13.006
83.5	11.53	1284.5	13.202
84.0	11.56	1303.7	13.399

Table 7.9 cont'd

⁶⁸ Zn(p,2p) ⁶⁷ Cu	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
84.5	11.59	1323.0	13.597
85.0	11.62	1342.5	13.797
85.5	11.65	1362.1	13.999
86.0	11.68	1381.8	14.202
86.5	11.71	1401.7	14.407
87.0	11.74	1421.8	14.613
87.5	11.77	1442.0	14.820
88.0	11.80	1462.3	15.030
88.5	11.83	1482.8	15.240
89.0	11.86	1503.5	15.452
89.5	11.89	1524.3	15.666
90.0	11.92	1545.2	15.881
90.5	11.95	1566.3	16.098
91.0	11.98	1587.6	16.317
91.5	12.01	1609.0	16.537
92.0	12.05	1630.6	16.758
92.5	12.08	1652.3	16.982
93.0	12.11	1674.1	17.206
93.5	12.14	1696.2	17.433
94.0	12.17	1718.3	17.661
94.5	12.20	1740.7	17.890
95.0	12.23	1763.1	18.121
95.5	12.26	1785.8	18.354
96.0	12.29	1808.6	18.588
96.5	12.32	1831.5	18.824
97.0	12.35	1854.6	19.061
97.5	12.38	1877.9	19.300
98.0	12.41	1901.3	19.541
98.5	12.45	1924.9	19.784
99.0	12.48	1948.6	20.028
99.5	12.51	1972.5	20.273
100.0	12.54	1996.6	20.521

D.⁷⁰Zn(p,α)⁶⁷Cu reaction

Bibliography, evaluation and selection

Cross section

LEVKOVSKIJ, V.N., Activation cross-section nuclides of average masses (A = 40 - 100) by protons and alpha-particles with average energies (E = 10 - 50 MeV), in: Activation cross sections by protons and alphas, Moscow, 1991.

EXFOR: A0510

Cross sections must be normalized by a factor of 0.8 as pointed out by Takács, S., Tárkányi, F., Sonck, M., Hermanne, A., Investigation of the $^{nat}Mo(p,x)^{96mg}Tc$ nuclear reaction to monitor proton beams: New measurements and consequences on the earlier reported data, Nucl. Instrum. Methods B 198 (2002) 183-196.

KASTLEINER, S., COENEN, H.H., QAIM, S.M., Possibility of production of 67 Cu at a smallsized cyclotron via the (p, α) reaction on enriched 70 Zn, Radiochim. Acta **84** (1999) 107-110. EXFOR: 00738

Yield

No data were found.

All experimental cross-section data are shown in Fig. 7.25, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.26. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.27. Yields determined from the recommended cross-sections are presented in Fig. 7.28, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.10.

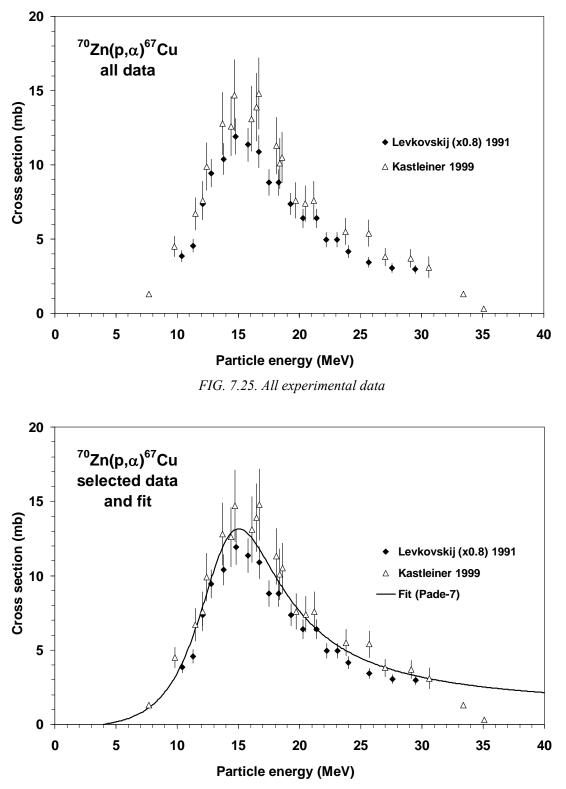


FIG. 7.26. Selected experimental data and the recommended curve (fit)

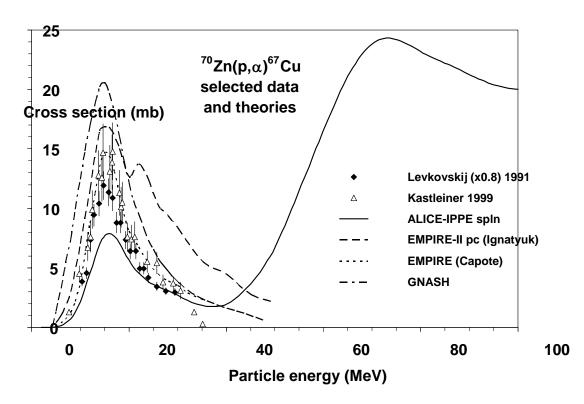


FIG. 7.27. Selected experimental data and theoretical calculations

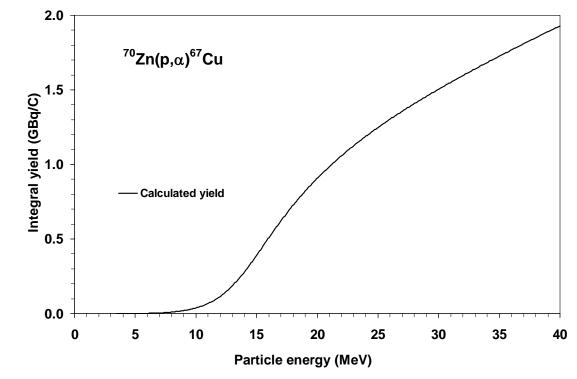


FIG. 7.28. Calculated integral yield curve based on the recommended cross sections

70 Zn(p, α) 67 Cu	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
3.5	0.00	0.0	0.000
4	0.01	0.0	0.000
4.5	0.07	0.0	0.000
5	0.16	0.0	0.000
5.5	0.26	0.1	0.001
6	0.40	0.2	0.002
6.5	0.56	0.3	0.003
7	0.76	0.5	0.005
7.5	1.01	0.6	0.006
8	1.31	1.0	0.010
8.5	1.70	1.4	0.014
9	2.17	2.0	0.020
9.5	2.75	2.7	0.028
10	3.45	3.7	0.038
10.5	4.28	5.0	0.051
11	5.28	6.6	0.068
11.5	6.43	8.6	0.089
12	7.70	11.3	0.115
12.5	9.03	14.3	0.148
13	10.33	18.1	0.185
13.5	11.50	22.4	0.230
14	12.40	27.3	0.280
14.5	12.96	32.5	0.334
15	13.16	38.1	0.391
15.5	13.02	43.7	0.449
16	12.63	49.4	0.508
16.5	12.06	55.0	0.565
17	11.39	60.4	0.621
17.5	10.69	65.6	0.674
18	10.00	70.6	0.725
18.5	9.33	75.3	0.774
19	8.70	79.8	0.821
19.5	8.13	84.2	0.865
20	7.61	88.3	0.907
20.5	7.14	92.2	0.948
21	6.71	95.9	0.986
21.5	6.32	99.5	1.023
22	5.97	103.0	1.058
22.5	5.65	106.4	1.093
23	5.36	109.5	1.126
23.5	5.10	112.6	1.157
24	4.87	115.7	1.188
24.5	4.65	118.5	1.219

TABLE 7.10. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

70 Zn(p, α) 67 Cu	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
25	4.46	121.3	1.247
25.5	4.28	124.1	1.276
26	4.11	126.8	1.303
26.5	3.96	129.4	1.330
28.5	3.47	139.4	1.433
29	3.36	141.8	1.457
29.5	3.26	144.1	1.481
30	3.17	146.4	1.505
30.5	3.09	148.7	1.528
31	3.01	150.9	1.551
31.5	2.93	153.1	1.573
32	2.86	155.3	1.596
32.5	2.80	157.4	1.618
33	2.74	159.6	1.640
33.5	2.68	161.6	1.661
34	2.62	163.8	1.683
34.5	2.57	165.9	1.705
35	2.52	167.9	1.725
35.5	2.48	169.9	1.747
36	2.43	172.0	1.768
36.5	2.39	174.0	1.788
37	2.35	176.0	1.809
37.5	2.30	178.0	1.829
38	2.27	180.0	1.850
38.5	2.23	181.9	1.870
39	2.21	183.9	1.890
39.5	2.17	185.9	1.910
40	2.14	187.7	1.930

Table 7.10 cont'd

7.3. Charged-particle production of ⁶⁷Ga

This radionuclide has been in use as a diagnostic SPECT radionuclide for several decades. Its formation cross sections have been evaluated (IAEA-TECDOC-1211). In view of its recent application in Auger electron therapy, new and updated evaluations of the two major production reactions are given below. A simplified decay scheme is shown in Fig, 7.29 and the main emissions as defined in Table 7.11 were taken from NuDat 2.4 [7.3].

A. Decay data

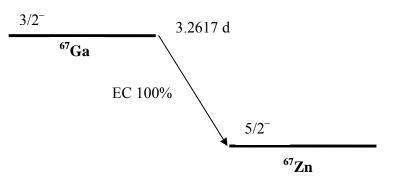


FIG. 7.29. Simplified decay scheme of ⁶⁷Ga [7.3]

⁶⁷ Ga	Decay mode: $T_{1/2}$:	EC 100% 3.2617 d
Radiation	Energy (keV)	Intensity (%)
Auger L	0.99	168.3
Auger K	7.53	60.7
ce K	83.651	29.1
ce L	92.116	3.57
γ	93.310	38.81
γ	184.576	21.410
γ	208.950	2.460
γ	300.217	16.64
γ	393.527	4.56

TABLE 7.11. MAIN EMISSIONS [7.3]

B. Production routes

Two proton-induced reactions have been assessed, as specified in Table 7.12. (is this not redundant after what is said above?)

Target isotope	Natural abundance	Reaction	Q-value (MeV)	Threshold energy (MeV)
⁶⁷ Zn	4.10%	(p,n)	-1.8	1.8
⁶⁸ Zn	18.75%	(p,2n)	-12.0	12.2

TABLE 7.12. INVESTIGATED PRODUCTION ROUTES [7.3, 7.4]

C. ⁶⁷Zn(p,n)⁶⁷Ga reaction

Bibliography, evaluation and selection

Cross section

BLASER, J.-P., BOEHM, F., MARMIER, P., PEASLEE, D.C., Fonctions d'excitation de la reaction (p,n) I, Helv. Phys. Acta **24** (1951) 3-38. EXFOR: B0048

JOHNSON, C.H., GALONSKY, A., INSKEEP, C.N., Cross sections for (p,n) reactions in intermediate-weight nuclei, Oak Ridge National Laboratory Report ORNL-2910 (1960) p. 25 (unpublished). EXFOR: T0135

Same as Johnson et al. (1964).

JOHNSON, C.H., TRAIL, C.C., GALONSKY, A., Thresholds for (p,n) reactions on 26 intermediate-weight nuclei, Phys. Rev. B **136** (1964) 1719-1729. EXFOR: T0126

BARRANDON, J.N., DEBRUN, J.L., KOHN, A., SPEAR, R.H., The yield of Ti, V, Cr, Fe, Ni, Cu and Zn through activation by protons of energies limited to 20 MeV, Nucl. Instrum. Methods **127** (1975) 269-278.

EXFOR: O0086

Target: natural Zn. Data were rejected – despite the very good agreement with the results of other groups up to 10 MeV, the rapid decrease of the excitation function in the tail is unusual for a (p,n) reaction in this energy region.

BONARDI, M., BIRATTARI, C., Optimization of irradiation parameters for ⁶⁷Ga production from ^{nat}Zn(p,xn) nuclear reactions, J. Radioanal. Chem. **76** (1983) 311-318. EXFOR: O1062 *Target: natural Zn. Yield data were converted to cross section data.*

LITTLE, F.E., LAGUNAS-SOLAR, M.C., Cyclotron production of ⁶⁷Ga. Cross sections and thick-target yields for the ⁶⁷Zn(p,n) and ⁶⁸Zn(p,2n) reactions, Int. J. Appl. Radiat. Isot. **34** (1983) 631-637. EXFOR: A0321

Data were rejected because of an energy shift.

KOPECKÝ, P., Cross sections and production yields of ⁶⁶Ga and ⁶⁷Ga for proton reactions in natural zinc, Appl. Radiat. Isot. **41** (1990) 606-608. EXFOR: D0089 *Target: natural Zn.*

TARKANYI, F., SZELECSENYI, F., KOVACS, Z., SUDAR, S., Excitation functions of proton induced nuclear reactions on enriched ⁶⁶Zn, ⁶⁷Zn and ⁶⁸Zn. Production of ⁶⁷Ga and ⁶⁶Ga, Radiochim. Acta **50** (1990) 19-26. EXFOR: D4004

LEVKOVSKIJ, V.N., Activation cross-section nuclides of average masses (A = 40 - 100) by protons and alpha-particles with average energies (E = 10 - 50 MeV), in: Activation cross section by protons and alphas, Moscow, 1991.

EXFOR: A0510

Cross sections must be normalized by a factor of 0.8 as noted by Takács, S., Tárkányi, F., Sonck, M., Hermanne, A., Investigation of the $^{nat}Mo(p,x)^{96mg}Tc$ nuclear reaction to monitor proton beams: New measurements and consequences on the earlier reported data, Nucl. Instrum. Methods B 198 (2002) 183-196.

NORTIER, F.M., MILLS, S.J., STEYN, G.F., Excitation functions and yields of relevance to the production of ⁶⁷Ga by proton bombardment of ^{nat}Zn and ^{nat}Ge up to 100 MeV, Appl. Radiat. Isot. **42** (1991) 353-359. EXFOR: A0498 *Target: natural Zn.*

HERMANNE, A., Evaluated cross section and thick target yield data of Zn+p processes for practical applications, private communication (1997). EXFOR: D4093

Target: natural Zn. Since the data are "estimated" values above 12 MeV based on a 'tail-fitting' procedure, the results are only used up to this energy.

SZELECSÉNYI, F., BOOTHE, T.E., TAKÁCS, S., TÁRKÁNYI, F., TAVANO, E., Evaluated cross section and thick target yield data bases of Zn+p processes for practical applications, Appl. Radiat. Isot. **49** (1998) 1005-1032. EXFOR: C0506

AL-ABYAD, M.E., Nuclear reactions studies on some natural targets using cyclotron, Masters thesis, Physics Department, Faculty of Science, Ain Shams University, Egypt, 2003. EXFOR: no *Target: natural Zn.*

BONARDI, M.L., GROPPI, F., MAINARDI, H.S., KOKHANYUK, V.M., LAPSHINA, E.V., MEBEL, M.V., ZHUIKOV, B.L., Cross-section studies on ⁶⁴Cu with zinc target in the proton energy range from 141 down to 31 MeV, J. Radioanal. Nucl. Chem. **264** (2005) 101-105. EXFOR: O1310

Target: natural Zn. Data were rejected because they are above the threshold of the ${}^{68}Zn(p,2n)$ *reaction.*

TÁRKÁNYI, F., DITRÓI, F., CSIKAI, J., TAKÁCS, S., UDDIN, M.S., HAGIWARA, M., BABA, M., SHUBIN, YU.N., DITYUK, A.I., Activation cross sections of long-lived products of proton-induced nuclear reactions on zinc, Appl. Radiat. Isot. **62** (2005) 73-81. EXFOR: D4149, E1921

Target: natural Zn. Data were rejected because they are above the threshold of the ${}^{68}Zn(p,2n)$ reaction.

AL-SALEH, F.S., AL MUGREN, K.S., AZZAM, A., Excitation function measurements and integral yields estimation for ^{nat}Zn(p,x) reactions at low energies, Appl. Radiat. Isot. **65** (2007) 1101-1107. EXFOR: O1547

Target: natural Zn.

UDDIN, M.S., KHANDAKER, M.U., KIM, K.S., LEE, Y.S., KIM, G.N., Excitation functions of the proton induced nuclear reactions on ^{nat}Zn up to 40 MeV, Nucl. Instrum. Methods B **258** (2007) 313-320. EXFOR: O1600 *Target: natural Zn.*

Yield

KRASNOV, N.N, KONSTANTINOV, I.O., TUEV, V.M., DMITRIEV, P.P., KONYAKHIN, N.A., Yields of ⁶⁷Ga produced by a cyclotron, Isot. USSR 27 (**1972**) 11-14. EXFOR: no

INTRATOR, T.P., PETERSON, R.J., ZAIDINS, C.S., ROUGHTON, N.A., Determination of proton spectra by thick target radioactive yields, Nucl. Instrum. Methods **188** (1981) 347-352. EXFOR: no *Data were not adopted because they differed from all other values by some orders of magnitude.*

MAHUNKA, I., SZELECSENYI, F., ANDO, L., Radioisotope production at the MGC cyclotron, INDC(HUN)-027/G, IAEA, Vienna (1989) 7. EXFOR: no

TARKANYI, F., SZELECSENYI, F., KOVACS, Z., SUDAR, S., Excitation functions of proton induced nuclear reactions on enriched ⁶⁶Zn, ⁶⁷Zn and ⁶⁸Zn. Production of ⁶⁷Ga and ⁶⁶Ga, Radiochim. Acta **50** (1990) 19-26. EXFOR: D4004

NICKLES, R.J., A shotgun approach to the chart of the nuclides: Radiotracer production with an 11 MeV proton cyclotron, Acta Radiologica, Suppl. **376** (1991) 69-71. EXFOR: no *Target: natural Zn.*

All experimental cross-section data are shown in Fig. 7.30, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.31. Excitation functions have been calculated by means of the ALICE-IPPE, HF and SPEC nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.32. Yields determined from the recommended cross sections are presented in Fig. 7.33, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.13.

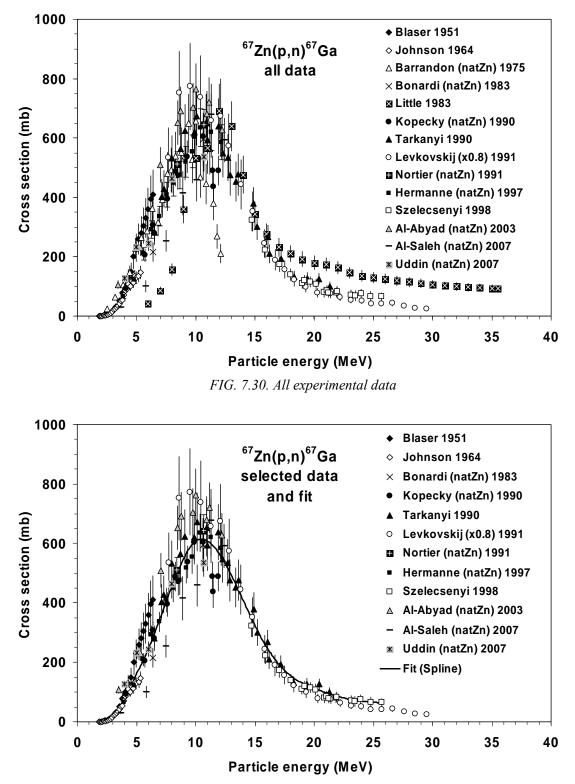


FIG. 7.31. Selected experimental data and the recommended curve (fit)

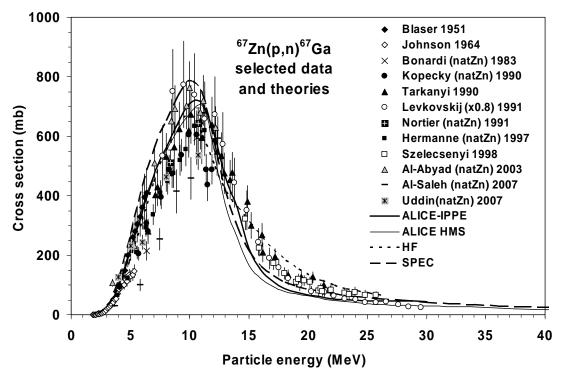


FIG. 7.32. Selected experimental data and theoretical calculations

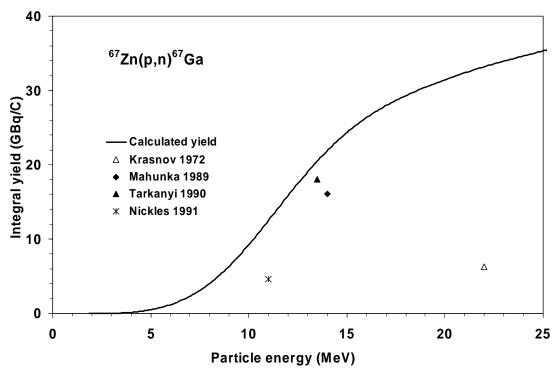


FIG. 7.33. Calculated integral yield curve based on the recommended cross sections

${}^{67}Zn(p,n){}^{67}Ga$	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
2.0	0	0	0.00
2.5	4	0	0.00
3.0	15	1	0.01
3.5	38	4	0.04
4.0	70	11	0.12
4.5	110	24	0.25
5.0	159	44	0.45
5.5	196	73	0.75
6.0	240	110	1.13
6.5	290	158	1.62
7.0	344	218	2.24
7.5	399	292	3.00
8.0	452	381	3.92
8.5	503	486	4.99
9.0	547	605	6.22
9.5	583	739	7.59
10.0	607	885	9.10
10.5	614	1040	10.69
11.0	609	1201	12.34
11.5	593	1364	14.02
12.0	567	1526	15.68
12.5	535	1684	17.31
12.5	498	1837	18.88
13.5	498	1982	20.37
13.3	414	2118	20.37 21.77
14.0	370	2243	23.05
	328		
15.0		2358	24.23
15.5	289	2461	25.29
16.0	254	2554	26.25
16.5	223	2638	27.12
17.0	197	2714	27.89
17.5	175	2782	28.60
18.0	157	2845	29.24
18.5	143	2903	29.83
19.0	131	2957	30.39
19.5	122	3008	30.91
20.0	114	3056	31.41
20.5	106	3102	31.88
21.0	98	3145	32.33
21.5	92	3187	32.75
22.0	86	3226	33.16
22.5	81	3264	33.54
23.0	76	3299	33.91
23.5	72	3334	34.26
24.0	70	3367	34.61
24.5	68	3401	34.95
25.0	66	3433	35.29
25.5	64	3466	35.62

TABLE 7.13. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

D. ⁶⁸Zn(p,2n)⁶⁷Ga reaction

Results of measurements for the ^{nat}Zn(p,xn)⁶⁷Ga process can be used for evaluations between 17 and 30 MeV. Over this energy range, the contribution of the ⁶⁷Zn(p,n)⁶⁷Ga reaction can be ignored due to the low isotopic abundance of ⁶⁷Zn in a natural zinc matrix and the small cross section of the ⁶⁷Zn(p,n)⁶⁷Ga reaction. The influence of the ⁷⁰Zn(p,4n)⁶⁷Ga process to the production cross sections is also negligible because of the very low isotopic abundance of ⁷⁰Zn in natural zinc (0.62%).

Bibliography, evaluation and selection

Cross section

COHEN, B.L., NEWMAN, E., HANDLEY, T.H. (p,pn)+(p,2n) and (p,2p) cross sections in medium weight elements, Phys. Rev. **99** (1955) 723-727. EXFOR: B0050

McGEE, T., RAO, C.L., SAHA, G.B., YAFFE, L., Nuclear interactions of ⁴⁵Sc and ⁶⁸Zn with protons of medium energy, Nucl. Phys. A **150** (1970) 11-29. EXFOR: B0053 *Data were rejected because of the very low cross-section values.*

BARRANDON, J.N., DEBRUN, J.L., KOHN, A., SPEAR, R.H., Study of the yield of Ti, V, Cr, Fe, Ni, Cu and Zn through activation by protons of energies limited to 20 MeV, Nucl. Instrum. Methods **127** (1975) 269-278. EXFOR: O0086 *Target: natural Zn. Data were rejected because the measured energies were below 17 MeV.*

BONARDI, M., BIRATTARI, C., Optimization of irradiation parameters for ⁶⁷Ga production from nat Zn(p,xn) nuclear reactions, J. Radioanal. Chem. **76** (1983) 311-318. EXFOR: O1062 *Target: natural Zn. Yields were converted to cross-section data.*

LITTLE, F.E., LAGUNAS-SOLAR, M.C., Cyclotron production of ⁶⁷Ga. Cross sections and thick-target yields for the ⁶⁷Zn(p,n) and ⁶⁸Zn(p,2n) reactions, Appl. Radiat. Isot. **34** (1983) 631-637. EXFOR: A0321

Target: natural Zn and enriched ⁶⁸*Zn. Data were rejected because of an energy shift.*

KOPECKÝ, P., Cross sections and production yields of ⁶⁶Ga and ⁶⁷Ga for proton reactions in natural zinc, Appl. Radiat. Isot. **41** (1990) 606-608.

EXFOR: D0089

Target: natural Zn. Data were rejected because of their significant deviations from the observed trend.

TARKANYI, F., SZELECSENYI, F., KOVACS, Z., SUDAR, S., Excitation functions of proton induced nuclear reactions on enriched ⁶⁶Zn, ⁶⁷Zn and ⁶⁸Zn. Production of ⁶⁷Ga and ⁶⁶Ga, Radiochim. Acta **50** (1990) 19-26. EXFOR: D4004

LEVKOVSKIJ, V.N., Activation cross-section nuclides of average masses (A = 40 - 100) by protons and alpha-particles with average energies (E = 10 - 50 MeV), in: Activation cross section by protons and alphas, Moscow, 1991.

EXFOR: A0510

Cross sections must be normalized by a factor of 0.8 as noted by Takács, S., Tárkányi, F., Sonck, M., Hermanne, A., Investigation of the $^{nat}Mo(p,x)^{96mg}Tc$ nuclear reaction to monitor proton beams: New measurements and consequences on the earlier reported data, Nucl. Instrum. Methods B 198 (2002) 183-196.

NORTIER, F.M., MILLS, S.J., STEYN, G.F., Excitation functions and yields of relevance to the production of ⁶⁷Ga by proton bombardment of ^{nat}Zn and ^{nat}Ge up to 100 MeV, Appl. Radiat. Isot. **42** (1991) 353-359. EXFOR: A0498 *Target: natural Zn.*

HERMANNE, A., WALRAVENS, N., CICCHELLI, O., Optimization of isotope production by cross-section determination, private communication (1991). EXFOR: A0494 Data were rejected because of their significant deviation from the observed trend.

HERMANNE, A., Evaluated cross section and thick target yield data of Zn+p processes for practical applications, private communication (**1997**). EXFOR: D4093 *Target: natural Zn and enriched* ⁶⁸*Zn*.

SZELECSÉNYI, F., BOOTHE, T.E., TAKÁCS, S., TÁRKÁNYI, F., TAVANO, E., Evaluated cross section and thick target yield data bases of Zn+p processes for practical applications, Appl. Radiat. Isot. **49** (1998) 1005-1032. EXFOR: C0506

HERMANNE, A., SZELECSENYI, F., SONCK, M., TAKACS, S., TARKANYI, F., VAN DEN WINKEL, P., New cross-section data on ⁶⁸Zn(p,2n)⁶⁷Ga and ^{nat}Zn(p,xn)⁶⁷Ga nuclear reactions for the development of a reference data base, J. Radioanal. Nucl. Chem. **240** (1999) 623-630. EXFOR: D4088 *Target: natural Zn and enriched* ⁶⁸Zn.

STOLL, T., KASTLEINER, S., SHUBIN, YU.N., COENEN, H.H., QAIM, S.M., Excitation functions of proton induced reactions on ⁶⁸Zn from threshold up to 71 MeV, with specific reference to the production of ⁶⁷Cu, Radiochim. Acta **90** (2002) 309-113. EXFOR: O1002

SZELECSÉNYI, F., STEYN, G.F., KOVÁCS, Z., VAN DER WALT, T.N., SUZUKI, K., OKADA, K., MUKAI, K., New cross-section data for the ${}^{66}Zn(p,n){}^{66}Ga$, ${}^{68}Zn(p,3n){}^{66}Ga$, ${}^{nat}Zn(p,x){}^{66}Ga$, ${}^{68}Zn(p,2n){}^{67}Ga$ and ${}^{nat}Zn(p,x){}^{67}Ga$ nuclear reactions up to 100 MeV, Nucl. Instrum. Methods B **234** (2005) 375-386. EXFOR: E1935

Target: natural Zn and enriched ⁶⁸*Zn.*

Yield

DMITRIEV, P.P., Systematics of nuclear reaction yields for thick target at 22 MeV proton energy, Vop. At. Nauki i Tekhn., Ser. Yad. Konst. 2 (1983) 57-61. EXFOR: A0195

KOPECKY, P., KONRAD, L., MELICHAR, F., Research, development and production of cyclotron produced radionuclides for diagnostic nuclear medicine, Jad. Energ. **31** (1985) 186-189. EXFOR: no

Target thickness: $33 \rightarrow 12$ *MeV*.

HUPF, H.B., TISCHER, S.D., AL-WATBAN, F., The cyclotron radionuclide program at King Faisal Specialist Hospital and Research Centre, Nucl. Instrum. Methods B **10/11** (1985) 967-968. EXFOR: no

KRASNOV, N.N., SEVASTYANOV, YU.G., KONYAKIN, N.A., RAZBASH, A.A., OGNEV, A.A., PONOMAREV, A.A., Radionuclide production on cyclotron of Institute of Physics and Power Engineering, pp. 54-56 in Proc. 4th Int. Workshop on Targetry and Target Chemistry, 9-12 September 1991, Villigen, Switzerland, PSI, Villigen, Switzerland, 1992. EXFOR: no

All experimental cross-section data are shown in Fig. 7.34, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.35. Excitation functions have been calculated by means of the ALICE-IPPE, HF and SPEC nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.36. Yields determined from the recommended cross sections are presented in Fig. 7.37, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.14.

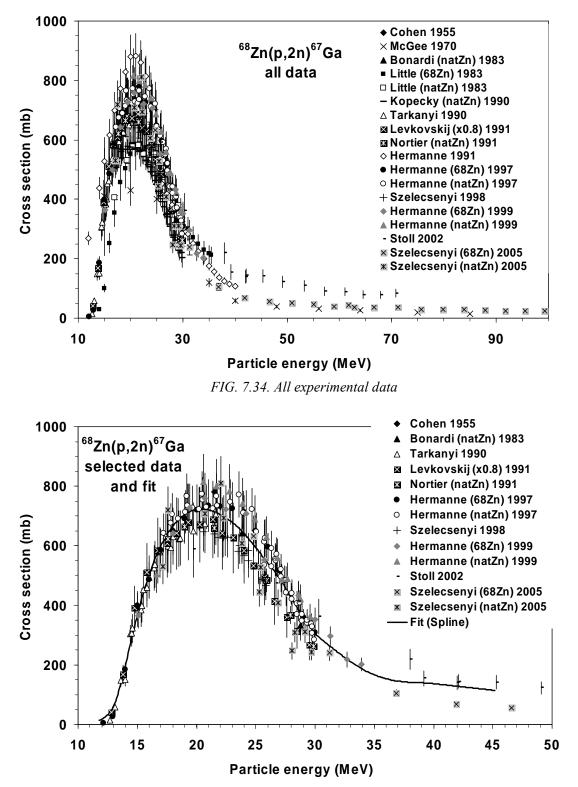


FIG. 7.35. Selected experimental data and the recommended curve (fit)

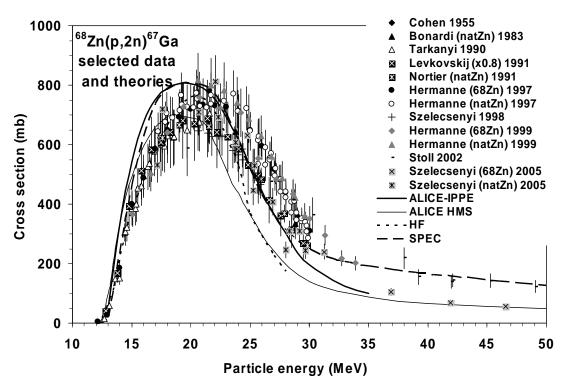


FIG. 7.36. Selected experimental data and theoretical calculations

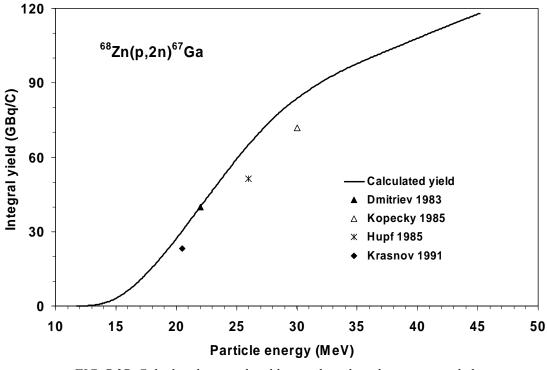


FIG. 7.37. Calculated integral yield curve based on the recommended cross sections

⁶⁸ Zn(p,2n) ⁶⁷ Ga Cross section		Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
12.0	17	3	0.0
12.5	31	10	0.1
13.0	59	24	0.2
13.5	114	51	0.5
14.0	191	102	1.0
14.5	276	181	1.9
15.0	358	290	3.0
15.5	432	427	4.4
16.0	497	593	6.1
16.5	552	784	8.1
17.0	598	997	10.2
17.5	634	1230	12.6
18.0	663	1480	15.2
18.5	686	1745	17.9
19.0	704	2023	20.8
19.5	716	2313	23.8
20.0	722	2612	26.8
20.5	724	2918	30.0
20.5	724	3229	33.2
21.5	715	3544	36.4
22.0	705	3860	39.7
22.5	694	4180	43.0
23.0	681	4495	46.2
23.5	664	4810	49.4
23.5 24.0	644	5121	52.6
24.0	621	5427	55.8
	597		
25.0		5726	58.8
25.5	570	6018	61.9
26.0	545	6300	64.7
26.5	521	6573	67.6 70.2
27.0	494	6837 7000	70.3
27.5	462	7089	72.9
28.0	428	7326	75.3
28.5	395	7548	77.6
29.0	363	7755	79.7
29.5	333	7947	81.7
30.0	309	8127	83.5
30.5	289	8297	85.3
31.0	272	8459	86.9
31.5	257	8614	88.5
32.0	241	8761	90.0
32.5	226	8901	91.5
33.0	212	9034	92.9
33.5	199	9160	94.1
34.0	187	9280	95.4
34.5	177	9394	96.6
35.0	168	9504	97.7

TABLE 7.14. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

Table 7.14 cont'd

⁶⁸ Zn(p,2n) ⁶⁷ Ga	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
35.5	160	9609	98.8
36.0	154	9712	99.8
36.5	149	9812	100.8
37.0	146	9910	101.9
37.5	143	10008	102.9
38.0	142	10105	103.9
38.5	141	10203	104.9
39.0	140	10301	105.9
39.5	139	10399	106.9
40.0	137	10498	107.9
40.5	135	10596	108.9
41.0	133	10693	109.9
41.5	131	10790	110.9
42.0	129	10886	111.9
42.5	126	10982	112.9
43.0	124	11076	113.8
43.5	122	11170	114.8
44.0	120	11263	115.8
44.5	118	11355	116.7
45.0	116	11447	117.6

7.4. Charged-particle production of ^{86g}Y

A combination of β -emitting ⁹⁰Y and β ⁺-emitting ^{86g}Y represents a means of undertaking PET and radiotherapy – dosimetry and therapy planning can be better quantified. A simplified decay scheme is shown in Fig. 7.38, and the main emissions as defined in Table 7.15

were taken from NuDat 2.4 [7.3].

A. Decay data

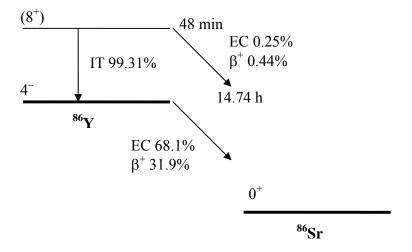


FIG. 7.38. Simplified decay scheme of ⁸⁶Y [7.3]

86g Y	Decay mode:	EC 68.1% $\beta^+ 31.9\%$	
° Y		•	
	T _{1/2} :	14.74 h	Intoncity
Radiation	Energy (keV)	End-point energy (keV)	Intensity (%)
β^+	114	249	0.0038
$egin{array}{c} eta \\ eta^+ \end{array}$	126	249	0.0038
$egin{array}{c} eta \\ eta^+ \end{array}$	133	273	0.0029
$egin{array}{c} eta \\ eta^+ \end{array}$	156	346	0.0035
$egin{array}{c} eta \\ eta^+ \end{array}$	173	387	0.0033
р 0 ⁺	173	443	0.22
β^+			
β^+	201	452	0.26
β^+	235	531	0.057
β^+	252	573	0.31
β^+	375	856	0.180
β^+	394	900	1.10
β^+	406	927	0.043
β^+	452	1033	1.9
β^+	509	1162	1.33
β^+	535	1221	11.9
β^+	589	1340	0.69
β^+	629	1430	0.05
β^+	681	1545	5.6
β^+	695	1576	0.05
β^+	768	1736	1.7
β^+	883	1988	3.6
β^+	1078	2364	0.9
β^+	1437	3141	2.0
γ	443.13		16.9
γ	511.0	annihilation	64
γ	627.72		32.6
γ	703.33		15.4
γ	777.37		22.4
γ	1076.63		82.5
γ	1153.05		30.5
γ	1854.38		17.2
γ	1920.72		20.8

TABLE 7.15. MAIN EMISSIONS [7.3]

B. Production routes

Large-scale production of ⁸⁶Y is undertaken via the (p,n) reaction on highly enriched ⁸⁶Sr targets, as specified in Table 7.16.

Target isotope	Natural abundance	Reaction	Q-value (MeV)	Threshold energy (MeV)
⁸⁶ Sr	9.86%	(p,n)	-6.0	6.1

TABLE 7.16. INVESTIGATED PRODUCTION ROUTES [7.3, 7.4]

C. ⁸⁶Sr(p,n)⁸⁶Y reaction

Two experimental data sets exist in the literature for the isotopic cross section on ⁸⁶Sr. Levkovskij *et al.* (1991) measured the excitation function of the ⁸⁶Sr(p,n)⁸⁶Y reaction up to 30 MeV and Rösch *et al.* (1993) up to 17 MeV. Skakun *et al.* (1980) measured the isomer reaction for the production of the two isomeric states up to 9 MeV. Michel *et al.* (1997) measured excitation functions on ^{nat}Sr(p,xn)⁸⁶Y from 15.2 MeV to high energies. Taking into account that the threshold of the ⁸⁷Sr(p,2n)⁸⁶Y is 14.62 MeV, the first measured point of Michel *et al.* (1997)at 15.2 MeV can be used (after normalization to the isotopic abundance of ⁸⁶Sr in ^{nat}Sr). Thick target yields on enriched SrCO₃ and SrO targets were measured by Yoo *et al.* (2005) using low intensity proton beams, and compared with the theoretical yields.

Bibliography, evaluation and selection

Cross section

SKAKUN, E.A., BATIJ, V.G., RAKVIENKO, JU.N., LUCIK, V.A., ROMANIJ, I.A., Excitation of isomeric pairs for reactions ⁸⁶Sr(p,n)^{86m,g}Y and ⁸⁷Sr(p,n)^{87m,g}Y, p. 325 in Proc. 30th Conf. Nuclear Spectrometry and Nuclear Structure, 18-21 March 1980, Leningrad, AN SSSR, Moscow. EXFOR: A0074

Only isomeric ratio.

LEVKOVSKIJ, V.N., Activation cross-section nuclides of average masses (A = 40 - 100) by protons and alpha-particles with average energies (E = 10 - 50 MeV), Levkovskij, V.N., Activation cross sections by protons and alphas, Moscow, 1991. EXFOR: A0510

Cross sections must be normalized by a factor of 0.8 as pointed out by Takács, S., Tárkányi, F., Sonck, M., Hermanne, A., Investigation of the $^{nat}Mo(p,x)^{96mg}Tc$ nuclear reaction to monitor proton beams: New measurements and consequences on the earlier reported data, Nucl. Instrum. Methods B 198 (2002) 183-196.

RÖSCH, F., QAIM, S.M., STÖCKLIN, G., Nuclear data relevant to the production of the positron emitting radioisotope ⁸⁶Y via the ⁸⁶Sr(p,n)- and ^{nat}Rb(³He,xn)-processes, Radiochim. Acta **61** (1993) 1-8. EXFOR: D4030

QAIM, S.M., UHL, M., ROSCH, F., SZELECSENYI, F., Excitation functions of (p,α) reactions on ⁶⁴Ni, ⁷⁸Kr, and ⁸⁶Sr, Phys. Rev. C **52** (1995) 733-739. EXFOR: D4015 *Same data as in Rösch (1993)*. MICHEL, R., BODEMANN, R., BUSEMANN, H., DAUNKE, R., GLORIS, M., LANGE, H.-J., KLUG, B., KRINS, A., LEYA, I., LUEPKE, M., NEUMANN, S., REINHARDT, H., SCHNATZ-BUETTGEN, M., HERPERS, U., SCHIEKEL, TH., SUDBROCK, F., HOLMQVIST, B., CONDÉ, H., MALMBORG, P., SUTER, M., DITTRICH-HANNEN, B., KUBIK, P.-W., SINAL, H.-A., FILGES, D., Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au, Nucl. Methods B **129** (1997) 153-193. EXFOR: O0276

Measured on natural Y target, therefore only one (first) point has been retained in this evaluation.

Yield

ZATOLOKIN, B.V., KONSTANTINOV, I.O., KRASNOV, N.N., Use of 11-MeV protons for activation analysis, Atomnaya Energiya **42** (1977) 311-314. EXFOR: no *Target: natural Sr.*

NICKLES, R.J., A shotgun approach to the chart of the nuclides: Radiotracer production with an 11 MeV proton cyclotron, Acta Radiologica, Suppl. 376 (1991) 69-71. EXFOR: no *Target: natural Sr.*

YOO, J., TANG, L., PERKINS, T.A., ROWLAND, D.J., LAFOREST, R., LEWIS, J.S., WELCH, M.J., Preparation of high specific activity ⁸⁶Y using a small biomedical cyclotron, Nucl. Med. Biol. **32** (2005) 891-897.

The measured experimental yields are 60-70% of the yields calculated from cross-section data of Rosch et al. (1993). Results of this paper are not plotted on the yield graph because the proton beam did not terminate in the target – thick target yields and not integral yields were published.

All experimental cross-section data are shown in Fig. 7.39, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.40. Excitation functions have been calculated by means of the ALICE-IPPE and EMPIRE nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.41. Yields determined from the recommended cross sections are presented in Fig. 7.42, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.17.

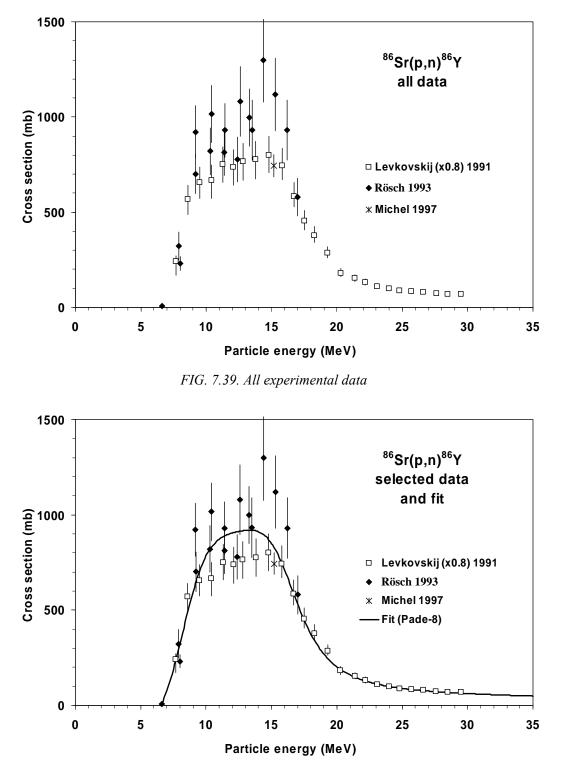


FIG. 7.40. Selected experimental data and the recommended curve (fit)

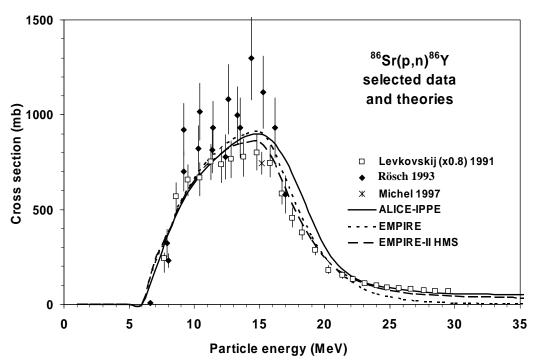


FIG. 7.41. Selected experimental data and theoretical calculations

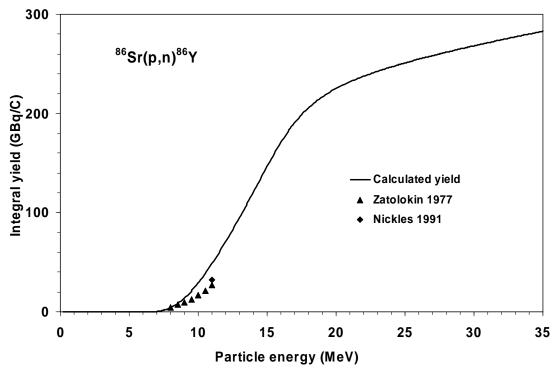


FIG. 7.42. Calculated integral yield curve based on the recommended cross sections

⁸⁶ Sr(p,n) ⁸⁶ Y	Cross section Integral yield		ield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
6.5	0	0	0
7.0	78	34	0
7.5	190	160	2
8.0	323	406	4
8.5	463	795	8
9.0	595	1337	14
9.5	704	2023	21
10.0	785	2835	29
10.5	839	3749	39
11.0	872	4740	49
11.5	892	5794	60
12.0	904	6901	71
12.5	913	8054	83
13.0	918	9248	95
13.5	919	10481	108
14.0	911	11743	121
14.5	890	13016	134
15.0	850	14274	147
15.5	789	15486	159
16.0	710	16624	171
16.5	621	17648	181
17.0	531	18552	191
17.5	448	19335	199
18.0	377	20007	206
18.5	318	20585	212
19.0	270	21084	217
19.5	232	21520	221
20.0	202	21904	225
20.5	179	22248	229
21.0	159	22560	232
21.5	144	22845	235
22.0	132	23108	238
22.5	121	23354	240
23.0	113	23586	242
23.5	105	23806	245
24.0	99	24015	247
24.5	94	24216	249
25.0	89	24409	251
25.5	85	24596	253
26.0	81	24777	255
26.5	78	24953	256
27.0	75	25125	258

TABLE 7.17. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

Table 7.17	cont'd
------------	--------

⁸⁶ Sr(p,n) ⁸⁶ Y	Cross section	Integral	yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
27.5	72	25293	260
28.0	70	25458	262
28.5	68	25619	263
29.0	66	25777	265
29.5	64	25933	267
30.0	62	26086	268
30.5	60	26237	270
31.0	59	26386	271
31.5	57	26533	273
32.0	56	26679	274
32.5	55	26823	276
33.0	54	26965	277
33.5	52	27106	279
34.0	51	27245	280
34.5	50	27383	281
35.0	49	27521	283

7.5. Charged-particle production of ¹⁰³Pd

¹⁰³Pd is extensively used in the treatment of prostate cancer and ocular melanoma, and is mostly applied in the form of sealed seeds (brachytherapy). This radioisotope has a suitable half-life of 16.9 d and decays almost exclusively by EC to ^{103m}Rh, which de-excites by means of a heavily converted internal transition. As a result of both processes (EC and IT), X-rays and Auger electrons are emitted which are ideally suited for brachytherapy. Simplified decay schemes are shown in Fig. 7.43a and 7.43b, and the main emissions as defined in Tables 7.18a, 7.18b and 7.18c were taken from NuDat 2.4 [7.3].

A. Decay data

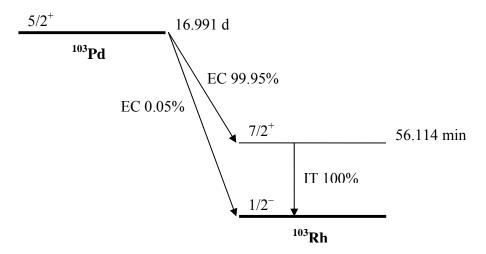


FIG. 7.43a. Simplified decay scheme of ¹⁰³Pd [7.3, 7.4]

¹⁰³ Pd	Decay mode:	EC 100%
	$T_{1/2}$:	16.991 d
Radiation	Energy (keV)	Intensity (%)
Auger L	2.39	168.0
ce K	16.528	9.52
Auger K	17.0	18.2
ce L	36.336	71.2
ce M	39.121	14.38
X-L	2.7	8.73
Χ-Κα2	20.074	22.4
X-Kal	20.216	42.5
Χ-Κβ3	22.699	3.54
Χ-Κβ1	22.724	6.85
Χ-Κβ2	23.172	1.64
γ	39.748	0.0683
γ	357.45	0.0221

TABLE 7.18a. MAIN EMISSIONS [7.3]

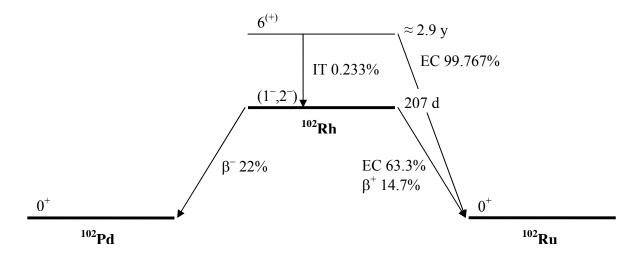


FIG. 7.43b. Simplified decay scheme of ^{102m}Rh and ¹⁰²Rh [7.3]

TABLE 7.18b. MAIN EMISSIONS [7.3]

^{102g} Rh	Decay mode: T _{1/2} :	EC 63.3%, β ⁺ 14.7% 207 d
Radiation	Energy (keV)	Intensity (%)
γ	475.06	46
γ annihilation	511.0	29.4

TABLE 7.18c. MAIN EMISSIONS [7.3]

^{102m} Rh	Decay mode: $T_{1/2}$:	EC 99.767% ≈ 2.9 y
Radiation	Energy (keV)	Intensity (%)
γ	475.06	95
γ	631.29	56.0
γ	697.49	44.0
γ	766.84	34.0
γ	1046.59	34.0
γ	1112.84	19.0

B. Production routes

¹⁰³Pd was originally produced via the ¹⁰²Pd(n,γ)¹⁰³Pd reaction (an evaluation of the data for this reaction is given in the Section 6.3). The low specific activity achieved in this process resulted in the development of alternative routes of production, as defined in Table 7.19.. Since ¹⁰²Rh is a disturbing impurity, its production data were also evaluated.

Target isotope	Natural abundance	Reaction	Q-value (MeV)	Threshold energy (MeV)
¹⁰³ Rh	100%	$(p,n)^{103}$ Pd	-1.3	1.3
¹⁰³ Rh	100%	(p,pn) ¹⁰² Rh (p,d) ¹⁰² Rh impurity	-9.3 -7.1	9.4 7.2
¹⁰³ Rh	100%	$(d,2n)^{103}Pd$	-3.6	3.6
¹⁰³ Rh	100%	$(d,p2n)^{102}Rh \ (d,dn)^{102}Rh \ (d,t)^{102}Rh \ (d,t)^{102}Rh \ impurity$	-11.5 -9.3 -3.1	11.8 9.5 3.1

TABLE 7.19. INVESTIGATED PRODUCTION ROUTES [7.3, 7.4]

C. ¹⁰³Rh(p,n)¹⁰³Pd reaction

Eight experimental sets of cross-section data were found in the literature. Hermanne *et al.* (2000) and Sudár *et al.* (2002) measured cross sections by counting both the X-rays and the 357-keV gamma emission. The two methods gave different results whereby the gamma-ray study was systematically higher.

Bibliography, evaluation and selection

Cross section

BLASER, J.P., BOEHM, F., MARMIER, P., SCHERRER, P., Anregungsfunktionen und Wirkungsquerschnitte der (p,n)-Reaktion (II), Helv. Phys. Acta **24** (1951) 441-464. EXFOR: P0033

ALBERT, R.D., (p,n) cross section and proton optical-model parameters in the 4 to 5.5 MeV energy region, Phys. Rev. **115** (1959) 925-927. EXFOR: T0130 Detected particle: neutrons.

JOHNSON, C.H., GALONSKY, A., INSKEEP, C.N., Cross sections for (p,n) reactions in intermediate-weight nuclei, Oak Ridge National Laboratory Report ORNL-2910 (1960) 25 (unpublished). EXFOR: T0135 Detected particle: neutrons.

HARPER, P.V., LATHROP, K., NEED, J.L., The thick target yield and excitation function for the reaction ¹⁰³Rh(p,n)¹⁰³Pd, Oak Ridge National Laboratory, Report ORNL-LR-DWG 51564 (1961) 124-128. EXFOR: no

HANSEN, L.F., ALBERT, R.D., Statistical theory predictions for 5 to 11 MeV (p,n) and (p,p') nuclear reactions in ⁵¹V, ⁵⁹Co, ⁶³Cu, ⁶⁵Cu and ¹⁰³Rh, Phys. Rev. **128** (1962) 291-299. EXFOR: B0066 *Detected particle: neutrons.*

MUKHAMMEDOV, S., VASIDOV, A., Determination of rhodium by proton-activation technique using the (p,n) reaction at a cyclotron, Izv. Akad. Nauk. Uzb. SSR Ser. Fiz.-Mat. **2** (1984) 329 or 2 (1986) 90 (in Russian).

EXFOR: no

Rejected because of the differences in shape compared with all other excitation functions just above the threshold energy.

HERMANNE, A., SONCK, M., FENYVESI, A., DARABAN, L., Study on production of ¹⁰³Pd and characterisation of possible contaminants in the proton irradiation of ¹⁰³Rh up to 28 MeV, Nucl. Instrum. Methods B **170** (2000) 281-292. EXFOR: D4108, O0843

Detected particle: X rays and γ photons. Data measuredb by means of the 357-keV gamma-ray emission were rejected.

SUDAR, S., CSERPAK, F., QAIM, S.M., Measurements and nuclear model calculation on proton-induced reactions on ¹⁰³Rh up to 40 MeV: Evaluation of the excitation function of the ¹⁰³Rh(p,n)¹⁰³Pd reaction relevant to the production of the therapeutic radionuclide ¹⁰³Pd, Appl. Radiat. Isot. **56** (2002) 821-831. EXFOR: D4125, O1010

Detected particle: *X* rays and γ photons.

Yield

DMITRIEV, P.P., PANARIN, M.V., MOLIN, G.A., Production of ¹⁰³Pd by the ¹⁰³Rh(p,n) and ¹⁰³Rh(d,2n) reactions, Atomnaya Energiya **82** (1982) 53. EXFOR: S0033

DMITRIEV, P.P., Systematics of nuclear reaction yields for thick target at 22 MeV proton energy, Vop. At. Nauki i Tekhn., Ser. Yad. Konst. 2 (1983) 57-61. EXFOR: A0195

MUKHAMMEDOV, S., VASIDOV, A., PARDAEV, E., Application of proton and deuteron activation method of analysis in the determination of elements with Z greater than 42, Atomnaya Energiya **56** (1984) 50-53. EXFOR: A0212

All experimental cross-section data are shown in Fig. 7.44, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.45. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.46. Yields determined from the recommended cross sections are presented in Fig. 7.47, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.20.

FIG. 7.45. Selected experimental data and the recommended curve (fit)

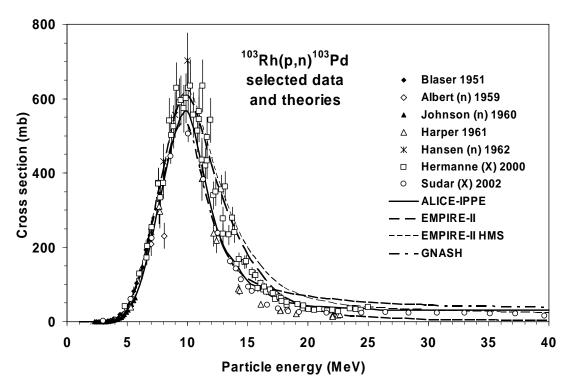


FIG. 7.46. Selected experimental data and theoretical calculations

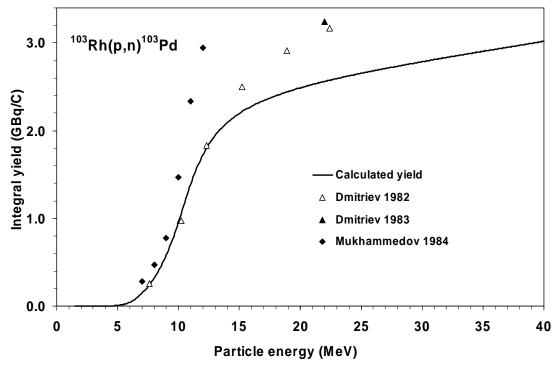


FIG. 7.47. Calculated integral yield curve based on the recommended cross sections

103 Rh(p,n) 103 P	Cross section	Integra	l vield
d Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
1.5	0.0	<u>0.0</u>	0.00
2.0	0.1	0.0	0.00
2.5	0.0	0.0	0.00
3.0	0.3	0.0	0.00
3.5	1.5	0.0	0.00
4.0	4.7	0.1	0.00
4.5	12.5	0.3	0.00
5.0	30.3	0.7	0.01
5.5	65.8	1.9	0.02
6.0	121.6	4.3	0.04
6.5	184.2	8.4	0.09
7.0	237.8	14.3	0.15
7.5	283.5	21.9	0.23
8.0	331.6	31.2	0.32
8.5	390.5	42.6	0.44
9.0	461.7	56.6	0.58
9.5	535.5	73.7	0.76
10.0	585.2	93.6	0.96
10.5	580.0	114.8	1.18
11.0	516.3	135.2	1.39
11.5 12.0	424.2 334.7	153.1 167.8	1.57 1.72
12.0	261.7	179.7	1.85
12.5	206.4	189.2	1.85
13.5	165.5	197.1	2.03
14.0	135.1	203.6	2.09
14.5	112.4	209.1	2.15
15.0	95.1	213.9	2.20
15.5	81.8	218.0	2.24
16.0	71.3	221.7	2.28
16.5	62.9	225.1	2.31
17.0	56.1	228.1	2.34
17.5	50.5	230.8	2.37
18.0	45.9	233.4	2.40
18.5	42.0	235.8	2.42
19.0	38.7	238.0	2.45
19.5	35.8	240.1	2.47
20.0	33.4	242.1	2.49
20.5	31.3	244.0	2.51
21.0	29.4	245.8	2.53
21.5	27.8	247.5	2.54
22.0	26.4	249.2	2.56
22.5	25.1	250.8	2.58
23.0 23.5	23.9 22.9	252.4 253.9	2.59
23.5 24.0	22.9	255.4	2.61 2.62
24.0	21.9	255.4	2.02

TABLE 7.20. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS ¹⁰³Rh(n n)¹⁰³P

24.5	21.1	256.8	2.64
103 Rh(p,n) 103 Pd	Cross section	Integra	ll yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
25.0	20.3	258.2	2.65
25.5	19.6	259.6	2.67
26.0	19.0	260.9	2.68
26.5	18.4	262.3	2.70
27.0	17.8	263.6	2.71
27.5	17.3	264.9	2.72
28.0	16.9	266.1	2.74
28.5	16.4	267.4	2.75
29.0	16.0	268.6	2.76
29.5	15.7	269.8	2.77
30.0	15.3	271.0	2.79
30.5	15.0	272.2	2.80
31.0	14.7	273.4	2.81
31.5	14.4	274.6	2.82
32.0	14.1	275.7	2.83
32.5	13.8	276.9	2.85
33.0	13.6	278.1	2.86
33.5	13.4	279.2	2.87
34.0	13.2	280.3	2.88
34.5	12.9	281.5	2.89
35.0	12.7	282.6	2.90
35.5	12.6	283.7	2.92
36.0	12.4	284.9	2.93
36.5	12.2	286.0	2.94
37.0	12.1	287.1	2.95
37.5	11.9	288.2	2.96
38.0	11.8	289.3	2.97
38.5	11.6	290.4	2.98
39.0	11.5	291.5	3.00
39.5	11.4	292.6	3.01
40.0	11.2	293.7	3.02

D. ¹⁰³**Rh**(**p**,**x**)¹⁰²**Rh reaction; radioisotope impurity**

¹⁰²Rh is an important radioisotopic impurity generated during the production of ¹⁰³Pd when Pd is not separated from the irradiated Rh target. Special attention deserves the long-lived isomer. See also subsection F for deuteron induced production.

Bibliography, evaluation and selection

Cross section

HERMANNE, A., SONCK, M., FENYVESI, A., DARABAN, L., Study on production of ¹⁰³Pd and characterisation of possible contaminants in the proton irradiation of ¹⁰³Rh up to 28 MeV, Nucl. Instrum. Methods B **170** (2000) 281-292.

EXFOR: 00843

Measured isomeric states: metastable (^{102m}Rh) and ground state (^{102g}Rh) .

The data in Table 5 of the original publication are inverted by mistake. Column 102m Rh belongs to 102g Rh and vice versa (information from the authors). Data are shown correctly in Fig. 3 of the paper.

Yield

DMITRIEV, P.P., Systematics of nuclear reaction yields for thick target at 22 MeV proton energy, Vop. At. Nauki i Tekhn., Ser. Yad. Konst. 2 (1983) 57-61. EXFOR: A0195

All experimental cross-section data are shown in Fig. 7.48, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.49. Excitation functions have been calculated by means of the ALICE-IPPE nuclear reaction modelling code, and results are compared with all of the selected experimental data in Fig. 7.50. Yields determined from the recommended cross sections are presented in Fig. 7.51, while corresponding numerical values for the recommended cross sections and yields are listed in Tables 7.21A and 7.21B.

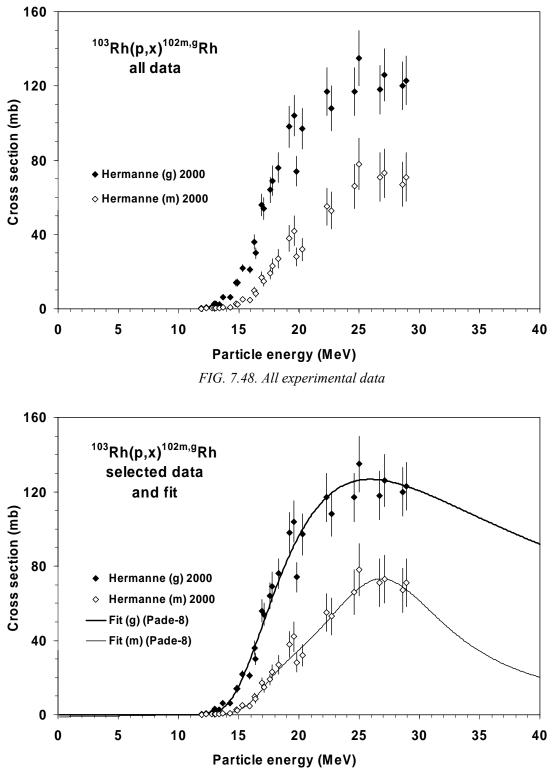


FIG. 7.49. Selected experimental data and the recommended curve (fit)

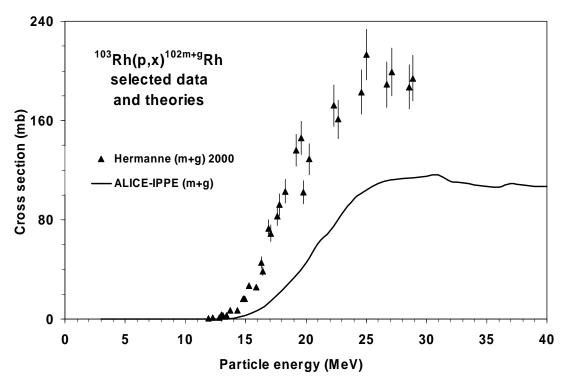


FIG. 7.50. Selected experimental data and theoretical calculations

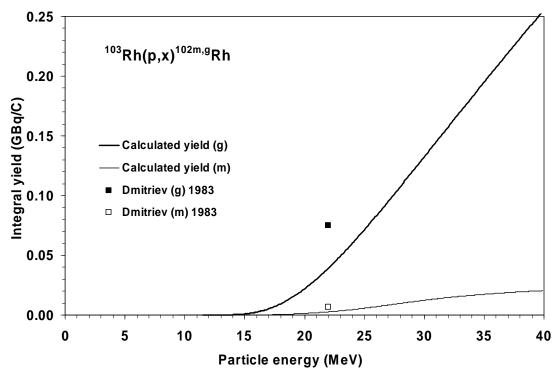


FIG. 7.51. Calculated integral yield curve based on the recommended cross sections

103Rh(p,x) ^{102g} Rh	Cross section	Integra	l vield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
11.5	0.0	0.00	0.000
12.0	0.5	0.00	0.000
12.5	1.1	0.00	0.000
13.0	1.7	0.01	0.000
13.5	2.9	0.01	0.000
14.0	5.4	0.03	0.000
14.5	9.5	0.05	0.001
15.0	15.3	0.09	0.001
15.5	22.5	0.15	0.002
16.0	30.7	0.24	0.002
16.5	39.6	0.36	0.004
17.0	48.7	0.51	0.005
17.5	57.8	0.70	0.007
18.0	66.6	0.92	0.009
18.5	74.9	1.17	0.012
19.0	82.7	1.46	0.015
19.5	89.8	1.79	0.018
20.0	96.2	2.14	0.022
20.5	102.0	2.52	0.026
21.0	107.0	2.93	0.030
21.5	111.4	3.37	0.035
22.0	115.1	3.83	0.039
22.5	118.2	4.31	0.044
23.0	120.7	4.80	0.049
23.5	122.7	5.32	0.055
24.0	124.3	5.85	0.060
24.5	125.4	6.40	0.066
25.0	126.2	6.95	0.071
25.5	126.6	7.52	0.077
26.0	126.7	8.10	0.083
26.5	126.5	8.68	0.089
27.0	126.1	9.27	0.095
27.5	125.5	9.87	0.101
28.0	124.7	10.47	0.108
28.5	123.8	11.07	0.114
29.0	122.8	11.67	0.120
29.5	121.6	12.28	0.126
30.0	120.4	12.89	0.132
30.5	119.1	13.50	0.139
31.0	117.7	14.11	0.145
31.5	116.3	14.72	0.151
32.0	114.9	15.33	0.158
32.5	113.4	15.94	0.164
33.0	111.9	16.55	0.170

TABLE 7.21A.RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS FOR102gRh PRODUCTION

Table 7.21A cont'd

103 Rh(p,x) 102g Rh	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
33.5	110.4	17.15	0.176
34.0	108.9	17.76	0.183
34.5	107.4	18.36	0.189
35.0	105.9	18.97	0.195
35.5	104.4	19.57	0.201
36.0	103.0	20.16	0.207
36.5	101.5	20.76	0.213
37.0	100.1	21.35	0.219
37.5	98.6	21.94	0.226
38.0	97.2	22.53	0.232
38.5	95.8	23.12	0.238
39.0	94.5	23.70	0.244
39.5	93.1	24.28	0.250

TABLE 7.21B. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS FOR ^{102m}Rh
PRODUCTION

PRODUCT	ION		
103 Rh(p,x) 102m Rh	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
9.5	0.0	0.000	0.00000
10.0	0.0	0.000	0.00000
10.5	0.1	0.000	0.00000
11.0	0.1	0.000	0.00000
11.5	0.2	0.000	0.00000
12.0	0.2	0.000	0.00000
12.5	0.3	0.000	0.00000
13.0	0.3	0.001	0.00001
13.5	0.5	0.001	0.00001
14.0	0.8	0.001	0.00001
14.5	1.4	0.002	0.00002
15.0	2.5	0.003	0.00003
15.5	4.2	0.005	0.00005
16.0	6.8	0.009	0.00009
16.5	10.3	0.014	0.00015
17.0	14.2	0.023	0.00023
17.5	18.2	0.034	0.00035
18.0	22.0	0.048	0.00049
18.5	25.5	0.065	0.00067
19.0	28.8	0.084	0.00087
19.5	31.8	0.107	0.00110
20.0	34.9	0.132	0.00135
20.5	38.0	0.159	0.00164
21.0	41.2	0.190	0.00195
21.5	44.5	0.223	0.00229
22.0	48.0	0.260	0.00267
22.5	51.6	0.300	0.00308
23.0	55.2	0.344	0.00353
23.5	58.8	0.391	0.00402

103 Rh(p,x) 102m Rh	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
24.0	62.2	0.442	0.00455
24.5	65.4	0.497	0.00511
25.0	68.2	0.555	0.00571
25.5	70.4	0.616	0.00633
26.0	72.1	0.680	0.00699
26.5	72.9	0.745	0.00766
27.0	73.1	0.812	0.00835
27.5	72.5	0.879	0.00904
28.0	71.2	0.947	0.00973
28.5	69.3	1.013	0.01041
29.0	66.9	1.078	0.01108
29.5	64.2	1.142	0.01174
30.0	61.3	1.204	0.01237
30.5	58.2	1.263	0.01298
31.0	55.1	1.320	0.01356
31.5	52.1	1.374	0.01412
32.0	49.1	1.426	0.01466
32.5	46.2	1.475	0.01516
33.0	43.5	1.523	0.01565
33.5	41.0	1.567	0.01611
34.0	38.6	1.610	0.01655
34.5	36.3	1.651	0.01697
35.0	34.2	1.690	0.01736
35.5	32.3	1.726	0.01774
36.0	30.5	1.762	0.01811
36.5	28.8	1.795	0.01845
37.0	27.3	1.828	0.01878
37.5	25.9	1.858	0.01910
38.0	24.6	1.888	0.01940
38.5	23.3	1.916	0.01969
39.0	22.2	1.943	0.01997
39.5	21.2	1.969	0.02024

E. ¹⁰³Rh(d,2n)¹⁰³Pd reaction

Bibliography, evaluation and selection

Cross section

HERMANNE, A., SONCK, M., TAKACS, S., TARKANYI, F., SHUBIN, Y., Study on alternative production of ¹⁰³Pd and characterisation of contaminants in the deuteron irradiation of ¹⁰³Rh up to 21 MeV, Nucl. Instrum. Methods B **187** (2002) 3-14. EXFOR: D4097

Detected particle: X rays and γ photons. Data measured by means of the 357-keV gamma-ray emission were rejected. HERMANNE, A., SONCK, M., TAKÁCS, S., TÁRKÁNYI, F.T., SHUBIN, YU.N., Deuteron bombardment of ¹⁰³Rh: a new promising pathway for the production of ¹⁰³Pd, J. Nucl. Sci. Technol., Suppl. 2 (2002) 1286-1289. *Same as the above.*

Yield

DMITRIEV, P.P., PANARIN, M.V., MOLIN, G.A., Production of ¹⁰³Pd by the ¹⁰³Rh(p,n) and ¹⁰³Rh(d,2n) reactions, Atomnaya Energiya **53** (1982) 198. EXFOR: S0033

DMITRIEV, P.P., KRASNOV, M.N., MOLIN, G.A., Yields of radioactive nuclides formed by bombardment of a thick target with 22-MeV deuterons, INDC(CCP)-210/L, 1983, translation from Nuclear Constants 4 (1982) 38. EXFOR: A0194

MUKHAMMEDOV, S., VASIDOV, A., PARDAEV, E., Application of proton and neutron activation method of analysis for the determination of elements with Z greater than 42, Atomnaya Energiya **56** (1984) 50-53. EXFOR: A0212

All experimental cross-section data are shown in Fig. 7.52, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.53. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.54. Yields determined from the recommended cross sections are presented in Fig. 7.55, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.22.

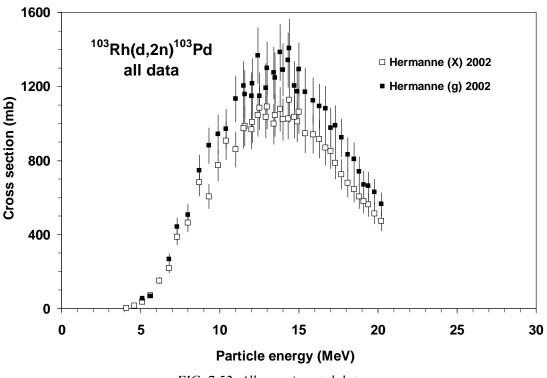


FIG. 7.52. All experimental data

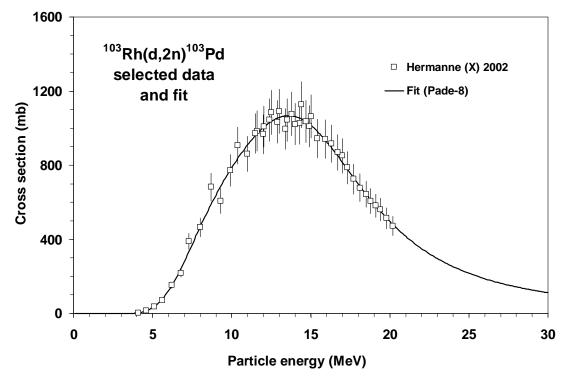


FIG. 7.53. Selected experimental data and the recommended curve (fit)

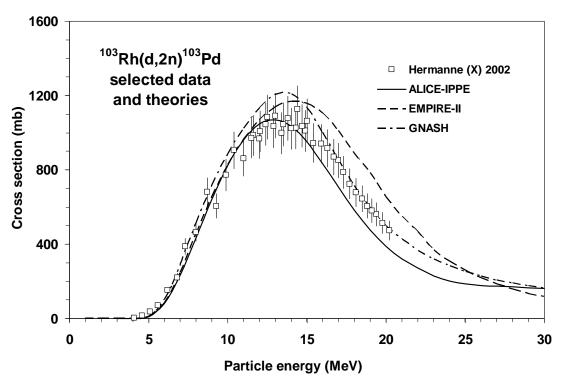


FIG. 7.54. Selected experimental data and theoretical calculations

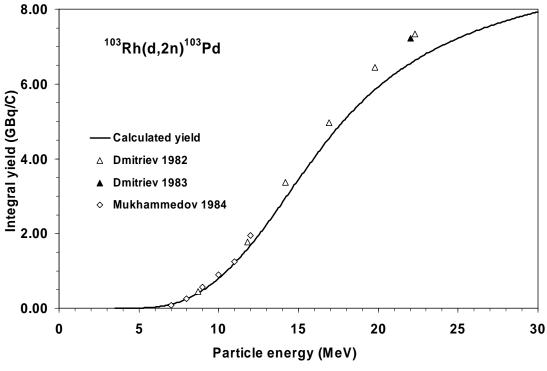


FIG. 7.55. Calculated integral yield curve based on the recommended cross sections

224

$\frac{103}{d}$ Rh(d,2n) ¹⁰³ P	Cross section	Integra	l yield
a Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
3.5	0	0	0.00
4.0	3	ů 0	0.00
4.5	12	0	0.00
5.0	32	0	0.00
5.5	68	1	0.01
6.0	121	3	0.03
6.5	193	5	0.06
7.0	278	10	0.10
7.5	371	16	0.16
8.0	465	24	0.25
8.5	555	34	0.35
9.0	639	47	0.48
9.5	716	61	0.63
10.0	787	78	0.80
10.5	851	96	0.99
11.0	909	117	1.20
11.5	960	140	1.44
12.0	1003	164	1.69
12.5	1036	190	1.96
13.0	1058	218	2.24
13.5	1067	246	2.53
14.0	1063	276	2.83
14.5	1046	305	3.14
15.0	1016	335	3.44
15.5	976	364	3.74
16.0	928	393	4.04
16.5	874	420	4.32
17.0	816	447	4.59
17.5	758	472	4.85
18.0	700	496	5.09
18.5	644	518	5.32
19.0	591 542	539	5.54
19.5	542	558 576	5.74
20.0 20.5	496 454	576 593	5.92 6.10
20.5	434	609	6.26
21.0	382	624	6.41
21.5	350	637	6.55
22.0	322	650	6.68
22.5	322 297	662	6.80
23.5	297	673	6.92
23.5	253	684	7.03
24.0	233	693	7.13
25.0	217	703	7.13
25.5	202	705	7.22
26.0	188	720	7.40
20.0	100	. 20	

TABLE 7.22. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

26.5	175	727	7.48

_

Table 7.22 cont'd

¹⁰³ Rh(d,2n) ¹⁰³ P d	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
27.0	163	735	7.55
27.5	153	742	7.62
28.0	143	748	7.69
28.5	134	754	7.75
29.0	126	760	7.81
29.5	119	766	7.87
30.0	112	771	7.93

F. ¹⁰³Rh(d,x)¹⁰²Rh reaction; impurity radioisotope

¹⁰²Rh is an important radioisotopic impurity generated during the production of ¹⁰³Pd when Pd is not separated from the irradiated Rh target. Special attention deserves the long-lived isomer. See also subsection D for proton induced production.

Bibliography, evaluation and selection

Cross section

HERMANNE, A., SONCK, M., TAKACS, S., TARKANYI, F., SHUBIN, Y., Study on alternative production of ¹⁰³Pd and characterisation of contaminants in the deuteron irradiation of ¹⁰³Rh up to 21 MeV, Nucl. Instrum. Methods B **187** (2002) 3-14.

EXFOR: D4097

Measured isomeric states: metastable (^{102m}Rh) and ground state (^{102g}Rh) .

HERMANNE, A., SONCK, M., TAKÁCS, S., TÁRKÁNYI, F.T., SHUBIN, YU.N., Deuteron bombardment of ¹⁰³Rh: a new promising pathway for the production of ¹⁰³Pd, J. Nucl. Sci. Technol., Suppl. 2 (2002) 1286-1289. *Same as the above.*

Yield

DMITRIEV, P.P., KRASNOV, M.N., MOLIN, G.A., Yields of radioactive nuclides formed by bombardment of a thick target with 22-MeV deuterons, INDC(CCP)-210/L, 1983, translation from Nuclear Constants **4** (1982) 38. EXFOR: A0194

All experimental cross-section data are shown in Fig. 7.56, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.57. Excitation functions have been calculated by means of the EMPIRE and ALICE-IPPE nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Figs. 7.58. and 7.59. Yields determined from the recommended cross sections are presented in Fig. 7.60, while corresponding numerical values for the recommended cross sections and yields are listed in Tables 7.23A and 7.23B.

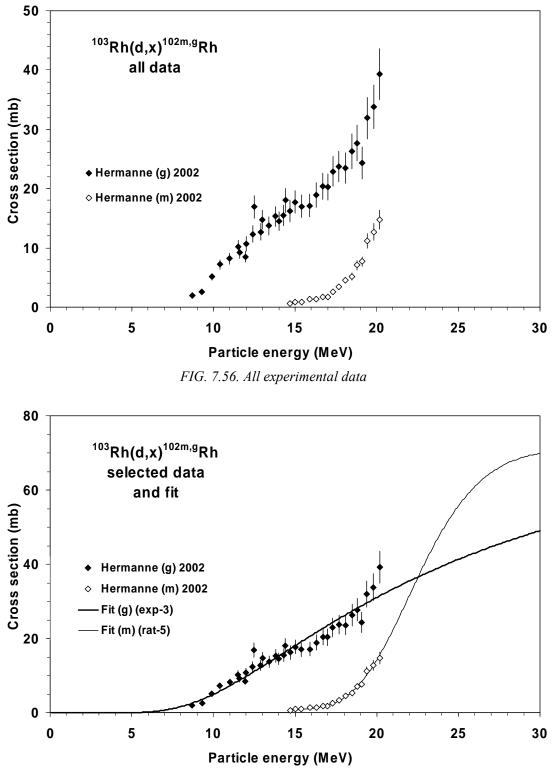


FIG. 7.57. Selected experimental data and the recommended curve (fit)

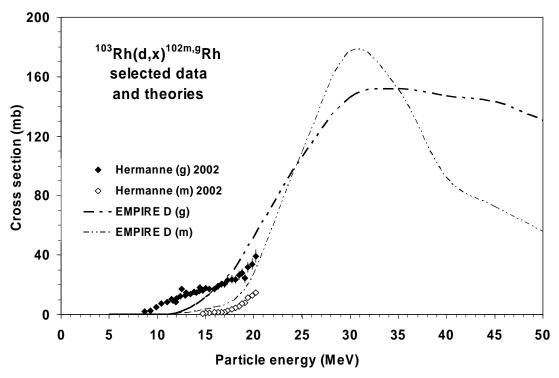


FIG. 7.58. Selected experimental data and theoretical calculations

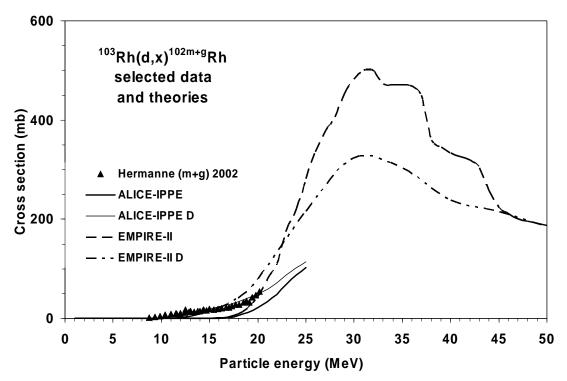


FIG. 7.59. Selected experimental data and theoretical calculations

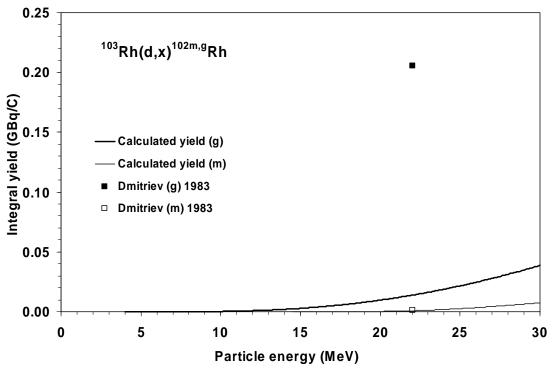


FIG. 7.60. Calculated integral yield curve based on the recommended cross sections

$\frac{103}{103}$ Rh(d,x) ^{102g} Rh	^{2g} Rh Cross section Integral yield		
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
4.0	0.00	0.00	0.0000
4.5	0.01	0.00	0.0000
5.0	0.03	0.00	0.0000
5.5	0.08	0.00	0.0000
6.0	0.19	0.00	0.0000
6.5	0.37	0.00	0.0000
7.0	0.66	0.00	0.0000
7.5	1.06	0.00	0.0000
8.0	1.59	0.00	0.0001
8.5	2.25	0.01	0.0001
9.0	3.03	0.01	0.0001
9.5	3.93	0.02	0.0002
10.0	4.94	0.03	0.0003
10.5	6.03	0.04	0.0004
11.0	7.21	0.05	0.0005
11.5	8.45	0.07	0.0007
12.0	9.75	0.08	0.0009
12.5 13.0	11.08 12.45	0.11 0.13	0.0011 0.0014
13.0	12.43	0.13	0.0014
13.5	15.23	0.10	0.0017
14.5	16.63	0.23	0.0020
15.0	18.03	0.23	0.0024
15.5	19.42	0.32	0.0028
16.0	20.80	0.32	0.0038
16.5	22.16	0.42	0.0044
17.0	23.50	0.48	0.0050
17.5	24.82	0.55	0.0056
18.0	26.11	0.62	0.0063
18.5	27.38	0.69	0.0071
19.0	28.62	0.77	0.0079
19.5	29.83	0.85	0.0088
20.0	31.02	0.94	0.0097
20.5	32.17	1.03	0.0106
21.0	33.30	1.13	0.0116
21.5	34.39	1.24	0.0127
22.0	35.46	1.34	0.0138
22.5	36.50	1.46	0.0150
23.0	37.51	1.58	0.0162
23.5	38.49	1.70	0.0175
24.0	39.45	1.83	0.0188
24.5	40.38	1.96	0.0202
25.0	41.28	2.10	0.0216
25.5	42.16	2.24	0.0231
26.0	43.01	2.39	0.0246

TABLE 7.23A. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS FOR $^{102g}\rm{Rh}$ PRODUCTION

103 Rh(d,x) 102g Rh	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
26.5	43.84	2.55	0.0262
27.0	44.65	2.71	0.0278
27.5	45.43	2.87	0.0295
28.0	46.19	3.04	0.0312
28.5	46.93	3.21	0.0330
29.0	47.65	3.39	0.0349
29.5	48.35	3.58	0.0367
30.0	49.03	3.76	0.0387

TABLE 7.23B. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS FOR ^{102m}Rh
PRODUCTION

103 Rh(d,x) 102m Rh	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
14.5	0.0	0.000	0.00000
15.0	0.8	0.000	0.00000
15.5	0.9	0.001	0.00001
16.0	1.1	0.001	0.00001
16.5	1.4	0.002	0.00002
17.0	2.0	0.003	0.00003
17.5	2.8	0.004	0.00004
18.0	4.1	0.006	0.00006
18.5	5.7	0.009	0.00009
19.0	8.0	0.012	0.00013
19.5	10.7	0.018	0.00018
20.0	14.1	0.025	0.00026
20.5	18.0	0.034	0.00035
21.0	22.3	0.046	0.00048
21.5	26.8	0.061	0.00063
22.0	31.5	0.079	0.00081
22.5	36.2	0.100	0.00103
23.0	40.7	0.125	0.00128
23.5	45.0	0.152	0.00156
24.0	48.9	0.183	0.00188
24.5	52.5	0.216	0.00222
25.0	55.7	0.252	0.00259
25.5	58.5	0.291	0.00299
26.0	60.9	0.331	0.00341
26.5	62.9	0.374	0.00385
27.0	64.6	0.419	0.00431
27.5	66.0	0.466	0.00479
28.0	67.2	0.514	0.00528
28.5	68.1	0.563	0.00579
29.0	68.9	0.614	0.00631
29.5	69.4	0.665	0.00684
30.0	69.8	0.718	0.00738

7.6. Charged-particle production of ¹¹¹gIn

A simplified decay scheme is shown in Fig. 7.61, and the main emissions as defined in Table 7.24 were taken from NuDat 2.4 [7.3].

A. Decay data

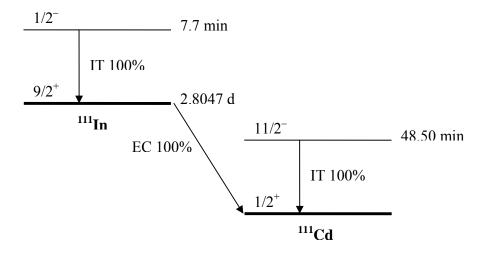


FIG. 7.61. Simplified decay scheme of ¹¹¹In [7.3]

TABLE 7.24. MAIN EMISSIONS [7.3]

^{111g} In	Decay mode: $T_{1/2}$:	EC 100% 2.8047 d
Radiation	Energy (keV)	Intensity (%)
Auger L	2.72	100.4
Auger K	19.3	15.5
ce K	144.57	8.07
ce K	218.64	4.95
γ	171.28	90.7
γ	245.35	94.1

B. Production routes

Two proton-induced reactions have been assessed, as specified in Table 7.25. TABLE 7.25. INVESTIGATED PRODUCTION ROUTES [7.3, 7.4]

Target isotope	Natural abundance	Reaction	Q-value (MeV)	Threshold energy (MeV)
¹¹¹ Cd	12.80%	(p,n)	-1.6	1.7
¹¹² Cd	24.13%	(p,2n)	-11.0	11.1

C. ¹¹¹Cd(p,n)¹¹¹In reaction

Bibliography, evaluation and selection

Cross section

BLASER, J.-P., BOEHM, F., MARMIER, P., PEASLEE, D.C., Fonctions d'excitation de la reaction (p,n) I, Helv. Phys. Acta **24** (1951) 3-38. EXFOR: B0048

BLOSSER, H.G., HANDLEY, T.H., Survey of (p,n) reactions at 12 MeV, Phy. Rev. **100** (1955) 1340-1344. EXFOR: B0052

WING, J., HUIZENGA, J.R., (p,n) cross sections of ⁵¹V, ⁵²Cr, ⁶³Cu, ⁶⁵Cu, ¹⁰⁷Ag, ¹⁰⁹Ag, ¹¹¹Cd, ¹¹⁴Cd, and ¹³⁹La from 5 to 10.5 MeV, Phys. Rev. **128** (1962) 280-290. EXFOR: T0124

OTOZAI, K., KUME, S., MITO, A., OKAMURA, H., TSUJINO, R., KANCHIKU, Y., KATOH, T., GOTOH, H., Excitation functions for the reactions induced by protons on Cd up to 37 MeV, Nucl. Phys. **80** (1966) 335-348. EXFOR: P0019

NIECKARZ Jr., W.J., CARETTO Jr., A.A., Production of ¹¹¹In and ^{114m}In from the separated isotopes of cadmium using 70- to 400-MeV protons, Phys. Rev. **178** (1969) 1887-1893. EXFOR: C0345 *Target: natural Cd and ¹¹¹Cd. Data were not adopted because they were measurements in the*

Target: natural Cd and "Cd. Data were not adopted because they were measurements in the higher energy region.

SKAKUN, E.A., KLJUCHAREV, A.P., RAKIVNENKO, YU.N., ROMANIJ, I.A., Excitation functions of (p,n)- and (p,2n)-reactions on cadmium isotopes, Izv. Rossiiskoi Akademii Nauk, Ser. Fiz. **39** (1975) 24-30. EXFOR: A0001

SKAKUN, E.A., IORDAKEHSKU, A., LUTSIK, V.A., RAKIVNENKO, Yu.N., ROMANIJ, I.A., Excitation functions and isomeric ratios for ¹¹¹Cd(p,n)^{111m,g}In and ¹¹³Cd(p,n)^{113m}In reactions, p. 290 in Proc. 29th Conf. on Nuclear Spectroscopy and Nuclear Structure, 27-30 March 1979, Riga, USSR. EXFOR: A0135

MARTEN, M., SCHURING, A., SCOBEL, W., Pre-equilibrium neutron emission in ¹⁰⁹Ag(³He,xn) and ¹¹¹Cd(p,xn) reactions, Z. Phys. A **322** (1985) 93-103. EXFOR: A0335

NORTIER, F.M., MILLS, S.J., STEYN, G.F., Excitation functions and production rates of relevance to the production of ¹¹¹In by proton bombardment of ^{nat}Cd and ^{nat}In up to 100 MeV, Appl. Radiat. Isot. **41** (1990) 1201-1208. EXFOR: A0500 *Target: natural Cd.*

ZAITSEVA, N.G., KNOTEK, O., KOWALEW, A., MIKECZ, P., RURARZ, E., KHALKIN, V.A., AGEEV, V.A., KLYUCHNIKOV, A.A., KUZINA, L.A., LINEV, A.F., Excitation functions and yields for ¹¹¹In production using ^{113,114,nat}Cd(p,xn)¹¹¹In reactions with 65 MeV protons, Appl. Radiat. Isot. **41** (1990) 177-183.

EXFOR: D4070, A0569

Target: natural Cd. Data were rejected because they are above the threshold of the $^{112}Cd(p,2n)$ *reaction.*

TÁRKÁNYI, F., SZELECSÉNYI, F., KOPECKÝ, P., MOLNÁR, T., ANDÓ, L., MIKECZ, P., TÓTH, GY., RYDL, A., Cross sections of proton induced nuclear reactions on enriched ¹¹¹Cd and ¹¹²Cd for the production of ¹¹¹In for use in nuclear medicine, Appl. Radiat. Isot. **45** (1994) 239-249.

EXFOR: D4027

TÁRKÁNYI, F., KIRÁLY, B., DITRÓI, F., TAKÁCS, S., CSIKAI, J., HERMANNE, A., UDDIN, M.S., HAGIWARA, M., BABA, M., IDO, T., SHUBIN, YU.N., KOVALEV, S.F., Activation cross sections on cadmium: Proton induced nuclear reactions up to 80 MeV, Nucl. Instrum. Methods B **245** (2006) 379-394. EXFOR: D4170

Target: natural Cd.

Yield

BROWN, L.C., BEETS, A.L., Cyclotron production of carrier-free ¹¹¹In, Int. J. Appl. Radiat. Isot. **23** (1972) 57-63.

EXFOR: no

DMITRIEV, P.P., DMITRIEVA, Z.P., KRASNOV, N.N., MOLIN, G.A., PANARIN, M.V., Yields of ¹¹¹In and ^{114m}In in nuclear reactions with protons, deuterons and alpha particles, Atomnaya Energiya **37** (1974) 496-497. EXFOR: no

DMITRIEV, P.P., Systematics of nuclear reaction yields for thick target at 22 MeV proton energy, Vop. At. Nauki i Tekhn., Ser. Yad. Konst. 2 (1983) 57-61. EXFOR: A0195

MUKHAMMEDOV, S., VASIDOV, A., PARDAEV, E., Application of proton and neutron activation method of analysis for the determination of elements with Z greater than 42, Atomnaya Energiya **56** (1984) 50-53. EXFOR: A0212

ISSHIKI, M., FUKUDA, Y., IGAKI, K., Proton activation analysis of trace impurities in purified cobalt, J. Radioanal. Nucl. Chem. **82** (1984) 135-142. EXFOR: A0287, S0030, E1965

ZAITSEVA, N.G., KNOTEK, O., KOWALEW, A., MIKECZ, P., RURARZ, E., KHALKIN, V.A., AGEEV, V.A., KLYUCHNIKOV, A.A., KUZINA, L.A., LINEV, A.F., Excitation functions and yields for ¹¹¹In production using ^{113,114,nat}Cd(p,xn)¹¹¹In reactions with 65 MeV protons, Appl. Radiat. Isot. **41** (1990) 177-183.

EXFOR: D4070, A0569

Target: natural Cd. Data were rejected because they are above the threshold of the $^{112}Cd(p,2n)$ *reaction.*

NICKLES, R.J., A shotgun approach to the chart of the nuclides: Radiotracer production with an 11 MeV proton cyclotron, Acta Radiologica, Suppl. 376 (1991) 69-71. EXFOR: no

Target: natural Cd. Assumed that the result given in the article is incorrect by one order of magnitude.

All experimental cross-section data are shown in Fig. 7.62, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.63. Excitation functions have been calculated by means of the ALICE nuclear reaction modelling code, and results are compared with all of the selected experimental data in Fig. 7.64. Yields determined from the recommended crosssections are presented in Fig. 7.65, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.26.

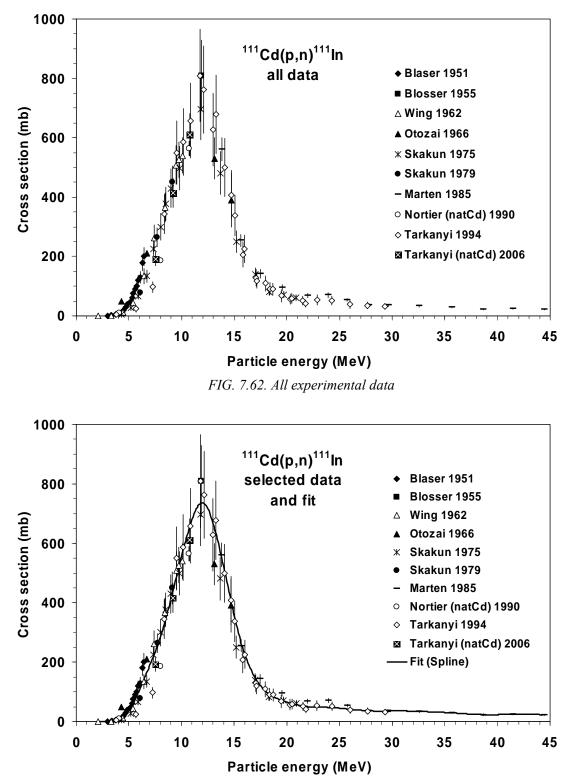


FIG. 7.63. Selected experimental data and the recommended curve (fit)

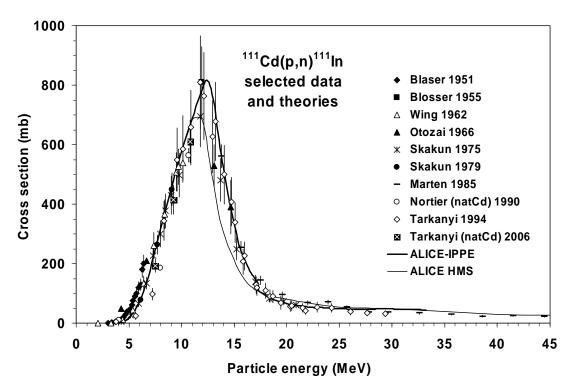


FIG. 7.64. Selected experimental data and theoretical calculations

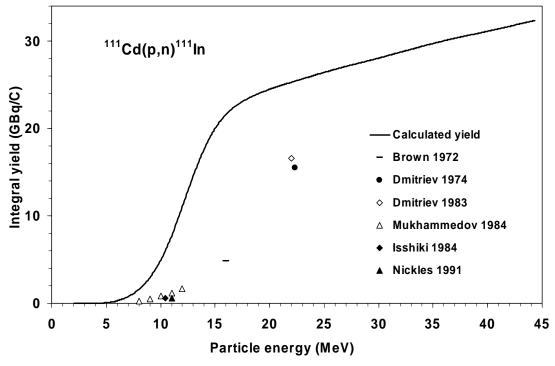


FIG. 7.65. Calculated integral yield curve based on the recommended cross section

$^{111}Cd(p,n)^{111}In$	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
2.0	0.0	0	0.00
2.5	0.2	0	0.00
3.0	0.4	0	0.00
3.5	2.3	0	0.00
4.0	8.2	1	0.01
4.5	13.1		0.02
5.0	39.4	2 5	0.06
5.5	69.3	13	0.13
6.0	105.2	26	0.27
6.5	148.1	45	0.47
7.0	191.2	73	0.75
7.5	234.9	109	1.12
8.0	285.4	155	1.59
8.5	346.6	212	2.18
9.0	415.2	285	2.93
9.5	486.4	374	3.85
10.0	556.6	481	4.95
10.5	622.5	606	6.23
11.0	680.5	749	7.69
11.5	722.2	907	9.32
12.0	736.5	1076	11.05
12.5	715.6	1248	12.82
13.0	666.9	1415	14.55
13.5	599.5	1573	16.16
14.0	521.0	1715	17.62
14.5	438.0	1839	18.90
15.0	357.4	1944	19.98
15.5	285.6	2031	20.87
16.0	226.6	2101	21.60
16.5	180.7	2159	22.19
17.0	146.2	2206	22.67
17.5	121.0	2245	23.08
18.0	101.5	2279	23.42
18.5	87.5	2308	23.72
19.0	78.5	2334	23.99
19.5	72.1	2359	24.24
20.0	65.9	2382	24.48
20.5	60.2	2403	24.69
21.0	55.5	2423	24.90
21.5	52.0	2441	25.09
22.0	50.0	2459	25.28
22.5	49.3	2477	25.46
23.0	48.9	2495	25.65
23.5	48.3	2514	25.84
24.0	47.4	2532	26.02
24.5	46.3	2550	26.21
25.0	44.9	2568	26.39
$ \begin{array}{c} 19.0\\ 19.5\\ 20.0\\ 20.5\\ 21.0\\ 21.5\\ 22.0\\ 22.5\\ 23.0\\ 23.5\\ 24.0\\ 24.5\\ \end{array} $	78.5 72.1 65.9 60.2 55.5 52.0 50.0 49.3 48.9 48.3 47.4 46.3	2334 2359 2382 2403 2423 2441 2459 2477 2495 2514 2532 2550	23.99 24.24 24.48 24.69 24.90 25.09 25.28 25.46 25.65 25.84 26.02 26.21

TABLE 7.26. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

Table 7.26 cont'd

$^{111}Cd(p,n)^{111}In$	¹¹¹ Cd(p,n) ¹¹¹ In Cross section		Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)	
25.5	43.2	2586	26.57	
26.0	41.2	2603	26.75	
26.5	39.5	2619	26.92	
27.0	38.0	2635	27.08	
27.5	36.8	2651	27.24	
28.0	35.8	2666	27.40	
28.5	35.0	2681	27.56	
29.0	34.6	2697	27.72	
29.5	35.0	2712	27.87	
30.0	35.6	2728	28.04	
30.5	35.9	2744	28.21	
31.0	35.7	2761	28.38	
31.5	35.3	2777	28.55	
32.0	34.8	2794	28.72	
32.5	34.1	2810	28.88	
33.0	33.5	2827	29.05	
33.5	32.8	2843	29.22	
34.0	32.1	2859	29.38	
34.5	31.4	2875	29.55	
35.0	30.5	2890	29.71	
35.5	29.5	2906	29.86	
36.0	28.4	2921	30.02	
36.5	27.1	2935	30.17	
37.0	25.9	2949	30.31	
37.5	24.8	2963	30.45	
38.0	23.8	2976	30.58	
38.5	23.1	2988	30.71	
39.0	22.8	3001	30.84	
39.5	22.9	3014	30.97	
40.0	23.1	3027	31.11	
40.5	23.5	3040	31.24	
41.0	23.9	3053	31.38	
41.5	24.2	3067	31.53	
42.0	24.3	3082	31.67	
42.5	24.2	3096	31.82	
43.0	23.9	3110	31.97	
43.5	23.6	3125	32.11	
44.0	23.2	3139	32.26	

D. $^{112}Cd(p,2n)^{111}In$ reaction

Bibliography, evaluation and selection

Cross section

OTOZAI, K., KUME, S., MITO, A., OKAMURA, H., TSUJINO, R., KANCHIKU, Y., KATOH, T., GOTOH, H., Excitation functions for the reactions induced by protons on Cd up to 37 MeV, Nucl. Phys. 80 (1966) 335-348. EXFOR: P0019

NIECKARZ Jr., W.J., CARETTO Jr., A.A., Production of ¹¹¹In and ^{114m}In from the separated isotopes of cadmium using 70- to 400-MeV protons, Phys. Rev. 178 (1969) 1887-1893. EXFOR: C0345

Target: natural Cd and ¹¹²Cd. Data were not adopted because they were measured in the higher energy region.

SKAKUN, E.A., KLJUCHAREV, A.P., RAKIVNENKO, YU.N., ROMANIJ, I.A., Excitation functions of (p,n)- and (p,2n)-reactions on cadmium isotopes, Izv. Rossiiskoi Akademii Nauk, Ser. Fiz. 39 (1975) 24-30. EXFOR: A0001

TÁRKÁNYI, F., SZELECSÉNYI, F., KOPECKÝ, P., MOLNÁR, T., ANDÓ, L., MIKECZ, P., TÓTH, GY., RYDL, A., Cross sections of proton induced nuclear reactions on enriched ¹¹¹Cd and ¹¹²Cd for the production of ¹¹¹In for use in nuclear medicine, Appl. Radiat. Isot. **45** (1994) 239-249.

EXFOR: D4027

Yield

MacDONALD, N.S., NEELY, H.H., WOOD, R.A., TAKAHASHI, J.M., WAKAKUWA, S.I., BIRDSALL, R.L., Methods for compact cyclotron production of ¹¹¹In for medical use, Int. J. Appl. Radiat. Isot. 26 (1975) 631-633.

EXFOR: no

Target: natural Cd, thickness: 0.51 mm. The outcoming beam energy was 16 MeV so estimated data were added to the measured value to derive a thick target yield taking into account our recommended yield curve.

DMITRIEV, P.P., Systematics of nuclear reaction yields for thick target at 22 MeV proton energy, Vop. At. Nauki i Tekhn., Ser. Yad. Konst. 2 (1983) 57-61. EXFOR: A0195

HUPF, H.B., TISCHER, S.D., AL-WATBAN, F., The cyclotron radionuclide program at King Faisal Specialist Hospital and Research Centre, Nucl. Instrum. Methods B 10/11 (1985) 967-968. EXFOR: no

KOPECKY, P., KONRAD, L., MELICHAR, F., Research, development and production of cyclotron produced radionuclides for diagnostic nuclear medicine, Jad. Energ. 31 (1985) 186-189. EXFOR: no

Target thickness: $33 \rightarrow 11$ MeV.

KRASNOV, N.N., SEVASTYANOV, YU.G., KONYAKIN, N.A., RAZBASH, A.A., OGNEV, A.A., PONOMAREV, A.A., Radionuclide production on cyclotron of Institute of Physics and Power Engineering, pp. 54-56 in Proc. 4th Int. Workshop on Targetry and Target Chemistry, Villigen, Switzerland, 9-12 September 1991, PSI, Villigen, Switzerland, 1992. EXFOR: no

All experimental cross-section data are shown in Fig. 7.66, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.67. Excitation functions have been calculated by means of the ALICE nuclear reaction modelling code, and results are compared with all of the selected experimental data in Fig. 7.68. Yields determined from the recommended cross sections are presented in Fig. 7.69, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.27.

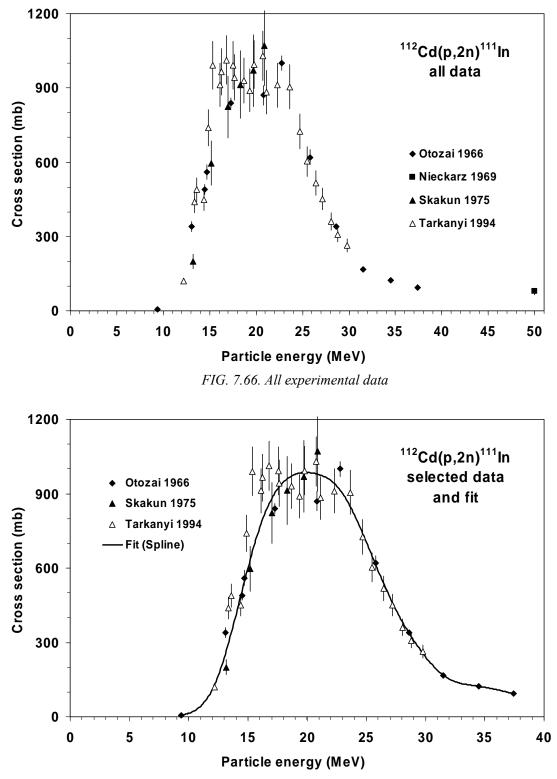


FIG. 7.67. Selected experimental data and the recommended curve (fit)

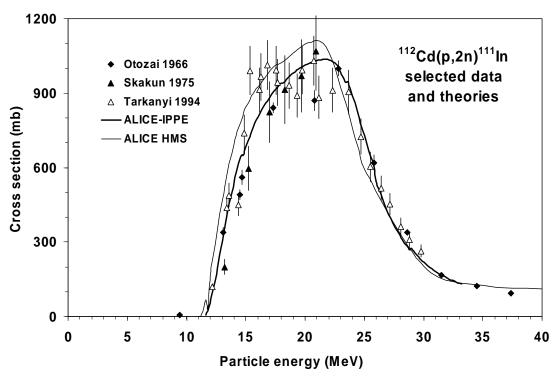


FIG. 7.68. Selected experimental data and theoretical calculations

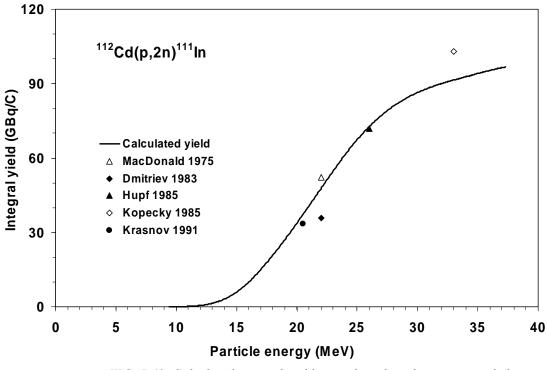


FIG. 7.69. Calculated integral yield curve based on the recommended cross sections

$^{112}Cd(p,2n)^{111}In$	Cross section	Integra	vield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
9.5	7	0	0.00
10.0	14		0.03
10.5	25	3 7	0.07
11.0	42	14	0.15
11.5	70	27	0.28
12.0	110	49	0.50
12.5	166	82	0.85
13.0	237	133	1.37
13.5	321	205	2.11
14.0	412	302	3.10
14.5	506	425	4.37
15.0	600	577	5.93
15.5	687	758	7.79
16.0	764	966	9.93
16.5	829	1199	12.32
17.0	880	1454	14.94
17.5	919	1727	17.75
18.0	947	2016	20.72
18.5	966	2318	23.83
19.0	978	2631	27.04
19.5	984	2952	30.34
20.0	986	3281	33.72
20.0	983	3615	37.15
20.5	977	3953	40.63
21.5	968	4295	44.14
22.0	953	4638	47.66
22.5	931	4982	51.21
23.0	901	5317	54.65
23.5	861	5649	58.06
23.5	814	5967	61.33
24.5	761	6270	64.44
25.0	701	6556	67.38
25.5	647	6823	70.12
26.0	589	7070	72.67
26.5	534	7298	75.01
20.3	481	7298	77.15
27.5	432	7697	79.11
27.3 28.0	432 386	7870	80.88
28.0	380	8026	80.88
28.5 29.0	345 308	8026 8167	82.49 83.94
29.0 29.5	273	8167 8295	
			85.25
30.0	241	8409	86.42
30.5	212	8510 8601	87.47
31.0	187	8601	88.40
31.5	167	8683	89.24
32.0	152	8757	90.00
32.5	141	8826	90.72

 TABLE 7.27. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

Table 7.27 cont'd

$^{112}Cd(p,2n)^{111}In$	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
33.0	134	8893	91.40
33.5	130	8958	92.07
34.0	126	9024	92.74
34.5	123	9088	93.40
35.0	119	9151	94.05
35.5	114	9213	94.68
36.0	109	9272	95.30
36.5	104	9329	95.89
37.0	98	9384	96.45

Table 7.27 cont'd

7.7. Charged-particle production of ^{114m}In

This radionuclide is a longer-lived conversion electron emitting analogue of ¹¹¹In and could be used for longer lasting therapeutic studies. Its potential has as yet not been fully demonstrated. It is also used for diagnostic applications. A simplified decay scheme is shown in Fig. 7.70, and the main emissions as defined in Table 7.28 were taken from NuDat 2.4 [7.3].

A. Decay data

FIG. 7.70. Simplified decay scheme of ¹¹⁴In [7.3]

^{114m} In	Decay mode:	IT 96.75%
	T _{1/2} :	49.51 d
Radiation	Energy (keV)	Intensity (%)
Auger L	2.84	65.0
Auger K	20.1	5.98
ce K	162.33	40.1
ce L	186.03	31.9
ce M	189.44	6.71
ce NP	190.15	1.351
γ	190.27	15.56

TABLE 7.28. MAIN EMISSIONS [7.3]

B. Production routes

Originally this radionuclide was produced via the 113 In $(n,\gamma)^{114m}$ In reaction which is covered in Section 6.2. However, alternative routes of production have been developed, as specified in Table 7.29.

			L / J	
Target isotope	Natural abundance	Reaction	Q-value (MeV)	Threshold energy (MeV)
114 Cd	28.73%	(p,n)	-2.2	2.3
114 Cd	28.73%	(d,2n)	-4.5	4.5
¹¹⁶ Cd	7.49%	(p,3n)	-17.1	17.2

TABLE 7.29. INVESTIGATED PRODUCTION ROUTES [7.3, 7.4]

C. ¹¹⁴Cd(p,n)^{114m}In reaction

Bibliography, evaluation and selection

Cross section

BLASER, J.-P., BOEHM, F., MARMIER, P., PEASLEE, D.C., Fonctions d'excitation de la reaction (p,n) I, Helvetica Physica Acta **24** (1951) 3-??. Exfor: B0048 *Target: natural cadmium*.

BLOSSER, H.G., HANDLEY, T.H., Survey of (p,n) reactions at 12 MeV, Physical Review **100** (1955) 1340-1344. Exfor: B0052 *Target: natural cadmium*.

WING, J., HUIZENGA, J.R., (p,n) cross sections of ⁵¹V, ⁵²Cr, ⁶³Cu, ⁶⁵Cu, ¹⁰⁷Ag, ¹⁰⁹Ag, ¹¹¹Cd, ¹¹⁴Cd, and ¹³⁹La from 5 to 10.5 MeV, Physical Review **128** (1962) 280-290. Exfor: T0124 *Target: natural cadmium*.

NIECKARZ, W.J., CARETTO, A.A., Production of ¹¹¹In and ^{114m}In from the separated isotopes of cadmium using 70 to 400 MeV protons, Physical Review **178** (1969) 1887-1893. Exfor: C0345 *Target: enriched* ¹¹⁴Cd. *High energy measurements.*

SKAKUN, Y.A., KLJUCHAREV, A.P., RAKIVNENKO, YU.N., ROMANIJ, I.A., Excitation functions of (p,n)- and (p,2n)-reactions on cadmium isotopes, Izv. Rossiiskoi Akademii Nauk, Ser.Fiz. **39** (1975) 24-??. Exfor: A0001 *Target: enriched* ¹¹⁴Cd.

ABRAMOVICH, S.N., GUZHOVSKIJ, B.Ya., ZVENIGORODSKII, A.G., TRUSILLO, S.V., Isobaric analog resonances appearing during elastic scattering of protons and in the (p,n) reaction of ¹¹⁰Cd, ¹¹²Cd, ¹¹⁴Cd, ¹¹⁶Cd nuclei, Izv. Rossiiskoi Akademii Nauk, Ser. Fiz. **39** (1975) 1688-1694.

Exfor: A0129 *Target: enriched*¹¹⁴Cd. *The data were rejected because the sum of metastable and ground states was measured.*

NORTIER, F.M., MILLS, S.J., STEYN, G.F., Excitation functions and production rates of relevance to the production of ¹¹¹In by proton bombardment of ^{nat}Cd and ^{nat}In up to 100 MeV, Applied Radiation and Isotopes **41** (1990) 1201-1208. Exfor: A0500

Target: natural cadmium.

ZAITSEVA, N.G., KNOTEK, O., KOWALEW, A., MIKECZ, P., RURARZ, E., KHALKIN, V.A., AGEEV, V.A., KLYUCHNIKOV, A.A., KUZINA, L.A., LINEV, A.F., Excitation functions and yields for ¹¹¹In production using ^{113,114,nat}Cd(p,xn)¹¹¹In reactions with 65 MeV protons, Applied Radiation and Isotopes **41** (1990) 177-183. Exfor: A0569, D4070 *Target: enriched* ¹¹⁴Cd and ^{nat}Cd.

Data were rejected due to the systematic energy shift to the higher energies.

MIRZAEI, M., AFARIDEH, H., HAJI-SAEID, S.M., ARDANEH, K., Production of ¹¹¹In by irradiation of natural cadmium with deuterons and protons in NRCAM cyclotron, pp. 65-67 in Proc. Int. Conf. on Cyclotrons and their Applications, 14-19 June 1998, Caen, France, BARON, E., LIEUVIN, M. (Eds), Institute of Physics Publishing, Bristol, UK, 1999. EXFOR: no

Target: natural cadmium.

TARKANYI, F., TAKACS, S., HERMANNE, A., VAN DEN WINKEL, P., VAN DER ZWART, R., SKAKUN, Y.A., SHUBIN, YU.N., KOVALEV, S.F., Investigation of the production of the therapeutic radioisotope ^{114m}In through proton and deuteron induced nuclear reactions on cadmium, Radiochimica Acta **93** (2005) 561-570.

Exfor: D4160

Target: enriched ¹¹⁴Cd and ^{nat}Cd.

SAID, S.A., ELMAGHRABY, E.K., ASFOUR, F.I., Experimental investigation and nuclear model calculations on proton-induced reactions on highly enriched ¹¹⁴Cd at low energies, Applied Radiation and Isotopes **64** (2006) 1655-1660.

Exfor: O1502

Target: enriched ¹¹⁴Cd and ^{nat}Cd.

Data measured on enriched target were rejected because of the large deviation probably caused by the unreliable target thickness determination.

TÁRKÁNYI, F., KIRÁLY, B., DITRÓI, F., TAKÁCS, S., CSIKAI, J., HERMANNE, A., UDDIN, M.S., HAGIWARA, M., BABA, M., IDO, T., SHUBIN, YU.N., KOVALEV, S.F., Activation cross sections on cadmium: Proton induced nuclear reactions up to 80 MeV, Nuclear Instruments and Methods B **245** (2006) 379-394.

Exfor: D4170

Target: natural cadmium.

Yield

DMITRIEV, P.P., DMITRIEVA, Z.P., KRASNOV, N.N., MOLIN, G.A., PANARIN, M.V., Yields of ¹¹¹In and ^{114m}In in nuclear reactions with protons, deuterons and alpha particles, Atomnaya Energiya **37** (1974) 496-497. Exfor: no *Target: natural cadmium*.

DMITRIEV, P.P., MOLIN, G.A., Radioactive nuclide yields for thick target at 22 MeV proton energy, Vop. At. Nauki i Tekhn., Ser. Yad. Konstanty **44** (1981) 43-50. Exfor: A0168 *Target: natural cadmium. Rejected because the proton energy is above the threshold of the* (*p*,3*n*) *reaction.*

DMITRIEV, P.P., Systematics of nuclear reaction yields for thick target at 22 MeV proton energy, Vop. At. Nauki i Tekhn., Ser. Yad. Konstanty, **2** (1983) 57-61. Exfor: A0195 *Target: enriched* ¹¹⁴Cd.

NICKLES, R.J., A shotgun approach to the chart of the nuclides; Radiotracer production with an 11 MeV proton cyclotron, Acta Radiologica, Supplementum **376** (1991) 69-71. Exfor: no *Target: natural Cd.*

All experimental cross-section data are shown in Fig. 7.71, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.72. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.73. Yields determined from the recommended cross sections are presented in Fig. 7.74, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.30.

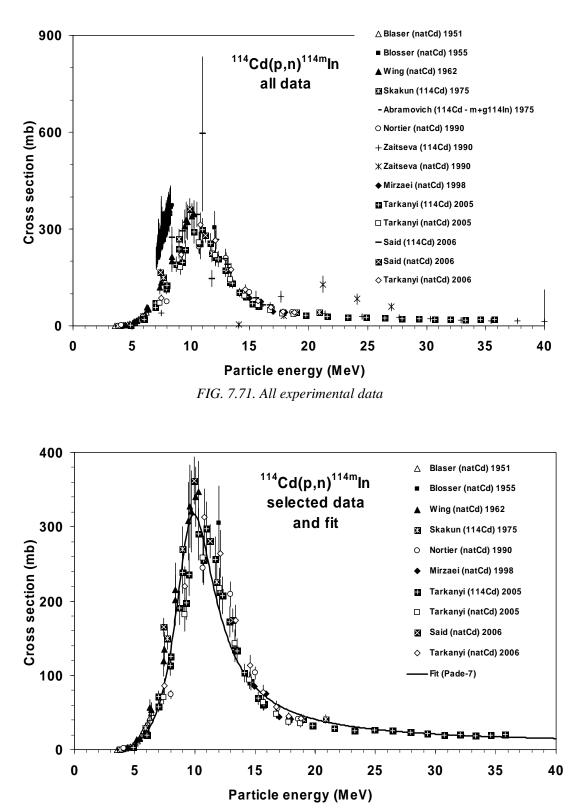


FIG. 7.72. Selected experimental data and the recommended curve (fit)

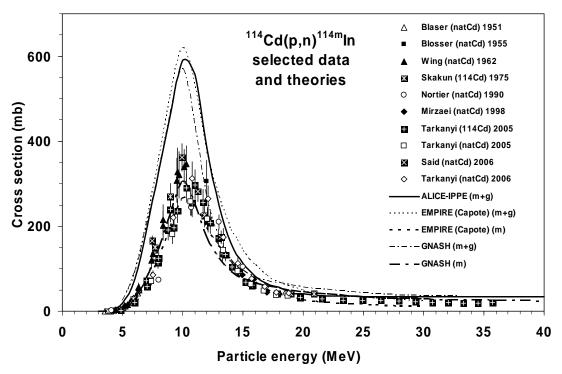


FIG. 7.73. Selected experimental data and theoretical calculations

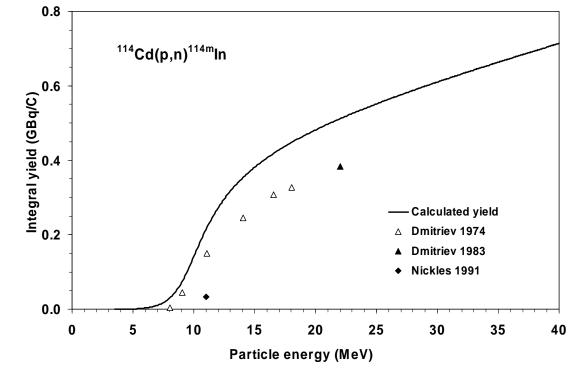


FIG. 7.74. Calculated integral yield curve based on the recommended cross sections

$^{114}Cd(p,n)^{114m}In$	Cross section	Integra	l vield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
3.5	0.0	0.0	0.000
4.0	0.5	0.0	0.000
4.5	2.9	0.0	0.000
5.0	7.1	0.1	0.001
5.5	13.5	0.1	0.001
6.0	23.2	0.3	0.003
6.5	37.6	0.6	0.006
7.0	58.9	1.0	0.010
7.5	90.1	1.7	0.018
8.0	134.4	2.9	0.029
8.5	191.9	4.6	0.047
9.0	254.5	7.0	0.072
9.5	302.3	10.2	0.105
10.0	316.4	13.8	0.142
10.5	297.6	17.4	0.179
11.0	261.8	20.8	0.214
11.5	223.4	23.8	0.245
12.0	189.3	26.5	0.272
12.5	161.1	28.8	0.296
13.0	138.5	30.8	0.317
13.5	120.4	32.6	0.336
14.0	105.9	34.3	0.352
14.5	94.1	35.7	0.367
15.0	84.5	37.1	0.381
15.5	76.5	38.3	0.394
16.0	69.8	39.5	0.406
16.5	64.1	40.6	0.417
17.0	59.2	41.6	0.428
17.5	55.1	42.6	0.438
18.0	51.4	43.5	0.447
18.5	48.3	44.4	0.456
19.0	45.4	45.3	0.465
19.5	43.0	46.1	0.474
20.0	40.7	46.9	0.482
20.5	38.8	47.6	0.489
21.0	37.0	48.4	0.497
21.5	35.3	49.1	0.504
22.0	33.9	49.8	0.512
22.5	32.5	50.5	0.519
23.0	31.3	51.1	0.525
23.5	30.1	51.8	0.532
24.0	29.1	52.4	0.539
24.5	28.1	53.0	0.545

TABLE 7.30. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

Table 7	'.30 c	cont'd
---------	--------	--------

$^{114}Cd(p,n)^{114m}In$	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
25.0	27.2	53.7	0.552
25.5	26.4	54.3	0.558
26.0	25.6	54.9	0.564
26.5	24.9	55.5	0.570
27.0	24.2	56.0	0.576
27.5	23.6	56.6	0.582
28.0	23.0	57.2	0.588
28.5	22.4	57.7	0.593
29.0	21.9	58.3	0.599
29.5	21.4	58.8	0.604
30.0	21.0	59.4	0.610
30.5	20.5	59.9	0.616
31.0	20.1	60.4	0.621
31.5	19.7	60.9	0.626
32.0	19.3	61.5	0.632
32.5	18.9	62.0	0.637
33.0	18.6	62.5	0.642
33.5	18.3	63.0	0.648
34.0	18.0	63.5	0.653
34.5	17.7	64.0	0.658
35.0	17.4	64.5	0.663
35.5	17.1	65.0	0.668
36.0	16.8	65.5	0.673
36.5	16.6	66.0	0.678
37.0	16.3	66.5	0.684
37.5	16.1	67.0	0.689
38.0	15.9	67.5	0.694
38.5	15.7	68.0	0.699
39.0	15.5	68.5	0.704
39.5	15.3	68.9	0.709
40.0	15.1	69.4	0.714

D. 114 Cd(d,2n) 114m In reaction

Bibliography, evaluation and selection

Cross section

NASSIFF, S.J., USHER, O.H., WASILEVSKY, C., Cross sections for the formation of ^{114m}In and ^{116m}In on bombardment of cadmium by deuterons, Radiation Physics and Chemistry **13** (1979) 129-132.

EXFOR: no

Target: natural cadmium.

The excitation function has unusual shape above the maximum – cross sections are too high in this region, and therefore the data were rejected.

MIRZAEI, M., AFARIDEH, H., HAJI-SAEID, S.M., ARDANEH, K., Production of ¹¹¹In by irradiation of natural cadmium with deuterons and protons in NRCAM cyclotron, pp. 65-67 in Proc. Int. Conf. on Cyclotrons and their Applications, 14-19 June 1998, Caen, France, BARON, E., LIEUVIN, M. (Eds), Institute of Physics Publishing, Bristol, UK, 1999.

EXFOR: no

Target: natural cadmium.

Data were rejected because the absolute values are too small compared with the data of Tarkanyi et al. (2005) and to Nassiff et al. (1979). The absolute values are also too small for the simultaneously measured ¹¹¹In.

TÁRKÁNYI, F., TAKÁCS, S., HERMANNE, A., VAN DEN WINKEL, P., VAN DER ZWART, R., SKAKUN, Y.A., SHUBIN, YU.N., KOVALEV, S.F., Investigation of the production of the therapeutic radioisotope ^{114m}In through proton and deuteron induced nuclear reactions on cadmium, Radiochimica Acta, **93** (2005) 561-570.

EXFOR: D4160

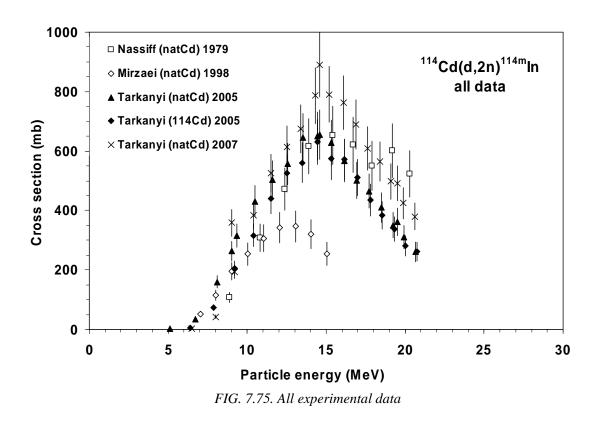
Target: enriched ¹¹⁴Cd and ^{nat}Cd.

Data measured on ^{nat}Cd target contain the contribution from the ¹¹³Cd(d,n)^{114m}In reaction. According to the ALICE-IPPE calculation this contribution can be neglected. The estimated contribution of the ¹¹³Cd(d,n)^{114m+g}In is around 5-10% in the important low-energy range and is even smaller for the production of ^{114m}In. No corrections were made for this contribution on the data measured with ^{nat}Cd target, taking into account that the data on ¹¹⁴Cd target and ^{nat}Cd targets exhibit excellent agreement and the uncertainties of the absolute values are in the range of 12-15% in both cases.

TÁRKÁNYI, F., KIRÁLY, B., DITRÓI, F., TAKÁCS, S., CSIKAI, J., HERMANNE, A., UDDIN, M.S., HAGIWARA, M., BABA, M., IDO, T., SHUBIN, YU.N., KOVALEV, S.F., Activation cross sections on cadmium: Deuteron induced nuclear reactions up to 40 MeV, Nucl. Instrum. Methods B **259** (2007) 817-828.

EXFOR: D4179

Target: natural cadmium.


The evaluation was carried out before 2007, and therefore these measurements were not considered in the recommended data.

Yield

DMITRIEV, P.P., DMITRIEVA, Z.P., KRASNOV, N.N., MOLIN, G.A., PANARIN, M.V., Yields of ¹¹¹In and ^{114m}In in nuclear reactions with protons, deuterons and alpha particles, Atomnaya Energiya **37** (1974) 496-??. EXFOR: no *Target: natural cadmium*.

DMITRIEV, P.P., KRASNOV, M.N., MOLIN, G.A., Yields of radioactive nuclides formed by bombardment of a thick target with 22-MeV deuterons, INDC(CCP)-210/L, 1983, translation from Nuclear Constants **4(48)** (1982) 38. EXFOR: A0194 *Target: natural cadmium. Rejected because the threshold of* $^{116}Cd(d,n)$ *reaction is at 19.6 MeV.*

All experimental cross-section data are shown in Fig. 7.75, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.76. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.77. Yields determined from the recommended cross sections are presented in Fig. 7.78, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.31.

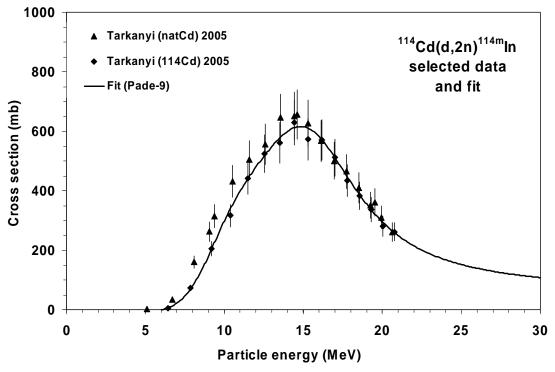


FIG. 7.76. Selected experimental data and the recommended curve (fit)

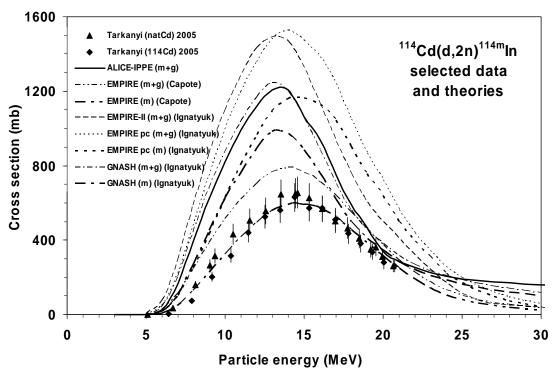


FIG. 7.77. Selected experimental data and theoretical calculations

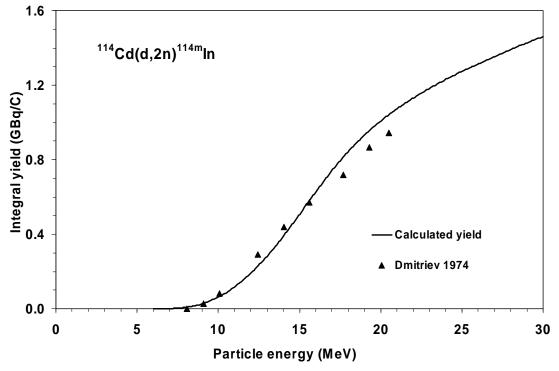


FIG. 7.78. Calculated integral yield curve based on the recommended cross sections

114 Cd(d,2n) ^{114m} In Cross section		Integral yield		
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)	
6.0	0	0.0	0.00	
6.5	8	0.0	0.00	
7.0	22	0.1	0.00	
7.5	46	0.3	0.00	
8.0	80	0.7	0.01	
8.5	126	1.4	0.01	
9.0	181	2.5	0.03	
9.5	240	4.0	0.04	
10.0	298	6.0	0.06	
10.5	351	8.5	0.09	
11.0	399	11.4	0.12	
11.5	441	14.8	0.15	
12.0	479	18.6	0.19	
12.5	515	22.8	0.23	
13.0	548	27.4	0.25	
13.5	577	32.4	0.28	
14.0	600	37.7	0.39	
14.5	613	43.4	0.45	
	615	49.2	0.43	
15.0				
15.5	604 582	55.1	0.57	
16.0	582	61.0	0.63	
16.5	550	66.7	0.69	
17.0	511	72.1	0.74	
17.5	470	77.2	0.79	
18.0	429	82.0	0.84	
18.5	390	86.5	0.89	
19.0	355	90.6	0.93	
19.5	323	94.4	0.97	
20.0	295	98.0	1.01	
20.5	271	101.3	1.04	
21.0	249	104.3	1.07	
21.5	231	107.2	1.10	
22.0	214	110.0	1.13	
22.5	200	112.5	1.16	
23.0	188	115.0	1.18	
23.5	177	117.4	1.21	
24.0	168	119.6	1.23	
24.5	159	121.8	1.25	
25.0	152	123.9	1.27	
25.5	145	125.9	1.29	
26.0	139	127.9	1.31	
26.5	134	129.8	1.33	
27.0	129	131.7	1.35	
27.5	124	133.5	1.37	
28.0	121	135.3	1.39	
28.5	117	137.0	1.41	
28.5	117	138.8	1.41	
29.5	111	140.5	1.44	
30.0	108	142.2	1.46	

TABLE 7.31. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

E. $^{116}Cd(p,3n)^{114m}In$ reaction

Bibliography, evaluation and selection

Cross section

TÁRKÁNYI, F., TAKÁCS, S., HERMANNE, A., VAN DEN WINKEL, P., VAN DER ZWART, R., SKAKUN, Y.A., SHUBIN, YU.N., KOVALEV, S.F., Investigation of the production of the therapeutic radioisotope ^{114m}In through proton and deuteron induced nuclear reactions on cadmium, Radiochim. Acta, **93** (2005) 561-570. EXFOR: D4160 *Target: natural cadmium*.

HERMANNE, A., TÁRKÁNYI, F., TAKÁCS, S., VAN DEN WINKEL, P., REBELES, A., Investigation of the ¹¹⁶Cd(p,3n)^{114m}In nuclear reaction: Production of the therapeutic radioisotope ^{114m}In, manuscript. *Target: enriched* ¹¹⁶Cd. *Not included in the CRP*.

Yield

No data were found.

Measurements are compared with the resulting statistical fit to experimental cross-section data in Fig. 7.79. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.80. Yields determined from the recommended cross sections are presented in Fig. 7.81, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.32.

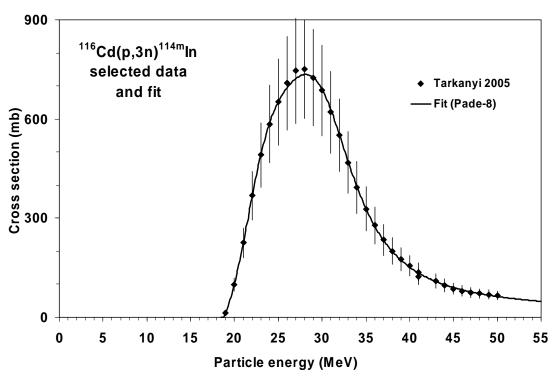


FIG. 7.79. Selected experimental data and the recommended curve (fit)

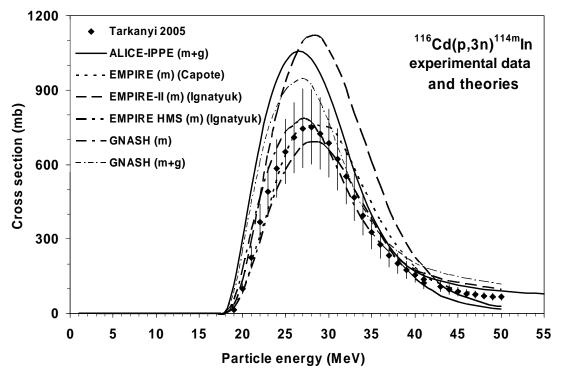


FIG. 7.80. Experimental data and theoretical calculations

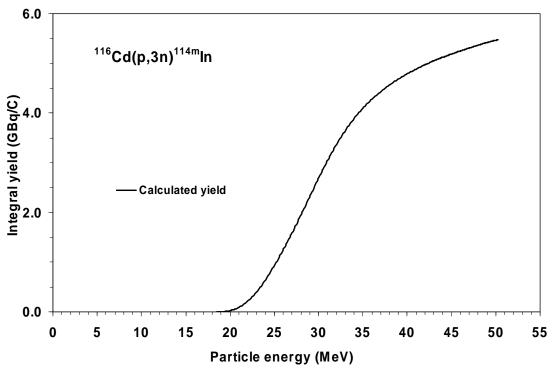


FIG. 7.81. Calculated integral yield curve based on the recommended cross sections

116 Cd(p,3n) 114m In	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
18.5	0	0	0.00
19.0	14	0	0.00
19.5	53	1	0.01
20.0	101	2	0.02
20.5	158	2 5	0.05
21.0	223	9	0.09
21.5	293	14	0.14
22.0	363	21	0.21
22.5	430	29	0.30
23.0	491	39	0.40
23.5	543	50	0.52
24.0	587	63	0.64
24.5	623	76	0.78
25.0	652	90	0.93
25.5	675	105	1.08
26.0	694	121	1.24
26.5	710	137	1.41
27.0	722	154	1.59
27.5	730	172	1.77
28.0	734	190	1.95
28.5	733	208	2.13
29.0	725	226	2.32
29.5	711	244	2.51
30.0	690	262	2.69
30.5	662	279	2.87
31.0	628	296	3.04
31.5	591	312	3.20
32.0	551	327	3.36
32.5	510	341	3.51
33.0	469	355	3.64
33.5	430	367	3.77
34.0	394	378	3.89
34.5	360	389	4.00
35.0	329	399	4.10
35.5	301	408	4.19
36.0	276	416	4.28
36.5	254	424	4.36
37.0	234	431	4.43
37.5	216	438	4.50
38.0	200	444	4.57
38.5	186	450	4.63
39.0	173	456	4.68
39.5	162	461	4.74

TABLE 7.32. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

Table 7.32 cont'd

$^{116}Cd(p,3n)^{114m}In$	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
40.0	151	466	4.79
40.5	142	471	4.84
41.0	134	475	4.88
41.5	126	479	4.93
42.0	120	484	4.97
42.5	114	487	5.01
43.0	108	491	5.05
43.5	103	495	5.08
44.0	98	498	5.12
44.5	94	501	5.15
45.0	90	505	5.19
45.5	86	508	5.22
46.0	83	511	5.25
46.5	80	514	5.28
47.0	77	516	5.31
47.5	74	519	5.34
48.0	71	522	5.36
48.5	69	524	5.39
49.0	67	527	5.42
49.5	65	529	5.44
50.0	63	532	5.47

7.8. CHARGED PARTICLE PRODUCTION OF ¹²⁴I

Iodine-124 is one of the most important emerging therapeutic radionuclides. The decay characteristics support a combination of therapy and positron emission tomography, and allow precise regional dosimetry. As a result ¹²⁴I is considered to be a superior therapy agent over commonly used reactor-produced ¹³¹I. Since iodine forms a reasonably stable bond to the C atom, many organic compounds can be labelled with ¹²⁴I and used for internal radiotherapy. A simplified decay scheme is shown in Fig. 7.82, and the main emissions as defined in Table 7.33 [7.1-7.3] were taken from NuDat 2.4 [7.3].

A. Decay data

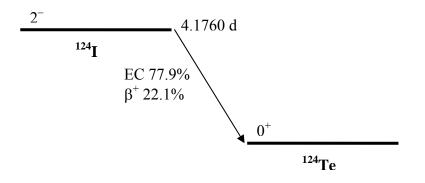


FIG .7.82. Simplified decay scheme of ¹²⁴I [7.1, 7.3]

			EC 77.9%	
124 I	Decay mode:		$\beta^+ 22.1\%$	[7.1]
	T _{1/2} :		4.1760 d	
Radiation	Intensity	r	Energy (MeV)
o+ 2	3.01×10 ⁻⁰³		3.668×10 ⁻⁰¹	*
$\beta^+ 2$	3.01×10		8.121×10 ⁻⁰¹	**
$\beta^+ 3$	1.18×10 ⁻⁰¹		6.871×10 ⁻⁰¹	*
р <i>3</i>	1.10^10		1.5349	**
$\beta^+ 4$	1.09×10 ⁻⁰¹		9.747×10 ⁻⁰¹	*
,			2.1376	**
γ^{\pm}	4.42×10^{-01}	[7.1]	5.110×10 ⁻⁰¹	
γ5	2.08×10^{-03}		5.412×10^{-01}	
γ7	6.29×10^{-01}		6.027×10 ⁻⁰¹	
ce-K, y 7	2.64×10 ⁻⁰³		5.709×10 ⁻⁰¹	
ce-L, γ 7	3.59×10 ⁻⁰⁴		5.978×10 ⁻⁰¹	a
γ8	9.88×10 ⁻⁰³		6.458×10 ⁻⁰¹	
γ13	1.04×10^{-01}		7.228×10 ⁻⁰¹	
γ 21	4.35×10^{-03}		9.682×10 ⁻⁰¹	
γ 24	4.41×10 ⁻⁰³		1.045	
γ 25	1.26×10^{-03}		1.054	
γ 30	1.56×10^{-02}		1.326	
γ 32	3.02×10 ⁻⁰³		1.368	
γ 33	1.75×10 ⁻⁰²		1.376	
γ 36	1.99×10 ⁻⁰³		1.489	
γ37	3.13×10 ⁻⁰²		1.509	
γ 38	1.65×10 ⁻⁰³		1.560	
γ40	2.09×10 ⁻⁰³		1.638	
γ 42	1.12×10^{-03}		1.676	
γ 43	1.09×10^{-01}		1.691	
γ 44	1.76×10^{-03}		1.720	
γ 46	2.14×10 ⁻⁰³		1.851	
γ 47	1.64×10 ⁻⁰³		1.919	
γ 48	3.52×10 ⁻⁰³		2.038	
γ 49	3.59×10 ⁻⁰³		2.079	
γ 50	5.91×10 ⁻⁰³		2.091	
γ 51	1.45×10^{-03}		2.099	
γ 52	1.13×10 ⁻⁰³		2.144	
γ 53	5.91×10 ⁻⁰³		2.232	
γ 54	6.86×10 ⁻⁰³		2.283	
γ 57	6.92×10^{-04}		2.454	
γ 59	4.78×10^{-03}		2.747	
$K_{\alpha 1}$ X-ray	3.09×10 ⁻⁰¹		2.747×10 ⁻⁰²	
$K_{\alpha 2}$ X-ray	1.66×10^{-01}		2.720×10 ⁻⁰²	*
K_{β} X-ray	1.08×10^{-01}		3.100×10 ⁻⁰²	* *
Auger-K	8.28×10 ⁻⁰²		2.270×10 ⁻⁰²	*
Auger-L	6.40×10 ⁻⁰¹		3.190×10 ⁻⁰³	*

TABLE 7.33. MAIN EMISSIONS [7.1, 7.2, 7.3]

* Average energy (MeV) ** Endpoint energy (MeV) ^a Maximum energy (MeV) for subshell

B. Production routes

Production of ¹²⁴I is carried out via the (p,n) or (d,2n) reactions on a highly-enriched ¹²⁴Te target, or by (p,2n) reaction on highly-enriched ¹²⁵Te, as specified in Table 7.34.

Target isotope	Natural abundance	Reaction	Q-value (MeV)	Threshold energy (MeV)
¹²⁴ Te	4.74%	(p,n)	-3.9	4.0
¹²⁴ Te	4.74%	(d,2n)	-6.2	6.3
¹²⁵ Te	7.07%	(p,2n)	-10.5	10.6

TABLE 7.34. INVESTIGATED PRODUCTION ROUTES [7.3, 7.4]

C. ¹²⁴Te(p,n)¹²⁴I reaction

Bibliography, evaluation and selection

Cross section

ACERBI, E., BIRATTARI, C., CASTIGLIONI, M., RESMINI, F., VILLA, M., Production of ¹²³I for medical purposes at the Milan AVF cyclotron, Int. J. Appl. Radiat. Isot. **26** (1975) 741-747. EXFOR: A0266

Target: natural Te and 124 Te. Data measured with a natural target were rejected because they are above the threshold energy of the 125 Te(p,2n) reaction.

KONDO, K., LAMBRECHT, R.M., WOLF, A.P., ¹²³I production for radiopharmaceuticals - XX. Excitation functions of the ¹²⁴Te(p,2n)¹²³I and ¹²⁴Te(p,n)¹²⁴I reactions and the effect of target enrichment on radionuclidic purity, Int. J. Appl. Radiat. Isot. **28** (1977) 395-401. EXFOR: B0090

Two data sets are available on targets with different enrichment. Both sets of data were rejected because of their energy shift towards higher energies.

VAN DEN BOSCH, R., DE GOEIJ, J.J.M., VAN DER HEIDE, J.A., TERTOOLEN, J.F.W., THEELEN, H.M.J., ZEGERS, C., A new approach to target chemistry for the iodine-123 production via the ¹²⁴Te(p,2n) reaction, Int. J. Appl. Radiat. Isot. **28** (1977) 255-261. EXFOR: B0167

Yield data were converted to cross sections. Data were rejected because of an energy shift towards higher energies.

SCHOLTEN, B., QAIM, S.M., STÖCKLIN, G., Excitation functions of proton induced nuclear reactions on natural tellurium and enriched ¹²³Te: Production of ¹²³I via the ¹²³Te(p,n)¹²³I process at a low energy cyclotron, Appl. Radiat. Isot. **40** (1989) 127-132. EXFOR: A0473

Target: natural Te. Data were rejected because they are above the threshold energy of the $^{125}Te(p,2n)$ *reaction.*

ZWEIT, J., BAKIR, M.A., OTT, R.J., SHARMA, H.L., COX, M., GOODALL, R., Excitation functions of proton induced reactions in natural tellurium: Production of no-carrier added iodine-124 for PET applications, pp. 76-78 in Proc. 4th Int. Workshop on Targetry and Target Chemistry, 9-12 September 1991, Villigen, Switzerland, PSI, Villigen, Switzerland, 1992. EXFOR: O1260

Target: natural Te. Rejected because the data set shows an energy shift towards higher energies.

SCHOLTEN, B., KOVÁCS, Z., TÁRKÁNYI, F., QAIM, S.M., Excitation functions of ¹²⁴Te(p,xn)^{124,123}I reactions from 6 to 31 MeV with special reference to the production of ¹²⁴I at a small cyclotron, Appl. Radiat. Isot. **46** (1995) 255-259. EXFOR: D4019

Yield

KONDO, K., LAMBRECHT, R.M., NORTON, E.F., WOLF, A.P., Cyclotron isotopes and radiopharmaceuticals - XXII. Improved targetry and radiochemistry for production of ¹²³I and ¹²⁴I, Int. J. Appl. Radiat. Isot. **28** (1977) 765-771. EXFOR: B0169

DMITRIEV, P.P., PANARIN, M.V., DMITRIEVA, Z.P., ¹²³I, ¹²⁴I, ¹²⁵I, ¹²⁶I, ¹³⁰I, ¹³¹I and ¹³²I yields when irradiating tellurium with protons, deuterons and alpha particles, and antimony with alpha particles, Atomnaya Energiya **49** (1980) 329. EXFOR: A0078 *Target: natural Te.*

DMITRIEV, P.P., MOLIN, G.A., Radioactive nuclide yields for thick target at 22 MeV proton energy, Vop. At. Nauki i Tekhn., Ser. Yad. Konst. **44** (1981) 43-50; INDC(CCP)-188/L, 1983. EXFOR: A0168 *Target: natural Te. Data were rejected because they are above the threshold energy of the* ¹²⁵*Te*(*p*,2*n*) *reaction.*

DMITRIEV, P.P., Radionuclide yield in reactions with protons, deuterons, alpha particles and ³He, Moscow, Ehnergioatomizdat (1986), and INDC(CCP)-263, 1986. EXFOR: no Data were rejected because they are calculated and not measured results.

NICKLES, R.J., A shotgun approach to the chart of the nuclides: Radiotracer production with an 11 MeV proton cyclotron, Acta Radiologica, Suppl. 376 (1991) 69-71. EXFOR: no *Target: natural Te.*

SCHOLTEN, B., KOVÁCS, Z., TÁRKÁNYI, F., QAIM, S.M., Excitation functions of ¹²⁴Te(p,xn)^{124,123}I reactions from 6 to 31 MeV with special reference to the production of ¹²⁴I at a small cyclotron, Appl. Radiat. Isot. **46** (1995) 255-259. EXFOR: no

Data were rejected because they are calculated and not measured results.

WEINREICH, R., KNUST, E.J., Quality control of ¹²⁴I, pp. 84-86 in Proc. 6th Workshop on Targetry and Target Chemistry, 17-19 August 1995, Vancouver, BC, Canada, LINK, J.M., RUTH, T. (Eds), TRIUMF, Canada, 1996. EXFOR: no

QAIM, S.M., HOHN, A., BASTIAN, TH., EL-AZONEY, K.M., BLESSING, G., SPELLERBERG, S., SCHOLTEN, B., COENEN, H.H., Some optimisation studies relevant to the production of high-purity ¹²⁴I and ^{120g}I at a small-sized cyclotron, Appl. Radiat. Isot. **58** (2003) 69-78. EXFOR: no

SAJJAD, M., BARS, E., NABI, H.A., Optimization of ¹²⁴I production via ¹²⁴Te(p,n)¹²⁴I reaction, Appl. Radiat. Isot. **64** (2006) 965-970. EXFOR: C1462

NYE, J.A., AVILA-RODRIGUEZ, M.A., NICKLES, R.J., A new binary compound for the production of ¹²⁴I via the ¹²⁴Te(p,n)¹²⁴I reaction, Appl. Radiat. Isot. **65** (2007) 407-412. EXFOR: C1517

All experimental cross-section data are shown in Fig. 7.83, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.84. Excitation functions have been calculated by means of the ALICE-IPPE nuclear reaction modelling code, and results are compared with all of the selected experimental data in Fig. 7.85. Yields determined from the recommended cross sections are presented in Fig. 7.86, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.35.

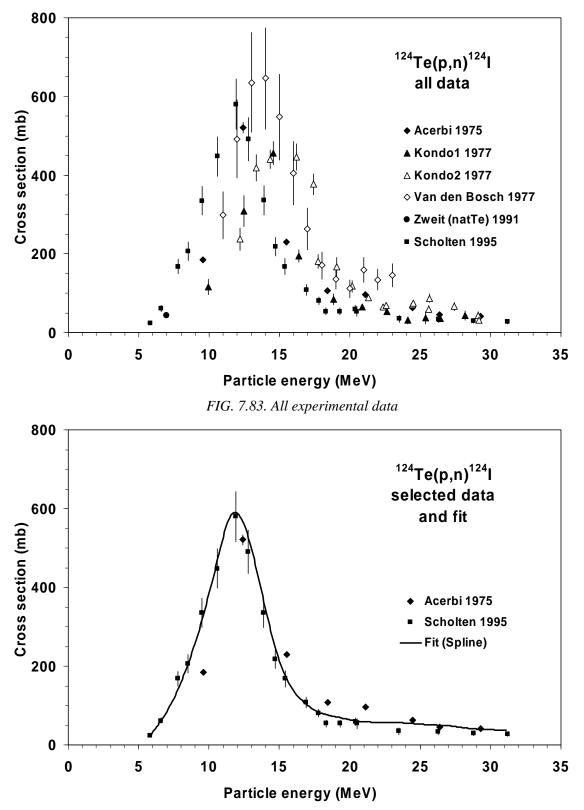


FIG. 7.84. Selected experimental data and the recommended curve (fit)

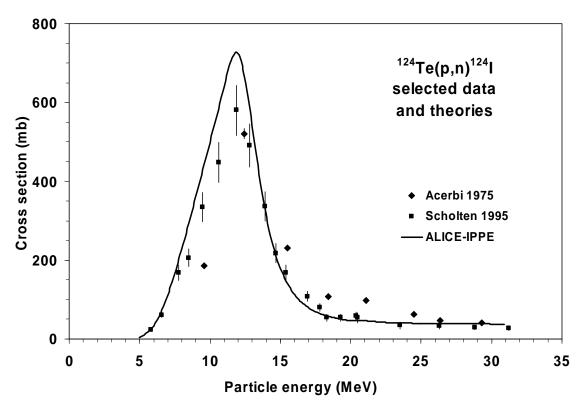


FIG. 7.85. Selected experimental data and theoretical calculations

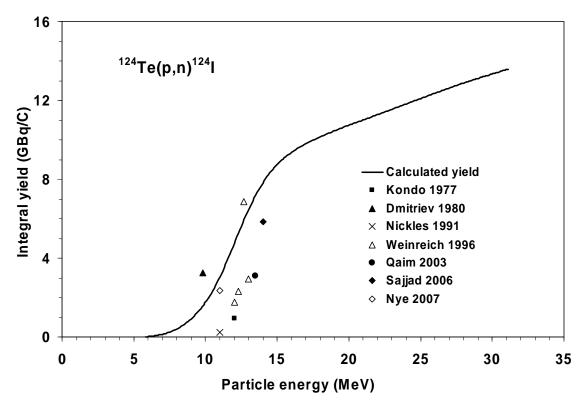


FIG. 7.86. Calculated integral yield curve based on the recommended cross sections

124 Te(p,n) 124 I	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
6.0	32	2	0.02
6.5	56	6	0.06
7.0	85	13	0.14
7.5	118	24	0.25
8.0	158	40	0.41
8.5	204	61	0.63
9.0	257	89	0.91
9.5	317	125	1.29
10.0	383	171	1.76
10.5	455	227	2.34
11.0	528	295	3.04
11.5	580	375	3.85
12.0	588	461	4.73
12.5	558	546	5.62
13.0	500	627	6.45
13.5	426	700	7.19
14.0	347	761	7.82
14.5	274	811	8.34
15.0	214	852	8.75
15.5	169	832 884	8.73 9.09
16.0	138	911	9.09
16.5	116	934	9.50 9.60
17.0	100	953	9.80
17.5	88	971	9.98
18.0	80	987	10.15
18.5	75	1003	10.30
19.0	71	1017	10.46
19.5	67	1031	10.60
20.0	64	1045	10.74
20.5	61	1058	10.88
21.0	59	1071	11.01
21.5	58	1084	11.14
22.0	57	1097	11.28
22.5	57	1110	11.41
23.0	57	1124	11.55
23.5	56	1137	11.69
24.0	55	1150	11.82
24.5	54	1164	11.96
25.0	53	1177	12.10
25.5	51	1190	12.23
26.0	50	1203	12.36
26.5	49	1216	12.49
27.0	49	1228	12.63
27.5	46	1241	12.76
28.0	40	1253	12.88
	44 42		
28.5		1265	13.00
29.0	40	1276	13.11
29.5	39	1287	13.23
30.0	39	1298	13.34
30.5	38	1309	13.45
31.0	37	1320	13.56

TABLE 7.35. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

D. 124 **Te**(**d**,**2n**) 124 **I reaction**

The ¹²⁴Te(d,2n)¹²⁴I reaction is generally considered to be an acceptable method for the production of ¹²⁴I. However, the user should be aware that ¹²⁵I is also produced as an impurity, and therefore the ¹²⁴Te(d,n)¹²⁵I reaction has also been evaluated elsewhere in this Section. Two experimental cross section data sets for the ¹²⁴Te(d,2n)¹²⁴I reaction are available in the literature (Firouzbakht *et al.* (1993), Bastian *et al.* (2001)), although the original cross section values published by Firouzbakht *et al.* were incorrect. New cross sections were recalculated from the authors' thin-target yield values presented in the same paper, and these recalculated data compare very well with those of Bastian *et al.* Experimental data sets are compared with the theoretical curves in Fig. 7.89, and show that all theoretical calculations are higher by a factor of two in the region around the peak area due partly to the deuteron break-up channel not being considered in the theoretical model.

Bibliography, evaluation and selection

Cross section

FIROUZBAKHT, M.L., SCHLYER, D.J., FINN, R.D., LAGUZZI, G., WOLF, A.P., ¹²⁴I production: Excitation function for the ¹²⁴Te(d,2n)¹²⁴I and ¹²⁴Te(d,3n)¹²³I reactions from 7 to 24 MeV, Nucl. Instrum. Methods B **79** (1993) 909-910.

EXFOR: no

The original cross sections were incorrect. New cross sections have been re-calculated from the thin target yield values as given in the same paper.

BASTIAN, TH., COENEN, H.H., QAIM, S.M., Excitation functions of 124 Te(d,xn) 124,125 I reactions from threshold up to 14 MeV: Comparative evaluation of nuclear routes for the production of 124 I, Appl. Radiat. Isot. **55** (2001) 303-308. EXFOR: A0248

Yield

SHARMA, H.L., ZWEIT, J., DOWNEY, S., SMITH, A., SMITH, A.G., Production of ¹²⁴I for positron-emission tomography, J. Labelled Compd. Radiopharm. **26** (1988) 165-167. EXFOR: no

Integral yield at 20 MeV was deduced by adding the recommended integral yield at 15 MeV to the experimental data of Sharma et al. (15 to 20 MeV).

LAMBRECHT, R.M., SAJJAD, M., QURESHI, M.A., AL-YANBAWI, S.J., Production of ¹²⁴I, J. Radioanal. Nucl. Chem. 127 (**1988**) 143-150. EXFOR: no

CLEM, R.G., LAMBRECHT, R.M., Enriched ¹²⁴Te targets for production of ¹²³I and ¹²⁴I, Nucl. Instrum. Methods A **303** (1991) 115-118. EXFOR: no

All experimental cross-section data are shown in Fig. 7.87, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.88. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.89. Yields determined from the recommended cross sections are presented in Fig. 7.90, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.36.

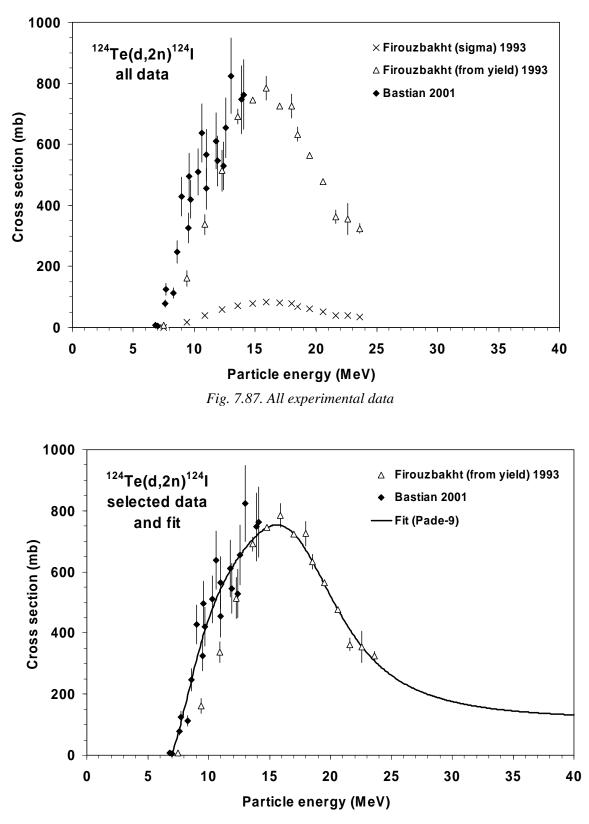


Fig. 7.88. Selected experimental data and the recommended curve (fit)

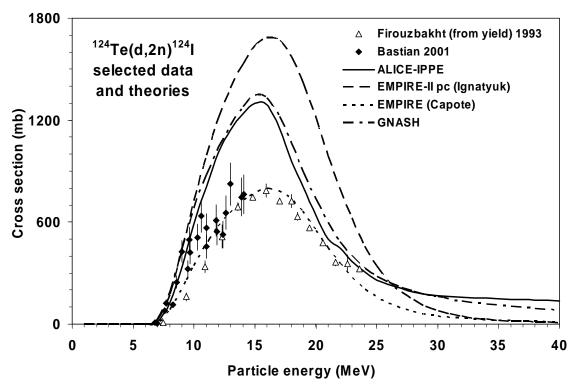


Fig. 7.89. Selected experimental data and theoretical calculations

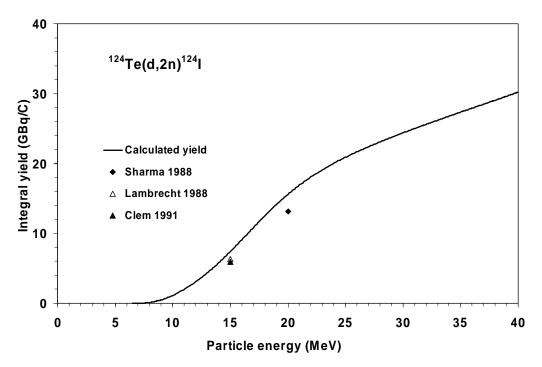


Fig. 7.90. Calculated integral yield curve based on the recommended cross sections

124 Te(d,2n) 124 I	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
6.5	0	0	0.0
7.0	6	0	0.0
7.5	71	3	0.0
8.0	148	11	0.1
8.5	231	26	0.3
9.0	310	47	0.5
9.5	382	75	0.8
10.0	445	109	1.1
10.5	499	149	1.5
11.0	545	194	2.0
11.5	584	244	2.5
12.0	619	300	3.1
12.5	649	360	3.7
13.0	677	424	4.4
13.5	701	492	5.1
14.0	721	564	5.8
14.5	738	640	6.6
15.0	749	719	7.4
15.5	754	800	8.2
16.0	751	884	9.1
16.5	742	968	10.0
17.0	725	1053	10.8
17.5	701	1137	11.7
18.0	671	1219	12.5
18.5	636	1298	13.3
19.0	599	1374	14.1
19.5	560	1448	14.9
20.0	522	1517	15.6
20.5	485	1583	16.3
21.0	450	1645	16.9
21.5	417	1703	17.5
22.0	387	1758	18.1
22.5	360	1810	18.6
23.0	336	1859	19.1
23.5	314	1906	19.6
24.0	294	1950	20.0
24.5	277	1992	20.5
25.0	262	2033	20.9
25.5	248	2071	21.3
26.0	236	2109	21.7
26.5	225	2145	22.0
27.0	215	2180	22.4
27.5	207	2214	22.8
28.0	199	2247	23.1
28.5	192	2279	23.4
29.0	186	2311	23.7
29.5	180	2342	24.1
30.0	175	2372	24.4
30.5	171	2402	24.7
31.0	167	2432	25.0

TABLE 7.36. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS
--

124 Te(d,2n) 124 I	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
31.5	163	2461	25.3
32.0	160	2490	25.6
32.5	157	2519	25.9
33.0	154	2547	26.2
33.5	151	2576	26.5
34.0	149	2604	26.8
34.5	147	2632	27.0
35.0	145	2660	27.3
35.5	143	2688	27.6
36.0	141	2716	27.9
37.0	138	2771	28.5
37.5	137	2799	28.8
38.0	136	2827	29.1
38.5	135	2854	29.3
39.0	133	2882	29.6
39.5	132	2910	29.9
40.0	132	2938	30.2

As mentioned above, the co-production of ¹²⁵I impurity is of concern and should be taken into account by the user. Thin-target yields were calculated from the cross sections reported by Bastian *et al.* (2001), and ¹²⁵I /¹²⁴I yield ratios were derived as a function of incident deuteron energy as shown in Fig. 7.91. These data show clearly that radioisotope production at energies below 11 MeV should be avoided.

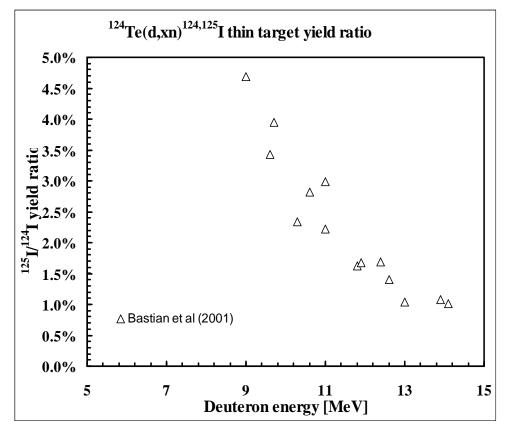


FIG. 7.91. Thin-target ${}^{125}I/{}^{124}I$ yield ratios for the ${}^{124}Te(d,xn){}^{124,125}I$ production route

E. ¹²⁵Te(p,2n)¹²⁴I reaction

Only one set of experimental data reported by Hohn *et al.* (2001) exists for the $^{125}I(p,2n)^{124}I$ reaction in the energy range up to 100 MeV, and these measured data are supported very well by ALICE, EMPIRE and GNASH calculations. Fig. 7.93 shows this good agreement between the theoretical curves and the experimental studies. A further attempted validation exercise involved the calculation of the thick-target yields from the experimental cross sections. The resulting data are compared in Fig. 7.94 with thick-target yield measurements found in the literature, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.37. The obvious discrepancies make this validation effort inconclusive. Nevertheless, the evaluator tends to favour the data set reported by Hohn *et al.*, which is well supported by theory.

Bibliography, evaluation and selection

Cross section

HOHN, A., NORTIER, F.M., SCHOLTEN, B., VAN DER WALT, T.N., COENEN, H.H., QAIM, S.M., Excitation functions of ¹²⁵Te(p,xn)-reactions from their respective thresholds up to 100 MeV with special reference to the production of ¹²⁴I, Appl. Radiat. Isot. **55** (2001) 149-156. EXFOR: A0215

Yield

DMITRIEV, P.P., Systematics of nuclear reaction yields for thick target at 22 MeV proton energy, Vop. At. Nauki i Tekhn., Ser.Yad. Konst. 2 (1983) 57-61. EXFOR: A0195

VAIDYANATHAN, G., WIELAND, B.W., LARSEN, R.H., ZALUTSKY, M.R., High-yield production of ¹²⁴I using the ¹²⁵Te(p,2n)¹²⁴I reaction, S116, pp. 87-89 in Proc. 6th Int. Workshop on Targetry and Target Chemistry, Vancouver, BC, Canada, 17–19 August 1995. EXFOR: no

Yield results were converted to GBq/C, assuming that the data are not saturation but physical yields.

KIM, J.H., LEE, J.S., LEE, T.S., PARK, H., CHUN, K.S., Optimization studies on the production of high-purity ¹²⁴I using (p,2n) reaction, J. Labelled Compd. Radiopharm. **50** (2007) 511-512. EXFOR: O1538

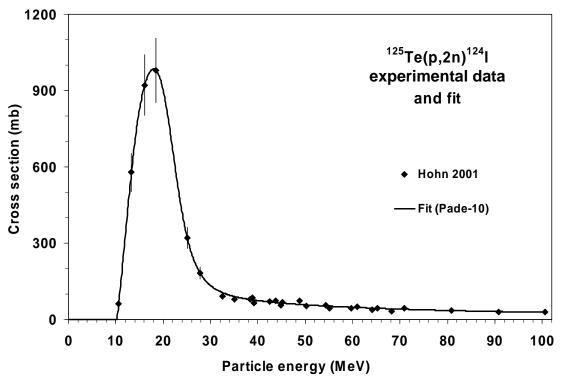


FIG. 7.92. Experimental data and the fitted curve (fit)

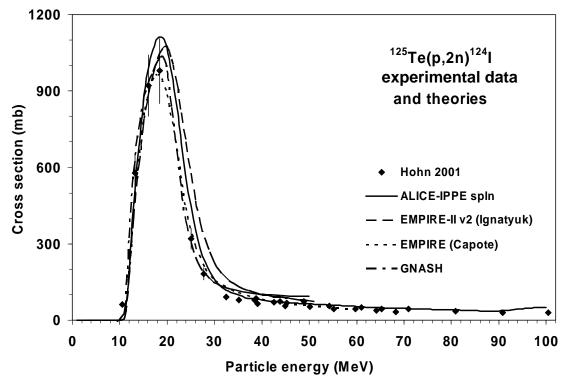


FIG. 7.93. Experimental data and theoretical calculations

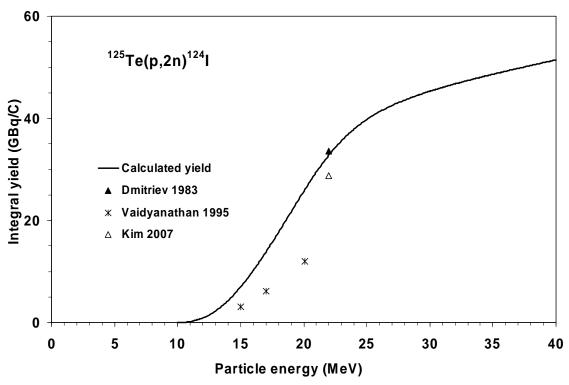


FIG. 7.94. Calculated integral yield curve based on the fitted cross sections

125 Te(p,2n) 124 I	Cross section	Integra	l vield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
10.0	0	0	0.0
10.5	46	2	0.0
11.0	134	16	0.2
11.5	228	43	0.4
12.0	328	85	0.9
12.5	428	143	1.5
13.0	524	218	2.2
13.5	614	309	3.2
14.0	695	417	4.3
14.5	766	540	5.6
15.0	826	678	7.0
15.5	875	827	8.5
16.0	915	988	10.2
16.5	946	1160	11.9
17.0	967	1339	13.8
17.5	980	1527	15.7
18.0	984	1718	17.7
18.5	979	1912	19.7
19.0	964	2109	21.7
19.5	938	2305	23.7
20.0	901	2499	25.7
20.5	854	2686	27.6
21.0	798	2865	29.4
21.5	735	3034	31.2
22.0	668	3191	32.8
22.5	601	3335	34.3
23.0	536	3465	35.6
23.5	475	3584	36.8
24.0	420	3690	37.9
24.5	371	3785	38.9
25.0	328	3870	39.8
25.5	291	3947	40.6
26.0	260	4016	41.3
26.5	233	4079	41.9
27.0	211	4137	42.5
27.5	192	4190	43.1
28.0	176	4239	43.6
28.5	162	4285	44.0
29.0	151	4328	44.5
29.5	141	4368	44.9
30.0	133	4407	45.3
30.5	126	4444	45.7
31.0	120	4479	46.0
31.5	114	4513	46.4
32.0	110	4546	46.7
32.5	105	4579	47.1
33.0	102	4610	47.4
33.5	98	4641	47.7
34.0	95	4671	48.0

TABLE 7.37. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

Table	7.37	cont'd	
-------	------	--------	--

125 Te(p,2n) 124 I	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
34.5	93	4700	48.3
35.0	90	4730	48.6
35.5	88	4758	48.9
36.0	86	4787	49.2
36.5	84	4815	49.5
37.0	83	4842	49.8
37.5	81	4870	50.1
38.0	79	4897	50.3
38.5	78	4924	50.6
39.0	77	4951	50.9
39.5	75	4978	51.2
40.0	74	5004	51.4

The co-production of ¹²⁵I impurity is of concern, and should be taken into account by the user. Hohn *et al.* (2001) measured the cross sections for the production of both ¹²⁴I and ¹²⁵I. Thin-target yields were calculated from the reported cross sections, and the ¹²⁵I /¹²⁴I yield ratios are shown in Fig. 7.96 as a function of the proton energy. Based upon the curves in the figure, an exit proton energy of 11 MeV or higher is recommended.

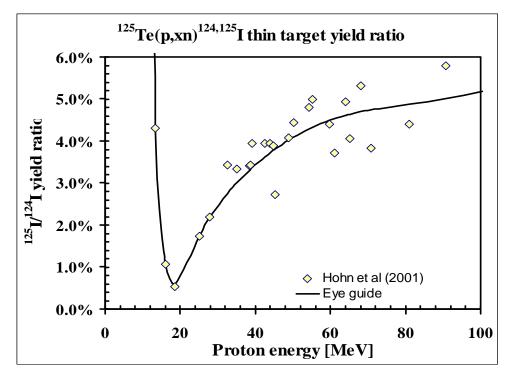


FIG. 7.95. Thin-target ${}^{125}I/{}^{124}I$ yield ratios for the ${}^{125}Te(p,xn){}^{124,125}I$ production route.

7.9. Charged-particle production of ¹²⁵I

Iodine-125 is an intense Auger electron emitter, and can be attached to DNA compounds which have a chance to reach the cell nucleus and produce a therapeutic effect. Iodine-125 is used extensively in radioimmunoassay. It is generally produced in a nuclear reactor. Here it is considered as an impurity in the accelerator production of 124 I via the 124 Te(p,n) 124 I, 124 Te(d,2n) 124 I and 125 I(p,2n) 124 I reactions. A simplified decay scheme is shown in Fig. 7.96, and the main emissions as defined in Table 7.38 [7.2, 7.3] were taken from NuDat 2.4 [7.3].

A. Decay data

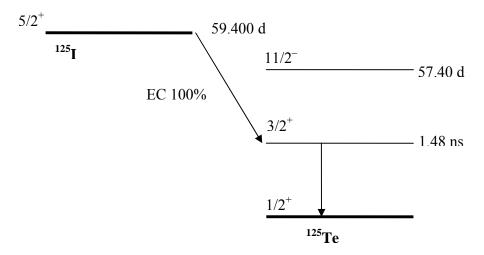


FIG. 7.96. Simplified decay scheme of ^{125}I [7.3]

125 _T	Decay mode:	EC 100 %
1	$T_{1/2}$:	59.400 d
Radiation	Intensity	Energy (MeV)
γ1	6.68×10 ⁻⁰²	3.549×10 ⁻⁰²
ce-K, y 1	8.02×10 ⁻⁰¹	3.678×10 ⁻⁰³
ce-L, y 1	1.08×10^{-01}	3.055×10 ⁻⁰² a
ce-M, y 1	2.15×10 ⁻⁰²	3.449×10 ⁻⁰² ^a
$K_{\alpha 1}$ X-ray	7.44×10 ⁻⁰¹	2.747×10 ⁻⁰²
$K_{\alpha 2}$ X-ray	4.00×10^{-01}	2.720×10 ⁻⁰²
K_{β} X-ray	2.59×10 ⁻⁰¹	3.100×10 ⁻⁰² *
L X-ray	1.49×10^{-01}	3.770×10 ⁻⁰³ *
Auger-K	2.00×10 ⁻⁰¹	2.270×10 ⁻⁰² *
Auger-L	1.58	3.190×10 ⁻⁰³ *

TABLE 7.38. MAIN EMISSIONS [7.2, 7.3]

* Average energy (MeV)

^a Maximum energy (MeV) for subshell

B. Production routes

Target isotope	Natural abundance	Reaction	Q-value (MeV)	Threshold energy (MeV)
¹²⁵ Te	7.07%	(p,n)	-0.97	0.98
¹²⁴ Te	4.74%	(d,n)	3.4	0.0

TABLE 7.39. INVESTIGATED PRODUCTION ROUTES [7.3, 7.4]

C. ¹²⁵Te(p,n)¹²⁵I reaction

The ${}^{125}\text{Te}(p,n){}^{125}\text{I}$ reaction is important in assessing the ${}^{125}\text{I}$ impurity level in ${}^{124}\text{I}$ produced via the ${}^{125}\text{I}(p,2n){}^{125}\text{I}$ reaction.

Bibliography, evaluation and selection

Cross section

JOHNSON, C.H., GALONSKY, A., INSKEEP, C.N., Cross sections for (p,n) reactions in cadmium and tellurium isotopes, Rep. ORNL-2501, Oak Ridge National Laboratory, TN (1958) p. 29. EXFOR: T0138 *Detected particle: neutron.*

HOHN, A., NORTIER, F.M., SCHOLTEN, B., VAN DER WALT, T.N., COENEN, H.H., QAIM, S.M., Excitation functions of ¹²⁵Te(p,xn)-reactions from their respective thresholds up to 100 MeV with special reference to the production of ¹²⁴I, Appl. Radiat. Isot. **55** (2001) 149-156. EXFOR: A0215

Yield

No data were found.

Selected measurements are compared with the resulting statistical fit to these data in Fig. 7.97. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.98. Yields determined from the recommended cross sections are presented in Fig. 7.99, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.40.

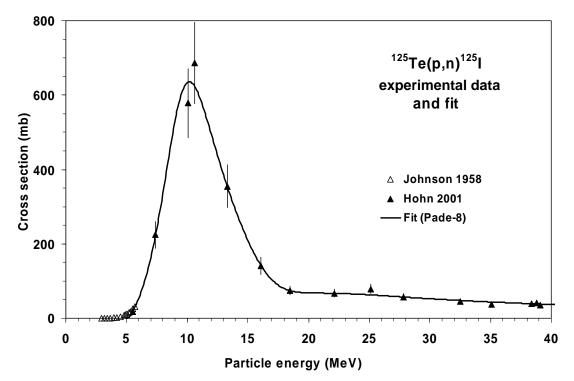


FIG. 7.97. Experimental data and the recommended curve (fit)

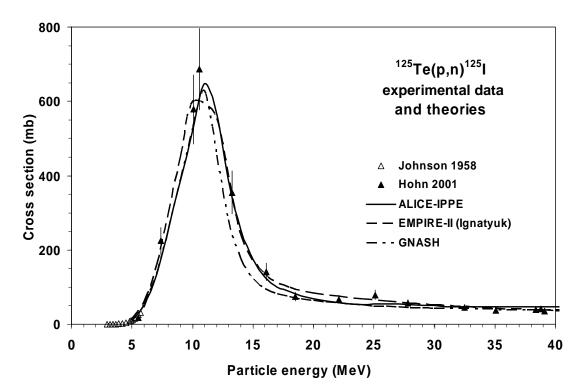


FIG. 7.98. Experimental data and theoretical calculations

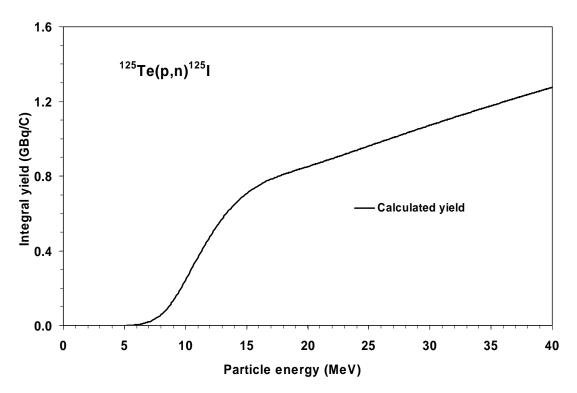


FIG. 7.99. Calculated integral yield curve based on the recommended cross sections

$^{125}\text{Te}(p,n)^{125}\text{I}$	Cross section	Integra	-
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
5.0	0	0.0	0.00
5.5	18	0.0	0.00
6.0	53	0.3	0.00
6.5	100	0.8	0.01
7.0	162	1.8	0.02
7.5	241	3.3	0.03
8.0	335	5.6	0.06
8.5	437	8.8	0.09
9.0	531	12.9	0.13
9.5	600	17.9	0.18
10.0	633	23.5	0.24
10.5	629	29.4	0.30
11.0	597	35.3	0.36
11.5	549	41.0	0.42
12.0	494	46.3	0.48
12.5	439	51.1	0.53
13.0	385	55.5	0.57
13.5	336	59.5	0.61
14.0	290	63.0	0.65
14.5	248	66.1	0.68
15.0	210	68.8	0.71
15.5	176	71.1	0.73
16.0	146	73.1	0.75
16.5	122	74.8	0.77
17.0	103	76.2	0.78
17.5	89	77.5	0.80
18.0	80	78.6	0.81
18.5	74	79.7	0.82
19.0	71	80.7	0.83
19.5	69	81.7	0.84
20.0	68	82.7	0.85
20.5	68	83.8	0.86
21.0	68	84.8	0.87
21.5	67	85.9	0.88
22.0	67	86.9	0.89
22.5	67	88.0	0.90
23.0	66	89.1	0.90
23.5	65	90.2	0.92
24.0	65	91.3	0.94
24.5	64	92.4	0.95
25.0	63	93.5	0.96
25.5	62	94.6	0.90
26.0	61	95.7	0.98
26.5	60	96.8	0.98
27.0	59	97.9	1.01
27.5	58	98.9	1.01
28.0	57	100.0	1.02

TABLE 7.40. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

125 Te(p,n) 125 I	Cross section	Integra	ıl yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
28.5	56	101.1	1.04
29.0	54	102.2	1.05
29.5	53	103.2	1.06
30.0	52	104.3	1.07
30.5	51	105.3	1.08
31.0	51	106.4	1.09
31.5	50	107.4	1.10
32.0	49	108.4	1.11
32.5	48	109.4	1.12
33.0	47	110.5	1.14
33.5	46	111.5	1.15
34.0	45	112.5	1.16
34.5	44	113.5	1.17
35.0	44	114.4	1.18
35.5	43	115.4	1.19
36.0	42	116.4	1.20
36.5	42	117.4	1.21
37.0	41	118.3	1.22
37.5	40	119.3	1.23
38.0	40	120.2	1.24
38.5	39	121.2	1.25
39.0	38	122.1	1.26
39.5	38	123.1	1.26
40.0	37	124.0	1.27

Table 7.40 cont'd

D. ¹²⁴Te(d,n)¹²⁵I reaction

The 124 Te(d,n) 125 I reaction is important when considering the 125 I impurity level 124 I produced via the 124 I(d,2n) reaction.

Bibliography, evaluation and selection

Cross section

BASTIAN, TH., COENEN, H.H., QAIM, S.M., Excitation functions of 124 Te(d,xn) 124,125 I reactions from threshold up to 14 MeV: Comparative evaluation of nuclear routes for the production of 124 I, Appl. Radiat. Isot. **55** (2001) 303-308. EXFOR: A0248

Yield

SHARMA, H.L., ZWEIT, J., DOWNEY, S., SMITH, A.M., SMITH, A.G., Production of ¹²⁴I for positron emission tomography, J. Labelled Compd. Radiopharm. **26** (1989) 165-167. EXFOR: no

Within the 15 - 8 MeV energy window, $1.8 \ \mu Ci/\mu Ah$ yield of ^{125}I were measured on 91.7%-enriched ^{124}Te target. This value is significantly lower than the thick target yield calculated from the recommended cross section for the same energy range (14 $\mu Ci/\mu Ah$).

Bastian 2001 measurements are compared with the resulting statistical fit to these data in Fig. 7.100. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.101. Yields determined from the recommended cross sections are presented in Fig. 7.102, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.41.

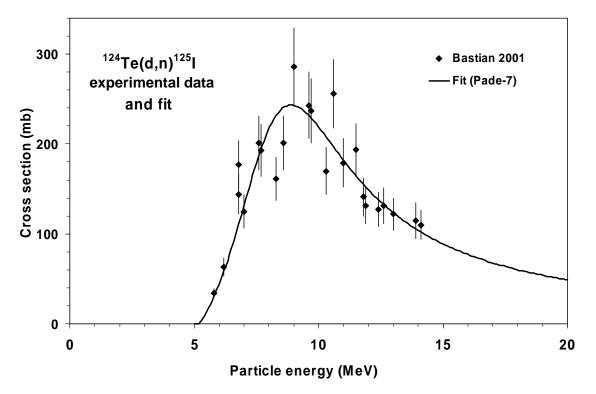


FIG. 7.100. Experimental data and the recommended curve (fit)

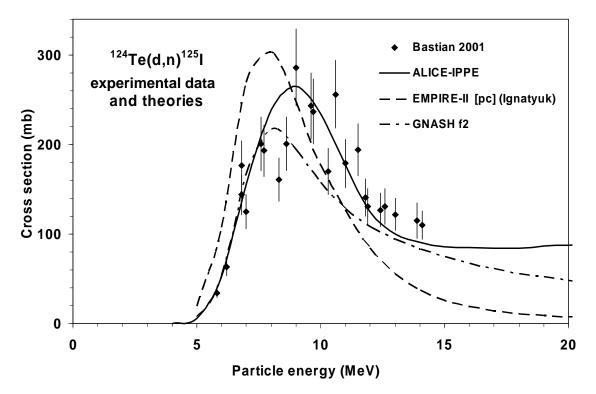


FIG. 7.101. Experimental data and theoretical calculations

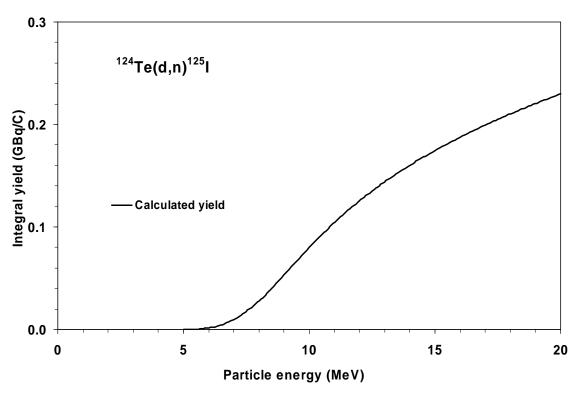


FIG. 7.102. Calculated integral yield curve based on the recommended cross sections

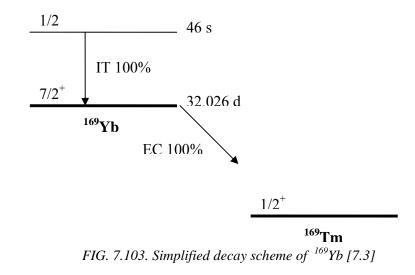

¹²⁴ Te(d,n) ¹²⁵ I Cross section		Integra	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)	
5.0	0	0.0	0.000	
5.5	13	0.0	0.000	
6.0	44	0.1	0.002	
6.5	84	0.4	0.005	
7.0	131	0.9	0.010	
7.5	178	1.7	0.018	
8.0	217	2.7	0.028	
8.5	239	3.9	0.040	
9.0	243	5.2	0.053	
9.5	235	6.5	0.067	
10.0	219	7.8	0.080	
10.5	200	9.0	0.093	
11.0	182	10.1	0.104	
11.5	165	11.2	0.115	
12.0	149	12.2	0.125	
12.5	135	13.1	0.135	
13.0	123	14.0	0.144	
13.5	113	14.8	0.152	
14.0	104	15.6	0.160	
14.5	96	16.3	0.168	
15.0	89	17.0	0.175	
15.5	83	17.6	0.181	
16.0	77	18.2	0.188	
16.5	72	18.8	0.194	
17.0	68	19.4	0.199	
17.5	64	19.9	0.205	
18.0	60	20.5	0.210	
18.5	57	21.0	0.215	
19.0	54	21.4	0.220	
19.5	51	21.9	0.225	
20.0	49	22.4	0.230	

TABLE 7.41. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

7.10. Charged-particle production of ^{169g}Yb

All of the rare-earth radionuclides considered are useful or potentially useful for the treatment of bone metastases. Ytterbium-169 has also been evaluated for use in brachytherapy. A simplified decay scheme is shown in Fig. 7.103, and the main emissions as defined in Table 7.42 were taken from NuDat 2.4 [7.3].

A. Decay data

	Decey mode:	EC 100%
^{169g} Yb	Decay mode: $T_{1/2}$:	32.026 d
Radiation	Energy (keV)	Intensity (%)
ce K	3.7312	40.4
Auger L	5.67	164
ce M	6.1035	72
ce NP	7.9386	23.3
ce L	10.636	8.3
ce M	18.445	1.86
ce K	34.2255	8.24
Auger K	40.9	10.8
ce K	50.3903	34.9
ce L	53.0051	7.21
ce K	58.8006	1.32
ce M	60.8140	1.60
ce K	71.1341	6.19
ce L	83.4994	1.40
ce L	99.6642	5.70
ce M	107.4731	1.28
ce L	108.0745	1.36
ce K	117.8244	10.61
ce L	120.4080	5.28
ce M	128.2169	1.278
ce K	138.5683	13.03
ce L	167.0983	1.91
ce L	187.8422	2.15
X-ray l	7.18	48.1
$K_{\alpha 2}$ X-ray	49.773	53.2
$K_{\alpha 1}$ X-ray	50.742	92.7
K _{β3} X-ray	57.3	9.99
K _{β1} X-ray	57.505	19.3
K ₆₂ X-ray	59.028	6.49
γ	63.012	1.1
γ	63.12077	44.2
γ	93.61514	2.61
γ	109.77987	17.5
γ	118.19018	1.87
γ	130.52368	11.31
γ	177.21402	22.2
γ	197.95788	35.8
γ	261.07857	1.71
γ	307.73757	10.05
1	501.15151	10.00

TABLE 7.42. MAIN EMISSIONS [7.3]

B. Production routes

Large-scale production of ¹⁶⁹Yb occurs via the (n,γ) reaction on ¹⁶⁸Yb in nuclear reactors. This route yields a product of low specific activity, especially if natural Yb targets are irradiated. Higher specific activity can be obtained by using highly enriched ¹⁶⁸Yb targets, but the product will still contain significant amounts of the carrier. Therefore, alternative production routes utilizing charged-particle induced processes on the monoisotopic target ¹⁶⁹Tm (Table 7.43) or stable isotopes of erbium and ytterbium would appear to be of interest.

Target isotope	Natural abundance	Reaction	Q-value (MeV)	Threshold energy (MeV)
¹⁶⁹ Tm	100%	(p,n)	-1.7	1.7
¹⁶⁹ Tm	100%	(d,2n)	-3.9	4.0

TABLE 7.43. INVESTIGATED PRODUCTION ROUTES [7.3, 7.4]

C. ¹⁶⁹Tm(p,n)¹⁶⁹Yb reaction

Two experimental data sets exist in the literature. Birattari *et al.* (1973) measured the excitation function of the ${}^{169}\text{Tm}(p,n){}^{169}\text{Yb}$ reaction up to 44 MeV in a systematic study of the preequilibrium process. The second data set was measured up to 45 MeV for the CRP in a collaboration between INC FZJ (Jülich) and ATOMKI (Debrecen) to complete and verify the earlier data of Birattari *et al.*

The shape of the two data sets are similar, but there is a factor of nearly 1.5 difference in the absolute values – no real explanation can be given for this difference. The final recommended data are based on the fitted experimental data of Spahn *et al.* (2005), and arise as a consequence of the more detailed cross section measurements near the maximum and the more realistic effective threshold (Birattari *et al.* (1973) data at low energies are shifted towards lower energies).

Bibliography, evaluation and selection

Cross section

BIRATTARI, C., GADLOLI, E., GADIOLI ERBA, E., GRASSI STRINI, A.M., STRINI, G., TAGLIAFERRI, G., Pre-equilibrium processes in (p,n) reactions, Nucl. Phys. A **201** (1973) 579-592.

EXFOR: B0018

This dataset was not taken into account in the fitting process.

SPAHN, I., TAKÁCS, S., SHUBIN, YU.N., TÁRKÁNYI, F., COENEN, H.H., QAIM, S.M., Cross section measurement of the ¹⁶⁹Tm(p,n) reaction for the production of the therapeutic radionuclide ¹⁶⁹Yb and comparison with its reactor-based generation, Appl. Radiat. Isot. **63** (2005) 235-239. EXFOR: D4148

Yield

No data were found.

All experimental cross-section data are shown in Fig. 7.104 and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.105. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.106. Yields determined from the recommended cross sections are presented in Fig. 7.107, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.44.

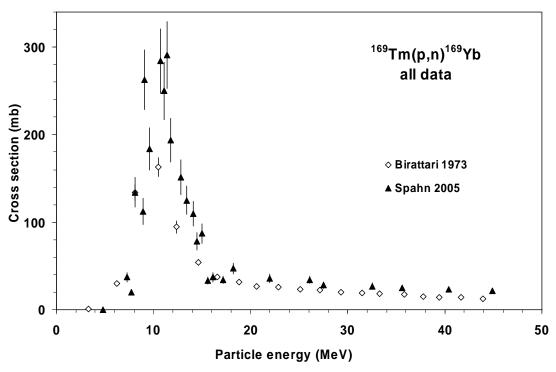


FIG. 7.104. All experimental data

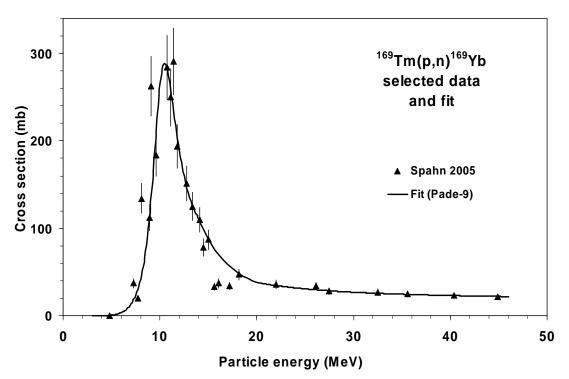


FIG. 7.105. Selected experimental data and the recommended curve (fit)

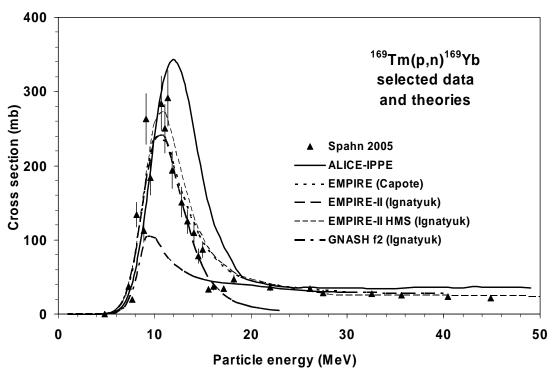


FIG. 7.106. Selected experimental data and theoretical calculations

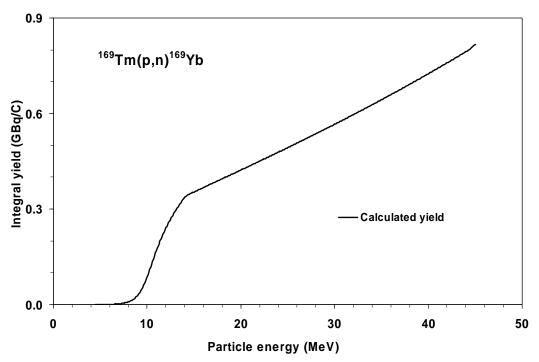


FIG. 7.107. Calculated integral yield curve based on the recommended cross sections

⁶⁹ Tm(p,n) ¹⁶⁹ Yb	Cross section	6 5	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
4.5	0.0	0.00	0.0000
5.0	0.5	0.00	0.0000
5.5	1.5	0.01	0.0001
6.0	3.5	0.04	0.0004
6.5	7.0	0.1	0.001
7.0	13.1	0.2	0.002
7.5	23.6	0.4	0.004
8.0	41.8	0.8	0.008
8.5	73.0	1.6	0.016
9.0	124.1	2.9	0.029
9.5	195.7	5.1	0.052
10.0	264.2	8.4	0.086
10.5	288.9	12.4	0.128
11.0	266.3	16.5	0.120
11.5	226.2	20.2	0.208
12.0	188.8	23.4	0.200
12.5	159.5	26.1	0.240
13.0	137.8	28.5	0.208
13.5	122.3	30.7	0.295
14.0	111.7	32.7	0.336
14.5	40.1	33.7	0.330
15.0	36.5	34.4	0.347
15.5	35.6	34.4	0.353
		35.7	
16.0	34.8		0.367
16.5	34.0	36.4	0.374
17.0	33.3	37.1	0.381
17.5	32.6	37.7	0.388
18.0	32.0	38.4	0.395
18.5	31.4	39.1	0.402
19.0	30.9	39.8	0.409
19.5	30.4	40.4	0.416
20.0	29.9	41.1	0.422
20.5	29.4	41.8	0.429
21.0	29.0	42.5	0.436
21.5	28.6	43.1	0.443
22.0	28.3	43.8	0.450
22.5	27.9	44.5	0.457
23.0	27.6	45.2	0.464
23.5	27.3	45.9	0.471
24.0	27.0	46.6	0.478
24.5	26.7	47.2	0.486
25.0	26.4	47.9	0.493
25.5	26.1	48.6	0.500
26.0	25.9	49.3	0.507
26.5	25.7	50.0	0.514
27.0	25.4	50.8	0.522

TABLE 7.44. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

Table 7.44 cont'd

¹⁶⁹ Tm(p,n) ¹⁶⁹ Yb	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
27.5	25.2	51.5	0.529
28.0	25.0	52.2	0.536
28.5	24.8	52.9	0.544
29.0	24.6	53.6	0.551
29.5	24.5	54.3	0.559
30.0	24.3	55.1	0.566
30.5	24.1	55.8	0.574
31.0	24.0	56.5	0.581
31.5	23.8	57.3	0.589
32.0	23.7	58.0	0.596
32.5	23.5	58.8	0.604
33.0	23.4	59.5	0.612
33.5	23.3	60.3	0.620
34.0	23.1	61.1	0.627
34.5	23.0	61.8	0.635
35.0	22.9	62.6	0.643
35.5	22.8	63.4	0.651
36.0	22.7	64.1	0.659
36.5	22.6	64.9	0.667
37.0	22.5	65.7	0.675
37.5	22.4	66.5	0.684
38.0	22.3	67.3	0.692
38.5	22.2	68.1	0.700
39.0	22.1	68.9	0.708
39.5	22.0	69.7	0.717
40.0	21.9	70.6	0.725
40.5	21.8	71.4	0.734
41.0	21.8	72.2	0.742
41.5	21.7	73.0	0.751
42.0	21.6	73.9	0.759
42.5	21.5	74.7	0.768
43.0	21.5	75.5	0.776
43.5	21.4	76.4	0.785
44.0	21.3	77.3	0.794
44.5	28.1	78.3	0.805
45.0	27.6	79.4	0.816

D. ¹⁶⁹Tm(d,2n)¹⁶⁹Yb reaction

Only one set of published experimental data exists up to 20 MeV as measured by Tarkanyi *et al.* (2006) on the recommendation of the CRP. New data have been measured recently by Hermanne *et al.* (2007) up to 40 MeV, but only preliminary data exist.

Bibliography, evaluation and selection

Cross section

TÁRKÁNYI, F., HERMANNE, A., TAKÁCS, S., DITRÓI, F., SPAHN, I., KOVALEV, S.F., IGNATYUK, A.V., QAIM, S.M., Activation cross sections of the ¹⁶⁹Tm(d,2n) reaction for production of the therapeutic radionuclide ¹⁶⁹Yb, Appl. Radiat. Isot **65** (2007) 663-668. EXFOR: D4180

HERMANNE, A., TÁRKÁNYI, F., TAKÁCS, S., DITRÓI, F., BABA, M., OHTSUKI, T., SPAHN, I., KOVALEV, S.F., IGNATYUK, A., QAIM, S.M., Excitation functions for production of medically relevant radioisotopes in deuteron irradiations of Pr and Tm targets, J. Labelled Compd. Radiopharm., Suppl. **50** (2007) 102.

EXFOR: no

The numerical data are still preliminary, and are not included in this CRP.

Yield

No data were found

Tarkanyi 2007 measurements are compared with the resulting statistical fit to these data in Fig. 7.108. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.109. Yields determined from the recommended cross sections are presented in Fig. 7.110, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.45.

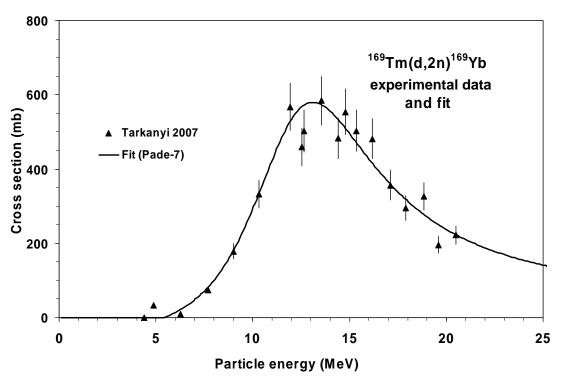


FIG. 7.108. Experimental data and the recommended curve (fit)

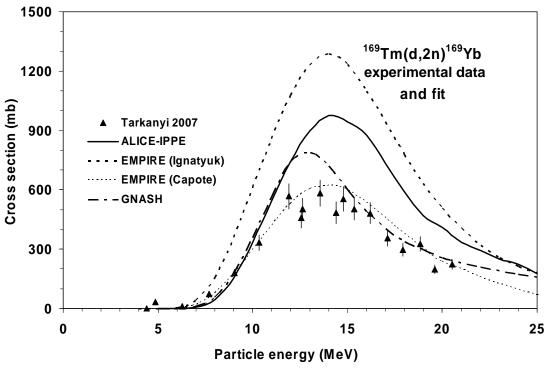


FIG. 7.109. Experimental data and theoretical calculations

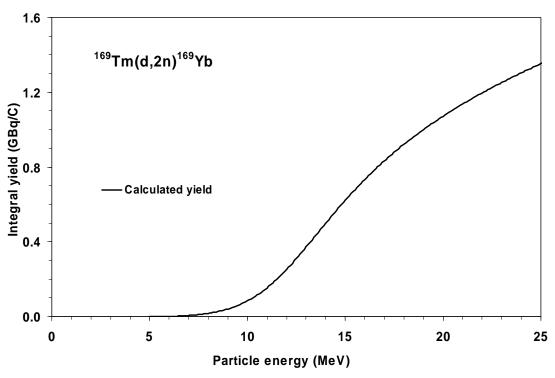


FIG. 7.110. Calculated integral yield curve based on the recommended cross sections

169 Tm(d,2n) 169 Yb	Cross section	Integral yield		
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)	
5.0	0	0.0	0.000	
5.5	2	0.0	0.000	
6.0	14	0.1	0.001	
6.5	29	0.2	0.002	
7.0	48	0.5	0.005	
7.5	71	1.0	0.010	
8.0	100	1.6	0.017	
8.5	137	2.6	0.027	
9.0	180	4.0	0.041	
9.5	232	5.8	0.059	
10.0	292	8.1	0.084	
10.5	357	11.2	0.11	
11.0	423	14.9	0.15	
11.5	485	19.4	0.20	
12.0	534	24.5	0.25	
12.5	566	30.2	0.31	
13.0	580	36.2	0.37	
13.5	575	42.4	0.44	
14.0	556	48.6	0.50	
14.5	528	54.7	0.56	
15.0	495	60.5	0.62	
15.5	461	66.1	0.68	
16.0	427	71.3	0.73	
16.5	395	76.3	0.78	
17.0	365	81.0	0.83	
17.5	338	85.5	0.88	
18.0	313	89.6	0.92	
18.5	291	93.6	0.96	
19.0	271	97.4	1.00	
19.5	254	100.9	1.04	
20.0	238	104.3	1.07	
20.5	223	107.6	1.11	
21.0	210	110.7	1.14	
21.5	199	113.6	1.17	
22.0	188	116.5	1.20	
22.5	178	119.2	1.23	
23.0	170	121.9	1.25	
23.5	162	124.4	1.28	
24.0	154	126.9	1.30	
24.5	148	129.3	1.33	
25.0	141	131.6	1.35	

TABLE 7.45. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

7.11. Charged particle production of ^{177g}Lu

¹⁷⁷Lu has excellent properties for application in therapy (498-keV $β^-$ emission of 79.4%), and the photon emissions are ideally suited for imaging and localization with gamma cameras. A simplified decay scheme is shown in Fig. 7.111, and the main emissions as defined in Table 7.46 were taken from NuDat 2.4 [7.3].

All rare-earth radionuclides are useful or potentially useful for the treatment of bone metastases. More specifically, ¹⁷⁷Lu is attracting great attention for the labelling of monoclonal antibodies in therapeutic applications.

A. Decay data

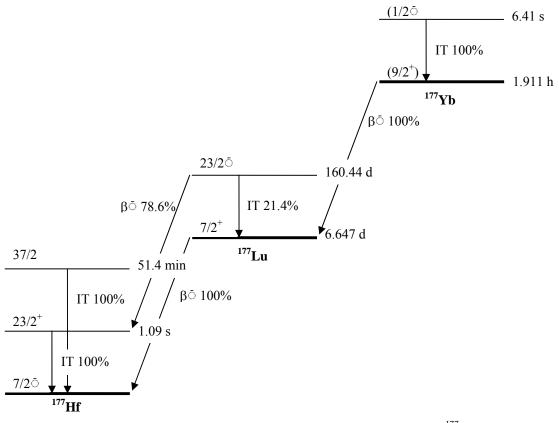


FIG. 7.111. Simplified decay scheme of ¹⁷⁷Lu [7.3]

^{177g} Lu	Decay mode:	β ⁻ 100%	
Lu	$T_{1/2}$:	6.647 d	
Radiation	Energy (keV)	End-point energy	Intensity
Kaulation	Ellergy (kev)	(keV)	(%)
β-	47.66	177.0	11.61
β-	78.61	248.6	0.006
β-	111.69	385.3	9.0
β-	149.35	498.3	79.4
γ	112.9498		6.17
γ	208.3662		10.36

TABLE 7.46. MAIN EMISSIONS [7.3]

B. Production routes

¹⁷⁷Lu is predominantly produced in reactors by neutron-capture on ^{nat}Lu or enriched ¹⁷⁶Lu. However, since efficient labelling of the biomolecules requires very high specific activity, production is confined to high-flux reactors. A possible alternative involves employing the ¹⁷⁶Yb(n, γ)¹⁷⁷Yb \rightarrow ¹⁷⁷Lu reaction to give a nearly carrier-free product, and this route has been studied. Possible increases in the yield of high-activity, carrier-free ^{177g}Lu by means of deuteron-induced reactions on Yb targets have also been investigated, as defined in Table 7.47.

TABLE 7.47. INVESTIGATED PRODUCTION ROUTES [7.3, 7.4]

Target isotope	Natural abundance	Reaction	Q-value (MeV)	Threshold energy (MeV)
¹⁷⁶ Yb	12.76%	$(\mathbf{d},\mathbf{n})^{177}\mathbf{L}\mathbf{u}$ $(\mathbf{d},\mathbf{p})^{177}\mathbf{Y}\mathbf{b} \rightarrow {}^{177}\mathbf{g}\mathbf{L}\mathbf{u}$	4.0	0.0
¹⁷⁶ Yb	12.76%		3.3	0.0

C. ¹⁷⁶Yb(d,n)^{177g}Lu reaction

Bibliography, evaluation and selection

Cross section

HERMANNE, A., TAKACS, S., GOLDBERG, M.B., LAVIE, E., SHUBIN, YU.N., KOVALEV, S., Deuteron-induced reactions on Yb: Measured cross sections and rationale for production pathways of carrier-free, medically relevant radionuclides, Nucl. Instrum. Methods B **247** (2006) 223-231.

EXFOR: D4175

Cross sections for the 176 Yb(d,n) 177g Lu reaction were deduced by subtracting the contribution of the directly measured 176 Yb(d,n) 177g Vb reaction from the 176 Yb(d,n) 177g Lu reaction determined after the decay of 177 Yb. The resulting excitation function of the 176 Yb(d,n) 177g Lu reaction with respect to energy scale, tendency and magnitude is highly disputable. However, taking into account the small contribution of the (d,n) process to the production of 177g Lu (compared with the indirect (d,p) route), the (d,p) and (d,x) data could effectively be used.

Yield

No data were found.

Hermanne 2006 measurements are compared with the resulting statistical fit to these data in Fig. 7.112. Excitation functions have been calculated by means of the ALICE-IPPE and EMPIRE nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.113. Yields determined from the recommended cross sections are presented in Fig. 7.114, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.48.

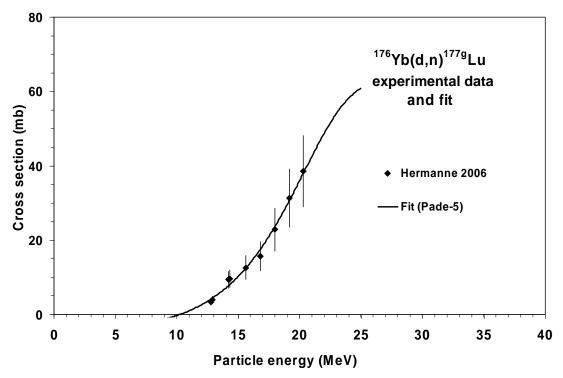


FIG. 7.112. Experimental data and the recommended curve (fit)

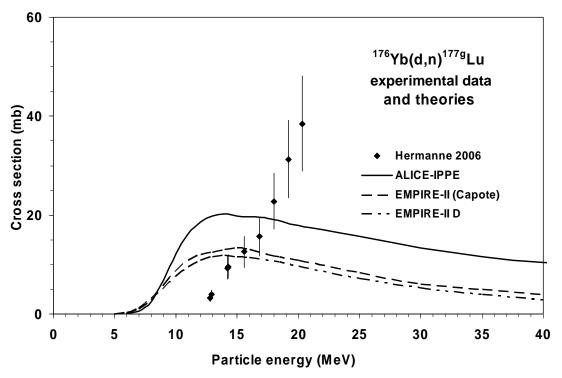


FIG. 7.113. Experimental data and theoretical calculations

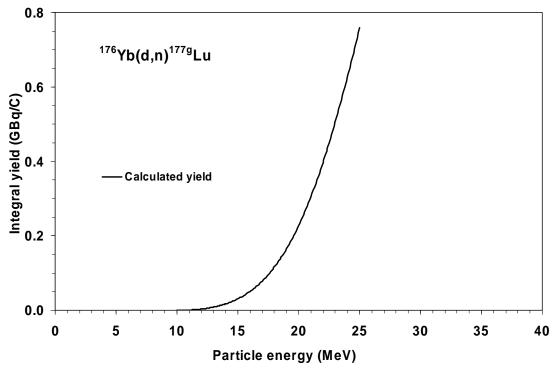


FIG. 7.114. Calculated integral yield curve based on the recommended cross sections

176 Yb(d,n) 177g Lu	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
10.0	0.0	0.0	0.000
10.5	0.3	0.0	0.000
11.0	1.0	0.0	0.001
11.5	1.7	0.1	0.001
12.0	2.6	0.3	0.003
12.5	3.5	0.5	0.005
13.0	4.6	0.8	0.008
13.5	5.8	1.2	0.012
14.0	7.1	1.7	0.017
14.5	8.6	2.3	0.023
15.0	10.2	3.0	0.031
15.5	12.0	3.9	0.040
16.0	14.0	4.9	0.051
16.5	16.1	6.2	0.063
17.0	18.4	7.6	0.078
17.5	21.0	9.3	0.096
18.0	23.7	11.3	0.116
18.5	26.5	13.5	0.139
19.0	29.6	16.0	0.165
19.5	32.7	18.9	0.194
20.0	36.0	22.1	0.228
20.5	39.2	25.7	0.264
21.0	42.5	29.7	0.305
21.5	45.7	34.0	0.349
22.0	48.7	38.7	0.398
22.5	51.5	43.8	0.450
23.0	54.1	49.2	0.506
23.5	56.3	54.9	0.565
24.0	58.2	61.0	0.627
24.5	59.7	67.3	0.692
25.0	60.8	73.8	0.759

TABLE 7.48. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS
--

D. ¹⁷⁶Yb(d,p)¹⁷⁷Yb reaction

Bibliography, evaluation and selection

Cross section

HERMANNE, A., TAKACS, S., GOLDBERG, M.B., LAVIE, E., SHUBIN, YU.N., KOVALEV, S., Deuteron-induced reactions on Yb: Measured cross sections and rationale for production pathways of carrier-free, medically relevant radionuclides, Nucl. Instrum. Methods B **247** (2006) 223-231.

EXFOR: D4175

Cross sections for the 176 Yb(d,n) 177g Lu reaction were deduced by subtracting the contribution of the directly measured 176 Yb(d,n) 177g Vb reaction from the 176 Yb(d,n) 177g Lu reaction determined after the decay of 177 Yb. The resulting excitation function of the 176 Yb(d,n) 177g Lu reaction with respect to energy scale, tendency and magnitude is strongly disputable. However, taking into account the small contribution of the (d,n) process to the production of 177g Lu (compared with the indirect (d,p) route), the (d,p) and (d,x) data could effectively be used.

Yield

No data were found.

Hermanne 2006 measurements are compared with the resulting statistical fit to these data in Fig. 7.115. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.116. Yields determined from the recommended cross sections are presented in Fig. 7.117, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.49.

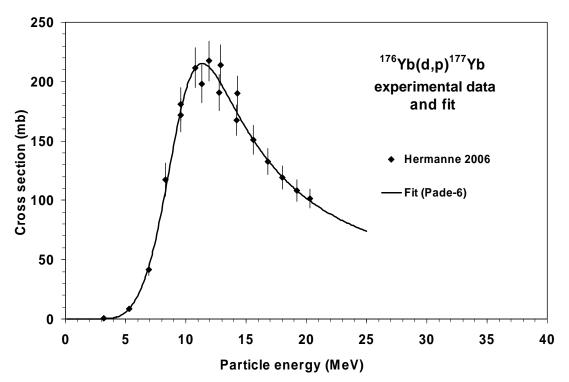


FIG. 7.115. Experimental data and the recommended curve (fit)

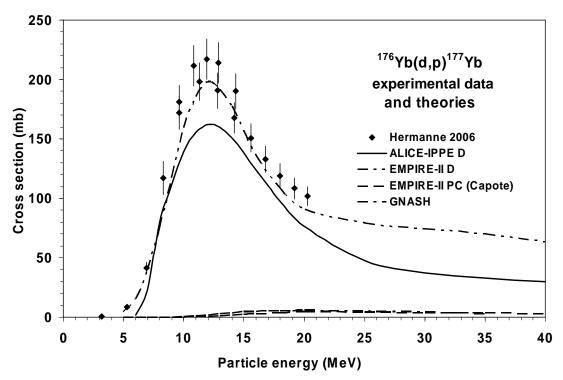


FIG. 7.116. Experimental data and theoretical calculations

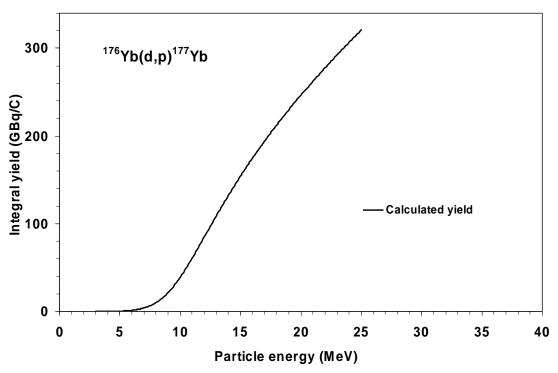


FIG. 7.117. Calculated integral yield curve based on the recommended cross sections

176 Yb(d,p) 177 Yb	⁷⁷ Yb Cross section Integral yield		
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
3.0	0.0	0	0.0
3.5	0.4	0	0.0
4.0	0.8	2	0.0
4.5	2.4	7	0.1
5.0	5.7	21	0.2
5.5	11.2	51	0.5
6.0	19.4	109	1.1
6.5	31.1	209	2.1
7.0	46.9	369	3.8
7.5	67.0	612	6.3
8.0	91.2	962	9.9
8.5	118.3	1442	14.8
9.0	146.2	2068	21.3
9.5	171.8	2843	29.2
10.0	192.5	3757	38.6
10.5	206.6	4785	49.2
11.0	213.8	5893	60.6
11.5	214.9	7051	72.5
12.0	211.5	8235	84.6
12.5	205.1	9418	96.8
13.0	196.8	10586	108.8
13.5	187.7	11730	120.6
14.0	178.4	12844	132.0
14.5	169.3	13929	143.2
15.0	160.6	14980	154.0
15.5	152.5	15998	164.4
16.0	144.9	16985	174.6
16.5	137.8	17942	184.4
17.0	131.3	18875	194.0
17.5	125.4	19780	203.3
18.0	119.8	20661	212.3
18.5	114.8	21519	221.2
19.0	110.1	22356	229.8
19.5	105.7	23176	238.2
20.0	101.7	23977	246.4
20.5	98.0	24761	254.5
21.0	94.6	25529	262.4
21.5	91.3	26283	270.1
22.0	88.3	27022	277.7
22.5	85.5	27749	285.2
23.0	82.9	28465	292.6
23.5	80.4	29169	299.8
24.0	78.1	29862	306.9
24.5	75.9	30545	313.9
25.0	73.9	31218	320.9

TABLE 7.49. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

E. ¹⁷⁶Yb(d,x)^{177g}Lu cumulative process

A cumulative process is feasible which involves the production of ^{177g}Lu via the (d,n) reaction and decay of ^{177}Yb .

Bibliography, evaluation and selection

Cross section

HERMANNE, A., TAKACS, S., GOLDBERG, M.B., LAVIE, E., SHUBIN, YU.N., KOVALEV, S., Deuteron-induced reactions on Yb: Measured cross sections and rationale for production pathways of carrier-free, medically relevant radionuclides, Nucl. Instrum. Methods B **247** (2006) 223-231.

EXFOR: D4175

Cross sections for the 176 Yb(d,n) 177g Lu reaction were deduced by subtracting the contribution of the directly measured 176 Yb(d,p) 177 Yb reaction from the 176 Yb(d,x) 177g Lu reaction determined after the decay of 177 Yb. The resulting excitation function of the 176 Yb(d,n) 177g Lu reaction with respect to energy scale, tendency and magnitude is strongly disputable. However, taking into account the small contribution of the (d,n) process to the production of 177g Lu (compared with the indirect (d,p) route), the (d,p) and (d,x) data could effectively be used.

Yield

No data were found.

Hermanne 2006 measurements are compared with the resulting statistical fit to these data in Fig. 7.118. Excitation functions have been calculated by means of the EMPIRE nuclear reaction modelling code, and results are compared with all of the selected experimental data in Fig. 7.119. Yields determined from the recommended cross sections are presented in Fig. 7.120, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.50.

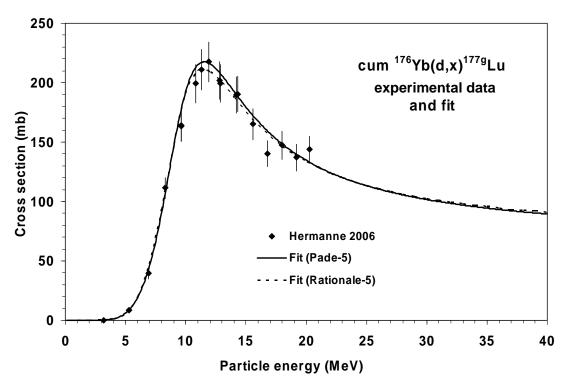


FIG. 7.118. Experimental data and the recommended curve (fit)

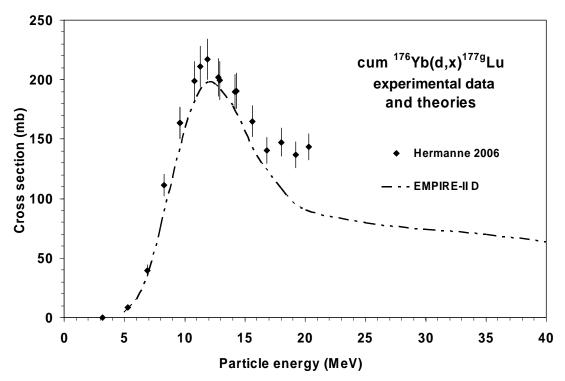


FIG. 7.119. Experimental data and theoretical calculations

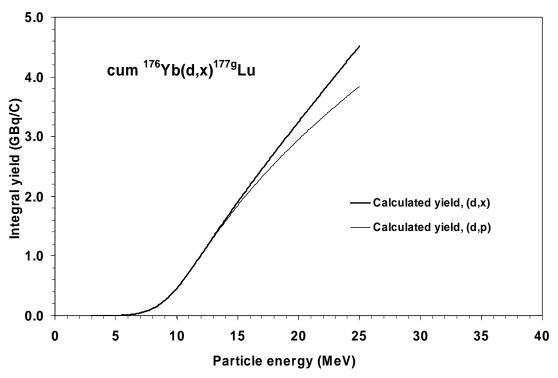


FIG. 7.120. Calculated integral yield curve based on the recommended cross sections

$cum^{176}Yb(d,x)^{177g}Lu$	Cross section	Integral yield		
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)	
3.0	0	0.0	0.00	
3.5	1	0.0	0.00	
4.0	1	0.1	0.00	
4.5	3	0.1	0.00	
5.0	6	0.3	0.00	
5.5	11	0.7	0.01	
6.0	19	1.4	0.01	
6.5	30	2.5	0.03	
7.0	46	4.4	0.05	
7.5	66	7.3	0.07	
8.0	91	11.4	0.12	
8.5	118	17.2	0.18	
9.0	146	24.7	0.25	
9.5	172	34.0	0.35	
10.0	193	44.9	0.46	
10.5	207	57.3	0.59	
11.0	215	70.6	0.73	
11.5	217	84.6	0.87	
12.0	216	99.0	1.02	
12.5	212	113.6	1.17	
13.0	206	128.1	1.32	
13.5	200	142.6	1.47	
14.0	193	156.9	1.61	
14.5	186	171.1	1.76	
15.0	179	185.1	1.90	
15.5	173	198.8	2.04	
16.0	168	212.4	2.18	
16.5	162	225.8	2.32	
17.0	157	239.1	2.46	
17.5	153	252.2	2.59	
18.0	148	265.2	2.73	
18.5	145	278.0	2.86	
19.0	141	290.8	2.99	
19.5	138	303.5	3.12	
20.0	135	316.1	3.25	
20.5	132	328.6	3.38	
21.0	129	341.1	3.51	
21.5	127	353.5	3.63	
22.0	124	365.9	3.76	
22.5	122	378.3	3.89	
23.0	120	390.6	4.01	
23.5	118	402.9	4.14	
24.0	116	415.2	4.27	
24.5	115	427.5	4.39	
25.0	113	439.8	4.52	

 TABLE 7.50. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

7.12. Charged-particle production of ^{186g}Re

Rhenium has similar chemical properties to those of technetium, and can be used to label hydroxyethylidenediphosphonate (HEDP) with ¹⁸⁶Re after reduction to perrhenate by stannous ions. ¹⁸⁶Re(Sn-)HEDP has also been successfully used for palliation of skeletal metastases. Furthermore, ¹⁸⁶Re has great potential in the labelling of monoclonal antibodies for radioimmunotherapy. A simplified decay scheme is shown in Fig. 7.121, and the main emissions as defined in Table 7.51 were taken from NuDat 2.4 [7.3].

A. Decay data

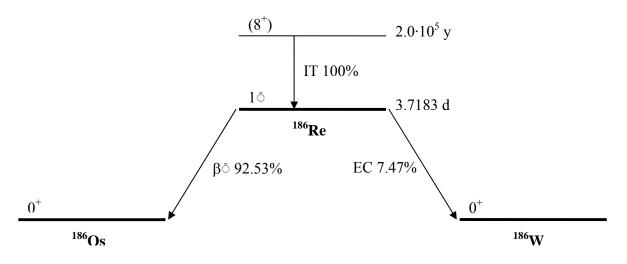


FIG. 7.121. Simplified decay scheme of ¹⁸⁶Re [7.3]

^{186g} Re	Decay mode:	β ⁻ 92.53%	
Re	T _{1/2} :	3.7183 d	
Radiation	Energy (keV)	End-point energy	Intensity
Kaulation	Ellergy (Ke V)	(keV)	(%)
β-	48.4	158.8	2.6E-5
β^-	84.9	302.0	0.0625
β-	306.1	932.3	21.54
β-	359.2	1069.5	70.99
γ	137.157		9.47

TABLE 7.51. MAIN EMISSIONS [7.3]

B. Production routes

¹⁸⁶Re is routinely produced in nuclear reactors by neutron activation of metallic rhenium enriched with ¹⁸⁵Re via the ¹⁸⁵Re(n,γ)¹⁸⁶Re nuclear reaction. An evaluation of the data for this reaction is given in the Section 6.2. However, alternative charged-particle routes of production have been developed because of the low specific activity achieved in the neutron activation process, as specified inTable 7.52.

(p,n)

(d,2n)

-1.4

-3.6

1.4

3.6

Target isotope	Natural	Reaction	Q-value	Threshold energy		
Target isotope	abundance	Reaction	(MeV)	(MeV)		
^{186}W	28 43%	(n n)	-14	14		

TABLE 7.52.	INVESTIGATED	PRODUCTION	ROUTES	[7.3, 7.4]	
-------------	--------------	-------------------	--------	------------	--

28.43%

28.43%

C. ¹⁸⁶W(p,n)^{186g}Re reaction

 ^{186}W

Bibliography, evaluation and selection

The data were corrected for absolute intensity of the measured 137 keV gamma line (Miyahara *et al.* (2000), $I_{\gamma}=0.0947$) and for data of the used monitor reactions. The correction factors are given in the list of references (detailed explanation in Tárkányi et al. (2007)).

Decay data

MIYAHARA, H., WURDIYANTO, G., NAGATA, H., YOSHIDA, A., YANAGIDA, K., MORI, C., Precise measurements of the gamma-ray emission probabilities of ¹⁸⁶Re and ¹⁸⁸Re, Appl. Radiat. Isot. 52 (2000) 573-579. EXFOR: no

Cross section

SHIGETA, N., MATSUOKA, H., OSA, A., KOIZUMI, M., IZUMO, M., KOBAYASHI, K., HASHIMOTO, K., SEKINE, T., LAMBRECHT, R.M., Production method of no-carrier-added ¹⁸⁶Re, J. Radioanal. Nucl. Chem. **205** (1996) 85-92. EXFOR: no Correction factor of 0.987.

SHIGETA ISHIOKA, N., SEKINE, T., LAMBRECHT, R.M., Comments on the cross sections of ¹⁸⁶Re in the ¹⁸⁶W(p,n) and ¹⁸⁶W(d,2n) reactions in connection to the paper given by Zhu *et al.* and correction of the calculated yields of ¹⁸⁶Re in the ¹⁸⁶W(p,n) reaction, J. Radioanal. Nucl. Chem. 241 (1999) 383. EXFOR: no

Correction of Shigeta et al. (1996).

ZHANG, X., LI, W., FANG, K., HE, W., SHENG, R., YING, D., HU, W., Excitation functions for ^{nat}W(p,xn)¹⁸¹⁻¹⁸⁶Re reactions and production of no-carrier-added ¹⁸⁶Re via ¹⁸⁶W(p,n)¹⁸⁶Re reaction, Radiochim. Acta 86 (1999) 11. EXFOR: no

Correction factor of 1.434.

MIAH, M.H., KUHNHENN, J., HERPERS, U., MICHEL, R., KUBIK, P., Production of residual nuclides by proton-induced reactions on target W at an energy of 72 MeV, Proc. Int. Conf. Nucl. Data for Science and Technology, Tsukuba, Japan, 7-12 October 2001, SHIBATA, K. *et al.* (Eds), J. Nucl. Sci. Technol., Supplement 2 (2002) 369-372. EXFOR: O1100 *Correction factor of 0.971.*

SZELECSÉNYI, F., TAKÁCS, S., TÁRKÁNYI, F., SONCK, M., HERMANNE, A., Study of production possibility of no-carrier-added ¹⁸⁶Re via proton induced reaction on tungsten for use in radiotherapy, p. 701 in Proc. 6th Int. Symp. Synthesis and Applications of Isotopically Labeled Compounds, Philadelphia, USA, 14-18 September 1997, HEYS, J.R., MELLILO, D.G. (Eds), Chichester, John Wiley and Sons, 1998. EXFOR: D4087

Preliminary data of Tárkányi et al. (2006).

TÁRKÁNYI, F., TAKÁCS, S., SZELECSÉNYI, F., DITRÓI, F., HERMANNE, A., SONCK, M., Excitation functions of proton induced nuclear reactions on natural tungsten up to 34 MeV, Nucl. Instrum. Methods B **252** (2006) 160-174. EXFOR: D4163 *Correction factor of 0.897.*

LAPI, S., MILLS, W.J., WILSON, J., McQUARRIE, S., PUBLICOVER, J., SCHUELLER, M., SCHYLER, D., RESSLER, J.J., RUTH, T.J., Production cross sections of ^{181–186}Re isotopes from proton bombardment of natural tungsten, Appl. Radiat. Isot. **65** (2007) 345-349. EXFOR: C1501

Correction factor of 0.971.

MENAPACE, E., BONARDI, M.L., GROPPI, F., MORZENTI, S., PERSICO, E., ALFASSI, Z.B., Experimental and calculated nuclear reaction data relative to innovative production of medical radioisotopes, Int. Conf. on Nuclear Data for Science and Technology, 22-27 April 2007, Nice, France, AID#655.

EXFOR: no *Correction factor of 0.868.*

TÁRKÁNYI, F., HERMANNE, A., TAKÁCS, S., DITRÓI, F., KOVALEV, F., IGNATYUK, A.V., New measurement and evaluation of the excitation function of the ¹⁸⁶W(p,n) nuclear reaction for production of the therapeutic radioisotope ¹⁸⁶Re, Nucl. Instrum. Methods B **264** (2007) 389-394. EXFOR: D4193

Correction factor of 1.0.

KHANDAKER, M.U., UDDIN, M.S., KIM, K., LEE, M.W., KIM, K.S., LEE, Y.S., KIM, G.N., CHO, Y.S., LEE, Y.O., Excitation functions of proton induced nuclear reactions on ^{nat}W up to 40 MeV, Nucl. Instrum. Methods B **266** (2008) 1021-1029. EXFOR: D0282 *Correction factor of 0.994*.

318

Yield

ZHANG, X., LI, W., FANG, K., HE, W., Preparation of carrier free ¹⁸⁶Re, J. Nucl. Radiochem. **21** (1999) 178-183. EXFOR: no

MOUSTAPHA, M.E., EHRHARDT, G.J., SMITH, C.J., SZAJEK, L.P., ECKELMAN, W.C., JURISSON, S.S., Preparation of cyclotron-produced ¹⁸⁶Re and comparison with reactor-produced ¹⁸⁶Re and generator-produced ¹⁸⁸Re for the labeling of bombesin, Nucl. Med. Biol. **33** (2006) 81-89.

EXFOR: no

DMITRIEV, P.P., MOLIN, G.A., Yields of ¹⁸¹Re, ^{182m}Re, ¹⁸²Re, ¹⁸³Re, ^{184m}Re, ¹⁸⁴Re and ¹⁸⁶Re when irradiating tungsten with protons and deuterons, and tantalum with alpha particles, Atomnaya Energiya **48** (1980) 122-124.

EXFOR: A0070

The yields were determined from excitation functions obtained by calculation, and therefore were rejected.

Selected measurements with corrections are compared with the resulting statistical fit to these data in Fig. 7.122. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.123. Yields determined from the recommended cross sections are presented in Fig. 7.124, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.53.

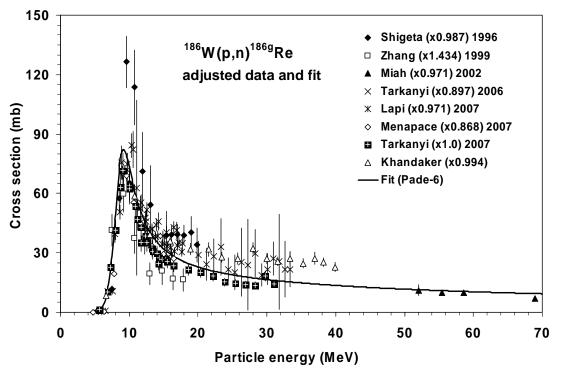


FIG. 7.122. Adjusted experimental data and the recommended curve (fit)

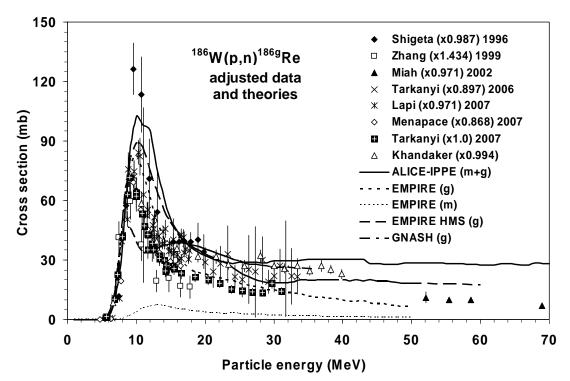


FIG. 7.123. Adjusted experimental data and theoretical calculations

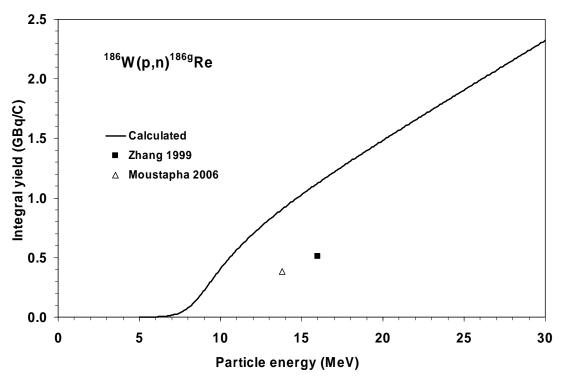


FIG. 7.124. Calculated integral yield curve based on the recommended cross sections

$^{186}W(p,n)^{186g}Re$	Cross section	Integra	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)	
5.0	0.0	0.0	0.00	
5.5	1.2	0.1	0.00	
6.0	2.5	0.2	0.00	
6.5	6.1	0.6	0.01	
7.0	13.9	1.5	0.02	
7.5	28.2	3.6	0.04	
8.0	49.4	7.5	0.08	
8.5	70.6	13.8	0.14	
9.0	81.3	22.1	0.23	
9.5	80.3	30.9	0.32	
10.0	73.5	39.6	0.41	
10.5	65.6	47.6	0.49	
11.0	58.5	54.9	0.49	
11.5	52.5	61.7	0.63	
12.0	47.7	68.1 74.0	0.70	
12.5	43.8	74.0	0.76	
13.0	40.5	79.6	0.82	
13.5	37.8	85.0	0.87	
14.0	35.6	90.2	0.93	
14.5	33.7	95.2	0.98	
15.0	32.0	100.1	1.03	
15.5	30.6	104.8	1.08	
16.0	29.3	109.5	1.12	
16.5	28.2	114.0	1.17	
17.0	27.2	118.5	1.22	
17.5	26.3	122.9	1.26	
18.0	25.5	127.3	1.31	
18.5	24.8	131.6	1.35	
19.0	24.1	135.9	1.40	
19.5	23.5	140.1	1.44	
20.0	22.9	144.4	1.48	
20.5	22.4	148.5	1.53	
21.0	21.9	152.7	1.57	
21.5	21.9	156.9	1.61	
22.0	21.4	161.0	1.65	
22.0	20.6	165.1	1.70	
22.3	20.0	169.2	1.70	
23.5	19.9	173.3	1.78	
24.0	19.5	177.4	1.82	
24.5	19.2	181.4	1.86	
25.0	18.9	185.5	1.91	
25.5	18.6	189.6	1.95	
26.0	18.3	193.6	1.99	
26.5	18.1	197.7	2.03	
27.0	17.8	201.7	2.07	
27.5	17.6	205.8	2.11	
28.0	17.4	209.8	2.16	
28.5	17.1	213.8	2.20	
29.0	16.9	217.9	2.24	
29.5	16.7	221.9	2.28	
30.0	16.5	225.9	2.32	

TABLE 7.53. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

D. $^{186}W(d,2n)^{186g}$ Re reaction

These data sets were not corrected according to the new decay data as was carried out for the $^{186}W(p,n)$ reaction.

Bibliography, evaluation and selection

Cross section

PEMENT, F.W., WOLKE, R.L., Compound-statistical features of deuteron-induced reactions: (II) The compound nucleus and stripping-evaporation mechanisms in (d,2n) reactions, Nucl. Phys. **86** (1966) 429-442. EXFOR: P0115

NASSIFF, S.J., MUNZEL, H., Cross sections for the reactions ${}^{66}Zn(d,n){}^{67}Ga$, ${}^{52}Cr(d,2n){}^{52g}Mn$ and ${}^{186}W(d,2n){}^{186}Re$, Radiochim. Acta **19** (1973) 97. EXFOR: A0202 This data set was rejected because of large difference in the shape and values compared with the

This data set was rejected because of large difference in the shape and values compared with the other measurements.

ZHENLAN, T., FUYING, Z., HUIYUAN, Q., GONGQING, W., Excitation functions for ¹⁸²⁻¹⁸⁶W(d,2n)¹⁸²⁻¹⁸⁶Re and ¹⁸⁶W(d,p)¹⁸⁷W reactions, Chin. J. Nucl. Phys. **3** (1981) 242. EXFOR: S0014

SZELECSÉNYI, F., TAKÁCS, S., TÁRKÁNYI, F., SONCK, M., HERMANNE, A., Study of production possibility of ¹⁸⁶Re via the ¹⁸⁶W(d,2n)¹⁸⁶Re nuclear reaction for use of radiotherapy, J. Labelled Compd. Radiopharm., Suppl. 42 (1999) 912. EXFOR: no *Preliminary data of Tárkányi et al. (2006)*.

ISHIOKA, N.S., WATANABE, S., OSA, A., KOIZUMI, M., MATSUOKA, H., SEKINE, T., Excitation functions of rhenium isotopes on the ^{nat}W(d,xn) reactions and production of no-carrier added ¹⁸⁶Re, Proc. Int. Conf. Nucl. Data for Science and Technology, Tsukuba, Japan, 7-12 October 2001, SHIBATA, K. *et al.* (Eds), J. Nucl. Sci. Technol., Suppl. 2 (2002) 1334-1337. EXFOR: no

TÁRKÁNYI, F., TAKÁCS, S., SZELECSÉNYI, F., DITRÓI, F., HERMANNE, A., SONCK, M., Excitation functions of deuteron induced nuclear reactions on natural tungsten up to 50 MeV, Nucl. Instrum. Methods B **211** (2003) 319-330. EXFOR: D4141

ALEKSEEV, I.E., LAZAREV, V.V., Cyclotron production and radiochemical isolation of the therapeutical radionuclide ¹⁸⁶Re, Soviet Radiochem. **48** (2006) 446-449. EXFOR: no

Yield

DMITRIEV, P.P., MOLIN, G.A., Yields of ¹⁸¹Re, ^{182m}Re, ¹⁸²Re, ¹⁸³Re, ^{184m}Re, ¹⁸⁴Re and ¹⁸⁶Re when irradiating tungsten with protons and deuterons, and tantalum with alpha particles, Atomnaya Energiya **48** (1980) 122-124.

EXFOR: A0070 Yields were determined from excitation functions obtained by calculation, and therefore these

data were rejected.

MUKHAMMEDOV, S., VASIDOV, A., PARDAEV, E., Application of proton and neutron activation method of analysis for the determination of elements with Z greater than 42, Atomnaya Energiya **56** (1984) 50-53. EXFOR: A0212

ZHANG, X., LI, Q., LI, W., SHENG, R., SHEN, S., Production of no-carrier-added ¹⁸⁶Re via deuteron induced reactions on isotopically enriched ¹⁸⁶W, Appl. Radiat. Isot. **54** (2001) 89-92. EXFOR: no

All experimental cross-section data are shown in Fig. 7.125, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.126. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.127. Yields determined from the recommended cross sections are presented in Fig. 7.128, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.54.

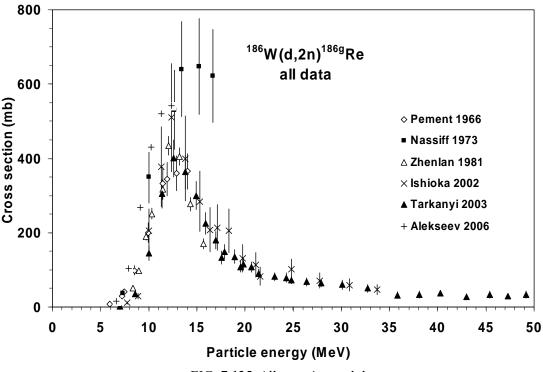


FIG. 7.125. All experimental data

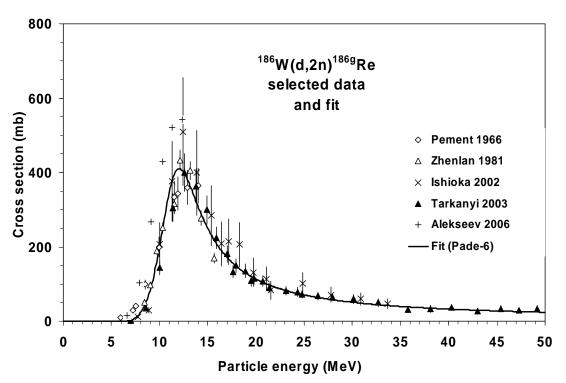


FIG. 7.126. Selected experimental data and the recommended curve (fit)

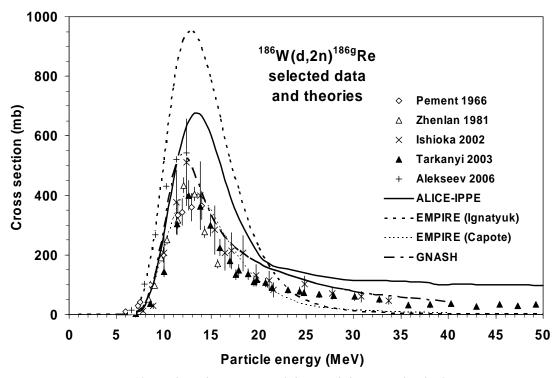


FIG. 7.127. Selected experimental data and theoretical calculations

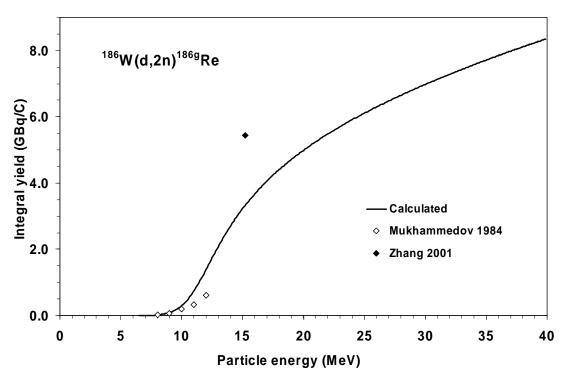


FIG. 7.128. Calculated integral yield curve based on the recommended cross sections

$^{186}W(d,2n)^{186g}Re$	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
6.5	0.0	0.0	0.00
7.0	2.4	0.1	0.00
7.5	8.9	0.4	0.00
8.0	22.7	1.5	0.02
8.5	46.1	3.9	0.04
9.0	82.1	8.4	0.09
9.5	133.4	16.3	0.17
10.0	200.0	29.0	0.30
10.5	275.6	47.4	0.49
11.0	345.7	72.1	0.74
11.5	393.4	102.1	1.05
12.0	410.2	135.4	1.39
12.5	400.1	169.5	1.74
13.0	373.8	202.6	2.08
13.5	341.0	233.9	2.40
14.0	307.6	262.8	2.70
14.5	276.8	289.5	2.98
15.0	249.4	314.1	3.23
15.5	225.5	336.7	3.46
16.0	205.0	357.7	3.68

TABLE 7.54. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

Table 7.54 cont'd

$^{186}W(d,2n)^{186g}Re$	Cross section	Integra	l yield
Energy (MeV)	(mb)	$(\mu Ci/\mu Ah)$	(GBq/C)
16.5	187.2	377.2	3.88
17.0	171.9	395.4	4.06
17.5	158.7	412.5	4.24
18.0	147.1	428.6	4.41
18.5	137.0	443.9	4.56
19.0	128.0	458.4	4.71
19.5	120.1	472.2	4.85
20.0	113.1	485.5	4.99
20.5	106.8	498.1	5.12
21.0	101.1	510.3	5.24
21.5	95.9	522.0	5.37
22.0	91.3	533.4	5.48
22.5	87.0	544.3	5.59
23.0	83.2	554.9	5.70
23.5	79.6	565.3	5.81
23.3	76.3	575.3	5.91
24.5	73.3	585.0	6.01
25.0	70.5	594.5	6.11
25.5	67.9	603.8	6.21
25.5 26.0	65.5	612.8	6.30
26.5	63.2	621.7	6.39
20.3 27.0	61.1		6.48
27.5	59.2	630.4 638.9	6.57
27.3 28.0			6.65
28.0	57.3 55.6	647.2 655.3	
			6.74
29.0 29.5	53.9	663.4	6.82
	52.4	671.2	6.90
30.0	50.9	679.0	6.98 7.06
30.5	49.5	686.6	7.06
31.0	48.2	694.1 701.4	7.13
31.5	47.0	701.4	7.21
32.0	45.8	708.7	7.28
32.5	44.7	715.9	7.36
33.0	43.6	723.0	7.43
33.5	42.6	729.9	7.50
34.0	41.6	736.8	7.57
34.5	40.7	743.6	7.64
35.0	39.8	750.4	7.71
35.5	38.9	757.0	7.78
36.0	38.1	763.5	7.85
36.5	37.3	770.0	7.91
37.0	36.6	776.4	7.98
37.5	35.8	782.8	8.05
38.0	35.2	789.1	8.11
38.5	34.5	795.3	8.17
39.0	33.8	801.4	8.24
39.5	33.2	807.5	8.30

7.13. Charged-particle production of ^{192g}Ir

¹⁹²Ir is an important radionuclide commonly used in brachytherapy as a sealed source or activated Ir wire, possessing highly suitable decay properties for therapy (relatively low energy, high intensity beta radiation and sufficiently long half-life). A simplified decay scheme is shown in Fig. 7.129, and the main emissions as defined in Table 7.55 were taken from NuDat 2.4 [7.3].

A. Decay data

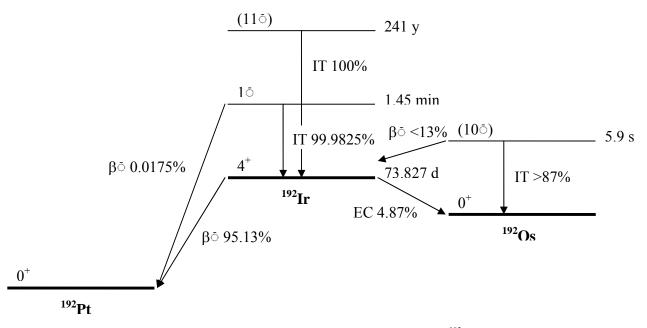


FIG. 7.129. Simplified decay scheme of ¹⁹²Ir [7.3]

^{192g} Ir	Decay mode:	β ⁻ 95.13%	
° I r	T _{1/2} :	73.827 d	
Radiation	Energy (keV)	End-point energy	Intensity
Radiation	Lifergy (KeV)	(keV)	(%)
βŌ	13.6	53.5	0.0035
βŌ	19.5	75.7	0.0039
βŌ	21.1	81.7	0.103
βŌ	71.6	258.7	5.60
βŌ	162.1	538.8	41.43
βŌ	209.9	675.1	48.0
γ	295.95650		28.72
γ	308.45507		29.68
γ	316.50618		82.71
γ	468.0688		47.81

TABLE 7.55. MAIN EMISSIONS [7.3]

B. Production routes

Although the specific activity of the product is rather low, routinely produced in a nuclear reactor via the ¹⁹¹Ir(n,γ)¹⁹²Ir reaction by irradiating Na₂IrCl₆ or iridium wire. Neutron activation in a medium or high flux reactor would considerably enhance the specific activity by means of the (n,γ) process. However, ¹⁹²Ir cannot be produced in a non-carrier-added form. An evaluation of the data for this reaction is given in the Section 6.4. Alternative charged-particle induced routes of production have been developed to address the specific activity problem, as defined in Table 7.56.

Target isotope	Natural abundance	Reaction	Q-value (MeV)	Threshold energy (MeV)
¹⁹² Os	40.93%	(p,n)	-1.8	1.8
¹⁹² Os	40.93%	(d,2n)	-4.1	4.1

TABLE 7.56. INVESTIGATED PRODUCTION ROUTES [7.3, 7.4]

C. ¹⁹²Os(p,n)^{192m1+g}Ir reaction

The reaction cross section includes the contribution of the short-lived metastable state in addition to the formation of the ground state. Only one set of cross section data exists in the literature as reported by Hilgers *et al.* (2005) as part of this CRP initiative.

Bibliography, evaluation and selection

Cross section

HILGERS, K., SUDÁR, S., QAIM, S.M., Experimental study and nuclear model calculations on the ¹⁹²Os(p,n)¹⁹²Ir reaction: Comparison of reactor and cyclotron production of the therapeutic radionuclide ¹⁹²Ir, Appl. Radiat. Isot. **63** (2005) 93-98. EXFOR: O1274

Yield

No data were found.

Hilgers 2005 measurements are compared with the resulting statistical fit to these data in Fig. 7.130. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with experimental data in Fig. 7.131. Yields determined from the recommended cross sections are presented in Fig. 7.132, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.57.

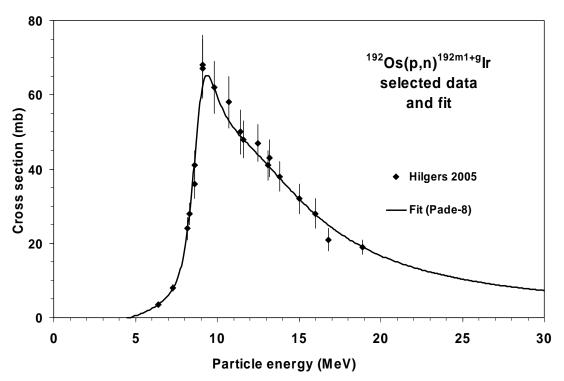


FIG. 7.130. Experimental data and the recommended curve (fit)

FIG. 7.131. Experimental data and theoretical calculations

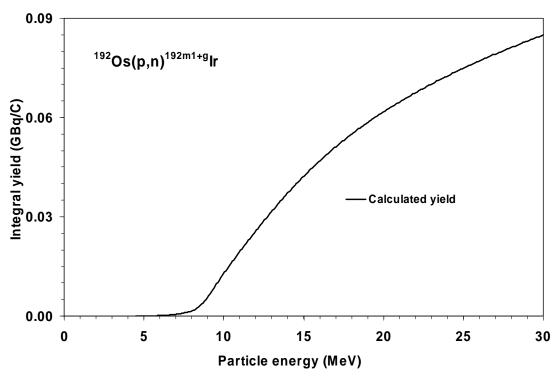


FIG. 7.132. Calculated integral yield curve based on the recommended cross sections

$^{192}Os(p,n)^{192m1+g}Ir$	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
4.5	0.0	0.00	0.0000
5.0	0.5	0.00	0.0000
5.5	1.4	0.00	0.0000
6.0	2.5	0.01	0.0001
6.5	3.9	0.03	0.0003
7.0	6.0	0.05	0.0005
7.5	9.8	0.09	0.0009
8.0	18.1	0.16	0.0016
8.5	36.6	0.30	0.0031
9.0	59.6	0.56	0.0058
9.5	64.9	0.91	0.0094
10.0	59.7	1.26	0.0129
10.5	54.7	1.58	0.0163
11.0	51.1	1.90	0.0195
11.5	48.5	2.20	0.0226
12.0	46.1	2.50	0.0257
12.5	43.8	2.79	0.0287
13.0	41.5	3.07	0.0316
13.5	39.1	3.35	0.0344
14.0	36.7	3.61	0.0371

TABLE 7.57. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

192Os(p,n) ^{192m1+g} Ir	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
14.5	34.3	3.87	0.0397
15.0	32.0	4.11	0.0422
15.5	29.8	4.34	0.0446
16.0	27.8	4.56	0.0469
16.5	26.0	4.77	0.0490
17.0	24.3	4.97	0.0511
17.5	22.7	5.16	0.0531
18.0	21.3	5.35	0.0550
18.5	20.0	5.52	0.0568
19.0	18.8	5.69	0.0585
19.5	17.7	5.85	0.0601
20.0	16.7	6.00	0.0617
20.5	15.8	6.15	0.0632
21.0	15.0	6.30	0.0647
21.5	14.2	6.43	0.0661
22.0	13.5	6.57	0.0675
22.5	12.9	6.70	0.0688
23.0	12.3	6.82	0.0701
23.5	11.8	6.94	0.0713
24.0	11.3	7.06	0.0725
24.5	10.8	7.17	0.0737
25.0	10.4	7.28	0.0749
25.5	9.9	7.39	0.0760
26.0	9.6	7.50	0.0771
26.5	9.2	7.60	0.0781
27.0	8.9	7.70	0.0792
27.5	8.6	7.80	0.0802
28.0	8.3	7.90	0.0812
28.5	8.0	7.99	0.0821
29.0	7.8	8.08	0.0831
29.5	7.5	8.17	0.0840
30.0	7.3	8.26	0.0849

D. 192 Os(d,2n) $^{192m1+g}$ Ir reaction

The reaction cross section includes the contribution of the short-lived metastable state in addition to the formation of the ground state. Only one set of cross section data exists in the literature as reported by Tarkanyi *et al.* (2007), and undertaken as part of this CRP initiative.

Bibliography, evaluation and selection

Cross section

TÁRKÁNYI, F., HERMANNE, A., TAKÁCS, S., HILGERS, K., KOVALEV, S.F., IGNATYUK, A.V., QAIM, S.M., Study of the ¹⁹²Os(d,2n) reaction for production of the therapeutic radionuclide ¹⁹²Ir in no-carrier added form, Appl. Radiat. Isot. **65** (2007) 1215-1220. EXFOR: D4192

Yield

No data were found.

Tarkanyi 2007 measurements are compared with the resulting statistical fit to these data in Fig. 7.133. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with experimental data in Fig. 7.134. Yields determined from the recommended cross sections are presented in Fig. 7.135, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.58.

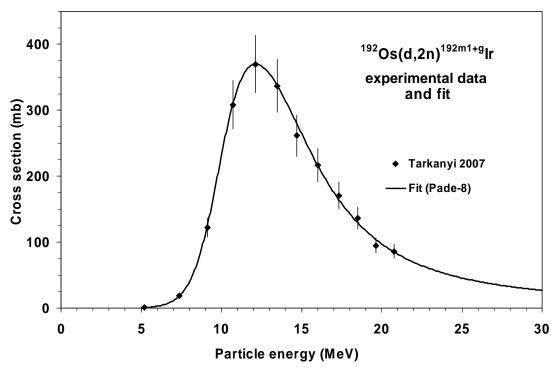


FIG. 7.133. Experimental data and the recommended curve (fit)

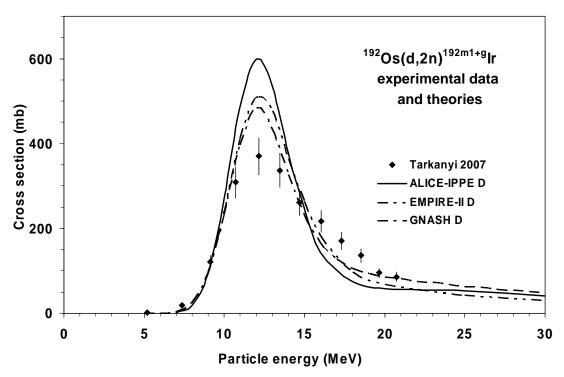


FIG. 7.134. Experimental data and theoretical calculations

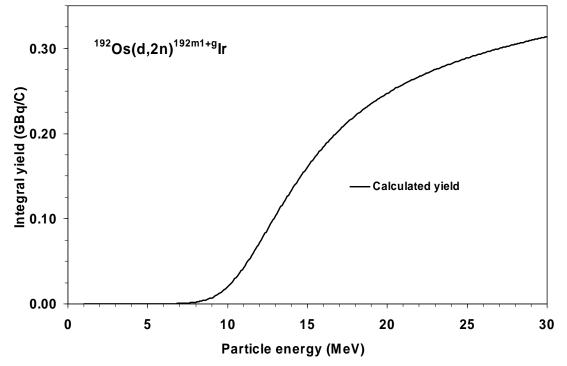


FIG. 7.135. Calculated integral yield curve based on the recommended cross sections

192 Os(d,2n) $^{192m1+g}$ Ir	Cross section	Integra	al yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
1.0	0.0	0.000	0.0000
1.5	0.1	0.000	0.0000
2.0	0.1	0.000	0.0000
2.5	0.2	0.000	0.0000
3.0	0.2	0.001	0.0000
3.5	0.3	0.001	0.0000
4.0	0.3	0.002	0.0000
4.5	0.4	0.003	0.0000
5.0	0.7	0.004	0.0000
5.5	1.4	0.007	0.0001
6.0	2.8	0.012	0.0001
6.5	5.7	0.025	0.0003
7.0	11.3	0.050	0.0005
7.5	21.5	0.102	0.0010
8.0	39.4	0.201	0.0021
8.5	68.5	0.383	0.0039
9.0	111.7	0.699	0.0072
9.5	168.0	1.204	0.0124
10.0	230.6	1.946	0.0200
10.5	288.4	2.934	0.0302
11.0	332.4	4.142	0.0426
11.5	359.0	5.515	0.0567
12.0	369.6	6.996	0.0719
12.5	367.2	8.526	0.0876
13.0	355.4	10.057	0.1034
13.5	337.0	11.555	0.1188
14.0	314.5	12.996	0.1336
14.5	289.9	14.364	0.1476
15.0	264.8	15.644	0.1608
15.5	240.2	16.831	0.1730
16.0	217.0	17.928	0.1843
16.5	195.6	18.938	0.1946
17.0	176.1	19.867	0.2042
17.5	158.7	20.719	0.2129
18.0	143.2	21.501	0.2210
18.5	129.5	22.221	0.2284
19.0	117.4	22.884	0.2352
19.5	106.7	23.498	0.2415
20.0	97.3	24.067	0.2474
20.5	89.0	24.594	0.2528
21.0	81.7	25.085	0.2578
21.5	75.2	25.544	0.2625
22.0	69.5	25.974	0.2670
22.5	64.3	26.377	0.2711
23.0	59.7	26.758	0.2750
23.5	55.6	27.117	0.2787
24.0	52.0	27.456	0.2822

 TABLE 7.58. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

Table 7.58 cont'd

192 Os(d,2n) $^{192m1+g}$ Ir	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
24.5	48.6	27.778	0.2855
25.0	45.6	28.084	0.2886
25.5	42.9	28.375	0.2916
26.0	40.5	28.653	0.2945
26.5	38.2	28.919	0.2972
27.0	36.1	29.174	0.2998
27.5	34.3	29.418	0.3024
28.0	32.5	29.653	0.3048
28.5	31.0	29.879	0.3071
29.0	29.5	30.096	0.3093
29.5	28.1	30.306	0.3115
30.0	26.9	30.509	0.3136

7.14. Charged-particle production of ²¹¹At

²¹¹At has recently generated great interest for adoption in targeted radiotherapy. Radionuclides such as ²¹¹At and ²¹²Bi decay by the emission of alpha-particles that penetrate only a few cell diameters of the tissue, offering the possibility of combining cell-specific targeting with radiation of similar range. Unlike beta-particles, alpha-particles are radiation of high linear energy transfer and greater biological effectiveness. ²¹¹At is the most often discussed radionuclide for α -therapy, although the At-C bond is rather weak and the chemistry very challenging. Simplified decay schemes of ²¹¹At and ²¹⁰At and their respective daughters are shown in Figs. 7.136a and 7.136b, respectively, while their main emissions are listed in Tables 7.59A to 7.59D (²¹¹At and ^{211g}Po; ²¹⁰At and ²¹⁰Po)

A. Decay data

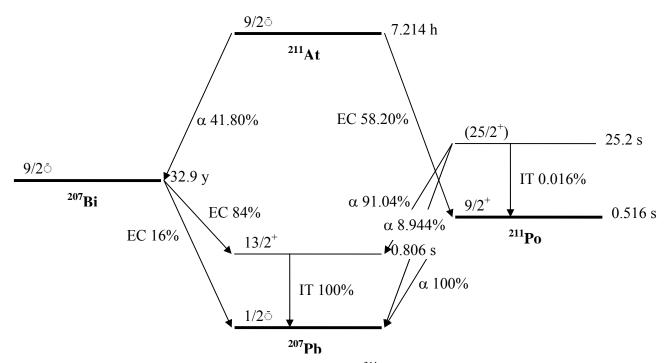


FIG. 7.136a. Simplified decay scheme of ²¹¹At and daughters [7.3]

²¹¹ At	Decay mode:	α 41.80%
At	$T_{1/2}$:	7.214 h
Radiation	Energy (keV)	Intensity (%)
α	4997	0.000418
α	5141	0.0010
α	5210.0	0.0036
α	5869.5	41.80
γ	669.6	0.0035
γ	742.7	0.0010

TABLE 7.59A. MAIN EMISSIONS OF ²¹¹At [7.3]

^{211g} Po	Decay mode:	α 100%
-10	T _{1/2} :	0.516 s
Radiation	Energy (keV)	Intensity (%)
α	6568.3	0.544
α	6891.5	0.557
α	7450.3	98.890
γ	569.65	0.545
ν γ	897.8	0.561

TABLE 7.59B. MAIN EMISSIONS OF ^{211g}Po [7.3]

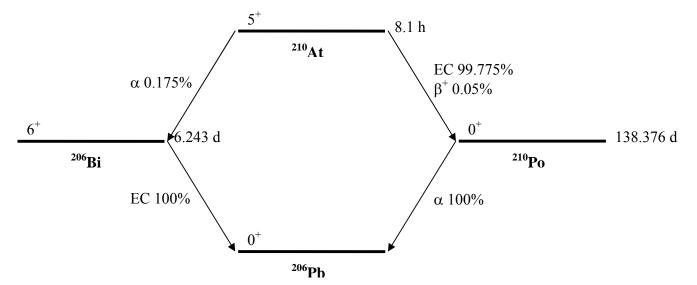


FIG. 7.136b. Simplified decay scheme of ²¹⁰At and daughters [7.3]

²¹⁰ At	Decay mode:	EC 99.775% $\beta^+ 0.05\%$
	T _{1/2} :	8.1 h
Radiation	Energy (keV)	Intensity (%)
γ	245.3	79
γ	1181.4	99
γ	1436.7	29.0
γ	1483.3	46.5
· v	1599.5	13.4

TABLE 7.59C. MAIN EMISSIONS OF ²¹⁰At [7.3]

TABLE 7.59D. MAIN EMISSIONS OF ²¹⁰ Po	[7.3]
--	-------

²¹⁰ Po	Decay mode:	α 100%
FO	T _{1/2} :	138.376 d
Radiation	Energy (keV)	Intensity (%)
α	4516.53	0.00122
α	5304.33	100
γ	803.10	0.00121

B. Production routes

²¹¹At is routinely produced at cyclotrons via the ²⁰⁹Bi(α ,2n)²¹¹At reaction. The major impurity is ²¹⁰At generated by the ²⁰⁹Bi(α ,3n)²¹⁰At reaction, which undergoes EC decay (99.775%) to the long-lived ²¹⁰Po that decays by alpha-decay to stable ²⁰⁶Pb. An important requirement is to minimize the production of ²¹⁰At (or Po-210 daughter), and therefore we present evaluated data for both the main and the side reactions, as defined in Table 7.60.

Target isotope	Natural abundance	Reaction	Q-value (MeV)	Threshold energy (MeV)
²⁰⁹ Bi	100%	$(\alpha, 2n)^{211}$ At	-20.3	20.7
²⁰⁹ Bi	100%	$(\alpha, 3n)^{210}$ At impurity	-28.1	28.6

TABLE 7.60. INVESTIGATED PRODUCTION ROUTES [7.3, 7.4]

C. 209 Bi(α ,2n) 211 At reaction

Bibliography, evaluation and selection

Cross section

KELLY, E.L., SEGRÈ, E., Some excitation functions of bismuth, Phys. Rev. **75** (1949) 999-1005. EXFOR: no

RAMLER, W.J., WING, J., HENDERSON, D.J., HUIZENGA, J.R., Excitation functions of bismuth and lead, Phys. Rev. **114** (1959) 154-162. Exfor: A0246

STICKLER, J.D., HOFSTETTER, K.J., Comparison of ³He-, ⁴He-, and ¹²C-induced nuclear reactions in heavy-mass targets at medium excitation energies (I), Experimental cross sections, Phys. Rev. C **9** (1974) 1064-1071. EXFOR: no

Data were rejected because of an order of magnitude difference with all other measurements.

DECONNINCK, G., LONGREE, M., Fonctions d'excitation des réactions induites par particules alpha sur ²⁰⁹Bi entre 40 et 100 MeV, Ann. Soc. Sci. Brux. Ser. 1 **88** (1974) 341-346. EXFOR: no

LAMBRECHT, R.M., MIRZADEH, S., Cyclotron isotopes and radiopharmaceuticals – XXXV Astatine-211, Int. J. Appl. Radiat. Isot. **36** (1985) 443-450. EXFOR: A0249

HERMANNE, A., TÁRKÁNYI, F., TAKÁCS, S., SZÜCS, Z., SHUBIN, YU.N., DITYUK, A.I., Experimental study of the cross sections of α -particle induced reactions on ²⁰⁹Bi, Appl. Radiat. Isot. **63** (2005) 1-9. Exfor: O1272 Direct measurement of α of ²¹¹At and indirect measurement through α of ^{211g}Po. HERMANNE, A., TÁRKÁNYI, F., TAKÁCS, S., SZÜCS, Z., Experimental study of the cross sections of alpha-particle induced reactions on ²⁰⁹Bi, pp. 957-960 in Proc. Int. Conf. on Nuclear Data for Science and Technology, Santa Fe, USA, 26 September – 1 October 2004, HAIGHT, R.C., CHADWICK, M.B., TALOU, P., KAWANO, T. (Eds), AIP Conference Proceedings 769 (2005).

Same as Hermanne et al. (2005), above.

Yield

BEYER, G.J., DREYER, R., ODRICH, H., ROSCH, F., Production of ²¹¹At at the Rossedorf-Cyclotron U-120, Radiochem. Radioanal. Lett. **47** (1981) 63-65. EXFOR: A0115 *Data are not comparable.*

LAMBRECHT, R.M., MIRZADEH, S., Cyclotron isotopes and radiopharmaceuticals – XXXV Astatine-211, Int. J. Appl. Radiat. Isot. **36** (1985) 443-450. EXFOR: no

LARSEN, R.H., WIELAND, B.W., ZALUTSKY, M.R., Evaluation of an internal cyclotron target for the production of ²¹¹At via the ²⁰⁹Bi(α ,2n)²¹¹At reaction, Appl. Radiat. Isot. **47** (1996) 135-143. EXFOR: no

HENRIKSEN, G., MESSELT, S., OLSEN, E., LARSEN, R.H., Optimisation of cyclotron production parameters for the 209 Bi(α ,2n) 211 At reaction related to biomedical use of 211 At, Appl. Radiat. Isot. **54** (2001) 839-844. EXFOR: D0167

LEBEDA, O., JIRAN, R., RÁLIŠ, J., ŠTURSA, J., A new internal target system for production of ²¹¹At on the cyclotron U-120M, Appl. Radiat. Isot. **63** (2005) 49-53. EXFOR: O1275

ALFARANO, A., ABBAS, K., HOLZWARTH, U., BONARDI, M., GROPPI, F., ALFASSI, Z., MENAPACE, E., GIBSON, P.N., Thick target yield measurement of ²¹¹At through the nuclear reaction ²⁰⁹Bi(α ,2n), J. Phys., Conference Series **41** (2006) 115-122. EXFOR: D0413

All experimental cross-section data are shown in Fig. 7.137, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.138. Excitation functions have been calculated by means of the ALICE-IPPE, EMPIRE and GNASH nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.139. Yields determined from the recommended cross sections are presented in Fig. 7.140, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.61.

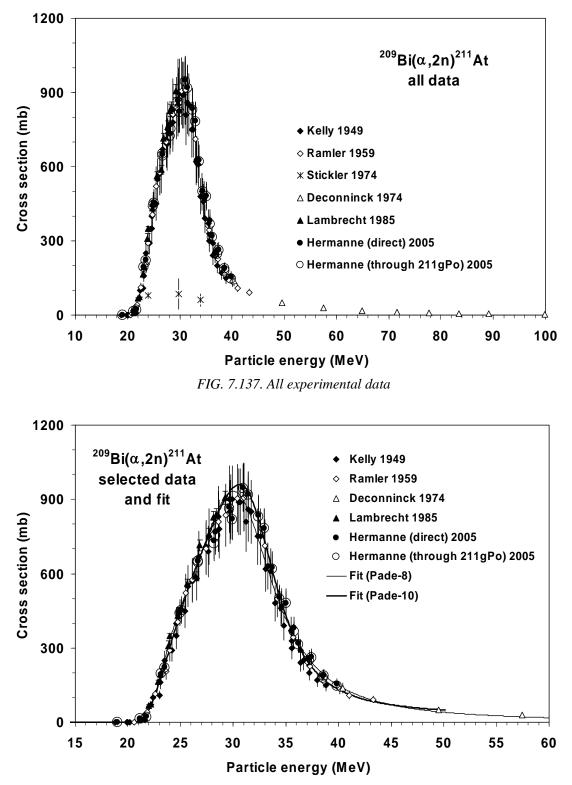


FIG. 7.138. Selected experimental data and the recommended curve (fit)

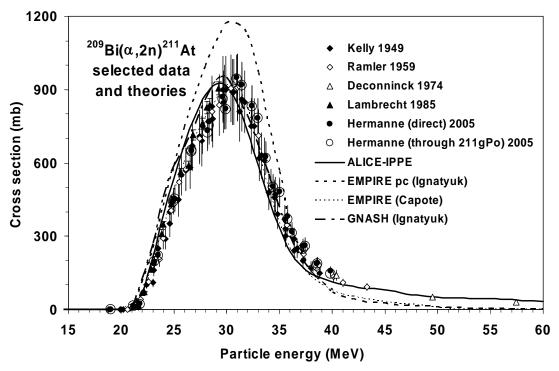


FIG. 7.139. Selected experimental data and theoretical calculations

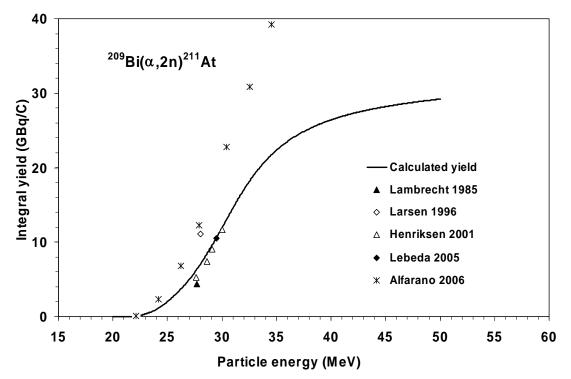


FIG. 7.140. Calculated integral yield curve based on the recommended cross sections

$^{209}\text{Bi}(\alpha,2n)^{211}\text{At}$	Cross section	Integral yield		ection Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)		
20.0	0	0	0.0		
20.5	1	0	0.0		
21.0	6	0	0.0		
21.5	21	2	0.0		
22.0	53	6	0.1		
22.5	107	16	0.2		
23.0	178	33	0.3		
23.5	258	60	0.6		
24.0	334	96	1.0		
24.5	403	141	1.5		
25.0	464	195	2.0		
25.5	521	257	2.6		
26.0	576	326	3.4		
26.5	631	403	4.1		
27.0	688	488	5.0		
27.5	745	582	6.0		
28.0	800	684	7.0		
28.5	851	794	8.2		
29.0	893	911	9.4		
29.5	922	1035	10.6		
30.0	933	1162	11.9		
30.5	924	1291	13.3		
31.0	894	1417	14.6		
31.5	848	1540	15.8		
32.0	789	1656	17.0		
32.5	723	1764	18.1		
33.0	655	1863	19.1		
33.5	588	1953	20.1		
34.0	526	2035	20.9		
34.5	468	2108	21.7		
35.0	417	2174	22.3		
35.5	372	2233	23.0		
36.0	332	2287	23.5		
36.5	297	2335	24.0		
37.0	266	2378	24.4		
37.5	239	2418	24.8		
38.0	216	2454	25.2		
38.5	196	2486	25.6		
39.0	178	2516	25.9		
39.5	162	2544	26.1		
40.0	148	2569	26.4		
40.5	136	2593	26.6		
41.0	125	2614	26.9		
41.5	115	2634	27.1		
42.0	107	2653	27.3		
42.5	99	2670	27.4		
43.0	92	2687	27.6		

TABLE 7.61. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

Table 7.61	cont'd
------------	--------

$^{209}\text{Bi}(\alpha,2n)^{211}\text{At}$	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
43.5	86	2702	27.8
44.0	80	2717	27.9
44.5	75	2730	28.1
45.0	70	2743	28.2
45.5	66	2755	28.3
46.0	62	2767	28.4
46.5	58	2778	28.5
47.0	55	2788	28.7
47.5	52	2798	28.8
48.0	49	2807	28.9
48.5	47	2816	28.9
49.0	45	2825	29.0
49.5	42	2833	29.1
50.0	40	2841	29.2

D. $^{209}Bi(\alpha,3n)^{210}At$ reaction: radioisotope impurity

Long-lived, strong α -emitting ²¹⁰Po is formed mainly through the EC decay of ²¹⁰At, and is the main contaminant in the possible radiotherapeutic use of ²¹¹At. Direct production is small, and any ²¹⁰Po can be chemically separated from the ²¹¹At.

Bibliography, evaluation and selection

Cross section

KELLY, E.L., SEGRÈ, E., Some excitation functions of bismuth, Phys. Rev. **75** (1949) 999-1005. EXFOR: no

RAMLER, W.J., WING, J., HENDERSON, D.J., HUIZENGA, J.R., Excitation functions of bismuth and lead, Phys. Rev. **114** (1959) 154-162. Exfor: A0246

STICKLER, J.D., HOFSTETTER, K.J., Comparison of ³He-, ⁴He-, and ¹²C-induced nuclear reactions in heavy-mass targets at medium excitation energies (I), Experimental cross sections, Phys. Rev. C **9** (1974) 1064-1071. EXFOR: no

DECONNINCK, G., LONGREE, M., Fonctions d'excitation des réactions induites par particules alpha sur ²⁰⁹Bi entre 40 et 100 MeV, Ann. Soc. Sci. Brux. Ser. I **88** (1974) 341-346. EXFOR: no

Cumulative cross section of 210 Po was measured which is almost the same as the cross section of 210 At because the direct production of 210 Po through the (d,t) reaction is negligible – rejected.

LAMBRECHT, R.M., MIRZADEH, S., Cyclotron isotopes and radiopharmaceuticals – XXXV Astatine-211, Int. J. Appl. Radiat. Isot. **36** (1985) 443-450. EXFOR: no RATTAN, S.S., SINGH, R.J., SAHAKUNDU, S.M., PRAKASH, S., RAMANIAH, M.V., Alpha particle induced reactions of ²⁰⁹Bi and ^{63,65}Cu, Radiochim. Acta **39** (1986) 61-63. EXFOR: A0353

RIZVI, I.A., BHARDWAJ, M.K., AFZAL ANSARI, M., CHAUBEY, A.K., Non-equilibrium reaction mechanism in alpha-particle induced excitation function for ²⁰⁹Bi up to 60 MeV, Appl. Radiat. Isot. **41** (1990) 215-219.

EXFOR: no

Rejected because of the significant differences compared with all other data.

RATTAN, S.S., CHAKRAVARTY, N., RAMASWAMI, A., SINGH, R.J., Alpha particle induced reactions of ²⁰⁹Bi at 55.7 and 58.6 MeV, Radiochim. Acta **57** (1992) 7-9. EXFOR: O1300

SINGH, N.L., MUKHERJEE, S., SOMAYAJULU, D.R.S., Non-equilibrium analysis of (α,xn) reactions on heavy nuclei, Nuovo Cimento A **107** (1994) 1635-1645. EXFOR: O1119

PATEL, H.B., SHAH, D.J., SINGH, N.L., Study of (α,xn) reactions on ¹⁶⁹Tm, ¹⁸¹Ta and ²⁰⁹Bi up to 70 MeV, Nuovo Cimento **112** (1999) 1439-1452. EXFOR: no

HERMANNE, A., TÁRKÁNYI, F., TAKÁCS, S., SZÜCS, Z., SHUBIN, YU.N., DITYUK, A.I., Experimental study of the cross sections of α -particle induced reactions on ²⁰⁹Bi, Appl. Radiat. Isot. **63** (2005) 1-9.

EXFOR: 01272

The excitation function of ²¹⁰At and the cumulative cross section of ²¹⁰Po were measured. Cumulative cross section of ²¹⁰Po is almost the same as the cross section of ²¹⁰At because the direct production of ²¹⁰Po by means of the (d,t) reaction is negligible. Results for ²¹⁰Po have been rejected.

HERMANNE, A., TÁRKÁNYI, F., TAKÁCS, S., SZÜCS, Z., Experimental study of the cross sections of alpha-particle induced reactions on ²⁰⁹Bi, pp. 957-960 in Proc. Int. Conf. on Nuclear Data for Science and Technology, Santa Fe, USA, 26 September – 1 October 2004, HAIGHT, R.C., CHADWICK, M.B., TALOU, P., KAWANO, T. (eds), AIP Conference Proceedings 769 (2005).

Same as the above.

Yield

HENRIKSEN, G., MESSELT, S., OLSEN, E., LARSEN, R.H., Optimisation of cyclotron production parameters for the ²⁰⁹Bi(α ,2n)²¹¹At reaction related to biomedical use of ²¹¹At, Appl. Radiat. Isot. **54** (2001) 839-844. EXFOR: D0167

ALFARANO, A., ABBAS, K., HOLZWARTH, U., BONARDI, M., GROPPI, F., ALFASSI, Z., MENAPACE, E., GIBSON, P.N., Thick target yield measurement of ²¹¹At through the nuclear reaction ²⁰⁹Bi(α ,2n), J. Phys., Conference Series **41** (2006) 115-122. EXFOR: D0413

All experimental cross-section data are shown in Fig. 7.141, and the selected measurements are compared with the resulting statistical fit to these data in Fig. 7.142. Excitation functions have been calculated by means of the ALICE-IPPE and EMPIRE nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.143. Yields determined from the recommended cross sections are presented in Fig. 7.144, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.62.

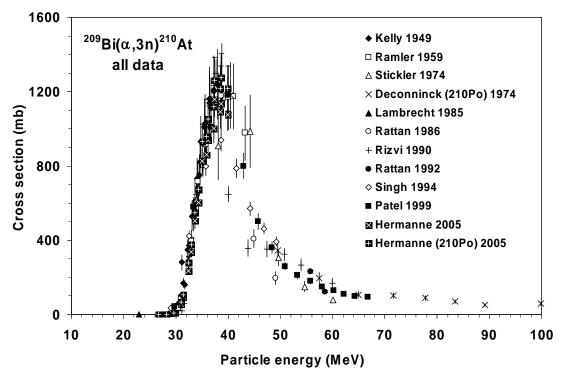


FIG. 7.141. All experimental data

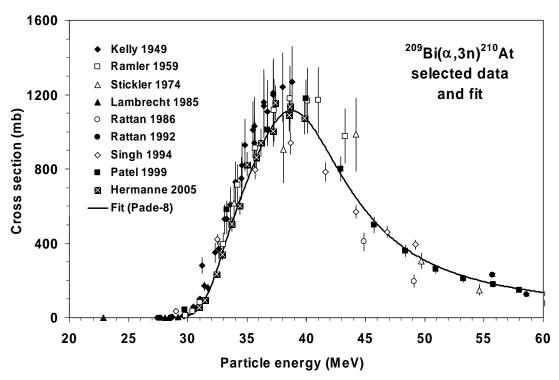


FIG. 7.142. Selected experimental data and the recommended curve (fit)

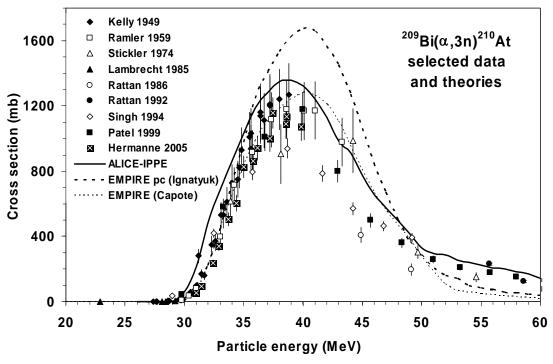


FIG. 7.143. Selected experimental data and theoretical calculations

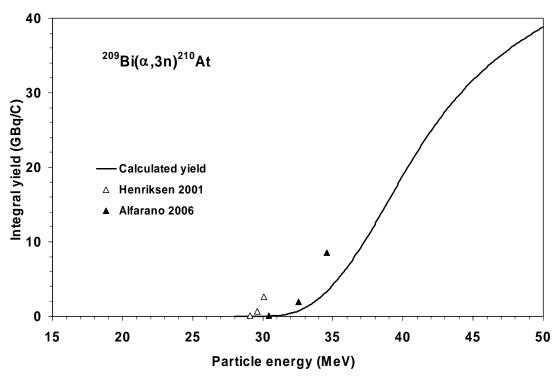


FIG. 7.144. Calculated integral yield curve based on the recommended cross sections

$^{209}\text{Bi}(\alpha, 3n)^{210}\text{At}$	Cross section	Integra	l yield
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
28.0	0	0	0.00
28.5	0	0	0.00
29.0	1	0	0.00
29.5	3	0	0.00
30.0	10	1	0.01
30.5	25	3	0.04
31.0	55	9	0.09
31.5	105	19	0.20
32.0	177	38	0.39
32.5	267	67	0.69
33.0	366	109	1.12
33.5	465	165	1.70
34.0	561	234	2.40
34.5	651	316	3.25
35.0	735	410	4.22
35.5	816	517	5.31
36.0	890	635	6.52
36.5	958	763	7.85
37.0	1016	902	9.27
37.5	1063	1049	10.78
38.0	1095	1203	12.36
38.5	1112	1361	13.99
39.0	1112	1522	15.64
39.5	1096	1682	17.29
40.0	1067	1841	18.92
40.5	1027	1995	20.51
41.0	980	2144	22.04
41.5	927	2287	23.50
42.0	872	2422	24.90
42.5	817	2550	26.21
43.0	764	2671	27.46
43.5	712	2785	28.62
44.0	664	2891	29.72
44.5	618	2992	30.75
45.0	576	3086	31.71
45.5	538	3174	32.62
46.0	502	3257	33.48
46.5	470	3335	34.28
47.0	440	3409	35.04
47.5	413	3479	35.76
48.0	388	3545	36.43
48.5	366	3607	37.08
49.0	345	3667	37.69
49.5	326	3723	38.26
50.0	309	3777	38.82
		<i></i>	

TABLE 7.62. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

7.15. Charged-particle production of ²²⁵Ac

Several alpha particle emitting radioisotopes have been studied for use in radioimmunotherapy. ²²⁵Ac has the potential advantages of a relatively long half-life of 10 days, and four alpha-particle emitters in the resulting decay chain with a total energy release of ~ 28 MeV. Potentially, this radioisotope is a very important α -emitter, and efforts are under way to extend application in radiotherapy. The decay chain of ²²⁵Ac is shown in Fig. 7.145, and the main emissions are listed in Table 7.63.

A. Decay data

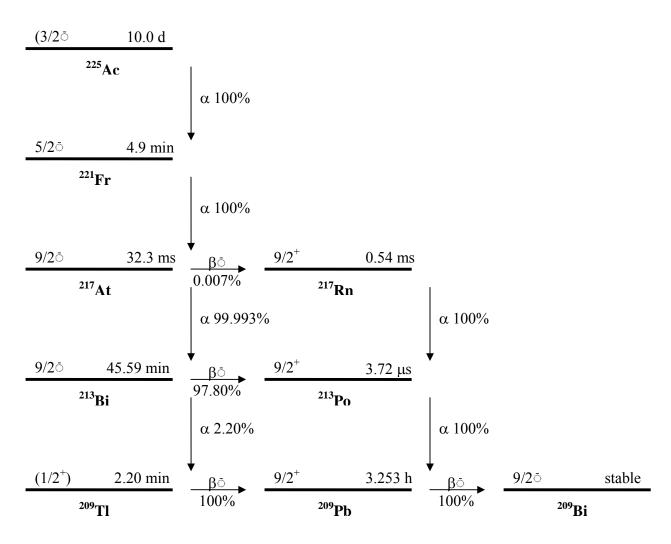


FIG. 7.145. Decay scheme of ²²⁵Ac [7.3]

Parent	Decay mode	T _{1/2}	Radiation	Energy (keV)	End-point energy (keV)	Intensity (%)
²²⁵ Ac	α 100%	10.0 d	α	5580		1.20
			α	5609		1.10
			α	5637		4.4
			α	5682		1.30
			α	5724		3.1
			α	5732		8.0
			α	5732		1.32
			α	5790.6		8.6
			α	5792.5		18.1
			α	5830		50.7
²²¹ Fr	α 100%	4.9 min	α	6126.3		15.10
			α	6243.0		1.34
			α	6341.0		83.4
			γ	218.12		11.4
²¹⁷ At	α 99.993%	32.3 ms	ά	7066.9		99.89
²¹³ Bi	β ⁻ 97.80%	45.59 min	β^-	320.4	983	30.74
			β-	492.2	1423	65.8
			γ	440.45		25.94
	α 2.20%	45.59 min	ά	5869		1.94
²⁰⁹ Tl	$\beta^{-} 100\%$	2.20 min	β^-	660	1827	98.80
			γ	117.211		84.3
			γ	465.130		96.9
			γ	1567.09		99.8
²¹⁷ Rn	α 100%	0.54 ms	ά	7741		100
²¹³ Po	α 100%	3.72 µs	α	8375.9		100
²⁰⁹ Pb	β ⁻ 100%	3.253 h	β^{-}	197.5	644.4	100

TABLE 7.63. MAIN EMISSIONS [7.3]

B. Production routes Presently ²²⁵Ac can be obtained only in limited quantities (approx. 1 Ci per year) by radiochemical separation from ²²⁹Th sources. Alternative methods of producing ²²⁵Ac have been proposed, mainly through the irradiation of ²²⁶Ra targets using protons, neutrons or gamma rays in order to meet the increasing radioisotope demands of large-scale clinical studies, and the treatment of a large number of patients. The ²²⁶Ra(p,2n) reaction is defined in Table 7.64.

TABLE 7.64. INVESTIGATED PRODUCTION ROUTES [7.3, 7.4]

Target isotope	T _{1/2}	Reaction	Q-value (MeV)	Threshold energy (MeV)
²²⁶ Ra	1600 y	(p,2n)	-6.8	6.9

C. ²²⁶Ra(p,2n)²²⁵Ac reaction

Bibliography, evaluation and selection

Decay data

XIAOLONG, H., BAOSONG, W., Evaluation of ²²⁵Ac decay data, Appl. Radiat. Isot. **65** (2007) 712-723 *New results*.

Cross section

APOSTOLIDIS, C., MOLINET, R., McGinley, J., ABBAS, K., MÖLLENBECK, J., MORGENSTERN, A., Cyclotron production of ²²⁵Ac for targeted alpha therapy, Appl. Radiat. Isot. **62** (2005) 383-387. EXFOR: O1236

Yield

No data were found.

Apostolidis 2005 measurements are compared with the resulting statistical fit to experimental cross-section data in Fig. 7.146. Excitation functions have been calculated by means of the ALICE-IPPE and EMPIRE nuclear reaction modelling codes, and results are compared with all of the selected experimental data in Fig. 7.147. Yields determined from the recommended cross sections are presented in Fig. 7.148, while corresponding numerical values for the recommended cross sections and yields are listed in Table 7.65.

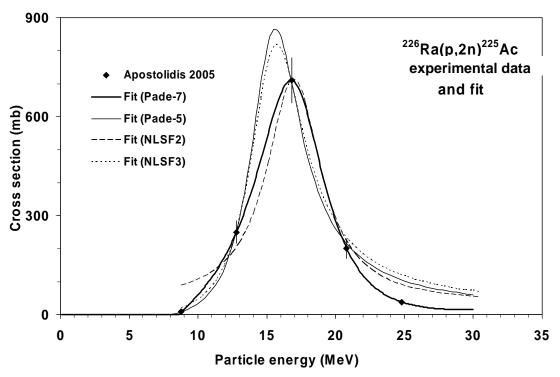


FIG. 7.146. Experimental data and the recommended curve (fit)

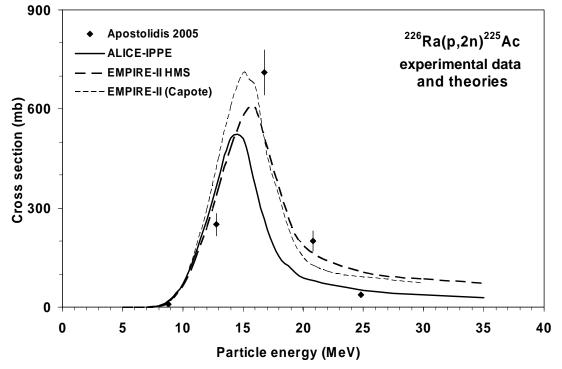


FIG. 7.147. Experimental data and theoretical calculations

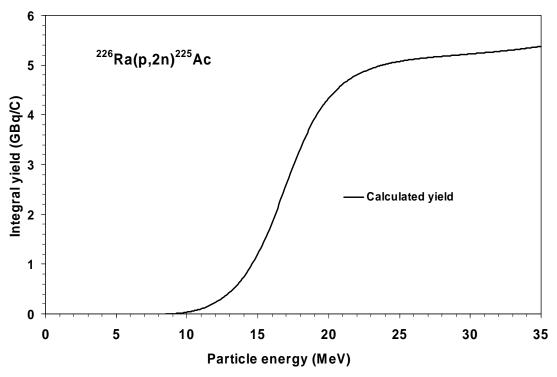


FIG. 7.148. Calculated integral yield curve based on the recommended cross sections

$(2n)^{225}$ Ac	Cross section	Integra	l vield
y (MeV)	(mb)	(µCi/µAh)	(GBq/C)
8.5	0	0	0.00
9.0	16	0	0.00
9.5	37	1	0.01
10.0	59	3	0.03
10.5	84	6	0.06
11.0	112	10	0.10
11.5	144	15	0.16
12.0	180	22	0.23
12.5	222	31	0.32
13.0	270	42	0.43
13.5	325	56	0.57
14.0	389	72	0.74
14.5	459	93	0.95
15.0	534	117	1.20
15.5	607	146	1.50
16.0	668	179	1.84
16.5	705	215	2.20
	19		
31.0	15	511	5.25
17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5	$\begin{array}{c} 706\\ 669\\ 601\\ 518\\ 432\\ 353\\ 285\\ 229\\ 183\\ 147\\ 118\\ 95\\ 77\\ 63\\ 51\\ 42\\ 35\\ 30\\ 25\\ 22\\ 19\\ 18\\ 16\\ 15\\ 15\\ 14\\ 14\\ 14\\ 15\\ \end{array}$	$\begin{array}{c} 252 \\ 289 \\ 324 \\ 355 \\ 381 \\ 404 \\ 422 \\ 437 \\ 449 \\ 459 \\ 467 \\ 474 \\ 480 \\ 484 \\ 488 \\ 491 \\ 494 \\ 496 \\ 498 \\ 500 \\ 501 \\ 502 \\ 504 \\ 505 \\ 506 \\ 507 \\ 508 \\ 509 \end{array}$	$\begin{array}{c} 2.59\\ 2.97\\ 3.33\\ 3.64\\ 3.92\\ 4.15\\ 4.34\\ 4.49\\ 4.62\\ 4.72\\ 4.80\\ 4.87\\ 4.93\\ 4.93\\ 4.98\\ 5.01\\ 5.05\\ 5.07\\ 5.10\\ 5.12\\ 5.13\\ 5.15\\ 5.16\\ 5.18\\ 5.19\\ 5.20\\ 5.21\\ 5.22\\ 5.24\end{array}$

 TABLE 7.65. RECOMMENDED CROSS SECTIONS AND INTEGRAL YIELDS

Table 7.65 cont'd

226 Ra(p,2n) 225 Ac	Cross section	Integral yield	
Energy (MeV)	(mb)	(µCi/µAh)	(GBq/C)
32.0	16	513	5.27
32.5	17	515	5.29
33.0	18	516	5.30
33.5	19	518	5.32
34.0	20	519	5.34
34.5	21	521	5.36
35.0	22	523	5.38

REFERENCES:

- [7.1] QAIM, S.M., BISINGER, T., HILGERS, K., NAYAK, D., COENEN, H.H., Positron emission intensities in the decay of ⁶⁴Cu, ⁷⁶Br and ¹²⁴I, Radiochim. Acta **95** (2007) 67-73.
- [7.2] Medical Internal Radiation Dose (MIRD) Database <u>http://www.nndc.bnl.gov/mird</u>.
- [7.3] See webpages <u>http://www-nds.iaea.org/ensdf/</u> and <u>http://www.nndc.bnl.gov/ensdf/</u> for ENSDF; NuDat 2.4, National Nuclear Data Center, Brookhaven National Laboratory, <u>http://www.nndc.bnl.gov/nudat2/</u>.
- [7.4] Q-value Calculator (QCalc), National Nuclear Data Center (NNDC), Brookhaven National Laboratory, <u>http://www.nndc.bnl.gov/qcalc/</u>.