

STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION

BULK SPECIFIC GRAVITY OF COMPACTED BITUMINOUS MIXTURES:

FINDING A MORE WIDELY APPICABLE METHOD

FINAL REPORT

Project Number TNSPR-RES1153

Prepared by:

L. K. Crouch Daniel A. Badoe Mark Cates T. Adam Borden Audrey R. Copeland C. Todd Walker Tim Dunn Richard A. Maxwell W. A. Goodwin Tennessee Technological University

July 2003

Prepared for:

Tennessee Department of Transportation In cooperation with U.S. Department of Transportation Federal Highway Administration

		Technical Report Documentation Pag		
teport No. 2. Government Accession No. VSPR) RES 1153		3. Recipient's Catalog No.		
 Title and Subtitle Bulk Specific Gravity of Compacte 	5. Report Date			
More Widely Applicable Method	6. Performing Organization Code			
7. Author(s) L. K. Crouch, Daniel A. Borden, Audrey R. Copeland, C. To Maxwell, and William A. Goodwin	8. Performing Organization Report No.			
9. Performing Organization Name and Addi Center for Electric Power	10. Work Unit No. (TRAIS)			
Box 5032, Tennessee Technologica Cookeville, TN 38505-0001	11. Contract or Grant No. CUT 199			
12. Sponsoring Agency Name and Address Materials and Tests Division	13. Type of Report and Period Covered January 2, 1999 to April 30, 2003			
Tennessee Department of Transpor 6601 Centennial Blvd. Nashville, T	14. Sponsoring Agency Code			
15. Supplementary Notes				

16. Abstract

AASHTO T-166 Standard Specification for Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface Dry Specimens, often referred to as the SSD method states, "This method should not be used with samples that contain open or interconnecting voids and/or absorb more than 2% of water by volume." As the percentage of voids accessible from the compacted specimen surface increases, water penetrates further into the specimen. Water penetration into compacted hot-mix asphalt (HMA) samples introduced only small errors in percent air voids determination when dense-graded, well-compacted HMA mixtures were used exclusively. However, design innovations such as Superpave, stone matrix asphalt (SMA), open-graded friction courses (OGFC) and large-stone mixes (LSM) as well as construction problems such as inadequately compacted conventional HMA mixtures have made the timitations of AASHTO T-166 more apparent.

The ultimate goal of the project was to develop a new method, or adapt a current method, for determining bulk specific gravity (G_{nb}) of compacted HMA mixtures with wide applicability. The method must be repeatable and applicable to laboratory or field specimens for a wide variety of mixture types. A more reliable G_{nb} would result in more reliable HMA volumetric properties, specifically percent air voids. Consequently, dangerous pavement distress types such as rutting, bleeding, stripping, and age hardening (whose occurrence can often be predicted using percent air voids), could be avoided more often, ensuring a high degree of safety for the motoring public (a TDOT primary goal).

The project goal was accomplished in three steps. In step 1, a literature review and survey of state departments of transportation revealed thirteen existing G_{mb} determination techniques. In addition, the research team developed concepts for two new methods. The TDOT Monitoring Committee selected the seven most promising methods for further study. In step 2, a feasibility study using ten compacted HMA samples was conducted on the seven selected methods to evaluate cost, logistical factors, and preliminary repeatability. The TDOT Monitoring Committee selected the four most promising methods for further study. In the final step, fifty compacted HMA samples and four aluminum cylinders were used to evaluate the precision and accuracy of the four selected methods.

The dimensional analysis (AASHTO T-269) and the parafilm (ASTM D 1188) methods were found to form upper bounds for true sample air voids, while the SSD (AASHTO T-166) method was found to form a lower bound for true air voids. Although the true air voids can never be determined, the Instrotek Corelok System yields air void results in the range between the upper and lower bounds for true air voids. Finally, the Instrotek Corelok System was found to have the necessary precision, having an average coefficient of variation of 0.20 percent for the fifty compacted HMA samples used in the precision and accuracy step. Based on the results of the precision and accuracy study, the research team recommends the Instrotek Corelok System as the most widely applicable method for determining the G_{mb} of compacted HMA mixtures.

A 285-sample field study was conducted to ascertain the difference in magnitude in air voids based on Instrotek CoreLok tests and AASHTO T 166 tests. The average difference in air voids resulting from CoreLok and AASHTO T 166 is 1.0, 1.4, 2.1, and 3.3 for 411 S, 411 D, 307 BM 2, and 307 A HMA mixtures respectively. The difference is statistically significant for all mixture types statewide and in 14 of 15 (93.3% cases or 98.2% of HMA samples) of the TDOT Regional cases. The difference in air voids between CoreLok and AASHTO T 166 is a direct function of HMA mixture aggregate gradation.

17. Key Words		18. Distribution	Statement		
Bituminous paving mixtures - c	ompacted				
bulk specific gravity	air voids				
automatic vacuum sealing metho	od density				
in-place density	compaction				
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price	
Unclassified	Unclassified		261		

Form DOT F 1700.7 (8-72) Reproduction of Completed page authorized

NOTICE

This document is disseminated under the sponsorship of the Tennessee Department of Transportation in the interest of research and information exchange. The United States Government and the State of Tennessee assume no liability for the contents or the use thereof.

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presents herein. The contents do not necessarily reflect the official views or policies of the United States Government or the State of Tennessee at the time of publication. This report does not constitute a standard specification or regulation.

The United State Government and the State of Tennessee do not endorse products, equipment or manufacturers. Trade manufacturers' names appear herein only because they are considered essential to the objectives of this document.

Department of Transportation Authorization # 401341 40 copies, July, 2003. This public document was promulgated at a cost of \$10.40 per copy.

TABLE OF CONTENTS	
INTRODUCTION	1
SPECIFIC GRAVITY BASICS	2
PROJECT PLAN	8
CURRENT METHODS	10
FEASIBILITY STUDY	26
Samples	26
Cost	26
Time To Perform Test	28
Difficulty	28
Preliminary Repeatability	29
Analysis of Feasibility Study Results	30
PRECISION AND ACCURACY STUDY	34
Samples	34
Results	36
Analysis of Results	44
FIELD STUDY	50
CONCLUSION	66
RECOMMENDATION	68
ACKNOWLEDGEMENTS	69
REFERENCES	70
APPENDICES	73
A. Introduction	73
B. Feasibility Study	70
C. Precision and Accuracy Study	99
D. Aluminum Cores	149
E. Paired T-test Data and Results	15.
F. Field Study Data and Results	15
G. Paired T-test Data for Field Samples	209

INTRODUCTION

Hot-mix asphalt (HMA) is used on ninety-six percent of all paved surfaces in the United States. Consequentially, the adequate performance of HMA pavements is crucial to the nation's infrastructure and economy. Pavement and materials researchers and practitioners have determined that volumetric properties of compacted HMA are the most important factors in determining the probable performance of HMA pavements. Therefore, volumetric properties are the most widely used HMA mix design parameters as well as the most widely specified pavement acceptance criteria used by state and federal departments of transportation (DOT). In addition, volumetric properties are important in forensic pavement investigations and in planning for subsequent rehabilitation or reconstruction. The importance of HMA volumetric properties cannot be overestimated.

In recent years, several new types of HMA designs have been developed in attempt to increase the service life of HMA pavements. In particular, Superpave, stone matrix asphalt (SMA), large-stone mixes (LSM), and open-graded friction courses (OGFC) are types of HMA mixes that often have a relatively large percentage of voids after compaction. The application of present methods for determining the volumetric properties of densegraded (relatively low voids) HMA mixtures to these new types of mixtures with more voids has caused some difficulties for mix designers and technicians at many DOTs. These difficulties are described in detail on pages 86 and 87 of NCHRP Report 386 Design and Evaluation of Large-Stone Asphalt Mixes (1). The Standard Method of Test for Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface-Dry Specimens AASHTO T 166-00 (2) states that the method is not applicable to specimens with a water absorption of greater than two percent. Many of the previously mentioned new types of HMA mixtures have water absorption far in excess of two percent due to a relatively large percentage or size of voids after compaction. AASHTO T 166-00 recommends that Standard Method of Test for Bulk Specific Gravity of Compacted Bituminous Mixtures Using Paraffin-Coated Specimens AASHTO T 275-00 (3) be used for specimens with water absorption greater than two percent. TDOT Materials and Tests Division supervisory personnel, engineers, and technicians all expressed concerns about the logistics, reliability and repeatability of AASHTO T 275-00.

In an informal meeting at Materials and Tests Division Headquarters on Friday, October 9, 1998 TDOT Materials and Test Division supervisory personnel expressed a great deal of interest in the development or adaptation of a more widely applicable method for determining the specific gravity of compacted bituminous mixtures. To maximize efficiency, the new method would need to be applicable to laboratory compacted specimens as well as specimens obtained in the field (cores) of various diameters. Further, the method should be applicable to a wide variety of HMA mixture types.

The ultimate goal of the project was to develop a new method, or adapt a current method, for determining bulk specific gravity of compacted bituminous mixtures with wide applicability. The method must be repeatable and applicable to laboratory or field specimens for a wide variety of mixture types. A more reliable specific gravity would result in more reliable HMA volumetric properties, specifically, percent air voids. Consequently, dangerous pavement distress types such as rutting, bleeding, stripping, and age hardening (whose occurrence can often be predicted using percent air voids), could be avoided more often. Further, inadequately compacted and/or highly permeable HMA pavement courses could be detected more reliably using a different method for measuring in-place density. Thus, preventing premature failure due to aging, cracking, and raveling. Minimizing pavement distress and preventing premature HMA pavement failures would ensure a higher degree of safety for the motoring public, a TDOT primary goal.

SPECIFIC GRAVITY BASICS

ASTM C 125-98 (4) defines specific gravity as the ratio of the mass of a volume of a material at a stated temperature to the mass of the same volume of distilled water at a stated temperature. Specific gravity has a variety of important applications in hot mix asphalt engineering. Perhaps most importantly specific gravity is used in determination of the percent air voids. The general equation for determining specific gravity assuming the material and water are at the desired temperature is:

Specific Gravity = {[mass of material / volume of material] / density of water}

Determination of material mass and the density of water are not difficult. However, determination of material volume is much more difficult, especially if the material is irregularly shaped.

The most widely used current method for determining bulk specific gravity of a compacted bituminous mixture (G_{mb}) is AASHTO T-166 Standard Specification for Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface Dry Specimens, often referred to as the SSD method. The SSD method is based on the ancient work of Archimedes, who determined that the volume of an irregularly shaped object could be determined by water displacement. From fluid statics:

mass of water displaced = mass of material SSD – mass of material submerged; and ρ_w = mass of water displaced / volume of water displaced Recognizing that material volume SSD = volume of water displaced. Substituting: $\rho_w = (mass SSD - mass submerged) / volume SSD$ Therefore: volume SSD = (mass SSD - mass submerged) / ρ_w

The work of Archimedes has been extremely useful in construction materials testing. However, the concept has limitations. Water displacement is also used in measuring the theoretical maximum specific gravity (G_{mm}) of bituminous mixtures, AASHTO T-209 (5), often referred to as the Rice gravity. So, how do the two methods differ?

In the Rice method, the specific gravity of the uncompacted mixture is measured after an attempt to remove as much entrapped air as possible. The measured value, G_{mm} , is the specific gravity of the mix with no air voids (or more accurately, as few as possible air voids). The solid volume of mixture components is measured in the Rice method. In the SSD method, technicians attempt to determine the exterior volume of a compacted HMA mixture. Using the exterior volume of the compacted specimen and its mass, G_{mb} can be computed. With G_{mb} and G_{mm} , critical HMA volumetric properties such as percent air voids can be calculated. The difference in the two methods is clearly water penetration.

AASHTO test method developers clearly recognized the importance of water penetration into compacted HMA specimens. AASHTO T-166 states, "This method should not be used with samples that contain open or interconnecting voids and/or absorb more than 2% of water by volume." As the percentage of voids accessible from the compacted specimen surface increases, water penetrates further into the specimen. For AASHTO T-166 to be accurate, a high percentage of the water that penetrates the sample must be maintained in the sample up to the point of SSD mass determination. If this does not happen, the sample may not appear to have a high absorption falsely indicating that there is no need for a different method of G_{mb} determination. Unfortunately, the apparent volume of the compacted specimen decreases and G_{mb} approaches G_{mm} (see figure 1).

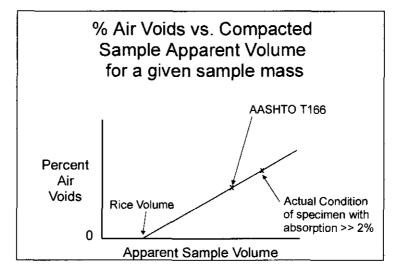


Figure 1. Percent Air Voids vs. Apparent Sample Volume

Water penetration into compacted HMA samples introduced only small errors in percent air voids determination when dense-graded, well-compacted HMA mixtures were used exclusively. However, design innovations such as Superpave, SMA, OGFC, and LSM as well as construction problems such as inadequately compacted conventional HMA mixtures such A, BM, BM2, D, and E have made the limitations of the SSD method became more apparent. Several new test methods have been developed to determine G_{mb} of compacted bituminous mixtures. Summaries of the currently available methods discovered in the literature review are provided in the Current Methods section. The reader should keep in mind that complicated formulas associated with many of the methods are simply attempts to determine the exterior volume of the sample using mathematical manipulation of the available data.

PROJECT PLAN FOR LAB PHASE

Activity 1. Literature Review. The research team will conduct a literature review to determine what methods of determining bulk specific gravity of compacted bituminous mixtures are currently being used, how well these methods work, and what equipment and supplies are required for each method.

<u>Activity 2. Conceptual Development of New Methods.</u> The research team will attempt to conceptually formulate several new methods of determining the bulk specific gravity of compacted bituminous mixtures.

<u>Activity 3. Method Review with TDOT Monitoring Team.</u> The research team will present the available information on all new and existing methods to the TDOT Monitoring team. The research team will recommend the most promising seven methods for a feasibility study. The TDOT Monitoring Committee will select seven methods for a feasibility study.

Activity 4. Conduct Feasibility Study. The research team will conduct a feasibility study of the methods selected by the TDOT Monitoring Committee. Feasibility evaluation criteria will include, but not be limited to equipment and supply cost, difficulty of conducting test, time required, and preliminary repeatability. TDOT personnel will provide a limited number (approximately 10) of compacted bituminous mixture samples required for conducting the feasibility study. The samples provided should contain a wide variety of compacted bituminous mixtures.

Activity 5. Report on Method Feasibility. The research team will report to the TDOT Monitoring Committee on the feasibility of the methods selected. The TDOT

Monitoring Committee will select the four most promising methods for precision and accuracy evaluation.

<u>Activity 6. Conduct Precision and Accuracy Evaluation.</u> The research team will conduct seven replications of each selected method on 25 field samples and 25 lab samples. TDOT will provide field and lab samples for the precision and accuracy evaluation. Samples provided should include a wide as possible range of variables.

<u>Activity 7. Analysis of Results.</u> The results of Activity 6 will be analyzed. Accuracy will be judged by comparison to standards selected by the TDOT Monitoring Committee. Precision will be judged by average within-test coefficient of variation.

Activity 8. Implementation Recommendations. TTU personnel will use the results of Activities 4 and 7 to determine which method should be recommended to the TDOT Materials and Tests Division.

<u>Activity 9. Prepare Final Report.</u> The final report will be prepared and submitted for the review of the TDOT Monitoring Committee.

Activity 10. Training Seminar. A training seminar will be held to inform TDOT personnel of project results and familiarize TDOT personnel with the recommended method. The seminar will be held at a time and place designated by the chairman of TDOT Monitoring Committee.

CURRENT METHODS

Table 1 shows existing methods revealed in the literature review.

Method	Author / Reference
Saturated Surface-Dry Specimens	AASHTO T-166
Dimensional Analysis	AASHTO T-269
Paraffin Coating	AASHTO T-275
Parafilm Coating	ASTM D 1188
Cut and Measure	Buchanan NCAT
Masking Tape Wrapping	TTI, NCHRP 386
Glass Beads	TTI, NCHRP 386
Weighing in Plastic Bags	TTI, NCHRP 386
Instrotek Corelok	Ali Regimand, Instrotek
Zinc Coating	Harvey, ASTM JTEVA Sept. 1994
Rubber Membrane Jacketing	Harvey, ASTM JTEVA Sept. 1994
Sand Replacement	Rorie, Rawdon, Joines, TDOT
Catching Absorbed Water	Unknown

Table 1. Existing Methods

The following paragraphs provide a brief summary of each of the existing methods as well as two conceptual method formulations from the project. The methods currently available for use in G_{mb} determination can be divided into two groups. The first group consists of methods designed to determine the sample volume through water displacement, while the second group of methods approached sample volume determination through other means.

Water Displacement Methods

The discussion of the water displacement methods begins with a brief review of the previously discussed SSD method, AASHTO T 166.

Saturated Surface-Dry Specimens - AASHTO T 166 (2)

The sample mass in air is measured in grams (M_{dry}) , then mass submerged in water in grams is measured (M_{sub}) , and finally the saturated surface-dry mass in grams is determined (M_{ssd}) . The bulk specific gravity is then calculated by the following equation:

 $G_{mb} = M_{dry} / (M_{ssd} - M_{sub})$

The SSD method generally yields acceptable results for dense-graded mixtures, but as previously stated the volume measured approaches the volume of solids as water penetration into the sample increases. Water infiltrates into the sample voids during submersion and drains from the sample before a SSD mass can be obtained. A measured volume, lower than the actual sample volume, results when testing samples containing open or interconnecting voids. Sample volume is given by the following equation:

Volume = $M_{ssd} - M_{sub}$

AASHTO T-166 states, "This method should not be used with samples that contain open or interconnecting voids and/or absorb more than 2% of water by volume." The following equation is used to calculate the percent water absorbed by the sample:

% Absorbed by Volume = $[(M_{ssd} - M_{dry}) / (M_{ssd} - M_{sub})] \times 100$

If the sample absorption exceeds this limit, then AASHTO T 275 (Paraffin-Coated Specimens) is recommended for use in determining the G_{mb} of the specimen.

The SSD test method is quick, easy, and operator insensitive. However, vulnerability to water penetration into the sample and subsequent drainage prior to SSD mass determination causes substantial concern. Previous research has shown that air void content was significantly underestimated by standard procedures that leave the outer surface of the specimen unsealed during submersion (6). Therefore, many leading researchers believe that subtle modifications could vastly improve the ability of the method to achieve accurate and repeatable results. The remaining test methods in this group were all designed to prevent water infiltration of the sample.

Paraffin Coating - AASHTO T 275 (3)

This procedure consists of coating the sample surface with melted paraffin to seal the specimen and prevent water absorption. The procedure after paraffin coating is similar to the AASHTO T-166. The following equation is used for calculating G_{mb} of paraffin-coated samples. The equation's denominator gives the sample volume.

$$G_{mb} = M_d / [M_{dwp} - M_{wwp} - (M_{dwp} - M_d)/G_p]$$

 M_d = mass of dry specimen, g

 M_{dwp} = mass of dry specimen plus paraffin, g

 M_{wwp} = mass of dry specimen plus paraffin in water, g

 G_p = specific gravity of paraffin at 25°C

The accuracy and repeatability of this test depends on the effectiveness of the application of the paraffin. If the paraffin wax is heated to a high enough temperature, it may enter the sample voids in the same manner as water infiltration with the SSD method, thus reducing the true sample volume (7). If correctly performed, this method should exhibit more accurate results than the saturated surface-dry test method, but the test is rather difficult to perform, time consuming, highly sensitive to operator efficiency, features poor repeatability, and the application of paraffin prevents future testing of the sample (8). However, any volume occupied by paraffin would not be considered part of the sample volume.

The AASHTO T 275 method can prevent water infiltration, but various other problems were introduced in the process. In an attempt to improve the paraffin coated sample application without sacrificing the positive aspects of the method, researchers modified the method by using parafilm, a close substitute for paraffin wax, to seal samples.

Parafilm Wrapping - ASTM D 1188 (9)

This method consists of wrapping the sample surface with parafilm in order to seal the surface. Parafilm is viewed as an acceptable substitute for paraffin wax when performing the AASHTO T 275 method of G_{mb} determination (8). It is reported that parafilm provides G_{mb} values equal to or slightly higher than those determined using the paraffin wax method (10). The parafilm test method eliminates the necessity of working with hot wax, avoids the concern of paraffin permeating interior sample voids, and also features the advantage of easy removal from the sample to allow further evaluation. The

$$G_{mb} = M_d / [M_{dwp} - M_{wwp} - (M_{dwp} - M_d)/G_p]$$

 M_d = mass of dry specimen, g

 M_{dwp} = mass of dry specimen plus parafilm. g

 M_{wwp} = mass of dry specimen plus parafilm in water, g

 G_p = specific gravity of parafilm at 25°C

The specific gravity of parafilm is determined using an aluminum cylinder as outlined in ASTM D 1188 for each operator. Unfortunately, bridging of the parafilm over surface voids is considered to be a problem (11). Bridging over surface irregularities increases observed sample volume, thus resulting in a lower observed G_{mb} . Water penetration due to an inadequate sealing of the surface by the parafilm also tends to be a problem, which decreases the observed volume of the sample. Repeatability and operator sensitivity are sources of concern with this method.

Masking Tape Wrapping (1) and Weighing in Plastic Bags (1)

These procedures utilize masking tape and plastic bags, respectively, to prevent permeation of water into open or interconnecting voids of samples. These methods use essentially the same equations and procedures as parafilm. The methods have the same repeatability and accuracy concerns as parafilm, but to a higher degree. Plastic bags seal well but usually do not conform acceptably to the sample exterior, resulting in a very high observed sample volume and thus a very low G_{mb} . Masking tape fits well but seals poorly resulting in water infiltration into the sample and thus a low observed sample volume and high G_{mb} .

Zinc Coating (10)

Zinc stearate is a hydrophobic powder, similar to talcum powder, used to dust the sample to prevent water infiltration. For this procedure, a dry sample mass is obtained, and then the sample is completely coated with zinc stearate powder and weighed in air and in water. The G_{mb} can then be determined by an equation similar to that of the Paraffin and Parafilm test methods. The mass in air with zinc stearate (M_{zs}) and mass in water with zinc stearate (M_{wzs}) are used instead of the mass in air with parafilm (M_{dwp}) and mass in water with parafilm (M_{wwp}).

Previous research has shown that in most cases the zinc stearate was incapable of preventing water penetration of all surface voids of the sample, providing results similar to unsealed samples (10). It is also reported that repeated inhalation of zinc stearate dust poses a health hazard (10). Considering the difficulty in obtaining accurate results and health hazards involved with this method, it was clear that this method was not a viable candidate as the most widely applicable method for determining G_{mb} .

Instrotek Corelok Vacuum Sealer (12)

The Instrotek Corelok method utilizes an automatic vacuum-sealing chamber in combination with puncture resistant polymer bags to prevent water infiltration. The sample is placed into a plastic bag, which is flexible enough to conform to the surface texture and requires no trimming or adjustment. The plastic bag is placed into the Corelok vacuum chamber, which automatically evacuates the air and then seals the sample to prepare it for analysis. The process of sample preparation requires very little operator involvement, virtually eliminating operator sensitivity. Once the test has been completed, the sample can be removed from the sealed bag and used for future testing. The procedure is similar to AASHTO T 275. The following equation is used for calculating G_{mb} with the Instrotek Corelok method. The equation's denominator gives the sample volume.

 $G_{mb} = M_d / [M_{ds} - M_{ss} - (M_{ds} - M_d)/F_t]$

 M_d = mass of dry specimen in air, g

 M_{ds} = mass of dry, sealed specimen in air, g

 M_{ss} = mass of sealed specimen submerged, g

 F_t = apparent specific gravity of polymer bag at 25°C, provided by manufacturer

Rubber Membrane Jacketing (10)

The membrane procedure requires the use of a cylindrically shaped rubber membrane having the same diameter of the sample, and the membrane height shall exceed the height of the sample by three to four inches. The membrane should have one open end for the placement and removal of samples, while the opposite end shall be closed and affixed with a small tube so that a vacuum can be applied to seal the sample. The procedure for this method is similar to the other water displacement methods. A dry mass is first recorded, and then the sample is placed into the membrane with its base resting firmly against the closed end. The open end of the membrane is folded as tightly against the sample as possible and clamped. A vacuum can now be connected to the tube in order to evacuate all air from within the membrane, allowing the membrane to more closely adhere to the surface contours of the sample. After the removal of air is evident, the vacuum is removed and the tube is clamped. The procedure is then completed by determining the mass of the sample with membrane and clamps in air and then submerged in water. The equation used to calculate the G_{mb} for this method is the same as that used for AASHTO T 275. Additional research is needed to make the membrane more durable, easier to clamp shut, and more flexible to better follow the surface of the specimens (10) In addition, the membranes would have to be calibrated with an aluminum cylinder similar to the parafilm calibration procedure.

Catching Absorbed Water

The catching absorbed water method procedure is identical to the SSD method procedure with the exception that the absorbed water which leaks from the specimen is caught and its mass is used in the calculation of G_{mb} . The following equation is used for calculating G_{mb} with the catching absorbed water method. The equation's denominator gives the sample volume.

 $G_{mb} = M_d / [(M_{ssd} + M_{abs}) - M_{subm}]$

 M_d = mass of dry specimen in air, g

 M_{ssd} = mass of the saturated surface-dry specimen in air, g

 M_{abs} = mass of caught absorbed water, g

 M_{subm} = mass of specimen in water, g

The catching of absorbed water is difficult and very subjective. This method was considered to be incapable of achieving the desired precision and accuracy.

Methods Not Involving Water Displacement

Dimensional Analysis AASHTO T-269 (13)

The dimensional analysis method assumes that the sample volume can be approximated by a simple geometric figure, typically a right circular cylinder. The dry mass of the sample is divided by its calculated volume to obtain the G_{mb} . The dimensional analysis method works well for samples with smooth planar surfaces. However, as surface irregularities are introduced, the method begins to overestimate the sample volume. Typically, dimensional analysis produces a low observed G_{mb} value compared to the actual G_{mb} .

Cut and Measure -NCAT(11)

This method consists of sawing compacted samples into cubical samples to remove surface irregularities, then usually determining G_{mb} by dimensional analysis. However, further research has shown that the surface of the sample, cut or uncut, influences the measured air voids (6). Although any method of G_{mb} measurement could be used on the cubical sample; theoretically, the truest measure of the sample G_{mb} could be determined by using AASHTO T 269, provided that the dimensions of the cut sample are accurately determined (11). NCAT researchers reported that it was quite difficult to obtain flawless samples using commercially available HMA saws. Several samples had small portions of the material break off along the cut edges, and it was extremely difficult to cut a cube of true parallel faces (11). Permanent sample damage, precluding further testing, is another disadvantage of this method.

Glass Beads - NCHRP 386 (1)

The glass beads method is capable of determining the bulk specific gravity of specimens containing water-permeable air voids by using 8 mm-dia. glass beads in place of water. The glass beads procedure is a displacement method but glass beads are displaced rather than water. It was developed for use with specimens that absorb more than 2% water by volume, as determined by AASHTO T 166. The test begins by positioning the sample on a bed of two to three inches of glass beads previously placed in a cylindrical metal measure. The measure is then filled with beads to the top of the specimen. Then the cylinder is to be tapped with a rubber mallet at four equally spaced locations to densify the beads. A metal cone (fitted to the top of the measure when inverted) is to be securely fastened to the measure to form a pycnometer. The measure is then filled. Compactive effort is applied when the measure is one-third full, two-thirds full, and then after overflowing by use of the previously mentioned rubber mallet.

The following equation is used for calculating G_{mb} with the glass beads method. The equation's denominator gives the sample volume.

 $G_{mb} = M_d / \left[(M_d + M_{mb} - M_{sbmc}) / G_{beads} \right]$

 M_d = mass of specimen, g

 M_{mb} = mass of measure plus beads, g

M_{sbmc} = mass of specimen plus beads, measure, and cone,g

 G_{beads} = specific gravity of glass beads, g

The specific gravity of the beads and calibration of the measure is determined by carrying out a similar process (see NCHRP Report 386). The following equation is used to determine the specific gravity of the glass beads:

 $G_{beads} = \left[\left(M_{mcb} - M_{mc} \right) / V_{mc} \right] / \gamma_w$

 M_{mcb} = mass of measure plus cone and beads

 M_{mc} = mass of measure plus cone

 V_{mc} = volume of measure plus cone

$$\gamma_{\rm w}$$
 = density of water

The specific gravity of the beads should be measured often to avoid error due to degradation of the beads and contamination from asphalt specimens that may alter bead specific gravity.

The glass beads method appears to be operator sensitive. Test results are highly dependent on the compactive effort supplied by the operator, which determines the density at which the beads will be packed within the test apparatus.

Sand Replacement - TDOT (Rorie, Rawdon, Joines)

The sand replacement method is very similar to the glass beads method. Volume of the sample is determined by the displacement of loose sand. This procedure utilizes a conical funnel mounted on a frame, which allows calibrated sand to free flow into a cylindrical container in which the test sample was previously placed. The cylindrical container is to be filled until overflowing. The excess sand is to be carefully struck off to a smooth level surface, using a minimal number of strokes and taking care to not densify the sand. The following equation is used for calculating G_{mb} with the sand replacement method. The equation's denominator gives the sample volume.

 $G_{mb} = M_d / (M_d + M_{ms} - M_{sms})$

 M_d = mass of specimen, g

 M_{ms} = mass of measure plus sand, g

 M_{sms} = mass of specimen plus measure and sand, g

The developers of this method recommend repeating this process at least once to confirm the results. If the difference in results exceeds one percent, the test is repeated and the average of the two closest (within one percent) replications are used to calculate G_{mb} . Unfortunately, repetition causes this test to become more time consuming. The

major disadvantage of the sand replacement method appears to be the possibility of sand entering the interconnected voids of samples, thus reducing observed sample volume and increasing observed G_{mb} . Sand intrusion might also render the sample useless for further testing.

Conceptual Development

Concepts for two new methods were developed for the project. The first concept called for a high surface-tension heavy liquid media. The procedure for the method would have been similar to the SSD method. The concept was abandoned when no safe, economical liquid media with the desired properties could be identified. The second concept developed was for a modification of the relative density test (14). This concept was subsequently abandoned due to its similarity to the existing sand replacement and glass beads methods.

Questionnaire

A questionnaire was sent to state DOTs in September 1999 to ascertain what methods were currently being used and if method modifications or new methods were being developed. 43 of 50 state DOTs responded to the questionnaire. A copy of the cover letter and questionnaire are provided in Appendix A. Figures 2, 3, and 4 show primary method, use of AASHTO T-275, and possible new methods or revisions, respectively.

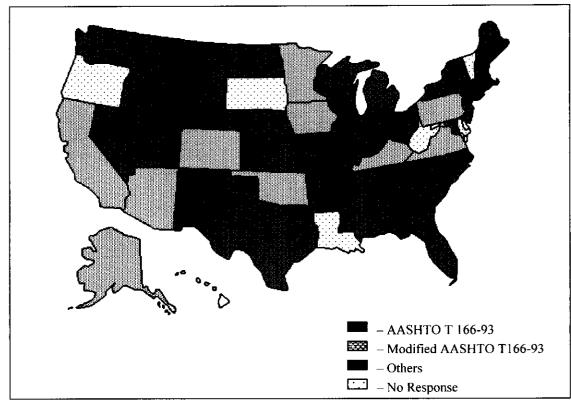


Figure 2. Primary Method

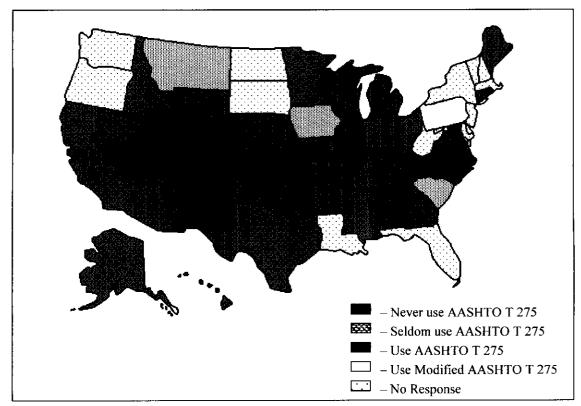


Figure 3. AASHTO T 275 Use

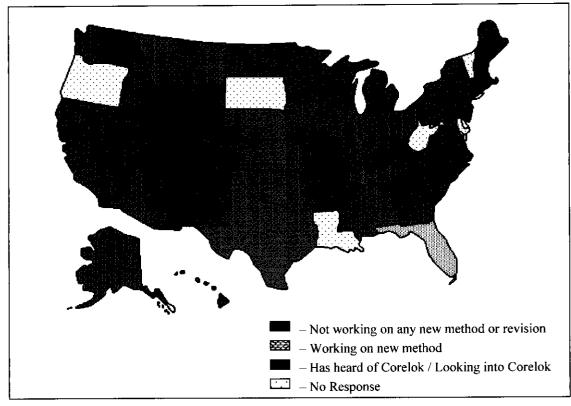


Figure 4. Possible New Methods or Revisions

Over 97 percent of state DOTs responding indicated that AASHTO T-166 (SSD method) or a modification of AASHTO T-166 was their primary G_{mb} determination method. About one-third of state DOTs responding (32.5%) reported never using AASHTO T-275 (paraffin coating). Another 7 percent reported only seldom use of AASHTO T-275. Almost seven of every ten states responding (69.8%) indicated that they were not currently working on a new method or a revision to their current G_{mb} determination method. In addition to the data from state DOTs, the Federal Aviation Administration reported using ASTM D 1188 (parafilm) or ASTM D 2726 (SSD). Further, the Federal Highway Administration Research and Development Lab reported using AASHTO T-166 (SSD) and involvement with the Instrotek Corelok pooled fund study.

The monitoring committee reviewed each available method at TDOT Materials and Tests Division Headquarters on November 12, 1999. At this meeting, the committee selected seven methods, shown in Table 2, for the feasibility study.

Table 2. Methods Selected for the Feasibility Study

Method	Author / Reference		
Saturated Surface-Dry Specimens	AASHTO T-166		
Dimensional Analysis	AASHTO T-269		
Dimensional Analysis with top and bottom surfaces cut plane	AASHTO T-269 and Buchanan, NCAT		
Dimensional Analysis with all surfaces cut plane	AASHTO T-269 and Buchanan, NCAT		
Parafilm Coating	ASTM D 1188		
Glass Beads	TTI, NCHRP 386		
Instrotek Corelok	Ali Regimand, Instrotek		

FEASIBILITY STUDY

The seven methods selected by the TDOT Monitoring Committee for the feasibility study were evaluated for:

- Cost
- Time required to perform each test
- Difficulty of test
- Preliminary repeatability

Samples

Ten compacted bituminous mixture samples were provided by the TDOT Materials and Tests Division (M&TD) for use in the feasibility study. The samples supplied included both field samples (cores) and laboratory compacted samples. Laboratory compacted samples were compacted with several different apparatus including the Superpave Gyratory Compactor, Marshall Hammer, and Corps of Engineers Gyratory. The samples also included a wide variety of mixture types, ranging from dense-graded surface mixtures to high void Novachip mixtures. In summary, the samples provided covered the spectrum of compacted bituminous mixture samples that TDOT M & TD had experience with.

Cost

The initial equipment costs associated with the methods chosen for the feasibility study are shown in figure 5. Two methods had reoccurring cost due to the use of expendable materials, Instrotek Corelok (sample bags) and parafilm. The reoccumng costs of these methods for both 4-in (101.6-mm) and 6-in. (152.4-mm) samples are shown in figure 6. Equipment maintenance costs associated with the methods were not included in the reoccurring costs. Due to the limited nature of the feasibility study, equipment maintenance costs could not be accurately estimated.

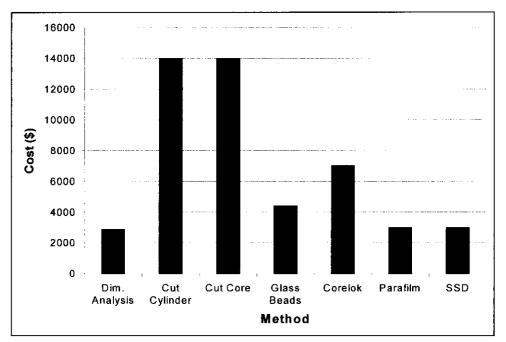


Figure 5. Initial Cost of Methods

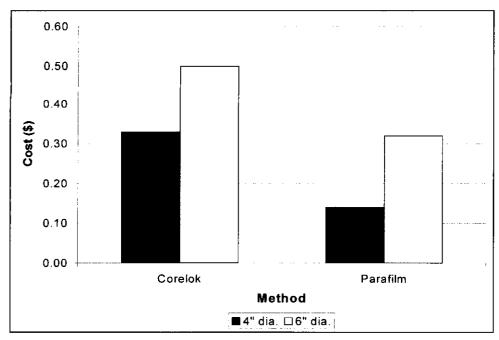


Figure 6. Reoccurring Costs of Methods

Time to Perform Test

The average time required for an experienced technician to perform a test with each of the selected methods is shown in figure 7. These times do not include the sample drying time.

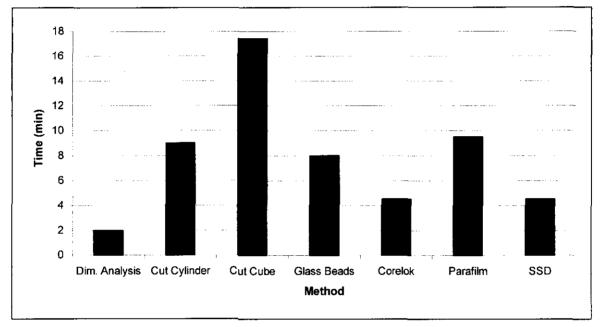


Figure 7. Time to Perform Each Method

Difficulty of Test

Although it did not require the longest time to perform, the glass beads method was by far the most physically demanding method. The average weight of the test apparatus, sample, and glass beads was 89 lbs (40.3 kg). Further, due to degradation of the glass beads periodic recalibration of the method was required. The periodic recalibration required approximately 8 additional minutes for an experienced technician. Both methods requiring sample cutting were difficult and time consuming as well. Sample damage due to cutting was also fairly common. Typically, the trailing edge of the sample would break off just before cutting was complete. Parafilm was the next most

difficult method, especially for 6-in. (152.4-mm) or field samples with rough lower surfaces. Corelok and SSD were fairly easy methods to perform. However, the quickest and easiest test method to perform was dimensional analysis.

Preliminary Repeatability

Five replications of each test method were performed on each of the ten samples provided by TDOT M & TD. Data and results from these tests are contained in Appendix B. Table 3 shows the test methods in order from maximum to minimum average G_{mb} value for the ten samples used in the feasibility study. The first row indicates the TDOT M & TD designation for the sample.

NC 1	NC 2	(4-6)/1	1	3	2	237/4	22/1	100/1	COE1
SSD	SSD	SSD	SSD	SSD	SSD	GB	GB	CLK	GB
GB	CALL	GB	CALL	GB	CLK	CALL	SSD	SSD	SSD
CLK	CLK	CLK	CLK	CLK	GB	SSD	CLK	CALL	СТВ
PAR	GB	CALL	GB	PAR	CALL	СТВ	PAR	СТВ	CALL
CTB	PAR	PAR	PAR	СТВ	PAR	CLK	DA	PAR	CLK
DA	DA	СТВ	СТВ	CALL	СТВ	PAR	СТВ	DA	PAR
CALL	СТВ	DA	DA	DA	DA	DA	CALL	GB	DA

Table 3. Method G_{mb} Ranking for the Feasibility Study

SSD – saturated surface-dry

GB - glass beads

CLK – Instrotek Corelok

CALL - dimensional analysis with all surfaces cut plane

CTB - dimensional analysis with top and bottom surfaces cut plane

PAR – parafilm

DA - dimensional analysis

Analysis

TDOT M & TD and the research team agreed that the precision or repeatability of a laboratory test method is a very important criterion for method selection. To address this concern, coefficients of variation were calculated and compared graphically. Figure 8 shows the maximum, minimum, and average coefficients of variation each method achieved in the feasibility study. Figure 9 is a close-up view of the lower portion of figure 8 included to show more detail for comparison of the methods with lower variability. Data from one severely damaged cut sample was not included in figures 8 and 9.

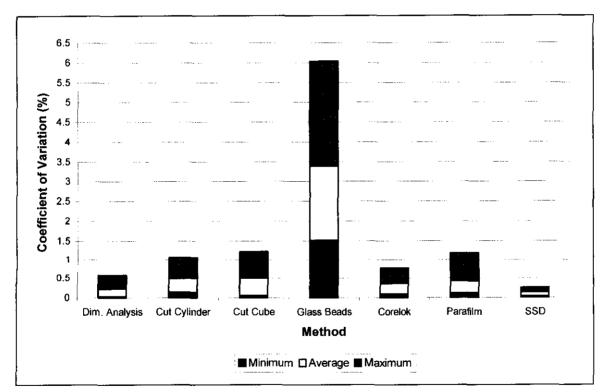


Figure 8. Coefficients of Variation of Methods

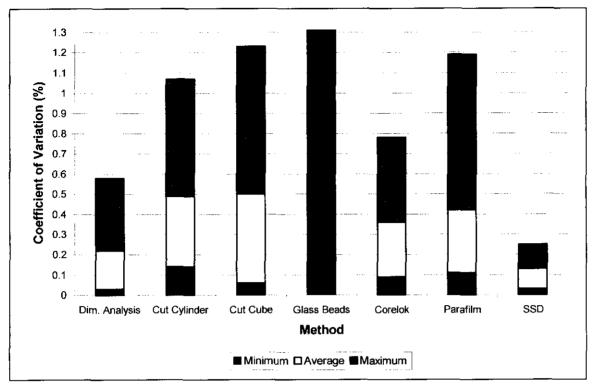


Figure 9. Coefficients of Variation of Methods, Modified

The test method exhibiting the lowest precision was glass beads with an average coefficient of variation approximately seven times that of any other test method. The two dimensional analysis on cut surface methods had the next highest average coefficients of variation. However and perhaps more importantly, dimensional analysis performed on specimens with cut surfaces exhibited lower precision, that is higher minimum, maximum, and average coefficients of variation, than dimensional analysis performed on the same samples prior to cutting. This implies that cutting the surface of specimens has only negative effects, lower precision G_{mb} results and sample damage which renders the sample useless for further testing. For previously mentioned reasons, the research team recommended that the TDOT Monitoring Committee select SSD, Corelok, parafilm, and dimensional analysis for the precision and accuracy study.

The test method with the highest precision, lowest average coefficient of variation, was the SSD method. The dimensional analysis method was a close second in precision. Instrotek Corelok and parafilm finished third and fourth respectively. However, it is important to note that the average coefficient of variation was less than one half percent for the top four methods. All four methods appeared to be capable of producing high precision results. Therefore it appeared that method precision would not be a critical factor in selecting the most widely applicable method for determining G_{mb} .

Table 4 shows the test methods in order from maximum to minimum average G_{mb} value for the ten samples used in the feasibility study with the three lowest precision methods removed. For nine of the ten samples in the feasibility study, the methods followed a similar trend. The SSD method yielded the highest G_{mb} , followed by Corelok. In all ten cases the dimensional analysis method yielded the lowest G_{mb} and parafilm yielded the second lowest G_{mb} .

NC 1	NC 2	(4-6)/1	1	3	2	237/4	22/1	100/1	COE1
SSD	SSD	SSD	SSD	SSD	SSD	SSD	SSD	CLK	SSD
CLK	CLK	CLK	CLK	CLK	CLK	CLK	CLK	SSD	CLK
PAR	PAR	PAR	PAR	PAR	PAR	PAR	PAR	PAR	PAR
DA	DA	DA	DA	DA	DA	DA	DA	DA	DA

 Table 4. Modified Method G_{mb} Ranking for the Feasibility Study

SSD - saturated surface-dry

PAR – parafilm

CLK - Instrotek Corelok

DA – dimensional analysis

The results of the cost and time to perform method sections were combined to produce figure 10. Figure 10 shows the cost of testing 10,000 samples including initial cost, reoccurring cost, and labor. The estimates in Figure 10 assume that maintenance costs will be minimal for 10,000 samples. The dimensional analysis method is the least expensive while Parafilm coating is the most expensive method.

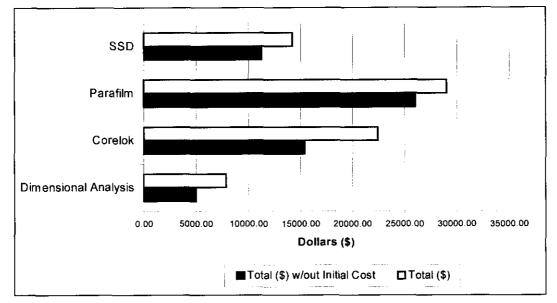


Figure 10. Costs over life of 10,000 samples

The monitoring committee reviewed results of the feasibility study at meeting at TDOT Materials and Tests Division Headquarters on June 22, 2000 and concurred with the recommendations of the research team, selecting the Instrotek Corelok, parafilm, SSD, and dimensional analysis methods for the precision and accuracy study.

PRECISION AND ACCURACY STUDY

The precision and accuracy evaluation consisted of seven replications of each of the four selected methods on fifty samples provided by the TDOT Materials and Tests Division and three replications of each test method on four aluminum samples fabricated by the TTU Civil Engineering Technician.

HMA Samples

The TDOT Materials and Tests Division provided fifty compacted bituminous mixture samples for use in the precision and accuracy study. The fifty samples were divided into ten sample groups. Each sample group contained five samples of the same mixture compacted in the same manner. Six sample groups, thirty of the fifty samples, were laboratory compacted. The remaining four sample groups, twenty of the fifty samples, were field cores. The sample groups provided a wide variety of bituminous mixture types, ranging from dense-graded surface mixtures such as D mix, through binder mixtures such as BM2, to coarse base mixtures such as the A mix. Some of the laboratory sample groups provided were compacted using the Superpave Gyratory Compactor and some sample groups were compacted to various densities. Further, both 4-in (101.6-mm) and 6-in. (152.4-mm) sample groups were provided. Theoretical maximum specific gravity (G_{mm}) values were also provided for each bituminous mixture. In summary, the sample groups covered the spectrum of compacted bituminous mixture samples that TDOT Materials and Tests Division commonly specifies and tests.

Aluminum Samples

Aluminum cylinders were used as specimens with known air voids to access the accuracy of the four G_{mb} methods. Four aluminum cylinders were machined to 4-in. (101.6-mm) in diameter and 2.5-in. (63.5-mm) in height. The specific gravity of the aluminum alloy was found to be 2.701 by referencing the alloy number on the internet (15). Each cylinder contained a different number of 0.25-in. (6.35-mm) holes drilled through the depth of the cylinder (see figure 11). Air voids of the aluminum cylinders were calculated using the following:

% air voids = $[n(0.25)^2/(4)^2] * 100$ % air voids = $[n(6.35)^2/(101.6)^2] * 100$

FPS, where n is the number of $\frac{1}{4}$ inch holes SI, where n is the number of 6.35 mm holes

Aluminum cylinders were produced with 0, 8, 16, 24 holes yielding 0, 3.125, 6.25, 9.375 percent air voids respectively.

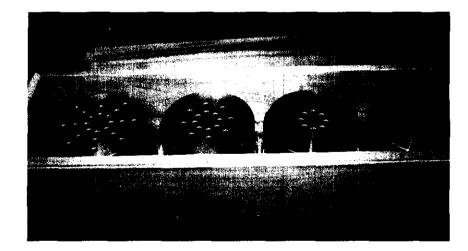


Figure 11. Aluminum Cylinders

Results

Figures 12 through 21 show the maximum, minimum, and average air voids for each sample group with each test method. Therefore each column on the respective plots represents 35 results (7 replications of 5 samples in the group). Air voids were calculated using the G_{mb} values from the test method, the G_{mm} values TDOT M & TD provided for each sample group, and the following equation from AASHTO T-269:

Percent air voids = $100(1 - G_{mb}/G_{mm})$

 G_{mb} data, results, absorptions, and sample volumes for all samples are contained in Appendix C.

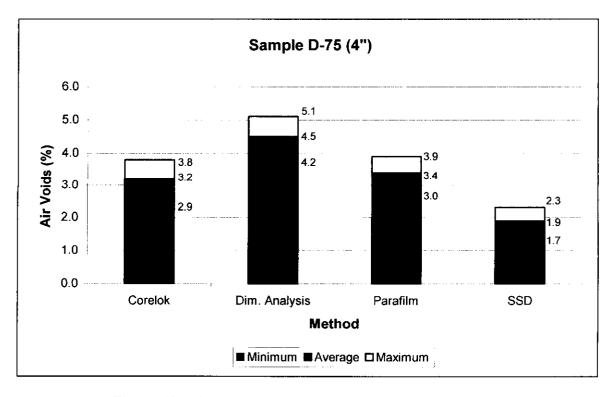


Figure 12. Air Void Values for Sample D-75 (lab sample)

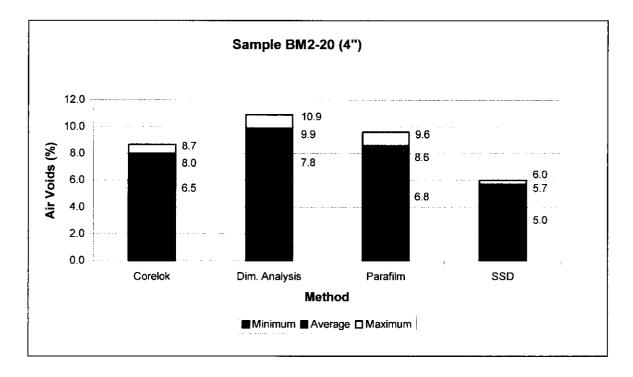


Figure 13. Air Void Values for Sample BM2-20 (lab sample)

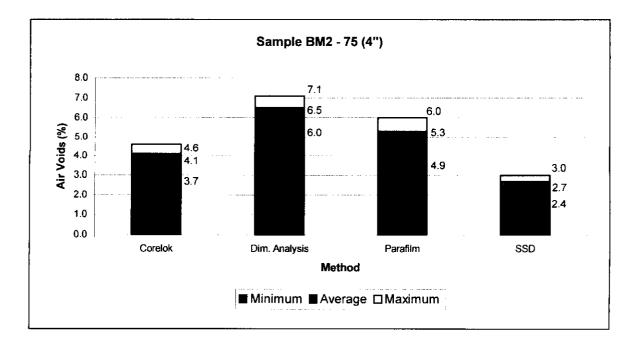


Figure 14. Air Void Values for Sample BM2-75 (lab sample)

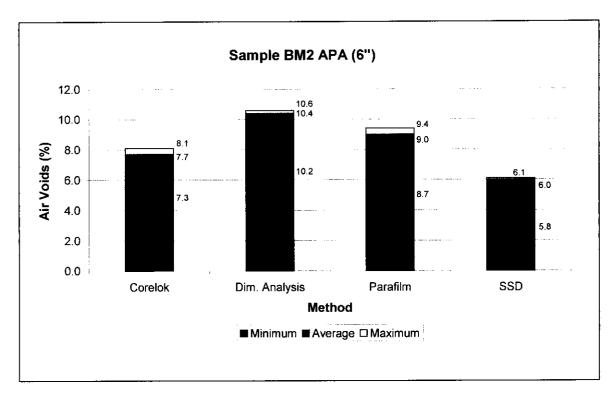


Figure 15. Air Void Values for Sample BM2 APA (lab sample)

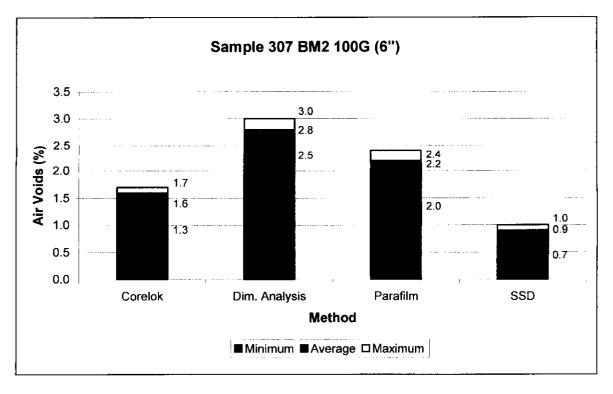


Figure 16. Air Void Values for Sample 307 BM2 100G (lab sample)

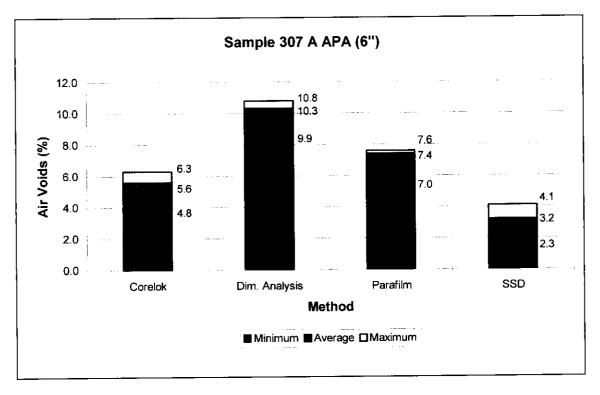


Figure 17. Air Void Values for Sample 307 A APA (lab sample)

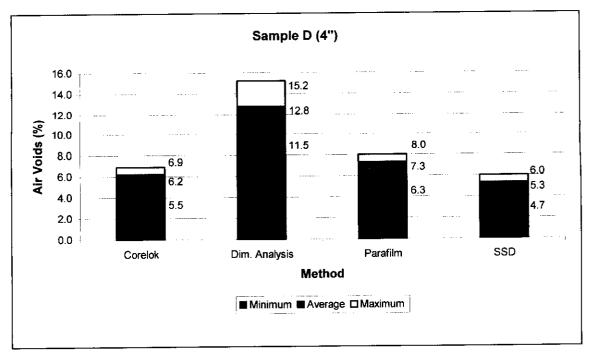


Figure 18. Air Void Values for Sample D (field sample)

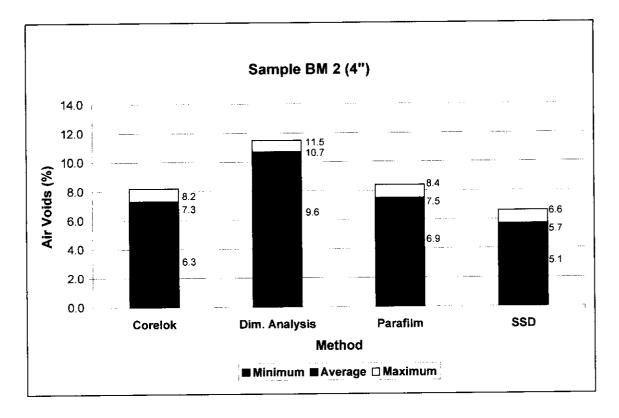


Figure 19. Air Void Values for Sample BM 2 (4") (field sample)

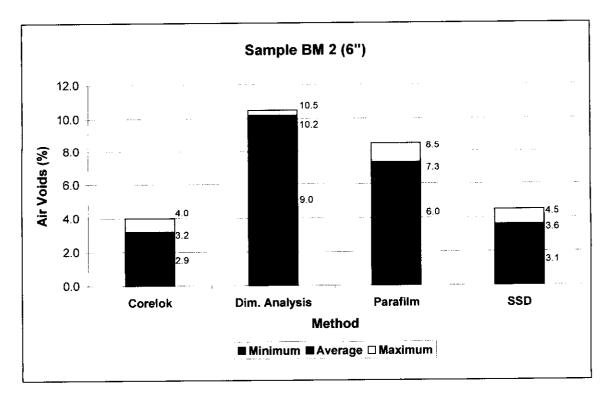


Figure 20. Air Void Values for Sample BM 2 (6") (field sample)

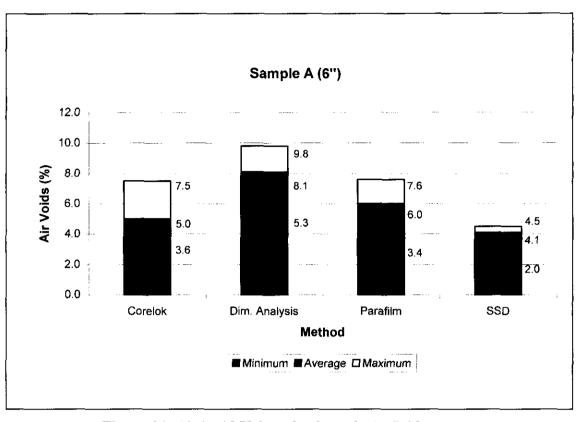


Figure 21. Air Void Values for Sample A (field sample)

Figure 22 shows the G_{mb} results of the four methods on the aluminum cylinder samples. Each column represents the average value of three replications. Figures 23 through 25 show the percent air voids results from each method compared to the actual air voids for 0, 8, 16, and 24 hole aluminum cylinders respectively. Percent air voids for each method were calculated using the AASHTO T-269 equation. The G_{mb} used was the average G_{mb} from the three replications of the test method. The aluminum alloy specific gravity found on the internet was used as the G_{mm} value. Actual percent air voids were calculated as shown previously in the samples subsection. G_{mb} data, results, and sample volumes for all aluminum cylinders are contained in Appendix D.

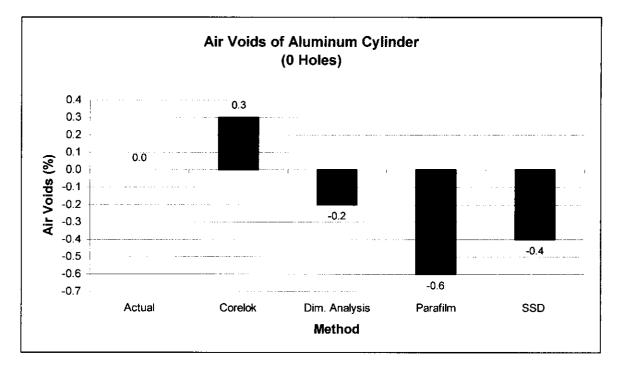


Figure 22. Air Voids of Aluminum Cylinders for each method

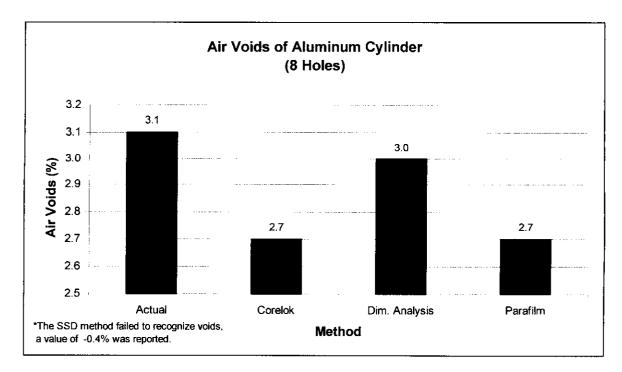


Figure 23. Air Voids of Aluminum Cylinder with eight holes

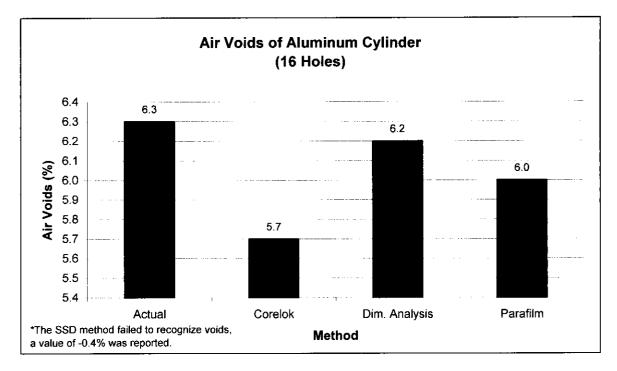


Figure 24. Air Voids of Aluminum Cylinder with sixteen holes

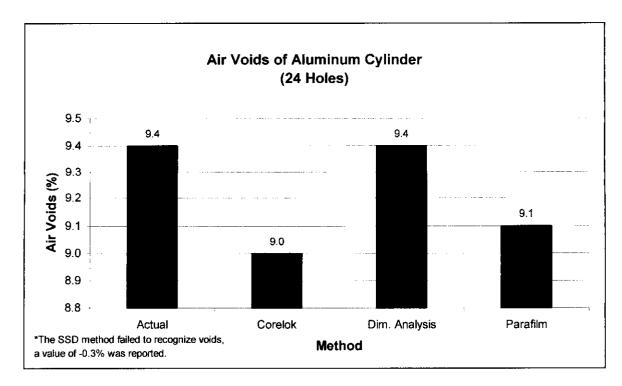


Figure 25. Air Voids of Aluminum Cylinder with twenty-four holes

Analysis

Logistics Review

Logistical factors were addressed in the Feasibility Study. However, after completing the approximately 1400 tests required for the precision and accuracy study, the authors thought it was appropriate to review method logistics again. SSD, dimensional analysis, and Instrotek Corelok were quick and easy to perform. The Parafilm method however, had difficulties with 6-inch (152.4-mm) samples and operator sensitivity. Parafilm seemed to very susceptible to tearing on surface irregularities. Further, water infiltration on several 6-inch (152.4-mm) samples necessitated that these tests be repeated. ASTM D 1188 requires that parafilm be calibrated on a 4-inch (101.6mm) diameter aluminum cylinder, but offers no guidelines for using the method on 6inch (152.4-mm) samples. The authors noticed variations in parafilm specific gravity between boxes. In addition, different operators stretch the parafilm differing amounts. Table 5 shows specific gravity variations in parafilm calibrations.

Operator	Box 1	Box 2	Box 3	Box 4	Box 5	Average
1	0.658	0.683	0.621	<u></u>		0.654
2	0.658			0.462	0.516	0.545
2	0.658			0.462	0.516	0.:

Table 5. Parafilm Specific Gravity Variations in Calibration Tests

There is a 17 percent difference in average parafilm specific gravity between operators. The difference in parafilm stretch may be more pronounced on larger 6-inch (152.4-mm) samples. These factors raise questions about the accuracy of parafilm.

Precision

Tables 6 and 7 show the coefficients of variation for laboratory and field sample groups respectively. As previously stated, data for calculating coefficients of variation for all sample groups used in the precision and accuracy study are contained in Appendix C.

	Dimensional Analysis	Parafilm	Instrotek Corelok	SSD
D-75	0.23	0.34	0.17	0.04
BM2-20	0.22	0.24	0.23	0.09
BM2-75	0.21	0.35	0.14	0.07
307 BM2 APA	0.15	0.13	0.17	0.08
307 BM2 100G	0.08	0.09	0.11	0.03
307 A APA	0.28	0.39	0.21	0.07
Average	0.19	0.26	0.17	0.07

Table 6. Coefficients of Variation for Laboratory Sample Groups

Table 7. Coefficients of Variation for Field Sample Groups

	Dimensional Analysis	Parafilm	Instrotek Corelok	SSD
D	0.72	0.27	0.31	0.12
4" BM2	0.34	0.18	0.53	0.13
6" BM2	0.98	0.40	0.10	0.08
А	0.35	0.16	0.08	0.11
Average	0.60	0.25	0.25	0.11

The overall average coefficients of variation for the methods for all sample groups were 0.34, 0.26, 0.20, and 0.08 for dimensional analysis, parafilm, Instrotek Corelok, and SSD respectively. The test method with the highest precision, lowest average coefficient of variation, was the SSD method. The Instrotek Corelok method had the second best precision. Parafilm and dimensional analysis finished third and fourth respectively. The coefficients of variation for SSD, Instrotek Corelok, and parafilm were very similar for laboratory and field sample groups. However, the coefficient of variation for dimensional analysis on field sample groups was 215 percent higher than for laboratory sample groups. This increase indicates a relative weakness in handling the surface irregularities common with field samples. The percent changes in coefficient of variation from laboratory to field sample groups for the remaining methods were –3.8, 47.1, and 57.1 for parafilm, Instrotek Corelok, and SSD respectively.

All four methods performed were very repeatable. No coefficient of variation for any method ever exceeded one percent in the precision and accuracy study. Based on these results, all four methods are considered capable of producing high precision results. Therefore, precision would not be a critical factor in selecting the most widely applicable G_{mb} determination technique.

Accuracy

The aluminum cylinders fabricated by the Civil Engineering Technician were used to determine if the SSD method had a problem with surface-accessible voids and what the extent of the problem was. The negative air voids shown in figures 23 through 25 result from the average G_{mb} determined from the SSD method being greater than the aluminum alloy specific gravity found on the internet. Negative air voids are not physically possible. The specific gravity of the solid aluminum determined from the SSD method and found on the internet should be identical. The authors suspect the internet value may be in error. However, the slight negative air voids had no bearing on the point the research team wanted to make with this procedure. Figures 22 through 25 clearly show that the SSD method is blind to surface-accessible voids. AASHTO test method developers recognized this fact; AASHTO T-166 states "This method should not be used with samples that contain open or interconnecting voids and/or absorb more than 2% of water by volume". Water penetration into surface-accessible voids results in an underestimation of sample volume thus increasing G_{mb} and reducing apparent air voids. It is apparent that air void values based on SSD G_{mb} results will form a lower bound for actual air void contents of compacted bituminous samples with surface accessible voids. This limitation of applicability ruled out further consideration of the SSD method as the most widely applicable method for determining G_{mb}.

The average air voids calculated from the G_{mb} results of four methods for the ten sample groups were ranked from maximum to minimum. Dimensional analysis results produced the highest percent air voids and parafilm results produced the second highest air void content for all ten sample groups. The SSD method results produced the lowest air voids for nine of ten sample groups. Instrotek Corelok results produced air void contents higher than SSD and lower than parafilm and dimensional analysis for nine of the ten sample groups. Considering the air void ranking and the mechanics of the method can imply the accuracy of the method's G_{mb} determination. The dimensional analysis method was the most accurate method for determining G_{mb} of the aluminum cylinders. The dimensional analysis worked well for samples that closely approximated a right circular cylinder. However, as surface irregularities are introduced the dimensional analysis method tends to overestimate sample volume thus reducing G_{mb} and increasing apparent air voids. The overestimation of volume is due to attempting to approximate a non-planar surface with a plane surface. As evidence of the overestimation, recall that the dimensional analysis method is clearly not applicable to compacted bituminous mixture samples with surface irregularities. This limitation of applicability ruled out further consideration of the dimensional analysis method as the most widely applicable method for determining G_{mb} .

Air voids values produced from Instrotek Corelok and parafilm method results fell between the upper bound of dimensional analysis and the lower bound of SSD values for nine of ten sample groups. For these nine sample groups, parafilm produced air voids which averaged 0.9 percent higher than those produced by Instrotek Corelok. Considering only four of the nine sample groups, which contained the larger 6-inch (152.4-mm) samples, parafilm produced air voids that averaged 1.2 percent higher than those produced by Instrotek Corelok. During testing, it appeared to the authors that parafilm bridged over surface irregularities. This observation was supported by the findings of a recent study at the National Center for Asphalt Technology, Buchanan (11) reported that parafilm tended to overestimate percent air voids by bridging over surface voids. Parafilm appears to be a second upper bound, below dimensional analysis, for actual air voids. Due to these reasons and logistical difficulties with 6-inch (152.4-mm) samples, parafilm was not considered further as the most widely applicable method for determining G_{mb} .

Instrotek Corelok appeared to be the most widely applicable method. The method had good logistical performance on all sample types. However, the research team wanted to attempt to evaluate the accuracy of the method. If Instrotek Corelok was the most accurate method for determining G_{mb}, air voids calculated from Instrotek Corelok should consistently fall between the previously established upper and lower bounds. Paired ttests at the 95% confidence level were conducted to determine if there were significant differences between the G_{mb} results of Instrotek Corelok and SSD, and Instrotek Corelok and parafilm. Complete t-test data and results are provided in Appendix E. The first t-test showed that Instrotek Corelok G_{mb} results are significantly lower than SSD G_{mb} results for nine of the ten sample groups. The second t-test showed that Instrotek Corelok G_{mb} results are significantly higher than parafilm G_{mb} results for nine of the ten sample groups. Thus, the air voids resulting from Instrotek Corelok tests are significantly higher than those resulting from the method serving as a lower bound, SSD, and significantly lower than those resulting from the method serving as an upper bound, parafilm. The previous analysis does not show that Instrotek Corelok results are accurate, the true value of a sample's air voids is never known, so accuracy cannot be truly evaluated. However, the previous analysis does show that Instrotek Corelok air voids are in the range between the upper and lower bounds for actual air voids for nine of ten sample groups tested.

FIELD STUDY

Primary Objective

The Instrotek CoreLok Method appeared to be the most widely applicable method (most accurate and versatile) for determining TDOT HMA mixture G_{mb} and percent air voids. Therefore, a field study was conducted to further evaluate the CoreLok. The primary objective of the field study was to determine the magnitude of the difference in percent air voids resulting from CoreLok and AASHTO T 166 methods for common TDOT HMA mixtures.

Samples

HMA samples for the field study were collected in all four TDOT Regions. Sample sets were distributed equally across the state. No TDOT Region provided less than twelve or more than thirteen sample sets. Each sample set contained five to eight field cores. Table 8 provides information on the HMA samples sets for the field study.

Table 8. HMA Samples for the Field Study

	411 S	411 D	307 BM2	307 A
Number of Sample Sets	4	18	20	8
Number of Samples	23	103	114	45

Procedure

The TDOT Monitoring Committee selected HMA placement projects. TDOT personnel provided traffic control, obtained nuclear densities, obtained core samples of the HMA layer being placed, obtained loose HMA samples and conducted theoretical maximum specific gravity tests. TTU personnel observed nuclear density measurement, transported HMA core samples, and conducted two replications of AASHTO T 166 and two Instrotek CoreLok tests on each core sample.

Two types of core sets were obtained in the field: Random and Transverse. Random core sets were obtained by selecting coring locations within the HMA lot using a random number generator for both transverse and longitudinal locations. The normal onefoot (0.305-meter) exclusions at the lane edges were disregarded. Transverse core sets were obtained by selecting points of interest:

- As close as possible to each mat edge;
- > Approximately one foot from each mat edge;
- \succ In each wheel path;
- Approximate center of each mat.

HMA cores samples were placed in iced coolers and transported to TTU for storage and subsequent laboratory testing. Prior to each AASHTO T 166 or CoreLok test, each HMA cores sample was dried to constant mass in an oven, which limited the maximum temperature to 125°F (51.7 °C). When not being tested or dried, HMA core samples were

stored in a commercial upright refrigerator maintained at approximately 40°F (4.4 °C). Air voids were calculated as per AASTHO T 209 using the AASHTO T 166 or CoreLok test results and the theoretical maximum specific gravities for each mixture provided by TDOT.

Results

Results of laboratory AASHTO T 166 and CoreLok testing, nuclear density tests, theoretical maximum specific gravity, and calculated air voids for each core are shown in Appendix F.

Analysis of Results

The results were analyzed to determine the following:

- A. Percent of HMA samples with air voids greater than 10 percent (less than 90% compaction).
- B. Correlations between nuclear density and AASHTO T 166.
- C. Effect of confinement on HMA sample air voids.
- D. Difference in air voids resulting from CoreLok and AASHTO T 166.

A. Percent of HMA samples with air voids greater than 10 percent

Figure 26 shows the percent of HMA samples with air voids greater than 10 percent by mixture type and method. It is important to note that this analysis does not exclude the inner and outer one-foot typically excluded by TDOT. If CoreLok were the

TDOT method for acceptance, the instance of failure (air voids greater than 10 percent) would not substantially increase for the dense-graded surface mixtures. However, the failure rate would increase greatly for the coarser and more open binder and base mixtures.

B. Correlations between nuclear density and AASHTO T 166

Correlations between air voids from nuclear density measurements and air voids from AASHTO T 166 are shown in figures 26, 27, and 28 for TDOT surface, binder, and base mixtures respectively. Coefficients of determination (\mathbb{R}^2) were lower than expected indicating considerable data scatter. All \mathbb{R}^2 values were less than 0.52 indicating weak relationships or no relationships, particularly for 307 A Base Mixtures. At approximately 7% air voids by AASHTO T 166, nuclear density air voids ranged from 3.5 to 20.5 for 307 A Base Mixtures. Paired t-tests at the 95% confidence level showed significant differences for all mixture types in a statewide analysis.

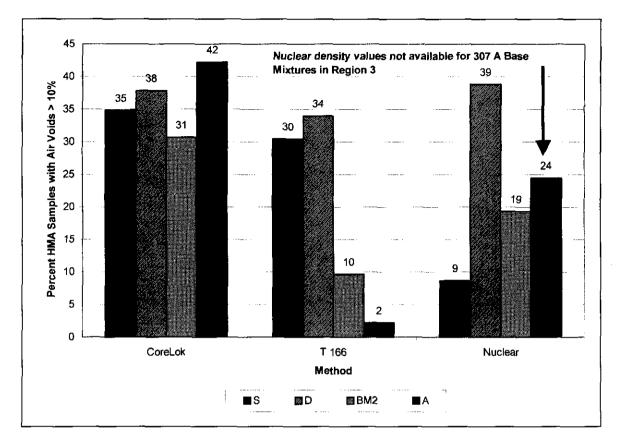


Figure 26. Percent HMA Samples with Air Voids Greater than 10% in Tennessee

C. Effect of confinement on HMA sample air voids

Density achieved during compaction is a function of many factors. One important factor is HMA's resistance to compaction. Without resistance to compaction the HMA is "shoved" rather than compacted. Resistance to HMA mixture movement is provided by confinement. Better confinement produces superior density. In some cases HMA layers must be placed without lateral confinement. Lower densities (higher air voids) are the typical result of lack of lateral confinement. Figure 30 shows the intuitive effect of confinement. Figure 31 is a typical TDOT field data plot of air voids versus distance from a pavement edge plot. The Corelok air voids trend appears to have a similar shape to the

T 166 trend in Figure 31, however the CoreLok magnitude is higher. It is possible that both methods are measuring the same internal (inaccessible) air voids in the samples, but CoreLok is also measuring the surface accessible air voids that AASHTO T 166 is not, resulting in upward displacement.

Figure 32 is a column graph showing average HMA air voids for each mixture type statewide for each of the three methods (CoreLok, AASHTO T 166, and nuclear). Air voids of samples one foot or less from an edge are compared to air voids of samples more than one foot from an edge. On average, HMA air voids increase within 1 foot of an edge regardless of mixture type or measurement method. The CoreLok method indicates the maximum average increase in air voids (2.28) for all HMA mixture types combined into one data set and AATHO T 166 indicates the lowest average increase (1.33).

The CoreLok method indicates that on average HMA air voids within 1 foot of an edge always exceed 10% regardless of mixture type. However, AASHTO T 166 indicates that 411 S, 307 BM2, and 307 A mixture average air voids are less than 10% on average within 1 foot of the edge. AASHTO T 166 is probably missing the surface accessible voids present in 307 BM2 and 307 A mixtures. Nuclear density indicates that 411 S and 307 BM2 mixture air voids are less than 10% on average within 1 foot of the edge.

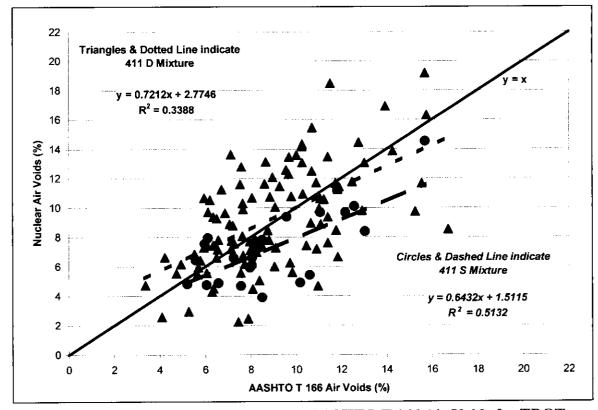


Figure 27. Comparison of Nuclear and AASHTO T 166 Air Voids for TDOT Surface Mixtures Statewide

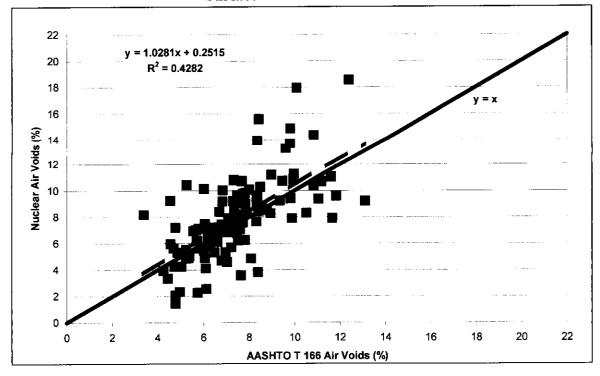


Figure 28. Comparison of Nuclear and AASHTO T 166 Air Voids for TDOT Binder Mixtures Statewide

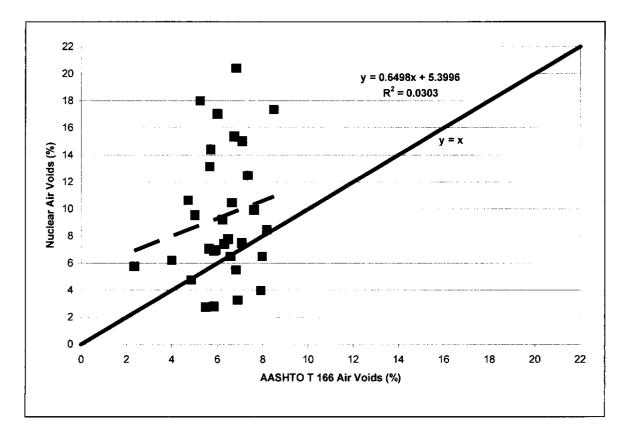


Figure 29. Comparison of Nuclear and AASHTO T 166 Air Voids for TDOT Base Mixtures Statewide

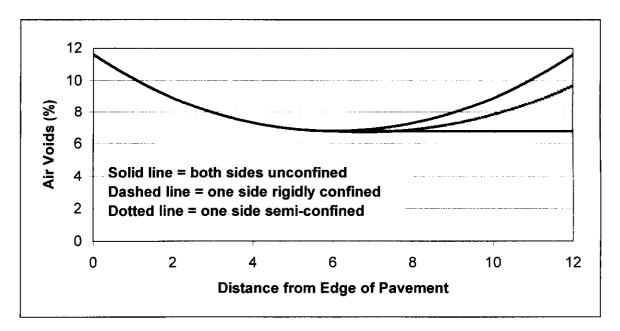


Figure 30. Intuitive Effect of Confinement on HMA Air Voids

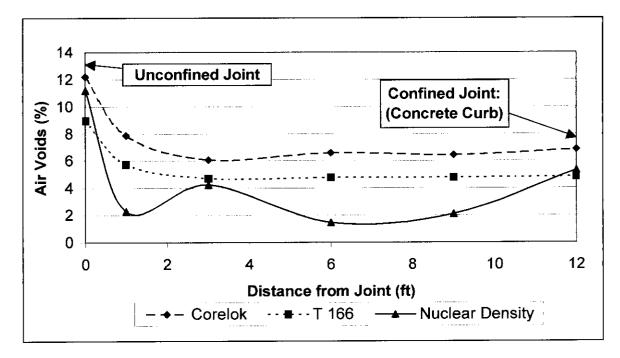


Figure 31. Percent Air Voids vs. Distance from Joint

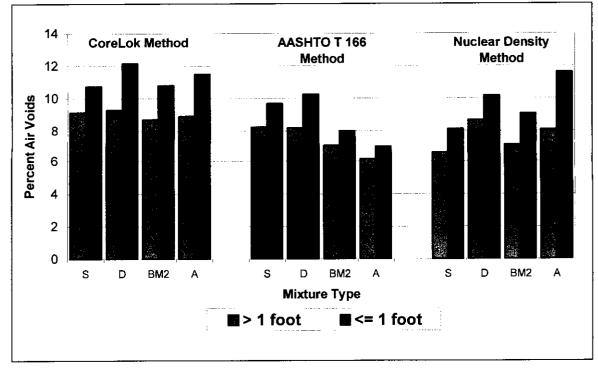


Figure 32. Effect of Edge Nearness on Percent Air Voids

D. Difference in air voids resulting from CoreLok and AASHTO T 166

Correlations between air voids from CoreLok and air voids from AASHTO T 166 are shown in figures 33, 34, and 35 for TDOT surface, binder, and base mixtures respectively. Coefficients of determination (R^2) for 411 S and 411 D were greater than 0.91 (0.9843 and 0.9195 respectively) indicating a very strong relationship between the two methods. The coefficient of determination for 307 BM2 was fair (0.6257) indicating some possible relationship between CoreLok and AASHTO T 166. The coefficient of determination for 307 A was very poor (0.2043) indicating no relationship between CoreLok and AASHTO T 166. It appears that AASHTO T 166 results correlate better with the more accurate CoreLok results for finer, more dense-graded HMA mixtures.

The regression equations for 411 S, 411 D, 307 BM2, and 307 A mixtures are:

S Mixtures	CoreLok Air Voids = 1.0972(T 166 Air Voids) + 0.1121
D Mixtures	CoreLok Air Voids = 1.1677(T 166 Air Voids) - 0.0883
BM2 Mixture	CoreLok Air Voids = 1.1144(T 166 Air Voids) + 1.1291
A Mixtures	CoreLok Air Voids = 1.0388(T 166 Air Voids) + 3.0583

The regression equations indicate that the difference in CoreLok and AASHTO T 166 air voids increases as AASHTO T 166 air voids increase. The magnitude of the difference is a function of mixture aggregate gradation. The difference in air voids is:

- ➤ Greater for A mixtures than for BM2 mixtures for T 166 air void values < 25.5 percent.
- > Greater for BM2 mixtures than for S mixtures for all T 166 air void values.
- ▶ Greater for BM2 mixtures than for D mixtures for T 166 air void values < 22.8 percent.
- > Greater for D mixtures than for S mixtures for T 166 air void values > 2.84 percent.

For all practical purposes (in the T 166 air void range of 2.84 to 22.8 percent):

A difference > BM2 difference > D difference > S difference

The average differences in air voids statewide (shown in Table 9) further confirmed that the magnitude of difference in air voids is a function of mixture aggregate gradation. Paired t-tests at the 95% confidence interval showed significant differences between CoreLok and AASHTO T 166 for all mixture types in a statewide analysis.

Table 9. Average air void difference between CoreLok and AASHTO T 166

TDOT HMA Mixture	411 S	411 D	307 BM2	307 A
Number of Core Samples Average	23	103	114	45
Air Void Difference	1.0	1.4	2.1	3.3

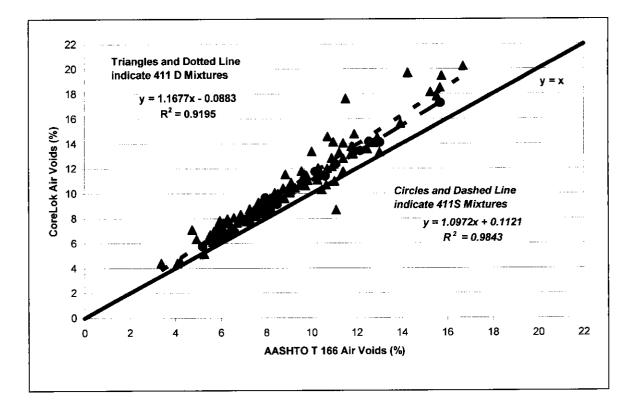


Figure 33. Comparison of CoreLok and AASHTO T 166 Air Voids for TDOT Surface Mixtures Statewide

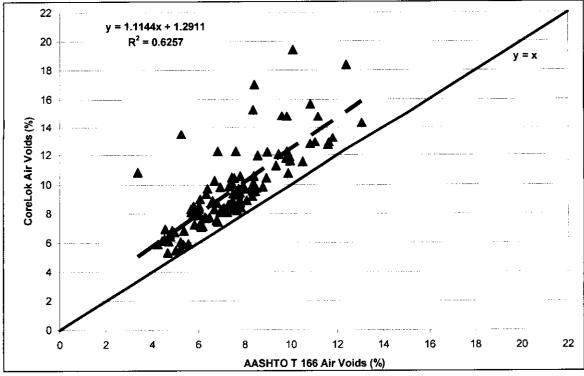


Figure 34. Comparison of CoreLok and AASHTO T 166 Air Voids for TDOT Binder Mixtures Statewide

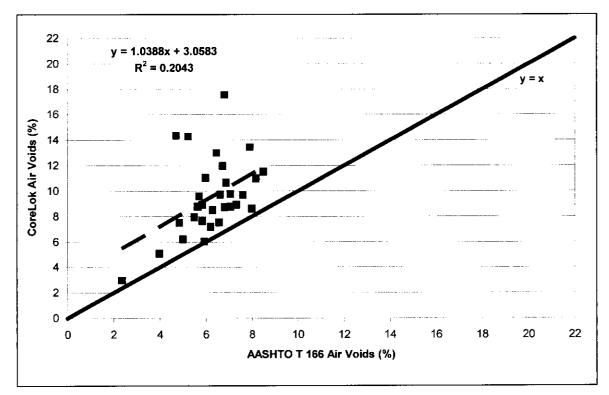


Figure 35. Comparison of CoreLok and AASHTO T 166 Air Voids for TDOT Base Mixtures Statewide

Literature Review for the Field Study

Bell, Hicks, and Wilson (16) found that percent compaction or void content was the most significant factor affecting HMA mix performance. The research indicated that an increase in void content is associated with a decrease in modulus, fatigue life, and resistance to permanent deformation. For typical pavement structures using HMA mixtures with four to twelve percent air voids, estimates of pavement life based on a fatigue criterion and vertical strain subgrade deformation criterion decreased thirty fold to threefold respectively.

Hall, Griffith, and Williams (17) conducted AASHTO T 269, AASHTO T 166, and Instrotek CoreLok tests on 144 (24 per site) 12.5-mm HMA surface course cores from 6 sites in Arkansas. Air voids of the HMA samples were reported to range from 2.5 to 9.5 percent. A paired t-test with alpha = 0.05 showed a significant difference in Average G_{mb} between CoreLok and T 166 for all 6 sampling sites. In all cases T 166 average G_{mb} was greater than CoreLok average G_{mb} . The differences in G_{mb} ranged from 0.008 to 0.022. Percent air void differences ranged 0.36 to 0.90. CoreLok had the lowest multi-operator variability when compared with AASHTO T 269 and AASHTO T 166. Table 10 is a comparison of Arkansas and TDOT results

Choubane, Upshaw, Sholar, Page, and Musselman (18) compared five different nuclear gauges with FM 1-T166 (a modified AASHTO T 166 with one-half the soaking time), AASHTO T 269, and ASTM D 1188 methods at 10 different stations along I-95 in Florida. The HMA used in the study was a 12.5-mm coarse-graded superpave mixture. R² values of 0.90, 0.61, 0.90, 0.74, and 0.75 were reported for comparisons of corrected nuclear densities and FM 1-T166. Florida Department of Transportation (FDOT) concluded nuclear density data had higher variability than FM 1-T166, AASHTO T 269, or ASTM D 1188. The TDOT R^2 for correlation between nuclear density and AASHTO T 166 for superpave surface mixtures was 0.51 for a statewide analysis. The CoreLok system was not part of the FDOT study.

Tarefder, Zaman, and Hobson (19) compared CoreLok, AASHTO T 269 (ASTM D 3203), and AASHTO T 166 methods using 170 pavement cores (surface and base) and 22 laboratory-fabricated base samples in a research project for Oklahoma DOT. For laboratory HMA samples with AASHTO T 269 air voids less than 10% and T 166 absorptions less than two percent, the average difference in CoreLok and T 166 G_{mb} was 0.035 (T 166 greater than CoreLok). For the few laboratory HMA samples with AASHTO T 269 air voids greater than ten percent the average difference in CoreLok and T 166 G_{mb} was 0.068 (T 166 greater than CoreLok). According to the paper, AASHTO T 166 underestimated air voids for high air void, open-graded HMA mixtures. The authors also indicated that it is evident that the difference in AASHTO T 166 and CoreLok G_{mb} values increases as AASHTO T 269 air voids increase. For field cores:

66 of 77 Type A (base) field cores showed AASHTO T 166 G_{mb} to be greater than CoreLok G_{mb} (T 166 air voids less than CoreLok air voids in 66 of 77 cases or for 85.7% of samples) 91 of 93 Type B (surface) field cores showed AASHTO T 166 G_{mb} to be greater than CoreLok G_{mb} (T 166 air voids less than CoreLok air voids in 91 of 93 cases or for 97.8% of samples)

Table 11 shows a comparison of Oklahoma DOT and TDOT research results.

	Arkansas DOT	TDOT
Number of samples of HMA surface mixture	144	126
Paired t-test significant difference between CoreLok and AASHTO T 166	Significant at all 6 sites	Significant in all 4 TDOT Regions
Surface course air voids CoreLok vs. AASHTO T 166	CoreLok > AASHTO T 166 Range = 0.36 to 0.90 at 6 sites	CoreLok > AASHTO T 166 Range of averages = 0.9 to 1.50 in 4 TDOT Regions
Multi-operator variability	CoreLok superior to AASHTO T 269 and AASHTO T 166	Not evaluated

Table 10. Comparison of Arkansas DOT and TDOT research results

Table 11. Comparison of Oklahoma DOT and TDOT research results

	Oklahoma DOT	TDOT
Number of HMA base cores	77	45
Number of HMA surface cores	93	126
Percent of base cores with CoreLok air voids higher than AASHTO T166 air voids	85.7	100
Percent of surface cores with CoreLok air voids higher than AASHTO T166 air voids	97.8	96

CONCLUSIONS

1. Figure 26 shows the relationship between percent air voids and apparent sample volume. It is not possible to know the exact point on the line representing the true sample volume and true percent air voids. However, for the vast majority of compacted bituminous mixtures that point lies between the SSD (AASHTO T-166) results and the parafilm results. For 90 percent of TDOT sample groups tested Instrotek Corelok yielded results in this range between the upper and lower bounds for accurate results.

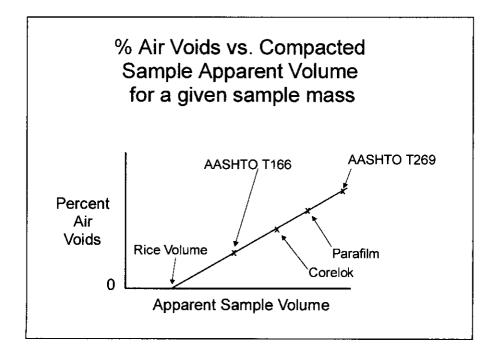


Figure 26. Air Void Percentage vs. Sample Apparent Volume

2. The average difference in air voids resulting from CoreLok and AASHTO T 166 is 1.0, 1.4, 2.1, and 3.3 for 411 S, 411 D, 307 BM 2, and 307 A HMA mixtures respectively. The difference is statistically significant for all mixture types statewide. The difference in air voids between CoreLok and AASHTO T 166 is a direct function of HMA mixture aggregate gradation.

- On average, HMA air voids increase within 1 foot of an edge regardless of mixture type or measurement method.
- 4. If the inner and outer foot of pavements were not excluded from testing, the occurrence of failures (AASHTO T 166 air voids greater than 10%) of HMA core samples would be 30, 34, 10, and 2 percent for 411 S, 411 D, 307 BM 2, and 307 A HMA mixtures respectively.
- 5. If the inner and outer foot of pavements were not excluded from testing and CoreLok was the TDOT method for determining acceptance, the failure rate would increase 5, 4, 21, and 40 percent for 411 S, 411 D, 307 BM 2, and 307 A HMA mixtures respectively.
- 6. The difference in nuclear density air voids and AASHTO T 166 air voids is statistically significant at the 95% confidence interval for all mixture types statewide.
- 7. Oklahoma DOT and TDOT findings both indicated that AASHTO T 166 underestimated air voids for high air void, open-graded HMA mixtures. Further, Oklahoma DOT results showed CoreLok to produce higher air voids than AASHTO T166 for 97.8 and 85.7 percent of HMA surface and base mixtures, respectively. TDOT results showed CoreLok to produce higher air voids than AASHTO T166 for 96.0 and 100 percent of HMA surface and base mixtures, respectively.

RECOMMENDATIONS

- The research team recommended that the TDOT Monitoring Committee select the Instrotek Corelok method as the most widely applicable method for determining the G_{mb} of compacted bituminous mixtures.
- 2. The research team recommends that TDOT conduct a test project using the Instrotek CoreLok for acceptance.

ACKNOWLEDGEMENTS

The authors wish to gratefully acknowledge the support of the Tennessee Department of Transportation and the Federal Highway Administration. We would especially like to thank Bobby Rorie and William Rawdon of TDOT Materials and Tests, who recognized a problem existed, began looking for a viable solution, and initiated the project. The authors also wish to especially thank Greg Duncan and Brian Egan for chairing the TDOT Monitoring Committee and patiently answering many questions. The authors appreciate Heather Hall, Jay Norris, Matt Richardson, the coring crew and all TDOT Employees who aided in sampling the field specimens. The authors would like to thank John Davis of Rogers Group, Inc and Austin Bateman of Highways, Inc. for providing practice HMA samples to allow the authors to become more experienced with the various test methods. The authors appreciate the willingness of the contractors and batch plants to help whenever necessary. The authors wish to express their appreciation for the assistance of Heather J. Sauter.

The authors gratefully acknowledge the financial support, financial project management, and computer assistance of the TTU Center for Electric Power. In particular, Dr. Charles Hickman, Dr. Ken Purdy, Dr. Sastry Munukutla, Sandy Garrison, Etter Staggs, Helen Knott, Keith Jones, Chris Davis, Linda Lee, and Tony Greenway were all very helpful. We would also like to thank Dr. H. Wayne Leimer for providing a demonstration of Diamond Pacific saw performance.

Obtaining the field specimens would not have been possible without the aid of Shane Beasley and Jamey Dotson. The authors express gratitude to Robb Garner for his work with the field samples in the laboratory. REFERENCES

- 1. National Cooperative Highway Research Program, "Design and Evaluation of Large Stone Asphalt Mixes (NCHRP Report 386)," Washington, D.C., 1997.
- AASHTO T 166-00, "Standard Method of Test for Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface-Dry Specimens," <u>AASHTO Standard Specifications for Transportation Materials and Methods of</u> <u>Sampling and Testing</u>, 20th Edition, Washington, D.C., 2000.
- AASHTO T 275-91(2000), "Standard Method of Test for Bulk Specific Gravity of Compacted Bituminous Mixtures Using Paraffin-Coated Specimens," <u>AASHTO Standard Specifications for Transportation Materials and Methods of</u> <u>Sampling and Testing</u>, 21st Edition, Washington, D.C., 2001.
- 4. ASTM C 125, "Standard Terminology Relating to Concrete and Concrete Aggregates," Vol. 04.02, American Society for Testing and Materials, 1999.
- AASHTO T 209, "Standard Method of Test for Maximum Specific Gravity of Bituminous Paving Mixtures," <u>AASHTO Standard Specifications for</u> <u>Transportation Materials and Methods of Sampling and Testing</u>, Washington, D.C., 1995.
- 6. Harvey, J., J. Sousa, J. Deacon, C.L. Monismith, "Effects of Sample Preparation and Air-Void Measurement on Asphalt Concrete Properties (TRR 1317)," Transportation Research Board, 1991.
- Stroup-Gardiner, Mary and Rachel DeSombre. "Density Measurements on High Air Void Asphalt Concrete Samples," ASTM Subcommittee D04.21, November, 1995.
- 8. Stroup-Gardiner, Mary. "Determining Bulk Specific Gravity for Compacted Bituminous Materials," ASTM Subcommittee D04.21, February, 1995.
- ASTM D 1188, "Standard Test Method for Bulk Specific Gravity and Density of Compacted Bituminous Mixtures Using Paraffin-Coated Specimens," American Society for Testing and Materials, 1996.
- Harvey, J., T. Mills, C. Scheffy, J. Sousa, and C.L. Monismith, "An Evaluation of Several Techniques for Measuring Air-Void Content in Asphalt Concrete Specimens." Journal of Testing and Evaluation, JTEVA, Vol. 22, No. 5, September 1994.
- 11. Buchanan, M. Shane, "An Evaluation of Selected Methods for Measuring the Bulk Specific Gravity of Compacted Hot Mix Asphalt (HMA) Mixes," Annual Meeting of the Association of Asphalt Paving Technologists (AAPT), 2000.

- 12. Regimand, Ali, "Importance of Accurate Specific Gravity Measurements on Coarse SuperPave and SMA Asphalt Mixes," InstroTek, Inc., 1999.
- AASHTO T 269, "Standard Method of Test for Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures," AASHTO Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Washington, D.C., 1995.
- ASTM D 4254, "Standard Test Method for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density," Vol. 04.08, American Society for Testing and Materials, 1999.
- 15. Matweb Material Property Database, http://www.matweb.com/SpecificMaterial.asp?bassnum=MA7076&group=General
- Bell, C.A., Hicks, R.G., and Wilson, J.E., "Effect of Compaction on Asphalt Mixture Life," *Placement and Compaction of Asphalt Mixtures, ASTM STP 829*, F.T. Wagner Ed., American Society for Testing and Materials, 1984, pp. 107-130.
- Hall, Kevin D., Griffith, Frances T., and Williams, Stacy G., "Examination of Operator Variability for Selected Methods for Measuring Bulk Specific Gravity of Hot-mix Asphalt Concrete (TRR 1761)," Transportation Research Board, 2001.
- Choubane, Bouzid, Upshaw, Patrick B., Sholar, Gregory A., Page, Gale C., and Musselman, James A., "Nuclear Densities and Core Densities A Comparative Study (TRR 1654)," Transportation Research Board, 1999.
- Tarefder, R. A., Zaman, M., and Hobson, K., "Evaluating the CoreLokTM Measurement of Bulk Specific Gravity for Hot Mix Asphalt Samples" Journal of Testing and Evaluation, JTEVA, Vol. 30, No. 4, July 2002, pp. 274-282.

APPENDIX A

Cover Letter and Questionnaire for State Departments of Transportation

Dear ----:

The Tennessee Department of Transportation Division of Materials & Tests has awarded a contract to Tennessee Technological University for the purpose of finding a more widely applicable method for determining the bulk specific gravity of compacted bituminous materials. Of particular interest to the department is the determination of air void content of higher void content, newer mixture types such as Superpave, SMA, and largestone mixtures. The intent of the research is to find or develop a method applicable to both field and laboratory specimens.

There are several states as well as an ASTM committee and other agencies investigating the presently standardized methods. In addition, several states are studying new methods. It would help us to have the attached questionnaire completed so that we may learn what others are doing. It is our intention to keep respondents to our request informed about our progress through a web site.

Thank you for your consideration of this request and should you have a need to discuss, please call me.

Sincerely,

L.K. Crouch, Ph.D., P.E. Principal Investigator

Enclosure

Tennessee Technological University Cookeville, Tennessee

Questionnaire for State Materials Engineers

on

Bulk Specific Gravity of Compacted Bituminous Mixtures

o: (name and address)			Contact Person: (if not the same)	
			Phone: Fax: E-mail:	
	Laboratory Method AASHTO T 166-93 AASHTO T 275-91 ASTM D 1188-96 ASTM D 2726-96a	Presently Used	Do Not Use	Modified
	Other:	,		

2. Are you presently working on a new method and/or a revision in a previous method to address new, higher voids mixture types ?

Yes _____ No If yes, please provide details.

3. Please send references, reports, non-standard test methods, etc., that you deem relevant to the study.

4. Other comments: (write on the back or attach additional sheets)

If possible, please provide the requested information by 10/26/99. Thank you again.

Mail to: L. K. Crouch Department of Civil and Environmental Engineering Campus Box 5015 Tennessee Technological University Cookeville, TN 38505 Phone: (931) 372-3196 Fax: (931) 372-6352 E-mail: lcrouch@tntech.edu

APPENDIX B

Feasibility Study Data and Results

Method	Initial	Labor*	Reoccuring**	Total	Cost per Test (\$)
Corelok Vacuum Seal	7025	11250	4150	22425	2.24
Cut and Measure: Cubical	13947	43750	N/A	57697	5.77
Cut and Measure: Cylindrical	13947	22500	N/A	36447	3.64
Dimensional Analysis	2856	5000	N/A	7856	0.79
Glass Beads	4256	20000	N/A	24256	2.43
Parafilm Wrapping	2984	23750	2300	29034	2.90
SSD	2987	11250	N/A	14237	1.42

*This estimates the labor costs associated with the time required to perform each method as determined by the Feasibility Study. It was assumed that the test procedures were performed by an experienced technician earning \$15 per hour.

**It was assumed that half of the 10,000 samples were 4 in. dia. and half were 6 in. dia. No maintenance costs were assumed due to the limited time frame of the Feasibility Study.

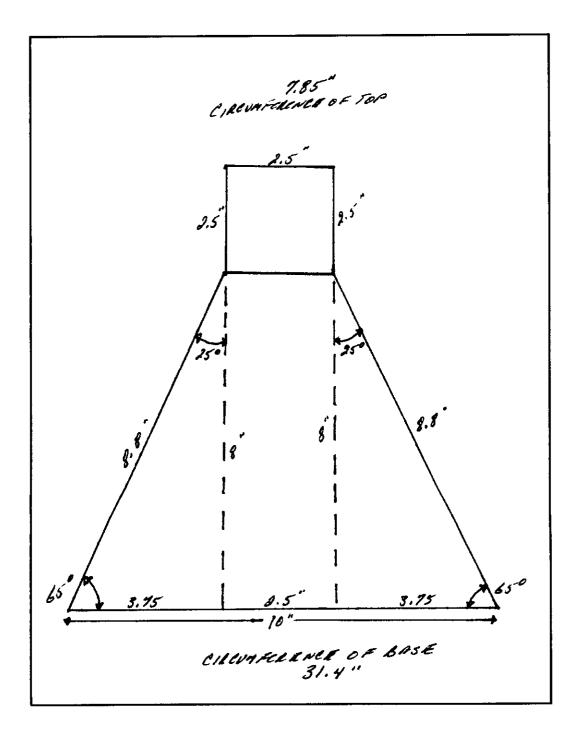


Figure B1: Pattern for Cone Elevation

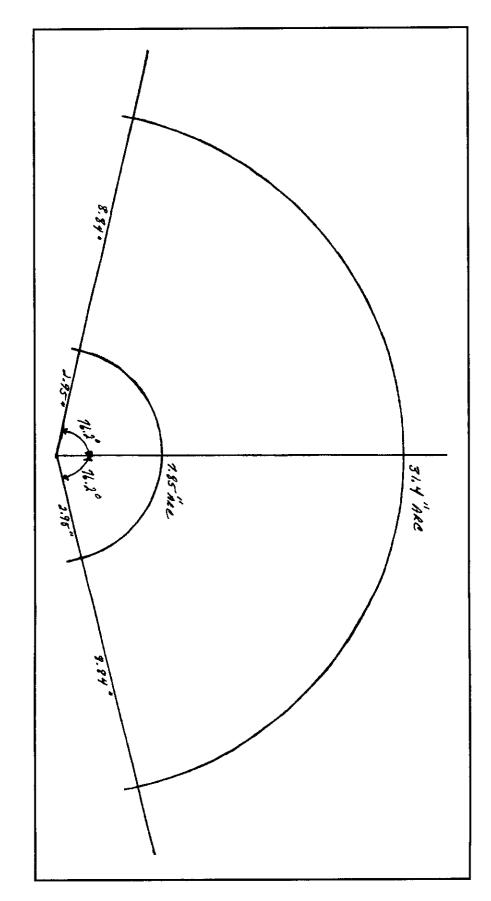


Figure B2: Pattern for Cone Layout

Glass Beads – Cone Construction

Materials List

- 1) 1 pc. aluminum: 2-1/2" O.D. x 2-7/16" I.D. x 2-1/2" length
- 2) 1 pc. aluminum: 12" x 12" x 1/16"
- 3) 1 pc. aluminum: 24" x 24" x 1/16"
- 4) 4 pcs. angle iron (90° brackets): 3/4" x 3/4" x 1/8"
- 5) 4 machine screws: 5/16" x 18 N.C. x 3/4"
- 6) 4 machine screws: 1/4" x 20 N.C. x 1/4"
- 7) 1/2 cubic foot measure

Note: Items No. 1 thru No. 6 of the materials list should be available at any sheet metal fabricator shop.

Cone Construction

- 1. Fabrication begins with the layout or transfer of pattern (see following sheets) to the material. After the lines have been transferred to the 24" x 24" x 1/16" aluminum sheet, the stock is formed to the cone shape using a metal forming machine. This machine will retain the material in a relatively close geometric form, greatly assisting in the case of fabrication and assembly. The sides of the cone are pressed together at the top until a 2-1/2" diameter is achieved, then fasten with an 1/8" rivet or sheet metal screw. Repeat this procedure at the base until a 10" diameter is met, and then spot weld along seam. The altitude of the cone shall be measured at this time by placing a scale through the top opening; the correct altitude is 8".
- The 2-1/2" x 2-7/16" x 1/16" nose piece will now be installed. This part should be fit snugly into the small diameter, trued up, and then spot welded into place. A plumbers (6") level and a level surface will work sufficiently for this procedure.

The altitude of the assembly shall be measured once again to ensure correctness; the correct altitude is now 10-1/5" total. Tig welding can now be done over the entire assembly.

- 3. The cone is now ready to affix to the base plate. Carefully center and scribe the circumference of the large cone diameter onto the 12" x 12" x 1/16" aluminum sheet. Then carefully cut inside the reference line to form a base plate the cone will fit firmly into, a jig saw is sufficient for this procedure. Spot-weld at random points around the circumference to insure the accuracy of the finished assembly.
- 4. Prior to assembling the cone to the 1/2 cubic foot measure, it is necessary to ensure the top and bottom openings are parallel and the top rim is smooth and even (AASHTO PPbb-96). A machine lathe can be used to accomplish this task.
- 5. The cone assembly is now ready to be attached to the measure. The cone must be installed in the same position for each use. To ensure this occurs, the angle iron brackets should be placed so the cone will only be accepted by the measure at the same location each time the apparatus is used. Attach the cone base to the measure by drilling and tapping four holes randomly around the rim. Take care to ensure the brackets remain even around the rim to guarantee the units will mate with the most snug fit possible. Then, center the cone on the measure and scribe the location of the bracket holes onto the underside of the cone base. Drill four 5/16" x 18 N.C. taps after threading through angle iron, twist in bolts from the bottom side so as to create studs to accept the cone base assembly. The units can now be secured together firmly using four 5/16" wing nuts. Any gap greater than 0.01" can be detected by using a simple mechanics feeler gauge, any gap out of

tolerance shall be corrected. A belt sander can be used to remove any high points in the surface to attain a tight, uniform mating surface. The apparatus is now ready for calibration, which can be done following the guidelines of AASHTO PPbb-96.

Sample	$M_{dry}\left(g ight)$	M _{dwb} (g)	$M_{wwb}(g)$	G _b	G _{mb}	Avg. G _{mb}	V (%)	Time	Avg. Time
	934.1	960.6	531.4	0.777	2.364			4:05	
3	934.1	960.7	529.8	0.777	2.355			3:40	
	934.0	961.0	531.3	0.777	2.365	2.364	0.23	3:45	3:51
	934.0	961.0	531.3	0.777	2.365			3:55	
	934.0	961.3	532.0	0.777	2.370			3:50	
	4891.1	4948.2	2844.5	0.720	2.416			5:00	
	4891.0	4948.6	2844.7	0.720	2.417			4:45	
100/1	4891.1	4948.1	2848.5	0.720	2.421	2.423	0.32	4:30	4:40
	4891.0	4948.4	2852.2	0.720	2.426			4:20	
	4891.0	4948.3	2859.8	0.720	2.435			4:45	
	1192.1	1219.7	702.5	0.777	2.475			4:00	
	1192.1	1219.5	701.7	0.777	2.470		0.09	3:45	
2	1192.1	1219.2	701.5	0.777	2.469			4:00	3:53
	1192.0	1218.9	701.8	0.777	2.471			3:45	
	1192.1	1218.7	702.1	0.777	2.471			3:55	
	4634.3	4691.5	2778.0	0.720	2.527			5:10	
	4633.9	4691.4	2774.1	0.720	2.522			5:00	
COE 1	4633.8	4691.3	2774.0	0.720	2.522	2.523	0.09	5:25	4:56
	4633.8	4691.0	2774.4	0.720	2.522			4:20	
	4633.9	4691.1	2773.2	0.720	2.521			4:45	
	1199.1	1226.2	702.0	0.777	2.451			3:50	
	1199.1	1225.9	703.8	0.777	2.459			3:45	
22/1	1199.0	1225.8	703.6	0.777	2.458	2.458	0.19	3:55	3:43
	1199.0	1225.7	704.2	0.777	2.461			3:35	
	1199.1	1225.8	704.4	0.777	2.462			3:30	

 Table B2. Feasibility Study Corelok Vacuum Seal Data

Sample	M _{dry} (g)	$M_{dwb}(g)$	$M_{wwb}\left(g ight)$	G _b	G _{mb}	Avg. G _{mb}	V (%)	Time	Avg. Time
	1198.1	1224.3	668.7	0.777	2.296			4:20	
· ·	1197.8	1224.5	668.6	0.777	2.297			3:50	
237/4	1197.6	1224.5	661.1	0.777	2.265	2.292	0.67	3:50	3:57
	1197.6	1225.0	669.3	0.777	2.301			3:55	
	1197.6	1225.0	669.4	0.777	2.302			3:50	
	1193.7	1220.3	645.1	0.777	2.207			4:05	
	1193.6	1220.7	645.0	0.777	2.207			3:55	
(4-6)/1	1193.6	1220.4	643.8	0.777	2.202	2.203	0.18	3:20	4:03
	1193.6	1220.1	643.7	0.777	2.201			4:45	
	1193.6	1220.4	642.8	0.777	2.198			4:10	
	2794.2	2851.7	1474.8	0.720	2.154	2.180		5:00	
Nova	2794.8	2850.8	1493.5	0.720	2.184		0.78	4:55	
Chip 1	2794.0	2851.1	1497.2	0.720	2.192			5:15	5:02
	2794.1	2851.2	1486.1	0.720	2.173			5:25	
	2794.0	2851.1	1500.0	0.720	2.197			4:35	
	2786.3	2843.2	1479.3	0.720	2.169			4:35	
Nova	2786.2	2843.2	1488.3	0.720	2.184			4:40	
Chip 2	2786.2	2843.2	1488.3	0.720	2.184	2.188	0.75	4:55	4:44
	2786.2	2843.1	1490.9	0.720	2.188			4:45	
	2786.2	2843.7	1505.4	0.720	2.214			4:45	
	757.1	784.2	380.7	0.777	2.054			4:25	
	757.0	783.9	380.1	0.777	2.050			3:40	
1	757.0	784.2	382.1	0.777	2.062	2.055	0.34	3:45	3:50
	757.0	784.2	382.2	0.777	2.063			3:25	
	757.0	784.2	379.4	0.777	2.047			3:55	

 Table B2. Feasibility Study Corelok Vacuum Seal Data (Continued)

Sample	M _{dry} (g)	W (cm)	H (cm)	L (cm)	Vol. (cm^3)	G _{mb}	Avg. G _{mb}	V (%)	Avg. Tin
	260.4	5.95	3.40	5.64	114.20	2.281			
3	260.3	5.95	3.34	5.65	112.34	2.318			
3	260.3	5.96	3.32	5.64	111.60	2.333	2.301	1.23	18:24
	260.3	5.95	3.42	5.65	115.04	2.264			
	260.3	5.94	3.36	5.65	112.69	2.311			
	1355.2	7.85	8.71	8.20	560.82	2.418		0.06	
	1355.2	7.85	8.71	8.20	561.07	2.416			18:18
100/1	1355.2	7.85	8.71	8.20	561.31	2.415	2.417		
	1355.2	7.85	8.71	8.20	560.36	2.420			
	1355.2	7.85	8.71	8.20	560.99	2.417			
	428.1	5.99	4.53	6.45	174.85	2.449			16:24
	428.1	6.01	4.52	6.45	175.46	2.441		0.52	
2	428.1	6.01	4.52	6.46	175.29	2.443	2.453		
	428.1	6.02	4.47	6.47	174.20	2.459			
	428.2	6.01	4.46	6.46	173.31	2.472			
	1036.9	6.99	8.09	7.27	411.26	2.522			
	1036.9	7.00	8.09	7.26	410.75	2.526			
COE 1	1036.9	7.00	8.07	7.28	411.21	2.523	2.525	0.10	21:05
	1036.9	6.99	8.09	7.27	410.94	2.524			
	1036.9	6.99	8.09	7.26	410.27	2.529		1	
	230.8	5.39	3.42	5.44	100.19	2.305			
	230.7	5.40	3.41	5.46	100.42	2.298			
22/1	230.7	5.39	3.48	5.47	102.61	2.249	2.287	0.95	16:25
	230.7	5.40	3.41	5.48	100.91	2.287			
	230.6	5.40	3.42	5.45	100.58	2.294			

 Table B3. Feasibility Study Cut and Measure: Cubical Samples Data

Sample	M _{dry} (g)	W (cm)	H (cm)	L (cm)	Vol. (cm ³)	G _{mb}	Avg. G _{mb}	V (%)	Avg. Time
	367.5	6.04	4.23	5.83	148.82	2.471			
	367.5	6.04	4.29	5.80	150.49	2.443			
237/4	367.5	6.04	4.23	5.79	147.87	2.486	2.459	0.75	16:07
	367.5	6.04	4.29	5.80	150.26	2.447			
	367.4	6.05	4.28	5.79	149.99	2.451			
	416.7	6.21	4.78	6.36	188.86	2.207			
	416.7	6.19	4.78	6.36	188.22	2.215			
(4-6)/1	416.7	6.22	4.80	6.38	190.73	2.186	2.203	0.50	16:05
	416.7	6.25	4.78	6.35	189.61	2.199		·	
	416.7	6.21	4.79	6.36	188.98	2.206			
		-							
	472.7	6.51	5.01	6.50	211.80	2.233			
Marra	472.7	6.51	5.01	6.48	211.39	2.237		0.19	
Nova	472.7	6.51	5.01	6.49	211.68	2.234	4 2.236		16:00
Chip 1	472.6	6.51	5.01	6.49	211.61	2.234			
	472.7	6.51	5.00	6.48	210.79	2.243			
· ·	721.3	7.95	5.64	7.34	328.92	2.194			
Maria	721.4	7.94	5.65	7.35	329.39	2.191			
Nova	721.3	7.95	5.64	7.34	328.82	2.195	2.190	0.24	19:07
Chip 2	721.4	7.94	5.65	7.35	329.66	2.189			
	721.4	7.95	5.65	7.36	330.84	2.181]		
	-	• • • • • • • • • • • •							
	191.5	5.32	3.38	6.21	111.60	1.717			
	191.5	5.37	3.36	6.20	111.95	1.711			
1	191.5	5.29	3.38	5.93	105.97	1.808	1.793	5.87	16:12
	191.5	5.43	3.40	5.89	108.87	1.760			
	191.5	5.29	3.12	5.90	97.36	1.968			

 Table B3. Feasibility Study Cut and Measure: Cubical Samples Data (Continued)

Sample	$M_{dry}\left(g ight)$	Dia. (cm)	Ht. (cm)	Vol. (cm^3)	G _{mb}	Avg. G _{mb}	V (%)	Avg. Time
	553.2	9.50	3.35	237.62	2.329	** <u>*</u> **		
	553.2	9.50	3.35	237.28	2.332			
3	553.2	9.49	3.32	234.95	2.356	2.331	0.69	8:30
	553.3	9.53	3.36	239.55	2.311			
	553.3	9.51	3.35	237.98	2.326			
	3705.3	14.99	8.73	1540.59	2.406			
	3705.5	14.99	8.72	1538.54	2.410			
100/1	3705.5	15.00	8.71	1539.72	2.408	2.410	0.15	10:00
	3705.5	14.99	8.70	1535.59	2.414			
	3705.4	14.99	8.70	1535.42	2.414			
	<u>8</u> 96.8	10.19	4.52	368.47	2.435		0.41	
	896.7	10.18	4.50	366.69	2.447			
2	896.7	10.18	4.55	370.28	2.423	2.438		8:00
	896.8	10.18	4.51	367.24	2.443			
	896.7	10.19	4.50	366.89	2.445			
	3740	15.28	8.07	1480.44	2.527			
	3738.5	15.29	8.06	1479.06	2.529			
COE 1	3738.6	15.26	8.06	1474.10	2.537	2.530	0.19	10:00
	3738.7	15.28	8.08	1481.23	2.525			
	3738.7	15.28	8.06	1476.63	2.533			
	641.8	10.25	3.42	282.00	2.277			
	641.9	10.24	3.46	284.80	2.255			
22/1	<u>6</u> 41.9	10.25	3.47	286.58	2.241	2.278	1.12	8:00
	642	10.24	3.46	285.27	2.251			
	642	10.23	3.39	278.67	2.305			

Table B4. Feasibility Study Cut and Measure: Cylindrical Samples Data

Sample	M _{dry} (g)	Dia. (cm)	Ht. (cm)	Vol. (cm ³)	G _{mb}	Avg. G _{mb}	V (%)	Avg. Time
	843.7	10.16	4.23	343.24	2.459			
	843.8	10.16	4.20	340.43	2.480			
237/4	843.8	10.16	4.24	344.22	2.452	2.316	0.59	8:30
	843.7	10.16	4.26	345.11	2.446			
	843.7	10.16	4.25	344.85	2.448			
	849.2	10.15	4.80	388.53	2.187			
l	849.1	10.16	4.80	389.14	2.183			
(4-6)/1	849.1	10.17	4.79	389.02	2.184	2.174	0.14	8:30
	849.1	10.18	4.79	389.97	2.178			
	849.1	10.17	4.79	389.14	2.183			
	1936.4	15.03	5.04	894.58	2.166		_	
Nova	1936.4	15.03	5.03	892.51	2.171		0.17	
Chip 1	1936.3	15.03	5.04	894.69	2.165	2.152		10:30
Citp I	1936.4	15.02	5.03	891.34	2.173			
	1936.3	15.03	5.03	892.19	2.171			
	2169.9	15.07	5.74	1023.84	2.120			
Nova	2169.9	15.05	5.70	1013.50	2.142			
Chip 2	2169.8	15.04	5.68	1009.80	2.150	2.065	0.77	10:30
Cmp 2	2169.8	15.08	5.69	1016.67	2.135			
	2169.8	15.03	5.65	1003.76	2.163			
	543.7	10.17	3.38	274.77	1.980			
	543.7	10.19	3.37	274.50	1.982			
1	543.6	10.21	3.38	276.52	1.967	1.968	0.76	8:15
	543.6	10.21	3.34	273.67	1.987			
	543.6	10.21	3.41	278.96	1.950			

Table B4. Feasibility Study Cut and Measure: Cylindrical Samples Data(Continued)

Sample	M _{dry} (g)	Dia. (cm)	Ht. (cm)	Vol. (cm ³)	G _{mb}	Avg. G _{mb}	V (%)	Time	Avg. Time
	934.0	9.57	6.36	457.83	2.041			2:10	
	934.1	9.59	6.40	461.84	2.023			2:00	
3	934.0	9.59	6.32	456.45	2.047	2.032	0.58	2:05	2.05
	934.1	9.56	6.42	460.86	2.028			2:05	
	934.0	9.58	6.42	462.65	2.020			1:55	
	4891.6	15.00	11.64	2055.51	2.381			2:05	
	4891.5	14.98	11.62	2046.75	2.391			2:15	
100/1	4891.5	14.96	11.63	2045.20	2.393	2.386	0.22	2:10	2.15
	4891.6	14.99	11.64	2053.76	2.383			2:10	
	4891.3	14.99	11.63	2052.90	2.384			2:05	
	1192.1	10.18	6.06	492.46	2.422			2:00	
	1192.1	10.17	6.08	494.14	2.414			2:10	
2	1192.1	10.18	6.08	494.30	2.413	2.414	0.20	1:50	1.92
	1192.1	10.18	6.08	494.80	2.410			1:45	
	1192.1	10.18	6.08	494.90	2.410			1:50	
	4634.5	15.23	10.27	1872.88	2.476			2:05	
	4634.5	15.24	10.25	1869.37	2.480			1:55	
COE 1	4634.4	15.26	10.26	1876.98	2.470	2.472	0.24	2:05	1.98
	4634.4	15.26	10.27	1876.78	2.470			2:00	
	4634.4	15.28	10.26	1881.10	2.465			1:50	
	1199.0	10.16	6.16	499.66	2.401			1:50	
	1199.1	10.16	6.16	499.22	2.403			1:50	
22/1	1199.0	10.17	6.15	499.40	2.402	2.403	0.15	1:45	1.8
	1199.0	10.16	6.14	497.85	2.409			1:50	
	1199.0	10.17	6.15	499.60	2.401			1:45	

Table B5. Feasibility Study Dimensional Analysis Data

Sample	M _{dry} (g)	Dia. (cm)	Ht. (cm)	Vol. (cm ³)	G _{mb}	Avg. G _{mb}	V (%)	Time	Avg. Time
	1197.6	10.27	6.48	536.79	2.232			1:45	
	1197.6	10.27	6.48	536.30	2.234			1:40	
237/4	1197.6	10.26	6.48	535.80	2.236	2.233	0.13	2:00	1.87
	1197.6	10.27	6.49	537.63	2.229			1:55	
	1197.6	10.26	6.49	536.03	2.235			2:00	
	1193.7	10.16	6.88	557.66	2.141			1:30	
	1193.7	10.16	6.87	556.69	2.145			1:40	
(4-6)/1	1193.7	10.16	6.87	557.39	2.143	2.144	0.11	1:45	1.6
	1193.7	10.16	6.87	557.24	2.143			1:30	
	1193.7	10.15	6.87	556.14	2.147			1:35	
			·						
	2794.8	14.99	7.47	1317.51	2.122			2:10	
Nova	2795.3	15.00	7.47	1318.57	2.121			1:50	2.05
Chip 1	2795.3	14.99	7.47	1318.74	2.121	2.121	0.04	2:10	
Cilip I	2795.4	14.99	7.47	1318.96	2.120				2:00
	2795.4	14.99	7.47	1318.29	2.121			2:05	
	2785.5	15.02	7.47	1323.71	2.105			1:45	
Nova	2785.5	14.97	7.47	1315.05	2.119			1:45	
	2785.5	15.01	7.47	1321.59	2.109	2.110	0.27	1:45	1.77
Chip 2	2785.5	15.02	7.47	1323.54	2.106			1:50	
	2785.5	15.01	7.47	1321.25	2.109			1:45	
	757.3	10.25	4.78	393.75	1.924			1:50	
	757.4	10.24	4.76	391.25	1.937			1:35	
1	757.3	10.24	4.76	391.51	1.935	1.934		2:00	1.77
	757.3	10.24	4.74	390.79	1.939	——————————————————————————————————————	-		
	757.3	10.24	4.76	391.35	1.936			1:35	

 Table B5. Feasibility Study Dimensional Analysis Data (Continued)

Sample	M _{dry} (kg)	M _{mb} (kg)	M _{sbmc} (kg)	G_{beads}	G _{mb}	Avg. G _{mb}	V (%)	Time	Avg. Time
	0.93	39.64	39.98	1.576	2.460			7:10	
	0.93	39.64	40.01	1.576	2.578			5:55	
3	0.93	39.64	39.98	1.576	2.460	2.463	3.80	6:55	6:33
	0.93	39.64	39.99	1.576	2.498			7:00	
	0.93	39.64	39.94	1.576	2.319			5:45	
	L	· ····							<u> </u>
	4.89	39.64	41.31	1.576	2.392			8:55	
	4.89	39.64	41.32	1.576	2.399			8:30	
100/1	4.89	39.64	41.22	1.576	2.327	2.357	1.51	8:50	8:46
	4.89	39.64	41.23	1.576	2.333			9:15	
	4.89	39.64	41.23	1.576	2.333			8:20	
		¢							_
	1.19	39.64	40.06	1.576	2.425		ļ	6:00	
	1.19	39.64	40.08	1.576	2.483		3.43	5:50	
2	1.19	39.64	40.05	1.576	2.397	-		5:45	5:48
	1.19	39.64	40.06	1.576	2.425			5:30	
	1.19	39.64	40.12	1.576	2.608			5:55	
				_					
	4.63	39.64	41.44	1.576	2.574			6:45	
	4.63	39.64	41.35	1.576	2.494		ļ	6:30	
COE 1	4.63	39.64	41.40	1.576	2.541	2.561	1.87	7:30	7:55
	4.63	39.64	41.49	1.576	2.624			8:55	
	4.63	39.64	41.44	1.576	2.574			9:55	
									<u> </u>
	1.20	39.64	40.10	1.576	2.535			6:30	1
	1.20	39.64	40.09	1.576	2.505	-		7:40	1
22/1	1.20	39.64	40.10	1.576	2.535	2.525	3.03	6:20	6:37
	1.20	39.64	40.06	1.576		4	ł	5:50	4
	1.20	39.64	40.12	1.576	2.631			6:45	

Table B6. Feasibility	Study	Glass	Beads	Data
-----------------------	-------	-------	-------	------

Sample	M _{dry} (kg)	M _{mb} (kg)	M _{sbmc} (kg)	G _{beads}	G _{mb}	Avg. G _{mb}	V (%)	Time	Avg. Time
	1.20	39.64	40.11	1.576	2.568			8:40	
	1.20	39.64	40.08	1.576	2.476			6:20	
237/4	1.20	39.64	40.10	1.576	2.537	2.490	2.73	7:00	7:10
	1.20	39.64	40.05	1.576	2.391			6:40	
1	1.20	39.64	40.08	1.576	2.476			7:10	_
									_
	1.19	39.64	39.99	1.576	2.217			6:30	
	1.19	39.64	39.94	1.576	2.104			7:20	
(4-6)/1	1.19	39.64	40.05	1.576	2.397	2.242	5.57	6:40	6:46
	1.19	39.64	39.96	1.576	2.148			6:30	
}	1.19	39.64	40.03	1.576	2.342			6:50	
	2.79	39.64	40.50	1.576	2.269			12:20	-
Nova	2.79	39.64	40.42	1.576	2.187	1	1.74	11:20	
1	2.79	39.64	40.41	1.576	2.167	2.205		11:10	11:15
Chip 1	2.79	39.64	40.43	1.576	2.197			10:25	
	2.79	39.64	40.44	1.576	2.207			11:00	
	2.78	39.64	40.30	1.576	2.059			9:00	
Novo	2.78	39.64	40.46	1.576	2.230			11:00	
Nova Chip 2	2.78	39.64	40.30	1.576	2.059	2.155	4.09	9:20	10:02
	2.78	39.64	40.44	1.576	2.209			11:20	
	2.79	39.64	40.45	1.576	2.219			9:30	
	0.76	39.64	39.77	1.576	1.894			9:20	
	0.76	39.64	39.83	1.576	2.106			8:40	
1	0.76	39.64	39.79	1.576	1.950	2.053	6.04	9:15	8:56
	0.76	39.64	39.85	1.576	2.175			8:30	1
	0.76	39.64	39.84	1.576	2.140			8:55	

Table B6. Feasibility Study Glass Beads Data (Continued)

	Specific Gravity of Glass Beads: $G_{\text{beads}} = [(M_{\text{mcb}} - M_{\text{mc}}) / V_{\text{mc}}] / \gamma_w$											
M _{meb} (kg)	M_{mc} (kg)	$V_{mc}(m^3)$	G _{beads}	Avg. G _{beads}	V (G _{beads} , %)	Time	Avg. Time					
39.62	9.55		1.576			8:10						
39.67	9.55	0.010	1.579	1.577	0.10	8:00	8:02					
39.62	9.55	0.019	1.576			8:10	0.02					
39.67	9.55		1.579			7:50						

Table B7. Feasibility Study Glass Beads Calibration	
---	--

Table B8. Feasibility Study Glass Beads Apparatus Volume Determination

Volume of Apparatus: $V_{mc} = (M_{mcw} - M_{mc}) / \gamma_w$										
M _{mc} (kg)	M _{mcw} (kg)	$V_{mc} (m^3)$	Avg. V _{mc}	V (V _{mc} , %)						
9,56	28.86	0.019								
9.57	28.65	0.019								
9.57	28.67	0.019	0.019	0.08						
9.57	28.66	0.019								
9.57	28.65	0.019								

Sample	$M_{dry}(g)$	M _{dwp} (g)	$M_{wwp}(g)$	G _{mb}	Avg. G _{mb}	V (%)	Time	Avg. Time				
	934.1	937.4	537.5	2.363			10					
[934.2	937.2	530.4	2.320			7					
3	934.1	937.2	532.8	2.335	2.333	0.76	7	7.6				
	934.1	937.2	531.0	2.324			7					
	934.1	937.4	530.5	2.322			7					
	4891.0	4900.1	2853.4	2.405			18					
	4891.3	4898.8	2860.9	2.412			13					
100/1	4890.2	4898.0	2854.4	2.406	2.404	0.25	15	14.2				
ļ	4890.0	4898.0	2849.4	2.400			13					
	4890.0	4899.5	2846.0	2.397			12					
	1192.0	1195.5	707.0	2.465			10					
	1192.2	1194.7	703.8	2.446		0.33	7	7.8				
2	1192.0	1194.6	704.0	2.448	2.450		7					
	1192.1	1194.8	704.2	2.449			7					
	1192.1	1195.0	703.3	2.444			8					
	4634.4	4643.9	2785.0	2.511			18					
	4635.2	4642.0	2771.5	2.491			14					
COE 1	4633.9	4640.5	2783.6	2.508	2.504	0.32	15	15				
	4634.1	4642.3	2781.0	2.505			14	ĺ				
	4634.3	4643.2	2783.0	2.508			14					
	1198.8	1202.4	711.2	2.466			10					
	1199.1	1201.7	706.5	2.439		[7.5	}				
22/1	1199.0	1201.8	706.4	2.439	2.445	0.47	7	7.7				
	1199.0	1201.9	706.8	2.442			7					
	1199.0	1202.0	706.4	2.440			7					

Table B9. Feasibility Study Parafilm Wrapping Data

Sample	M _{dry} (g)	M _{dwp} (g)	M _{wwp} (g)	G _{mb}	Avg. G _{mb}	V (%)	Time	Avg. Time			
	1198.1	1202.0	670.7	2.278			10				
	1198.2	1201.1	667.5	2.263			7				
237/4	1196.9	1199.2	669.4	2.273	2.269	0.35	7	8.2			
	1196.8	1199.7	669.0	2.272			8				
	1196.9	1199.6	666.0	2.259			9				
	1193.7	1196.5	645.7	2.183			7				
	1193.7	1196.7	645.6	2.183			7				
4-6/1	1193.7	1197.2	645.5	2.183	2.182	0.10	7	6.8			
	1193.7	1196.7	644.6	2.179			7				
	1193.7	1197.1	646.0	2.185			6				
	2793.4	2799.3	1526.0	2.208			13				
Nova	2794.8	2801.0	1519.0	2.195		1.19	18	11.6			
Chip 1	2795.2	2800.2	1503.0	2.166	2.175		8				
	2795.2	2800.9	1496.4	2.156			10				
	2795.0	2802.2	1490.9	2.148			9				
	2785.5	2791.2	1485.0	2.146			11				
Nova	2785.2	2791.6	1488.6	2.152			13				
Chip 2	2785.8	2791.7	1484.5	2.145	2.146	0.18	10	11.2			
	2786.0	2792.7	1483.4	2.143			11				
	2785.9	2793.2	1482.6	2.142			11				
	756.9	759.6	379.0	2.008			7				
	756.9	759.3	378.7	2.006			5				
1	756.8	759.3	380.7	2.017	2.011	0.23	6	6			
	756.9	760.0	378.8	2.008			6	<u> </u>			
	756.7	759.7	379.7	2.013		L.,	6				

Table B9. Feasibility Study Parafilm Wrapping Data (Continued)

	$A_{al}(g)$	B _{al} (g)	G _{al}	D _{ai} (g)	E _{ai} (g)	F	
	(dry mass	(mass under	(sp. gravity of	(dry mass of	(mass of wrapped	(Sp. Gravity	Average Sp.
	in air)	water)	aluminum		specimen	of	Gravity
Trial 1	1445.4	932.3	2.8170	1448.8	930.7	0.680	
Trial 2	1445.4	932.1	2.8159	1449.1	930.7	0.725	
Trial 3	1445.3	932.4	2.8179	1449.1	931	0.731	0.70
Trial 4	1445.4	932.4	2.8175	1448.5	931	0.689	
Trial 5	1445.5	932.3	2.8166	1449.2	930.5	0.673	

Table B10. Feasibility Study Specific Gravity Determination of Parafilm

Table B11. Feasibility Study Saturated Surface-Dry Specimens Data

Sample	M _{dry} (g)	M _{ssd} (g)	M _{sub} (g)	G _{mb}	Avg. G _{mb}	V (%)	Abs (%)	Time	Avg. Time		
	934.2	934.7	540.5	2.370				4:45			
	934.1	934.4	541.1	2.375				4:30			
3	934.3	934.7	541.7	2.377	2.374	0.12	0.11	4:45	4:34		
	934.1	934.6	541.4	2.376				4:20			
	934.1	934.6	541.1	2.374				4:30			
	4891.6	4895.0	2874.6	2.421				5:05			
	4891.3	4895.1	2875.3	2.422				4:25			
100/1	4891.6	4894.8	2875.4	2.422	2.422	0.03	0.17	4:45	4:45		
	4891.4	4895.1	2876.2	2.423				4:50			
	4891.0	4894.3	2875.2	2.422				4:40			
	1192.5	1193.5	714.9	2.492	-	l –		4:40			
	1192.0	1192.9	714.9	2.494			ļ	4:30			
2	1191.9	1192.6	715.0	2.496	2.494	0.06	0.18	4:35	4:34		
	1192.1	1193.0	715.1	2.494				4:40			
	1192.0	1192.9	715.0	2.494				4:25			
	4634.6	4638.7	2807.5	2.531				5:00			
	4634.1	4638.0	2809.5	2.534				4:50			
COE 1	4634.0	4637.2	2808.7	2.534	2.534	0.07	0.19	4:35	4:46		
-	4634.0	4637.2	2808.1	2.533				4:40			
	4633.9	4637.0	2809.4	2.536				4:45			
		•;;;									
-	1199.3	1200.3	715.4	2.473			1	4:40			
	1198.7	1200.0	715.6	2.475				4:25			
22/1	1198.8	1199.8	715.7	2.476	2.475	0.06	0.23	4:40	4:32		
	1198.9	1200.0	716.0	2.477				4:25]		
	1198.6	1199.7	715.6	2.476				4:30			

Sample	$M_{dry}\left(g ight)$	$M_{ssd}(g)$	$M_{sub}\left(g ight)$	G _{mb}	Avg. G _{mb}	V (%)	Abs (%)	Time	Avg. Time
	1197.6	1202.1	693.1	2.353				4:35	
	1197.5	1203.0	693.3	2.349				4:30	
237/4	1197.7	1202.8	693.0	2.349	2.351	0.06	1.00	4:40	4:32
	1197.8	1203.4	693.8	2.350				4:25	
	1198.2	1203.0	693.5	2.352				4:30	
	1193.6	1203.4	675.1	2.259				4:40	
	1194.1	1203.8	677.0	2.267				4:25	
(4-6)/1	1194.4	1204.5	675.5	2.258	2.260	0.18	1.82	4:35	4:35
	1192.6	1202.3	673.8	2.257				4:40	
	1193.7	1202.4	674.6	2.262				4:35	
								-	
	2794.3	2818.5	1576.1	2.249				4:45	
Nova	2793.3	2818.8	1577.3	2.250				4:50	
Chip 1	2794.8	2823.6	1575.2	2.239	2.245	0.22	2.11	4:50	4:48
	2795.2	2820.6	1576.4	2.247				4:40	
	2795.2	2822.5	1575.3	2.241				4:55	
	2785.8	2811.9	1568.3	2.240				4:50	
Nova	2786.3	2814.2	1574.0	2.247				4:25	
Chip 2	2784.9	2814.2	1571.0	2.240	2.240	0.25	2.22	4:40	4:38
Cmp 2	2785.2	2816.4	1567.9	2.231				4:35	
	2785.8	2809.2	1566.2	2.241				4:40	
	757.1	770.4	443.6	2.317				4:35	
	757.4	770.5	442.5	2.309				4:20	
1	758.1	770.2	442.7	2.315	2.313	0.21	3.95	4:30	4:26
	757.0	770.5	443.7	2.316				4:20	
	757.0	769.7	441.4	2.306				4:25	

 Table B11. Feasibility Study Saturated Surface-Dry Specimens Data (Continued)

			Average G	mb Values			
Sample	Corelok	Cut Cube	Cut Cylinder	Dim. Analysis	Glass Beads	Parafilm	SSD
Nova Chip 1	2.180	1.793	2.152	2.121	2.205	2.175	2.245
Nova Chip 2	2.188	2.190	2.065	2.110	2.155	2.146	2.240
4-6/1	2.203	2.203	2.174	2.144	2.242	2.182	2.260
1	2.055	2.236	1.968	1.934	2.053	2.011	2.313
3	2.364	2.301	2.331	2.032	2.463	2.333	2.374
2	2.471	2.453	2.438	2.414	2.468	2.450	2.494
237/4	2.292	2.459	2.316	2.233	2.490	2.269	2.351
22/1	2.458	2.287	2.374	2.403	2.525	2.445	2.475
100/1	2.423	2.417	2.410	2.386	2.357	2.404	2.422
COE 1	2.523	2.525	2.530	2.472	2.561	2.504	2.534
Average	2.32	2.29	2.28	2.22	2.35	2.29	2.37
		Aver	age Coefficient	s of Variation (%	6)		
Sample	Corelok	Cut Cube	Cut Cylinder	Dim. Analysis	Glass Beads	Parafilm	SSD
Nova Chip 1	0.78	0.19	0.17	0.03	1.74	1.19	0.22
Nova Chip 2	0.75	0.24	0.77	0.27	4.09	0.18	0.25
4-6/1	0.18	0.50	0.14	0.11	5.57	0.10	0.18
1	0.34	5.87	0.76	0.30	6.04	0.23	0.21
3	0.23	1.23	0.69	0.58	3.80	0.76	0.14
2	0.09	0.52	0.41	0.20	3.43	0.33	0.07
237/4	0.67	0.75	0.59	0.13	2.73	0.35	0.07
22/1	0.19	0.95	1.07	0.15	3.03	0.47	0.07
100/1	0.32	0.06	0.15	0.22	1.51	0.25	0.03
COE 1	0.09	0.10	0.19	0.24	1.87	0.32	0.06
Average	0.36	1.04	0.49	0.22	3.38	0.42	0.13

 Table B12. Feasibility Study Results Summary

APPENDIX C

Precision and Accuracy Data and Results

Sample	M _{dry} (g)	M _{dwb} (g)	$M_{wwb}(g)$	G _b	G _{mb}	Avg. G _{mb}	V (%)
	1194.8	1218.2	700.0	0.792	2.445		
DIC	1194.6	1218.2	700.4	0.792	2.448		
D Mix:	1194.5	1218.2	699.3	0.792	2.443		
Marshall -	1194.4	1218.1	698.7	0.792	2.440	2.445	0.14
75 Blows	1194.4	1218.2	699.0	0.792	2.442		
(1)	1194.4	1218.4	700.4	0.792	2.449	1	
	1194.5	1218.3	700.2	0.792	2.447	1	
	1190.5	1214.2	697.3	0.792	2.445		
DIC	1190.3	1214.1	696.9	0.792	2.443		
D Mix:	1190.4	1214.2	696.2	0.792	2.440		
Marshall -	1190.3	1214.0	696.2	0.792	2.440	2.442	0.11
75 Blows	1190.4	1214.2	696.7	0.792	2.442		
(2)	1190.4	1214.1	696.4	0.792	2.440		
	1190.3	1214.1	697.6	0.792	2.447	1	
	1191.2	1215.0	693.5	0.792	2.424		
DMin	1191.2	1215.0	694.3	0.792	2.428		
D Mix: Marshall -	1191.1	1214.8	690.9	0.792	2.411		
	1191.2	1215.1	693.2	0.792	2.423	2.423	0.23
75 Blows (2)	1191.0	1215.0	692.8	0.792	2.421		
(3)	1191.1	1215.1	693.2	0.792	2.423		
	1191.2	1215.0	694.4	0.792	2.428		
		_					
	11 94 .1	1218.0	698.8	0.792	2.442		
D Mix:	1194.1	1218.0	698.8	0.792	2.442		
Marshall -	1194.2	1218.0	699.5	0.792	2.445		
75 Blows	1194.2	1218.1	699.6	0.792	2.446	2.444	0.11
(4)	1194.1	1217.9	698.3	0.792	2.439		
(-)	1194.1	1218.1	699.8	0.792	2.447		
	1194.1	1217.9	699.5	0.792	2.445		
	1189.8	1213.5	697.4	0.792	2.447		
D Mix:	1189.8	1213.7	695.6	0.792	2.438		
Marshall -	1189.8	1213.5	697.6	0.792	2.448		
75 Blows	1189.8	1213.7	697.6	0.792	2.449	2.444	0.26
(5)	1189.8	1213.6	696.9	0.792	2.445		
	1189.7	1213.5	694.4	0.792	2.433		
	1189.9	1213.7	697.8	0.792	2.449		

Table C1. Corelok Vacuum Seal Data for D Mix: Marshall - 75 Blows

Sample	M _{dry} (g)	M _{dwb} (g)	M _{wwb} (g)	G _b	G _{mb}	Avg. G _{mb}	V (%)
BM2 Mix:	1192.5	1216.4	667.8	0.792	2.300		
	1192.6	1216.2	669.4	0.792	2.307		0.13
Marshall -	1192.6	1216.4	667.8	0.792	2.300		
20 Blows	1192.5	1216.3	668.7	0.792	2.304	2.304	
	1192.5	1216.3	669.2	0.792	2.306		
(1)	1192.4	1216.4	668.6	0.792	2.304		
	1192.5	1216.1	669.4	0.792	2.307		
	1188.4	1212.2	670.1	0.792	2.321		
BM2 Mix:	1188.4	1212.1	668.1	0.792	2.312		0.22
Marshall -	1188.3	1212.1	668.9	0.792	2.316		
20 Blows	1188.4	1212.2	668.8	0.792	2.315	2.319	
$\begin{array}{c} 20 \text{ Blows} \\ (2) \end{array}$	1188.4	1212.3	671.3	0.792	2.326		
(2)	1188.5	1212.2	670.6	0.792	2.323		
	1188.3	1212.1	669.6	0.792	2.319	1	
	1196.0	1219.7	681.8	0.792	2.354		
BM2 Mix:	1196.0	1219.7	682.5	0.792	2.358	2.355	0.23
Marshall -	1196.0	1219.6	683.4	0.792	2.362		
20 Blows	1195.9	1219.7	679.6	0.792	2.345		
(3)	1195.9	1219.8	682.5	0.792	2.358		
(3)	1196.0	1219.6	681.9	0.792	2.355		
	1195.9	1219.7	681.2	0.792	2.352		
	1195.9	1219.1	669.4	0.792	2.298	2.300	0.38
BM2 Mix:	1195.2	1218.9	671.3	0.792	2.309		
Marshall -	1196.3	1219.5	666.7	0.792	2.285		
20 Blows	1195.4	1219.0	670.1	0.792	2.303		
(4)	1195.2	1218.9	670.6	0.792	2.306		
	1195.1	1219.1	670.6	0.792	2.306		
	1195.1	1219.0	667.2	0.792	2.291		
BM2 Mix: Marshall - 20 Blows	1196.4	1219.6	672.6	0.792	2.311		
	1196.0	1219.8	673.9	0.792	2.319		
	1196.0	1219.8	674.6	0.792	2.322	2.319	0.19
	1196.0	1219.8	675.0	0.792	2.323		
(5)	1196.0	1219.9	674.8	0.792	2.323		
	1196.0	1219.9	674.7	0.792	2.322		
	1196.0	1219.8	673.5	0.792	2.317		

Table C2. Corelok Vacuum Seal Data for BM2 Mix: Marshall - 20 Blows

Sample	M _{dry} (g)	M _{dwb} (g)	M _{wwb} (g)	G _b	G _{mb}	Avg. G _{mb}	V (%)
BM2 Mix:	1195.5	1219.1	692.2	0.792	2.405		
	1195.3	1219.1	693.5	0.792	2.412		0.09
Marshall -	1195.3	1219.1	693.1	0.792	2.410		
75 Blows	1195.3	1219.2	692.9	0.792	2.409	2.409	
	1195.3	1219.2	693.2	0.792	2.411		
(1)	1195.3	1219.1	692.8	0.792	2.409	1	
	1195.4	1219.1	693.0	0.792	2.409	1	
	1194.8	1218.4	693.4	0.792	2.413		
BM2 Mix:	1194.8	1218.6	694.8	0.792	2.420		
Marshall -	1194.7	1218.6	695.0	0.792	2.421]	
75 Blows	1194.8	1218.4	695.0	0.792	2.421	2.419	0.13
	1194.7	1218.5	694.3	0.792	2.418		
(2)	1194.9	1218.6	694.6	0.792	2.418		
	1194.7	1218.6	695.2	0.792	2.422		
	1196.4	1219.9	692.8	0.792	2.405		
BM2 Mix:	1196.2	1219.8	692.2	0.792	2.403		0.06
Marshall -	1196.1	1220.0	692.4	0.792	2.405		
75 Blows	1196.1	1219.8	692.6	0.792	2.405	2.405	
	1196.0	1219.8	692.5	0.792	2.405		
(3)	1196.1	1219.8	693.1	0.792	2.408		
	1196.0	1219.8	692.3	0.792	2.404		
	1195.0	1218.7	696.4	0.792	2.427	2.428	0.17
BM2 Mix:	1194.9	1220.2	694.7	0.792	2.421		
Marshall -	1194.9	1220.2	696.4	0.792	2.429		
75 Blows	1194.9	1220.2	695.6	0.792	2.425		
(4)	1194.9	1220.3	696.7	0.792	2.431		
(+)	1194.8	1220.3	696.2	0.792	2.429		
	1194.8	1220.5	697.1	0.792	2.434		
BM2 Mix: Marshall - 75 Blows	1195.9	1221.0	697.3	0.792	2.431		
	1195.8	1221.3	695.7	0.792	2.424		
	1195.7	1221.1	695.0	0.792	2.420	2.424	0.26
	1196.0	1221.3	694.7	0.792	2.418		
(5)	1195.8	1221.2	696.7	0.792	2.428		
	1195.8	1221.4	696.9	0.792	2.430		
	1195.9	1220.9	694.1	0.792	2.415		

Table C3. Corelok Vacuum Seal Data for BM2 Mix: Marshall - 75 Blows

Sample	$M_{dry}\left(g ight)$	M _{dwb} (g)	$M_{wwb}(g)$	G _b	G _{mb}	Avg. G _{mb}	V (%)
	2973.1	3015.3	1672.2	0.686	2.320		
	2972.7	3014.7	1671.6	0.686	2.319		
BM2 Mix:	2972.6	3014.7	1672.8	0.686	2.321		
SGC 8-	2972.5	3014.6	1670.7	0.686	2.318	2.323	0.19
10% (1)	2972.4	3014.4	1673.5	0.686	2.323		
	2972.4	3014.8	1676.3	0.686	2.328		
	2972.4	3014.8	1676.8	0.686	2.329		
	2970.6	3011.8	1666.4	0.686	2.311		
	2969.6	3011.1	1665.6	0.686	2.311		
BM2 Mix:	2969.6	3011.2	1667.1	0.686	2.314		
SGC 8-	2969.2	3011.1	1669.6	0.686	2.319	2.316	0.17
10% (2)	2968.9	3011.0	1669.6	0.686	2.319]	
	2969.0	3011.2	1669.6	0.686	2.319		
	2969.0	3010.9	1669.0	0.686	2.318		
	2968.9	3011.0	1673.8	0.686	2.327		
	2968.8	3011.0	1675.1	0.686	2.330		
BM2 Mix:	2968.5	3010.7	1676.7	0.686	2.333		
SGC 8-	2968.6	3010.7	1678.2	0.686	2.335	2.332	0.12
10% (3)	2968.8	3010.7	1677.1	0.686	2.333		1
	2968.5	3010.9	1677.2	0.686	2.334		
	2968.7	3010.7	1677.0	0.686	2.333		
	2968.4	3010.4	1676.1	0.686	2.332		
	2968.6	3010.2	1673.4	0.686	2.326		
BM2 Mix:	2968.4	3010.5	1677.1	0.686	2.334		
SGC 8-	2968.4	3010.2	1678.1	0.686	2.335	2.335	0.22
10% (4)	2968.3	3010.6	1679.6	0.686	2.338	-	
	2968.6	3010.6	1677.9	0.686	2.335		
	2969.5	3011.2	1682.6	0.686	2.342		
	2968.1		1670.9	0.686	2.323		
	2968.1	3010.1	1673.0	0.686	2.326	1	
BM2 Mix:	2968.1	3010.1	1672.6	0.686	2.326	1	
SGC 8-	2967.5	3009.5	1669.0	0.686	2.320	2.325	0.15
10% (5)	2967.7	3009.5	1672.7	0.686	2.326	4	
	2967.5	3009.5	1672.4	0.686	2.326]	
	2968.7	3010.2	1676.2	0.686	2.331		

Table C4. Corelok Vacuum Seal Data for BM2 Mix: SGC 8-10%

Sample	M _{dry} (g)	M _{dwb} (g)	M _{wwb} (g)	G _b	G _{mb}	Avg. G _{mb}	V (%)
	4912.3	4954.1	2917.5	0.686	2.486		
	4911.6	4953.6	2913.3	0.686	2.482		
BM2 Mix:	4911.7	4954.1	2915.8	0.686	2.485		
SGC 4% [4911.6	4954.0	2922.2	0.686	2.493	2.488	0.17
(1)	4911.5	4954.1	2918.7	0.686	2.489] [
	4911.3	4953.4	2920.5	0.686	2.491		
	4911.4	4953.8	2921.0	0.686	2.492		
	4911.5	4952.6	2911.7	0.686	2.479		
	4911.0	4952.1	2910.7	0.686	2.478]	
BM2 Mix:	4909.7	4951.4	2911.0	0.686	2.480		
SGC 4%	4909.2	4951.2	2911.3	0.686	2.481	2.478	0.09
(2)	4908.9	4950.9	2908.9	0.686	2.478		
ļ	4908.5	4950.8	2905.6	0.686	2.475		
	4908.6	4950.9	2906.7	0.686	2.476		
					-		
	4909.1	4951.0	2907.6	0.686	2.476		
	4908.9	4951.0	2908.7	0.686	2.478]	
BM2 Mix:	4908.9	4951.3	2910.7	0.686	2.481]]	
SGC 4%	4908.8	4951.0	2908.5	0.686	2.478	2.478	0.07
(3)	4908.8	4951.2	2909.6	0.686	2.479		
	4908.8	4951.2	2906.9	0.686	2.476]	
	4909.0	4951.1	2909.2	0.686	2.479		
	4906.8	4948.8	2909.4	0.686	2.480		
	4906.9	4948.7	2911.7	0.686	2.483		
BM2 Mix:	4906.5	4949.0	2910.2	0.686	2.482] [
SGC 4%	4906.6	4948.6	2910.6	0.686	2.482	2.482	0.12
(4)	4906.6	4948.8	2909.4	0.686	2.481] I	
	4906.5	4948.7	2907.4	0.686	2.478		
	4906.5	4948.9	2914.9	0.686	2.488	<u>í</u>	
	4911.8	4953.9	2908.4	0.686	2.476		
	4911.8	4954.0	2905.8	0.686	2.472		
BM2 Mix:	4911.8	4953.9	2910.3	0.686	2.478		
SGC 4%	4911.5	4953.8	2908.6	0.686	2.476	2.476	0.08
(5)	4911.8	4953.7	2910.0	0.686	2.477	1	
	4911.6	4953.8	2909.1	0.686	2.477	1	
	4911.6	4953.9	2909.5	0.686	2.477	1	

Table C5. Corelok Vacuum Seal Data for BM2 Mix: SGC 4%

Sample	M _{dry} (g)	M _{dwb} (g)	M _{wwb} (g)	G _b	G _{mb}	Avg. G _{mb}	V (%)
	2985.0	3025.3	1716.9	0.686	2.389		
	2983.5	3024.8	1718.4	0.686	2.394		
A Mix:	2982.9	3024.4	1718.9	0.686	2.396	1	
SGC 8%	2983.0	3024.3	1719.3	0.686	2.396	2.397	0.19
(1)	2982.8	3024.2	1720.7	0.686	2.399	1	
	2982.8	3024.3	1722.1	0.686	2.402	1	
	2982.8	3024.4	1720.9	0.686	2.400	1	
			· · · · · · · · · · · · · · · · · · ·		•	L	,
	2985.8	3026.8	1711.1	0.686	2.377		
	2984.9	3026.6	1704.3	0.686	2.366	1	
A Mix:	2984.9	3026.3	1712.2	0.686	2.381	1	
SGC 8%	2984.8	3026.2	1714.0	0.686	2.384	2.381	0.35
(2)	2984.8	3026.4	1712.4	0.686	2.381		
	2984.9	3026.7	1714.6	0.686	2.386		
	2984.9	3026.4	1718.5	0.686	2.393		
						•	
	2986.4	3027.9	1718.7	0.686	2.392		
	2986.4	3027.8	1720.6	0.686	2.395	1	
A Mix:	2986.4	3027.9	1722.3	0.686	2.399		
SGC 8%	2986.4	3027.6	1722.2	0.686	2.398	2.396	0.15
(3)	2986.3	3027.6	1719.6	0.686	2.393		
	2986.4	3027.7	1724.1	0.686	2.402		
	2986.3	3027.7	1720.3	0.686	2.395		
	2981.4	3023.0	1722.5	0.686	2.405		
	2982.4	3023.1	1727.9	0.686	2.413		
A Mix:	2981.7	3022.8	1726.0	0.686	2.411		
SGC 8%	2981.5	3022.8	1726.9	0.686	2.413	2.413	0.17
(4)	2981.4	3022.9	1728.9	0.686	2.417		
	2981.5	3022.9	1727.2	0.686	2.413		
	2981.4	3022.9	1728.6	0.686	2.416		
	2980.3	3021.9	1705.3	0.686	2.373		
[2980.3	3021.8	1702.5	0.686	2.368		
A Mix:	2980.2	3021.5	1706.4	0.686	2.375		
SGC 8% [2980.2	3021.4	1705.9	0.686	2.374	2.375	0.19
(5)	2980.1	3021.3	1709.7	0.686	2.381		
ſ	2980.2	3021.4	1707.7	0.686	2.377		
ſ	2980.2	3021.4	1708.5	0.686	2.379		

Table C6. Corelok Vacuum Seal Data for A Mix: SGC 8%

Sample	M _{dry} (g)	M _{dwb} (g)	M _{wwb} (g)	G _b	G _{mb}	Avg. G _{mb}	V (%)
	755.5	780.9	421.2	0.792	2.306		
D Min	755.6	780.7	421.6	0.792	2.308		
D Mix: 1.25"	755.6	780.8	420.5	0.792	2.300		
	755.6	780.8	422.1	0.792	2.312	2.305	0.18
Core	755.5	781.0	421.3	0.792	2.307		
Depth (1)	755.2	780.7	420.8	0.792	2.305	1	
	755.3	780.5	420.2	0.792	2.299	1	
	688.8	714.0	377.5	0.792	2.261		
D Mix:	688.7	713.7	378.5	0.792	2.268		
1.25"	688.4	713.8	380.1	0.792	2.282		
Core	688.2	713.7	379.5	0.792	2.279	2.277	0.41
Depth (2)	688.4	713.4	380.2	0.792	2.282		
	688.4	713.5	380.9	0.792	2.288		
	688.2	713.4	379.9	0.792	2.281		
	600.3	625.3	331.1	0.792	2.286		
D Mix:	600.2	625.4	330.3	0.792	2.280	2.286	
1.25"	600.2	625.3	331.8	0.792	2.293		
Core	599.9	625.2	330.2	0.792	2.281		0.21
Depth (3)	599.9	625.4	331.4	0.792	2.291		
	600.0	625.2	330.8	0.792	2.285		
	600.0	625.0	330.8	0.792	2.285		
	616.7	641.5	342.1	0.792	2.300		
D Mix:	616.4	641.6	342.4	0.792	2.305		
1.25"	616.4	641.5	342.8	0.792	2.309		
Core	616.2	641.2	344.2	0.792	2.321	2.310	0.40
Depth (4)	616.1	641.2	342.9	0.792	2.311		
2 • p · · · (·)	616.0	641.4	344.0	0.792	2.322		
	616.0	641.6	341.3	0.792	2.299		
						-	
	635.7	660.8	349.6	0.792	2.274		
D Mix:	635.6	660.7	351.5	0.792	2.290		
	635.5	660.5	350.7	0.792	2.284		
Core	635.2	660.4	351.9	0.792	2.296	2.289	0.35
Depth (5)	635.0	660.4	351.8	0.792	2.296		
	635.0	660.3	351.6	0.792	2.294		
	635.0	660.0	350.5	0.792	2.285		

Table C7. Corelok Vacuum Seal Data for D Mix: 1.25" Core Depth

Sample	M _{dry} (g)	M _{dwb} (g)	M _{wwb} (g)	G _b	G _{mb}	Avg. G _{mb}	V (%)
	978.8	1003.4	556.2	0.792	2.352		
	978.3	1003.5	556.6	0.792	2.357		
BM2 Mix:	978.3	1003.5	549.2	0.792	2.316	1	
2.0" Core	978.2	1003.6	550.3	0.792	2.322	2.347	0.85
Depth (1)	978.2	1003.5	557.1	0.792	2.360		
	978.2	1003.4	557.5	0.792	2.362	1	
	978.2	1003.4	557.6	0.792	2.363	1	
	1047.8	1072.5	596.4	0.792	2.355		
	1047.2	1072.3	596.6	0.792	2.359		
BM2 Mix:	1047.1	1072.4	597.3	0.792	2.363		
2.0" Core	1047.0	1072.2	594.7	0.792	2.349	2.363	0.42
Depth (2)	1047.0	1072.2	598.3	0.792	2.368]	
	1047.0	1072.1	599.5	0.792	2.375		
	1046.9	1072.1	599.6	0.792	2.376		
						· · · · · · · · · · · · · · · · · · ·	
	1096.5	1121.2	615.4	0.792	2.310		
	1096.3	1121.0	613.6	0.792	2.302		
BM2 Mix:	1095.8	1121.0	615.9	0.792	2.315		
2.0" Core	1095.7	1120.8	617.2	0.792	2.322	2.315	0.38
Depth (3)	1095.7	1120.9	614.1	0.792	2.307		
	1095.6	1120.9	617.3	0.792	2.323		
	1095.6	1120.8	617.7	0.792	2.325		
	967.8	992.6	544.6	0.792	2.323		
	967.5	992.5	545.6	0.792	2.329		
BM2 Mix:	967.1	992.4	549.9	0.792	2.356		
2.0" Core	967.3	992.5	547.2	0.792	2.339	2.333	0.63
Depth (4)	967.3	992.4	542.6	0.792	2.314		
	967.1	992.4	548.5	0.792	2.348		
	967.2	992.2	544.8	0.792	2.326		
	967.2	991.9	544.9	0.792	2.326		
	966.7	991.8	546.5	0.792	2.337		
BM2 Mix:	966.6	991.9	546.4	0.792	2.337		
2.0" Core	966.6	991.8	544.5	0.792	2.326	2.327	0.35
Depth (5)	966.7	991.6	542.7	0.792	2.316		
	966.5	991.8	543.6	0.792	2.322		
l T	966.6	991.7	543.6	0.792	2.321		

 Table C8. Corelok Vacuum Seal Data for BM2 Mix: 2.0" Core Depth

Sample	M _{dry} (g)	$M_{dwb}(g)$	M _{wwb} (g)	G _b	G _{mb}	Avg. G _{mb}	V (%)
	2356.2	2398.1	1364.0	0.686	2.422		
	2354.0	2396.2	1362.2	0.686	2.421] }	
BM2 Mix:	2354.1	2396.1	1360.4	0.686	2.416		
6.0" Core	2354.1	2396.2	1362.7	0.686	2.422	2.421	0.10
Depth (1)	2353.9	2396.1	1362.0	0.686	2.420		
	2353.9	2396.4	1362.8	0.686	2.423]	
	2353.9	2396.1	1363.0	0.686	2.423		
			_				
	2461.4	2503.3	1436.5	0.686	2.447		
	2461.4	2503.5	1435.1	0.686	2.444		
BM2 Mix:	2461.2	2503.2	1435.2	0.686	2.445		
6.0" Core	2461.2	2503.5	1435.9	0.686	2.447	2.446	0.07
Depth (2)	2461.1	2503.3	1434.8	0.686	2.444		
	2461.1	2503.3	1436.6	0.686	2.448		
	2460.9	2503.1	1435.7	0.686	2.447		
	2480.6	2523.0	1443.3	0.686	2.437		
	2480.5	2522.7	1443.0	0.686	2.436		
BM2 Mix:	2480.8	2522.6	1443.9	0.686	2.437		
6.0" Core	2480.4	2522.5	1442.9	0.686	2.436	2.437	0.05
Depth (3)	2480.3	2522.5	1443.2	0.686	2.437		
	2480.2	2522.6	1443.6	0.686	2.438		
	2480.1	2522.7	1442.0	0.686	2.435		
	2457.6	2499.5	1434.8	0.686	2.449		
	2457.1	2499.2	1435.0	0.686	2.450		
BM2 Mix:	2457.1	2499.4	1435.2	0.686	2.451		
6.0" Core	2456.9	2498.5	1433.0	0.686	2.445	2.449	0.09
Depth (4)	2456.3	2498.0	1435.2	0.686	2.451		
	2456.2	2497.6	1433.5	0.686	2.447		
	2456.2	2497.6	1434.1	0.686	2.448		
		-					
	2563.6	2605.2	_1497.5	0.686	2.448		
	2563.1	2604.8	1496.7	0.686	2.447		
BM2 Mix:	2562.4	2603.6	1496.5	0.686	2.447]	
6.0" Core	2562.1	2603.7	1492.1	0.686	2.438	2.448	0.20
Depth (5)	2562.2	2603.1	1498.4	0.686	2.452		
	2561.6	2603.1	1497.9	0.686	2.452		
	2561.5	2602.8	1497.6	0.686	2.451		

Table C9. Corelok Vacuum Seal Data for BM2 Mix: 6.0" Core Depth

Sample	$M_{dry}(g)$	M _{dwb} (g)	M _{wwb} (g)	G _b	G _{mb}	Avg. G _{mb}	V (%)
	4174.2	4215.6	2443.8	0.686	2.439		
	4174.0	4215.3	2444.7	0.686	2.440		
A Mix:	4173.5	4215.0	2444.2	0.686	2.440		
6.0" Core	4173.6	4215.0	2445.2	0.686	2.441	2.440	0.04
Depth (1)	4173.5	4214.9	2444.1	0.686	2.440]	
	4173.5	4214.5	2445.1	0.686	2.441		
	4173.2	4214.6	2443.1	0.686	2.439		
	4076.1	4117.1	2384.8	0.686	2.437		
	4076.0	4117.4	2385.0	0.686	2.438		
A Mix:	4075.6	4117.0	2385.1	0.686	2.438		
6.0" Core	4075.0	4116.7	2386.2	0.686	2.441	2.438	0.05
Depth (2)	4075.1	4116.5	2384.1	0.686	2.437		
	4075.1	4116.1	2385.0	0.686	2.438		
	4075.0	4116.2	2385.1	0.686	2.439		
	3420.1	3461.0	1981.3	0.686	2.408		
	3419.7	3460.8	1979.5	0.686	2.406		
A Mix:	3419.3	3460.2	1977.3	0.686	2.402		
6.0" Core	3419.1	3460.1	1978.7	0.686	2.405	2.406	0.08
Depth (3)	3418.7	3459.7	1978.5	0.686	2.405		
	3418.6	3459.8	1979.4	0.686	2.407		
	3418.6	3459.6	1978.3	0.686	2.405		
	3369.7	3410.0	1919.8	0.686	2.354		
	3368.9	3409.2	1919.0	0.686	2.353		
A Mix:	3367.6	3407.9	1919.1	0.686	2.355		
6.0" Core	3366.8	3407.1	1919.9	0.686	2.357	2.356	0.07
Depth (4)	3365.8	3406.5	1919.4	0.686	2.357		
	3364.9	3405.8	1919.1	0.686	2.358		
	3364.6	3405.5	1918.1	0.686	2.357		
	3921.8	3963.1	2305.2	0.686	2.455		
	3921.4	3962.3	2301.2	0.686	2.449		
A Mix:	3920.8	3962.1	2306.4	0.686	2.457		
6.0" Core	3920.5	3962.0	2303.7	0.686	2.454	2.454	0.15
Depth (5)	3920.5	3961.8	2300.7	0.686	2.449		
	3920.4	3961.9	2303.3	0.686	2.453		
	3920.5	3962.0	2306.7	0.686	2.458		

Table C10. Corelok Vacuum Seal Data for A Mix: 6.0" Core Depth

Sample	M _{dry} (g)	Dia. (cm)	Ht. (cm)	Vol. (cm^3)	G _{mb}	Avg. G _{mb}	V (%)
	1194.6	10.16	6.12	496.34	2.407		
D Mix:	1194.6	10.16	6.10	493.65	2.420		
Marshall -	1194.7	10.16	6.12	495.90	2.409		
75 Blows	1194.7	10.16	6.11	495.56	2.411	2.409	0.33
	1194.7	10.16	6.10	494.53	2.416		
(1)	1194.6	10.17	6.11	495.92	2.409] í	
	1194.6	10.18	6.14	498.85	2.395		
	1 <u>190.</u> 7	10.16	6.10	494.73	2.407		
D Mix:	1190.8	10.16	6.09	493.69	2.412		
Marshall -	1190.8	10.15	6.09	493.04	2.415		
75 Blows	1190.8	10.16	6.09	494.06	2.410	2.411	0.18
	1190.8	10.16	6.11	495.11	2.405		
(2)	1190.6	10.16	6.07	492.68	2.417		
	1190.7	10.16	6.11	494.40	2.408		
	1191.4	10.16	6.15	498.72	2.389		
D Mix:	1191.2	10.17	6.15	499.05	2.387		
Marshall -	1191.3	10.15	6.18	500.40	2.381	2.390	
75 Blows	1191.2	10.15	6.16	498.59	2.389		0.24
	1191.2	10.16	6.14	497.21	2.396		
(3)	1191.4	10.16	6.13	496.88	2.398		
	1191.3	10.16	6.15	498.20	2.391	1	
	1194.3	10.15	6.12	495.49	2.410		
D Mix:	1194.3	10.16	6.14	497.24	2.402		
Marshall -	1194.3	10.16	6.14	497.16	2.402		
75 Blows	1194.3	10.16	6.11	495.43	2.411	2.409	0.23
(4)	1194.4	10.16	6.10	493.96	2.418		
(-)	1194.3	10.16	6.12	495.47	2.410		
	1194.3	10.14	6.14	495.83	2.409		
	1190.1	10.16	6.10	494.02	2.409		
	1190.1	10.16	6.07	492.18	2.418		
D Mix: Marshall	1190.1	10.15	6.09	492.63	2.416		
75 Blows	1190.0	10.16	6.10	494.18	2.408	2.412	0.15
	1190.0	10.15	6.10	493.86	2.410		0.15
(5)	1190.0	10.16	6.10	493.55	2.411		
	1190.0	10.17	6.08	493.27	2.412		

Table C11. Dimensional Analysis Data for D Mix: Marshall - 75 Blows

Sample	M _{dry} (g)	Dia. (cm)	Ht. (cm)	Vol. (cm^3)	G _{mb}	Avg. G _{mb}	V (%)
	1192.9	10.16	6.56	531.01	2.246		
BM2 Mix:	1192.8	10.16	6.55	530.96	2.246		
Marshall -	1192.8	10.16	6.55	530.55	2.248		
20 Blows	1192.8	10.16	6.56	531.28	2.245	2.244	0.25
(1)	1193	10.17	6.57	533.83	2.235		
(1)	1193	10.17	6.57	533.26	2.237] [
	1192.9	10.16	6.55	530.26	2.250		
r						·	
	1188.8	10.17	6.45	523.71	2.270	4 1	
BM2 Mix:	1188.9	10.16	6.44	522.46	2.276	4 }	
Marshall -	1188.9	10.18	6.46	525.23	2.264		
20 Blows	1188.9	10.17	6.44	523.01	2.273	2.271	0.19
(2)	1188.9	10.17	6.46	524.60	2.266		
(2)	1188.9	10.17	6.44	522.92	2.274		
	1188.9	10.17	6.45	523.05	2.273		
		1011	<u> </u>			<u>г </u>	
	1196.7	10.16	6.34	514.40	2.326	- 1	
BM2 Mix:	1196.5	10.17	6.35	515.47	2.321		
Marshall -	1196.6	10.16	6.37	515.88	2.320	2.322	0.18
20 Blows	1196.5	10.16	6.37	516.37	2.317		
(3)	1196.6	10.16	6.36	515.70	2.320	4	
(0)	1196.4	10.17	6.36	515.91	2.319		
	1196.4	10.16	6.34	513.81	2.329		
	1196.1	10.15	6.54	529.26	2.260	·····	
ŀ	1190.1	10.15	6.55	530.51	2.254	{	
BM2 Mix:	1195.7	10.16	6.55	529.98	2.256		
Marshall -	1195.5	10.16	6.54	530.12	2.255	2.255	0.10
20 Blows	1195.4	10.10	6.55	530.24	2.255	2.200	0.10
(4)	1195.5	10.15	6.54	530.02	2.256	1	
}	1195.4	10.16	6.55	530.68	2.253	1	
	1196.6	10.16	6.53	529.13	2.261		
BND NAM	1196.6	10.16	6.53	528.86	2.263]	
3M2 Mix:	1196.3	10.16	6.51	528.00	2.266] [
Marshall -	1196.3	10.17	6.57	533.21	2.244	2.261	0.36
20 Blows	1196.1	10.16	6.52	528.76	2.262	1	0.36
(5)	1196.1	10.16	6.51	527.29	2.268	1	
	1196.2	10.16	6.52	528.06	2.265	1	

Table C12. Dimensional Analysis Data for BM2 Mix: Marshall - 20 Blows

Sample	M _{dry} (g)	Dia. (cm)	Ht. (cm)	Vol. (cm^3)	G _{mb}	Avg. G _{mb}	V (%)
	1195.3	10.15	6.27	507.54	2.355		
BM2 Mix:	1195.4	10.17	6.27	508.83	2.349]	
Marshall -	1195.5	10.16	6.26	506.92	2.358]	
75 Blows	1195.5	10.17	6.27	508.75	2.350	2.351	0.30
	1195.5	10.16	6.26	507.08	2.358		
(1)	1195.4	10.18	6.28	511.42	2.337	1 1	
	1195.5	10.16	6.28	508.37	2.352		
	1195.2	10.19	6.23	507.61	2.355		
BM2 Mix:	1195.1	10.19	6.22	506.82	2.358		
Marshall -	1195.0	10.20	6.21	506.73	2.358	1	
75 Blows	1195.0	10.19	6.22	506.87	2.358	2.358	0.15
	1194.9	10.17	6.22	505.42	2.364		
(2)	1194.9	10.19	6.23	507.73	2.353	1	
	1194.8	10.19	6.22	506.17	2.360	1	
	1196.4	10.16	6.30	510.38	2.344		
BM2 Mix:	1196.3	10.17	6.28	509.80	2.347	1	
Marshall -	1196.2	10.17	6.30	511.36	2.339	2.342	
75 Blows	1196.2	10.16	6.33	513.17	2.331		0.24
	1196.2	10.16	6.28	509.76	2.347		
(3)	1196.1	10.17	6.30	510.67	2.342	1	
	1196.2	10.16	6.29	510.19	2.345]]	
	1195.1	10.16	6.23	505.29	2.365	Ī	
BM2 Mix:	1195	10.17	6.21	504.74	2.368]	
Marshall -	1194.9	10.17	6.22	505.70	2.363		
75 Blows	1194.9	10.17	6.23	505.84	2.362	2.366	0.16
(4)	1194.8	10.18	6.21	505.18	2.365]]	
	1194.8	10.17	6.21	504.18	2.370		
	1194.8	10.16	6.21	503.56	2.373		
						-	
	1195.9	10.17	6.21	504.24	2.372		
BM2 Mix:	1195.9	10.17	6.21	504.18	2.372		
3M2 Mix:- Marshall	1195.9	10.17	6.22	505.28	2.367		
75 Blows	1195.9	10.16	6.22	503.91	2.373	2.369	0.21
1	1195.9	10.17	6.24	506.54	2.361		
(5)	1195.9	10.16	6.22	503.54	2.375		
Ī	1195.9	10.18	6.22	505.65	2.365		

Table C13. Dimensional Analysis Data for BM2 Mix: Marshall - 75 Blows

Sample	M _{dry} (g)	Dia. (cm)	Ht. (cm)	Vol. (cm^3)	G _{mb}	Avg. G _{mb}	V (%)
	2972.9	15.01	7.43	1313.52	2.263]]	
	2973.5	15.02	7.43	1314.69	2.262		
BM2 Mix:	2973.6	15.02	7.43	1315.58	2.260		
SGC 8-	2973.7	15.02	7.43	1315.97	2.260	2.262	0.10
10% (1)	2973.7	15.01	7.43	1315.04	$2.2\overline{61}$		
[[2973.7	15.01	7.42	1313.02	2.265	1 /	
	2973.9	15.02	7.42	1312.67	2.266		
	2970.4	15.03	7.43	1317.75	2.254		
	2970.4	15.05	7.43	1321.16	2.248	1	
BM2 Mix:	2970.4	15.01	7.43	1314.31	2.260]	
SGC 8-	2970.4	15.05	7.42	1321.09	2.248	2.254	0.22
10% (2)	2970.3	15.01	7.43	1314.03	2.260	1	
	2970.2	15.02	7.43	1316.65	2.256]	
	2970.4	15.03	7.44	1317.88	2.254	1	
		· ····			<u> </u>	·	
	2970.5	15.01	7.42	1312.00	2.264		
	2970.2	15.01	7.42	1313.63	2.261		
BM2 Mix:	2970.2	15.02	7.43	1315.42	2.258	1	
SGC 8-	2970.1	15.03	7.42	1314.96	2.259	2.262	0.15
10% (3)	2970.1	15.02	7.42	1315.24	2.258	1	
	2970.1	15.01	7.42	1311.73	2.264	1	
}	2970.0	15.02	7.40	1310.42	2.266	1 }	
······································		·	<u> </u>	·		<u> </u>	
	2969.3	15.03	7.43	1318.77	2.252	Γ	
	2969.5	15.03	7.43	1317.71	2.254	1	
BM2 Mix:	2969.5	15.01	7.42	1312.79	2.262]	
SGC 8-	2969.6	15.01	7.43	1314.92	2.258	2.256	0.17
10% (4)	2969.8	15.03	7.43	1318.10	2.253	1 1	
	2969.9	15.03	7.43	1317.99	2.253	1	
	2970.0	15.02	7.42	1314.91	2.259	1	
						<u> </u>	
	2968.6	15.03	7.41	1313.10	2.261		
	2968.8	15.02	7.42	1314.29	2.259	1	
BM2 Mix:	2968.5	15.02	7.41	1312.83	2.261	1	
SGC 8-	2968.7	15.02	7.42	1313.79	2.260	2.261	0.09
10% (5)	2968.6	15.02	7.41	1312.10	2.262	1	
	2968.6	15.02	7.41	1312.66	2.262	1	
	2968.6	15.01	7.41	1310.49	2.265	1	

Table C14. Dimensional Analysis Data for BM2 Mix: SGC 8-10%

Sample	M _{dry} (g)	Dia. (cm)	Ht. (cm)	Vol. (cm^3)	G _{mb}	Avg. G _{mb}	V (%)
	4912	14.99	11.34	1999.90	2.456		
	4912.2	14.98	11.34	1998.51	2.458		
BM2 Mix:	4912.4	14.99	11.33	1997.55	2.459		
SGC 4%	4912.4	15.00	11.34	2002.11	2.454	2.456	0.08
(1)	4912.5	14.99	11.34	2000.86	2.455		
	4912.6	14.99	11.33	2000.39	2.456		
	4912.6	14.99	11.34	2001.09	2.455		
	4910.1	15.00	11.37	2008.64	2.444		
	4910.2	14.99	11.37	2006.49	2.447		
BM2 Mix:	4909.8	14.99	11.37	2005.99	2.448		
SGC 4%	4909.6	15.00	11.37	2009.15	2.444	2.444	0.11
(2)	4909.6	15.01	11.38	2012.11	2.440		
	4909.7	15.01	11.37	2009.98	2.443		
	4909.9	15.00	11.37	2008.74	2.444		
	4911.1	15.01	11.34	2005.43	2.449		
	4911	15.00	11.35	2005.42	2.449		
BM2 Mix:	4911.1	15.00	11.36	2005.55	2.449		
SGC 4%	4911.1	15.00	11.36	2005.53	2.449	2.448	0.03
(3)	4909.6	15.00	11.36	2006.09	2.447		
	4909.6	15.00	11.36	2006.35	2.447		
	4909.6	15.00	11.35	2005.76	2.448	1 (
				······································			
	4904.3	15.00	11.34	2004.87	2.446		
	4903	15.00	11.34	2003.01	2.448		
BM2 Mix:	4902.7	15.00	11.33	2001.16	2.450		
SGC 4%	4902.5	14.99	11.34	2000.52	2.451	2.450	0.12
(4)	4902.5	14.99	11.33	1998.87	2.453		
	4902.6	14.99	11.32	1997.19	2.455]	
	4902.7	15.00	11.34	2003.01	2.448		,
	4913.9	15.00	11.38	2011.57	2.443		
	4913.5	15.00	11.38	2010.25	2.444		
BM2 Mix:	4913.5	15.00	11.38	2010.61	2.444		
SGC 4%	4913	15.00	11.39	2010.48	2.444	2.443	0.07
(5)	4912.3	15.00	11.39	2011.90	2.442]	
	4912.3	15.00	11.39	2013.73	2.439	1	
	4912.3	14.99	11.39	2009.85	2.444]	

Table C15. Dimensional Analysis Data for BM2 Mix: SGC 4%

Sample	M _{dry} (g)	Dia. (cm)	Ht. (cm)	Vol. (cm ³)	G _{mb}	Avg. G _{mb}	V (%)
	2985.1	15.00	7.43	1312.37	2.275		
	2984.8	15.00	7.42	1311.30	2.276		
A Mix:	2984.7	15.00	7.45	1315.90	2.268	1	
SGC 8%	2984.8	15.00	7.41	1310.45	2.278	2.277	0.22
(1)	2984.8	15.00	7.40	1308.10	2.282		
	2984.7	15.00	7.40	1307.04	2.284		
	2984.7	15.00	7.42	1311.30	2.276	1 (
	<u>2984.</u> 4	15.00	7.39	1305.59	2.286		
	2984.4	15.00	7.41	1307.77	2.282]	
A Mix:	2984.3	14.99	7.39	1304.59	2.288		
SGC 8%	2984.3	14.98	7.40	1304.00	2.289	2.284	0.16
(2)	2984.3	15.00	7.42	1309.51	2.279		
	2984.4	15.01	7.40	1307.86	2.282		
	2984.4	15.00	7.41	1308.44	2.281		
	2977.6	15.02	7.42	1314.18	2.266		
	2977.5	15.03	7.41	1313.44	2.267		
A Mix:	2977.5	15.02	7.41	1311.83	2.270		
SGC 8%	2977.5	14.99	7.36	1298.11	2.294	2.277	0.53
(3)	2977.5	15.02	7.37	1305.52	2.281		
	2977.4	15.01	7.34	1298.30	2.293		
	2977.5	15.00	7.42	1311.63	2.270		
	2975.6	15.01	7.46	1318.92	2.256		
	2975.5	14.99	7.42	1310.30	2.271		
A Mix:	2975.5	15.01	7.42	1311.39	2.269		
SGC 8%	2975.5	15.01	7.44	1316.44	2.260	2.262	0.27
(4)	<u>2975.6</u>	15.00	7.46	1316.63	2.260		
	2975.3	15.00	7.44	1313.49	2.265		
	2975.4	15.02	7.44	1319.07	2.256		<u> </u>
ļ	2983.2	15.02	7.46	1319.86	2.260		
ļ	2983.2	15.01	7.44	1315.27	2.268		
A Mix:	2983.2	15.00	7.45	1316.18	2.267		
SGC 8%	2983.1	15.01	7.41	1311.78	2.274	2.268	0.24
(5)	2983.1	14.99	7.44	1313.44	2.271		
[2983.1	15.01	7.42	1311.45	2.275		
	2983.1	15.01	7.45	1317.74	2.264		

Table C16. Dimensional Analysis Data for A Mix: SGC 8%

Sample	M _{dry} (g)	Dia. (cm)	Ht. (cm)	Vol. (cm ³)	G _{mb}	Avg. G _{mb}	V (%)
	755.1	9.62	4.79	348.17	2.169		
D Mix:	755.1	9.64	4.87	355.83	2.122]	
1.25"	755.2	9.65	4.83	353.00	2.139		
Core	755.3	9.64	4.83	352.95	2.140	2.147	0.80
Depth (1)	755.3	9.67	4.80	352.55	2.142		
	755.2	9.62	4.78	347.91	2.171		
	755.2	9.67	4.79	351.85	2.146		
	688.6	9.72	4.43	328.54	2.096		
D Mix:	688.4	9.70	4.38	323.65	2.127	1	
1.25"	688.4	9.67	4.37	321.13	2.144		
Core	688.4	9.65	4.41	322.26	2.136	2.124	0.89
	688.3	9.71	4.43	327.95	2.099	1	
Depth (2)	688.3	9.69	4.37	322.33	2.135	1	
	688.3	9.66	4.41	323.02	2.131	1	
	599.9	9.69	3.89	286.74	2.092		
D Min	599.8	9.70	3.90	288.44	2.079	2.073	
D Mix:	599.8	9.69	3.95	291.27	2.059		
1.25"	599.8	9.72	3.91	289.88	2.069		0.56
Core	599.8	9.69	3.93	289.77	2.070		
Depth (3)	599.8	9.68	3.95	290.95	2.062		
	599.8	9.69	3.91	288.39	2.080		
					· · · · · · · · · · · · · · · · · · ·	·	
	616	9.70	3.87	286.28	2.152		
D Mix:	615.9	9.67	3.87	283.64	2.171	1	
1.25"	615.9	9.68	3.85	283.35	2.174		
Core	615.9	9.67	3.84	282.02	2.184	2.163	0.90
Depth (4)	615.9	9.69	3.86	284.46	2.165		
	615.8	9.72	3.90	289.89	2.124		
[615.9	9.70	3.85	284.00	2.169		
							_
	635.3	9.69	4.03	297.00	2.139		
D Miv.	635.2	9.67	3.99	292.99	2.168		
D Mix:	635.2	9.65	4.02	293.93	2.161		
	635.2	9.65	4.04	294.86	2.154	2.158	0.45
Core	635.2	9.67	3.99	293.15	2.167		
Depth (5)	635.2	9.67	4.01	294.34	2.158		
ſ	635.2	9.67	4.02	294.56	2.156		

Table C17. Dimensional Analysis Data for D Mix: 1.25" Core Depth

Sample	$M_{dry}\left(g ight)$	Dia. (cm)	Ht. (cm)	Vol. (cm^3)	G_{mb}	Avg. G _{mb}	V (%)
	977.4	9.54	6.02	429.93	2.273	ļ	
	977.3	9.52	6.08	432.57	2.259]	
BM2 Mix:	977.3	9.52	6.07	431.68	2.264	1	
2.0" Core	977.4	9.53	6.06	432.07	2.262	2.263	0.38
Depth (1)	977.3	9.54	6.06	432.63	2.259	1	
	977.3	9.53	6.10	434.33	2.250	1	
	977.3	9.53	6.03	429.69	2.274	1	<u> </u>
						т — т	
	1045.8	9.55	6.41	458.97	2.279	4	
(1045.8	9.54	6.43	459.20	2.277	1 1	
BM2 Mix:		9.54	6.42	459.33	2.277		
2.0" Core	_1045.8	9.54	6.41	457.85	2.284	2.280	0.11
Depth (2)	1045.8	9.54	6.42	458.58	2.281		
	1045.7	9.53	6.44	458.43	2.281		
	1045.8	9.53	6.43	458.41	2.281		
Т		0.56				г г	
	1094.8	9.56	6.85	491.39	2.228		
	1094.8	9.57	6.84	491.62	2.227	4	
BM2 Mix:	1094.8	9.56	6.81	488.44	2.241		
2.0" Core	1094.8	9.57	6.82	489.67	2.236	2.233	0.23
Depth (3)	1094.8	9.56	6.82	489.69	2.236]]	
	1094.8	9.58	6.81	490.13	2.234		
	1094.7	9.57	6.84	491.02	2.229		
	966.5	9.55	6.06	433.94	2.227	rr	
ļ	966.5	9.55	6.03	431.58	2.239		
BM2 Mix:	966.5	9.55	5.99	429.14	2.252		
2.0" Core	966.5	9.56	6.05	434.15	2.226	2.240	0.48
Depth (4)	966.5	9.55	6.01	429.99	2.248	1 1	
	966.5	9.56	6.02	432.29	2.236	1	
ŀ	966.5	9.55	5.99	429.45	2.251		
Ļ	966.2	9.55	6.02	431.14	2.241		
	966.2	9.56	5.99	430.00	2.247		
BM2 Mix:	966.2	9.54	5.99	428.05	2.257		
2.0" Core	966.2	9.56	6.00	429.94	2.247	2.248	0.48
Depth (5)	966.2	9.55	6.00	429.67	2.249		
	966.2	9.55	6.06	433.27	2.230		
Γ	966.2	9.53	5.99	426.91	2.263		

Table C18. Dimensional Analysis Data for BM2 Mix: 2.0" Core Depth

Sample	M _{dry} (g)	Dia. (cm)	Ht. (cm)	Vol. (cm ³)	G _{mb}	Avg. G _{mb}	V (%)
	2352.6	15.20	5.73	1039.81	2.263		
	2352.7	15.22	5.81	1055.72	2.229		
BM2 Mix:	2352.7	15.21	5.79	1051.38	2.238		
6.0" Core	2352.6	15.19	5.68	1030.24	2.284	2.259	0.88
Depth (1)	2352.7	15.18	5.74	1038.55	2.265		
	2352.7	15.20	5.75	1042.52	2.257		
	2352.7	15.18	5.72	1033.41	2.277		
							
	2459.4	15.23	5.87	1068.41	2.302		
	2459.4	15.21	6.02	1093.56	2.249		
BM2 Mix:	2459.4	15.20	6.02	1091.10	2.254		
6.0" Core	2459.4	15.21	6.02	1092.94	2.250	2.257	0.93
Depth (2)	2459.4	15.19	6.01	1089.48	2.257		
	2459.3	15.21	6.06	1099.85	2.236		
	2459.4	15.20	6.03	1094.23	2.248		
	2478.5	15.21	6.01	1092.24	2.269		
	2478.4	15.23	6.05	1102.27	2.248		
BM2 Mix:	2478.3	15.21	6.11	1109.67	2.233		
6.0" Core	2478.4	15.22	6.03	1096.20	2.261	2.259	1.10
Depth (3)	2478.3	15.21	5.97	1083.60	2.287		
	2478.4	15.21	6.13	1114.25	2.224] [
	2478.3	15.23	5.95	1082.97	2.288		<u> </u>
		_	_				
	2454.4	15.22	6.06	1101.81	2.228		
	2454.4	15.20	6.00	1087.47	2.257]	
BM2 Mix:	2454.4	15.22	6.04	1099.22	2.233		
6.0" Core	2454.4	15.22	6.01	1092.03	2.248	2.258	1.11
Depth (4)	2454.3	15.20	5.91	1071.01	2.292		
	2454.3	15.21	5.91	1072.50	2.288		
	2454.4	15.20	5.98	1084.16	2.264		
	2557.7	15.21	6.12	1110.29	2.304		
	2557.7	15.22	6.18	1124.36	2.275		
BM2 Mix:	2557.7	15.22	6.06	1103.27	2.318		
6.0" Core	2557.7	15.20	6.13	1111.14	2.302	2.295	0.88
Depth (5)	2557.7	15.22	6.07	1103.96	2.317		
	2557.6	15.22	6.16	1121.05	2.281		
	2557.6	15.23	6.19	1127.57	2.268		

Table C19. Dimensional Analysis Data for BM2 Mix: 6.0" Core Depth

Sample	M _{dry} (g)	Dia. (cm)	Ht. (cm)	Vol. (cm ³)	G _{mb}	Avg. G _{mb}	V (%)
	4171.9	15.30	9.67	1776.23	2.349		,
	4172.3	15.28	9.67	1770.89	2.356	1	
A Mix:	4172.4	15.28	9.64	1767.43	2.361		
6.0" Core	4172.6	15.29	9.63	1768.53	2.359	2.355	0.21
Depth (1)	4172.5	15.28	9.66	1771.26	2.356		
	4172.6	15.28	9.70	1777.71	2.347		
	4172.8	15.28	9.66	1772.08	2.355		
	4074.9	15.23	9.50	1729.58	2.356		
	4074.9	15.23	9.47	1723.31	2.365		
A Mix:	4074.9	15.23	9.39	1709.79	2.383		
6.0" Core	4075.1	15.24	9.39	1711.55	2.381	2.372	0.55
Depth (2)	4075.1	15.23	9.41	1713.54	2.378		
	4075.2	15.26	9.46	1729.41	2.356		
	4075.2	15.22	9.40	1707.67	2.386		
	. <u>-</u> .,						
	3419.6	15.25	8.01	1462.47	2.338		
	3418.7	15.26	8.01	1465.32	2.333		
A Mix:	3418.3	15.26	8.09	1478.59	2.312		
6.0" Core	3418.2	15.26	8.07	1475.53	2.317	2.316	0.64
Depth (3)	3418.2	15.25	8.11	1481.44	2.307		
	3418.2	15.26	8.15	1488.52	2.296		
	3418.2	15.25	8.11	1480.82	2.308		
	3365.1	15.25	8.12	1481.70	2.271		
	3365	15.25	8.11	1481.81	2.271		
A Mix:	3364.9	15.25	8.08	1476.00	2.280		
6.0" Core	3364.8	15.25	8.13	1484.64	2.266	2.271	0.21
Depth (4)	3364.8	15.25	8.11	1481.08	2.272		
ļ	3364.7	15.25	8.11	1480.36	2.273		
	3364.7	15.25	8.14	1485.42	2.265		
	0.001.0	15.05	0.00				<u>.</u> ,
	3921.3	15.25	9.02	1646.16	2.382		
	3921.2	15.25	9.01	1643.97	2.385		
A Mix:	3921.1	15.24	9.01	1644.01	2.385		0.10
6.0" Core	3920.9	15.23	9.02	1641.76	2.388	2.385	0.12
Depth (5)	3920.8	15.24	9.00	1640.75	2.390		
	3920.8	15.25	9.02	1645.13	2.383		
	3920.7	15.25	9.02	1645.11	2.383		

Table C20. Dimensional Analysis Data for A Mix: 6.0" Core Depth

Sample	M _{dry} (g)	$M_{dwp}(g)$	M _{wwp} (g)	G _p	G _{mb}	Avg. G _{mb}	V (%)
	1194.5	1198.3	704.9	0.685	2.448		
	1194.5	1198.5	705.0	0.685	2.449		
D Mix:	1194.5	1198.4	704.9	0.685	2.449		
Marshall -	1194.5	1197.7	703.3	0.685	2.439	2.444	0.22
75 Blows	1194.5	1197.3	703.0	0.685	2.437		
(1)	1194.5	1197.1	703.6	0.685	2.439		
	1194.5	1197.3	704.5	0.685	2.444		
							<u></u>
	1190.3	1193.5	699.2	0.685	2.431		
D Mix:	1190.4	1193.2	699.7	0.685	2.432		
Marshall -	1190.4	1193.2	700.4	0.685	2.436		
75 Blows	1190.5	1193.1	700.1	0.685	2.434	2.436	0.36
	1190.4	1193.3	703.0	0.685	2.449		
(2)	1190.4	1193.1	702.4	0.685	2.446		
	1190.4	1193.2	697.9	0.685	2.423		
	1191.2	1194.1	697.9	0.685	2.421		
D Mix:	1191.2	1194.1	698.6	0.685	2.425		
Marshall -	1191.3	1194.0	698.8	0.685	2.425	2.420	0.26
75 Blows	1191.2	1193.9	698.9	0.685	2.426		
1	1191.2	1193.7	697.5	0.685	2.418		
(3)	1191.3	1193.8	695.9	0.685	2.410		
	1191.3	1194.0	696.1	0.685	2.412		
	1194.1	1197.5	704.7	0.685	2.448		
D Mix:	1194.2	1197.1	702.4	0.685	2.435		
Marshall -	1194.1	1196.8	701.4	0.685	2.430		
75 Blows	1194.1	1196.8	700.6	0.685	2.426	2.431	0.34
(4)	1194.1	1196.8	699.8	0.685	2.422		
(4)	1194.1	1197.0	701.3	0.685	2.430		
	1194.1	1196.9	701.5	0.685	2.430		
	1189.8	1193.5	702.8	0.685	2.452		
D Mix:	1189.8	1193.3	700.2	0.685	2.438		
Marshall -	1189.8	1192.4	696.3	0.685	2.417		
75 Blows	1189.8	1192.5	699.0	0.685	2.430	2.430	0.52
	1189.9	1192.5	699.8	0.685	2.434		
(5)	1189.8	1192.4	696.6	0.685	2.418]	
	1189.9	1192.4	697.3	0.685	2.421		

Table C21. Parafilm Wrapping Data for D Mix: Marshall - 75 Blows

Sample	M _{dry} (g)	M _{dwp} (g)	M _{wwp} (g)	G _p	G _{mb}	Avg. G _{mb}	V (%)
	1192.8	1195.3	666.2	0.685	2.270		
BM2 Mix:	1192.8	1195.3	665.0	0.685	2.265		
Marshall -	1192.7	1195.4	666.1	0.685	2.270		
20 Blows	1192.8	1195.8	666.8	0.463	2.283	2.277	0.44
	1192.8	1195.6	666.0	0.463	2.278		
(1)	1192.8	1195.6	669.8	0.463	2.295		
	1192.8	1195.4	665.7	0.463	2.276		
	1187.6	1190.1	671.2	0.463	2.313		
BM2 Mix:	1187.6	1190.3	669.3	0.463	2.305		
Marshall -	1187.6	1190.0	670.2	0.463	2.308		
20 Blows	1187.6	1190.0	669.3	0.463	2.304	2.306	0.17
	1187.5	1190.0	669.6	0.463	2.306		
(2)	1187.5	1190.1	668.2	0.463	2.300		
	1187.5	1190.1	670.1	0.463	2.309		
	1196.0	1198.6	682.7	0.463	2.344		
BM2 Mix:	1196.0	1198.6	683.0	0.463	2.345		
Marshall -	1196.0	1198.4	682.3	0.463	2.341	2.348	0.25
20 Blows	1196.0	1198.7	685.6	0.463	2.358		
(3)	1196.1	1198.7	683.8	0.463	2.349		
(3)	1196.1	1198.7	685.1	0.463	2.355		
	1196.1	1198.6	683.8	0.463	2.348		
	1196.3	1199.0	671.7	0.463	2.294		
BM2 Mix:	1196.3	1198.9	670.8	0.463	2.290		
Marshall -	1196.3	1199.0	670.7	0.463	2.290		
20 Blows	1196.4	1198.9	670.7	0.463	2.288	2.289	0.12
(4)	1196.3	1198.8	670.0	0.463	2.286		
(7)	1196.4	1198.9	671.3	0.463	2.291		
	1196.3	1198.8	670.4	0.463	2.287		
	1196.3	1198.8	672.7	0.463	2.297		
BM2 Mix:	1196.4	1198.7	672.4	0.463	2.295		
Marshall -	1196.3	1198.6	671.1	0.463	2.289		
20 Blows	1196.4	1198.6	674.1	0.463	2.302	2.296	0.23
(5)	1196.3	1198.7	674.6	0.517	2.303		
	1196.3	1198.7	671.7	0.517	2.290		
	1196.3	1198.6	672.7	0.517	2.294		

 Table C22. Parafilm Wrapping Data for BM2 Mix: Marshall - 20 Blows

Sample	M _{dry} (g)	M _{dwp} (g)	$M_{wwp}(g)$	G _p	G _{mb}	Avg. G _{mb}	V (%)
	1195.4	1198.0	689.0	0.463	2.375		
DM2 Min	1195.4	1198.0	693.8	0.463	2.398		
BM2 Mix:	1195.4	1197.9	690.9	0.463	2.383		
Marshall -	1195.4	1197.9	689.5	0.463	2.377	2.386	0.44
75 Blows	1195.4	1197.9	689.3	0.463	2.376		
(1)	1195.4	1197.8	694.0	0.463	2.397		
	1195.4	1197.9	693.3	0.463	2.395		
		-		<u> </u>			
	1195.1	1197.5	692.9	0.463	2.393		
BM2 Mix:	1195.1	1197.7	696.9	0.463	2.413		
Marshall -	1195.0	1197.5	693.5	0.463	2.397		
75 Blows	1195.0	1197.6	692.4	0.463	2.392	2.396	0.34
	1195.1	1197.4	693.9	0.463	2.397]	
(2)	1195.0	1197.3	692.4	0.463	2.390		
	1195.0	1197.3	692.5	0.463	2.391		
	1196.1	1198.6	688.8	0.463	2.371		
BM2 Mix:	1196.1	1198.6	691.1	0.463	2.382		
Marshall -	1196.1	1198.4	687.1	0.463	2.362	2.370	0.27
75 Blows	1196.1	1198.5	689.5	0.463	2.374		
!	1196.1	1198.5	688.1	0.463	2.368		
(3)	1196.0	1198.5	687.6	0.463	2.366		
	1196.1	1198.5	688.3	0.463	2.368		
					_		
	1194.8	1197.2	691.1	0.463	2.385		
BM2 Mix:	1194.8	1197.3	691.6	0.463	2.388		
Marshall -	1194.8	1197.2	693.0	0.463	2.394		
75 Blows	1194.8	1197.4	697.4	0.517	2.414	2.396	0.45
(4)	1194.9	1197.5	691.8	0.517	2.387		
	1194.8	1197.4	695.6	0.517	2.405		
	1194.8	1197.6	694.7	0.517	2.402		
	1196.1	1198.9	692.1	0.517	2.386		
BM2 Mix:	1196.1	1198.7	694.8	0.517	2.398		
Marshall -	1196.1	1198.7	693.9	0.517	2.393		
75 Blows	1196.1	1198.6	693.3	0.517	2.390	2.389	0.24
(5)	1196.1	1198.5	692.2	0.517	2.384		
	1196.1	1198.4	691.5	0.517	2.381		
	1196.1	1198.5	693.1	0.517	2.389		

Table C23. Parafilm Wrapping Data for BM2 Mix: Marshall - 75 Blows

Sample	M _{dry} (g)	M _{dwp} (g)	M _{wwp} (g)	Gp	G _{mb}	Avg. G _{mb}	V (%)
	2977.1	2979.4	1681.6	0.463	2.303		
	2977.2	2980.2	1676.8	0.463	2.296		
BM2 Mix:	2977.2	2980.3	1677.0	0.463	2.296]	
SGC 8-	2977.2	2980.3	1674.9	0.463	2.292	2.295	0.16
10% (1)	2977.0	2980.1	1674.7	0.463	2.292		
	2977.0	2980.2	1676.4	0.463	2.295]	
	2977.0	2980.1	1675.3	0.463	2.293		
	····-						
	2968.0	2971.3	1665.8	0.463	2.286	J J	
	2968.0	2971.2	1662.1	0.463	2.279		
BM2 Mix:	2968.1	2971.3	1663.1	0.463	2.281		
SGC 8-	2968.0	2971.1	1663.1	0.463	2.281	2.282	0.12
10% (2)	2968.1	2971.0	1666.4	0.463	2.286		
	2967.9	2971.3	1662.9	0.463	2.281		
	2968.0	2971.2	1664.1	0.463	2.283		
					r		
	2971.6	2974.8	1674.7	0.517	2.297		
	2971.2	2974.2	1677.6	0.517	2.302		
BM2 Mix:	2971.2	2974.3	1672.7	0.517	2.293		
SGC 8-	2971.2	2974.5	1673.5	0.517	2.295	2.296	0.15
10% (3)	2971.3	2974.4	1675.2	0.517	2.298		
	2971.4	2974.8	1671.6	0.517	2.292		
	2971.5	2974.6	1673.2	0.517	2.294		
			<u> </u>		r		
	2971.2	2974.7	1677.2	0.463	2.303	[[
	2971.1	2974.4	1674.6	0.463	2.298		
BM2 Mix:	2971.2	2974.3	1675.2	0.463	2.299		
SGC 8-	2971.1	2974.4	1675.1	0.463	2.299	2.301	0.11
10% (4)	2971.1	2974.5	1677.8	0.463	2.304		
ļ.	2971.2	2974.3	1675.5	0.463	2.300		
	2971.3	2974.6	1677.3	0.463	2.303		
	2070.2	2072 6	1672 4	0.462	2 207	т	
	2970.3	2973.6	1673.4	0.463	2.297		
	2970.3	2973.5	1673.4	0.463	2.297		
BM2 Mix:	2970.3	2973.6	1674.0	0.463	2.298	0.000	0.11
SGC 8-	2970.3	2973.6	1677.2	0.463	2.304	2.298	0.11
10% (5)	2970.3	2973.4	1674.1	0.463	2.298		
ļ	2970.3	2973.6	1673.0	0.463	2.296		
	2970.3	<u></u>	1674.3	0.463	2.298		

Table C24. Parafilm Wrapping Data for BM2 Mix: SGC 8-10%

Sample	M _{dry} (g)	M _{dwp} (g)	M _{wwp} (g)	G _p	G _{mb}	Avg. G _{mb}	V (%)
	4911.7	4915.3	2919.2	0.463	2.470		
	4911.6	4914.7	2919.2	0.463	2.470	1 1	
BM2 Mix:	4911.6	4914.7	2920.9	0.463	2.472	1	
SGC 4%	4911.7	4914.7	2918.0	0.463	2.468	2.470	0.07
(1)	4911.6	4914.8	2917.9	0.463	2.468	1	
1	4911.7	4914.6	2919.6	0.463	2.470	1	
	4911.8	4914.7	2921.6	0.463	2.472		
						<u> </u>	
	4909.2	4912.3	2909.8	0.463	2.460		
	4909.1	4912.3	2910.0	0.463	2.460	1	
BM2 Mix:	4909.2	4912.5	2911.6	0.517	2.461	7 /	
SGC 4%	4909.2	4912.2	2916.6	0.517	2.467	2.460	0.18
(2)	4909.3	4912.6	2905.6	0.517	2.454		
	4909.3	4912.5	2911.6	0.517	2.461		
	4909.3	4912.4	2906.8	0.517	2.455	1	
						<u> </u>	
	4909.5	4912.8	2912.5	0.463	2.463		
	4909.5	4912.6	2911.5	0.463	2.462	1	
BM2 Mix:	4909.4	4912.6	2912.9	0.463	2.464	1	
SGC 4%	4909.5	4912.9	2911.0	0.517	2.461	2.462	0.07
(3)	4909.4	4912.7	2910.3	0.517	2.460	1	
[4909.5	4912.5	2914.1	0.517	2.464	1	
	4909.4	4912.6	2913.7	0.517	2.464	1	
					·		<u></u>
	4902.3	4905.6	2913.2	0.517	2.468		
	4902.2	4905.5	2911.9	0.517	2.467		
BM2 Mix:	4902.2	4905.3	2911.1	0.517	2.466		
SGC 4%	4902.1	4905.3	2911.2	0.517	2.466	2.466	0.05
(4)	4902.3	4905.3	2910.6	0.517	2.465		
	4902.1	4905.3	2911.8	0.517	2.467		
	4902.3	4905.3	2910.5	0.517	2.465		
				<u></u>		·····	
	4911.8	4915.0	2913.4	0.517	2.462		<u>_</u>
	4911.6	4915.1	2909.3	0.517	2.457		
BM2 Mix:	4911.7	4914.9	2913.3	0.517	2.461		
SGC 4% [4911.7	4914.9	2911.7	0.517	2.460	2.459	0.10
(5)	4911.6	4914.9	2908.1	0.517	2.455		
Ţ	4911.6	4914.8	2912.0	0.517	2.460		
F	4911.7	4914.8	2912.6	0.517	2.461	[

Table C25. Parafilm Wrapping Data for BM2 Mix: SGC 4%

Sample	$M_{dry}(g)$	M _{dwp} (g)	M _{wwp} (g)	Gp	G _{mb}	Avg. G _{mb}	V (%)
	2982.4	2987.9	1742.0	0.700	2.409		
	2983.1	2989.0	1712.0	0.658	2.353	1 [
A Mix:	2981.9	2987.6	1716.0	0.683	2.360	1	
SGC 8%	2981.2	2986.8	1706.4	0.683	2.343	2.358	0.97
(1)	2981.3	2986.3	1708.5	0.683	2.347	1	
λ, ^γ	2981.6	2986.8	1708.8	0.683	2.347		
	2981.3	2986.3	1710.3	0.683	2.350		
		·	<u> </u>				
	2984.6	2990.3	1712.0	0.700	2.350		<u> </u>
	2984.6	2990.0	1711.2	0.658	2.349		
A Mix:	2984.6	2990.6	1703.1	0.658	2.335		
SGC 8%	2984.4	2990.2	1712.0	0.683	2.350	2.346	0.31
(2)	2984.4	2989.5	1706.6	0.683	2.340		
	2984.4	2990.3	1715.0	0.683	2.356		
	2984.3	2989.3	1708.9	0.683	2.344		
		<u> </u>					
	2985.9	2991.0	1710.0	0.700	2.344		
	2986.5	2992.6	1703.3	0.658	2.333		
A Mix:	2986.2	2992.3	1710.0	0.658	2.346		
SGC 8%	2978.7	2983.6	1702.4	0.683	2.338	2.343	0.24
(3)	2975.7	2981.2	1705.8	0.683	2.348		
	2976.6	2982.2	1703.0	0.683	2.342]	
	2977.1	2982.8	1707.1	0.683	2.349		
			<u> </u>	<u> </u>			
	2981.2	2984.9	1710.0	0.700	2.348		
	2980.3	2986.6	1707.2	0.658	2.347		
A Mix:	2976.2	2982.5	1708.2	0.658	2.353]	
SGC 8%	2974.6	2979.1	1710.6	0.683	2.357	2.350	0.21
(4)	2974.6	2979.2	1709.0	0.683	2.354		
	2973.9	2978.9	1704.8	0.683	2.348		
	2974.2	2979.0	1702.7	0.683	2.343]	
		•	<u></u>				
	2979.8	2985.0	1702.0	0.700	2.336		
	2980.5	2986.5	1710.0	0.658	2.352		
A Mix:	2981.3	2987.4	1708.5	0.658	2.348]	
SGC 8%	2979.4	2984.2	1704.8	0.683	2.342	2.344	0.22
(5)	2979.1	2984.2	1705.2	0.683	2.343	1	
~ /	2979.7	2984.5	1707.0	0.683	2.345	7	
	2980.4	2985.2	1705.2	0.683	2.341	1	

Table C26. Parafilm Wrapping Data for A Mix: SGC 8%

Sample	M _{dry} (g)	M _{dwp} (g)	M _{wwp} (g)	Gp	G _{mb}	Avg. G _{mb}	V (%)
	755.0	758.3	420.3	0.658	2.267		
D Mix:	755.1	758.3	414.8	0.658	2.230		
1.25"	755.0	758.3	421.0	0.658	2.272		
Core	755.0	758.2	421.3	0.658	2.274	2.265	0.73
	755.0	758.5	420.4	0.658	2.269		
Depth (1)	755.1	758.4	419.8	0.658	2.264		
	755.0	758.4	422.3	0.658	2.281		
	687.7	691.2	380.7	0.658	2.253		
D Mix:	687.7	691.0	380.3	0.658	2.250		
1.25"	687.8	691.1	380.9	0.658	2.254		
Core	687.9	691.2	379.7	0.658	2.244	2.249	0.17
Depth (2)	687.7	691.3	379.9	0.658	2.248		
Deptil (2)	687.7	691.0	380.2	0.658	2.249		
	687.8	691.3	379.5	0.658	2.244		
	599.8	603.1	332.2	0.658	2.256		
D Mix:	599.8	603.5	331.0	0.658	2.247		0.18
1.25"	599.9	603.4	332.1	0.658	2.255	2.254	
Core	599.8	603.2	332.3	0.658	2.257		
Depth (3)	599.8	603.3	331.4	0.658	2.250		
Depth (3)	599.8	603.5	332.2	0.658	2.258		
	599.8	603.4	332.2	0.658	2.257		
	615.6	619.1	345.2	0.658	2.292		
D Mix:	615.7	619.0	345.0	0.658	2.289		
1.25"	615.7	619.0	345.3	0.658	2.292		
Core	615.6	618.8	344.9	0.658	2.288	2.291	0.13
Depth (4)	615.6	618.6	345.8	0.658	2.295		
	615.6	618.9	345.6	0.658	2.295		
	615.6	618.7	344.9	0.658	2.288		
	634.5	638.0	352.7	0.658	2.266		
D Mix:	634.5	638.0	353.3	0.658	2.271		
1.25"	634.5	638.1	353.4	0.658	2.272		
	634.5	637.9	353.1	0.658	2.269	2.271	0.12
Core Depth (5)	634.5	637.9	353.6	0.658	2.273		0.12
Depth (5)	634.5	638.0	353.1	0.658	2.269		
	634.5	638.1	353.6	0.658	2.274		

 Table C27. Parafilm Wrapping Data for D Mix: 1.25" Core Depth

Sample	M _{dry} (g)	$M_{dwp}(g)$	$M_{wwp}(g)$	Gp	G _{mb}	Avg. G _{mb}	V (%)
	977.5	981.5	557.7	0.658	2.340		
	977.5	981.3	557.5	0.658	2.338		
BM2 Mix:	977.6	981.5	557.5	0.658	2.338	1	
2.0" Core	977.6	981.4	557.1	0.658	2.336	2.339	0.15
Depth (1)	977.5	981.4	558.8	0.658	2.346		
2	977.8	981.6	557.2	0.658	2.336		
	977.6	981.6	557.8	0.658	2.340		
					•		
	1045.9	1049.9	598.8	0.658	2.350		
	1046.0	1050.1	597.4	0.658	2.343		
BM2 Mix:	1046.0	1049.9	598.4	0.658	2.348		
2.0" Core	1045.9	1049.7	599.3	0.658	2.352	2.349	0.18
Depth (2)	1045.9	1050.3	598.3	0.658	2.349		
	1045.9	1049.9	598.3	0.658	2.348		
	1045.9	1049.8	600.0	0.658	2.356		
	1095.1	1098.7	619.6	0.683	2.311		
	1095.1	1098.7	619.5	0.683	2.311		
BM2 Mix:	1095.3	1098.9	619.0	0.683	2.308		
2.0" Core	1095.2	1098.9	618.6	0.683	2.306	2.309	0.10
Depth (3)	1095.2	1098.9	618.8	0.683	2.307		
	1095.3	1098.9	619.6	0.683	2.311		
	1095.3	1099.0	620.0	0.683	2.313		
	966.6	970.3	551.6	0.683	2.339		
	966.6	970.2	551.0	0.683	2.335		
BM2 Mix:	966.6	970.1	550.0	0.683	2.329		
2.0" Core	966.5	969.9	551.0	0.683	2.335	2.336	0.20
Depth (4)	966.5	970.2	552.1	0.683	2.342		
	966.7	970.1	550.3	0.683	2.330		
	966.5	970.2	551.4	0.683	2.338		
	966.7	970.6	548.7	0.683	2.323		
	966.7	970.5	549.1	0.683	2.325		I
BM2 Mix:	966.8	970.3	549.6	0.683	2.326		
2.0" Core	966.6	970.5	547.6	0.683	2.317	2.327	0.26
Depth (5)	966.6	970.2	551.1	0.683	2.336		
ĺ	966.6	970.3	549.8	0.683	2.329		
ľ	966.6	970.2	550.4	0.683	2.332		

 Table C28. Parafilm Wrapping Data for BM2 Mix: 2.0" Core Depth

Sample	M _{dry} (g)	$M_{dwp}(g)$	$M_{wwp}(g)$	Gp	G _{mb}	Avg. G _{mb}	V (%)
	2352.2	2356.3	1327.7	0.683	2.300		
	2352.1	2356.4	1328.8	0.683	2.303		
BM2 Mix:	2352.0	2356.5	1329.1	0.683	2.304		
6.0" Core	2352.0	2356.2	1332.4	0.683	2.311	2.308	0.28
Depth (1)	2352.0	2355.9	1336.2	0.683	2.320		
	2352.1	2356.3	1331.3	0.683	2.309]]	
	2352.0	2356.3	1332.3	0.683	2.311		_
	2458.9	2463.1	_1406.2	0.683	2.340		
	2459.0	2463.2	1408.9	0.683	2.346		
BM2 Mix:	2459.1	2463.3	1406.3	0.683	2.340]	
6.0" Core	2458.9	2463.0	1396.7	0.683	2.319	2.338	0.38
Depth (2)	2458.8	2463.1	1404.8	0.683	2.337	1	
	2458.9	2463.0	1405.9	0.683	2.339	1	
	2458.9	2463.3	1408.3	0.683	2.345	1	
					·	<u> </u>	
	2478.0	2482.1	1407.4	0.683	2.319		
	2478.5	2482.4	1420.0	0.683	2.346	1 1	
BM2 Mix:	2478.7	2482.8	1406.3	0.683	2.315	1	
6.0" Core	2478.9	2482.9	1411.3	0.683	2.326	2.324	0.53
Depth (3)	2478.7	2482.6	1407.6	0.683	2.318	1	
	2478.5	2482.5	1414.2	0.683	2.333	1	
	2478.9	2482.8	1403.3	0.683	2.309	1	
			<u></u>			L	
	2453.9	2457.9	1403.3	0.683	2.340		
[2453.8	2457.8	1408.9	0.683	2.353	1	
BM2 Mix:	2453.7	2458.1	1403.1	0.683	2.340		
6.0" Core	2453.9	2457.8	1406.3	0.683	2.346	2.343	0.23
Depth (4)	2453.8	2458.2	1405.1	0.683	2.344		
	2453.8	2458.0	1401.3	0.683	2.336		
	2453.9	2458.1	1403.9	0.683	2.341		
	2557.0	2561.2	1472.3	0.683	2.362		
[2556.3	2560.5	1486.1	0.683	2.393		
BM2 Mix:[2556.3	2560.6	1482.6	0.683	2.385		
6.0" Core	2556.3	2560.7	1473.9	0.683	2.366	2.371	0.58
Depth (5)	2556.3	2560.4	1476.7	0.683	2.372		
ſ	2556.6	2560.9	1469.4	0.683	2.356		
ľ	2556.4	2560.8	1471.9	0.683	2.362		

Table C29. Parafilm Wrapping Data for BM2 Mix: 6.0" Core Depth

Sample	M _{dry} (g)	$M_{dwp}(g)$	$M_{wwp}(g)$	Gp	G _{mb}	Avg. G _{mb}	V (%)
	4172.1	4177.8	2438.2	0.683	2.410		
	4172.3	4177.6	2440.2	0.683	2.412]	
A Mix:	4172.4	4177.4	2440.6	0.683	2.413]	
6.0" Core	4172.0	4178.6	2432.8	0.683	2.403	2.408	0.17
Depth (1)	4172.6	4178.5	2436.5	0.621	2.408		
	4172.7	4178.6	2436.7	0.621	2.409		
	4172.6	4178.1	2432.5	0.621	2.403		
	4073.9	4079.3	2388.6	0.683	2.421		
	4073.7	4079.2	2391.0	0.683	2.425		
A Mix:	4073.9	4079.0	2390.4	0.683	2.423		
6.0" Core	4073.9	4079.5	2391.7	0.683	2.426	2.423	0.08
Depth (2)	4074.0	4079.1	2391.4	0.683	2.425		
	4073.9	4079.2	2388.7	0.683	2.421		
	4073.7	4079.0	2389.1	0.683	2.422		
					_		
	3419.0	3424.4	1974.9	0.683	2.372		
	3418.5	3424.3	1972.0	0.621	2.369		
A Mix:	3418.8	3424.2	1974.4	0.621	2.372		
6.0" Core	3418.8	3423.6	1972.8	0.621	2.369	2.371	0.07
Depth (3)	3419.0	3424.2	1974.4	0.621	2.372		
	3418.2	3423.6	1971.5	0.621	2.368		
	3418.0	3423.6	1973.6	0.621	2.372		
	3371.6	3376.8	1916.8	0.683	2.321		
	3366.3	3371.7	1924.8	0.683	2.339		
A Mix:	3365.2	3370.5	1918.7	0.621	2.332		
6.0" Core	3365.4	3371.0	1912.4	0.621	2.322	2.327	0.31
Depth (4)	3365.4	3371.1	1911.5	0.621	2.320		
	3365.2	3371.1	1912.8	0.621	2.323		
	3364.1	3367.6	1918.6	0.621	2.331		
	3919.5	3926.3	2303.2	0.683	2.430		
	3919.4	3926.5	2309.9	0.683	2.440		
A Mix:	3918.9	3924.4	2308.5	0.683	2.437		
6.0" Core	3919.0	3924.4	2309.4	0.683	2.439	2.434	0.19
Depth (5)	3919.9	3925.2	2305.2	0.683	2.431		
	3920.0	3925.2	2304.6	0.683	2.430		
	3919.8	3925.0	2304.0	0.683	2.430] į	

Table C30. Parafilm Wrapping Data for A Mix: 6.0" Core Depth

			Operator 1	Calibration			
			Bo	x 1			
Trial	M _{dry} (g)	M _{sub} (g)	G _{ac}	M _{dwac} (g)	M _{wwac} (g)	Gp	Avg. G _p
1	1445.5	932.3	2.817	1448.7	930.7	0.667	
2	1445.5	932.4	2.817	1448.7	931.0	0.696	0.658
3	1445.5	932.2	2.816	1448.5	930.3	0.612	
	1			x 2			1
1	1445.5	932.2	2.816	1449.3	930.6	0.704	
2	1445.5	932.3	2.817	1449.7	930.3	0.677	0.683
2	1445.6	932.3	2.816	1449.4	930.4	0.667	
	-						
				x 3			
1	1445.5	932.1	2.816	1448.8	929.8	0.589	
2	1445.6	931.8	2.814	1448.9	930.0	0.647	0.621
3	1445.5	932.0	2.815	1448.7	930.1	0.627	
			Operator 2	Calibration			
			1	x 1	-		202 1
Trial	M _{dry} (g)	$M_{sub}\left(g ight)$	G _{ac}	M _{dwac} (g)	M _{wwac} (g)	G _p	Avg. G _p
1	1445.5	932.4	2.817	1448.7	930.7	0.653	0.658
2	1445.5	932.2	2.816	1448.7	930.6	0.663	0.038
			Bo	x 4			
1	1445.5	932.4	2.817	1447.8	930.2	0.511	0.462
2	1445.5	932.2	2.816	1447.9	928.8	0.414	0.402
				x 5		.	-
1	1445.5	932.2	2.816	1447.7	930.9	0.629	0.516
2	1445.5	932.1	2.816	1447.8	928.7	0.404	0.510

Table C31. Precision and Accuracy Evaluation Parafilm Calibration

Sample	$M_{dry}(g)$	M _{ssd} (g)	M _{sub} (g)	G _{mb}	Avg. G _{mb}	V (%)	Abs (%)
	1194.8	1194.7	712.5	2.478			
D Mix:	1194.4	1194.7	712.5	2.477]		
Marshall -	1194.4	1194.8	712.8	2.478	7		
75 Blows	1194.5	1194.9	712.8	2.478	2.477	0.03	0.07
(1)	1194.5	1194.9	712.6	2.477	1		
(1)	1194.5	1195.0	712.6	2.476]		
	1194.5	1194.8	712.7	2.478	1		
					,		
	1190.4	1190.6	709.1	2.472			
D Mix:	1190.3	1190.6	709.1	2.472	j l		
Marshall -	1190.3	1190.6	709.3	2.473]		
75 Blows	1190.3	1190.6	709.3	2.473	2.473	0.03	0.06
(2)	1190.4	1190.7	709.0	2.471			
(2)	1190.4	1190.7	709.3	2.473			
	1190.5	1190.7	709.4	2.474			
				· · · · · · · · · · · · · · · · ·			
	1191.1	1191.8	707.5	2.459		0.05	0.13
D Mix:	1191.2	<u>1191.7</u>	707.6	2.461			
Marshall -	1191.2	<u>1191.9</u>	707.7	2.460	2.460		
75 Blows	1191.3	1191.9	707.9	2.461			
(3)	1191.3	1191.9	707.4	2.459			
(5)	1191.2	1191.9	708.1	2.462]		
	1191.3	<u>1191</u> .9	707.8	2.461			
	1104 0	1101			·····		
ļ	1194.2	1194.4	711.3	2.472			
D Mix:	1194.1	1194.3	711.5	2.473			
Marshall -	1194.1	1194.4	711.6	2.473		0.05	0.0.5
75 Blows	1194.1	1194.4	711.4	2.472	2.472	0.05	0.05
(4)	1194.1	1194.4	711.2	2.471			
-	1194.2	1194.4	711.8	2.475			
	1194.1	1194.4	711.1	2.471			
	1189.9	1190.1	709.3	2.475	<u> </u>		
ŀ	1189.8	1190.1	709.3	2.475			
D Mix: Marshall - 75 Blows (5)	1189.8	1190.1	709.4	2.473	{ }		
	1189.8	1190.1	709.2	2.474	2 171	0.04	0.04
	1189.9	1190.1			2.474	0.04	0.06
	1189.9		708.9	2.472			
ŀ		1190.1	709.1	2.474		Í	
	1189.8	1190.1	709.2	2.474			

Table C32. Saturated Surface-Dry Specimens Data for D Mix: Marshall - 75 Blows

Sample	M _{dry} (g)	$M_{ssd}(g)$	M _{sub} (g)	G _{mb}	Avg. G _{mb}	V (%)	Abs (%)
	1192.7	1197.7	696.3	2.379			
	1192.6	1198.1	697.1	2.380	1		
BM2 Mix:	1192.6	1199.2	696.5	2.372	1		
Marshall -	1192.8	1198.7	696.3	2.374	2.376	0.12	1.18
20 Blows	1192.9	1198.8	696.9	2.377	1		
(1)	1192.9	1199.3	697.0	2.375	1		
	1192.9	1198.9	696.5	2.374			
	1188.6	1190.8	689.9	2.373			
BM2 Mix:	1188.3	1190.8	689.8	2.372			
Marshall -	1188.2	1189.9	689.4	2.374			
20 Blows	1188.2	1190.8	690.2	2.374	2.373	0.04	0.49
1	1187.5	1190.0	689.4	2.372			
(2)	1187.5	1190.3	689.5	2.371			
	1187.6	1190.4	689.9	2.373			
	1196.0	1196.7	696.6	2.392			
BM2 Mix:	1195.9	1196.7	697.0	2.393	2.393	0.08	0.18
Marshall -	1195.9	1196.8	696.6	2.391			
20 Blows	1195.7	1196.6	697.1	2.394			
	1195.9	1196.8	697.3	2.394			
(3)	1195.8	1196.8	697.8	2.396]		
	1195.8	1196.8	697.1	2.393			
	1195.3	1200.4	695.9	2.369			
BM2 Mix:	1195.6	1200.6	695.2	2.366			•
Marshall -	1195.5	1201.6	696.9	2.369]		
20 Blows	1196.0	1200.8	695.7	2.368	2.368	0.11	1.04
(4)	1195.9	1199.8	695.5	2.371			
(4)	1195.9	1201.3	696.9	2.371			
	1195.6	1202.0	696.4	2.365		<u> </u>	
							· · · · · · · · · · · · · · · · · · ·
	1196.2	1199.7	696.9	2.379] [
BM2 Mix: - Marshall 20 Blows -	1196.2	1200.3	696.2	2.373			
	1196.1	1200.0	696.4	2.375			
	1196.1	1200.2	696.9	2.377	2.376	0.10	0.81
	1196.1	1200.8	698.0	2.379			
(5)	1196.1	1199.9	697.0	2.378]		
	1196.1	1200.5	696.7	2.374			

Table C33. Saturated Surface-Dry Specimens Data for BM2 Mix: Marshall-20 Blows

Sample	M _{dry} (g)	$M_{ssd}(g)$	M _{sub} (g)	G _{mb}	Avg. G _{mb}	V (%)	Abs (%)
	1195.6	1197.4	709.0	2.448			
DMO Minu	1195.3	1197.4	708.6	2.445			
BM2 Mix:	1195.3	1197.6	708.5	2.444]		
Marshall -	1195.3	1197.4	709.0	2.447	2.446	0.07	0.42
75 Blows	1195.4	1197.3	709.0	2.448			
(1)	1195.2	1197.5	708.7	2.445			
	1195.4	1197.4	708.9	2.447			
	1194.8	1196.3	707.4	2.444			
DM2 Min	1194.9	1196.5	707.5	2.444			
BM2 Mix: Marshall -	1194.9	1196.3	708.1	2.448			
	1194.7	1196.3	707.4	2.444	2.445	0.08	0.32
75 Blows	1194.8	1196.4	707.5	2.444			
(2)	1194.8	1196.5	708.3	2.447			
	1195.0	1196.7	708.3	2.447			
	1196.1	1197.3	708.4	2.447			
DM2 Mar	1196.1	1197.8	709.2	2.448		0.08	0.32
BM2 Mix:	1196.1	1197.5	709.7	2.452	2.448		
Marshall -	1195.9	1197.4	709.0	2.449			
75 Blows (2)	1195.9	1197.6	708.9	2.447]		
(3)	1195.9	1197.6	709.0	2.448]		
	1196.1	1197.7	709.4	2.450			
	A						
	1194.8	1195.9	709.7	2.457			
BM2 Mix:	1194.9	1195.8	710.2	2.461			
Marshall -	1195.0	1195.8	710.0	2.460			
75 Blows	1194.7	1195.7	710.0	2.460	2.460	0.06	0.20
(4)	1194.7	1195.7	710.3	2.461			
(4)	1194.7	1195.7	710.5	2.462			
	1195.0	1195.9	710.4	2.461			<u></u>
	1195.9	1197.6	711.1	2.458]		
BM2 Mix:	1196.0	1197.8	711.4	2.459			
Marshall -	1196.1	1197.8	711.5	2.460			
75 Blows	1195.9	1197.6	711.0	2.458	2.460	0.08	0.36
	1195.9	1197.8	711.7	2.460			
(5)	1195.9	1197.5	711.8	2.462			
	1196.1	1197.8	712.2	2.463			

Table C34. Saturated Surface-Dry Specimens Data for BM2 Mix: Marshall - 75 Blows

Sample	$M_{dry}\left(g ight)$	M _{ssd} (g)	M _{sub} (g)	G _{mb}	Avg. G _{mb}	V (%)	Abs (%)
	2973.8	2985.1	1729.5	2.368			
	2974.1	2988.8	1732.2	2.367	1		
BM2 Mix:	2974.6	2989.7	1732.4	2.366	1		
SGC 8-	2975.7	2989.0	1730.8	2.365	2.367	0.07	1.10
10% (1)	2974.7	2989.1	1733.2	2.369			
	2975.8	2988.9	1732.9	2.369	1		
	2975.6	2990.5	1732.7	2.366	1		
							•
	2970.4	2980.7	1725.6	2.367			
	2970.1	2980.2	1728.5	2.373	1		
BM2 Mix:	2965.8	2979.1	1725.3	2.365	1		
SGC 8-	2965.8	2982.6	1727.6	2.363	2.367	0.13	1.05
10% (2)	2966.2	2981.5	1727.4	2.365	1		
	2968.6	2981.1	1726.5	2.366	1		
	2968.7	2982.3	1727.9	2.367	1		
	2970.0	2978.8	1729.2	2.377			
	2970.4	2979.7	1727.3	2.372	1		
BM2 Mix:	2969.7	2980.2	1729.1	2.374	1		
SGC 8-	2969.3	2981.8	1730.1	2.372	2.374	0.07	0.92
10% (3)	2969.6	2982.9	1732.8	2.375	1		
	2970.0	2983.0	1732.2	2.374	1		
	2970.2	2983.6	1732.9	2.375	1		
		•		- 10			•
	2970.0	2979.3	1729.2	2.376			
	2969.3	2981.2	1729.3	2.372]		
BM2 Mix:	2969.5	2982.6	1731.4	2.373			
SGC 8-	2970.3	2982.6	1731.5	2.374	2.374	0.06	0.92
10% (4)	2970.9	2981.5	1729.7	2.373			
	2970.3	2982.0	1731.6	2.375			
	2970.9	2982.4	1730.0	2.372			
	2968.6	2981.0	1729.3	2.372			
	2969.0	2984.0	1729.0	2.366]		
BM2 Mix:	2968.6	2983.6	1728.7	2.366]		
SGC 8-	2968.8	2984.1	1730.6	2.368	2.368	0.09	1.11
10% (5)	2969.7	2983.4	1729.5	2.368]		
	2970.2	2982.9	1729.0	2.369]		
	2970.2	2983.6	1729.5	2.368	1		

Table C35. Saturated Surface-Dry Specimens Data for BM2 Mix: SGC 8-10%

Sample	$M_{dry}(g)$	M _{ssd} (g)	M _{sub} (g)	G _{mb}	Avg. G _{mb}	V (%)	Abs (%)
	4912.4	4913.7	2950.8	2.503			
	4911.4	4913.4	2949.9	2.501			
BM2 Mix:	4911.3	4912.9	2949.1	2.501			
SGC 4%	4911.5	4913.7	2951.6	2.503	2.502	0.04	0.09
(1)	4911.1	4912.8	2950.3	2.502			
	4911.4	4913.1	2950.9	2.503			
	4911.5	4913.5	2951.5	2.503			
	4909.4	4911.3	2943.2	2.494			
	4908.8	4911.6	2942.4	2.493			
BM2 Mix:	4908.7	4911.0	2943.2	2.495			
SGC 4%	4908.9	4911.7	2943.9	2.495	2.494	0.03	0.12
(2)	4908.8	4910.5	2942.8	2.495]		
	4908.8	4910.9	2943.3	2.495	1 (
	4909.0	4911.8	2944.6	2.495			
	4909.3	4911.0	2944.4	2.496			
	4908.9	4910.7	2943.9	2.496			
BM2 Mix:	4909.0	4910.6	2944.5	2.497			
SGC 4%	4909.3	4911.6	2945.6	2.497	2.497	0.03	0.09
(3)	4908.9	4911.0	2944.3	2.496			
	4909.2	4910.6	2945.1	2.498			
	4909.2	4911.3	2945.5	2.497		I	}
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	• 			
	4902.2	4904.3	2943.7	2.500			
	4901.9	4904.4	2944.9	2.502			
BM2 Mix:	4901.8	4903.8	2944.5	2.502			
] SGC 4%]	4902.1	4904.3	2945.4	2.502	2.502	0.03	0.11
(4)	4901.9	4903.8	2944.2	2.501			
	4901.9	4904.3	2944.9	2.502			
	4902.0	4904.4	2944.8	2.502			
	4911.9	4913.5	2946.0	2.497			
	4911.7	4913.0	2945.2	2.496			[
BM2 Mix:	4911.4	4913.0	2945.6	2.496]		
SGC 4%	4911.5	4913.3	2946.3	2.497	2.497	0.02	0.08
(5)	4911.4	4912.9	2945.7	2.497	1		ļ
	4911.4	4913.0	2945.3	2.496	1		
	4911.5	4913.2	2946.5	2.497	1		

Table C36. Saturated Surface-Dry Specimens Data for BM2 Mix: SGC 4%

Sample	M _{dry} (g)	M _{ssd} (g)	M _{sub} (g)	G _{mb}	Avg. G _{mb}	V (%)	Abs (%)
•	2982.8	2991.8	1781.6	2.465		. ,	
	2982.5	2992.4	1783.7	2.468	1		
A Mix:	2984.7	2990.5	1782.0	2.470	1		
SGC 8%	2982.0	2990.1	1783.7	2.472	2.468	0.10	0.68
(1)	2982.6	2990.3	1783.0	2.470			
, ,	2982.8	2991.0	1782.1	2.467	1		
	2981.9	2990.3	1781.5	2.467	1		
	2985.0	2993.1	1765.4	2.431	Ι		
	2984.4	2991.7	1766.6	2.436]		
A Mix:	2984.3	2991.2	1765.8	2.435]		
SGC 8%	2984.1	2991.9	1766.2	2.435	2.435	0.07	0.63
(2)	2984.9	2992.8	1767.5	2.436]		
	2984.3	2992.4	1766.2	2.434]		
	2984.1	2992.4	1767.6	2.436]]		
	2987.4	2997.0	1781.0	2.457			
	2986.0	2997.0	1782.7	2.459]		
A Mix:	2977.5	2987.1	1777.6	2.462]		
SGC 8%	2977.1	2986.9	1776.4	2.459	2.460	0.08	0.77
(3)	2978.5	2986.5	1776.8	2.462			
	2977.0	2984.8	1775.4	2.462			
	2975.3	2984.5	1775.1	2.460			
	2982.8	2987.6	1782.3	2.475			
	2975.6	2982.9	1780.0	2.474			
A Mix:	2975.4	2981.3	1779.9	2.477			
SGC 8%	2974.7	2980.3	1779.3	2.477	2.476	0.07	0.47
(4)	2974.9	2980.5	1778.7	2.475			
	2974.7	2979.8	1778.8	2.477			
	2974.7	2979.8	1780.0	2.479			
							-
	2981.1	2989.9	1764.2	2.432			
	2980.4	2990.0	1765.3	2.434			
A Mix:	2983.1	2991.7	1764.2	2.430	1 [
SGC 8%	2980.0	2990.0	1764.4	2.431	2.432	0.05	0.74
(5)	2983.4	2990.5	1764.2	2.433			
	2980.8	2991.0	1765.4	2.432			
	2981.1	2989.9	1765.0	2.434			

 Table C37. Saturated Surface-Dry Specimens Data for A Mix: SGC 8%

Sample	M _{dry} (g)	$M_{ssd}(g)$	M _{sub} (g)	G _{mb}	Avg. G _{mb}	V (%)	Abs (%)
	755.2	756.6	432.1	2.327			
DM	755.0	756.4	431.8	2.326			
D Mix:	754.9	756.2	431.8	2.327			
1.25" Com	754.9	756.2	430.8	2.320	2.324	0.16	0.45
Core	755.2	756.2	431.5	2.326			
Depth (1)	754.8	756.1	430.4	2.317			
	754.9	757.4	432.5	2.323			
	688.1	689.6	390.6	2.301			
DMin	687.7	690.1	390.8	2.298]		
D Mix:	688.0	689.9	390.6	2.299			
Core	687.6	690.1	390.5	2.295	2.299	0.08	0.71
Depth (2)	688.3	690.0	390.7	2.300			
Deptil (2)	687.7	689.6	390.5	2.299			
	688.1	691.0	391.7	2.299			
	600.2	601.3	341.4	2.309			
D Mix:	599.8	600.9	341.1	2.309	2.309	0.07	0.43
1.25"	599.8	601.0	341.3	2.310			
Core	599.7	601.0	341.0	2.307			
Depth (3)	599.8	601.1	341.6	2.311			
	599.9	600.9	340.9	2.307			
	599.9	600.8	340.9	2.308			
	616.2	617.1	353.3	2.336			
D Mix:	615.8	616.9	352.9	2.333			
1.25"	615.6	616.8	352.8	2.332			
Core	615.5	617.0	352.4	2.326	2.330	0.15	0.42
Depth (4)	615.9	617.0	352.6	2.329			
Depin (+)	615.9	616.6	351.8	2.326			
	615.7	616.9	352.5	2.329			
	635.1	637.0	363.5	2.322			
D Mix:	634.6	636.9	362.4	2.312			
	634.5	636.8	362.5	2.313			
Core	634.6	636.8	362.3	2.312	2.314	0.15	0.72
Depth (5)	635.2	636.8	362.3	2.314			
	634.8	636.5	362.1	2.313	ļ		
	634.9	636.7	362.4	2.315			

 Table C38. Saturated Surface-Dry Specimens Data for D Mix: 1.25"
 Core Depth

Sample	M _{dry} (g)	M _{ssd} (g)	M _{sub} (g)	G _{mb}	Avg. G _{mb}	V (%)	Abs (%)
	978.0	980.7	572.5	2.396			
	977.9	981.1	571.7	2.389			
BM2 Mix:	977.5	980.6	572.1	2.393	1		
2.0" Core	977.6	980.0	571.4	2.393	2.393	0.09	0.69
Depth (1)	977.3	980.0	571.4	2.392			
	977.3	98 0.1	571.6	2.392			
	977.2	979.9	571.6	2.393	1		
	1046.9	1048.1	611.0	2.395			
	1046.5	1048.5	610.6	2.390]		
BM2 Mix:	1045.9	1047.1	609.5	2.390			
2.0" Core	1046.1	1047.2	610.0	2.393	2.392	0.09	0.32
Depth (2)	1045.8	1047.0	609.7	2.391			
	1045.8	1047.3	610.2	2.393			
	1045.7	1047.2	610.5	2.395			
	1095.7	1099.3	635.0	2.360			
	1094.9	1100.8	636.3	2.357			
BM2 Mix:	1094.5	1101.0	636.2	2.355			
2.0" Core	1095.2	1100.0	634.7	2.354	2.356	0.08	1.08
Depth (3)	1094.8	1099.6	634.9	2.356] [
	1094.7	1099.4	634.9	2.357]		
	1094.4	1099.3	634.9	2.357			
	967.4	968.7	562.2	2.380			
	966.8	968.9	560.6	2.368]		
BM2 Mix:	966.5	968.0	559.8	2.368			
2.0" Core	966.8	969.3	562.1	2.374	2.373	0.19	0.49
Depth (4)	966.5	967.9	560.3	2.371			
	966.4	968.7	561.5	2.373			
	966.2	969.2	562.6	2.376			
	966.7	971.0	564.7	2.379			
	966.2	971.3	563.2	2.368			
BM2 Mix:	965.8	970.4	562.8	2.369]		
2.0" Core	966.0	970.3	563.3	2.373	2.373	0.18	1.03
Depth (5)	966.2	969.2	561.7	2.371			
	965.7	969.5	562.2	2.371	Ì		
	965.8	970.0	563.7	2.377			

•

Table C39. Saturated Surface-Dry Specimens Data for BM2 Mix: 2.0" Core Depth

Sample	M _{dry} (g)	$M_{ssd}(g)$	M _{sub} (g)	G _{mb}	Avg. G _{mb}	V (%)	Abs (%)
	2353.9	2356.0	1380.9	2.414	1		
	2353.8	2355.6	1379.6	2.412]		
BM2 Mix:	2353.1	2355.9	1379.1	2.409]		
6.0" Core	2352.6	2355.0	1376.6	2.405	2.408	0.15	0.24
Depth (1)	2351.7	2354.0	1376.7	2.406	1		
	2351.6	2354.4	1376.6	2.405			
	2352.0	2354.4	1377.2	2.407			
	2460.9	2461.7	1453.7	2.441			
	2461.3	2461.4	1452.7	2.440]		
BM2 Mix:	2460.3	2460.9	1453.7	2.443			
6.0" Core	2459.4	2460.5	1451.8	2.438	2.440	0.08	0.08
Depth (2)	2458.8	2459.8	1451.5	2.439			
	2458.6	2459.6	1450.6	2.437			
	2458.7	2459.9	1452.2	2.440		<u> </u>	
						<u>.,</u>	
	2480.1	2481.0	1460.6	2.431			
	2479.8	2480.3	1460.0	2.430			
BM2 Mix:	2479.3	2480.1	1459.0	2.428			
6.0" Core	2478.3	2479.4	1458.2	2.427	2.428	0.06	0.09
Depth (3)	2477.8	2478.7	1458.3	2.428			
	2477.5	2478.5	1457.7	2.427			
	2477.6	2478.7	1457.9	2.427			
							<u></u>
	2456.2	2456.6	1452.6	2.446			
	2456.1	2456.1	1451.4	2.445			
BM2 Mix:	2455.3	2456.0	1451.1	2.443	4		
6.0" Core	2454.3	2455.2	1450.5	2.443	2.444	0.05	0.06
Depth (4)	2453.8	2454.6	1450.2	2.443			
	2453.6	2454.5	1450.4	2.444	_		
	2453.6	2454.4	1450.4	2.444			
			.		1		· · · · · · · · · · · · · · · · · · ·
	2561.1	2563.2	1515.0	2.443			
	2560.0	2561.2	1512.9	2.442			
BM2 Mix:	2558.9	2560.4	1511.8	2.440			
6.0" Core	2557.6	2558.9	1510.4	2.439	2.440	0.07	0.14
Depth (5)	2557.2	2558.6	1509.9	2.438			
ļ	2556.7	2558.2	1509.9	2.439			
	2556.7	2558.0	1510.4	2.441			

Table C40. Saturated Surface-Dry Specimens Data for BM2 Mix: 6.0" Core Depth

٠

Sample	$M_{dry}(g)$	$M_{ssd}(g)$	M _{sub} (g)	G _{mb}	Avg. G _{mb}	V (%)	Abs (%)
	4173.3	4178.3	2480.1	2.457			
	4171.9	4177.3	2477.1	2.454			
A Mix:	4171.6	4176.8	2475.9	2.453]		
6.0" Core	4173.8	4176.8	2477.6	2.456	2.455	0.07	0.27
Depth (1)	4173.0	4177.0	2477.9	2.456			
	4172.4	4177.3	2477.6	2.455			
	4171.4	4176.5	2476.7	2.454			
	4074.6	4077.5	2411.6	2.446			
	4073.7	4077.3	2410.4	2.444			
A Mix:	4073.6	4076.5	2410.4	2.445			
6.0" Core	4076.1	4077.2	2414.6	2.452	2.447	0.12	0.15
Depth (2)	4075.3	4076.2	2413.2	2.451			
	4073.6	4076.8	2412.0	2.447			
	4074.1	4076.9	2412.5	2.448		-	
	3418.5	3426.4	2024.7	2.439			
	3417.8	3425.1	2021.8	2.436			
A Mix:	3417.3	3423.6	2020.2	2.435			
6.0" Core	3418.3	3426.2	2023.5	2.437	2.437	0.06	0.47
Depth (3)	3418.2	3424.5	2021.5	2.436			
	3419.4	3424.6	2020.8	2.436			1
	3419.0	3424.4	2022.1	2.438			
	3364.8	3383.5	1990.3	2.415			
	3362.6	3383.7	1985.0	2.404			
A Mix:	3364.5	3383.7	1986.8	2.409			ļ
6.0" Core	3364.5	3384.2	1982.9	2.401	2.405	0.23	1.45
Depth (4)	3365.7	3385.9	1985.7	2.404			
	3364.7	3384.1	1986.6	2.408			
	3362.7	3386.4	1984.3	2.398			
					1		
{		3923.3	2335.8	2.469			
	3919.6	3922.6	2332.8	2.465	4		
A Mix:	3921.1	3923.4	2337.2	2.472	1		
6.0" Core	3920.5	3922.7	2335.3	2.470	2.469	0.08	0.19
Depth (5)	3919.5	3922.9	2336.1	2.470	1		
	3919.7	3922.9	2336.2	2.470			
	3919.1	3922.6	2334.6	2.468		L	<u> </u>

Table C41. Saturated Surface-Dry Specimens Data for A Mix: 6.0" Core Depth

Laboratory Compated Sar	nples	Corelok Vacuum Seal				
Sample	G _{mm}	G _{mb}	Avg. G _{mb}	V _a (%)	Avg. V_a (%)	
D-75 1		2.445		2.9		
D-75 2		2.442		3.1	1	
D-75 3	2.519	2.423	2.440	3.8	3.2	
D-75 4		2.444] [3.0]	
D-75 5		2.444		3.0		
BM2-20 1		2.304		8.6		
BM2-20 2]	2.319		8.0]	
BM2-20 3	2.520	2.355	2.319	6.5	8.0	
BM2-20 4		2.300		8.7		
BM2-20 5		2.319		8.0		
BM2-75 1		2.409		4.4		
BM2-75 2		2.419		4.0	4.1	
BM2-75 3	2.520	2.405	2.417	4.6		
BM2-75 4		2.428		3.7		
BM2-75 5		2.424		3.8		
	-	-				
BM2-SGC (8-10%) 1		2.323		7.8	7.7	
BM2-SGC (8-10%) 2		2.316		8.1		
BM2-SGC (8-10%) 3	2.520	2.332	2.326	7.5		
BM2-SGC (8-10%) 4		2.335		7.3		
BM2-SGC (8-10%) 5		2.325		7.7		
BM2-SGC (4%) 1		2.488		1.3		
BM2-SGC (4%) 2		2.478		1.7		
BM2-SGC (4%) 3	2.520	2.478	2.480	1.7	1.6	
BM2-SGC (4%) 4		2.482		1.5		
BM2-SGC (4%) 5		2.476		1.7		
			1			
A-SGC (8%) 1		2.397		5.4		
A-SGC (8%) 2		2.381		6.1		
A-SGC (8%) 3	2.535	2.396	2.392	5.5	5.6	
A-SGC (8%) 4		2.413		4.8		
A-SGC (8%) 5		2.375		6.3		

Table C42. Corelok Vacuum Seal Air Void Values for Laboratory Compacted Samples

Laboratory Compated Sar	nples		Dimensio	nal Analys	is
Sample	G _{mm}	G _{mb}	Avg. G _{mb}	V_{a} (%)	Avg. V_a (%)
D-75 1		2.409		4.4	
D-75 2		2.411		4.3	
D-75 3	2.519	2.390	2.406	5.1	4.5
D-75 4		2.409		4.4]
D-75 5		2.412		4.2	
		-			
BM2-20 1		2.244		11.0	
BM2-20 2	1	2.271		9.9	
BM2-20 3	2.520	2.322	2.271	7.9	9.9
BM2-20 4		2.255		10.5	
BM2-20 5		2.261		10.3	
BM2-75 1		2.351		6.7	
BM2-75 2		2.358		6.4	
BM2-75 3	2.520	2.342	2.357	7.1	6.5
BM2-75 4		2.366		6.1]
BM2-75 5		2.369		6.0	
BM2-SGC (8-10%) 1		2.262		10.2	10.4
BM2-SGC (8-10%) 2		2.254]	10.6	
BM2-SGC (8-10%) 3	2.520	2.262	2.259	10.2	
BM2-SGC (8-10%) 4		2.256		10.5	
BM2-SGC (8-10%) 5		2.261		10.3	
BM2-SGC (4%) 1		2.456		2.5	
BM2-SGC (4%) 2		2.444		3.0	
BM2-SGC (4%) 3	2.520	2.448	2.448	2.9	2.8
BM2-SGC (4%) 4		2.450		2.8]
BM2-SGC (4%) 5		2.443		3.1	
A-SGC (8%) 1		2.277		10.2	
A-SGC (8%) 2		2.284		9.9	10.3
A-SGC (8%) 3	2.535	2.277	2.274	10.2	
A-SGC (8%) 4		2.262		10.8	
A-SGC (8%) 5		2.268		10.5	

Table C43. Dimensional Analysis Air Void Values for Laboratory Compacted Samples

Laboratory Compated Sar	nples	Parafilm Wrapping				
Sample	G _{mm}	G _{mb}	Avg. G _{mb}	V _a (%)	Avg. V_a (%)	
D-75 1		2.444		3.0		
D-75 2		2.436		3.3		
D-75 3	2.519	2.420	2.432	3.9	3.4	
D-75 4		2.431		3.5		
D-75 5		2.430		3.5		
BM2-20 1		2.277		9.6		
BM2-20 2		2.306		8.5		
BM2-20 3	2.520	2.348	2.303	6.8	8.6	
BM2-20 4		2.289		9.2		
BM2-20 5		2.296		8.9		
BM2-75 1		2.386		5.3		
BM2-75 2		2.396		4.9		
BM2-75 3	2.520	2.370	2.387	6.0	5.3	
BM2-75 4		2.396		4.9		
BM2-75 5		2.389		5.2		
BM2-SGC (8-10%) 1		2.295		8.9	9.0	
BM2-SGC (8-10%) 2		2.282]	9.4		
BM2-SGC (8-10%) 3	2.520	2.296	2.294	8.9		
BM2-SGC (8-10%) 4		2.301		8.7		
BM2-SGC (8-10%) 5		2.298		8.8		
					_	
BM2-SGC (4%) 1		2.470		2.0		
BM2-SGC (4%) 2		2.460		2.4		
BM2-SGC (4%) 3	2.520	2.462	2.463	2.3	2.2	
BM2-SGC (4%) 4		2.466		2.1		
BM2-SGC (4%) 5		2.459		2.4		
A-SGC (8%) 1		2.358		7.0		
A-SGC (8%) 2		2.346		7.5		
A-SGC (8%) 3	2.535	2.343	2.348	7.6	7.4	
A-SGC (8%) 4		2.350		7.3		
A-SGC (8%) 5		2.344		7.5		

Table C44. Parafilm Wrapping Air Void Values for Laboratory CompactedSamples

Laboratory Compated Sar	nples	Satı	rated Surfa	ce-Dry Sp	ecimens
Sample	G _{mm}	G _{mb}	Avg. G _{mb}	V_a (%)	Avg. V_a (%)
D-75 1		2.477		1.7	
D-75 2		2.473		1.8	
D-75 3	2.519	2.460	2.471	2.3	1.9
D-75 4]	2.472		1.9	
D-75 5]	2.474		1.8	1
	*	•	·		•
BM2-20 1		2.376		5.7	
BM2-20 2]	2.373]	5.8]
BM2-20 3	2.520	2.393	2.377	5.0	5.7
BM2-20 4		2.368	1	6.0	
BM2-20 5	-	2.376		5.7	
BM2-75 1		2.446		2.9	
BM2-75 2		2.445		3.0	2.7
BM2-75 3	2.520	2.448	2.452	2.9	
BM2-75 4		2.460		2.4	
BM2-75 5]	2.460		2.4	
BM2-SGC (8-10%) 1		2.367		6.1	6.0
BM2-SGC (8-10%) 2	1	2.367	1	6.1	
BM2-SGC (8-10%) 3	2.520	2.374	2.370	5.8	
BM2-SGC (8-10%) 4		2.374	1	5.8	
BM2-SGC (8-10%) 5		2.368		6.0	
		· · · · · ·			
BM2-SGC (4%) 1		2.502		0.7	
BM2-SGC (4%) 2		2.494		1.0] (
BM2-SGC (4%) 3	2.520	2.497	2.498	0.9	0.9
BM2-SGC (4%) 4		2.502		0.7	
BM2-SGC (4%) 5		2.497		0.9	
	_				
A-SGC (8%) 1		2.468		2.6	
A-SGC (8%) 2		2.435		3.9	
A-SGC (8%) 3	2.535	2.460	2.454	3.0	3.2
A-SGC (8%) 4		2.476] [2.3	
A-SGC (8%) 5		2.432		4.1	

Table C45. Saturated Surface-Dry Air Void Values for Laboratory Compacted Samples

Field Cut Sa	amples		Corelok Va	acuum Seal		
Sample	G _{mm}	G _{mb}	Avg. G _{mb}	V _a (%)	Avg. V _a (%)	
D-1.25" 1		2.305		5.7		
D-1.25" 2		2.277		6.9		
D-1.25" 3	2.445	2.286	2.293	6.5	6.2	
D-1.25" 4		2.310		5.5		
D-1.25" 5		2.289		6.4		
BM2-2" 1		2.347		6.9		
BM2-2" 2		2.363		6.3		
BM2-2" 3	2.522	2.315	2.337	8.2	7.3	
BM2-2" 4		2.333		7.5		
BM2-2" 5		2.327		7.7		
		1			,	
BM2-6" 1		2.421		4.0		
BM2-6" 2		2.446		3.0		
BM2-6" 3	2.522	2.437	2.440	3.4	3.2	
BM2-6" 4		2.449		2.9		
BM2-6" 5		2.448		2.9		
A-6" 1		2.440		4.2		
A-6" 2		2.438		4.2		
A-6" 3	2.546	2.406	2.419	5.5	5.0	
A-6" 4		2.356		7.5		
A-6" 5	L	2.454		3.6		

 Table C46. Corelok Vacuum Seal Air Void Values for Field Cut Samples

Field Cut Sa	amples		Dimension	al Analysis		
Sample	G _{mm}	G _{mb}	Avg. G _{mb}	V_{a} (%)	Avg. V_a (%)	
D-1.25" 1		2.147		12.2		
D-1.25" 2		2.124] [13.1		
D-1.25" 3	2.445	2.073	2.133	15.2	12.8	
D-1.25" 4		2.163		11.5		
D-1.25" 5		2.158		11.7		
BM2-2" 1		2.263		10.3		
BM2-2" 2		2.280		9.6		
BM2-2" 3	2.522	2.233	2.253	11.5	10.7	
BM2-2" 4		2.240		11.2		
BM2-2" 5	L	2.248		10.9		
BM2-6" 1	2 -	2.259		10.4		
BM2-6" 2		2.257		10.5		
BM2-6" 3	2.522	2.259	2.266	10.4	10.2	
BM2-6" 4		2.258		10.5		
BM2-6" 5		2.295		9.0		
A-6" 1		2.355		7.5		
A-6" 2		2.372		6.8		
A-6" 3	2.546	2.316	2.340	9.0	8.1	
A-6" 4		2.271		10.8]	
A-6" 5		2.385		6.3		

Table C47. Dimensional Analysis Air Void Values for Field Cut Samples

•

Field Cut Sa	amples		Parafilm	Wrapping	
Sample	G _{mm}	G _{mb}	Avg. G _{mb}	V _a (%)	Avg. V_a (%)
D-1.25" 1		2.265		7.4	
D-1.25" 2	1	2.249		8.0]
D-1.25" 3	2.445	2.254	2.266	7.8	7.3
D-1.25" 4		2.291		6.3]
D-1.25" 5		2.271		7.1	
BM2-2" 1		2.339		7.3	
BM2-2" 2		2.349		6.9]
BM2-2" 3	2.522	2.309	2.332	8.4	7.5
BM2-2" 4		2.336		7.4	
BM2-2" 5		2.327		7.7	
				<u></u>	
BM2-6" 1		2.308		8.5	
BM2-6" 2		2.338		7.3	
BM2-6" 3	2.522	2.324	2.337	7.9	7.3
BM2-6" 4		2.343		7.1	
BM2-6" 5		2.371		6.0	
				·	
A-6" 1		2.408		5.4	
A-6" 2		2.423		4.8	
A-6" 3	2.546	2.371	2.393	6.9	6.0
A-6" 4		2.327		8.6	
A-6" 5		2.434		4.4	

Table C48. Parafilm Wrapping Air Void Values for Field Cut Samples

Field Cut Sa	mples	Sat	turated Surfac	e-Dry Specim	ens
Sample	G _{mm}	G _{mb}	Avg. G _{mb}	V _a (%)	Avg. V_a (%)
D-1.25" 1		2.324		4.9	
D-1.25" 2		2.299		6.0	
D-1.25" 3	2.445	2.309	2.315	5.6	5.3
D-1.25" 4		2.330		4.7	
D-1.25" 5		2.314		5.4	
	· · · -				
BM2-2" 1		2.393		5.1	
BM2-2" 2		2.392		5.2	
BM2-2" 3	2.522	2.356	2.377	6.6	5.7
BM2-2" 4		2.373		5.9	ļ
BM2-2" 5		2.373		5.9	
· · · · · · · · · · · · · · · · · · ·					
BM2-6" 1		2.408		4.5	
BM2-6" 2		2.440		3.3	4
BM2-6" 3	2.522	2.428	2.432	3.7	3.6
BM2-6" 4		2.444		3.1	
BM2-6" 5		2.440	L	3.3	
		<u>.</u>		·	
A-6" 1		2.455		3.6	
A-6" 2		2.447		3.9	
A-6" 3	2.546	2.437	2.443	4.3	4.1
A-6" 4		2.405	l	5.5	4
A-6" 5		2.469		3.0	

Table C49. Saturated Surface-Dry Air Void Values for Field Cut Samples

APPENDIX D

Aluminum Cylinder Data and Results

	Corelok Vacuum Seal								
Sample	M _{dry} (g)	M _{dwb} (g)	$M_{wwb}(g)$	G _b	G _{mb}	Avg. G _{mb}	V (%)		
	1336.7	1362.0	820.8	0.792	2.625				
8 Hole	1336.7	1362.1	821.9	0.792	2.631	2.629	0.15		
	1336.7	1362.0	822.3	0.792	2.633				
	1292.3	1317.4	778.4	0.792	2.547				
16 Hole	1292.3	1317.4	778.1	0.792	2.546	2.548	0.07		
	1292.3	1317.5	778.8	0.792	2.550				
	1248.8	1274.0	734.2	0.792	2.458				
24 Hole	1248.8	1273.9	734.5	0.792	2.460	2.459	0.03		
	1248.8	1273.9	734.2	0.792	2.458				

Table D1. Corelok Vacuum Seal Data for Aluminum Cylinder Experiment

 Table D2. Dimensional Analysis Data for Aluminum Cylinder Experiment

	Dimensional Analysis								
Sample	M _{dry} (g)	Dia. (cm)	Ht. (cm)	Vol. (cm ³)	G _{mb}	Avg. G _{mb}	V (%)		
	1336.7	10.11	6.36	510.53	2.618271				
8 Hole	1336.8	10.11	6.36	510.30	2.619614	2.620	0.06		
	1336.7	10.11	6.36	509.95	2.621216				
	1292.4	10.12	6.34	510.08	2.533717		0.05		
16 Hole	1292.4	10.12	6.35	510.33	2.532481	2.534			
	1292.4	10.12	6.34	509.86	2.534798				
	1248.7	10.13	6.34	510.45	2.44626				
24 Hole	1248.7	10.13	6.34	510.37	2.446659	2.446	0.01		
	1248.8	10.13	6.34	510.43	2.446548				

	Parafilm Wrapping									
Sample	M _{dry} (g)	$M_{dwp}(g)$	$M_{wwp}(g)$	G _{mb}	Avg. G _{mb}	V (%)				
_	1336.7	1339.4	826.2	2.626						
8 Hole	1336.7	1339.3	826.9	2.630	2.628	0.07				
	1336.7	1339.3	826.4	2.627						
-	1292.3	1295.8	781.0	2.537		0.11				
16 Hole	1292.3	1295.5	782.2	2.542	2.539					
	1292.3	1295.6	781.2	2.538						
	•	<u> </u>								
	1248.6	1251.1	738.4	2.454						
24 Hole	1248.8	1251.3	738.9	2.456	2.455	0.04				
	1248.8	1251.3	738.7	2.455]					

Table D3. Parafilm Wrapping Data for Aluminum Cylinder Experiment

Table D4. Saturated Surface-Dry Data for Aluminum Cylinder Experiment

		Satur	ated Surfac	e-Dry Spec	cimens		
Sample	M _{dry} (g)	M _{ssd} (g)	M _{sub} (g)	G _{mb}	Avg. G _{mb}	V (%)	Abs (%)
	1336.8	1337.2	844.3	2.712			
8 Hole	1336.8	1336.9	844.1	2.713	2.713	0.02	0.04
	1336.8	1336.9	844.2	2.713]		
	1292.3	1292.7	816.0	2.711		0.02	0.08
16 Hole	1292.4	1292.8	815.9	2.710	2.711		
	1292.3	1292.7	816.0	2.711			
	1248.8	1249.9	788.6	2.707		0.04	
24 Hole	1248.8	1249.5	788.5	2.709	2.708		0.20
	1248.8	1249.7	788.7	2.709			

G _{mb} Results for Aluminum Cylinder Experiment							
Cylinder	Corelok	Dimensional	Parafilm	Saturated Surface-			
Cymuer	Vacuum Seal	Analysis	Wrapping	Dry Specimens			
8 Hole	2.629	2.620	2.628	2.713			
16 Hole	2.548	2.534	2.539	2.711			
24 Hole	2.459	2.446	2.455	2.708			

Table D5. G_{mb} Results for Aluminum Cylinder Experiment

Table D6. Air Voids Results for Aluminum Cylinder Experiment

	Air Voids (%) Results for Aluminum Cylinder Experiment								
Cylinder	Actual	Cor	Corelok Dim. Analysis		Par	afilm	SSD		
Cymuer	Actual	Meas	% Diff	Meas	% Diff	Meas	% Diff	Meas	% Diff
8 Hole	3.125	2.666	14.7	2.999	4.0	2.703	13.5	-0.444	114.2
16 Hole	6.25	5.665	9.4	6.183	1.1	5.998	4.0	-0.370	105.9
24 Hole	9.375	8.960	4.4	9.441	-0.7	9.108	2.9	-0.259	102.8

APPENDIX E

T-test Data and Results

t-tests Us	Π	Caral	a 1 10	Significantly			
Laboratory C	ompacted	Samples				ok vs.	Different?
Sample	Corelok	Parafilm	SSD	1	Para	afilm	(Act.>Theor.)
D-75 1	2.445	2.444	2.477	[T-test	0.048	
D-75 2	2.442	2.436	2.473	1 [Theor.	2.262	Vas
D-75 3	2.423	2.420	2.460	1 [Act.	2.293	Yes
D-75 4	2.444	2.431	2.472	1 [T dist	0.963	
D-75 5	2.444	2.430	2.474				
				-			
BM2-20 1	2.304	2.277	2.376] [T-test	0.013	
BM2-20 2	2.319	2.306	2.373] [Theor.	2.262	Yes
BM2-20 3	2.355	2.348	2.393		Act.	3.100	105
BM2-20 4	2.300	2.289	2.368] [T dist	0.990	
BM2-20 5	2.319	2.296	2.376] -			
				-			
BM2-75 1	2.409	2.386	2.446] [T-test	0.000	
BM2-75 2	2.419	2.396	2.445	ן ר	Theor.	2.262	Yes
BM2-75 3	2.405	2.370	2.448	1 [Act.	5.419	
BM2-75 4	2.428	2.396	2.460	1 [T dist	1.000	
BM2-75 5	2.424	2.389	2.460				
BM2-SGC (8-10%) 1	2.323	2.295	2.367		T-test	0.000	
BM2-SGC (8-10%) 2	2.316	2.282	2.367] [Theor.	2.262	Yes
BM2-SGC (8-10%) 3	2.332	2.296	2.374		Act.	7.041	105
BM2-SGC (8-10%) 4	2.335	2.301	2.374		T dist	1.000	
BM2-SGC (8-10%) 5	2.325	2.298	2.368				
BM2-SGC (4%) 1	2.488	2.470	2.502		T-test	0.000	
BM2-SGC (4%) 2	2.478	2.460	2.494	ĺĹ	Theor.	2.262	Yes
BM2-SGC (4%) 3	2.478	2.462	2.497		Act.	10.282	105
BM2-SGC (4%) 4	2.482	2.466	2.502	ΙĹ	T dist	1.000	
BM2-SGC (4%) 5	2.476	2.459	2.497				
				. –			
A-SGC (8%) 1	2.397	2.358	2.468		T-test	0.002	
A-SGC (8%) 2	2.381	2.346	2.435	ľ	Theor.	2.262	Yes
A-SGC (8%) 3	2.396	2.343	2.460		Act.	4.371	105
A-SGC (8%) 4	2.413	2.350	2.476		T dist	0.999	
A-SGC (8%) 5	2.375	2.344	2.432				

Table E1. Corelok vs. Parafilm t-test Values for Laboratory Compacted Samples

t-tests Us		Corel	ak ve	Significantly			
Laboratory Compacted Samples					Corelok vs. SSD		Different?
Sample	Corelok		SSD		<u>_</u>	D	(Act.>Theor.)
D-75 1	2.445	2.444	2.477		T-test	0.000	
D-75 2	2.442	2.436	2.473		Theor.	2.262	Yes
D-75 3	2.423	2.420	2.460		Act.	7.693	103
D-75 4	2.444	2.431	2.472		T dist	1.000	
D-75 5	2.444	2.430	2.474				
BM2-20 1	2.304	2.277	2.376		T-test	0.001	
BM2-20 2	2.319	2.306	2.373		Theor.	2.262	Yes
BM2-20 3	2.355	2.348	2.393		Act.	5.109	105
BM2-20 4	2.300	2.289	2.368		T dist	1.000	
BM2-20 5	2.319	2.296	2.376	}			
				-			
BM2-75 1	2.409	2.386	2.446	ļ	T-test	0.000	ļ
BM2-75 2	2.419	2.396	2.445		Theor.	2.262	Yes
BM2-75 3	2.405	2.370	2.448		Act.	5.839	105
BM2-75 4	2.428	2.396	2.460		T dist	1.000	
BM2-75 5	2.424	2.389	2.460				
				-			
BM2-SGC (8-10%) 1	2.323	2.295	2.367		T-test	0.000	
BM2-SGC (8-10%) 2	2.316	2.282	2.367		Theor.	+	i yes i
BM2-SGC (8-10%) 3	2.332	2.296	2.374		Act.	7.879	105
BM2-SGC (8-10%) 4	2.335	2.301	2.374		T dist	1.000	
BM2-SGC (8-10%) 5	2.325	2.298	2.368				
				-			
BM2-SGC (4%) 1	2.488	2.470	2.502	1	T-test		-
BM2-SGC (4%) 2	2.478	2.460	2.494		Theor.		1 Y AC
BM2-SGC (4%) 3	2.478	2.462	2.497			6.196	4
BM2-SGC (4%) 4	2.482	2.466	2.502		T dist	1.000	l
BM2-SGC (4%) 5	2.476	2.459	2.497	J			
		T		7			
A-SGC (8%) 1	2.397	2.358	2.468	1	T-test		-
A-SGC (8%) 2	2.381	2.346	2.435		Theor.		i yes
A-SGC (8%) 3	2.396	2.343	2.460		Act.	7.674	-
A-SGC (8%) 4	2.413	2.350	2.476		T dist	1.000	}
A-SGC (8%) 5	2.375	2.344	2.432	<u> </u>			

Table E2. Corelok vs. SSD t-test Values for Laboratory Compacted Samples

t-t	ests Using (G _{mb} Values		-		Significantly	
	Field Cut Samples				Corelok vs. Parafilm		Different?
Sample	Corelok	Parafilm	SSD				(Act.>Theor.)
D-1.25" 1	2.305	2.265	2.324		T-test	0.003	
D-1.25" 2	2.277	2.249	2.299		Theor.	2.262	Yes
D-1.25" 3	2.286	2.254	2.309		Act.	4.107	1 65
D-1.25" 4	2.310	2.291	2.330		T dist	0.998	
D-1.25" 5	2.289	2.271	2.314			-	
				_			
BM2-2" 1	2.347	2.339	2.393		T-test	0.171	
BM2-2" 2	2.363	2.349	2.392		Theor.	2.262	No
BM2-2" 3	2.315	2.309	2.356		Act.	1.488	INU
BM2-2" 4	2.333	2.336	2.373		T dist	0.868	
BM2-2" 5	2.327	2.327	2.373				
				•			
BM2-6" 1	2.421	2.308	2.408		T-test	0.000	
BM2-6" 2	2.446	2.338	2.440		Theor.	2.262	Yes
BM2-6" 3	2.437	2.324	2.428		Act.	6.547	165
BM2-6" 4	2.449	2.343	2.444		T dist	1.000	
BM2-6" 5	2.448	2.371	2.440		· · · · · · · · · · · · · · · · · · ·		
				•			
A-6" 1	2.440	2.408	2.455		T-test	0.002	
A-6" 2	2.438	2.423	2.447		Theor.	2.262	Var
A-6" 3	2.406	2.371	2.437		Act.	4.223	Yes
A-6" 4	2.356	2.327	2.405		T dist	0.998	
A-6" 5	2.454	2.434	2.469		· · · · · · · · · · · · · · · · ·		

 Table E3. Corelok vs. Parafilm t-test Values for Field Cut Samples

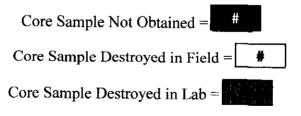

t-t	ests Using (G _{mb} Values			Significantly	
	Samples	Corelok	vs. SSD	Different?		
Sample	Corelok	Parafilm	SSD			(Act.>Theor.)
D-1.25" 1	2.305	2.265	2.324	T-test	0.000	
D-1.25" 2	2.277	2.249	2.299	Theor.	2.262	Yes
D-1.25" 3	2.286	2.254	2.309	Act.	7.581	105
D-1.25" 4	2.310	2.291	2.330	T dist	1.000	
D-1.25" 5	2.289	2.271	2.314			
BM2-2" 1	2.347	2.339	2.393	T-test	0.000	
BM2-2" 2	2.363	2.349	2.392	Theor.	2.262	Yes
BM2-2" 3	2.315	2.309	2.356	Act.	6.002	105
BM2-2" 4	2.333	2.336	2.373	T dist	1.000	
BM2-2" 5	2.327	2.327	2.373			
BM2-6" 1	2.421	2.308	2.408	T-test	0.004	
BM2-6" 2	2.446	2.338	2.440	Theor.	2.262	Yes
BM2-6" 3	2.437	2.324	2.428	Act.	3.809	105
BM2-6" 4	2.449	2.343	2.444	T dist	0.997	
BM2-6" 5	2.448	2.371	2.440			
A-6" 1	2.440	2.408	2.455	T-test	0.031	
A-6" 2	2.438	2.423	2.447	Theor.	2.262	Yes
A-6" 3	2.406	2.371	2.437	Act.	2.557	105
A-6" 4	2.356	2.327	2.405	T dist	0.976]]
A-6" 5	2.454	2.434	2.469			

Table E4. Corelok vs. SSD t-test Values for Field Cut Samples

Appendix F:

Field Study Data and Results

Legend

S0727011

Rice =

5074	/011					Nice	2.400
	ID	Initial Weight (grams) 447.4	Sealed Submerged Weight (grams) 237.9	Weight After Submersion (grams) 447.5	Bulk Specific Gravity 2.199	Air Voids (%)	Average Air Voids (%) 10.6
	4	650.9	352.3		2.199		
	2	754.0		650.9		9.2	9.2
	3		420.0	754.1	2.302	6.2	6.2
Q	4 5	678.8	375.2	678.8	2.284	7.0	6.9
rel		576.1	310.2	576.1	2.220	9.6	9.4
CoreLok	6		ļ			1	
\cup	7	447.6	026.0	447.6	0.100	10.0	
		447.5	236.8	447.6	2.190	10.8	
	2	650.9	352.7	650.8	2.231	9.1	
	3	754.1	420.0	754.1	2.303	6.2	
	4	678.8	375.2	678.9	2.285	6.9	
	5	576.1	311.4	576.1	2.229	9.2	
	6 7						
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	447.6	248.6	450.0	2.222	9.5	9.6
	2	650.9	364.5	654.2	2.222	9.5 8.5	8.5
66	3	754.1	428.6	755.0	2.247	5.9	6.0
Ē	4	678.8	384.5	680.1	2.310	6.5	6.6
	5	576.1	322.3	578.0	2.253	8.2	
Ĕ	6	570.1	522.5	576.0	2.235	0.2	8.3
AASHTO T 166	7						
A	1	447.7	247.6	449.5	2.217	9.7	
	2	651.2	363.6	653.6	2.246	8.5	
	3	754.2	428.4	755.3	2.307	6.0	
	4	679.0	383.8	680.2	2.291	6.7	
	5	576.4	322.5	578.5	2.252	8.3	
	6 7						
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
ent	1	135.4	3.4	138.8	2.224	9.4	1.5
Ã	2	137.8	3.4	141.2	2.263	7.8	3.8
ar	3	138.2	3.4	141.6	2.269	7.6	6.5
cle	4	142.3	3.4	145.7	2.335	4.9	8.8
n N	5	138.8	3.4	142.2	2.279	7.2	11.7
P~~4	6 7						

S0820013

CoreLok

AASHTO T 166

Nuclear Density

4 5

6

136.0 134.6 131.5 129.6

-1.0 -1.0

-1.0

133.6 130.5 128.6

2.141

2.091 2.061

Rice	=
------	---

7.6 9.7 11.0

9.0

12.0

0013					Rice =	2.316
ĬD	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
1	470.4	218.2	470.3	1.913	17.4	17.2
2	411.1	198.5	411.0	1.990	14.1	14.2
3	467.1	226.2	467.2	1.991	14.0	14.1
4	623.2	325.1	623.2	2.136	7.8	7.7
5	633.1	327.5	633.1	2.116	8.6	8.6
6	495.0	245.1	494.9	2.031	12.3	12.3
			1			
1	470.4	219.1	470.4	1.920	17.1	
2	411.1	197.8	411.1	1.985	14.3	
3	467.2	225.8	467.2	1.987	14.2	
4	623.2	325.2	623.2	2.138	7.7	1
5	633.1	327.6	633.1	2.116	8.6	
6	495.0	244.9	495.1	2.030	12.3	
				<u>.</u>		
ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	470.4	234.4	(grams) 475.1	-	15.6	15.0
1 2	411.1	234.4	413.8	<u>1.954</u> 2.030	15.6	<u>15.7</u> 12.6
3	467.2	238.7	413.8	2.030	12.5	
4	623.2	334.5	624.4	2.014	7.2	13.0 7.2
5	633.1	337.0	634.6	2.130	8.1	8.2
6	495.0	256.7	496.9	2.061	11.0	<u>0.2</u> 11.1
	475.0	250.7	470.7	2.001	11.0	11.1
1	470.5	234.6	475.7	1.951	15.7	
2	411.0	210.8	414.3	2.020	12.8	
3	467.3	238.5	470.5	2.014	13.0	· · · · · · · · · · · · · · · · · · ·
4	623.2	334.9	625.2	2.147	7.3	
5	633.2	336.9	634.9	2.125	8.3	
6	495.1	256.5	497.0	2.059	11.1	
ID	Field Nuclear	Correction Factor (pcf)	Corrected Nuclear	Bulk Specific	Air Voids (%)	Joint Distance
	Density (pcf) 124.5	-1.0	Density (pcf) 123.5	Gravity 1.979		(feet)
2	124.3	-1.0	123.5	2.082	14.5	0.0
	1 1.00.7 1	-1.V	147.7	2.004	10.1	I I.V
						3.0
<u> </u>	133.4 136.0	-1.0	132.4 135.0	2.122 2.163	8.4 6.6	3.0 6.0

\$1030011 (Problem)

S1030)011 (F	Problem)				Rice =	2.455
	IÐ	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	409.0	219.6	408.9	2.233	9.0	8.7
	2	497.8	267.1	497.5	2.218	9.7	9.7
	3	667.3	366.7	667.1	2.269	7.6	7.5
¥	4	799.6	447.8	799.5	2.315	5.7	5.7
Lo	5	680.0	378.1	679.8	2.302	6.2	6.2
CoreLok	6	602.4	332.7	602.2	2.286	6.9	6.7
ŭ	7						
	1	408.8	221.1	408.8	2.251	8.3	
	2	497.4	267.0	497.3	2.218	9.7	
	3	667.1	367.1	667.0	2.272	7.5	
	4	799.5	447.5	799.4	2.314	5.7	[]
	5	679.7	378.5	679.7	2.306	6.1	
	6	602.2	333.6	602.3	2.295	6.5	
	7			· · · · · ·			
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	408.9	230.3	410.0	2.275	7.3	7.6
_	2	497.4	279.3	499.2	2,262	7.9	8.0
AASHTO T 166	3	667.0	380.9	669.9	2.308	6.0	6.0
1	4	799.4	457.3	800.3	2,331	5.1	5.2
0	5	679.7	387.9	680.6	2.322	5.4	5.6
Ē	6	602.0	342.5	603.2	2.309	5.9	6.1
SH	7		·····		<u> </u>		
Y	1	408.3	229.3	409.7	2.263	7.8	
•	2	496.4	278.5	498.4	2.257	8.0	
	3	665.5	379.4	668.1	2.305	6.1	
	4	798.4	456.4	799.9	2.324	5.3	
	5	678.7	386.6	679.8	2.315	5.7	
	6	600.8	340.9	602.0	2.301	6.3	
	7						
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
sua	1	142.6	3.4	146.0	2.340	4.7	1.0
ă	2	141.7	3.4	145.1	2.325	5.3	3.0
ar	3	142.5	3.4	145.9	2.338	4.8	6.0
cle	4	142.4	3.4	145.8	2.337	4.8	9.0
j Z	5	139.9	3.4	143.3	2.296	6.5	11.0
F -1	6	137.6	3.4	141.0	2.260	8.0	12.0
	-		· · · · · · · · · · · · · · · · · · ·				Т — — — — — — — — — — — — — — — — — — —

S0716022

Rice	=

2.410 Sealed Weight Initial Bulk Air Voids Submerged After Average Air ID Weight Specific Weight Submersion Voids (%) (%) (grams) Gravity (grams) (grams) 643.4 2.175 9.8 9.7 341.1 643.4 1 583.6 310.5 583.5 2.189 9.2 9.3 2 470.9 244.3 470.9 3 2.136 11.4 11.4 519.2 268.6 519.2 2.125 CoreLok 11.8 11.7 4 273.2 2.207 5 511.1 511.1 8.4 8.4 6 638.9 326.0 638.9 2.085 13.5 13.4 643.4 341.9 643.4 2.180 9.5 1 583.5 310.0 583.5 2.184 9.4 2 470.9 244.0 470.8 2.135 3 11.4 4 519.2 269.0 519.1 2.129 11.6 273.2 2.207 5 511.1 511.0 8.4 638.9 326.6 638.9 2.089 6 13.3 7 Saturated Submerged Bulk Dry Weight Surface Dry Air Voids Average Air ID Weight Specific Weight Voids (%) (grams) (%) (grams) Gravity (grams) 353.6 643.4 645.5 2.204 1 8.5 8.5 2 583.5 322.6 585.8 2.217 8.0 8.1 **AASHTO T 166** 473.5 470.8 255.1 2.156 10.6 10.6 3 519.1 282.1 522.1 10.3 4 2.163 10.2 5 282.0 512.6 511.0 2.216 8.1 8.0 638.9 346.8 6 648.6 2.117 12.2 12.2 643.4 354.0 645.6 2.206 8.4 1 322.5 2 583.6 586.0 2.215 8.1 255.1 3 470.8 473.7 2.154 10.6 519.1 282.6 522.2 4 2.167 10.1 5 510.8 281.8 512.3 2.216 8.0 638.8 347.0 648.8 2.117 12.2 6 Field Corrected Bulk Joint Correction **Air Voids** IÐ Nuclear Nuclear Specific Distance **Nuclear Density** Factor (pcf) (%) Density (pcf) Density (pcf) Gravity (feet) 143.9 0.6 144.5 2.316 3.9 1 1.0 139.8 0.6 140.4 2.250 2 6.6 3.0 141.6 0.6 142.2 2.279 3 5.4 6.0 142.4 2.292 4 0.6 143.0 4.9 9.0 5 140.6 0.6 141.2 2.263 6.1 11.0 6 135.2 0.6 135.8 2.176 9.7 12.0 7

D051	9011					Rice =	2.446
, ,	ID	Initial Weight (grams)	Sealed Submerged Weight	Weight After Submersion	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
		548.3	(grams) 284.0	(grams) 548.2	2.127	13.0	13.1
	2	552.2	298.4	552.2	2.127	8.8	8.9
	3	622.6	339.9	622.7	2.250	7.9	8.9
¥	4	649.9	359.8	649.9	2.283	6.7	6.8
CoreLok	5	636.1	349.7	636.0	2.203	7.2	7.1
re	6	685.1	373.7	685.2	2.245	8.2	8.2
J	7	00011	5,5.7	005.2		0.2	0.2
	1	548.1	283.3	548.0	2.122	13.2	
	2	552.0	298.0	552.1	2.229	8.9	[
	3	622.4	339.3	622.4	2.249	8.1	
	4	650.7	358.7	650.7	2.277	6.9	
	5	636.0	349.9	635.9	2.272	7.1	
	6	685.0	373.6	685.1	2.245	8.2	
	7	00010	57510	005.1	2.2-1.2	0,2	
	· · ·		I		· ····		
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
		548.1	299.3	552.9	2.161	11.6	11.7
	2	552.0	307.7	553.4	2.247	8.2	8.2
AASHTO T 166	3	622.4	350.8	624.8	2.272	7.1	7.1
Γ1	4	650.7	368.2	651.1	2.300	6.0	6.1
5	5	636.0	360.2	638.2	2.288	6.5	6.5
Ĕ	6	685.0	384.7	687.6	2.260	7.5	7.6
SB	7				2.201		7.0
	1	548.1	299.5	553.7	2.156	11.8	
A	2	551.5	307.8	553.5	2.245	8.2	
	3	622.5	350.1	624.2	2.243	7.2	
	4	650.4	368.3	651.7	2.295	6.2	
	5	635.6	359.7	637.6	2.295	6.5	
	6	684.9	384.1	687.1	2.260	7.6	
	7						
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
	1	135.7	-0.8	134.9	2.162	11.6	0.0
e :	2	142.0	-0.8	141.2	2.263	7.5	1.0
ar	3	142.5	-0.8	141.7	2.271	7.2	3.0
cle	4	145.0	-0.8	144.2	2.311	5.5	6.0
Ĩ,	5	143.4	-0.8	142.6	2.285	6.6	9.0
	6	145.0	-0.8	144.2	2.311	5.5	11.0
	7						

D0820011 (Problem)

D082	0011 (Problem)				Rice =	2.465
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	596.0	309.4	596.1	2.123	13.9	13.8
	2	547.0	292.3	547.0	2.199	10.8	10.6
	3	589.2	327.0	589.3	2.300	6.7	6.8
k	4	678.9	363.5	678.9	2.195	11.0	10.9
Ţ	5	729.0	404.3	729.1	2.288	7.2	7.0
CoreLok	6	648.8	322.8	648.8	2.028	17.7	17.6
Ŭ	7					1	
	1	596.1	310.0	596.1	2.127	13.7	1
	2	547.1	292.9	547.1	2.206	10.5	1 1
	3	589.3	326.8	589.3	2.297	6.8	
	4	678.9	364.2	679.0	2.199	10.8	
	5	730.5	406.2	730.4	2.298	6.8	
	6	648.8	323.6	648.8	2.033	17.5	
	7	a a .					
	HD	Dry Weight	Submerged Weight	Saturated Surface Dry	Bulk	Air Voids	Average Air
		(grams)	-	Weight	Specific	(%)	Voids (%)
			(grams)	(grams)	Gravity		
	1	596.0	328.0	602.6	2.170	12.0	11.8
5	2	546.9	303.0	548.8	2.225	9.7	9.7
16	3	589.2	334.7	589.9	2.309	6.3	6.4
E	4	678.9	379.5	681.8	2.246	8.9	9.1
0	5	729.1	421.9	736.3	2.319	5.9	5.7
L	6	648.8	346.4	657.2	2.088	15.3	11.5
S	7						
AASHTO T 166	1	596.0	329.0	602.5	2.179	11.6	
4	2	547.0	302.6	548.4	2.225	9.7	
	3	589.1	334.5	589.8	2.307	6.4	
	4	678.8	379.4	683.1	2.235	9.3	
	5	730.5	417.9	731.4	2.330	5.5	
	6	800.2	450.3	802.1	2.275	7.7	
	7						
		Field		Corrected	Bulk		Joint
	ID	Nuclear	Correction	Nuclear	Specific	Air Voids	1 1
<u>A</u>	10	Density (pcf)	Factor (pcf)		-	(%)	Distance
Nuclear Density	1	140.0	0.8	Density (pcf) 140.8	Gravity 2.256	0 5	(feet)
	2	140.0	0.8	140.8	2.236	<u>8.5</u> 6.3	0.0
	3	145.4	0.8	144.2			1.0
	4	140.1	0.8	140.9	2.354	4.5 7.3	3.0
)n	5	141.8	0.8	142.0	2.285		6.0
Z	6	143.9	0.8		2.319	5.9	9.0
	7	124.0	0.0	125.4	2.010	18.5	11.0
	/				l		

Rice =

2.546

165

Initial IDInitial Weight (grams)Sealed SubmergedWeight After Submersion (grams)Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
2 479.5 248.6 479.6 2.132	16.3	14.6
3 600.5 328.2 600.6 2.254	11.5	11.5
4 679.6 379.0 679.7 2.307	9.4	9.3
4 679.6 379.0 679.7 2.307 5 729.3 402.1 729.2 2.271 6 755.4 419.0 755.5 2.289	10.8	10.4
6 755.4 419.0 755.5 2.289	10.1	9.9
2 479.7 257.3 479.6 2.217	12.9	
3 600.6 327.8 600.6 2.250	11.6	
4 679.6 379.4 679.7 2.312	9.2	
5 729.2 404.6 729.3 2.291	10.0	
6 755.4 420.9 755.6 2.301	9.6	
7	9.0	
	1	l
ID Dry Weight (grams) (grams)	Air Voids (%)	Average Air Voids (%)
2 479.7 273.6 484.2 2.278	10.5	10.7
3 600.6 344.3 605.4 2.300	9.7	9.7
4 679.7 393.6 682.7 2.351	7.7	7.7
5 729.2 418.7 733.1 2.319	8.9	9.0
6 755.4 435.0 759.5 2.328	8.6	8.6
2 477.7 213.0 484.2 2.278 3 600.6 344.3 605.4 2.300 4 679.7 393.6 682.7 2.351 5 729.2 418.7 733.1 2.319 6 755.4 435.0 759.5 2.328	0.0	0.0
2 479.6 274.5 485.9 2.269	10.9	
3 600.7 345.0 606.4 2.298	9.7	·
<u>4 679.7 394.3 683.4 2.351</u>	7.7	
5 729.4 419.2 734.1 2.316	9.0	
6 755.5 434.1 759.0 2.325	8.7	
7	0.7	
Field Corrected Bulk	Air Voids	Joint
ID Nuclear Correction Nuclear Specific	(%)	Distance (feet)
ID Nuclear Correction Nuclear Specific		
ID Nuclear Correction Nuclear Specific	(%)	(feet)
ID Nuclear Correction Nuclear Specific	(%) 17.3	(feet) 0.0
ID Nuclear Correction Nuclear Specific	(%) 17.3 15.5	(feet) 0.0 1.0
ID Nuclear Correction Nuclear Specific	(%) 17.3 15.5 13.5	(feet) 0.0 1.0 3.0
ID Nuclear Density (pcf) Correction Factor (pcf) Nuclear Density (pcf) Specific Gravity 138.8 -7.4 131.4 2.106 2 141.7 -7.4 134.3 2.152 3 144.9 -7.4 137.5 2.204 4 149.9 -7.4 142.5 2.284	(%) 17.3 15.5 13.5 10.3	(feet) 0.0 1.0 3.0 6.0

D0905012 (Random)

Rice =

D090:	5012 (I	kandom)				Rice =	2.540
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	602.1	325.7	602.1	2.229	12.5	13.4
	2	499.1	276.8	499.2	2.309	9.3	9.3
	3	511.4	278.2	511.3	2.254	11.5	11.8
0k	4	635.5	362.3	635.5	2.382	6.4	6.7
ľ	5	662.1	373.4	662.1	2.346	7.9	7.7
CoreLok	6 7		. <u>.</u>				
	1	602.1	319.9	602.2	2.182	14.3	
	2	499.2	276.7	499.4	2.311	9.2	
	3	511.3	276.5	511.3	2.237	12.1	
	4	635.5	360.8	635.5	2.369	7.0	
	5	662.0	374.7	662.1	2.356	7.5	
	6 7						
•	, '	L		I I		I	I
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	602.2	343.9	606.7	2.291	10.0	10.0
	2	499.2	288.1	500.9	2.346	7.9	8.1
99	3	511.3	293.3	515.3	2.303	9.5	9.6
[]	4	635.5	372.2	636.3	2.406	5.5	5.5
5	5	662.1	386.1	663.4	2.388	6.2	6.4
Ľ	6	002.1		005.7	2.500	<u>0.2</u>	0.1
AASHTO T 166	7						
A	1	603.1	343.7	607.0	2.291	10.0	
	2	499.3	287.5	501.3	2.335	8.3	
	3	511.7	292.1	514.4	2.302	9.6	
	4	635.4	372.2	636.5	2.404	5.6	
	5	661.9	385.4	663.4	2.381	6.5	· · · · ·
	6 7						
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
en	1	144.7	-7.4	137.3	2.200	13.6	10.2
Ģ	2	149.3	-7.4	141.9	2.274	10.7	6.3
2a.r	3	146.3	-7.4	138.9	2.226	12.6	3.6
Icle	4	155.4	-7.4	148.0	2.372	6.8	6.7
Ž	5	151.4	-7.4	144.0	2.308	9.4	5.4
	6 7						

Rice =

	[Initial	Sealed	Weight	Bulk		
	ID	Weight	Submerged	After	Specific	Air Voids	Average Air
		(grams)	Weight	Submersion	Gravity	(%)	Voids (%)
	<u> </u>		(grams)	(grams)			
	1	745.9	407.3	745.9	2.245	8.1	8.1
	2	712.9	383.3	713.0	2.205	9.7	10.0
	3	707.1	383.0	707.1	2.224	8.9	9.0
ok	4	721.0	397.9	721.0	2.276	6.8	7.1
el	5	767.0	431.5	767.1	2.332	4.5	4.4
CoreLok	6	698.8	386.3	698.8	2.282	6.6	6.3
	7	613.5	312.0	613.4	2.077	14.9	14.8
	1	745.9	407.4	746.0	2.244	8.1	
	2	713.0	381.4	713.0	2.191	10.3	
	3	707.1	383.0	707.1	2.222	9.0	
	4	720.9	395.8	720.9	2.260	7.5	
	5	767.0	432.7	767.0	2.337	4.3	
	6	698.8	388.1	698.8	2.293	6.1	
	7	613.4	313.1	613.4	2.085	14.6	
	l			Saturated			
		Dry Weight	Submerged	Surface Dry	Bulk	Air Voids	Average Air
	ID	(grams)	Weight	Weight	Specific	(%)	Voids (%)
		(gi anis)	(grams)	(grams)	Gravity	(70)	V 01d3 (70)
	1	745.9	421.1	747.7	2.284	6.5	6.6
	2	712.9	396.3	715.0	2.237	8.4	8.5
99	3	707.1	395.6	709.0	2.256	7.6	7.6
AASHTO T 166	4	720.9	409.0	722.3	2.301	5.8	5.8
	5	767.0	442.2	767.4	2.359	3.4	3.4
Ĭ	6	698.8	398.2	699.2	2.322	4.9	4.9
HS	7	613.3	337.5	622.9	2.149	12.0	11.9
V	1	745.8	420.7	747.9	2.279	6.7	
◄	2	713.1	395.5	715.2	2.231	8.7	
	3	707.2	395.4	709.0	2.255	7.7	
	4	721.0	409.0	722.4	2.301	5.8	
	5	767.0	442.6	767.5	2.361	3.3	
	6	699.0	398.3	699.4	2.321	4.9	
	7	613.5	337.3	622.1	2.154	11.8	
	I	Field		Commented	Bulk	1	Joint
	m	Field	Correction	Corrected		Air Voids	
Nuclear Density	ID	Nuclear	Factor (pcf)	Nuclear	Specific	(%)	Distance
	<u>-</u>	Density (pcf)		Density (pcf)	Gravity		(feet)
	1	140.6	-0.1	140.5	2.252	7.8	0.0
	2	141.3	-0.1	141.2	2.263	7.3	1.0
ea	3	140.2	-0.1	140.1	2.245	8.1	3.0
nc]	4	142.5	-0.1	142.4	2.282	6.5	6.0
Ź	5	145.3	-0.1	145.2	2.327	4.7	9.0
	6	143.1	-0.1	143.0	2.292	6.2	11.0
	7	135.1	-0.1	135.0	2.163	11.4	12.0

D0920012 (Random)

7

Rice =

Sealed Weight Bulk Initial Air Voids Average Air After Submerged ID Weight Specific (%) Voids (%) Submersion Weight Gravity (grams) (grams) (grams) 2.208 9.6 9.6 658.0 353.9 658.0 1 8.3 8.2 2 693.2 377.6 693.2 2.242 595.1 2.185 10.5 10.4 595.2 316.5 3 2.221 376.9 **697**.1 9.0 9.1 697.3 CoreLok 4 5.1 5 564.2 314.2 564.1 2.315 5.2 6 7 658.0 2.206 9.7 658.0 353.2 1 693.2 377.2 693.1 2.239 8.3 2 316.9 595.2 2.189 10.4 595.1 3 2.219 697.1 376.5 697.0 9.1 4 314.4 564.2 2.318 5.1 564.2 5 6 Saturated Bulk Submerged **Dry Weight** Surface Dry Air Voids Average Air IÐ Weight Specific Voids (%) Weight (grams) (%) (grams) Gravity (grams) 658.0 364.8 659.9 2.230 8.7 8.8 1 693.2 389.2 694.8 7.1 7.2 2.268 2 **AASHTO T 166** 2.229 3 595.1 329.5 596.5 8.7 8.8 697.0 388.7 698.4 2.251 7.8 8.0 4 564.2 320.8 564.4 5.2 5.3 5 2.316 6 364.2 8.9 657.9 660.0 2.224 1 388.5 694.5 2 692.7 2.264 7.3 329.4 594.9 596.5 2.227 8.8 3 696.4 387.7 698.1 2.244 8.1 4 5.4 564.0 320.4 564.5 2.311 5 6 Joint Field Corrected Bulk **Air Voids** Correction ID Nuclear Nuclear Specific Distance Factor (pcf) (%) **Nuclear Density** Density (pcf) Density (pcf) Gravity (feet) 7.7 2.253 140.7 -0.1 140.6 5.3 1 139.2 139.1 2.229 8.7 10.8 2 -0.1 139.7 139.6 2.237 -0.1 8.4 0.8 3 141.7 -0.1 141.6 2.269 7.1 9.5 4 148.1 148.0 2.372 2.9 2.7 5 -0.1 6

2,442

D0927011 (Random)

Rice	=
------	---

D092'	7011 (I	Random)				Rice =	2.231
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	2	627.9	316.8	627.9	2.060	7.7	7.5
	3	487.6	217.9	487.6	1.851	17.0	17.0
ok	4	586.5	289.0	586.6	2.015	9.7	9.7
eĽ	5	580.6	287.3	580.7	2.023	9.3	9.3
CoreLok	6 7						
	2	627.9	318.0	627.9	2.068	7.3	
	3	487.6	217.9	487.9	1.852	17.0	
	4	586.5	289.0	586.6	2.015	9.7	
	5	580.7	287.4	580.7	2.024	9.3	ļ
	6						
	7						
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
9	2	628.0	331.5	631.5	2.093	6.2	6.2
16	3	487.6	250.2	501.7	1.939	13.1	13.3
H	4	586.6	306.6	593.5	2.045	8.4	8.3
2	5	580.7	304.5	587.0	2.056	7.9	7.8
AASHTO T 166	6 7						
4	2	628.5	332.1	632.5	2.092	6.2	
	3	490.3	249.4	503.7	1.928	13.6	
	4	588.5	307.5	594.9	2.048	8.2	
	5	581.9	305.3	588.2	2.057	7.8	
	6 7						`
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
	:	139.7	-2.7	137.0	2.196	1.6	6.9
	2	139.4	-2.7	136.7	2.191	1.8	4.4
	3	135.2	-2.7	132.5	2.123	4.8	0.2
ıclı	4	137.9	-2.7	135.2	2.167	2.9	8.0
ź	5	136.5	-2.7	133.8	2.144	3.9	7.7
	6		1	1		I	1

Rice =

2.231 Sealed Weight Initial Bulk Air Voids Submerged After Average Air ID Weight Specific Weight Submersion (%) Voids (%) Gravity (grams) (grams) (grams) 1.791 19.7 19.7 429.3 183.3 429.4 1 376.3 174.3 376.3 1.922 13.9 14.1 2 451.9 221.1 451.9 2.013 9.8 10.1 3 4 503.9 247.8 503.9 2.017 9.6 9.6 CoreLok 2.036 534.5 265.7 534.5 8.7 8.7 5 554.7 274.3 554.6 2.024 9.3 9.3 6 7 429.4 183.7 429.4 1.792 19.7 1 173.0 376.3 1.909 2 376.3 14.4 1.999 219.9 451.9 10.4 451.9 3 247.8 503.9 2.016 9.6 503.9 4 5 534.5 266.0 534.5 2.040 8.6 554.5 274.5 554.6 2.024 9.3 6 Saturated Submerged Bulk Dry Weight Surface Dry **Air Voids** Average Air ID Weight Specific Weight (%) Voids (%) (grams) Gravity (grams) (grams) 219.5 429.3 1.911 444.1 14.3 14.3 1 193.1 383.7 2 376.3 1.974 11.5 11.0 **AASHTO T 166** 451.9 236.6 457.8 2.043 8.4 8.4 3 508.8 503.8 263.7 2.055 7.9 7.9 4 280.2 5 534.5 539.0 2.065 7.4 7.5 554.5 291.3 560.9 2.057 7.8 7.7 6 429.4 221.3 445.6 1.914 14.2 1 196.3 384.6 2 376.3 1.998 10.4 457.5 3 451.9 236.5 2.045 8.3 508.6 7.9 503.9 263.3 2.054 4 534.6 280.3 539.3 2.064 7.5 5 555.1 291.1 560.1 7.5 2.064 6 Field Bulk Corrected Joint Air Voids Correction ID Specific Distance Nuclear Nuclear Factor (pcf) (%) **Nuclear Density** Density (pcf) Density (pcf) Gravity (feet) -2.7 119.9 1.921 13.9 0.0 1 122.6 4.7 2 135.4 -2.7 132.7 2.127 1.0 134.9 -2.7 132.2 2.119 5.0 3.0 3 2.176 138.5 -2.7 135.8 2.5 6.0 4 -2.7 2.181 2.2 9.0 5 138.8 136.1 132.5 -2.7 129.8 2.080 6.8 11.0 6

D0412021 (Problem)

D041 2	2021 ()	Problem)				Rice =	2.353
	ID	Initial Weight (grams)	Sealed Submerged Weight	Weight After Submersion	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
			(grams)	(grams)			
	1	792.3	420.4	792.3	2.168	7.8	7.9
	2	736.1	390.8	736.1	2.172	7.7	7.7
	3	728.3	384.0	728.3	2.155	8.4	8.4
CoreLok	4	674.7	354.9	674.6	2.153	8.5	8.6
eL	5	614.7	316.5	614.6	2.107	10.5	10.5
Or	6	595.0	314.3	595.0	2.168	7.9	7.9
0	7	799.6	422.5	799.6	2.158	8.3	8.3
	1	792.3	420.3	792.3	2.168	7.9	(
	2	736.1	391.0	736.1	2.173	7.6	
	3	728.3	383.5	728.2	2.154	8.5	
	4	674.6	354.4	674.6	2.150	8.6	
	5	614.6	316.5	614.6	2.107	10.5	
	6	595.0	313.7	595.0	2.164	8.0	
	7	799.6	422.2	799.6	2.156	8.4	[]
	ID	Dry Weight	Submerged Weight	Saturated Surface Dry	Bulk Specific	Air Voids	Average Air
	10	(grams)	(grams)	Weight	Gravity	(%)	Voids (%)
			·····	(grams)	Gravity		
	1	792.3	436.3	794.2	2.214	5.9	6.0
9	2	736.1	404.2	737.3	2.210	6.1	6.1
AASHTO T 166	3	728.2	394.5	729.4	2.174	7.6	7.7
T	4	674.6	366.3	676.5	2.175	7.6	7.5
0	5	614.6	329.2	616.6	2.138	9.1	9.3
ΗI	6	595.0	324.4	596.4	2.188	7.0	7.1
[SN	7	799.6	437.7	802.6	2.191	6.9	<u>6.9</u>
Ψ	1	792.2	436.4	794.5	2.212	6.0	
	2	736.0	404.7	738.0	2.208	6.2	
	3	727.9	394.2	729.5	2.171	7.7	
	4	674.5	366.6	676.5	2.177	7.5	
	5	614.4	328.5	616.8	2.131	9.4	
	6	594.9	324.1	596.3	2.186	7.1	
	7	799.2	436.9	801.6	2.191	6.9	L
ty	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
SU	1	134.1	-2.9	131.2	2.103	10.6	0.0
Nuclear Density	2	135.5	-2.9	131.2	2.105	9.7	1.0
Ţ,	3	135.2	-2.9	132.3	2.120	9.9	3.0
le	4	132.7	-2.9	129.8	2.080	11.6	6.0
ŋ	5	132.9	-2.9	130.0	2.080	11.5	9.0
2	6	136.7	-2.9	133.8	2.083	8.9	11.0
	7	135.6	-2.9	132.7	2.144	9.6	12.0
	,	L 155.0	-2.7	194.1	4,121	9.0	12.0

2.436

172

ID Grams) Weight (grams) Weight (grams) Specific Gravity (%) Voids (%) 1 641.5 351.8 653.6 2.126 12.7 12.9 2 627.5 348.3 631.1 2.219 8.9 9.1 3 849.9 472.1 852.6 2.234 8.3 8.3 4 568.2 319.7 569.2 2.277 6.5 6.3 5 622.8 347.2 624.7 2.244 7.9 8.1 6 945.3 543.6 946.7 2.345 3.7 4.1 7		ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
Yere 3 850.1 458.5 850.0 2.208 9.3 9.3 4 568.3 308.0 568.3 2.237 8.2 8.0 5 622.8 335.0 622.8 2.212 9.2 8.9 6 945.2 532.1 945.4 2.324 4.6 4.4 7 2 6 343.6 627.5 2.190 10.1 3 3 850.0 459.1 849.9 2.212 9.2 4 3 850.0 459.1 849.9 2.212 9.2 4 4 568.3 309.0 568.2 2.247 7.8 5 622.8 336.7 622.8 2.326 8.6 6 945.4 533.4 945.3 2.332 4.3 7 7 8 945.3 2.332 4.3 1 641.5 351.8 659.2 2.277 6.5 6.3 2		1	641.6			2.084	14.4	14.5
Verture 4 568.3 308.0 568.3 2.237 8.2 8.0 5 622.8 335.0 622.8 2.212 9.2 8.9 6 945.2 532.1 945.4 2.324 4.6 4.4 7 -		2	627.8	334.7	627.6	2.191	10.1	10.1
Y 4 568.3 308.0 568.3 2.237 8.2 8.0 5 622.8 335.0 622.8 2.212 9.2 8.9 6 945.2 532.1 945.4 2.324 4.6 4.4 7 - - - - - - - 1 641.6 326.8 641.5 2.081 14.6 - - 2 627.6 334.6 627.5 2.190 10.1 -		3	850.1	458.5	850.0	2.208	9.3	9.3
I 641.6 326.8 641.5 2.081 14.6 2 627.6 334.6 627.5 2.190 10.1 3 850.0 459.1 849.9 2.212 9.2 4 568.3 309.0 568.2 2.247 7.8 5 622.8 336.7 622.8 2.226 8.6 6 945.4 533.4 945.3 2.332 4.3 7 7 7 7 7 7 1 641.5 351.8 653.6 2.126 12.7 12.9 2 627.5 348.3 631.1 2.219 8.9 9.1 3 849.9 472.1 852.6 2.234 8.3 8.3 4 568.2 319.7 569.2 2.277 6.5 6.3 5 622.8 347.2 624.7 2.345 3.7 4.1 7 7 7 9 8.1 6 945.	×		568.3	308.0	568.3	2.237	8.2	8.0
I 641.6 326.8 641.5 2.081 14.6 2 627.6 334.6 627.5 2.190 10.1 3 850.0 459.1 849.9 2.212 9.2 4 568.3 309.0 568.2 2.247 7.8 5 622.8 336.7 622.8 2.226 8.6 6 945.4 533.4 945.3 2.332 4.3 7 7 7 7 7 7 1 641.5 351.8 653.6 2.126 12.7 12.9 2 627.5 348.3 631.1 2.219 8.9 9.1 3 849.9 472.1 852.6 2.234 8.3 8.3 4 568.2 319.7 569.2 2.277 6.5 6.3 5 622.8 347.2 624.7 2.345 3.7 4.1 7 7 7 9 8.1 6 945.	Ľ	5	622.8	335.0	622.8	2.212	9.2	8.9
I 641.6 326.8 641.5 2.081 14.6 2 627.6 334.6 627.5 2.190 10.1 3 850.0 459.1 849.9 2.212 9.2 4 568.3 309.0 568.2 2.247 7.8 5 622.8 336.7 622.8 2.226 8.6 6 945.4 533.4 945.3 2.332 4.3 7 7 7 7 7 7 1 641.5 351.8 653.6 2.126 12.7 12.9 2 627.5 348.3 631.1 2.219 8.9 9.1 3 849.9 472.1 852.6 2.234 8.3 8.3 4 568.2 319.7 569.2 2.277 6.5 6.3 5 622.8 347.2 624.7 2.345 3.7 4.1 7 7 7 9 8.1 6 945.	le		945.2	532.1	945.4	2.324	4.6	4.4
I 641.6 326.8 641.5 2.081 14.6 2 627.6 334.6 627.5 2.190 10.1 3 850.0 459.1 849.9 2.212 9.2 4 568.3 309.0 568.2 2.247 7.8 5 622.8 336.7 622.8 2.226 8.6 6 945.4 533.4 945.3 2.332 4.3 7 7 7 7 7 7 10 Dry Weight (grams) Submerged Weight (grams) Saturated Surface Dry Weight (grams) Bulk Specific Gravity Air Voids (%) Average A Voids (% 1 641.5 351.8 653.6 2.126 12.7 12.9 2 627.5 348.3 631.1 2.219 8.9 9.1 3 849.9 472.1 852.6 2.234 8.3 8.3 4 568.2 319.7 569.2 2.217 6.5 6.3 5	Ŭ	7	· · · · · ·			· · · · ·		
3 850.0 459.1 849.9 2.212 9.2 4 568.3 309.0 568.2 2.247 7.8 5 622.8 336.7 622.8 2.226 8.6 6 945.4 533.4 945.3 2.332 4.3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 641.5 351.8 653.6 2.126 12.7 12.9 3 849.9 472.1 852.6 2.234 8.3 8.3 4 568.2 319.7 569.2 2.277 6.5 6.3			641.6	326.8	641.5	2.081	14.6	
3 850.0 459.1 849.9 2.212 9.2 4 568.3 309.0 568.2 2.247 7.8 5 622.8 336.7 622.8 2.332 8.6 6 945.4 533.4 945.3 2.332 4.3 7		2		334.6	627.5	2.190	10.1	
4 568.3 309.0 568.2 2.247 7.8 5 622.8 336.7 622.8 2.226 8.6 6 945.4 533.4 945.3 2.332 4.3 7		1	850.0	459.1	849.9	2.212	9.2	
5 622.8 336.7 622.8 2.226 8.6 6 945.4 533.4 945.3 2.332 4.3 7 2 2 33.4 945.3 2.332 4.3 7 2 33.4 945.3 2.332 4.3 7 2 33.4 945.3 2.332 4.3 1 641.5 351.8 653.6 2.126 12.7 12.9 2 627.5 348.3 653.6 2.126 12.7 12.9 3 849.9 472.1 852.6 2.234 8.3 8.3 4 568.2 319.7 569.2 2.277 6.5 6.3 5 622.8 347.2 624.7 2.244 7.9 8.1 6 945.3 543.6 946.7 2.345 3.7 4.1 7 6 655.1 2.117 13.1 2.22 3 850.1 372.8 853.0		<u> </u>		309.0	568.2	2.247	7.8	
6 945.4 533.4 945.3 2.332 4.3 7 0 0 0 0 0 0 0 1D Dry Weight (grams) Submerged Weight (grams) Saturated Surface Dry Weight (grams) Bulk Specific Gravity Air Voids (%) Average A Voids (%) 1 641.5 351.8 653.6 2.126 12.7 12.9 2 627.5 348.3 631.1 2.219 8.9 9.1 3 849.9 472.1 852.6 2.234 8.3 8.3 4 568.2 319.7 569.2 2.277 6.5 6.3 5 622.8 347.2 624.7 2.244 7.9 8.1 7 - - - - - - - 1 641.7 352.0 655.1 2.117 13.1 - 2 628.0 348.0 631.9 2.212 9.2 - 3 850.1 472.8 </th <th></th> <th>_</th> <th></th> <th></th> <th></th> <th>2.226</th> <th></th> <th></th>		_				2.226		
VICT Submerged (grams) Submerged (grams) Saturated Surface Dry Weight (grams) Bulk Specific Gravity Air Voids (%) Average A Voids (%) 1 641.5 351.8 653.6 2.126 12.7 12.9 2 627.5 348.3 631.1 2.219 8.9 9.1 3 849.9 472.1 852.6 2.234 8.3 8.3 4 568.2 319.7 569.2 2.277 6.5 6.3 5 622.8 347.2 624.7 2.244 7.9 8.1 6 945.3 543.6 946.7 2.345 3.7 4.1 7 - - - - - - 1 641.7 352.0 655.1 2.117 13.1 - 2 628.0 348.0 631.9 2.212 9.2 - 3 850.1 472.8 853.0 2.236 8.2 - 4 568.0 321.4						2.332		· · · · · · · · · · · · · · · · · · ·
VI Dry Weight (grams) Submerged Weight (grams) Saturated Surface Dry Weight (grams) Bulk Specific Gravity Air Voids (%) Average A Voids (%) 1 641.5 351.8 653.6 2.126 12.7 12.9 2 627.5 348.3 631.1 2.219 8.9 9.1 3 849.9 472.1 852.6 2.234 8.3 8.3 4 568.2 319.7 569.2 2.277 6.5 6.3 5 622.8 347.2 624.7 2.244 7.9 8.1 6 945.3 543.6 946.7 2.345 3.7 4.1 7								
ID Dry Weight (grams) Submerged Weight (grams) Surface Dry Weight (grams) Bulk Specific Gravity Air Voids (%) Average A Voids (%) 1 641.5 351.8 653.6 2.126 12.7 12.9 2 627.5 348.3 631.1 2.219 8.9 9.1 3 849.9 472.1 852.6 2.234 8.3 8.3 4 568.2 319.7 569.2 2.277 6.5 6.3 5 622.8 347.2 624.7 2.244 7.9 8.1 7 - - - - - - 1 641.7 352.0 655.1 2.117 13.1 - 2 628.0 348.0 631.9 2.212 9.2 - 3 850.1 472.8 853.0 2.236 8.2 - 4 568.0 321.4 569.6 2.288 6.1 - 5 623.4 345.6	[1		l <u></u>		· · · ·		
Y 1 641.5 351.8 653.6 2.126 12.7 12.9 2 627.5 348.3 631.1 2.219 8.9 9.1 3 849.9 472.1 852.6 2.234 8.3 8.3 4 568.2 319.7 569.2 2.277 6.5 6.3 5 622.8 347.2 624.7 2.244 7.9 8.1 6 945.3 543.6 946.7 2.345 3.7 4.1 7		ID		Weight	Surface Dry Weight	Specific	L	Average Air Voids (%)
VICE 2 627.5 348.3 631.1 2.219 8.9 9.1 3 849.9 472.1 852.6 2.234 8.3 8.3 4 568.2 319.7 569.2 2.277 6.5 6.3 5 622.8 347.2 624.7 2.244 7.9 8.1 6 945.3 543.6 946.7 2.345 3.7 4.1 7 - - - - - - - 1 641.7 352.0 655.1 2.117 13.1 -			641.5	251.9		2 126	12.7	12.0
Viscou 3 849.9 472.1 852.6 2.234 8.3 8.3 4 568.2 319.7 569.2 2.277 6.5 6.3 5 622.8 347.2 624.7 2.244 7.9 8.1 6 945.3 543.6 946.7 2.345 3.7 4.1 7 7 7 7 7 7 1 2 628.0 348.0 631.9 2.212 9.2 3 850.1 472.8 853.0 2.236 8.2 4 568.0 321.4 569.6 2.288 6.1 5 623.4 345.6 624.7 2.234 8.3 6 946.1 544.3 950.8 2.327 4.5 7 7 7 7 7 7 1 139.3 -2.2 137.1 2.197 9.8 0.0 1 139.3 -2.2 137.1 2.197							<u></u>	
2 628.0 348.0 631.9 2.212 9.2 3 850.1 472.8 853.0 2.236 8.2 4 568.0 321.4 569.6 2.288 6.1 5 623.4 345.6 624.7 2.234 8.3 6 946.1 544.3 950.8 2.327 4.5 7 7 7 7 7 7 7 10 Field Nuclear Density (pcf) Correction Factor (pcf) Corrected Density (pcf) Bulk Specific Gravity Air Voids (%) Joint Distance (feet) 1 139.3 -2.2 137.1 2.197 9.8 0.0 2 142.9 -2.2 140.7 2.255 7.4 1.0 3 141.4 -2.2 139.2 2.231 8.4 2.5 4 145.5 -2.2 143.3 2.296 5.7 5.5 5 145.2 -2.2 143.0 2.292 5.9 8.5 <th>8</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th><u>}</u></th> <th></th>	8						<u>}</u>	
2 628.0 348.0 631.9 2.212 9.2 3 850.1 472.8 853.0 2.236 8.2 4 568.0 321.4 569.6 2.288 6.1 5 623.4 345.6 624.7 2.234 8.3 6 946.1 544.3 950.8 2.327 4.5 7 Correction Factor (pcf) Corrected Nuclear Density (pcf) Air Voids (%) Joint Distance (%) 1 139.3 -2.2 137.1 2.197 9.8 0.0 2 142.9 -2.2 140.7 2.255 7.4 1.0 3 141.4 -2.2 139.2 2.231 8.4 2.5 4 145.5 -2.2 143.3 2.296 5.7 5.5 5 145.2 -2.2 143.0 2.292 5.9 8.5	Ŧ							
2 628.0 348.0 631.9 2.212 9.2 3 850.1 472.8 853.0 2.236 8.2 4 568.0 321.4 569.6 2.288 6.1 5 623.4 345.6 624.7 2.234 8.3 6 946.1 544.3 950.8 2.327 4.5 7 7 7 7 7 7 7 10 Field Nuclear Density (pcf) Correction Factor (pcf) Corrected Density (pcf) Bulk Specific Gravity Air Voids (%) Joint Distance (feet) 1 139.3 -2.2 137.1 2.197 9.8 0.0 2 142.9 -2.2 140.7 2.255 7.4 1.0 3 141.4 -2.2 139.2 2.231 8.4 2.5 4 145.5 -2.2 143.3 2.296 5.7 5.5 5 145.2 -2.2 143.0 2.292 5.9 8.5 <th></th> <th></th> <td></td> <td></td> <td></td> <td></td> <td>• · · · · · · · · · · · · · · · · · · ·</td> <td></td>							• · · · · · · · · · · · · · · · · · · ·	
2 628.0 348.0 631.9 2.212 9.2 3 850.1 472.8 853.0 2.236 8.2 4 568.0 321.4 569.6 2.288 6.1 5 623.4 345.6 624.7 2.234 8.3 6 946.1 544.3 950.8 2.327 4.5 7 Correction Factor (pcf) Corrected Nuclear Density (pcf) Air Voids (%) Joint Distance (%) 1 139.3 -2.2 137.1 2.197 9.8 0.0 2 142.9 -2.2 140.7 2.255 7.4 1.0 3 141.4 -2.2 139.2 2.231 8.4 2.5 4 145.5 -2.2 143.3 2.296 5.7 5.5 5 145.2 -2.2 143.0 2.292 5.9 8.5							· · · ·	
2 628.0 348.0 631.9 2.212 9.2 3 850.1 472.8 853.0 2.236 8.2 4 568.0 321.4 569.6 2.288 6.1 5 623.4 345.6 624.7 2.234 8.3 6 946.1 544.3 950.8 2.327 4.5 7 Correction Factor (pcf) Corrected Nuclear Density (pcf) Air Voids (%) Joint Distance (%) 1 139.3 -2.2 137.1 2.197 9.8 0.0 2 142.9 -2.2 140.7 2.255 7.4 1.0 3 141.4 -2.2 139.2 2.231 8.4 2.5 4 145.5 -2.2 143.3 2.296 5.7 5.5 5 145.2 -2.2 143.0 2.292 5.9 8.5	ΗS		943.5		940.7	2.545	5.7	4.1
2 628.0 348.0 631.9 2.212 9.2 3 850.1 472.8 853.0 2.236 8.2 4 568.0 321.4 569.6 2.288 6.1 5 623.4 345.6 624.7 2.234 8.3 6 946.1 544.3 950.8 2.327 4.5 7 Correction Factor (pcf) Corrected Nuclear Density (pcf) Air Voids (%) Joint Distance (%) 1 139.3 -2.2 137.1 2.197 9.8 0.0 2 142.9 -2.2 140.7 2.255 7.4 1.0 3 141.4 -2.2 139.2 2.231 8.4 2.5 4 145.5 -2.2 143.3 2.296 5.7 5.5 5 145.2 -2.2 143.0 2.292 5.9 8.5	Y	1	641.7	352.0	655.1	2.117	13.1	
3 850.1 472.8 853.0 2.236 8.2 4 568.0 321.4 569.6 2.288 6.1 5 623.4 345.6 624.7 2.234 8.3 6 946.1 544.3 950.8 2.327 4.5 7 7 7 7 7 7 1 139.3 -2.2 137.1 2.197 9.8 0.0 100 100 141.4 -2.2 137.1 2.197 9.8 0.0 1.0 1.0 3 141.4 -2.2 139.2 2.231 8.4 2.5 5.5 145.2 -2.2 143.0 2.292 5.9 8.5	A					the second se	<u>,</u>	1
4 568.0 321.4 569.6 2.288 6.1 5 623.4 345.6 624.7 2.234 8.3 6 946.1 544.3 950.8 2.327 4.5 7 7 7 7 7 7 7 ID Field Nuclear Density (pcf) Correction Factor (pcf) Corrected Density (pcf) Bulk Specific Density (pcf) Air Voids (%) Joint Distance (%) 1 139.3 -2.2 137.1 2.197 9.8 0.0 2 142.9 -2.2 140.7 2.255 7.4 1.0 3 141.4 -2.2 139.2 2.231 8.4 2.5 4 145.5 -2.2 143.3 2.296 5.7 5.5 5 145.2 -2.2 143.0 2.292 5.9 8.5								
6 946.1 544.3 950.8 2.327 4.5 7 6 946.1 544.3 950.8 2.327 4.5 7 7 7 7 7 7 7 7 10 Field Nuclear Density (pcf) Correction Factor (pcf) Corrected Density (pcf) Bulk Specific Density (pcf) Air Voids (%) Joint Distance (feet) 1 139.3 -2.2 137.1 2.197 9.8 0.0 2 142.9 -2.2 140.7 2.255 7.4 1.0 3 141.4 -2.2 139.2 2.231 8.4 2.5 4 145.5 -2.2 143.3 2.296 5.7 5.5 5 145.2 -2.2 143.0 2.292 5.9 8.5			568.0	321.4	569.6		6.1	
6 946.1 544.3 950.8 2.327 4.5 7 6 946.1 544.3 950.8 2.327 4.5 7 7 7 7 7 7 7 7 10 Field Nuclear Density (pcf) Correction Factor (pcf) Corrected Density (pcf) Bulk Specific Density (pcf) Air Voids (%) Joint Distance (feet) 1 139.3 -2.2 137.1 2.197 9.8 0.0 2 142.9 -2.2 140.7 2.255 7.4 1.0 3 141.4 -2.2 139.2 2.231 8.4 2.5 4 145.5 -2.2 143.3 2.296 5.7 5.5 5 145.2 -2.2 143.0 2.292 5.9 8.5					624.7			
ID Field Nuclear Density (pcf) Correction Factor (pcf) Corrected Nuclear Density (pcf) Bulk Specific Gravity Air Voids (%) Joint Distance (%) 1 139.3 -2.2 137.1 2.197 9.8 0.0 2 142.9 -2.2 140.7 2.255 7.4 1.0 3 141.4 -2.2 139.2 2.231 8.4 2.5 4 145.5 -2.2 143.3 2.296 5.7 5.5 5 145.2 -2.2 143.0 2.292 5.9 8.5			946.1	544.3	950.8		4.5	
ID Nuclear Density (pcf) Correction Factor (pcf) Nuclear Density (pcf) Specific Gravity Air Voids (%) Distance (feet) 1 139.3 -2.2 137.1 2.197 9.8 0.0 2 142.9 -2.2 140.7 2.255 7.4 1.0 3 141.4 -2.2 139.2 2.231 8.4 2.5 4 145.5 -2.2 143.3 2.296 5.7 5.5 5 145.2 -2.2 143.0 2.292 5.9 8.5		7						
1 139.3 -2.2 137.1 2.197 9.8 0.0 2 142.9 -2.2 140.7 2.255 7.4 1.0 3 141.4 -2.2 139.2 2.231 8.4 2.5 4 145.5 -2.2 143.3 2.296 5.7 5.5 5 145.2 -2.2 143.0 2.292 5.9 8.5 6 148.1 -2.2 145.9 2.338 4.0 10.5	ity	ID	Nuclear		Nuclear	Specific		Distance
2 142.9 -2.2 140.7 2.255 7.4 1.0 3 141.4 -2.2 139.2 2.231 8.4 2.5 4 145.5 -2.2 143.3 2.296 5.7 5.5 5 145.2 -2.2 143.0 2.292 5.9 8.5 6 148.1 -2.2 145.9 2.338 4.0 10.5	u a	1		-2.2	137.1	2.197	9.8	0.0
3 141.4 -2.2 139.2 2.231 8.4 2.5 4 145.5 -2.2 143.3 2.296 5.7 5.5 5 145.2 -2.2 143.0 2.292 5.9 8.5 6 148.1 -2.2 145.9 2.338 4.0 10.5	Ā	2	142.9	-2.2	140.7	2.255	7.4	1.0
4 145.5 -2.2 143.3 2.296 5.7 5.5 5 145.2 -2.2 143.0 2.292 5.9 8.5 6 148.1 -2.2 145.9 2.338 4.0 10.5	ar		<u> </u>					
5 145.2 -2.2 143.0 2.292 5.9 8.5 6 148.1 -2.2 145.9 2.338 4.0 10.5	cle							
6 1481 -22 1459 2338 40 105	n,							
	~	6	148.1	-2.2	145.9	2.338	4.0	10.5
								1

D051502A1

Rice =

1001	502A1					Rice -	2.41/
	ID 1	Initial Weight (grams) 427.1	Sealed Submerged Weight (grams) 217.5	Weight After Submersion (grams) 427.1	Bulk Specific Gravity 2.099	Air Voids (%)	Average Air Voids (%)
	-			L			
	2	485.5	252.4	485.4	2.142	11.4	11.8
	3	499.9	262.0	499.7	2.159	10.7	10.7
,ol	4	544.1	284.9	544.0	2.152	11.0	11.0
eL	5	531.3	279.6	531.1	2.167	10.4	10.3
CoreLok	6 7						
	1	427.1	216.7	427.1	2.091	13.5	
	2	485.4	250.4	485.3	2.123	12.2	
	3	499.7	261.8	499.6	2.158	10.7	
	4	544.0	284.6	543.9	2.151	11.0	
	5	531.1	279.8	530.9	2.169	10.2	
	6 7						
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	427.1	227.6	430.8	2.102	13.0	13.0
_	2	485.3	260.7	487.0	2.144	11.3	11.4
99	3	499.6	270.2	501.1	2.164	10.5	10.6
[]	4	543.9	292.7	545.2	2.154	10.9	11.0
0	5	530.9	287.2	532.4	2.165	10.4	10.5
AASHTO T 166	6 7						
Y	1	427.1	227.4	430.5	2.103	13.0	
A	2	484.8	259.8	486.5	2.139	11.5	
	3	499.0	269.2	500.7	2.156	10.8	
	4	542.8	291.6	544.4	2.147	11.2	
	5	530.5	286.9	532.1	2.164	10.5	· · · · · · · · · · · · · · · · · · ·
	6				· · · · · ·		
	7						
sity	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
Nuclear Density	1	127.8	3.3	131.1	2.101	13.1	1.0
	2	133.4	3.3	136.7	2.191	9.4	3.0
	3	134.0	3.3	137.3	2.200	9.0	6.0
	4	132.5	3.3	135.8	2.176	10.0	9.0
n N	5	136.3	3.3	139.6	2.237	7.4	11.0
	6						
	7						

D051602T1

Rice =

							
ok	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity 2.234	Air Voids (%)	Average Air Voids (%)
	1	626.5	339.8	626.5			
	2	607.2	324.8	607.2	2.199	13.6	13.7
	3	550.8	295.9	550.8	2.215	13.0	12.8
	4	478.5	254.6	478.5	2.198	13.7	13.6
eĽ	5	574.2	313.7	574.2	2.259	11.3	11.5
CoreLok	6 7						
	1	626.5	341.0	626.5	2.244	11.9	
	2	607.2	324.1	607.2	2.193	13.9	
	3	550.8	296.8	550.8	2.223	12.7	
	4	478.5	255.1	478.5	2.204	13.5	
	5	574.2	312.3	574.2	2.246	11.8	
	6 7	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	626.5	358.5	631.7	2.293	9.9	10.3
99	2	607.2	345.6	615.6	2.249	11.7	11.8
	3	550.8	314.2	556.6	2.272	10.8	10.9
	4	478.5	273.0	488.6	2.219	12.8	12.5
	5	574.2	331.2	578.3	2.324	8.7	8.9
AASHTO T 166	6 7	-					
	1	626.6	358.8	634.3	2.274	10.7	
	2	607.8	346.1	617.4	2.240	12.0	
1	3	551.1	314.5	557.8	2.265	11.0	
	4	479.0	272.1	486.2	2.237	12.1	
	5	574.2	331.1	578.9	2.317	9.0	
	6						
	7						
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
	1	147.8	-6.3	141.5	2.268	10.9	1.0
	2	147.3	-6.3	141.0	2.260	11.2	2.5
	3	146.6	-6.3	140.3	2.248	11.7	6.5
	4	146.5	-6.3	140.2	2.247	11.8	10.0
	5	148.1	-6.3	141.8	2.272	10.7	11.5
	6 7						

D051602T2

Rice =

D021	00212					Rice -	2.4/1
y	1D	Initial Weight (grams) 498.4	Sealed Submerged Weight (grams) 267.3	Weight After Submersion (grams) 498.2	Bulk Specific Gravity 2.215	Air Voids (%) 10.4	Average Air Voids (%)
	2	665.4	360.1	665.1	2.225	9.9	9.6
	3	784.6	436.9	784.4	2.298	7.0	7.1
	4	720.8	384.0	720.6	2.181	11.7	11.4
0	5	693.8	361.6	693.8	2.101	13.9	14.1
re	6	658.9	342.5	658.9	2.123	14.1	14.1
CoreLok	7	050.5	542.5	050.5	2.125	17.1	14.0
	1	498.2	267.8	498.1	2.219	10.2	
	2	665.1	362.1	664.9	2.241	9.3	
	3	784.4	436.1	784.2	2.293	7.2	
	4	720.6	386.3	720.4	2.197	11.1	
	5	693.8	360.1	693.8	2.120	14.2	
	6	658.9	341.8	658.8	2.121	14.1	
	7						
	ID	Dry Weight (grams)	Submerged Weight	Saturated Surface Dry Weight	Bulk Specific	Air Voids (%)	Average Air Voids (%)
		, u ,	(grams)	(grams)	Gravity	, , , , , , , , , , , , , , , , , , ,	, í
	1	498.1	281.5	503.2	2.247	9.1	9.1
	2	664.9	376.7	669.8	2.269	8.2	8.2
16(3	784.2	447.5	786.7	2.312	6.4	6.5
L	4	720.4	404.0	727.3	2.228	9.8	9.8
0	5	693.8	387.3	705.0	2.184	11.6	11.4
AASHTO T 166	6	658.8	365.6	669.1	2.171	12.2	12.8
S	7						
AA	1	498.3	281.2	503.0	2.247	9.1	
7	2	664.9	377.4	670.5	2.269	8.2	
	3	783.9	448.1	787.6	2.309	6.6	
	4	721.3	405.7	729.2	2.230	9.8	
	5	695.1	387.9	704.6	2.195	11.2	
	6	658.9	364.7	672.5	2.141	13.4	
	7						
Nuclear Density	IÐ	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
	1	140.1	-1.4	138.7	2.223	10.0	1.0
	2	143.4	-1.4	142.0	2.276	7.9	2.5
	3	141.3	-1.4	139.9	2.242	9.3	6.5
	4	139.0	-1.4	137.6	2.205	10.8	9.5
	5	134.8	-1.4	133.4	2.138	13.5	11.0
	6	133.3	-1.4	131.9	2.114	14.5	12.0
	7						

Rice =

	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	787.7	431.3	787.6	2.252	7.7	7.8
	2	811.6	450.9	811.6	2.292	6.1	6.1
[3	611.5	330.2	611.5	2.224	8.9	8.8
× [4	694.9	377.6	694.9	2.235	8.4	8.7
CoreLok	5	716.0	394.0	716.0	2.269	7.0	7.1
ž	6	703.6	369.5	703.6	2.147	12.0	12.0
Ŭ	7	743.3	406.0	743.2	2.248	7.9	8.0
	1	787.6	431.2	787.6	2.251	7.8	
	2	811.6	451.1	811.6	2.293	6.1	
	3	611.5	330.9	611.5	2.230	8.7	
	4	694.9	375.8	694.9	2.223	8.9	
	5	716.0	393.6	716.0	2.266	7.2	
	6	703.6	369.6	703.5	2.148	12.0	
	7	743.2	405.6	743.2	2.244	8.1	
	ID	Dry Weight (grams)	Submerged Weight	Saturated Surface Dry Weight	Bulk Specific	Air Voids (%)	Average Air Voids (%)
			(grams)	(grams)	Gravity		
I T	1	787.6	444.0	788.8	2.284	6.4	6.3
	2	811.6	459.9	812.4	2.302	5.7	5.7
<u> </u>	3	611.5	342.8	612.8	2.265	7.2	7.3
	4	694.9	386.8	696.6	2.243	8.1	11.1
loľ	5	716.0	408.5	716.8	2.322	4.9	4.7
É	6	703.5	386.6	709.4	2.179	10.7	10.7
S	7	743.2	416.8	744.5	2.268	7.1	7.1
AASHTO T 166	1	787.7	444.6	788.9	2.288	6.3	
	2	811.6	460.1	812.4	2.304	5.6	
	3	611.5	342.7	613.0	2.262	7.3	
i T	4	650.0	386.6	696.5	2.097	14.1	
1 [5	715.8	408.7	716.1	2.329	4.6	
[6	703.9	386.6	709.4	2.181	10.7	
Í	7	743.2	416.6	744.7	2.265	7.2	
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
Su l	1	143.9	-2.9	141.0	2.260	7.4	1.0
IĂI	2	146.9	-2.9	144.0	2.308	5.5	3.0
ar i	3	143.7	-2.9	140.8	2.256	7.6	6.0
le	4	141.7	-2.9	138.8	2.224	8.9	9.0
	5	146.8	-2.9	143.9	2.306	5.5	11.0
					2.136	12.5	12.0
_ [6	136.2	-2.9	133.3	2.150	12.2	1 12.0

D0620022

_

Rice	=
------	----------

D062	0022					Rice =	2.513
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	575.7	322.1	575.7	2.328	7.3	7.1
	2	627.7	351.1	627.7	2.323	7.6	7.4
	3	580.0	332.1	580.0	2.400	4.5	4.6
4	4	611.6	343.3	611.6	2.334	7.1	7.1
Lo	5	500.9	276.0	500.9	2.291	8.8	8.9
CoreLok						0.0	0.9
ບິ	7				· ·		
-	1	575.7	323.3	575.7	2.340	6.9	
	2	627.7	352.3	627.7	2.333	7.2	
	3	580.0	331.6	580.0	2.396	4.6	
	4	611.6	343.4	611.6	2.335	7.1	
	5	500.9	275.6	500.9	2.286	9.0	· · · · · · · · · · · · · · · · · · ·
		500.5	275.0	500,7	2.200	7.0	
	7						
	″			L		l	
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	575.7	332.3	577.3	2.350	6.5	6.5
. –	2	627.7	363.1	629.4	2.357	6.2	5.9
AASHTO T 166	3	580.0	339.4	580.6	2.405	4.3	4.2
1	4	611.6	353.4	613.1	2.355	6.3	6.4
0	5	500.9	286.7	503.0	2.316	7.8	8.0
Ľ							
SH	7						
A	1	575.8	332.1	577.4	2.347	6.6	
V	2	630.1	364.7	630.5	2.371	5.7	
	3	580.3	340.0	580.9	2.409	4.1	
	4	611.5	353.0	613.2	2.350	6.5	
	5	501.3	287.1	504.1	2.310	8.1	
	7						
ţ	ID	Field Nuclear	Correction Factor (pcf)	Corrected Nuclear	Bulk Specific	Air Voids (%)	Joint Distance
nsi	⊢ -	Density (pcf) 145.6	0.0	Density (pcf)	Gravity		(feet)
)el	1	145.6	0.0	145.6	2.333	7.1	0.0
Nuclear Density	2		0.0	145.4	2.330	7.3	1.0
ea	3	146.4	0.0	146.4	2.346	6.6	3.0
nc]	4	145.2	0.0	145.2	2.327	7.4	6.0
Z	5	144.7	0.0	144.7	2.319	7.7	9.0
		138.0	0.0	138.0	2.212	12.0	10.5

177

D0814021

Dice

D081 4	4021					Rice =	2.282
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	697.7	315.8	697.6	1.859	18.5	18.5
	2	770.0	363.5	770.0	1.925	15.6	15.6
	3	825.5	410.4	825.5	2.020	11.5	11.5
k	4	850.1	424.0	850.1	2.026	11.2	11.1
Ľ	5	985.1	500.9	985.1	2.063	9.6	9.6
CoreLok	6	1008.3	505.7	1008.3	2.033	10.9	10.9
ŭ	7						
	1	697.6	316.2	697.6	1.861	18.5	
	2	770.0	363.4	769.9	1.925	15.6	
	3	825.5	410.4	825.5	2.020	11.5	1
	4	850,1	425.1	850.1	2.031	11.0	
	5	985.1	500.4	985.0	2.061	9.7	
	6	1008.3	506.1	1008.3	2.035	10.8	
	7						
		Day Woight	Submerged	Saturated	Bulk		
	ID	Dry Weight	Weight	Surface Dry	Specific	Air Voids	Average Air
		(grams)	(grams)	Weight	Gravity	(%)	Voids (%)
		697.6	357.5	(grams) 720.2	1.022	15.7	15.7
	1	769.9			1.923	15.7	15.7
96	2	825.5	<u> </u>	787.6 835.0	1.962	14.0	13.9
. 10	<u>3</u> 4	850.1	440.8	855.5	2.046	10.3	10.3
L		985.0	518.7	991.2	2.050	10.2	10.3
ΓC	5 6	1008.3	527.8		2.085	8.6	8.7
AASHTO T 166		1008.5	327.0	1017.0	2.061	9.7	9.7
AS	7	697.8	357.8	720.3	1.025	15.6	
A	1	770.0	395.7	720.3	1.925	15.6	
	2	825.5	432.2	835.0	1.966	13.9	
	3 4	850.0	432.2	855.0	2.049	10.2	
	4 5	985.3	518.7	991.6	2.045	10.4 8.7	
	6	1008.4	528.0	1017.2	2.064	9.7	
Í	7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1017.12	2.001	2.1	
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
sua	1	121.0	-5.9	115.1	1.845	19.2	0.0
ă	2	124.2	-5.9	118.3	1.896	16.9	1.0
ar	3	127.9	-5.9	122.0	1.955	14.3	3.0
cle	4	129.7	-5.9	123.8	1.984	13.1	6.0
, j	5	129.6	-5.9	123.7	1.982	13.1	9.0
	6	130.8	-5.9	124.9	2.002	12.3	11.0
	7						
							L

D0814022 (Random)

1**79**

	``	(undom)					
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	869.2	430.9	869.1	2.014	11.7	11.6
	2	923.4	477.4	923.2	2.103	7.9	7.8
	3	1016.9	531.7	1016.8	2.126	6.9	6.8
k	4	967.3	493.9	967.1	2.074	9,1	8.9
iLo	5	1096.3	569.0	1096.2	2.107	7.7	7.7
CoreLok	6 7						
	1	869.1	432.7	869.1	2.022	11.4	
	2	923.2	478.4	923.2	2.107	7.7	
	3	1016.8	532.0	1016.8	2.127	6.8	
	4	967.1	496.7	967.1	2.085	8.6	
	5	1096.2	569.1	1096.1	2.107	7.7	
	6 7				/		
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	869.1	451.4	875.8	2.048	10.3	10.3
	2	923.2	491.4	927.0	2.119	7.1	7.1
99	3	1016.8	545.0	1020.1	2.140	6.2	6.2
[1	4	967.1	512.5	971.0	2.109	7.6	7.6
LC	5	1096.1	586.0	1101.0	2.128	6.7	6.7
AASHTO T 166	6 7						
AA	1	869.6	453.6	878.2	2.048	10.3	
ł	2	923.3	492.4	928.1	2.119	7.1	
	3	1016.7	546.2	1021.1	2.141	6.2	
	4	967.1	513.0	971.7	2.108	7.6	
	5	1096.3	586.7	1101.6	2.129	6.7	
	6 7						
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
Sue	1	128.1	-5.9	122.2	1.958	14.2	0.0
Ď	2	128.9	-5.9	123.0	1.971	13.6	1.0
ar	3	133.3	-5.9	127.4	2.042	10.5	3.0
cle	4	130.1	-5.9	124.2	1.990	12.8	6.0
ň	5	132.3	-5.9	126.4	2.026	11.2	9.0
I	6 7				· · · · · · · · · · · · · · · · · · ·		

D0822021

D0822	2021					Rice =	2.340
	ID 1	Initial Weight (grams) 511.9	Sealed Submerged Weight (grams) 233.8	Weight After Submersion (grams) 511.9	Bulk Specific Gravity 1.884	Air Voids (%) 19.5	Average Air Voids (%) 19.5
	2	392.8	181.4	392.8	1.914	18.2	19.5
	3	497.6	245.9	497.6	2.028	13.4	13.3
<u>.</u>	4	579.5	290.8	579.5	2.052	12.3	12.5
2	5	629.2	328.0	629.2	2.135	8.8	8.6
re]	6	588.9	296.0	588.8	2.056	12.1	12.1
CoreLok	7	607.1	284.8	607.1	1.921	17.9	17.8
-		511.9	234.0	511.8	1.885	19.4	11.0
	2	392.8	181.6	392.7	1.917	19.4	
	3	497.6	246.2	497.6	2.030	13.3	
	4	579.5	289.2	579.5	2.030	13.5	
	5	629.2	329.2	629.1	2.143	8.4	
	6	588.8	296.0	588.8	2.056	12.1	
	7	607.1	285.3	607.1	1.924	17.8	
	<u> </u>		200.0			17.0	
	ID	Dry Weight	Submerged Weight	Saturated Surface Dry	Bulk Specific	Air Voids	Average Air
		(grams)	(grams)	Weight (grams)	Gravity	(%)	Voids (%)
		511.8	264.0	523.7	1.971	15.8	15.8
	2	392.7	205.5	403.6	1.982	15.3	15.3
66	3	497.6	265.5	504.8	2.079	11.1	11.2
1	4	579.5	305.5	584.1	2.080	11.1	11.1
	5	629.1	341.1	632.5	2.159	7.7	7.7
Ĕ	6	588.8	311.1	593.5	2.085	10.9	10.9
AASHTO T 166	7	607.1	314.3	621.3	1.978	15.5	15.5
	1	511.7	264.3	523.8	1.972	15.7	
4	2	392.7	205.6	403.6	1.983	15.2	
	3	497.6	265.2	505.0	2.075	11.3	
	4	579.7	305.6	584.0	2.082	11.0	
į	5	629.1	341.1	632.5	2.159	7.7	
	6	588.9	311.0	593.5	2.085	10.9	
	7	607.0	314.3	621.6	1.975	15.6	
ţy							
sity	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
ensity	ID 1	Nuclear		Nuclear	Specific		Distance
Density		Nuclear Density (pcf)	Factor (pcf)	Nuclear Density (pcf)	Specific Gravity	(%)	Distance (feet)
ar Density	1	Nuclear Density (pcf) 123.1	Factor (pcf) -0.9	Nuclear Density (pcf) 122.2	Specific Gravity 1.958	(%) 16.3	Distance (feet) 0.0
clear Density	1 2	Nuclear Density (pcf) 123.1 132.7	Factor (pcf) -0.9 -0.9	Nuclear Density (pcf) 122.2 131.8	Specific Gravity 1.958 2.112	(%) 16.3 9.7	Distance (feet) 0.0 1.0
Nuclear Density	1 2 3	Nuclear Density (pcf) 123.1 132.7 131.5	Factor (pcf) -0.9 -0.9 -0.9	Nuclear Density (pcf) 122.2 131.8 130.6	Specific Gravity 1.958 2.112 2.093	(%) 16.3 9.7 10.6	Distance (feet) 0.0 1.0 3.0
Nuclear Density	1 2 3 4	Nuclear Density (pcf) 123.1 132.7 131.5 131.4	Factor (pcf) -0.9 -0.9 -0.9 -0.9	Nuclear Density (pcf) 122.2 131.8 130.6 130.5	Specific Gravity 1.958 2.112 2.093 2.091	(%) 16.3 9.7 10.6 10.6	Distance (feet) 0.0 1.0 3.0 6.0

BM2	0 8200 1	[4				Rice =	2.555
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	791.7	438.0	791.9	2.279	10.8	10.8
	2	827.5	476.3	827.5	2.397	6.2	6.1
	3	907.1	520.4	907.1	2.384	6.7	6.7
ok	4	779.1	447.7	779.2	2.395	6.3	5.9
eL.	5	820.7	469.3	820.6	2.377	7.0	6.9
CoreLok	6	810.3	455.1	810.3	2.321	9.2	9.0
C	7	810.4	454.6	810.3	2.318	9.3	9.4
	1	791.8	437.9	791.8	2.277	10.9	
	2	827.5	476.5	827.5	2.399	6.1	
	3	907.2	520.0	907.1	2.382	6.8	
	4	779.1	450.3	779.1	2.415	5.5	
	5	820.6	469.3	820.6	2.378	6.9	
	6	810.2	456.2	810.3	2.329	8.8	
	7	810.3	453.7	810.2	2.313	9.5	
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	791.7	484.4	(grams) 801.6	2.496	2.3	3.4
	2	827.5	499.6	835.9	2.496	3.7	4.4
66	$\frac{2}{3}$	907.1	540.7	913.7	2.401		5.0
AASHTO T 166		779.2	464.9	783.5	2.432	4.8	4.2
Ē	5	820.6	492.4	828.2	2.440	4.3	4.2
Ĕ	6	810.3	485.1	823.2	2.444	4.4 6.0	6.1
H	7	810.3	483.7	822.0	2.399	6.1	6.3
AS	1	791.7	479.5	803.7	2.399	4.4	0.3
V	2	827.4	495.2	836.7	2.442	5.2	
	$\frac{2}{3}$	907.1	540.4	914.5	2.425	5.1	
	4	779.1	465.5	783.8	2.448	4.2	
	5	820.6	492.6	829.8	2.448	4.8	
	6	810.2	485.4	823.1	2.399	6.1	
	7	810.2	483.7	823.1	2.387	6.6	· · · · · · · · · · · · · · · · · · ·
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
ent	1	136.9	9.5	146.4	2.346	8.2	0.3
Õ	2	144.6	9.5	154.1	2.470	3.3	1.0
ar	3	146.2	9.5	155.7	2.495	2.3	3.0
cle	4	143.7	9.5	153.2	2.455	3.9	6.0
n Z	5	140.4	9.5	149.9	2.402	6.0	9.0
Z							
	6	142.1	9.5	151.6	2.429	4.9	12.0

Rice =

	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1048.1	565.4	1048.1	2.200	14.8	14.9
	2	812.4	447.9	812.3	2.268	12.2	12.0
	3	897.9	506.8	897.8	2.335	9.6	9.8
ok	4	1030.1	577.0	1030.1	2.306	10.7	10.6
- F	5	1194.0	676.1	1194.1	2.336	9.5	9.6
CoreLok	י זי 7						
	1	1048.0	564.6	1048.1	2.197	14.9	
	2	812.3	449.3	812.4	2.276	11.9	
	3	897.8	505.1	897.8	2.324	10.0	
	4	1030.2	577.5	1030.1	2.309	10.6	
	5	1193.9	675.8	1194.0	2.334	9.6	
	7		-				
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1048.1	621.9	1072.5	2.326	9.9	9.9
	2	812.4	481.7	826.0	2.360	8.6	8.6
99	3	897.9	532.5	908.5	2.388	7.5	7.8
[]	4	1030.0	607.2	1043.4	2.361	8.5	8.4
5	5	1193.9	704.9	1205.5	2.385	7.6	7.7
Ĕ				1200.0	2.505	7.0	,.,
H	7						
AASHTO T 166	1	1047.8	620.7	1070.6	2.329	9.8	
V	2	812.4	482.1	826.3	2.360	8.6	
	3	897.7	531.2	909.2	2.375	8.0	
	4	1029.0	606.9	1041.5	2.368	8.3	
	5	1193.5	705.0	1205.9	2.383	7.7	
				120012	2.505	1.1	1
	7		·				
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
en	1	137.1	-1.0	136.1	2.181	15.5	0.0
A	2	148.1	-1.0	147.1	2.357	8.7	1.0
ar	3	146.3	-1.0	145.3	2.329	9.8	3.0
cle	4	155.9	-1.0	154.9	2.482	3.9	6.0
77	5	156.3	-1.0	155.3	2.489	3.6	9.0
F		145.9	-1.0	144.9	2.322	10.1	11.0
	7						

BM2	0 8290 1	13				Rice =	2.506
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	905.6	464.0	905.6	2.081	17.0	17.0
	2	960.3	529.5	960.4	2.262	9.7	9.7
	3	1625.9	904.3	1626.1	2.275	9.2	8.5
ok	4	935.8	515.0	935.9	2.257	9.9	9.9
CoreLok	5	954.3	532.9	954.4	2.299	8.3	8.3
or	6	1909.3	1088.1	1909.2	2.346	6.4	6.4
Ŭ	7	1021.1	570.9	1021.4	2.300	8.2	8.1
	1	905.6	463.5	905.6	2.078	17.1	
	2	960.3	529.4	960.3	2.262	9.7	
	3	1626.0	915.2	1626.0	2.310	7.8	
	4	935.9	515.7	935.9	2.261	9.8	
	5	954.4	532.4	954.4	2.296	8.4	· · · · · · · · · · · · · · · · · · ·
	6	1909.2	1088.1	1909.1	2.344	6.5	
	7	1021.5	571.8	1021.3	2.305	8.0	
	ID	Dry Weight (grams)	Submerged Weight	Saturated Surface Dry Weight	Bulk Specific	Air Voids (%)	Average Air Voids (%)
			(grams)	(grams)	Gravity		
	1	905.7	530.7	925.8	2.292	8.5	8.4
	2	960.3	563.1	971.9	2.349	6.3	6.4
AASHTO T 166	3	1626.0	952.5	1640.7	2.363	5.7	5.8
E	4	935.9	545.0	946.1	2.333	6.9	6.9
0	5	954.4	558.5	962.8	2.361	5.8	5.7
L	6	1909.2	1125.2	1925.2	2.387	4.8	4.8
S	7	1021.4	598.8	1031.4	2.361	5.8	5.7
¥	1	905.7	530.7	924.9	2.298	8.3	
4	2	960.9	562.7	972.8	2.343	6.5	
	3	1627.9	952.4	1642.3	2.360	5.8	
	4	936.1	544.8	946.4	2.331	7.0	
	5	955.1	557.8	961.3	2.367	5.5	
	6	1910.7	1122.5	1923.0	2.387	4.8	
	7	1021.5	598.3	1030.1	2.366	5.6	
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
en	1	130.4	1.6	132.0	2.115	15.6	0.0
Q	2	143.5	1.6	145.1	2.325	7.2	1.0
ear	3	143.6	1.6	145.2	2.327	7.1	3.0
Icle	4	144.0	1.6	145.6	2.333	6.9	6.0
Ñ	_ 5	143.8	1.6	145.4	2.330	7.0	9.0
. ,	6	143.5	1.6	145.1	2.325	7.2	11.0
	7	145.1	1.6	146.7	2.351	6.2	12.0

6

Rice =

	00500.	11				NICE -	2.322
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	698.9	391.7	698.9	2.323	7.9	7.9
	2	923.2	526.7	923.4	2.367	6.1	6.3
	3	684.7	392.1	684.8	2.388	5.3	5.3
ok	4	830.9	460.6	830.8	2.282	9.5	9.4
Ţ.	5	941.0	527.7	941.2	2.312	8.3	8.3
CoreLok	6 7						
	1	698.8	391.8	698.9	2.322	7.9	·····
	2	923.2	526.2	923.2	2.361	6.4	
	3	684.7	391.7	684.8	2.388	5.3	
	4	830.9	461.3	830.9	2.287	9.3	
	5	941.2	528.2	941.1	2.313	8.3	
	6 7					······································	
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	698.9	408.4	703.2	2.371	6.0	6.0
	2	923.1	544.0	926.8	2.411	4.4	4.5
166	3	684.6	400.8	685.5	2.405	4.7	4.7
E	4	830.8	482.3	838.1	2.335	7.4	7.5
0	5	941.0	544.6	944.4	2.354	6.7	6.7
AASHTO T 166	6 7						
AA	1	698.6	409.9	704.9	2.368	6.1	
	2	922.7	543.7	927.5	2.404	4.7	
	3	684.5	400.6	685.4	2.403	4.7	
	4	831.0	481.8	838.3	2.331	7.6	
	5 6	940.8	544.8	944.6	2.353	6.7	
	7						[]
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
sua	1	149.3	-3.7	145.6	2.333	7.5	1.0
Ă	2	146.5	-3.7	142.8	2.288	9.3	2.0
ar	3	152.2	-3.7	148.5	2.380	5.6	5.0
cle	4	148.9	-3.7	145.2	2.327	7.7	8.0
Nu	5	147.8	-3.7	144.1	2.309	8.4	9.0
1	(· · · · · · · · · · · · · · · · · · ·	

BM20830012 (Random)

BM2	08300 1	12 (Random)			Rice =	2.522
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
:	1	776.5	436.3	776.5	2.325	7.8	7.8
	2	750.2	427.6	750.1	2.370	6.0	6.0
	3	830.1	470.9	830.1	2.349	6.9	6.8
ok	4	963.2	545.0	963.2	2.338	7.3	7.3
eL	5	1032.6	572.7	1032.5	2.277	9.7	9.6
CoreLok	6 7		126.6		2.020		
	1	776.6	436.6	776.7	2.328	7.7	
	2	750.2	427.4	750.2	2.369	6.1	
	3	830.1	470.4	830.2	2.350	6.8	1
	4	963.1	545.2	963.1	2.340	7.2	
	5	1032.5	573.9	1032.5	2.284	9.4	
	6 7						
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	776.2	451.9	781.1	2.358	6.5	6.5
	2	750.1	437.6	751.5	2.390	5.2	5.2
166	3	830.1	485.1	832.9	2.387	5.4	5.4
Ē	4	962.9	560.2	965.8	2.374	5.9	5.8
ò	5	1032.5	592.0	1038.8	2.311	8.4	8.3
Ē	6					[
SH	7						
AASHTO T 166	1	776.3	451.4	780.4	2.360	6.4	
A	2	750.1	438.2	752.0	2.390	5.2	
	3	830.3	484.6	832.5	2.387	5.4	
	4	962.8	560.1	965.3	2.376	5.8	
	5	1032.5	591.3	1037.8	2.312	8.3	
	6 7				······		
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
en:	1	152.7	-3.7	149.0	2.388	5.3	5.1
Ă	2	153.4	-3.7	149.7	2.399	4.9	4.8
ar	3	153.1	-3.7	149.4	2.394	5.1	1.9
cle	4	152.2	-3.7	148.5	2.380	5.6	5.1
'n	5	146.9	-3.7	143.2	2.295	9.0	2.6
F -	6				· · · ·	· · · · · ·	
	-						t

6 7

BM2	0 9060 :	12				Rice =	2.599
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	965.4	547.1	965.4	2.346	9.7	9.8
	2	1026.0	582.1	1026.0	2.348	9.7	9.8
	3	1247.9	717.4	1246.8	2.386	8.2	8.2
k	4	1324.5	759.5	1323.9	2.376	8.6	8.6
Ľ	5	1281.9	730.9	1281.7	2.358	9.3	9.3
CoreLok	6 7						
	1	965.3	546.8	965.4	2.345	9.8	
	2	1026.0	581.1	1026.0	2.342	9.9	
	3	1246.7	717.3	1246.7	2.387	8.2	
	4	1323.6	759.5	1323.6	2.376	8.6	
	5	1281.6	730.4	1281.7	2.355	9.4	
	6						
	7						
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
ŀ	1	965.3	568.9	973.6	2.385	8.2	8.4
	2	1026.0	608.5	1037.0	2.394	7.9	7.8
166	3	1246.6	738.6	1254.2	2.418	7.0	7.0
[4	1323.6	783.4	1332.4	2.411	7.2	7.3
Ō	5	1281.6	762.3	1296.0	2.401	7.6	7.6
AASHTO T 166	6 7						
AA	1	965.1	566.9	973.5	2.374	8.7	
	2	1025.8	610.0	1038.2	2.396	7.8	
	3	1246.0	737.6	1253.7	2.414	7.1	
	4	1323.0	781.9	1330.9	2.410	7.3	
	5	1281.1	763.3	1297.3	2.399	7.7	
	6						
	7						L
Nuclear Density	iD	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
sua	1	143.3	2.2	145.5	2.332	10.3	1.0
Ď	2	146.4	2.2	148.6	2.381	8.4	3.0
ar	3	147.3	2.2	149.5	2.396	7.8	6.0
cle	4	145.0	2.2	147.2	2.359	9.2	9.0
7	5	142.6	2.2	144.8	2.321	10.7	11.0
	6						

Rice =

187	
-----	--

	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	968.2	501.7	968.2	2.105	12.9	12.9
CoreLok	2						
	3	1084.4	588.6	1084.4	2.218	8.3	8.2
	4	983.5	528.9	983.5	2.196	9.2	9.2
	5	1021.7	553,1	1021.7	2.213	8.5	8.4
	6	948.0	517.1	948.1	2.235	7.6	7.5
Ŭ	7						
	1	968.2	501.7	968.2	2.106	12.9	
	2						
	3	1084.4	589.0	1084.4	2.220	8.2	
	4	983.5	528.6	983.5	2.195	9.2	<u> </u>
	5	1021.7	553.6	1021.7	2.215	8.4	<u> </u>
	6	948.0	518.0	948.1	2.240	7.4	<u> </u> {
	7	,					<u>+</u>
	и	· · · · · · · · · · · · · · · · · · ·		<u> </u>		L	
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	968.2	527.1	976.6	2.154	10.9	11.0
	2	700.2	527.1	570.0	2.151		
2	3	1084.4	600.7	1086.3	2.233	7.6	7.7
AASHTO T 166	4	983.5	542.3	985.8	2.218	8.3	8.3
	5	1021.6	565.2	1023.3	2.230	7.8	7.8
	6	948.0	530.1	950.4	2.256	6.7	6.8
H	7	940.0	550.1	750.4	2.230	0.7	0.0
AS AS		968.3	529.0	979.8	2.148	11.2	
V		908.5	529.0	979.0	2.140	11.2	
	2	1084.2	600.3	1086.1	2.232	7.7	┾{
ļ	$\begin{vmatrix} 3 \\ 4 \end{vmatrix}$	983.5	542.3	986.2	2.232	8.4	╂┦
	5	1021.2	564.5	1023.1	2.210	7.9	<u> </u>]
	6	947.8	529.1	950.3	2.250	6.9	{{
l	7	21110					╊
						L	
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
SILE	1	137.1	-0.4	136.7	2.191	9.4	0.0
ă	2	N/A	N/A	N/A	N / A	N/A	1.0
ar	3	137.6	-0.4	137.2	2.199	9.1	3.5
cle.	4	137.0	-0.4	136.6	2.189	9.5	6.5
n n	5	137.7	-0.4	137.3	2.200	9.0	9.5
	6	137.4	-0.4	137.0	2.196	9.2	12.0
-	7					1	1
L			<u> </u>	I	<u> </u>	L	<u> </u>

125.6

6

7.0

132.6

2.125

10.8

11.0

Rice =

2.383 Sealed Weight Initial Bulk Air Voids Average Air Submerged After ID Weight Specific Weight Submersion (%) Voids (%) Gravity (grams) (grams) (grams) 2.160 9.3 1128.6 599.2 1128.5 9.4 1 1119.9 597.9 1119.9 2.174 2 8.8 8.8 1165.5 627.9 1165.4 2.196 7.8 7.7 3 1159.4 623.0 1159.3 2.190 CoreLok 8.1 8.1 4 622.3 2.212 7.2 5 1148.6 1148.5 7.2 1048.2 542.3 1048.2 2.100 11.9 6 11.9 7 1128.5 599.7 1128.5 2.162 9.3 1 2 1119.9 598.2 1119.9 2.175 8.7 1165.4 629.6 1165.4 2.203 3 7.5 1159.3 4 1159.3 622.7 2.188 8.2 1148.5 621.9 1148.5 2.210 7.3 5 2.099 1048.2 542.0 1048.2 11.9 6 Saturated Submerged Bulk **Dry Weight** Air Voids Surface Dry Average Air ID Weight Specific Weight (grams) (%) Voids (%) (grams) Gravity (grams) 632.2 7.7 1 1128.5 1144.7 2.202 7.6 1119.9 631.1 1135.5 2 2.220 6.8 6.8 **AASHTO T 166** 1165.4 656.3 1178.7 2.231 3 6.4 6.3 1159.3 649.5 1173.4 2.213 7.1 7.2 4 1148.5 646.5 1159.7 2.238 5 6.1 6.1 579.3 6 1048.2 1067.1 2.149 9.8 9.9 1131.9 632.7 1148.1 2.196 7.8 1 1122.3 634.5 1139.6 2 2.222 6.8 1169.2 659.2 1182.5 2.234 3 6.2 1177.2 4 1162.4 651.1 2.209 7.3 1150.6 645.8 1159.6 5 2.239 6.0 1051.4 580.1 1070.7 2.143 10.1 6 Field Corrected Bulk Joint Correction Air Voids Specific IÐ Nuclear Nuclear Distance Factor (pcf) (%) **Nuclear Density** Gravity Density (pcf) Density (pcf) (feet) 130.4 7.0 137.4 2.202 7.6 0.0 1 130.6 7.0 2 137.6 2.205 7.5 1.0 131.2 7.0 138.2 2.215 7.1 3.0 3 133.2 7.0 4 140.2 2.247 5.7 6.0 9.0 5 131.0 7.0 2.212 7.2 138.0

BM20416022 (Random)

6 7

BM2()41602	22 (Random))			Rice =	2.383
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1169.1	628.2	1169.0	2.189	8.1	8.1
	2	1005.4	517.8	1005.4	2.090	12.3	12.2
	3	877.4	437.5	877.4	2.025	15.0	14.8
k	4	989.1	514.7	989.1	2.115	11.3	11.3
Lo	5	880.8	463.5	880.8	2.145	10.0	10.0
CoreLok	6 7				· · · · · ·		
	1	1169.0	628.7	1169.0	2.191	8.1	
	2	1005.4	518.1	1005.4	2.092	12.2	
	3	877.4	439.8	877.4	2.036	14.6	
	4	989.1	514.4	989.1	2.113	11.3	
	5	880.8	463.8	880.8	2.146	9.9	
	6						
	7						
	ID	Dry Weight (grams)	Submerged Weight	Saturated Surface Dry Weight	Bulk Specific	Air Voids (%)	Average Air Voids (%)
		(8)	(grams)	(grams)	Gravity		
	1	1169.0	656.6	1184.5	2.214	7.1	6.9
	2	1005.4	559.8	1027.6	2.149	9.8	9.8
166	3	877.4	485.6	900.0	2.117	11.2	11.2
E I	4	989.1	552.7	1010.1	2.162	9.3	9.4
Ò	5	880.8	488.9	892.7	2.181	8.5	8.4
AASHTO T 166	6 7						
\mathbf{A}	1	1172.2	662.5	1190.2	2.221	6.8	
7	2	1010.5	561.4	1031.7	2.149	9.8	
	3	881.2	485.6	902.1	2.116	11.2	
	4	992.2	554.2	1014.0	2.158	9.4	
	5	883.7	489.9	894.6	2.184	8.4	
	6						
	7						I
ŷ	ID	Field Nuclear	Correction Factor (pcf)	Corrected Nuclear	Bulk Specific	Air Voids (%)	Joint Distance
ISİ		Density (pcf)		Density (pcf)	Gravity		(feet)
)er	1	130.6	7.0	137.6	2.205	7.5	1.8
rL	2	127.7	7.0	134.7	2.159	9.4	10.9
ea	3	125.8	7.0	132.8	2.128	10.7	11.3
Nuclear Density	4	127.9	7.0	134.9	2.162	9.3	6.2
Ź	5	129.1	7.0	136.1	2.181	8.5	4.9
	6			1 1		1	1

5

6 7

136.4

134.2

2.8

2.8

139.2

137.0

2.231

2.196

9.6

11.0

3.5

1.0

Rice =

Weight Sealed Initial Bulk Air Voids Average Air Submerged After ID Weight Specific Weight Submersion Voids (%) (%) Gravity (grams) (grams) (grams) 873.5 2.112 14.4 453.3 873.5 14.4 1 2.182 500.8 936.7 11.6 2 936.8 11.6 840.4 452.1 840.3 2.202 10.8 10.8 3 786.0 413.7 2.149 12.9 786.0 12.9 CoreLok 4 5 898.9 472.5 898.9 2.141 13.3 13.2 498.0 941.3 2.156 941.4 12.7 12.7 6 873.5 454.1 873.5 2.116 14.3 1 936.7 501.2 936.7 2.184 11.5 2 840.3 452.2 840.3 2.202 10.8 3 786.0 414.1 786.0 2.151 12.8 4 898.9 472.7 898.9 2.142 13.2 5 941.3 497.6 941.3 2.154 12.7 6 Saturated Submerged Bulk **Dry Weight Surface Dry** Air Voids Average Air ID Weight Specific Weight Voids (%) (grams) (%) (grams) Gravity (grams) 873.5 475.9 882.6 2.148 13.0 13.1 1 519.4 936.7 942.9 2.212 2 10.4 11.8 **AASHTO T 166** 840.3 467.5 845.2 2.225 9.9 10.2 3 786.0 432.2 792.8 2.180 11.7 10.8 4 898.9 493.9 907.0 5 2.176 11.8 11.7 6 941.3 518.6 949.6 2.184 11.5 11.6 873.7 476.7 884.5 2.142 13.2 1 936.9 519.5 944.3 2 2.142 13.2 840.4 467.6 845.6 2.206 3 10.6 786.3 432.0 792.4 4 2.223 9.9 899.4 494.7 907.8 5 2.182 11.6 941.4 519.3 951.3 2.177 6 11.8 Field Corrected Bulk Joint Correction Air Voids ID Nuclear Nuclear Specific Distance Factor (pcf) (%) **Nuclear Density** Gravity Density (pcf) Density (pcf) (feet) 137.0 2.8 139.8 2.240 9.2 12.5 1 2 138.4 2.8 141.2 2.263 8.3 11.5 3 139.0 2.8 141.8 2.272 7.9 9.5 4 139.0 2.8 141.8 2.272 7.9 6.5

Rice =

|--|--|--|--|--|--|

	ID 1 2 3	Initial Weight (grams) 1018.4 807.3 820.5	Sealed Submerged Weight (grams) 547.4 430.1 442.9	Weight After Submersion (grams) 1018.4 807.2 820.4	Bulk Specific Gravity 2.193 2.179 2.212	Air Voids (%) 8.8 9.4 8.0	Average Air Voids (%) 8.9 9.4 8.2
CoreLok	4 5 6	769.7 810.5 1082.1	408.1 428.6 566.0	769.7 810.5 1081.9	2.167 2.159 2.125	9.9 10.2 11.6	9.7 9.9 11.6
	7 1 2	1018.4 807.2	546.6 430.0	1018.4 807.2	2.190 2.177	9.0 9.5	
	3 4 5	820.4 769.7 810.5	441.5 409.6 431.0	820.3 769.7 810.4	2.203 2.176 2.173	8.4 9.5 9.6	
	6	1081.9	566.3	1081.7 Saturated	2.126	11.6	
	ID	Dry Weight (grams)	Submerged Weight (grams)	Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1018.4	569.4	1027.0	2.226	7.5	7.5
	2	807.2	451.8	816.3	2.215	7.9	7.8
190	3	820.3	456.6	824.2	2.232	7.2	7.2
E	4	769.7	424.6	773.6	2.205	8.3	8.3
Ō	5	810.4	447.8	814.9	2.208	8.2	8.3
AASHTO T 166	6 7	1081.7	595.0	1095.0	2.163	10.0	9.9
AA	1	1018.9	570.8	1028.6	2.226	7.5	
	2	808.6	453.2	817.2	2.221	7.6	
	3	820.6	457.5	825.0	2.233	7.2	
	4	769.8	425.1	774.5	2.203	8.4	
	5	810.3	447.5	815.3	2.203	8.4	
i i	6 7	1083.7	599.3	1099.1	2.168	9.8	
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
en:	1	138.7	-3.1	135.6	2.173	9.6	1.0
Â	2	138.8	-3.1	135.7	2.175	9.6	3.0
ear	3	142.9	-3.1	139.8	2.240	6.8	6.0
cle	4	138.8	-3.1	135.7	2.175	9.6	9.0
Nu	5	141.7	-3.1	138.6	2.221	7.6	10.5
	6	136.3	-3.1	133.2	2.135	11.2	11.5
	<u> </u>	10010		155.2	2.155	11.2	11.2

BM2	051502	21				Rice =	2.513
	ID	Initial Weight (grams)	Sealed Submerged Weight	Weight After Submersion	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1076.1	(grams) 594.2	(grams) 1076.1	2.264	9.9	9.9
	2	1070.1	568.8	1070.1	2.286	9.9	9.9 8.9
	3	1025.2	591.5	1025.1	2.366	5.9	5.9
×	4	885.6	496.4	885.5	2.315	7.9	7.6
CoreLok	5	945.7	529.7	945.5	2.313	8.0	8.1
re]	6	1005.3	568.1	1005.3	2.335	7.1	7.1
చి	7	958.1	517.7	958.0	2.209	12.1	12.1
-	1	1076.1	594.2	1076.0	2.265	9.9	12.1
	2	1023.1	569.6	1022.9	2.203	8.8	
	3	1036.2	591.3	1036.2	2.364	5.9	
	4	885.5	498.7	885.4	2.330	7.3	
	5	945.5	528.8	945.4	2.306	8.2	
	6	1005.3	568.1	1005.3	2.335	7.1	
	7	958.0	517.9	958.0	2.210	12,1	
		Dry Weight	Submerged	Saturated Surface Dry	Bulk	Air Voids	Average Air
	ID	(grams)	Weight	Weight	Specific	(%)	Voids (%)
		(grams)	(grams)	(grams)	Gravity	(70)	V 0105 (70)
		1076.0	614.9	1084.1	2.293	8.7	8.8
	2	1022.9	585.7	1027.9	2.313	8.0	8.1
99	3	1036.2	602.8	1038.5	2.378	5.4	5.3
[]	4	885.4	509.6	887.4	2.344	6.7	6.8
5	5	945.4	543.0	948.4	2.332	7.2	7.2
Ĕ	6	1005.3	582.1	1007.4	2.364	5.9	6.1
HS	7	958.0	550.8	971.9	2.275	9.5	9.5
AASHTO T 166	1	1076.8	616.0	1086.0	2.291	8.8	
V	2	1022.5	586.2	1029.6	2.306	8.2	
	3	1035.8	602.4	1037.7	2.380	5.3	
	4	885.0	509.9	887.9	2.341	6.8	
	5	945.0	543.1	948.6	2.330	7.3	
	6	1004.8	581.6	1008.3	2.355	6.3	
	7	959.1	552.9	974.4	2.275	9.5	
		Field	C	Corrected	Bulk		Joint
Ŷ	ID	Nuclear	Correction Factor (pcf)	Nuclear	Specific	Air Voids (%)	Distance
ısit		Density (pcf)	· · ·	Density (pcf)	Gravity		(feet)
)er	1	143.1	0.3	143.4	2.298	8.6	0.0
L	2	148.9	0.3	149.2	2.391	4.9	1.0
Nuclear Density	3	148.8	0.3	149.1	2.389	4.9	3.0
ncl	4	149.1	0.3	149.4	2.394	4.7	6.0
Ź	5	145.7	0.3	146.0	2.340	6.9	9.0
	6	152.5	0.3	152.8	2.449	2.6	11.0
	7	139.7	0.3	140.0	2.244	10.7	12.0

BM20515022 (Random)

r	1					T · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1083.5	605.4	1083.3	2.300	8.5	8.3
	2	1237.0	706.8	1237.0	2.364	5.9	5.9
	3	981.8	544.5	981.7	2.280	9.3	9.5
K	4	1021.5	569.8	1021.5	2.296	8.6	8.9
Ľ I	5	852.0	473.8	851.9	2.293	8.7	8.6
CoreLok	6 7						
	1	1083.3	607.1	1083.2	2.308	8.1	
	2	1237.0	707.0	1237.1	2.364	5.9	1
	3	981.7	541.8	981.7	2.266	9.8	
	4	1021.5	566.9	1021.5	2.281	9.2	
	5	851.9	474.6	851.8	2.298	8.5	
	6 7						
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1083.2	624.4	(grams) 1087.9	2.337	7.0	7.0
	2	1237.1	718.9	1239.6	2.376	5.5	5.6
99	3	981.7	560.2	986.4	2.370	8.3	8.4
1	4	1021.5	586.6	1025.9	2.303	7.5	0.4 7.8
L (5	851.8	490.8	856.1	2.323	7.3	
IC	6	051.0	490.0	630.1	2.332	1.2	7.4
AASHTO T 166	7	1000.0		1007 7			
A	1	1082.8	624.1	1087.7	2.336	7.1	
	2	1236.9	718.3	1240.0	2.371	5.7	
	3	981.7	561.5	988.7	2.298	8.6	
	4	1021.3	585.6	1027.8	2.310	8.1	
	5	851.7	490.1	856.6	2.324	7.5	
	6 7						
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
en:	1	149.3	0.3	149.6	2.397	4.6	3.3
Ā [2	145.6	0.3	145.9	2.338	7.0	3.3
ar	3	142.7	0.3	143.0	2.292	8.8	1.5
ાટ	4	146.7	0.3	147.0	2.356	6.3	0.6
-	5	145.0	0.3	145.3	2.329	7.3	8.7
F-1	6 7						

Rice	=
------	---

BM2	07160	21				Rice =	2.350
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1167.7	597.5	1167.7	2.073	11.8	11.8
	2	1226.4	656.2	1226.4	2.177	7.4	7.5
	3	1146.4	623.6	1146.4	2.222	5.4	5.6
ok	4	1185.2	628.3	1185.2	2.155	8.3	8.3
el	5	1041.6	549.8	1041.6	2.148	8.6	8.6
CoreLok	6 7						
	1	1167.7	597.6	1167.7	2.073	11.8	· · · · ·
[2	1226.4	653.9	1226.3	2.169	7.7	
	3	1146.4	622.1	1146.4	2.215	5.7	<u> </u>
	4	1185.2	628.2	1185.2	2.155	8.3	<u> </u>
Į	5	1041.6	549.9	1041.6	2.148	8.6	
	6 7						
	ID	Dry Weight (grams)	Submerged Weight	Saturated Surface Dry Weight	Bulk Specific	Air Voids (%)	Average Air Voids (%)
		(Branns)	(grams)	(grams)	Gravity	(70)	voius (70)
	1	1167.7	637.1	1189.9	2.112	10.1	9.8
	2	1226.3	673.0	1234.0	2.186	7.0	6.8
99	3	1146.4	635.0	1150.5	2.224	5.4	5.2
L1	4	1185.2	647.8	1194.2	2.169	7.7	7.5
ò	5	1041.6	572.0	1052.2	2.169	7.7	7.4
AASHTO T 166	6 7	· · · · · ·					
Y	1	1171.0	637.8	1188.3	2.127	9.5	
~	2	1226.8	675.0	1233.8	2.195	6.6	
	3	1146.3	635.2	1149.1	2.231	5.1	
	4	1185.7	649.5	1194.0	2.178	7.3	
	5	1042.4	574.1	1051.1	2.185	7.0	
	6 7						
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
SUS	1	122.8	3.8	126.6	2.028	13.7	1.0
ă	2	132.8	3.8	136.6	2.188	6.9	3.0
ar	3	134.7	3.8	138.5	2.220	5.5	6.0
ele	4	133.7	3.8	137.5	2.204	6.2	9.0
n,	5	130.4	3.8	134.2	2.150	8.5	12.0
	6				2.100	0.0	12.0
	7						

Rice =

DIVIZ	1/4304	<i>i</i> 1				NICE -	2.510
	ID	Initial Weight (grams) 935.8	Sealed Submerged Weight (grams) 487.5	Weight After Submersion (grams) 935.8	Bulk Specific Gravity 2.119	Air Voids (%)	Average Air Voids (%)
	2	980.9	540.4	980.9	2.261	9.9	9.7
	3	951.1	531.0	951.0	2.301	8.3	8.4
No.	4	785.6	411.7	785.4	2.139	14.8	14.8
CoreLok	5	737.4	384.1	737.4	2.126	15.3	15.3
J.	6	841.2	419.8	841.2	2.028	19.2	19.4
	7						
	1	935.8	486.4	935.7	2.114	15.8	
		980.9	541.9	980.8	2.270	9.6	L
	3	951.0	530.4	951.0	2.297	8.5	
	4	785.4	411.1	785.4	2.136	14.9	
	5	737.4	384.2	737.4	2.127	15.3	
	6	841.2	417.7	841.2	2.018	19.6	
	7						
	ID	Dry Weight	Submerged	Saturated Surface Dry	Bulk	Air Voids	Average Air
		(grams)	Weight (grams)	Weight (grams)	Specific Gravity	(%)	Voids (%)
	1	935.7	540.0	958.4	2.236	10.9	10.8
	2	980.8	569.1	994.0	2.308	8.0	8.0
AASHTO T 166	3	951.0	546.5	954.5	2.331	7.1	7.1
[]	4	785.4	454.5	800.5	2.270	9.6	9.6
	5	737.4	430.2	750.8	2.300	8.4	8.4
Ĕ	6	841.2	487.8	860.7	2.256	10.1	10.1
H	7						
Ā	1	936.0	540.1	958.1	2.239	10.8	
A	$\frac{1}{2}$	981.0	569.6	994.3	2.310	8.0	
	$\frac{2}{3}$	951.2	546.5	954.2	2.333	7.0	<u> </u>
	$\frac{3}{4}$	785.4	454.7	801.0	2.268	9.6	
	5	737.2	430.6	751.1	2.300	8.4	
l	6	841.5	487.9	860.7	2.257	10.1	<u> </u>
	7		<u> </u>				<u> </u>
		····		<u>د</u>		ч	·
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific <u>Gravity</u>	Air Voids (%)	Joint Distance (feet)
u a	1	134.2	-0.1	134.1	2.149	14.4	1.0
á	2	140.9	<u>-0.1</u>	140.8	2.256	10.1	3.0
ar	3	144.3	-0.1	144.2	2.311	7.9	6.0
cle	4	135.9	-0.1	135.8	2.176	13.3	9.0
'n	5	134.9	-0.1	134.8	2.160	13.9	11.0
F	6	128.6	-0.1	128.5	2.059	18.0	12.0
	7						
						-	

Rice =

2.450 Sealed Weight Initial Bulk Submerged After Air Voids Average Air IÐ Weight Specific Weight Submersion Voids (%) (%) (grams) Gravity (grams) (grams) 1125.9 555.9 1 1125.9 1.999 18.4 18.4 2 1196.6 642.9 1196.6 2.188 10.7 10.5 2.250 1376.6 757.6 1376.5 3 8.2 8.2 CoreLok 1407.2 4 781.5 1407.1 2.275 7.1 7.2 5 1367.7 749.5 1367.6 2.238 8.6 8.8 1319.3 694.4 6 1319.3 2.135 12.9 12.8 1125.9 556.4 1125.9 1 2.001 18.3 1196.6 2 645.3 1196.5 2.198 10.3 1376.5 756.7 2.246 3 1376.5 8.3 1407.1 780.7 4 1407.1 2.272 7.3 5 1367.6 747.7 1367.5 2.232 8.9 1319.3 695.1 1319.2 6 2.138 12.7 Saturated Submerged Bułk **Dry Weight** Surface Dry Air Voids Average Air ID Weight Specific (grams) Weight (%) Voids (%) (grams) Gravity (grams) 1125.9 633.8 1158.2 1 2.147 12.4 12.4 1196.5 672.1 2 1209.8 2.225 9.2 8.9 **AASHTO T 166** 1376.5 781.8 1386.6 3 2.276 7.1 7.0 1407.1 801.6 4 1413.8 2.298 6.2 6.1 5 1367.5 769.3 1374.9 2.258 7.8 7.8 1319.2 733.9 1337.4 6 2.186 10.8 10.8 1134.4 634.8 1163.7 1 2.145 12.5 1198.9 2 673.2 1209.2 2.237 8.7 1378.3 783.0 3 1386.8 2.283 6.8 1407.9 801.2 4 1412.6 2.303 6.0 5 1368.3 769.4 1375.1 2.259 7.8 1322.1 733.7 1339.2 6 2.183 10.9 7 Field Corrected Bulk Joint Correction Air Voids IÐ Nuclear Nuclear Specific Distance Factor (pcf) **Nuclear Density** (%) Density (pcf) Density (pcf) Gravity (feet) 1 119.0 5.5 124.5 1.995 18.6 0.0 2 134.7 5.5 140.2 2.247 8.3 1.0 139.2 3 5.5 144.7 2.319 5.4 5.0 141.1 4 5.5 146.6 2.349 4.1 8.0 5 137.8 5.5 143.3 2.296 6.3 11.0 6 131.5 5.5 137.0 2.196 10.4 13.0 7

BM2	082002	21				Rice =	2.51
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	799.3	431.5	799.2	2.213	12.2	12.2
	2	851.2	477.5	851.2	2.318	8.0	7.9
	3	853.9	486.7	853.9	2.367	6.0	6.1
CoreLok	4	934.5	529.2	934.5	2.344	6.9	6.6
	5	1012.8	576.9	1012.8	2.359	6.3	6.4
	6	1060.8	601.8	1060.8	2.346	6.9	6.9
Ŭ	7						1
	1	799.2	431.1	799.2	2.210	12.3	
	2	851.2	478.2	851.2	2.323	7.8	
	3	853.9	486.1	853.8	2.365	6.1	1
	4	934.5	532.1	934.5	2.361	6.3	
	5	1012.8	575.9	1012.7	2.355	6.5	
	6	1060.8	601.9	1060.7	2.347	6.8	
	7					0.0	
	1		r			I	I
i	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	799.2	462.2	(grams) 810.8	2.293	9.0	9.0
	2	851.2	496.0	854.7	2.373	5.8	9.0 5.7
AASHTO T 166	3	853.8	499.1	854.8	2.400	4.7	
	4	934.5	548.5	937.9	2.400	4.7	4.7
5	5	1012.7	591.7	1014.1	2.397		4.8
Ĕ	6	1012.7	620.2	1014.1		4.8	4.8
H	7	1000.7	020.2	1002.9	2.396	4.9	4.9
A	1	799.3	462.1	810.7	2 202	0.0	
\checkmark	····	851.5	496.3		2.293	9.0	
	2	853.8		854.7	2.376	5.7	
	3	934.6	<u>499.3</u> 548.3	855.0	2.400	4.7	
		1012.7	548.3	938.1	2.398	4.8	
	<u>5</u> 6	1012.7	620.4	1014.0 1063.0	2.400	4.7	
	7	1001.0	020.4	1005.0	2.397	4.8	
	· · ·	Field	Correction	Corrected	Bulk		Joint
Nuclear Density	ID	Nuclear Density (pcf)	Factor (pcf)	Nuclear Density (pcf)	Specific Gravity	Air Voids (%)	Distance (feet)
en	1	137.2	2.4	139.6	2.237	11.2	0.0
<u>e</u>	2	151.2	2.4	153.6	2.462	2.3	1.0
ar	3	148.1	2.4	150.5	2.412	4.3	3.0
	4	152.5	2.4	154.9	2.482	1.5	6.0
-	5	151.5	2.4	153.9	2.466	2.1	9.0
Z	6	146.4	2.4	148.8	2.385	5.3	12.0
					21000	0.0	

BM2	08260	21				Rice =	2.563
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	853.3	485.7	853.3	2.363	7.8	7.8
	2	887.4	504.6	887.4	2.358	8.0	7.9
	3	850.0	486.3	849.9	2.380	7.1	7.2
ok	4	972.6	551.4	972.6	2.346	8.5	8.5
-F	5	905.6	513.3	905.5	2.348	8.4	8.4
CoreLok	6	854.5	484.6	854.4	2.352	8.2	8.2
\mathbf{C}	7						
	1	853.3	485.9	853.2	2.365	7.7	
	2	887.4	505.0	887.2	2.362	7.8	
	3	849.9	486.1	849.9	2.379	7.2	
	4	972.6	550.9	972.6	2.343	8.6	
	5	905.5	513.4	905.4	2.349	8.3	
	6	854.4	485.0	854.4	2.355	8.1	1
	7						
		Dry Weight	Submerged	Saturated Surface Dry	Bulk	Air Voids	
	ID	(grams)	Weight	Weight	Specific		Average Air
			(grams)	(grams)	Gravity	(%)	Voids (%)
	1	853.2	506.1	861.3	2.402	6.3	6.3
9	2	887.2	528.0	896.0	2.411	5.9	6.0
16	3	849.9	503.9	857.6	2.403	6.2	6.2
H	4	972.6	575.2	979.6	2.405	6.2	6.0
Q	5	905.4	536.3	912.0	2.410	6.0	6.0
AASHTO T 166	6	854.4	507.5	861.2	2.416	5.8	5.7
S	7						
A	1	853.0	506.3	861.4	2.402	6.3	
•	2	887.4	528.0	896.7	2.407	6.1	
	3	850.0	504.2	857.4	2.407	6.1	
	4	972.5	576.1	979.3	2.412	5.9	
	5	905.0	535.8	911.6	2.408	6.0	
	6	855.6	508.1	862.0	2.418	5.7	
	7						
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
ent	1	145.5	4.7	150.2	2.407	6.1	0.0
Ã	2	139.0	4.7	143.7	2.303	10.1	1.0
ar	3	144.7	4.7	149.4	2.394	6.6	3.0
cle	4	146.0	4.7	150.7	2.415	5.8	0.0
7	5	146.5	4.7	151.2	2.423	5.5	1.0
	6	145.3	4.7	150.0	2.404	6.2	3.0
	7						

BM20826022 (Random)

BM20	082602	22 (Random))			Rice =	2.563
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion _(grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	856.9	478.5	856.9	2.304	10.1	10.1
	2	829.1	461.4	829.1	2.295	10.4	10.5
	3	729.0	405.0	729.0	2.296	10.4	10.6
ok	4	838.4	466.6	838.4	2.295	10.4	10.3
ŗ	5	802.7	465.0	802.6	2.425	5.4	5.5
CoreLok	6 7						
	1	856.9	478.8	856.9	2.306	10.0	
	2	829.1	461.0	829.0	2.294	10.5	<u> </u>
	3	729.0	403.8	729.0	2.287	10.8	
	4	838.4	467.8	838.4	2,303	10.1	
	5	802.6	464.7	802.6	2.422	5.5	
	6						1 1
	7						
·····				· · · · · · · · · · · · · · · · · · ·		L	
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	856.9	501.7	863.7	2.367	7.6	7.5
	2	829.0	491.8	841.9	2.368	7.6	7.5
99	3	729.0	428.2	736.5	2.365	7.7	7.8
E.	4	838.4	498.2	848.8	2.391	6.7	6.7
Ò	5	802.6	475.5	804.9	2,437	4.9	5.0
AASHTO T 166	6 7						
V	1	860.1	502.1	864.1	2.376	7.3	
4	2	829.0	492.0	841.6	2.371	7.5	
	3	728.8	428.1	736.8	2.361	7.9	
	4	838.3	497.6	848.1	2.392	6.7	· · · · · · · · · · · · · · · · · · ·
	5	803.0	474.8	805.0	2.432	5.1	
	6 7						
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
ent	1	144.4	4.7	149.1	2.389	6.8	3.8
Ă	2	143.1	4.7	147.8	2.369	7.6	3.0
ar	3	139.5	4.7	144.2	2.311	9.8	4.0
cle	4	144.2	4.7	148.9	2.386	6.9	3.5
ň	5	148.4	4.7	153.1	2.454	4.3	6.5
	6 7						

BM2	08270	21				Rice =	2.603
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1099.7	611.1	1099.7	2.282	12.3	12.3
	2	1172.6	652.2	1172.5	2.284	12.3	12.3
	3	1295.3	713.0	1295.3	2.251	13.5	13.5
ok	4	1434.5	811.7	1434.4	2.330	10.5	10.5
Ę,	5	1652.3	948.1	1652.3	2.371	8.9	8.9
CoreLok	6	1730.2	985.4	1730.2	2.346	9.9	9.9
Ų	7	1099.7	611.8	1000 6	2.296	10.0	
		1172.5		1099.6	2.286	12.2	
	2	1295.3	652.2	1172.5	2.284	12.3	_
	3	1295.3	713.3	1295.3	2.252	13.5	
	4		811.3	1434.4	2.328	10.6	· · · · · · · · · · · · · · · · · · ·
	5	1652.3	948.3	1652.3	2.371	8.9	
	6 7	1730.2	985.0	1730.1	2.345	9.9	
	1		l				
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
		1099.6	663.6	(grams) 1121.0			
	2	1172.5	708.7	1121.0	2.404	7.6	7.6
66	3	1295.3	708.7		2.426	6.8	6.8
Ē	4	1295.5	858.3	1316.5 1453.9	2.465	5.3	5.3
	5	1652.3	988.8	1453.9	2.408	7.5	7.4
Ĕ	6	1730.1	1028.2	1745.8	2.430	6.6	6.6
AASHTO T 166	7	1750.1	1028.2	1745.0	2.411	7.4	7.3
A	1	1099.8	663.7	1120.8	2.406	7.6	
<	2	1172.5	708.2	1191.8	2.425	6.9	
	3	1295.1	791.6	1316.6	2.467	5.2	····
	4	1434.9	858.6	1454.0	2.410	7.4	
	5	1652.5	988.7	1668.2	2.432	6.6	
	6	1730.6	1028.0	1744.9	2.414	7.3	····
	7		·····				
Nuclear Density	ID	Field Nuclear Density (pcf)		Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
en	1	145.5	5.4	150.9	2.418	7.1	0.0
θļ	2	140.7	5.4	146.1	2.341	10.1	1.0
ear	3	140.1	5.4	145.5	2.332	10.4	3.0
<u>[]</u>	4	143.7	5.4	149.1	2.389	8.2	6.0
Ξĺ	5	147.1	5.4	152.5	2.444	6.1	9.0
	6	139.5	5.4	144.9	2.322	10.8	11.0
	7						

A0820012

Rice =

Verge Initial ID Sealed Submerged (grams) Weight (grams) Bulk Submerged (grams) Air Voids (ravity Average Air (%) 1 1612.9 888.2 1612.9 2.248 14.4 14.3 4 1668.7 965.1 1668.7 2.397 8.7 8.6 5 1725.2 1007.0 1725.1 2.427 7.5 7.5 6 1555.3 881.8 1555.3 2.334 11.1 11.0 7 1537.0 889.9 1536.9 2.402 8.5 8.5 1 1612.9 888.5 1612.9 2.249 14.3								2.025
Visual June June June June June 4 1668.7 965.1 1668.7 2.397 8.7 8.6 5 1725.2 1007.0 1725.1 2.427 7.5 7.5 6 1555.3 881.8 1555.3 2.334 11.1 11.0 7 1537.0 889.9 1536.9 2.402 8.5 8.5 1 1612.9 888.5 1612.9 2.249 14.3 14.3 5 1725.1 1007.0 1725.1 2.402 8.6 5 5 1725.1 1007.0 1725.1 2.427 7.5 6 6 1555.3 883.0 1555.9 2.402 8.5 5 7 1536.9 889.8 1536.9 2.402 8.5 5 1 1612.9 990.8 1632.3 2.514 4.2 4.7 5 1725.1 1035.6 1735.4 2.425 7.6		ID	Weight	Submerged Weight	After Submersion	Specific		
View June June June 4 1668.7 965.1 1668.7 2.397 8.7 8.6 5 1725.2 1007.0 1725.1 2.427 7.5 7.5 6 1555.3 881.8 1555.3 2.334 11.1 11.0 7 1537.0 889.9 1536.9 2.402 8.5 8.5 1 1612.9 888.5 1612.9 2.249 14.3 14.3 5 1725.1 1007.0 1725.1 2.427 7.5 1536.9 6 1555.3 883.0 1555.9 2.400 8.6 15 7 1536.9 889.8 1536.9 2.402 8.5 10.9 7 1536.9 889.8 1536.9 2.402 8.5 10.9 1 1612.9 990.8 1632.3 2.514 4.2 4.7 1 1612.9 993.2 1681.2 2.402 8.5 16.1		1	1612.9			2.248	14.4	14.3
Visual 5 1725.2 1007.0 1725.1 2.427 7.5 7.5 6 1555.3 881.8 1555.3 2.334 11.1 11.0 7 1537.0 889.9 1536.9 2.402 8.5 8.5 1 1612.9 888.5 1612.9 2.249 14.3 4 1668.7 966.3 1668.7 2.400 8.6 5 1725.1 1007.0 1725.1 2.427 7.5 6 1555.3 883.0 1555.3 2.339 10.9 7 1536.9 889.8 1536.9 2.402 8.5 1D Dry Weight (grams) Saturated Weight (grams) Bulk Specific Gravity Air Voids Average Air Voids (%) 1 1612.9 990.8 1632.3 2.514 4.2 4.7 4 1668.7 993.2 1581.2 2.425 7.6 8.0 5 1725.1 1035.6 1735.4 2.465 6.1 6		e jan de						1
Visual 5 1725.2 1007.0 1725.1 2.427 7.5 7.5 6 1555.3 881.8 1555.3 2.334 11.1 11.0 7 1537.0 889.9 1536.9 2.402 8.5 8.5 1 1612.9 888.5 1612.9 2.249 14.3 4 1668.7 966.3 1668.7 2.400 8.6 5 1725.1 1007.0 1725.1 2.427 7.5 6 1555.3 883.0 1555.3 2.339 10.9 7 1536.9 889.8 1536.9 2.402 8.5 1D Dry Weight (grams) Saturated Weight (grams) Bulk Specific Gravity Air Voids Average Air Voids (%) 1 1612.9 990.8 1632.3 2.514 4.2 4.7 4 1668.7 993.2 1581.2 2.425 7.6 8.0 5 1725.1 1035.6 1735.4 2.465 6.1 6				<u> </u>		· · · · · · ·		
Visual 5 1725.2 1007.0 1725.1 2.427 7.5 7.5 6 1555.3 881.8 1555.3 2.334 11.1 11.0 7 1537.0 889.9 1536.9 2.402 8.5 8.5 1 1612.9 888.5 1612.9 2.249 14.3 4 1668.7 966.3 1668.7 2.400 8.6 5 1725.1 1007.0 1725.1 2.427 7.5 6 1555.3 883.0 1555.3 2.339 10.9 7 1536.9 889.8 1536.9 2.402 8.5 1D Dry Weight (grams) Saturated Weight (grams) Bulk Specific Gravity Air Voids Average Air Voids (%) 1 1612.9 990.8 1632.3 2.514 4.2 4.7 4 1668.7 993.2 1581.2 2.425 7.6 8.0 5 1725.1 1035.6 1735.4 2.465 6.1 6	¥	4	1668 7	965.1	1668 7	2 307	87	9.6
Vision 10000 10000 2.402 8.3 8.3 1 1612.9 888.5 1612.9 2.249 14.3 4 1668.7 966.3 1668.7 2.400 8.6 5 1725.1 1007.0 1725.1 2.427 7.5 6 1555.3 883.0 1555.3 2.339 10.9 7 1536.9 889.8 1536.9 2.402 8.5 10 Dry Weight (grams) Submerged Weight (grams) Surface Dry Weight (grams) Bulk Specific Gravity Air Voids (%) Average Air Voids (%) 1 1612.9 990.8 1632.3 2.514 4.2 4.7 4 1668.7 993.2 1681.2 2.425 7.6 8.0 5 1725.1 1035.6 1735.4 2.465 6.1 6.6 6 1555.3 930.2 1570.7 2.428 7.5 8.2 7 1536.9 931.6 1551.8 2.478 5.6	2							
Vision 10000 10000 2.402 8.3 8.3 1 1612.9 888.5 1612.9 2.249 14.3 4 1668.7 966.3 1668.7 2.400 8.6 5 1725.1 1007.0 1725.1 2.427 7.5 6 1555.3 883.0 1555.3 2.339 10.9 7 1536.9 889.8 1536.9 2.402 8.5 10 Dry Weight (grams) Submerged Weight (grams) Surface Dry Weight (grams) Bulk Specific Gravity Air Voids (%) Average Air Voids (%) 1 1612.9 990.8 1632.3 2.514 4.2 4.7 4 1668.7 993.2 1681.2 2.425 7.6 8.0 5 1725.1 1035.6 1735.4 2.465 6.1 6.6 6 1555.3 930.2 1570.7 2.428 7.5 8.2 7 1536.9 931.6 1551.8 2.478 5.6	re							
Vision 10010 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 10000000 10000000 10000000 100000000 10000000000 10000000000000 1000000000000000000000000000000000000	පී		75.61					
Viscou June <	•							8.5
S 1725.1 1007.0 1725.1 2.427 7.5 6 1555.3 883.0 1555.3 2.339 10.9 7 1536.9 889.8 1536.9 2.402 8.5 ID Dry Weight (grams) Submerged Weight (grams) Saturated Surface Dry Weight (grams) Bulk Specific Gravity Air Voids (%) Average Air Voids (%) 1 1612.9 990.8 1632.3 2.514 4.2 4.7 4 1668.7 993.2 1681.2 2.425 7.6 8.0 5 1725.1 1035.6 1735.4 2.465 6.1 6.6 6 1555.3 930.2 1570.7 2.428 7.5 8.2 7 1536.9 931.6 1551.8 2.478 5.6 6.3 1 1 1617.7 988.6 1638.7 2.488 5.2 1 4 1675.2 987.5 1684.1 2.405 8.4 5 5 1727.9 1030.		1	1012.9	888.5	1612.9	2.249	14.3	
S 1725.1 1007.0 1725.1 2.427 7.5 6 1555.3 883.0 1555.3 2.339 10.9 7 1536.9 889.8 1536.9 2.402 8.5 ID Dry Weight (grams) Submerged Weight (grams) Saturated Surface Dry Weight (grams) Bulk Specific Gravity Air Voids (%) Average Air Voids (%) 1 1612.9 990.8 1632.3 2.514 4.2 4.7 4 1668.7 993.2 1681.2 2.425 7.6 8.0 5 1725.1 1035.6 1735.4 2.465 6.1 6.6 6 1555.3 930.2 1570.7 2.428 7.5 8.2 7 1536.9 931.6 1551.8 2.478 5.6 6.3 1 1 1617.7 988.6 1638.7 2.488 5.2 1 4 1675.2 987.5 1684.1 2.405 8.4 5 5 1727.9 1030.		nd na stran Na sta Maria anga	1					
5 1725.1 1007.0 1725.1 2.427 7.5 6 1555.3 883.0 1555.3 2.339 10.9 7 1536.9 889.8 1536.9 2.402 8.5 ID Dry Weight (grams) Submerged Weight (grams) Saturated Surface Dry Weight (grams) Bulk Specific Gravity Air Voids (%) Average Air Voids (%) 1 1612.9 990.8 1632.3 2.514 4.2 4.7 4 1668.7 993.2 1681.2 2.425 7.6 8.0 5 1725.1 1035.6 1735.4 2.465 6.1 6.6 6 1555.3 930.2 1570.7 2.428 7.5 8.2 7 1536.9 931.6 1551.8 2.478 5.6 6.3 1 1617.7 988.6 1638.7 2.488 5.2 5.6 4 1675.2 987.5 1684.1 2.405 8.4 5.1 5 1727.9 1030.1		4	1668.7	966.3	1668.7	2.400	8.6	
6 1555.3 883.0 1555.3 2.339 10.9 7 1536.9 889.8 1536.9 2.402 8.5 ID Dry Weight (grams) Submerged Weight (grams) Saturated Surface Dry Weight (grams) Bulk Specific Gravity Air Voids (%) Average Air Voids (%) 1 1612.9 990.8 1632.3 2.514 4.2 4.7 4 1668.7 993.2 1681.2 2.425 7.6 8.0 5 1725.1 1035.6 1735.4 2.465 6.1 6.6 6 1555.3 930.2 1570.7 2.428 7.5 8.2 7 1536.9 931.6 1551.8 2.478 5.6 6.3 1 1617.7 988.6 1638.7 2.488 5.2 1 4 1675.2 987.5 1684.1 2.405 8.4 5 7 1536.9 92.8 1575.4 2.392 8.9 1 7 1542.0 92.6 <td></td> <th>5</th> <td>1725.1</td> <td>1007.0</td> <td>1725.1</td> <td>2.427</td> <td>÷</td> <td>11</td>		5	1725.1	1007.0	1725.1	2.427	÷	11
Vision Vision Submerged Weight (grams) Saturated Weight (grams) Bulk Surface Dry Weight (grams) Air Voids Gravity Average Air Voids (%) 1 1612.9 990.8 1632.3 2.514 4.2 4.7 4 1668.7 993.2 1681.2 2.425 7.6 8.0 5 1725.1 1035.6 1735.4 2.465 6.1 6.6 6 1555.3 930.2 1570.7 2.428 7.5 8.2 7 1536.9 931.6 1551.8 2.478 5.6 6.3 1 1617.7 988.6 1638.7 2.488 5.2 7.1 4 1675.2 987.5 1684.1 2.405 8.4 5.2 4 1675.2 987.5 1684.1 2.405 8.4 5.2 7 1536.9 9.5 1684.1 2.405 8.4 5.2 5 1727.9 1030.1 1738.4 2.440 7.1 5.3 6		6	1555.3	883.0				<u> </u>
ID Dry Weight (grams) Submerged Weight (grams) Saturated Surface Dry Weight (grams) Bulk Specific Gravity Air Voids (%) Average Air Voids (%) 1 1612.9 990.8 1632.3 2.514 4.2 4.7 4 1668.7 993.2 1681.2 2.425 7.6 8.0 5 1725.1 1035.6 1735.4 2.465 6.1 6.6 6 1555.3 930.2 1570.7 2.428 7.5 8.2 7 1536.9 931.6 1551.8 2.478 5.6 6.3 1 1617.7 988.6 1638.7 2.488 5.2			1536.9					
ID Dry Weight (grams) Submerged Weight (grams) Surface Dry Weight (grams) Bulk Specific Gravity Air Voids (%) Average Air Voids (%) 1 1612.9 990.8 1632.3 2.514 4.2 4.7 4 1668.7 993.2 1681.2 2.425 7.6 8.0 5 1725.1 1035.6 1735.4 2.4455 6.1 6.6 6 1555.3 930.2 1570.7 2.428 7.5 8.2 7 1536.9 931.6 1551.8 2.478 5.6 6.3 1 1617.7 988.6 1638.7 2.488 5.2 - 4 1675.2 987.5 1684.1 2.405 8.4 - 5 1727.9 1030.1 1738.4 2.440 7.1 - 6 1561.1 922.8 1575.4 2.392 8.9 - 7 1542.0 926.9 1558.5 2.441 7.0 - 1 1		<u> </u>	· · · · · · · · · · · · · · · · · · ·	1			0.5	
VICE Image: Second system Image: Second system		ID	_	Weight	Surface Dry Weight	Specific		~
VICE Vice <th< td=""><td></td><th>1</th><td>1612.9</td><td>990.8</td><td></td><td>2.514</td><td>4.2</td><td>47</td></th<>		1	1612.9	990.8		2.514	4.2	47
Image: Second state state Second state state Second state state Second state state Second state	99		· · · · · · · · · · · · · · · · · · ·					
Image: Second state state Second state state Second state state Second state state Second state			1668.7	003.2	1681.2	2 425	76	
Image: Second state state Second state state Second state state Second state state Second state		<u> </u>						
Image: Second state state Second state state Second state state Second state state Second state	Ľ							
Image: Second state state Second state state Second state state Second state state Second state	H							
Image: Second state state Second state state Second state state Second state state Second state	AS	(6.3
4 1675.2 987.5 1684.1 2.405 8.4 5 1727.9 1030.1 1738.4 2.440 7.1 6 1561.1 922.8 1575.4 2.392 8.9 7 1542.0 926.9 1558.5 2.441 7.0 ID Field Nuclear Density (pcf) Corrected Factor (pcf) Bulk Density (pcf) Air Voids (%) Joint Distance (feet) 1 136.9 9.5 146.4 2.346 10.6 0.3 144.6 9.5 155.7 2.495 4.9 3.0 4 143.7 9.5 153.2 2.455 6.5 6.0 5 140.4 9.5 149.9 2.402 8.5 9.0 5 140.4 9.5 151.6 2.429 7.4 12.0	A		1017.7	988.0	1638.7	2.488	5.2	
5 1727.9 1030.1 1738.4 2.440 7.1 6 1561.1 922.8 1575.4 2.392 8.9 7 1542.0 926.9 1558.5 2.441 7.0 ID Field Nuclear Density (pcf) Corrected Factor (pcf) Bulk Density (pcf) Air Voids (%) Joint Distance (feet) 1 136.9 9.5 146.4 2.346 10.6 0.3 144.6 9.5 154.1 2.470 5.9 1.0 146.2 9.5 155.7 2.495 4.9 3.0 4 143.7 9.5 153.2 2.402 8.5 9.0 5 140.4 9.5 151.6 2.429 7.4 12.0								
5 1727.9 1030.1 1738.4 2.440 7.1 6 1561.1 922.8 1575.4 2.392 8.9 7 1542.0 926.9 1558.5 2.441 7.0 ID Field Nuclear Density (pcf) Corrected Factor (pcf) Bulk Density (pcf) Air Voids (%) Joint Distance (feet) 1 136.9 9.5 146.4 2.346 10.6 0.3 144.6 9.5 154.1 2.470 5.9 1.0 146.2 9.5 155.7 2.495 4.9 3.0 4 143.7 9.5 153.2 2.402 8.5 9.0 5 140.4 9.5 151.6 2.429 7.4 12.0	ĺ	4	1675.2	987.5	1684.1	2 405	84	
6 1561.1 922.8 1575.4 2.392 8.9 7 1542.0 926.9 1558.5 2.441 7.0 ID Field Nuclear Density (pcf) Correction Factor (pcf) Corrected Density (pcf) Bulk Specific Gravity Air Voids (%) Joint Distance (feet) 1 136.9 9.5 146.4 2.346 10.6 0.3 144.6 9.5 154.1 2.470 5.9 1.0 146.2 9.5 155.7 2.495 4.9 3.0 4 143.7 9.5 153.2 2.455 6.5 6.0 5 140.4 9.5 149.9 2.402 8.5 9.0 6 142.1 9.5 151.6 2.429 7.4 12.0			1727.9					
7 1542.0 926.9 1558.5 2.441 7.0 ID Field Nuclear Density (pcf) Correction Factor (pcf) Corrected Nuclear Density (pcf) Bulk Specific Gravity Air Voids (%) Joint Distance (feet) 1 136.9 9.5 146.4 2.346 10.6 0.3 144.6 9.5 154.1 2.470 5.9 1.0 146.2 9.5 155.7 2.495 4.9 3.0 4 143.7 9.5 153.2 2.455 6.5 6.0 5 140.4 9.5 149.9 2.402 8.5 9.0 6 142.1 9.5 151.6 2.429 7.4 12.0		-					· · · · · · · · · · · · · · · · · · ·	
ID Nuclear Density (pcf) Correction Factor (pcf) Nuclear Density (pcf) Specific Gravity Air Voids (%) Distance (feet) 1 136.9 9.5 146.4 2.346 10.6 0.3 144.6 9.5 154.1 2.470 5.9 1.0 4 143.7 9.5 153.2 2.455 6.5 6.0 5 140.4 9.5 149.9 2.402 8.5 9.0 6 142.1 9.5 151.6 2.429 7.4 12.0			1542.0					
6 142.1 9.5 151.6 2.429 7.4 12.0	sity	ID	Nuclear	Factor (ncf)	Nuclear	Specific		Distance
6 142.1 9.5 151.6 2.429 7.4 12.0	-ŭ	1					10.6	
6 142.1 9.5 151.6 2.429 7.4 12.0	ă		144.6					
6 142.1 9.5 151.6 2.429 7.4 12.0	ar							
6 142.1 9.5 151.6 2.429 7.4 12.0	cle	4						
6 142.1 9.5 151.6 2.429 7.4 12.0	j							
	ŕ	7	139.1	9.5	148.6	2.429	9.3	12.0

Rice =

						1000	2.071
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1406.8	771.6	1406.9	2.238	13.0	13.0
	2	1963.9	1111.6	1963.8	2.323	9.6	9.6
CoreLok	3	1105.9	620.6	1105.9	2.311	10.1	10.1
	4	1450.2	789.2	1450.1	2.217	13.8	13.4
	5	1620.4	900.9	1620.5	2.275	11.5	11.6
- LO	6	886.0	501.2	885.8	2.344	8.8	8.8
C	7	1682.3	903.9	1682.2	2.181	15.2	15.3
	1	1406.9	771.6	1406.9	2.238	13.0	
	2	1964.0	1111.5	1964.0	2.323	9.6	
	3	1105.9	621.0	1105.8	2.314	10.0	
	4	1450.1	795.2	1450.1	2.238	13.0	· · ·
	5	1620.3	900.5	1620.5	2.273	11.6	
	6	885.8	501.4	885.7	2.345	8.8	· · · · · · · · · · · · · · · · · · ·
	7	1682.2	901.5	1682.3	2.174	15.4	
	<u> </u>	1	301.5	· · · · · · · · · · · · · · · · · · ·	2.174	<u> </u>	
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1406.9	817.0	1422.4	2.324	9.6	9.7
	2	1963.9	1148.2	1980.6	2.359	8.2	
AASHTO T 166	3	1105.8	649.1	1120.0	2.339	8.7	8.1
[]	4	1450.1	851.0	1469.7	2.346	8.8	8.6
	5	1620.3	946.5	1634.3			8.9
Ĕ	6	885.7	519.1		2.356	8.4	8.3
H	7	1682.2	977.2	890.1	2.387	7.1	7.2
¥8		1408.9		1709.1	2.298	10.6	10.7
\mathbf{A}	$\frac{1}{2}$	1969.2	816.4	1424.4	2.317	9.9	
	$\frac{2}{3}$		1147.6	1980.2	2.365	8.0	
		1106.1	649.7	1119.8	2.353	8.5	
	4	1451.0	849.9	1470.5	2.338	9.1	
	5	1621.3	947.4	1634.1	2.361	8.2	
	6	885.6	518.6	889.8	2.386	7.2	
	1	1683.8	977.3	1711.2	2.294	10.8	
Nuclear Density	ID	Field Nuclear Density (pcf)		Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
	1	N/A	N/A	N/A	N/A	N/A	12.0
	2	N/A	N/A	N/A	N/A	N/A	11.0
	3	N/A	N / A	N/A	N/A	N/A	9.0
clé	4	N/A	N / A	N/A	N/A	N/A	6.0
N	5	N/A	N/A	N/A	N/A	N/A	3.0
	6	N/A	N/A	N/A	N/A	N/A	1.0
			11771	11/11			1.0 7

A0829012

Rice =

203

	ID	Initial Weight (grams)	Sealed Submerged Weight	Weight After Submersion	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1416.7	(grams) 735.3	(grams)		17.0	
	2	1977.7		1416.8	2.101	17.2	17.2
	$\frac{2}{3}$	1623.1	1099.4	1977.7	2.272	10.5	10.5
<u> </u>	4	1838.1	918.5	1623.1	2.327	8.3	8.4
Q	4		1019.1	1838.2	2.265	10.8	10.7
CoreLok		1870.5	1068.4	1870.6	2.354	7.2	7.2
l ē	6	1698.4	955.8	1698.4	2.310	9.0	9.1
	7	1661.8	911.3	1661.9	2.236	11.9	11.9
	1	1416.7	736.4	1416.8	2.104	17.1	
ļ	2	1977.8	1098.6	1977.7	2.269	10.6	
	3	1623.2	917.9	1623.1	2.325	8.4	
	4	1838.1	1019.3	1838.2	2.266	10.7	
	5	1870.5	1068.7	1870.5	2.355	7.2	
	6	1698.4	954.5	1698.4	2.306	9.1	
	7	1661.9	911.5	1661.9	2.237	11.9	[
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	<u> </u>	1416 7		(grams)			
	1	1416.7	845.8	1440.1	2.384	6.1	6.2
9	2	1977.7	1174.2	2001.4	2.391	5.8	5.8
16	3	1623.1	962.2	1634.4	2.415	4.9	4.9
E	4	1838.1	1091.7	1858.8	2.396	5.6	5.7
2	5	1870.6	1109.4	1883.7	2.416	4.8	4.8
AASHTO T 166	6	1698.4	1006.0	1712.1	2.405	5.2	5.2
S	7	1661.9	988.5	1682.1	2.396	5.6	5.5
A/		1416.5	844.9	1440.4	2.379	6.3	
	2	1978.7	1174.1	2000.9	2.393	5.7	
	3	1623.9	962.9	1636.3	2.411	5.0	
	4	1838.7	1090.8	1859.3	2.393	5.7	
	5	1871.0	1109.5	1883.3	2.418	4.7	
	6	1698.2	1006.1	1711.9	2.406	5.2	
	7	1662.0	987.7	1680.2	2.400	5.4	
Nuclear Density	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
en	1	N/A	N/A	N/A	N/A	N/A	0.0
ğ	2	N/A	N/A	N/A	N/A	N/A	1.0
ar [3	N/A	N/A	N/A	N/A	N/A	3.5
ت ت	4	N/A	N / A	N/A	N/A	N/A	6.5
7	5	N/A	N/A	N/A	N/A	N/A	9.5
<u> </u>	6	N/A	N / A	N/A	N/A	N/A	11.5
[7	N / A	N/A	N/A	N/A	N/A	12.5

A090	5013					Rice =	2.571
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1439.6	814.0	1439.7	2.326	9.5	9.7
	2	1514.1	872.7	1514.1	2.386	7.2	7.2
	3	2079.7	1219.3	2079.8	2.438	5.2	5.1
ok	4	1856.2	1105.1	1856.1	2.495	3.0	3.0
eL	5	2668.9	1544.1	2669.0	2.441	5.1	6.0
CoreLok	6 7	· · · · ·					
	1	1439.6	811.6	1439.6	2.317	9.9	
	2	1514.1	872.9	1514.1	2.386	7.2	1
	3	2079.7	1220.7	2079.8	2.442	5.0	
	4	1856.2	1105.2	1856.3	2.495	3.0	
	5	2668.8	1544.8	2668.9	2.391	7.0	
	6 7						
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1439.6	840.0	1446.1	2.375	7.6	7.6
<u>\</u>	2	1514.0	888.9	1516.2	2.414	6.1	6.2
16	3	2079.8	1239.7	2081.7	2.470	3.9	4.0
E	4	1856.1	1118.0	1856.7	2.513	2.3	2.3
0	5	2668.8	1574.3	2676.1	2.422	5.8	5.9
AASHTO T 166	6 7				, <u>, , , , , , , , , , , , , , , , , , </u>		
A	1	1438.1	839.2	1444.5	2.376	7.6	
7	2	1513.5	887.8	1516.1	2.409	6.3	
	3	2079.3	1238.7	2081.7	2.467	4.1	
	4	1855.6	1116.8	1856.4	2.509	2.4	
	5	2667.6	1570.4	2675.0	2.415	6.1	
	6 7						
Nuclear Density	ID	Field Nuclear Density (pcf)		Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
en	1	138.7	5.8	144.5	2.316	9.9	1.0
- Ģ	2	139.8	5.8	145.6	2.333	9.2	3.0
ear	3	144.7	5.8	150.5	2.412	6.2	6.0
l cl	4	145.4	5.8	151.2	2.423	5.8	9.0
ź.	5	143.4	5.8	149.2	2.391	7.0	11.0
	6 7						

Rice =	
--------	--

A070	0011					Nice -	2.031
	ID	Initial Weight	Sealed Submerged	Weight After	Bulk Specific	Air Voids	Average Air
		(grams)	Weight	Submersion	Gravity	(%)	Voids (%)
		(grains)	(grams)	(grams)	Gravity		
	1	1434.8	768.1	1434.7	2.175	17.3	17.5
	2	1566.1	899.3	1566.1	2.374	9.8	9.7
	3	1675.7	979.2	1675.7	2.430	7.6	7.6
0k	4	1564.5	905.6	1564.6	2.400	8.8	8.8
CoreLok	5	1383.7	799.0	1383.6	2.394	9.0	8.9
0L6	6	1414.5	799.5	1414.6	2.326	11.6	11.5
Ŭ	7						
	1	1434.7	764.5	1434.9	2.164	17.7	
	2	1566.0	900.0	1566.1	2.377	9.7	1
	3	1675.6	979.1	1675.6	2.430	7.6	
	4	1564.6	905.7	1564.6	2.400	8.8	
	5	1383.8	800.2	1383.6	2.399	8.8	<u> </u>
	6	1414.6	800.4	1414.6	2.329	11.5	
	7						
				Saturated			
	1	Dry Weight	Submerged	Surface Dry	Bulk	Air Voids	Average Air
	ID	(grams)	Weight	Weight	Specific	(%)	Voids (%)
	1	(g	(grams)	(grams)	Gravity		
	1	1434.7	877.2	1460.1	2.461	6.4	6.8
	2	1566.1	944.0	1580.9	2.459	6.5	6.6
AASHTO T 166	3	1675.8	1006.6	1683.1	2.477	5.8	5.8
÷.	4	1564.6	931.1	1571.3	2.444	7.1	7.1
Ξ	5	1383.6	827.4	1393.0	2.446	7.0	7.3
Ĩ	6	1414.5	847.9	1432.1	2.440	8.0	8.5
H	7	1414.5	047.7	14,1	2.421	0.0	0,5
AS	1	1434.6	875.5	1463.0	2.442	7.2	╉╼────┥
A	$\frac{1}{2}$	1566.8	941.5	1580.0	2.442	6.7	
	$\frac{2}{3}$	1675.7	1006.2	1682.7	2.434	5.9	
	4	1564.4	930.7	1570.4		ł	<u> </u>
	5	1384.3	821.9	1370.4	2.446	7.0	
	6	1415.3	842.3	1433.7	2.393	9.0	
_	7	141515	0-12.0	1455.7	2.395	9.0	
	T	Field		Corrected	Bulk	1	Joint
	ID	Nuclear	Correction			Air Voids	Distance
ţ			Factor (pcf)	Nuclear Density (sef)	Specific	(%)	
Nuclear Density	├	Density (pcf)	5.0	Density (pcf)	Gravity	20.4	(feet)
Jei		124.9	5.8	130.7	2.095	20.4	0.0
5	2	141.2	5.8	147.0	2.356		1.0
ea	3	147.0	5.8	152.8	2.449	6.9	4.5
uc	4	133.7	5.8	139.5	2.236	15.0	7.5
Z	5	137.9	5.8	143.7	2.303	12.5	10.5
1	6	129.9	5.8	135.7	2.175	17.3	14.0
	7					L	

A101:	5011					Rice =	2.503
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1685.7	920.6	1685.8	2.225	11.1	11.0
	2	1527.1	817.5	1527.0	2.173	13.2	13.0
	3	1520.9	847.2	1520.9	2.282	8.8	8.8
k	4	1285.5	715.2	1285.5	2.282	8.8	8.7
CoreLok	5	1821.0	971.1	1821.0	2.162	13.6	13.4
Le'	6	1425.3	787.1	1425.2	2.258	9.8	9.8
చి	7		, , , , , ,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	210
_	1	1685.7	921.9	1685.7	2.228	11.0	1
	2	1527.1	820.2	1527.1	2.183	12.8	
	3	1520.9	848.3	1520.9	2.285	8.7	
	4	1285.5	716.3	1285.6	2.287	8.6	
	5	1821.0	975.2	1820.9	2.172	13.2	
	6	1425.2	787.1	1425.1	2.259	9.7	·
	7	1125.2	,0,	1423.1	2.237	9.7	<u>+</u>
				I <u>", , ,</u>		· · · ·	
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1685.4	991.6	1707.2	2.355	5.9	6.0
	2	1526.8	900.5	1551.2	2.346	6.3	6.5
AASHTO T 166	3	1520.6	894.1	1537.2	2.364	5.5	5.6
L L	4	1285.2	747.8	1298.7	2.333	6.8	6.8
ò	5	1820.2	1058.9	1847.5	2.308	7.8	7.9
Ě	6	1424.4	827.4	1440.1	2.325	7.1	7.1
SE	7					· · · ·	
Y	1	1685.3	989.7	1706.6	2.351	6.1	
4	2	1526.5	898.3	1551.8	2.336	6.7	
	3	1520.6	894.0	1538.6	2.359	5.8	
	4	1285.2	745.4	1296.5	2.332	6.8	
	5	1820.0	1057.1	1847.8	2.302	8.0	
	6	1424.4	8 27.3	1439.3	2.327	7.0	
	7						
		Field	Correction	Corrected	Bulk	Air Voids	Joint
N	ID	Nuclear	Factor (pcf)	Nuclear	Specific	(%)	Distance
Isit		Density (pcf)		Density (pcf)	Gravity		(feet)
Nuclear Density	1	121.7	7.9	129.6	2.077	17.0	0.0
L	2	136.1	7.9	144.0	2.308	7.8	1.0
eal	3	137.2	7.9	145.1	2.325	7.1	3.0
lol	4	139.7	7.9	147.6	2.365	5.5	6.0
ź	5	142.1	7.9	150.0	2.404	4.0	9.0
	6	136.6	7.9	144.5	2.316	7.5	11.0
							r I

A1015012 (Random)

6 7

\101 :	5012 (I	Random)				Rice =	2.503
	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1						
	2	2008.6	1105.4	2008.9	2.243	10.4	10.7
	3	1810.0	1006.1	1809.6	2.274	9.1	8.9
ķ	4	1745.1	979.8	1745.0	2.303	8.0	8.0
il.	5	1921.3	1084.2	1921.3	2.316	7.5	7.5
CoreLok	6						
0	7						· · · · ·
	1	2008.6	1099.4	2008.3	2.229	10.0	
	2	1809.6	1099.4	1809.6	2.229	10.9 8.7	·
	3	1744.9	980.4	1745.0	2.285	<u>8.7</u> 7.9	
	4 5	1921.2	1083.7	1921.1	2.303	7.9	
	6	1721.2	1005.7	1921.1	2.314	7.0	
	7	· , ,					
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1						
6	2	2006.0	1168.6	2026.3	2.339	6.6	6.9
16	3	1807.9	1055.3	1821.0	2.361	5.7	5.9
H	4	1743.9	1016.9	1754.8	2.363	5.6	5.5
0	5	1920.0	1124.5	1931.6	2.379	5.0	4.9
AASHTO T 166	6 7						
A	1 2	2011.5	1163.2	2029.2	2.323	7.2	· · · · ·
	3	1811.5	1054.2	1824.4	2.323	6.0	
	4	1746.2	1016.3	1753.9	2.352	5.4	
	5	1923.1	1124.1	1930.8	2.384	4.8	
	6 7						
ity	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
ens	1	N/A	N/A	N / A	N/A	N/A	6.7
Nuclear Density	2	143.2	7.9	151.1	2.421	3.3	6.6
ar	3	143.9	7.9	151.8	2.433	2.8	2.4
cle	4	144.0	7.9	151.9	2.434	2.7	10.3
n N	5	140.9	7.9	148.8	2.385	4.7	6.4
	6						

A0515023 (Problem)

Rice =

	ID	Initial Weight (grams)	Sealed Submerged Weight (grams)	Weight After Submersion (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1057.8	584.2	1057.8	2.266	11.8	12.0
	2	1185.1	668.0	1185.0	2.323	9.6	9.6
	3	1353.4	785.9	1353.3	2.415	6.1	6.2
¥	4	1267.2	719.9	1267.1	2.346	8.8	8.8
Lo L	5	1347.3	731.7	1347.2	2.214	13.9	14.3
CoreLok	6 7				· · · · ·		
	1	1057.8	583.0	1057.7	2.260	12.1	
	2	1185.0	668.3	1184.9	2,325	9.6	1
	3	1353.3	784.0	1353.2	2.407	6.4	1
	4	1267.1	719.7	1267.0	2.345	8.8	
İ	5	1347.2	726.1	1347.1	2.194	14.7	
	6 7					11.7	
	ID	Dry Weight (grams)	Submerged Weight (grams)	Saturated Surface Dry Weight (grams)	Bulk Specific Gravity	Air Voids (%)	Average Air Voids (%)
	1	1057.7	632.9	1072.3	2.407	6.4	6.7
	2	1184.9	706.7	1194.2	2.431	5.5	5.7
99	3	1353.2	801.8	1354.9	2.447	4.8	5.0
1	4	1267.0	754.9	1276.3	2.430	5.5	5.7
51	5	1347.1	812.3	1365.0	2.437	5.2	5.2
AASHTO T 166	6 7				2.157		J.2
	1	1062.5	629.0	1073.8	2.389	7.1	
	2	1186.9	705.9	1196.8	2.418	6.0	
	3	1353.2	802.0	1357.1	2.438	5.2	
	4	1268.9	752.0	1276.2	2.421	5.8	
[5	1350.5	811.5	1366.0	2.436	5.3	
	6 7				· · · · · · · · · · · · · · · · · · ·		
sity	ID	Field Nuclear Density (pcf)	Correction Factor (pcf)	Corrected Nuclear Density (pcf)	Bulk Specific Gravity	Air Voids (%)	Joint Distance (feet)
Nuclear Density	1	138.8	-3.0	135.8	2.176	15.4	1.0
	2	141.7	-3.0	138.7	2.223	13.5	2.0
ä [3	144.9	-3.0	141.9	2.274	11.6	5.5
cle	4	149.9	-3.0	146.9	2.354	8.4	8.5
	5	147.1	-3.0	144.1	2.309	10.2	10.0
	6 7						

Appendix G:

Paired t-tests on Field Samples

Legend

C = CoreLok

T = AASHTO T 166

N = Nuclear Density

If Absolute Value of t Stat is Greater than t Critical two-tail, then YES there is a Statistical Difference between methods

If Absolute Value of t Stat is Less than t Critical two-tail, then NO there is not a Statistical Difference between methods

	С	Т	
Mean	8.46843	7.77414	······································
Variance	3.34128	2.18745	
Observations	5.00000	5.00000	
Pearson Correlation	0.99	9442	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	3.98	8290	YES
P(T<=t) one-tail	0.00	818	
t Critical one-tail	2.13	3185	
P(T<=t) two-tail	0.01	636	
t Critical two-tail	2.77	/645	
	С	N	
Mean	8.46843	7.37114	· · ·
Variance	3.34128	2.63340	
Observations	5.00000	5.00000	
Pearson Correlation	0.65	5907	
Hypothesized Mean Difference	0.00	000	
df	4.00	0000	
t Stat	1.70	758	NO
P(T<≈t) one-tail	0.08	3145	
t Critical one-tail	2.13	3185	
P(T<=t) two-tail	0.16	5290	
t Critical two-tail	2.77	645	
	Т	N	
Mean	7.77414	7.37114	<u> </u>
Variance	2.18745	2.63340	
Observations	5.00000	5.00000	
Pearson Correlation	0.67	736	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	0.71	933	NO
P(T<=t) one-tail	0.25	586	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.51	172	
t Critical two-tail	2.77		

S0820013

	С	T	
Mean	12.37406	11.29960	
Variance	13.12962	9.98480	
Observations	6.00000	6.00000	
Pearson Correlation	0.99778		
Hypothesized Mean Difference	0.00000		
df	5.00000		
t Stat	5.10540		YES
P(T<=t) one-tail	0.00188		
t Critical one-tail	2.01505		
P(T<=t) two-tail	0.00375		
t Critical two-tail	2.57058		
····	C	<u>N</u>	
Mean	12.37406	9.48428	
Variance	13.12962	7.85117	
Observations	6.00000	6.00000	
Pearson Correlation	0.87587		
Hypothesized Mean Difference	0.00000		
df	5.00000		
t Stat	3.95982		YES
P(T<=t) one-tail	0.00537		
t Critical one-tail	2.01		
P(T<=t) two-tail	0.01	074	
t Critical two-tail	2.57058		
	<i>T</i>	N	
Mean	11.29960	9.48428	
Variance	9.98480	7.85117	
Observations	6.00000	6.00000	
Pearson Correlation	0.87297		
Hypothesized Mean Difference	0.00000		
df	5.00000		
t Stat	2.88381		YES
P(T<=t) one-tail	0.01722		
t Critical one-tail	2.01505		
P(T<=t) two-tail	0.03443		
t Critical two-tail	2.57058		

S1030012 (Problem)

	С	T	
Mean	7.40326	6.40425	
Variance	2.31669	1.22772	
Observations	6.00000	6.00000	
Pearson Correlation	0.97528		
Hypothesized Mean Difference	0.00000		
df	5.00000		
t Stat	4.84756		YES
P(T<=t) one-tail	0.00234		
t Critical one-tail	2.01505		
P(T<=t) two-tail	0.00468		
t Critical two-tail	2.57058		
	С	N	<u> </u>
Mean	7.40326	5.77184	
Variance	2.31669	1.67165	
Observations	6.00000	6.00000	
Pearson Correlation			
Hypothesized Mean Difference	-0.19531 0.00000		
df	5.00000		
t Stat	1.83220		NO
P(T<=t) one-tail	0.06321		
t Critical one-tail	2.01505		
$P(T \le t)$ two-tail	0.12641		
t Critical two-tail	2.57058		
· · · · · · · · · · · · · · · · · · ·		11	
	<u> </u>	<u>N</u>	
Mean Variance	6.40425	5.77184	
	1.22772	1.67165	
Observations	6.00000	6.00000	
Pearson Correlation	-0.10004		
Hypothesized Mean Difference	0.00000		
df	5.00000		NO
t Stat	0.86786		NO
$P(T \le t)$ one-tail	0.21258		
t Critical one-tail	2.01505 0.42515		
P(T<=t) two-tail	0.40	1515	

S0716022

	С	Т	
Mean	10.6488	9.5892	
Variance	3.4544	2.7841	
Observations	6.0000	6.0000	
Pearson Correlation	0.9	777	
Hypothesized Mean Difference	0.00	000	
df	5.00	000	
t Stat	6.2	154	YES
P(T<=t) one-tail	0.00	008	
t Critical one-tail	2.0	150	
P(T<=t) two-tail	0.00	016	
t Critical two-tail	2.5	706	
	С	N	
Mean	10.6488	6.1181	
Variance	3.4544	3.9733	
Observations	6.0000	6.0000	
Pearson Correlation	0.5		
Hypothesized Mean Difference	0.00		
df	5.00		
t Stat	5.8		YES
P(T<=t) one-tail	0.00		110
t Critical one-tail	2.0		
$P(T \le t)$ two-tail	0.00		
t Critical two-tail	2.5		
·····	<i>T</i>	N	
Mean	9.5892	6.1181	
Variance	2.7841	3.9733	
Observations	6.0000	6.0000	
Pearson Correlation	0.0000		
Hypothesized Mean Difference	0.00		
df	5.00		
t Stat	4.9 :		YES
$P(T \le t)$ one-tail	0.00		1 200
t Critical one-tail	2.0		
$P(T \le t)$ two-tail	0.00		
t Critical two-tail	2.5		

	С	T	
Mean	8.68765	7.86593	
Variance	5.32332	4.18179	
Observations	6.00000	6.00000	
Pearson Correlation	0.99	819	
Hypothesized Mean Difference	0.00	000	
df	5.00	000	
t Stat	6.86	5906	YES
P(T<=t) one-tail	0.00	0050	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.00	0100	
t Critical two-tail	2.57	/058	
	<i>C</i>	N	
Mean	8.68765	7.35553	
Variance	5.32332	5.10133	
Observations	6.00000	6.00000	
Pearson Correlation		782	
Hypothesized Mean Difference		0000	
df		0000	
t Stat		509	YES
P(T<=t) one-tail)346	
t Critical one-tail		505	
$P(T \le t)$ two-tail)692	
t Critical two-tail	2.57	7058	
	<i>T</i>	N	
Mean	7.86593	7.35553	
Variance	4,18179	5.10133	
Observations	6.00000	6.00000	
Pearson Correlation		3653	
Hypothesized Mean Difference		0000	
df		0000	
t Stat		7272	NO
P(T<=t) one-tail		3830	
t Critical one-tail		1505	
$P(T \le t)$ two-tail		7659	
t Critical two-tail		7058	

D0820011 (Problem)

	С	Т	
Mean	11.11224	9.03190	
Variance	17.19644	6.48711	
Observations	6.00000	6.00000	
Pearson Correlation	0.92	2080	
Hypothesized Mean Difference	0.00	0000	
df	5.00	0000	
t Stat	2.47	688	NO
P(T<=t) one-tail	0.02	803	
t Critical one-tail	2.01	505	
$P(T \le t)$ two-tail	0.05	605	
t Critical two-tail	2.57	/058	
	С	N	. <u>.</u> .
Mean	11.11224	8.48373	
Variance	17.19644	25.72963	
Observations	6.00000	6.00000	
Pearson Correlation	0.89	9654	
Hypothesized Mean Difference	0.00	0000	
df	5.00	0000	
t Stat	2.82	2103	YES
P(T<=t) one-tail	0.01	853	
t Critical one-tail	2.01	505	
P(T<=t) two-tail		3706	
t Critical two-tail	2.57	7058	
	Т	N	
Mean	9.03190	8.48373	
Variance	6.48711	25.72963	
Observations	6.00000	6.00000	
Pearson Correlation	0.65	5496	
Hypothesized Mean Difference	0.00	0000	
df	5.00	000	
t Stat	0.34	1335	NO
P(T<=t) one-tail	0.37	7265	
t Critical one-tail	2.01	505	
P(T<=t) two-tail		1530	
t Critical two-tail		7058	

	С	T	
Mean	11.13904	9.12895	
Variance	4.42051	1.32334	
Observations	5.00000	5.00000	
Pearson Correlation	0.95	151	
Hypothesized Mean Difference	0.00	000	
df	4.00	000	
t Stat	4.20	759	YES
P(T<=t) one-tail	0.00	681	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.01	361	
t Critical two-tail	2.77	645	
	<u>С</u>		
Mean	11.13904	12.58283	·····
Variance	4.42051	3.85978	
Observations	5.00000	5.00000	
Pearson Correlation	0.97	595	
Hypothesized Mean Difference	0.00	000	
df	4.00	000	
t Stat	-6.91979		YES
P(T<=t) one-tail	0.00	114	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.00	229	
t Critical two-tail	2.77	645	
	<i>T</i>	N	<u></u>
Mean	9.12895	12.58283	
Variance	1.32334	3.85978	
Observations	5.00000	5.00000	
Pearson Correlation	0.99	488	
Hypothesized Mean Difference	0.00	000	
df	4.00	000	
t Stat	-9.32	2335	YES
P(T<=t) one-tail	0.00	037	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.00	074	
t Critical two-tail	2.77	645	

D0905012 (Random)

	С	T	
Mean	9.76041	7.90567	
Variance	7.81786	3.82093	
Observations	5.00000	5.00000	
Pearson Correlation	0.98	3224	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	4.36	5682	YES
P(T<=t) one-tail	0.00)600	
t Critical one-tail	2.13	3185	
P(T<=t) two-tail	0.01	200	
t Critical two-tail	2.77	7645	
Mean	<u>C</u> 9.76041	<u>N</u> 10.60638	<u> </u>
Variance	7.81786	7.10267	
	5.00000	5.00000	
Observations		5824	
Pearson Correlation)000	
Hypothesized Mean Difference			
df)000	NO
t Stat		0122	NU
$P(T \le t)$ one-tail		2701	
t Critical one-tail		3185	
P(T<=t) two-tail t Critical two-tail		5403 7 645	
	Т	N	
Mean	7.90567	10.60638	
Variance	3.82093	7.10267	
Observations	5.00000	5.00000	
Pearson Correlation	0.97	7963	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	-7.1	3253	YES
P(T<=t) one-tail	0.00	0102	
t Critical one-tail	2.13	3185	
P(T<=t) two-tail	0.00	0204	
t Critical two-tail	2.77	7645	

	С	T	
Mean	8.52638	6.95886	
Variance	10.91510	7.63021	
Observations	7.00000	7.00000	
Pearson Correlation	0.99	615	
Hypothesized Mean Difference	0.00	000	
df	6.00	000	
t Stat	6.87	917	YES
P(T<=t) one-tail	0.00	023	
t Critical one-tail	1.94	318	
P(T<=t) two-tail	0.00	047	
t Critical two-tail	2.44	691	<u> </u>
	С	N	»
Mean	8.52638	7.41241	
Variance	10.91510	4.39627	
Observations	7.00000	7.00000	
Pearson Correlation	0.96		
Hypothesized Mean Difference	0.00		
df	6.00		
t Stat	2.14		NO
P(T<=t) one-tail	0.03	766	
t Critical one-tail	1.94	318	
P(T<=t) two-tail	0.07	532	
t Critical two-tail	2.44	691	····
	T	N	<u></u>
Mean	6.95886	7.41241	
Variance	7.63021	4.39627	
Observations	7.00000	7.00000	
Pearson Correlation	0.95		
Hypothesized Mean Difference	0.00	000	
df	6.00	000	
t Stat	-1.24	137	NO
P(T<=t) one-tail	0.13	040	
t Critical one-tail	1.94	318	
P(T<=t) two-tail	0.26	080	
t Critical two-tail	2.44	691	

D0920012 (Random)

	С	Т	
Mean	8.50942	7.60533	
Variance	8.30942 4.18484	2.13387	
Observations	5.00000	5.00000	
Pearson Correlation		3432	
Hypothesized Mean Difference)000	
df)000	
t Stat		5229	YES
$P(T \le t)$ one-tail		.879	1 2.5
t Critical one-tail		3185	
$P(T \le t)$ two-tail		3757	
t Critical two-tail		7645	
	<u> </u>	043	
	С	N	
Mean	8.50942	7.02241	
Variance	4.18484	5.60381	
Observations	5.00000	5.00000	
Pearson Correlation	0.87	759	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	2.92	872	YES
P(T<=t) one-tail	0.02	2143	
t Critical one-tail	2.13	185	
$P(T \le t)$ two-tail	0.04	287	
t Critical two-tail	2.77	645	
	<u> </u>	<u>N</u>	
Mean	7.60533	7.02241	
Variance	2.13387	5.60381	
Observations	5.00000	5.00000	
Pearson Correlation	0.82		
Hypothesized Mean Difference	0.00		
df	4.00		
t Stat	0.91	989	NO
$P(T \le t)$ one-tail	0.20	484	
t Critical one-tail	2.13	185	
$P(T \le t)$ two-tail	0.40	968	
t Critical two-tail	2.77	645	

D0927011 (Random)

	C	Т	
Mean	14.32572	12.44551	
Variance	16.33333	8.78794	
Observations	4.00000	4.00000	
Pearson Correlation	0.99	779	
Hypothesized Mean Difference	0.00	0000	
df	3.00	000	
t Stat	3.41	461	YES
P(T<=t) one-tail	0.02	2100	
t Critical one-tail	2.35	5336	
P(T<=t) two-tail	0.04	201	
t Critical two-tail	3.18	3245	
	C	N	·
Mean	14.32572	7.09823	<u> </u>
Variance	16.33333	1.55894	
Observations	4.00000	4.00000	
Pearson Correlation	0.85	5316	
Hypothesized Mean Difference	0.00	0000	
df	3.00	0000	
t Stat	4.74455		YES
P(T<=t) one-tail	0.00)888	
t Critical one-tail	2.35	5336	
P(T<=t) two-tail	0.01	776	
t Critical two-tail	3.18	3245	
	T	<u>N</u>	
Mean	12.44551	7.09823	
Variance	8.78794	1.55894	
Observations	4.00000	4.00000	
Pearson Correlation	0.86	5747	
Hypothesized Mean Difference	0.00	0000	
df	3.00000		
t Stat	5.39	9793	YES
P(T<=t) one-tail	0.00	0623	
t Critical one-tail	2.35	5336	
P(T<=t) two-tail	0.01	1246	
t Critical two-tail	3.18	8245	

	С	Т	
Mean	11.91170	9.43650	
Variance	18.36129	7.23150	
Observations	6.00000	6.00000	
Pearson Correlation	0.99	916	
Hypothesized Mean Difference	0.00	000	
df	5.00	000	
t Stat	3.78	485	YES
P(T<=t) one-tail	0.00	641	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.01	283	
t Critical two-tail	2.57	058	
	С	N	
Mean	11.91170	5.84068	
Variance	18.36129	18.36763	
Observations	6.00000	6.00000	
Pearson Correlation	0.85	539	
Hypothesized Mean Difference	0.00	000	
df	5.00000		
t Stat	6.45260		YES
P(T<=t) one-tail	0.00	067	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.00	0133	
t Critical two-tail	2.57	/058	
······	T	N	
Mean	9.43650	5.84068	
Variance	7.23150	18.36763	
Observations	6.00000	6.00000	
Pearson Correlation	0.84	206	
Hypothesized Mean Difference	0.00	0000	
df	5.00	0000	
t Stat	3.54	1029	YES
P(T<=t) one-tail	0.00	828	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.01	656	
t Critical two-tail	2.57	7058	

D0412021 (Problem)

	C	T	
Mean	8.4665	7.2131	
Variance	0.8881	1.2474	
Observations	7.0000	7.0000	
Pearson Correlation	0.9	363	
Hypothesized Mean Difference	0.0	000	
df	6.0	000	
t Stat	8.1	751	YES
P(T<=t) one-tail	0.0	001	
t Critical one-tail	1.9	432	
P(T<≈t) two-tail	0.0	002	
t Critical two-tail	2.4	469	
	C	N	<u> </u>
Mean	8.4665	10.2541	
Variance	0.8881	1.0278	
Observations	7.0000	7.0000	
Pearson Correlation		239	
Hypothesized Mean Difference		000	
df		000	
t Stat		5591	YES
P(T<=t) one-tail		007	
t Critical one-tail		432	
$P(T \le t)$ two-tail		014	
t Critical two-tail	2.4	469	
<u></u>	<i>T</i>	N	
Mean	7.2131	10.2541	
Variance	1.2474	1.0278	
Observations	7.0000	7.0000	
Pearson Correlation		847	
Hypothesized Mean Difference		000	
df		000	
t Stat		143	YES
$P(T \le t)$ one-tail		002	1 110
t Critical one-tail		432	
$P(T \le t)$ two-tail		003	
t Critical two-tail	2.4		

•

59894 0000 0.99212 0.00000 5.00000 5.00000 5.20304 0.00173 2.01505 0.00346 2.57058 C 9090 59894	N 5.68380 6.37700 6.00000	YES
0000 0.99212 0.00000 5.00000 5.20304 0.00173 2.01505 0.00346 2.57058 C 9090 59894 0000	6.00000 2 3 3 5 5 5 5 5 5 5 6 8 8 7 700 6.00000	YES
0.99212 0.00000 5.00000 5.20304 0.00173 2.01505 0.00346 2.57058 C 9090 5 59894 6	<i>N</i> 5.68380 6.37700 6.00000	YES
0.00000 5.00000 5.20304 0.00173 2.01505 0.00346 2.57058 C 9090 5 59894 6 0000 6	N 5.68380 6.37700 6.00000	YES
5.00000 5.20304 0.00173 2.01505 0.00346 2.57058 C 9090 5 59894 6 0000 6	N 5.68380 6.37700 6.00000	YES
5.20304 0.00173 2.01505 0.00346 2.57058 C 9090 5 59894 6 0000 6	N 5.68380 6.37700 6.00000	YES
0.00173 2.01505 0.00346 2.57058 C 9090 5 59894 6 0000 6	<u>N</u> 5.68380 6.37700 6.00000	YES
2.01505 0.00346 2.57058 C 9090 5 59894 6 0000 6	N 5.68380 6.37700 6.00000	
0.00346 2.57058 <u>C</u> 9090 59894 6 0000 6	N 5.68380 6.37700 6.00000	
2.57058 <u>C</u> 9090 5 59894 6 0000 6	N 5.68380 6.37700 6.00000	
<u>C</u> 9090 5 59894 6 0000 6	N 5.68380 6.37700 6.00000	
9090 ± 59894 ¢ 0000 ¢	5.68380 6.37700 6.00000	
9090 ± 59894 ¢ 0000 ¢	5.68380 6.37700 6.00000	
59894 (0000 (6.37700 6.00000	
0000	6.00000	
	-	
	,	
0.00000	1	
5.00000		
7.32785		YES
0.00037		125
2.01505		
0.00074		
2.57058		
		· · · ·
<u>T</u>	N	
		YES
0.00078		
2.01505		
	9433 0000 0.95060 0.00000 5.00000 6.22928 0.00078 2.01505	9433 6.37700 0000 6.00000 0.95060 0.00000 5.00000 6.22928 0.00078

D051602A1

414 -	С	Т	
Mean	11.41642	11.30774	
Variance	1.43118	1.04373	
Observations	5.00000	5.00000	
Pearson Correlation	0.99	146	
Hypothesized Mean Difference	0.00	000	
df	4.00	000	
t Stat	1.07	'19 2	NO
P(T<=t) one-tail	0.17	206	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.34	412	
t Critical two-tail	2.77	645	
······································	С	N	
Mean	11.41642	9.76046	
Variance	1.43118	4.30168	
Observations	5.00000	5.00000	
Pearson Correlation	0.93	300	
Hypothesized Mean Difference	0.00	000	
df	4.00	000	
t Stat	3.52	589	YES
P(T<=t) one-tail	0.01	216	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.02	2432	
t Critical two-tail	2.77	645	
<u></u>		17	
Maan	<u> </u>	<u>N</u> 9.76046	
Mean Variance	1.04373	9.70040 4.30168	
Observations		5.00000	
Pearson Correlation	5.00000		
	0.95 0.00		
Hypothesized Mean Difference df	4.00		
t Stat	4.00 3.02		YES
			ILS
	0.01		
$P(T \le t)$ one-tail	0.10	105	
P(T<=t) one-tail t Critical one-tail P(T<=t) two-tail	2.13 0.03		

D051602T1

	С	Т	
Mean	12.74688	10.87273	
Variance	0.90630	1.97374	
Observations	5.00000	5.00000	
Pearson Correlation	0.95		
Hypothesized Mean Difference	0.00		
df	4.00		
t Stat	7.44		YES
P(T<=t) one-tail	0.00	087	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.00	174	
t Critical two-tail	2.77	645	
		37	
	C	N 11 27250	
Mean Variance	12.74688 0.90630	11.27359 0.19929	
		5.00000	
Observations	5.00000		
Pearson Correlation	0.75		
Hypothesized Mean Difference df	0.00		
t Stat	4.00000 4.83452		YES
$P(T \le t)$ one-tail	4.8 3 0.00		IES
t Critical one-tail	2.13		
$P(T \le t)$ two-tail	0.00		
t Critical two-tail	2.77		
		· · · · · · · · · · · · · · · · · · ·	
	<i>T</i>	N	
Mean	10.87273	11.27359	
Variance	1.97374	0.19929	
Observations	5.00000	5.00000	
Pearson Correlation	0.80		
Hypothesized Mean Difference	0.00		
df	4.00000		
t Stat	-0.82968		NO
P(T<=t) one-tail	0.22668		
t Critical one-tail	2.13185		
P(T<=t) two-tail	0.45		
t Critical two-tail	2.77	645	

D051602T2

	С		
Mean	11.09902	9.62093	<u> </u>
Variance	7.38226	5.02751	
Observations	6.00000	6.00000	
Pearson Correlation	0.98	065	
Hypothesized Mean Difference	0.00	000	
df	5.00	000	
t Stat	5.33	137	YES
P(T<=t) one-tail	0.00	156	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.00	311	
t Critical two-tail	2.57	058	
			-
	<u> </u>	N	
Mean	11.09902	10.98668	
Variance	7.38226	6.33068	
Observations	6.00000	6.00000	
Pearson Correlation	0.87	765	
Hypothesized Mean Difference	0.00	0000	
df	5.00	000	
t Stat	0.21	024	NO
P(T<=t) one-tail	0.42	2089	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.84		
t Critical two-tail	2.57	/058	
	<u>T</u>	N	
Mean	9.62093	10.98668	
Variance	5.02751	6.33068	
Observations	6.00000	6.00000	
Pearson Correlation	0.90		
Hypothesized Mean Difference	0.00	000	
df		000	
t Stat	-3.14		YES
P(T<=t) one-tail	0.01		
t Critical one-tail	2.01	505	
$P(T \le t)$ two-tail	0.02		
t Critical two-tail	2.57		

	С	<i>T</i>	
Mean	8.34518	7.56174	
Variance	3.46835	5.94177	
Observations	7.00000	7.00000	
Pearson Correlation	0.78	025	
Hypothesized Mean Difference	0.00	000	
df	6.00	0000	
t Stat	1.35	5910	NO
P(T<=t) one-tail	0.11	149	
t Critical one-tail	1.94	318	
P(T<=t) two-tail	0.22	298	
t Critical two-tail	2.44	691	
	С	N	
Mean	8.34518	7.87156	
Variance	3.46835	5.65167	
Observations	7.00000	7.00000	
Pearson Correlation	0.97	/012	
Hypothesized Mean Difference	0.00	0000	
df	6.00	000	
t Stat	1.72	166	NO
P(T<=t) one-tail	0.06	796	
t Critical one-tail	1.94	318	
P(T<=t) two-tail	0.13	591	
t Critical two-tail	2.44	691	
<u> </u>	T	N	<u></u>
Mean	7.56174	7.87156	
Variance	5.94177	5.65167	
Observations	7.00000	7.00000	
Pearson Correlation	0.86	004	
Hypothesized Mean Difference	0.00	000	
df	6.00000		
t Stat	-0.64287		NO
P(T<=t) one-tail	0.27204		
t Critical one-tail	1.94318		
P(T<=t) two-tail	0.54408		
t Critical two-tail	2.44	691	

		<u> </u>	
	С	T	
Mean	7.01201	6.21014	
Variance	2.43876	1.80293	
Observations	5.00000	5.00000	
Pearson Correlation	0.96	5995	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	4.29	9920	YES
P(T<=t) one-tail	0.00)633	
t Critical one-tail	2.13	3185	
P(T<=t) two-tail	0.01	1265	
t Critical two-tail	2.77	7645	
	С	N	
Mean	7.01201	7.23877	
Variance	2.43876	0.15779	
Observations	5.00000	5.00000	
Pearson Correlation	0.97	7032	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	-0.4	2965	NO
P(T<=t) one-tail	0.34	4479	
t Critical one-tail	2.13	3185	
P(T<=t) two-tail	0.68	8958	
t Critical two-tail	2.77	7645	
	Т	N	
Mean	6.21014	7.23877	
Variance	1.80293	0.15779	
Observations	5.00000	5.00000	
Pearson Correlation		4934	
Hypothesized Mean Difference		0000	
df		0000	
t Stat		6229	NO
		3873	nu
$P(T \le t)$ one-tail			
t Critical one-tail		3185	
P(T<=t) two-tail t Critical two-tail		7747 7 645	

	С	<u>T</u>	
Mean	12.8650	11.4185	
Variance	12.8050	7.5468	
Observations	6.0000	6.0000	
Pearson Correlation	0.0000		
Hypothesized Mean Difference	0.0		
df	5.0		
t Stat	4.8		YES
$P(T \le t)$ one-tail	0.0		1 100
t Critical one-tail	2.0		
$P(T \le t)$ two-tail	0.0		
t Critical two-tail	2.5		
	C	N	
Mean	12.8650	14.8155	
Variance	11.8121	7.1905	
Observations	6.0000	6.0000	
Pearson Correlation	0.9		
Hypothesized Mean Difference	0.0		
df	5.0		
t Stat	-4.5		YES
P(T<=t) one-tail	0.0		
t Critical one-tail	2.0		
$P(T \le t)$ two-tail	0.0		
t Critical two-tail	2.5	706	
······	Т	N	<u></u>
Mean	11.4185	14.8155	
Variance	7.5468	7.1905	
Observations	6.0000	6.0000	
Pearson Correlation	0.9	633	
Hypothesized Mean Difference	0.0	000	
df	5.0000		
t Stat	-11.2769		YES
P(T<=t) one-tail	0.0000		
t Critical one-tail	2.0150		
P(T<=t) two-tail	0.00	001	
t Critical two-tail	2.5	706	

D0814022 (Random)

	С	T	· · · · · · · · · · · · · · · · · · ·
Mean	8.5404	7.5787	
Variance	3.3948	2.5048	
Observations	5.0000	5.0000	
Pearson Correlation	0.9	924	
Hypothesized Mean Difference	0.0	000	
df	4.0	000	
t Stat	6.4	344	YES
P(T<=t) one-tail	0.0	015	
t Critical one-tail	2.1	318	
P(T<=t) two-tail	0.0	030	
t Critical two-tail	2.7	765	
	C	N	
Mean	8.5404	12.4699	
Variance	3.3948	2.4106	
Observations	5.0000	5.0000	
Pearson Correlation		696	
Hypothesized Mean Difference		000	
df		000	
t Stat		198	YES
P(T<=t) one-tail		009	
t Critical one-tail	2.1	318	
P(T<=t) two-tail		018	
t Critical two-tail	2.7	765	
	<i>T</i>	N	
Mean	7.5787	12.4699	
Variance	2.5048	2.4106	
Observations	5.0000	5.0000	
Pearson Correlation	0.7		
Hypothesized Mean Difference		000	
df	4.0		
t Stat	-10.9019		YES
$P(T \le t)$ one-tail	0.0002		
t Critical one-tail	2.1318		
$P(T \le t)$ two-tail	0.0004		
t Critical two-tail	2.7		

	С	T	
Mean	14.5747	12.4994	
Variance	15.7896	9.3926	
Observations	7.0000	7.0000	
Pearson Correlation	0.9	934	
Hypothesized Mean Difference	0.0	000	
df	6.0	000	
t Stat	5.5	262	YES
P(T<=t) one-tail	0.0	007	
t Critical one-tail	1.9	432	
P(T<=t) two-tail	0.0	015	
t Critical two-tail	2.4	469	
· · · · · · · · · · · · · · · · · · ·	С	N	
Mean	14.5747	10.3229	
Variance	15.7896	10.8437	
Observations	7.0000	7.0000	
Pearson Correlation	0.8	027	
Hypothesized Mean Difference	0.0	000	
df	6.0	000	
t Stat	4.7419		YES
P(T<=t) one-tail	0.0	016	
t Critical one-tail	1.94	432	
P(T<=t) two-tail	0.0	032	
t Critical two-tail	2.4	469	• # · · · · · · · · · · · · · · · · · ·
• • • • • • • • • • • • • • • • • • •	Т	N	
Mean	12.4994	10.3229	
Variance	9.3926	10.8437	
Observations	7.0000	7.0000	
Pearson Correlation	0.7	581	
Hypothesized Mean Difference	0.0	000	
df	6.0000		
t Stat	2.5922		YES
P(T<=t) one-tail	0.0205		
t Critical one-tail	1.9432		
P(T<=t) two-tail	0.04	411	
t Critical two-tail	2.44	469	

	С	Т	
Mean	7.84456	4.84940	
Variance	3.58128	1.08433	
Observations	7.00000	7.00000	
Pearson Correlation	0.10	862	
Hypothesized Mean Difference	0.00	0000	
df	6.00	0000	
t Stat	3.84	1959	YES
P(T<=t) one-tail	0.00)423	
t Critical one-tail	1.94	318	
P(T<=t) two-tail	0.00)846	
t Critical two-tail	2.44	691	
	С	N	
Mean	7.84456	5.06477	
Variance	3.58128	4.20540	
Observations	7.00000	7.00000	
Pearson Correlation	0.82	2469	
Hypothesized Mean Difference	0.00	0000	
df	6.00	0000	
t Stat	6.24	766	YES
P(T<=t) one-tail	0.00	0039	
t Critical one-tail	1.94	4318	
P(T<=t) two-tail	0.00	0078	
t Critical two-tail	2.44	4691	
	Т	N	
Mean	4.84940	5.06477	· · ·
Variance	1.08433	4.20540	
Observations	7.00000	7.00000	
Pearson Correlation	-0.1	0763	
Hypothesized Mean Difference	0.00	0000	
df	6.00000		
t Stat	-0.23763		NO
P(T<=t) one-tail	0.43	1004	
t Critical one-tail	1.94	4318	
P(T<=t) two-tail	0.82	2007	
t Critical two-tail	2.44	4691	

	С	Т	•
Mean	11.33282	8.42951	
Variance	4.71980	0.76789	
Observations	5.00000	5.00000	
Pearson Correlation	0.98	3574	
Hypothesized Mean Difference	0.00	0000	
df	4.00	000	
t Stat	4.92	2940	YES
P(T<=t) one-tail	0.00)394	
t Critical one-tail	2.13	3185	
P(T<=t) two-tail	0.00)788	
t Critical two-tail	2.77	7645	
	С	N	<u>_</u>
Mean	11.33282	8.14284	
Variance	4.71980	21.95499	
Observations	5.00000	5.00000	
Pearson Correlation	0.80	097	
Hypothesized Mean Difference	0.00	000	
df	4.00	000	
t Stat	2.21	528	NO
P(T<=t) one-tail	0.04	554	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.09	9109	
t Critical two-tail	2.77	/645	
· · · · · · · · · · · · · · · · · · ·	T	N	
Mean	8.42951	8.14284	
Variance	0.76789	21.95499	
Observations	5.00000	5.00000	
Pearson Correlation	0.73	612	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	0.15696		NO
P(T<=t) one-tail	0.44144		
t Critical one-tail	2.13185		
P(T<=t) two-tail	0.88	288	
t Critical two-tail	2.77	645	

	С	T	<u></u>
Mean	9.71383	6.23529	
Variance	11.68590	1.38158	
Observations	7.00000	7.00000	
Pearson Correlation	0.95	5903	
Hypothesized Mean Difference	0.00	0000	
df	6.00	000	
t Stat	3.97	7503	YES
P(T<=t) one-tail	0.00)366	
t Critical one-tail	1.94	318	
P(T<=t) two-tail	0.00	0732	
t Critical two-tail	2.44	691	
		N	
Mean	9.71383	8.17825	•
Variance	11.68590	10.80092	
Observations	7.00000	7.00000	
Pearson Correlation		650	
Hypothesized Mean Difference	0.00		
df	6.00		
t Stat	3.38	8061	YES
P(T<=t) one-tail	0.00	742	
t Critical one-tail	1.94	318	
P(T<=t) two-tail	0.01	485	
t Critical two-tail	2.44	691	
<u> </u>	<i>T</i>	N	
Mean	6.23529	8.17825	
Variance	1.38158	10.80092	
Observations	7.00000	7.00000	
Pearson Correlation	0.81		
Hypothesized Mean Difference	0.00		
df	6.00		
t Stat	-2.1	1271	NO
P(T<=t) one-tail	0.03		
t Critical one-tail	1.94		
P(T<=t) two-tail	0.07		
t Critical two-tail	2.44		

	C	T	
Mean	7.44251	5.88660	
Variance	2.69645	1.63771	
Observations	5.00000	5.00000	
Pearson Correlation	0.96	5512	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	6.59	963	YES
P(T<=t) one-tail	0.00	0137	
t Critical one-tail	2.13	3185	
P(T<=t) two-tail	0.00)273	
t Critical two-tail	2.77	7645	
<u> </u>	C	N	
Mean	7.44251	7.70959	
Variance	2.69645	1.81820	
Observations	5.00000	5.00000	
Pearson Correlation	0.35		
Hypothesized Mean Difference	0.00		
df		0000	
t Stat		4845	NO
$P(T \le t)$ one-tail	0.37		
t Critical one-tail	2.13		
$P(T \le t)$ two-tail	0.74		
t Critical two-tail	2.77	645	
	T	N	
Mean	5.88660	7.70959	
Variance	1.63771	1.81820	
Observations	5.00000	5.00000	
Pearson Correlation	0.14		
Hypothesized Mean Difference	0.00		
df			
t Stat	4.00000 -2.36728		NO
P(T<=t) one-tail	0.03852		
t Critical one-tail	2.13185		
$P(T \le t)$ two-tail			
t Critical two-tail	0.07705 2.77645		

BM20830012 (Random)

	С	T	· · ·
Mean	7.49405	6.24839	
Variance	1.74476	1.60324	
Observations	5.00000	5.00000	
Pearson Correlation	0.98	8038	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	10.6	3421	YES
P(T<=t) one-tail	0.00	0022	
t Critical one-tail	2.13	185	
$P(T \le t)$ two-tail	0.00	0044	
t Critical two-tail	2.77	645	
	<i>C</i>	N	
Mean	7.49405	5.98121	
Variance	1.74476	2.94070	
Observations	5.00000	5.00000	
Pearson Correlation	0.92		
Hypothesized Mean Difference	0.00		
df	4.00000		
t Stat	4.87		YES
$P(T \le t)$ one-tail	0.00		
t Critical one-tail	2.13		
$P(T \le t)$ two-tail	0.00		
t Critical two-tail	2.77	645	
	<i>T</i>		·
Mean	6.24839	5.98121	
Variance	1.60324	2.94070	
Observations	5.00000	5.00000	
Pearson Correlation	0.95		
Hypothesized Mean Difference	0.00		
df	4.00		
t Stat	0.92388		NO
P(T<=t) one-tail	0.20392		
t Critical one-tail	2.13185		
$P(T \le t)$ two-tail	0.40783		
t Critical two-tail	2.77645		

	C	Т	
Mean	9.15769	7.68453	
Variance	0.51320	0.30073	
Observations	5.00000	5.00000	
Pearson Correlation	0.90	502	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	10.2	7177	YES
P(T<=t) one-tail	0.00	025	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.00	0051	
t Critical two-tail	2.77	645	
a	С	N	
Mean	9.15769	9.28401	
Variance	0.51320	1.50657	
Observations	5.00000	5.00000	
Pearson Correlation	0.49		
Hypothesized Mean Difference	0.00		
df	4.00		
t Stat	-0.2		NO
P(T<=t) one-tail	0.40	0237	
t Critical one-tail	2.13	185	
$P(T \le t)$ two-tail	0.80		
t Critical two-tail	2.77	7645	
	Т	N	
Mean	7.68453	9.28401	
Variance	0.30073	1.50657	
Observations	5.00000	5.00000	
Pearson Correlation	0.57		
Hypothesized Mean Difference	0.00		
df	4.00000		
t Stat	-3.50741		YES
$P(T \le t)$ one-tail	0.01		_
t Critical one-tail	2.13		
$P(T \le t)$ two-tail	0.02		
t Critical two-tail	2.77		

	<u> </u>	<u> </u>	<u></u>
Mean	9.25145	8.34323	
Variance	4.59715	2.57259	
Observations	5.00000	5.00000	
Pearson Correlation	0.99	9734	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	3.64	715	YES
P(T<=t) one-tail	0.01	091	
t Critical one-tail	2.13	3185	
P(T<=t) two-tail	0.02	2183	
t Critical two-tail	2.77	645	
	<u>C</u>	<u>N</u>	
Mean	9.25145	9.22780	
Variance	4.59715	0.04085	
Observations	5.00000	5.00000	
Pearson Correlation	0.58		
Hypothesized Mean Difference	0.00		
df	4.00	0000	
t Stat	0.02	2602	NO
P(T<=t) one-tail	0.49	025	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.98	3049	
t Critical two-tail	2.77	645	
<u> </u>	T	N	<u></u>
Mean	8.34323	9.22780	
Variance	2.57259	0.04085	
Observations	5.00000	5.00000	
Pearson Correlation	0.55		
Hypothesized Mean Difference	0.00		
df	4.00		
t Stat			NO
	-1.31796 0.12896		UN
$P(T \le t)$ one-tail			
t Critical one-tail	2.13		
P(T<=t) two-tail	0.25		
t Critical two-tail	2.77	045	

	С	Т	<u>.</u>
Mean	8.84335	7.34028	
Variance	2.80681	1.99123	
Observations	6.00000	6.00000	
Pearson Correlation	0.97	770	
Hypothesized Mean Difference	0.00	000	
df	5.00	000	
t Stat	8.79	389	YES
P(T<=t) one-tail	0.00	016	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.00		
t Critical two-tail	2.57	058	
<u></u>	С	N	<u>_</u>
Mean	8.84335	7.64353	<u> </u>
Variance	2.80681	2.88478	
Observations	6.00000	6.00000	
Pearson Correlation	0.87	837	
Hypothesized Mean Difference	0.00	000	
df	5.00	000	
t Stat	3.53	3106	YES
P(T<=t) one-tail	0.00)836	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.01	672	
t Critical two-tail	2.57	7058	
	T	N	
Mean	7.34028	7.64353	
Variance	1.99123	2.88478	
Observations	6.00000	6.00000	
Pearson Correlation	0.81	1787	
Hypothesized Mean Difference	0.00	0000	
df	5.00000		
t Stat	-0.75987		NO
P(T<=t) one-tail	0.24080		
t Critical one-tail	2.01505		
P(T<=t) two-tail	0.48	8161	
t Critical two-tail	2.5	7058	

BM20416022 (Random)

<i>C</i>	<i>T</i>	
11.28382	9.14050	
6.32073	2.52469	
5.00000	5.00000	
0.99	359	
0.00	000	
4.00	000	
5.03	193	YES
0.00	366	
2.13	185	
0.00	732	
2.77	645	
		YES
		NA
		NO
2.13185 0.70106		
A = 4	107	
	$ \begin{array}{r} 11.28382 \\ 6.32073 \\ 5.00000 \\ 0.99 \\ 0.00 \\ 4.00 \\ 5.03 \\ 0.00 \\ 2.13 \\ 0.00 \\ 2.13 \\ 0.00 \\ 2.77 \\ \hline \hline C \\ 11.28382 \\ 6.32073 \\ 5.00000 \\ 0.99 \\ 0.00 \\ 4.00 \\ 3.72 \\ 0.01 \\ 2.13 \\ 0.02 \\ 2.77 \\ \hline T \\ 9.14050 \\ 2.52469 \\ 5.00000 \\ 0.99 \\ 0.00 \\ 4.00 \\ 3.72 \\ 0.01 \\ 2.13 \\ 0.02 \\ 2.77 \\ \hline T \\ 9.14050 \\ 2.52469 \\ 5.00000 \\ 0.99 \\ 0.00 \\ 4.00 \\ 3.72 \\ 0.01 \\ 2.52469 \\ 5.00000 \\ 0.99 \\ 0.00 \\ 4.00 \\ 3.72 \\ 0.01 \\ 2.52469 \\ 5.00000 \\ 0.99 \\ 0.00 \\ 4.00 \\ 0.35 \\ 0.01 \\ 0.35 $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

	С	T	
Mean	12.58475	11.42151	
Variance	1.58252	1.23673	
Observations	6.00000	6.00000	
Pearson Correlation	0.99	552	
Hypothesized Mean Difference	0.00	000	
df	5.00	000	
t Stat	15.4	9500	YES
P(T<=t) one-tail	0.00	001	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.00	0002	
t Critical two-tail	2.57	058	
	C	N	<u> </u>
Mean	12.58475	9.00622	,
Variance	1.58252	1.47517	
Observations	6.00000	6.00000	
Pearson Correlation	0.43		
Hypothesized Mean Difference	0.00		
df	5.00		
t Stat	6.66	733	YES
P(T<=t) one-tail	0.00	057	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.00	115	
t Critical two-tail	2.57	058	
		N	<u> </u>
Mean	11.42151	9.00622	· ···
Variance	1.23673	1.47517	
Observations	6.00000	6.00000	
Pearson Correlation	0.44		
Hypothesized Mean Difference	0.00		
df	5.00000		
t Stat	4.82		YES
P(T<=t) one-tail	0.00		
t Critical one-tail	2.01		
P(T<=t) two-tail	0.00		
t Critical two-tail	2.57		

	С	T	
Mean	9.64410	8.18569	
Variance	1.32871	0.96506	
Observations	6.00000	6.00000	
Pearson Correlation	0.98	3482	
Hypothesized Mean Difference	0.00	0000	
df	5.00	0000	
t Stat	14.1	8910	YES
P(T<=t) one-tail	0.00	0002	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.00	0003	
t Critical two-tail	2.57	/058	······
	С	N	
Mean	9.64410	9.10504	
Variance	1.32871	2.50806	
Observations	6.00000	6.00000	
Pearson Correlation	0.71	699	
Hypothesized Mean Difference	0.00	0000	
df	5.00	000	
t Stat	1.19	593	NO
P(T<=t) one-tail	0.14	267	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.28	534	
t Critical two-tail	2.57	/058	
······	<i>T</i>	N	<u> </u>
Mean	8.18569	9.10504	
Variance	0.96506	2.50806	
Observations	6.00000	6.00000	
Pearson Correlation	0.68	647	
Hypothesized Mean Difference	0.00	000	
df	5.00	000	
t Stat	-1.94	4747	NO
P(T<=t) one-tail	0.05	451	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.10	902	
t Critical two-tail	2.57	058	

	С	Т	<u> </u>
Mean	8.50711	7.40253	
Variance	4.11389	2.16022	
Observations	7.00000	7.00000	
Pearson Correlation	0.97	7391	
Hypothesized Mean Difference	0.00	0000	
df	6.00	0000	
t Stat	4.27	/421	YES
P(T<=t) one-tail	0.00)262	
t Critical one-tail	1.94	318	
P(T<=t) two-tail	0.00)524	
t Critical two-tail	2.44	691	
	<i>C</i>	N	
Mean	8.50711	6.17470	
Variance	4.11389	7.55696	
Observations	7.00000	7.00000	
Pearson Correlation		1947	
Hypothesized Mean Difference		0000	
df		0000	
t Stat		5232	YES
P(T<=t) one-tail	0.00		
t Critical one-tail		318	
$P(T \le t)$ two-tail	0.00		
t Critical two-tail	2.44	691	
· · · · · · · · · · · · · · · · · · ·		N	
Mean	7.40253	6.17470	
Variance	2.16022	7.55696	
Observations	7.00000	7.00000	
Pearson Correlation	0.81		
Hypothesized Mean Difference	0.00		
df	6.00		
t Stat	1.83		NO
$P(T \le t)$ one-tail	0.05		110
t Critical one-tail	1.94		
$P(T \le t)$ two-tail	0.11		
t Critical two-tail	2.44		

BM20515022 (Random)

	С	T	
Mean	8.27278	7.23725	
Variance	1.92492	1.16253	
Observations	5.00000	5.00000	
Pearson Correlation	0.98	8378	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	6.09	9870	YES
$P(T \le t)$ one-tail	0.00)183	
t Critical one-tail	2.13	3185	
$P(T \le t)$ two-tail	0.00)366	
t Critical two-tail	2.77	7645	-
	~		
	<u> </u>	<u>N</u>	
Mean	8.27278	6.79237	
Variance	1.92492	2.37213	
Observations	5.00000	5.00000	
Pearson Correlation		2582	
Hypothesized Mean Difference		0000	
df		0000	
t Stat		349	NO
P(T<=t) one-tail		/198	
t Critical one-tail	2.13		
P(T<=t) two-tail		396	
t Critical two-tail		7645	
·····	<i>T</i>	N	······
Mean	7.23725	6.79237	
Variance	1.16253	2.37213	
Observations	5.00000	5.00000	
Pearson Correlation	0.36	070	
Hypothesized Mean Difference	0.00	0000	
df	4.00000		
t Stat	0.65077		NO
P(T<=t) one-tail	0.27	534	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.55069		
t Critical two-tail	2.77	645	

	С	Т	
Mean	8.36696	7.33445	
Variance	5.04977	2.71552	
Observations	5.00000	5.00000	
Pearson Correlation	0.99	608	
Hypothesized Mean Difference	0.00	0000	
df	4.00	000	
t Stat	3.70	547	YES
P(T<=t) one-tail	0.01	037	
t Critical one-tail	2.13	3185	
P(T<=t) two-tail	0.02	2074	
t Critical two-tail	2.77	7645	
	С	N	
Mean	8.36696	8.16421	
Variance	5.04977	10.75757	
Observations	5.00000	5.00000	
Pearson Correlation	0.93	3242	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	0.31	1566	NO
P(T<=t) one-tail	0.38	3402	
t Critical one-tail	2.13	3185	
P(T<=t) two-tail	0.76	5804	
t Critical two-tail	2.7	7645	<u>.</u>
	T	N	<u></u>
Mean	7.33445	8.16421	
Variance	2.71552	10.75757	
Observations	5.00000	5.00000	
Pearson Correlation	0.90	0337	
Hypothesized Mean Difference	0.00	0000	
df	4.00000		
t Stat	-0.96354		NO
P(T<=t) one-tail	0.19	9492	
t Critical one-tail	2.1.	3185	
P(T<=t) two-tail	0.3	8984	
t Critical two-tail	2.7	7645	

	<u> </u>	<u> </u>	
Mean	13.89396	9.00077	
Variance	16.77467	2.00179	
Observations	6.00000	6.00000	
Pearson Correlation	0.81	651	
Hypothesized Mean Difference	0.00	000	
df	5.00	0000	
t Stat	3.92	.746	YES
P(T<=t) one-tail	0.00	555	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.01	110	
t Critical two-tail	2.57	/058	
	<u>C</u>	N	<u> </u>
Mean	13.89396	12.93374	
Variance	16.77467	12.29570	
Observations	6.00000	6.00000	
Pearson Correlation	0.99	231	
Hypothesized Mean Difference	0.00	000	
df	5.00	0000	
t Stat	3.12	2116	YES
$P(T \le t)$ one-tail	0.01	311	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.02	2622	
t Critical two-tail	2.57	/058	
	<i>T</i>	<u>N</u>	<u></u>
Mean	9.00077	12.93374	
Variance	2.00179	12.29570	
Observations	6.00000	6.00000	
Pearson Correlation	0.81	126	
Hypothesized Mean Difference	0.00	000	
df	5.00	000	
t Stat	-3.8	5417	YES
P(T<=t) one-tail	0.00	598	
t Critical one-tail	2.01	505	
$P(T \le t)$ two-tail	0.01	195	
t Critical two-tail	2.57		

	С	T	
Mean	10.97616	8.84284	<u> </u>
Variance	16.96593	5.75984	
Observations	6.00000	6.00000	
Pearson Correlation	0.96	540	
Hypothesized Mean Difference	0.00	000	
df	5.00	000	
t Stat	2.73	928	YES
P(T<=t) one-tail	0.02	.041	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.04	083	
t Critical two-tail	2.57	058	
	<i>C</i>	<u>N</u>	
Mean	10.97616	8.82827	
Variance	16.96593	27.68648	
Observations	6.00000	6.00000	
Pearson Correlation	0.99		
Hypothesized Mean Difference	0.00		
df	5.00	000	
t Stat	4.40	845	YES
P(T<=t) one-tail	0.00	348	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.00	697	
t Critical two-tail	2.57	058	
	<i>T</i>		<u> </u>
Mean	8.84284	8.82827	<u> </u>
Variance	5.75984	27.68648	
Observations	6.00000	6.00000	
Pearson Correlation	0.94	870	
Hypothesized Mean Difference	0.00	000	
df	5.00	000	
t Stat	0.01	158	NO
P(T<=t) one-tail	0.49	560	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.99	121	
t Critical two-tail	2.57	058	

	С	Т	
Mean	7.67588	5.64071	
Variance	5.30886	2.82876	
Observations	6.00000	6.00000	
Pearson Correlation	0.99	9619	
Hypothesized Mean Difference	0.00	0000	
df	5.00	0000	
t Stat	7.72	2276	YES
P(T<=t) one-tail	0.00	029	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.00	058	
t Critical two-tail	2.57	7058	····
	С	N	
Mean	7.67588	4.43357	
Variance	5.30886	13.09315	
Observations	6.00000	6.00000	
Pearson Correlation		5034	
Hypothesized Mean Difference		0000	
df		0000	
t Stat	3.94	1333	YES
P(T<=t) one-tail	0.00)546	
t Critical one-tail	2.01	1505	
P(T<=t) two-tail	0.01	1092	
t Critical two-tail	2.57	7058	
<u></u>	Т	N	
Mean	5.64071	4.43357	
Variance	2.82876	13.09315	
Observations	6.00000	6.00000	
Pearson Correlation		5831	
Hypothesized Mean Difference	0.00	0000	
df		0000	
t Stat	1.27	7799	NO
P(T<=t) one-tail		2868	
t Critical one-tail	2.01505		
P(T<=t) two-tail		5737	
t Critical two-tail		7058	

	<i>C</i>	T	
Mean	7.98075	6.03570	
Variance	0.23959	0.03700	
Observations	6.00000	6.00000	
Pearson Correlation	-0.5	1821	
Hypothesized Mean Difference	0.00	0000	
df	5.00	0000	
t Stat	7.78	3873	YES
P(T<=t) one-tail	0.00	028	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.00	056	
t Critical two-tail	2.57	/058	
	С	N	
Mean	7.98075	6.70989	······································
Variance	0.23959	2.98538	
Observations	6.00000	6.00000	
Pearson Correlation	-0.25	5428	
Hypothesized Mean Difference	0.00	0000	
df	5.00	0000	
t Stat	1.62	827	NO
P(T<=t) one-tail	0.08	3220	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.16	6440	
t Critical two-tail	2.57	/058	
<u> </u>	<i>T</i>	N	
Mean	6.03570	6.70989	
Variance	0.03700	2.98538	
Observations	6.00000	6.00000	
Pearson Correlation	-0.02	2226	
Hypothesized Mean Difference	0.00	000	
df	5.00	000	
t Stat	-0.94	4758	NO
P(T<=t) one-tail	0.19	343	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.38	685	
t Critical two-tail	2.57	058	

BM20826022 (Random)

	С	T	
Mean	9.37095	6.90915	
Variance	4.84092	1.28418	
Observations	5.00000	5.00000	
Pearson Correlation	0.93	937	
Hypothesized Mean Difference	0.00	0000	
df	4.00	000	
t Stat	4.58	8599	YES
P(T<=t) one-tail	0.00	507	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.01	014	
t Critical two-tail	2.77	645	
	С	N	
Mean	9.37095	7.07254	
Variance	4.84092	3.96708	
Observations	5.00000	5.00000	
Pearson Correlation	0.83	044	
Hypothesized Mean Difference	0.00	000	
df	4.00	000	
t Stat	4.15	550	YES
P(T<=t) one-tail	0.00	0710	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.01	420	
t Critical two-tail	2.77	645	
	77	<u></u>	····
Mean	<u>T</u> 6.90915	<u>N</u> 7.07254	
Variance	1.28418	3.96708	
Observations	5.00000	5.00000	
Pearson Correlation	0.88		
Hypothesized Mean Difference	0.00		
df	4.00		
t Stat	-0.32		NO
P(T<=t) one-tail	0.38		υ
t Critical one-tail	2.13		
$P(T \le t)$ two-tail	0.76		
t Critical two-tail	0.78 2.77		

	С	T	
Mean	11.22334	6.84551	
Variance	2.98793	0.74777	
Observations	6.00000	6.00000	
Pearson Correlation	-0.44	1498	
Hypothesized Mean Difference	0.00	000	
df	5.00	000	
t Stat	4.76	436	YES
P(T<=t) one-tail	0.00	252	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.00	504	
t Critical two-tail	2.57	058	
	С	N	
Mean	11.22334	8.77965	
Variance	2.98793	3.72771	
Observations	6.00000	6.00000	
Pearson Correlation	0.43	208	
Hypothesized Mean Difference	0.00	000	
df	5.00	000	
t Stat	3.05	5797	YES
P(T<=t) one-tail	0.01	408	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.02	2817	
t Critical two-tail	2.57	/058	
	Т	N	<i></i>
Mean	6.84551	8.77965	
Variance	0.74777	3.72771	
Observations	6.00000	6.00000	
Pearson Correlation	-0.3	1686	
Hypothesized Mean Difference	0.00	000	
df	5.00	000	
t Stat	-2.0	1402	NO
P(T<=t) one-tail	0.05	5007	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.10	0013	
t Critical two-tail	2.57	7058	

	C	T	
Mean	9.99858	6.75269	
Variance	7.50900	1.99900	
Observations	5.00000	5.00000	
Pearson Correlation	-0.5	1796	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	1.97	381	NO
P(T<=t) one-tail	0.05	5982	
t Critical one-tail	2.13	3185	
P(T<=t) two-tail	0.11	965	
t Critical two-tail	2.77	/645	
	С	N	<u></u>
Mean	9.99858	7.89988	
Variance	7.50900	3.01076	
Observations	5.00000	5.00000	
Pearson Correlation	0.97	569	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	4.21	196	YES
P(T<=t) one-tail	0.00	678	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.01	356	
t Critical two-tail	2.77	645	····
<u> </u>	<i>T</i>	N	
Mean	6.75269	7.89988	
Variance	1.99900	3.01076	
Observations	5.00000	5.00000	
Pearson Correlation	-0.6	1539	
Hypothesized Mean Difference	0.00	000	
df	4.00	000	
t Stat	-0.9	0528	NO
P(T<=t) one-tail	0.20	826	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.41		
t Critical two-tail	2.77	645	

	С	T	
Mean	11.66861	8.78688	
Variance	5.43643	1.31412	
Observations	7.00000	7.00000	
Pearson Correlation	0.91	998	
Hypothesized Mean Difference	0.00	000	
df	6.00	000	
t Stat	5.63	3209	YES
P(T<=t) one-tail	0.00	0067	
t Critical one-tail	1.94	318	
P(T<=t) two-tail	0.00	0134	
t Critical two-tail	2.44	691	
Mean	<u> </u>	<u>N</u> N/A	
Variance	N/A	N/A N/A	
Observations	N/A N/A	N/A N/A	
Pearson Correlation	N/A N/		
Hypothesized Mean Difference	N/		
df	N/		
t Stat	N/N/		
P(T<=t) one-tail	N/		
t Critical one-tail	N/		
$P(T \le t)$ two-tail	IN/ N/		
t Critical two-tail	N/		
······································			
	<u>T</u>	N	
Mean	N/A	N/A	
Variance	N/A	N/A	
Observations	N/A	N/A	
Pearson Correlation	N/	'A	
Hypothesized Mean Difference	N/	'A	
df	N/	Ά	
t Stat	N/	'A	
P(T<=t) one-tail	N/	'A	
t Critical one-tail	N/	'A	
P(T<=t) two-tail	N/	'A	
t Critical two-tail	N/	'A	

	C		
Mean	10.72489	5.44719	
Variance	10.55770	0.24290	
Observations	7.00000	7.00000	
Pearson Correlation		0.90599	
Hypothesized Mean Difference		0.00000	
df		6.00000	
t Stat		4.96834	YES
P(T<=t) one-tail		0.00127	
t Critical one-tail		1.94318	
P(T<=t) two-tail		0.00253	
t Critical two-tail	,	2.44691	
	C		
Mean	 N/A		
Variance	N/A	N/A	
Observations	N/A	N/A	
Pearson Correlation	N/A		
Hypothesized Mean Difference	N/A		
df	N/A		
t Stat	N/A		
P(T<=t) one-tail	N/A		
t Critical one-tail	N/A		
P(T<=t) two-tail	N/A		
t Critical two-tail	N/A		<u></u>
<u></u>	<i>T</i>	N	
Mean	N/A	N/A	
Variance	N/A	N/A	
Observations	N/A	N/A	
Pearson Correlation	N/A		
Hypothesized Mean Difference	N/A		
df	N/A		
t Stat	N/A		
P(T<=t) one-tail	N/A		
t Critical one-tail	N/A		
P(T<=t) two-tail	N/A		
t Critical two-tail	N/A		

,	C	<i>T</i>	
Mean	6.19603	5.21648	
Variance	6.26123	4.23960	
Observations	5.00000	5.00000	
Pearson Correlation	0.96	624	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	2.96	5891	YES
$P(T \le t)$ one-tail	0.02	2059	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.04	119	
t Critical two-tail	2.77	645	
<u>. </u>	С	<u>N</u>	
Mean	6.19603	7.62349	
Variance	6.26123	3.47153	
Observations	5.00000	5.00000	
Pearson Correlation	0.93	3584	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	-3.1	8141	YES
P(T<=t) one-tail	0.01	674	
t Critical one-tail	2.13	3185	
P(T<=t) two-tail	0.03	3349	
t Critical two-tail	2.77	7645	
<u> </u>	<i>T</i>		
Mean	5.21648	7.62349	
Variance	4.23960	3.47153	
Observations	5.00000	5.00000	
Pearson Correlation	0.89	985	
Hypothesized Mean Difference	0.00	000	
df	4.00	000	
t Stat	-5.9	9206	YES
P(T<=t) one-tail	0.00)195	
t Critical one-tail	2.13	3185	
P(T<=t) two-tail	0.00)390	
t Critical two-tail	2.77	645	

	C	$\frac{T}{7.02606}$	
Mean	10.68668	7.03606	
Variance	12.94360 6.00000	0.77228	
Observations Descent Completion		6.00000	
Pearson Correlation	0.20		
Hypothesized Mean Difference		000	
df	5.00		No
t Stat	2.53		NO
$P(T \le t)$ one-tail	0.02		
t Critical one-tail	2.01		
$P(T \le t)$ two-tail	0.05		
t Critical two-tail	2.57	/058	
	С	N	
Mean	10.68668	13.77056	
Variance	12.94360	23.52470	
Observations	6.00000	6.00000	
Pearson Correlation	0.82	2961	
Hypothesized Mean Difference	0.00	0000	
df	5.00	000	
t Stat	-2.7	5550	YES
P(T<=t) one-tail	0.02	2002	
t Critical one-tail	2.01	505	
$P(T \le t)$ two-tail	0.04	1005	
t Critical two-tail	2.57	7058	
	<i>T</i>	N	
Mean	7.03606	13.77056	
Variance	0.77228	23.52470	
Observations	6.00000	6.00000	
Pearson Correlation	0.60		
Hypothesized Mean Difference		0000	
df	5.00		
t Stat		7235	YES
$P(T \le t)$ one-tail	0.00		- 2-2
t Critical one-tail	2.01		
$P(T \le t)$ two-tail	0.01		
t Critical two-tail	2.57		

	С	Т	
Mean	10.78706	6.64901	
Variance	4.23814	0.65457	
Observations	6.00000	6.00000	
Pearson Correlation	0.00000		
)000	
Hypothesized Mean Difference df	5.00		
t Stat	5.59		YES
	0.00		165
P(T<=t) one-tail t Critical one-tail		505	
	0.00		
P(T<=t) two-tail t Critical two-tail		7058	
	2.31		
	С	N	
Mean	10.78706	8.14441	
Variance	4.23814	20.99440	
Observations	6.00000	6.00000	
Pearson Correlation	-0.02	2641	
Hypothesized Mean Difference	0.00	0000	
df	5.00	000	
t Stat	1.27	7611	NO
P(T<=t) one-tail	0.12	2899	
t Critical one-tail	2.01	505	
P(T<=t) two-tail	0.25	5798	
t Critical two-tail	2.57	7058	
			••••
	T	<u>N</u>	
Mean	6.64901	8.14441	
Variance	0.65457	20.99440	
Observations	6.00000	6.00000	
Pearson Correlation	-0.51		
Hypothesized Mean Difference		0000	
df		000	
t Stat	-0.71		NO
P(T<=t) one-tail	0.25		
t Critical one-tail		505	
P(T<=t) two-tail	0.50		
t Critical two-tail	2.57	/058	

A1015012 (Random)

	С	Т	
Mean	8.76448	5.77213	
Variance	1.96046	0.71492	
Observations	4.00000	4.00000	
Pearson Correlation	0.98	3268	
Hypothesized Mean Difference	0.00	000	
df	3.00	0000	
t Stat	10.1	3595	YES
P(T<=t) one-tail	0.00	0102	
t Critical one-tail	2.35	5336	
P(T<=t) two-tail	0.00	0205	
t Critical two-tail	3.18	3245	
<u> </u>	C	<u>N</u>	
Mean	8.76448	3.38517	<u></u>
Variance	a.70448 1.96046	0.85539	
Observations	4.00000	4.00000	
Pearson Correlation		8683	
Hypothesized Mean Difference)000	
df)000	
t Stat)624	YES
P(T<=t) one-tail)590	1 1.55
t Critical one-tail		5336	
$P(T \le t)$ two-tail		179	
t Critical two-tail	3.18		
······································	T	N	
Mean	5.77213	3.38517	
Variance	0.71492	0.85539	
Observations	4.00000	4.00000	
Pearson Correlation	-0.52	2904	
Hypothesized Mean Difference	0.00	0000	
df	3.00	000	
t Stat	3.08	302	NO
$P(T \le t)$ one-tail	0.02	2700	
t Critical one-tail	2.35	5336	
$P(T \le t)$ two-tail	0.05	5401	
t Critical two-tail	3.18	32.45	

A0515023 (Problem)

	С	T	
Mean	10.16698	5.67081	
Variance	9.46905	0.43812	
Observations	5.00000	5.00000	
Pearson Correlation	0.33	3256	
Hypothesized Mean Difference	0.00	0000	
df	4.00	0000	
t Stat	3.43	3781	YES
P(T<=t) one-tail	0.01	317	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.02	2635	
t Critical two-tail	2.77	645	
	С	N	
Mean	10.16698	14.08112	
Variance	9.46905	9.57071	
Observations	5.00000	5.00000	
Pearson Correlation	0.97		
Hypothesized Mean Difference	0.00		
df	4.00		
t Stat	-13.6		YES
P(T<=t) one-tail	0.00	8008	
t Critical one-tail	2.13	185	
P(T<=t) two-tail	0.00	0017	
t Critical two-tail	2.77	/645	
	<i>T</i>	<u>N</u>	
Mean	5.67081	14.08112	
Variance	0.43812	9.57071	
Observations	5.00000	5.00000	
Pearson Correlation	0.32		
Hypothesized Mean Difference	0.00		
df	4.00		
t Stat	-6.38		YES
P(T<=t) one-tail	0.00		
t Critical one-tail	2.13		
P(T<≈t) two-tail	0.00		
t Critical two-tail	2.77		