

# **Gluon distribution from jet analysis in EIC**

**Grégory Soyez** 

**Brookhaven National Laboratory** 

#### **Outline**



- Gluon distribution from jets
  - Difficulty in inclusive events  $\Rightarrow$  looking at 2+1 jet events
  - What to expect: kinematic reach
  - What to expect: statistical errors

- Other jet-related processes
  - Diffractive jets
  - DGLAP vs. BFKL in forward jets (saturation?)



Standard way of extacting the gluon distribution:

- consider the inclusive  $F_2$  (plus other inclusive quantities as Drell-Yan cross-sections)
- PDF parametrised at  $Q^2 = Q_0^2$  and evolved with DGLAP At LO:

$$F_2(x,Q^2) \propto xq(x,Q^2)$$
  

$$\partial_{\log(Q^2)}q(x,Q^2) = \alpha_s[P_{qq} \otimes q(\xi,Q^2) + P_{qg} \otimes g(\xi,Q^2)]$$
  

$$\partial_{\log(Q^2)}g(x,Q^2) = \alpha_s[P_{gq} \otimes q(\xi,Q^2) + P_{gg} \otimes g(\xi,Q^2)]$$

The gluon distribution is accessed

- through a convolution (with the splitting function)
- through the slope of  $F_2$

# Gluon distribution from inclusive data



#### The gluon distribution is accessed through the slope of $F_2$



- more difficult to estimate
- particularly at small x where the  $Q^2$  range is smaller







"1+1 jet" dominated by



i.e. dominated by quarks (gluons start at NLO)

### Jets in DIS



"2+1 jets" becomes more interesting





- involve quarks and gluons
- dominated by gluons at small x





"2+1 jets" becomes more interesting



Main formula:

$$\frac{d^2 \sigma^{2+1}}{dx_p dQ^2} = \alpha_s \left[ a \ g(x_p, Q^2 + \hat{s}) + b \ q(x_p, Q^2 + \hat{s}) \right]$$

#### Technique:

- 1. *a* and *bq*: matrix elements & quark piece from Monte Carlo
- 2.  $x_p = x \left(1 + \frac{\hat{s}}{Q^2}\right)$ 3. Extract the gluon distrib:  $g_{\text{extr.}} = \frac{1}{a_{\text{MC}}} \left(\sigma_{\text{meas.}} - b_{\text{MC}}q\right)$

### Gluons from 2+1 jets







Can, in principle, be computed from pQCD

#### Monte Carlo allows to

- put experimental cuts (e.g. outgoing electron energy)
- account for parton shower and hadronisation
- account for jet-clustering effects
- compute quark and gluon parts



• Accelerator parameters: electron & hadron beams energy: E, P



- Accelerator parameters: electron & hadron beams energy: *E*, *P*
- Experimental cuts:
  - Outgoing elctron energy:  $E'_{min}$
  - Minimal jet  $p_t$ :  $p_{t,\min}$

- Accelerator parameters: electron & hadron beams energy: E, P
- Experimental cuts:
  - Outgoing elctron energy:  $E'_{min}$
  - Minimal jet  $p_t$ :  $p_{t,\min}$
- Consequences:
  - minimal  $x = \frac{Q^2}{Q^2 + 4P(E E'_{\min})}$

• minimal 
$$\hat{s} = 2p_{t,\min}^2 \left[1 - \cos(R)\right]^2$$

$$\Rightarrow \quad x_g \le \frac{p_{t,\min}^2 \left[1 - \cos(R)\right]^2}{2P(E - E'_{\min})}$$

- Accelerator parameters: electron & hadron beams energy: E, P
- Experimental cuts:
  - Outgoing elctron energy:  $E'_{min}$
  - Minimal jet  $p_t$ :  $p_{t,\min}$
- Consequences:
  - minimal  $x = \frac{Q^2}{Q^2 + 4P(E E'_{\min})}$

• minimal 
$$\hat{s} = 2p_{t,\min}^2 \left[1 - \cos(R)\right]^2$$

$$\Rightarrow \quad x_g \le \frac{p_{t,\min}^2 \left[1 - \cos(R)\right]^2}{2P(E - E'_{\min})}$$

Reach small *x*:

- decrease  $p_{t,\min}$  or  $E'_{\min}$  / increase beam energies experimental issue
- decrease R more systematic errors



Hadron beam: P = 250 GeV Clustering:  $k_t$  algorithm with R = 1



Hard to reach  $x_g < 10^{-3}$ 





• Over optimistic cuts

• Less optimistic reduces  $x_{\min}$ ,  $Q_{\min}^2$  and the cross-section

#### Statistical errors





- Fine with over optimistic cuts
- Less optimistic increases errors



Some of the systematics come from theory:

- **Scale in**  $g: Q^2 + \hat{s}?, Q^2?$
- Matrix element computation: effects of the cuts
- **Errors on the quark contrib.**: from incl. measurements
- Clustering effects: vary/optimise jet algorithm and parameter



# **Other useful jet measurement(s)**

Forward jets



Tag a forward jet with  $x \ll x_j$ .



# Forward jets



Tag a forward jet with  $x \ll x_j$ . If  $Q^2 \sim k_t^2$ ,

- DGLAP and fixed-order fail
- BFKL works





[Kepka, Marquet, Peschanski, Royon]

# Forward jets



Tag a forward jet with  $x \ll x_j$ . If  $Q^2 \sim k_t^2$ ,

- DGLAP and fixed-order fail
- BFKL works





#### **Question for EIC:**

Hints for BFKL, saturation & multiple interactions effects in eA collisions?



What can we learn from jet physics at EIC

- gluon PDF
  - from 2+1 jets
  - Kinematics and statistical errors
    - Low-energy option: probably needs over-optimistic cuts
    - Larger-energy option promosing
  - *ep* vs. *eA*: multiple interactions effect (+shadowing)
- Other jet measurements
  - diffractive 2+1 jets  $\longrightarrow$  diffractive PDF
  - BFKL (and saturation) tests from forward jets