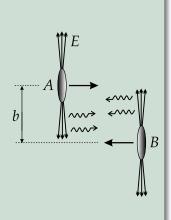
Photoproduction in Ultra-Peripheral Relativistic Heavy Ion Collisions at STAR

Boris Grube

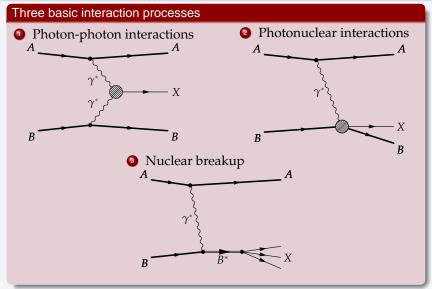
Pusan National University Department of Physics Busan, Republic of Korea

Brookhaven National Laboratory Upton, NY, U.S.A.

eRHIC Meeting BNL, August 14th, 2008


Outline

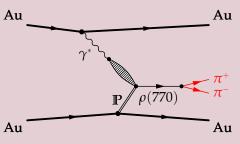
- 1 Ultra-peripheral relativistic heavy ion collisions at STAR
- 2 Triggering and data selection
- 3 Some results on photonuclear ho production in $\operatorname{Au} \times \operatorname{Au}$ collisions


Outline

- 1 Ultra-peripheral relativistic heavy ion collisions at STAR
- 2 Triggering and data selection
- 3 Some results on photonuclear ρ production in Au imes Au collisions

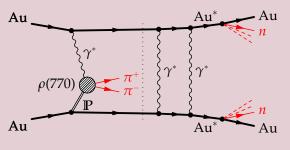
- Nuclei surrounded by cloud of quasi-real virtual photons
- Number of photons large ($\propto Z^2$)
- Fast-moving heavy ions produce intense photon flux
 - Described by Weizsäcker-Williams approximation ("nuclear flashlight")
- Nuclear collisions: long range interaction via electromagnetic fields in addition to hadronic interactions
- Require b > R_A + R_B to exclude (otherwise inseparable) hadronic interactions

Ultra-Peripheral Relativistic Heavy Ion Collisions (UPC)

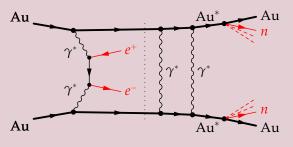

Ultra-Peripheral Relativistic Heavy Ion Collisions (UPC)

UPC kinematics for RHIC Au
$$\times$$
 Au @ $\sqrt{s_{\!_{N\!N}}}=$ 200 GeV and LHC Pb \times Pb @ $\sqrt{s_{\!_{N\!N}}}=$ 5500 GeV

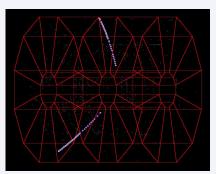
- Photons emitted coherently by whole nucleus
- Maximum photon energy in lab frame: $\omega_{\text{max}} = \gamma_L \hbar c / R_A$ $\omega_{\text{max}} \approx 3 \,\text{GeV} \, (\text{RHIC}), 80 \,\text{GeV} \, (\text{LHC})$
- Photon-photon collisions: $\sqrt{s_{\gamma\gamma}^{\rm max}} = 2\gamma_L \hbar c/R_A$ $\sqrt{s_{\gamma\gamma}^{\rm max}} \approx 6 \, {\rm GeV} \, \, ({\rm RHIC}), 160 \, {\rm GeV} \, \, ({\rm LHC})$
- Photonuclear interactions: $\sqrt{s_{\gamma N}^{\rm max}} = \sqrt{2\omega_{\rm max}\sqrt{s_{NN}}}$ $\sqrt{s_{\gamma N}^{\rm max}} \approx 35\,{\rm GeV}$ (RHIC), 950 GeV (LHC)


UPC processes measured at STAR

- Photonuclear interactions
 - ρ production in Au × Au @ $\sqrt{s_{NN}}$ = 200, and 130 GeV
 - γ^* from "spectator" ion fluctuates into $q\bar{q}$ -pair
 - qq̄-pair scatters off "target" nucleus into real vector meson
 - Scattering described in terms of soft Pomeron exchange


UPC processes measured at STAR (cont.)

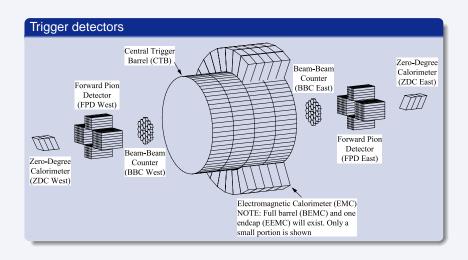
- Photonuclear interactions with mutual nuclear breakup
 - ρ production in Au × Au @ $\sqrt{s_{NN}} = 200, 130$, and 62 GeV
 - Mutual Coulomb excitation of nuclei by additional photons
 - Independent of meson production
 - Predominantly excitation of Giant Dipole Resonance (GDR)
 - ullet GDRs decay via neutron emission \Longrightarrow distinctive signature


UPC processes measured at STAR (cont.)

- Photon-photon interactions with mutual nuclear breakup
 - e^+e^- -pair production in Au × Au @ $\sqrt{s_{NN}} = 200 \text{ GeV}$

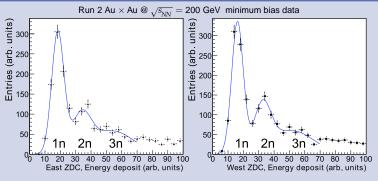
Outline

- 1 Ultra-peripheral relativistic heavy ion collisions at STAR
- 2 Triggering and data selection
- 3 Some results on photonuclear ρ production in Au \times Au collisions



TPC tracks for typical ρ event

Experimental signature and event selection


- Coherent production dominates: particles produced in $\gamma^* \gamma^*$ and $\gamma^* \mathbb{P}$ have low $p_T \lesssim 2\hbar/R_A \approx 60 \text{ MeV/}c$
- 2 well reconstructed tracks
 - From common vertex
 - Opposite charge
 - Low net p_T
- Vertex position close to interaction diamond
- Low overall track multiplicity

STAR acceptance limits accessible rapidities to |y| < 1

Triggering and Data Selection — Neutron tagging

Measuring nuclear breakup neutrons in Zero Degree Calorimeter (ZDC)

- ZDC acceptance for emitted neutrons close to 1
- Resolution good enough to see 1*n*, 2*n*, ... neutron peaks
 - Allows to select different excited states
- Neutron tag selects smaller impact parameters

UPC triggers used at STAR **Topology trigger** (CTB only) Cosmic Ray Background • CTB is subdivided into 4 quadrants Top Veto Top+Bottom quadrants Central Trigger Barrel veto cosmic rays Coincidence of North and South North South quadrants In addition low multiplicity requirement Rho Decay Does not require nuclear breakup **Bottom Veto** Minimum bias trigger (ZDC only) Coincident neutrons in both ZDCs

UPC triggers used at STAR

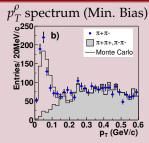
- Multi-prong trigger (CTB and ZDC)
 - Coincident neutrons in both ZDCs
 - Low CTB multiplicity
 - Veto from large-tile BBCs
- **J/ψ trigger** (CTB, ZDC, and BEMC)
 - Multi-prong trigger with additional calorimeter requirement
 - BEMC subdivided into 6 azimuthal sectors
 - 2 high towers in non-neighboring BEMC sectors required

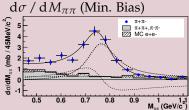
- Beam-gas interactions reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position
- Peripheral hadronic interactions reduced by
 - Requiring low track multiplicity
 - Selecting low p_T
- Pile-up events reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position
- Cosmic rays reduced by
 - Limiting primary vertex position
 - Either ZDC neutron tag or excluding events close to |y| = 0

- Beam-gas interactions reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position
- Peripheral hadronic interactions reduced by
 - Requiring low track multiplicity
 - Selecting low p_T
- Pile-up events reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position
- Cosmic rays reduced by
 - Limiting primary vertex position
 - Either ZDC neutron tag or excluding events close to |y| = 0

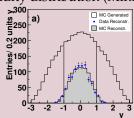
- Beam-gas interactions reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position
- Peripheral hadronic interactions reduced by
 - Requiring low track multiplicity
 - Selecting low p_T
- Pile-up events reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position
- Cosmic rays reduced by
 - Limiting primary vertex position
 - Either ZDC neutron tag or excluding events close to |y| = 0

- Beam-gas interactions reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position
- Peripheral hadronic interactions reduced by
 - Requiring low track multiplicity
 - Selecting low p_T
- Pile-up events reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position
- Cosmic rays reduced by
 - Limiting primary vertex position
 - Either ZDC neutron tag or excluding events close to |y| = 0

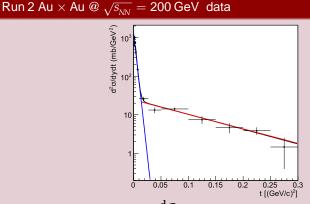

- Beam-gas interactions reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position
- Peripheral hadronic interactions reduced by
 - Requiring low track multiplicity
 - Selecting low p_T
- Pile-up events reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position
- Cosmic rays reduced by
 - Limiting primary vertex position
 - Either ZDC neutron tag or excluding events close to |y| = 0


Outline

- Ultra-peripheral relativistic heavy ion collisions at STAR
- 2 Triggering and data selection
- 3 Some results on photonuclear ρ production in Au imes Au collisions


ρ Production Cross Section

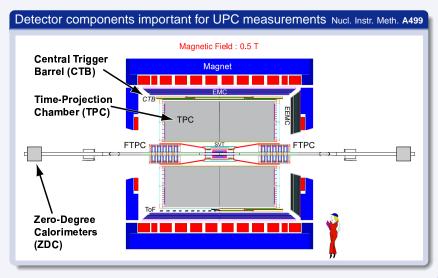
Run 1 Au imes Au @ $\sqrt{s_{_{N\!N}}}=$ 130 GeV data


Rapidity distribution (Min. Bias)

- Total cross section: $\sigma_{\rm tot} = (460 \pm 220_{\rm stat.} \pm 110_{\rm sys.})~{\rm mb}$ PRL **89**, 272302 (2002)
- Theoretical prediction: $\sigma_{\rm tot} = 350\,{\rm mb}$ S. Klein *et al.*, PR **C60**, 014903 (1999)

t-Dependence of ρ Production Cross Section

Parameterization: $\frac{d\sigma_{\rho}}{dt}\Big|_{|y_{\rho}|<1} = A_{\cosh} e^{-B_{\cosh} \cdot t} + A_{\inf} e^{-B_{\inf} \cdot t}$


- Coherent slope parameter $B_{\rm coh} = 388 \pm 24 \, (\, {\rm GeV/}c)^{-2}$
- Incoherent slope parameter $B_{\rm inc} = 8.8 \pm 1.0 \, (\, {\rm GeV}/c)^{-2}$

PR C77, 34910 (2008)

Outline

- Backup slides
 - STAR detector
 - Results on photonuclear ρ production in Au × Au collisions
 - \bullet ρ production cross section
 - Spin structure of ρ production amplitudes
 - Interference effects in coherent ρ production
 - Other results
 - Photonuclear ρ production in d × Au collisions
 - \bullet $\pi^+\pi^-\pi^+\pi^-$ production in Au \times Au collisions
 - \bullet e^+e^- -pair production in Au \times Au collisions

The STAR Experiment at RHIC

Star Upgrades for 2009+

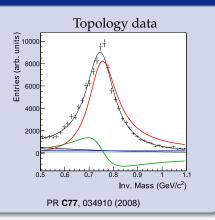
Time of Flight (ToF) Detector

- Replaces central trigger barrel
- Multi-gap resistive plate chambers (MRPC) using ALICE technology
- 23 000 channels (6 slats \times 32 plates \times 120 trays)
- Full coverage of TPC acceptance $(2\pi \text{ in } \phi, |\eta| < 1)$
- Intrinsic time resolution $\approx 85 \, \mathrm{ps}$

Upgrade of data acquisition (DAQ)

- New TPC front-end electronics based on ALICE's ALTRO chip
- Will permit trigger rates $\mathcal{O}(1 \, \text{kHz}) \implies \text{DAQ}1000$

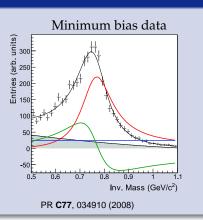
ho Yield from Run 2 Au imes Au @ $\sqrt{s_{_{\!N\!N}}}=$ 200 GeV


2 trigger sets

Topology trigger

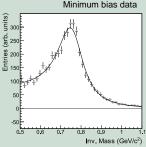
- No nuclear breakup required
- $13054 \pm 124 \rho$ candidates

2 Minimum bias trigger


- ZDC neutron tag
- $3075 \pm 128 \rho$ candidates
- Background estimate from like-sign pairs $\pi^{\pm}\pi^{\pm}$

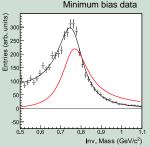
ho Yield from Run 2 Au imes Au @ $\sqrt{s_{_{\!N\!N}}}=$ 200 GeV

2 trigger sets


- Topology trigger
 - No nuclear breakup required
 - $13054 \pm 124 \rho$ candidates
- 2 Minimum bias trigger
 - ZDC neutron tag
 - $3075 \pm 128 \rho$ candidates
 - Background estimate from like-sign pairs $\pi^{\pm}\pi^{\pm}$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

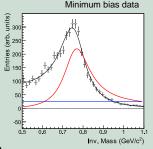
with
$$\Gamma(M_{\pi\pi}) \equiv \Gamma_{
ho} \, rac{M_{
ho}}{M_{\pi\pi}} \left[rac{M_{\pi\pi}^2 - 4 m_{\pi}^2}{M_{
ho}^2 - 4 m_{\pi}^2}
ight]^{rac{3}{2}} \, rac{\widehat{g}}{\widehat{\xi}} \, _{300}$$


- Relativistic Breit-Wigner function for ρ peak with amplitude A
- **2** Constant direct $\pi^+\pi^-$ production amplitude *B*
- Söding term for interference of the two
- **3** 2nd order polynomial f_{BG} describes background from like-sign pairs

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

with
$$\Gamma(M_{\pi\pi})\equiv\Gamma_{
ho}\,rac{M_{
ho}}{M_{\pi\pi}}\left[rac{M_{\pi\pi}^2-4m_{\pi}^2}{M_{
ho}^2-4m_{\pi}^2}
ight]^{rac{3}{2}}\,rac{\widehat{g}}{\widehat{\xi}}\,_{ text{500}}$$

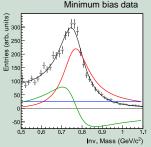
- Relativistic Breit-Wigner function for *ρ* peak with amplitude *A*
- **2** Constant direct $\pi^+\pi^-$ production amplitude *B*
- Söding term for interference of the two
- **3** 2nd order polynomial f_{BG} describes background from like-sign pairs

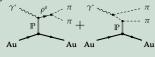


$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

with
$$\Gamma(M_{\pi\pi}) \equiv \Gamma_{
ho} \, rac{M_{
ho}}{M_{\pi\pi}} \left[rac{M_{\pi\pi}^2 - 4 m_{\pi}^2}{M_{
ho}^2 - 4 m_{\pi}^2}
ight]^{rac{3}{2}} \, rac{\widehat{g}}{\widehat{\xi}} \, _{300}$$

- Relativistic Breit-Wigner function for *ρ* peak with amplitude *A*
- **2** Constant direct $\pi^+\pi^-$ production amplitude *B*
- Söding term for interference of the two
- **②** 2nd order polynomial f_{BG} describes background from like-sign pairs

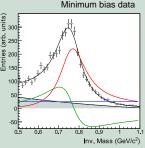




$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{E}}$$

with
$$\Gamma(M_{\pi\pi})\equiv\Gamma_{
ho}\,rac{M_{
ho}}{M_{\pi\pi}}\left[rac{M_{\pi\pi}^2-4m_{\pi}^2}{M_{
ho}^2-4m_{\pi}^2}
ight]^{rac{3}{2}}\,rac{\widehat{g}}{\widehat{g}}_{300}$$

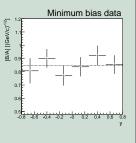
- Relativistic Breit-Wigner function for ρ peak with amplitude A
- **2** Constant direct $\pi^+\pi^-$ production amplitude *B*
- 3 Söding term for interference of the two
- **1** 2nd order polynomial f_{BG} describes background from like-sign pairs



$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

with
$$\Gamma(M_{\pi\pi}) \equiv \Gamma_{
ho} \, rac{M_{
ho}}{M_{\pi\pi}} \left[rac{M_{\pi\pi}^2 - 4 m_{\pi}^2}{M_{
ho}^2 - 4 m_{\pi}^2}
ight]^{rac{3}{2}} \, rac{\widehat{g}}{\widehat{g}} \, _{ ext{soo}} \, _{ ext{g}} \, _$$

- Relativistic Breit-Wigner function for ρ peak with amplitude A
- **2** Constant direct $\pi^+\pi^-$ production amplitude *B*
- Söding term for interference of the two
- **4** 2nd order polynomial f_{BG} describes background from like-sign pairs

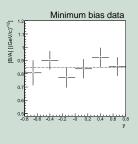


Direct $\pi^+\pi^-$ vs. ρ Production

Ratio of non-resonant to resonant $\pi^+\pi^-$ production

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

- Amplitudes *A* and *B* are fit parameters
- B/A measure for ratio of non-resonant to resonant $\pi^+\pi^-$ production
 - For Au × Au @ $\sqrt{s_{NN}} = 200 \text{ GeV}$: $|B/A| = 0.89 \pm 0.08_{\text{stat.}} \pm 0.09_{\text{syst.}} \text{ GeV}^{-\frac{1}{2}}$
 - No dependence on angles or rapidity PR C77, 034910 (2008)
 - For Au × Au @ $\sqrt{s_{NN}}$ = 130 GeV : |B/A| = 0.81 ± 0.08_{stat.} ± 0.20_{syst.} GeV⁻ PRL 89, 272302 (2002)
 - In agreement with ZEUS EPJ C2, 247 (1998)

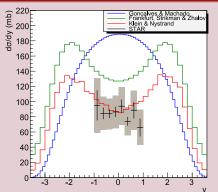

Direct $\pi^+\pi^-$ vs. ρ Production

PR C77, 034910 (2008)

Ratio of non-resonant to resonant $\pi^+\pi^-$ production

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

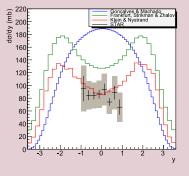

- Amplitudes *A* and *B* are fit parameters
- B/A measure for ratio of non-resonant to resonant $\pi^+\pi^-$ production
 - For Au × Au @ $\sqrt{s_{NN}} = 200 \text{ GeV}$: $|B/A| = 0.89 \pm 0.08_{\text{stat.}} \pm 0.09_{\text{syst.}} \text{ GeV}^{-\frac{1}{2}}$ • No dependence on angles or rapidity
 - For Au \times Au @ $\sqrt{s_{_{NN}}}=130~{\rm GeV}$: $|B/A|=0.81\pm0.08_{\rm stat.}\pm0.20_{\rm syst.}~{\rm GeV}^{-\frac{1}{2}}$ PRL **89**, 272302 (2002)
 - In agreement with ZEUS EPJ C2, 247 (1998)



Photoproduction in Ultra-Peripheral Relativistic HIC at STAR

ρ Production Cross Section

26



• σ_{tot} obtained by scaling σ_{mb} (nucl. breakup) from minimum bias data with ratio $\frac{\sigma_{\text{topo}}(\text{no nucl. breakup})}{\sigma_{\text{topo}}(\text{nucl. breakup})}$ from topology data

ρ Production Cross Section

Comparison with model predictions for Au imes Au @ $\sqrt{s_{\!\scriptscriptstyle N\!N}}=$ 200 GeV

- Klein, Nystrand PR C60, 014903 (1999)
 - Vector Dominance Model (VDM) for $\gamma^* o |qar{q}\rangle$
 - Classical mechanical approach for scattering
 - Uses photoproduction data from $\gamma p \rightarrow \rho p$ experiments
- Frankfurt, Strikman, Zhalov PR C67, 034901 (2003)
 - generalized VDM
 - QCD Gribov-Glauber approach
- Gonçalves, Machado EPJ C29, 271-275 (2003)
 - QCD color dipole approach
 - Includes nuclear effects and parton saturation phenomena

ρ Production Cross Section

Energy dependence of coherent ρ production with nuclear breakup

- Based on total hadronic cross section of 7.2 b
- For run 1 Au × Au @ $\sqrt{s_{NN}}$ = 130 GeV σ_{NN}^{coh} = 28.3 ± 2.0_{stat.} ± 6.3_{syst.} mb

PRL 89, 272302 (2002)

• For run 2 Au × Au @ $\sqrt{s_{NN}}$ = 200 GeV $\sigma_{XnXn}^{\text{coh}}$ = 31.9 ± 1.5_{stat.} ± 4.5_{syst.} mb

PR **C77**, 034910 (2008)

• Currently analyzing run 4 Au × Au @ $\sqrt{s_{NN}}$ = 62 GeV data to get third data point

ρ Production Cross Section

Energy dependence of coherent ρ production with nuclear breakup

- Based on total hadronic cross section of 7.2 b
- For run 1 Au × Au @ $\sqrt{s_{NN}}$ = 130 GeV $\sigma_{XnXn}^{\text{coh}}$ = 28.3 ± 2.0_{stat.} ± 6.3_{syst.} mb

PRL **89**, 272302 (2002)

• For run 2 Au × Au @ $\sqrt{s_{NN}}$ = 200 GeV $\sigma_{\text{VwVu}}^{\text{coh}}$ = 31.9 ± 1.5_{stat.} ± 4.5_{syst.} mb

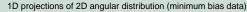
PR **C77**, 034910 (2008)

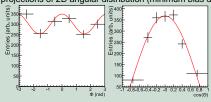
• Currently analyzing run 4 Au × Au @ $\sqrt{s_{NN}}$ = 62 GeV data to get third data point

Spin Structure of ρ Production Amplitudes

Extraction of spin density matrix elements from $\pi^+\pi^-$ angular distribution

Schilling, Wolf NP B61, 381 (1973)

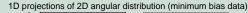

$$\begin{split} \frac{1}{\sigma} \, \frac{\mathrm{d}^2 \sigma}{\mathrm{d} \cos \theta \, \, \mathrm{d} \phi} = & \frac{3}{4\pi} \left[\frac{1}{2} (1 - r_{00}^{04}) + \frac{1}{2} (3 r_{00}^{04} - 1) \cos^2 \theta \right. \\ & \left. - \sqrt{2} \, \Re \epsilon [r_{10}^{04}] \, \sin 2\theta \, \cos \phi - r_{1-1}^{04} \, \sin^2 \theta \, \cos 2\phi \right] \end{split}$$

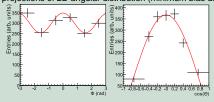

 \bullet ρ production plane difficult to reconstruct

- Approximate production plane using beam direction
 - θ is polar angle between beam direction and \vec{p}_{π^+} in ρ RF
 - ullet ϕ is angle between ho decay and production plane (w.r.t. beam)
- Due to ambiguity in beam direction cannot measure $\Re[r_{10}^{04}]$ (interference between helicity non-flip and single-flip)

Spin Structure of ρ Production Amplitudes

Spin density matrix elements from fit of 2D angular distributions




Parameter	STAR	ZEUS
		$0.01 \pm 0.01_{\text{stat.}} \pm 0.02_{\text{syst.}}$
	$-0.01 \pm 0.03_{\rm stat.} \pm 0.05_{\rm syst.}$	$-0.01 \pm 0.01_{\rm stat.} \pm 0.01_{\rm syst.}$

- Results similar to ZEUS measurements EPJ C2, 247 (19
- Spin density elements close to zero indicate s-channel helicity conservation

Spin Structure of ρ Production Amplitudes

Spin density matrix elements from fit of 2D angular distributions

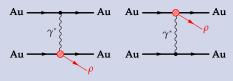
Parameter	STAR	ZEUS
r_{00}^{04}	$-0.03\pm0.03_{\text{stat.}}\!\pm0.06_{\text{syst.}}$	$0.01 \pm 0.01_{\text{stat.}} \pm 0.02_{\text{syst.}}$
$\mathfrak{Re}[r_{10}^{04}]$	_	$0.01 \pm 0.01_{\text{stat.}} \pm 0.01_{\text{syst.}}$
r_{1-1}^{04}	$-0.01 \pm 0.03_{ m stat.} \pm 0.05_{ m syst.}$	$-0.01 \pm 0.01_{\text{stat.}} \pm 0.01_{\text{syst.}}$

- Results similar to ZEUS measurements EPJ C2, 247 (1998)
- Spin density elements close to zero indicate s-channel helicity conservation

Photoproduction in Ultra-Peripheral Relativistic HIC at STAR

Spin Structure of ρ Production Amplitudes

Extraction of spin density matrix elements from $\pi^+\pi^-$ angular distribution

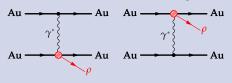

$$\begin{split} \frac{1}{\sigma} \, \frac{\mathrm{d}^2 \sigma}{\mathrm{d} \cos \theta \, \, \mathrm{d} \phi} = & \frac{3}{4\pi} \left[\frac{1}{2} (1 - r_{00}^{04}) + \frac{1}{2} (3 r_{00}^{04} - 1) \cos^2 \theta \right. \\ & \left. - \sqrt{2} \, \mathfrak{Re}[r_{10}^{04}] \, \sin 2\theta \, \cos \phi - r_{1-1}^{04} \, \sin^2 \theta \, \cos 2\phi \right] \end{split}$$

where
$$r_{ik}^{04}\equiv rac{
ho_{ik}^0+\epsilon R\,
ho_{ik}^4}{1+\epsilon R}$$
, $R=rac{\sigma_L}{\sigma_T}$ Schilling, Wolf NP **B61**, 381 (1973)

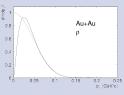
- θ is polar angle between beam direction and \vec{p}_{π^+} in ρ RF
- ϕ is angle between ρ decay and production plane (w.r.t. beam)
- r_{00}^{04} represents probability that $\lambda_{\rho} = 0$ for $\lambda_{\gamma^*} = \pm 1$
- $\Re[r_{10}^{04}]$ related to interference between helicity non-flip and single-flip
- r_{1-1}^{04} related to interference between helicity non-flip and double-flip

2-source interferometer

- Cannot distinguish γ^* source and target
- ρ production occurs close ($d \lesssim 1$ fm) to target nucleus



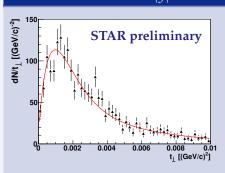
- Interference creates entangled final state $\pi^+\pi^-$ wave function
- $\mathbb{P}(\rho) = -1$: subtract amplitudes $\sigma = \left| A(b, y) A(b, -y) e^{i\vec{p}_T \cdot \vec{b}} \right|^2$
- For $y \approx 0$: $A(b,y) \approx A(b,-y)$ $\implies \sigma = \sigma_0 \left[1 - \cos(\vec{p}_T \cdot \vec{b}) \right]$
- Suppression at low $p_T \lesssim \hbar/\langle b \rangle$


Klein *et al.*, PL **A308**, 323 (2003)

2-source interferometer

- Cannot distinguish γ^* source and target
- ρ production occurs close ($d \lesssim 1$ fm) to target nucleus

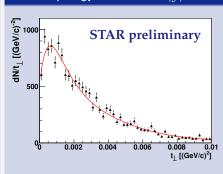
- Interference creates entangled final state $\pi^+\pi^-$ wave function
- $\mathbb{P}(\rho) = -1$: subtract amplitudes $\sigma = \left| A(b, y) A(b, -y) e^{i\vec{p}_T \cdot \vec{b}} \right|^2$
- For $y \approx 0$: $A(b, y) \approx A(b, -y)$ $\implies \sigma = \sigma_0 \left[1 - \cos(\vec{p}_T \cdot \vec{b}) \right]$
- Suppression at low $p_T \lesssim \hbar/\langle b \rangle$



Klein et al., PL A308, 323 (2003)

Measuring interference in run 2 Au imes Au @ $\sqrt{s_{_{ m NN}}}=200\,{ m GeV}\,$ collisions

- Fit $t \approx p_T^2$ -spectra with $\frac{dN}{dt} = a e^{-kt} [1 + c(R(t) 1)]$
 - *k* is slope parameter
 - Ratio $R(t) \equiv \frac{t\text{-spectrum with interference}}{t\text{-spectrum without interference}}$ from MC
 - Fit parameter *c* measures strength of interference
 - c = 0 corresponds to no interference
 - c = 1 is expected interference
- ullet Different median impact parameters $ilde{b}$
 - Topology data (no neutron tag): $\tilde{b} \approx 46\,\mathrm{fm}$
 - Minimum bias data (neutron tag): $\tilde{b} \approx 18\,\mathrm{fm}$
 - \implies interference effects extend to larger p_T
- \bullet Energy dependence of ρ production amplitudes decreases interference effect at larger rapidities


Run 2 minimum bias data |y| < 0.5

$$c = 0.92 \pm 0.07_{\text{stat.}}, \chi^2/\text{ndf} = 45/47$$

34

Run 2 topology data 0.05 < |y| < 0.5

$$c = 0.73 \pm 0.10_{\text{stat.}}, \chi^2/\text{ndf} = 53/47$$

 Systematic effect due to imperfect trigger simulation

Photonuclear ρ Prod. in d × Au @ $\sqrt{s_{NN}} = 200\,\mathrm{GeV}$

Asymmetric collision

- γ* predominantly emitted by
 Au nucleus
- Topology data

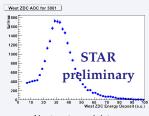
- Mainly $\gamma^* d \rightarrow \rho d$
- Coherent coupling to entire deuteron
- Topology trigger in coincidence with ZDC neutron signal from deuteron breakup
 - Mainly $\gamma^* d \rightarrow \rho pn$
 - Coupling to individual nucleons: "incoherent"
- Smaller radii: $R_{\rm d} \approx 2 \, {\rm fm}$, $R_N \approx 0.7 \, {\rm fm}$ $\implies \rho$ has larger p_T

Photonuclear ρ Prod. in d × Au @ $\sqrt{s_{NN}} = 200 \, \text{GeV}$

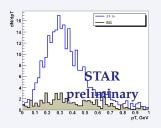
Asymmetric collision

- γ* predominantly emitted by
 Au nucleus
- Topology data

- Mainly $\gamma^* d \rightarrow \rho d$
- Coherent coupling to entire deuteron
- Topology trigger in coincidence with ZDC neutron signal from deuteron breakup
 - Mainly $\gamma^* d \rightarrow \rho pn$
 - Coupling to individual nucleons: "incoherent"
- Smaller radii: $R_{\rm d} \approx 2$ fm, $R_N \approx 0.7$ fm $\implies \rho$ has larger p_T



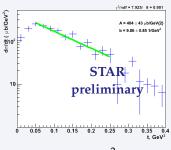
Neutron tagged data


Photonuclear ρ Prod. in d × Au @ $\sqrt{s_{NN}} = 200 \, \text{GeV}$

Asymmetric collision

- γ* predominantly emitted by
 Au nucleus
- Topology data
 - Mainly $\gamma^* d \rightarrow \rho d$
 - Coherent coupling to entire deuteron
- Topology trigger in coincidence with ZDC neutron signal from deuteron breakup
 - Mainly $\gamma^* d \rightarrow \rho pn$
 - Coupling to individual nucleons: "incoherent"
- Smaller radii: $R_{\rm d} \approx 2$ fm, $R_N \approx 0.7$ fm $\Rightarrow \rho$ has larger p_T

Neutron tagged data

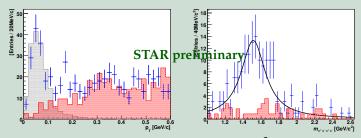

Photonuclear ρ Prod. in d × Au @ $\sqrt{s_{NN}} = 200 \,\mathrm{GeV}$

t-spectrum for d-breakup ("incoherent")

- Exponential fit function: $dN/dt = ae^{-kt}$
- Slope parameter $k = 9.06 \pm 0.85_{\rm stat.} \, {\rm GeV^{-2}}$
 - Related to nucleon form factor
 - Similar to results from $Au \times Au @ \sqrt{s_{NN}} = 200 \text{ GeV}$: $k = 8.8 \pm 1.0_{\rm stat} \; {\rm GeV^{-2}}$ PR C77, 034910 (2008)
 - Compatible with ZEUS $k = 10.9 \pm 0.3_{\rm stat.} ^{+1.0}_{-0.5 \, \rm syst.} \, \rm GeV^{-2}$ EPJ C2, 247 (1998)
- Downturn at low t
 - Not enough energy for d dissociation
 - Also seen in low-energy γd (SLAC 4.3 GeV Eisenberg et al., NP **B104**, 61 (1976))

Boris Grube

Neutron tagged data



$$t \approx t_{\perp} = p_T^2$$

$\pi^+\pi^-\pi^+\pi^-$ Production in Au imes Au @ $\sqrt{s_{_{N\!N}}}=$ 200 GeV

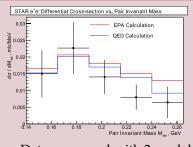
Photonuclear production with mutual nuclear excitation

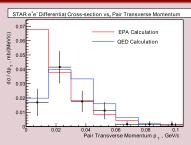
- Run 4: 3.9 M multi-prong triggers
 - Coincident neutrons from nuclear breakup in both ZDCs
 - Low CTB multiplicity
 - Veto from large-tile BBCs

- Peak: 123 events at $m = (1510 \pm 20) \text{ MeV/}c^2$, $\Gamma = (330 \pm 45) \text{ MeV}$
- Could be $\rho(1450)$ and/or $\rho(1700)$

e^+e^- -Pair Production in Au imes Au @ $\sqrt{s_{_{NN}}}=$ 200 GeV

Strong electromagnetic fields


- $Z\alpha \approx 0.6 \implies$ conventional perturbative calculations may be questionable
- Enrich collisions at small impact parameters (= stronger fields) by requiring mutual Coulomb excitation $2R_A < b \lesssim 30$ fm

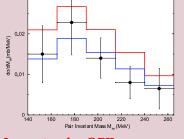

Run 2 minimum bias data

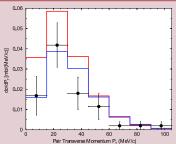
- Challenging measurement due to small acceptance
- Most e^{\pm} produced at very low p_T
 - Reconstructible only at half solenoid field of 0.25 T
- e^{\pm} identification via dE/dx in TPC gas
 - Clean sample with PID efficiency close to 1 and minimum contaminations for $p_{e^{\pm}} < 130 \text{ MeV/}c$
- Limited statistics: 52 events

e^+e^- -Pair Production in Au imes Au @ $\sqrt{s_{_{NN}}}=200\,\mathrm{GeV}$

Differential cross sections ${ m d}\sigma/{ m d}M_{e^+e^-}$ and ${ m d}\sigma/{ m d}p_T^{e^+e^+}$

- Data compared with 2 models:
 - EPA: equivalent photon approach


PR **C70**, 031902 (2004)


- Treats γ^* as real photons
 - Fails for lowest p_T bin ($p_T < 15 \text{ MeV/}c$)
- QED: lowest order QED calculation with simplified model for Coulomb excitation (GDR only)
 Henken et al., PR C69, 054902 (2004)
 - Describes data well

e^+e^- -Pair Production in Au imes Au @ $\sqrt{s_{_{NN}}}=200\,\mathrm{GeV}$

Dmb excitation Baltz, PRL **100**, 062302 (2008)

- Lowest order QED
 - Overshoots data

$$\sigma_{\mathrm{QED}} = 2.34\,\mathrm{mb}$$
 vs. $\sigma_{\mathrm{exp}} = 1.6 \pm 0.2_{\mathrm{stat.}} \pm 0.3_{\mathrm{syst.}}\,\mathrm{mb}$

- Including higher order corrections
 - Good agreement with data, $\sigma_{\rm QED} = 1.67 \, {\rm mb}$