The Emerging QCD Frontier: The Electron Ion Collider

Physics Opportunities with e+A Collisions at the EIC

Thomas Ullrich MIT November 27, 2007

$$L_{QCD} = \overline{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\overline{q}\gamma^{\mu}T_{a}q)A^{a}_{\mu} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$$

- "Emergent" Phenomena not evident from Lagrangian
 - Asymptotic Freedom & Color Confinement
 - In large part due to non-perturbative structure of QCD vacuum

$$L_{QCD} = \overline{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\overline{q}\gamma^{\mu}T_{a}q)A^{a}_{\mu} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$$

- "Emergent" Phenomena not evident from Lagrangian
 - Asymptotic Freedom & Color Confinement
 - In large part due to non-perturbative structure of QCD vacuum
- Gluons: mediator of the strong interactions
 - Determine essential features of strong interactions
 - Dominate structure of QCD vacuum (fluctuations in gluon fields)
 - Responsible for > 98% of the visible mass in universe

Action (~energy) density fluctuations of gluon-fields in QCD vacuum $(2.4 \times 2.4 \times 3.6 \text{ fm})$ (Derek Leinweber)

$$L_{QCD} = \overline{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\overline{q}\gamma^{\mu}T_{a}q)A^{a}_{\mu} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$$

- "Emergent" Phenomena not evident from Lagrangian
 - Asymptotic Freedom & Color Confinement
 - In large part due to non-perturbative structure of QCD vacuum
- Gluons: mediator of the strong interactions
 - Determine essential features of strong interactions
 - Dominate structure of QCD vacuum (fluctuations in gluon fields)
 - Responsible for > 98% of the visible mass in universe
- □ Hard to "see" the glue in the low-energy world
 - Gluon degrees of freedom "missing" in hadronic spectrum
 - □ but *drive* the structure of baryonic matter at low-*x*
 - □ are crucial players at RHIC and LHC

$$L_{QCD} = \overline{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\overline{q}\gamma^{\mu}T_{a}q)A^{a}_{\mu} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$$

- "Emergent" Phenomena not evident from Lagrangian
 - Asymptotic Freedom & Color Confinement
 - In large part due to non-perturbative structure of QCD vacuum
- Gluons: mediator of the strong interactions
 - Determine essential features of strong interactions
 - Dominate structure of QCD vacuum (fluctuations in gluon fields)
 - Responsible for > 98% of the visible mass in universe
- □ Hard to "see" the glue in the low-energy world
 - Gluon degrees of freedom "missing" in hadronic spectrum
 - □ but *drive* the structure of baryonic matter at low-*x*
 - □ are crucial players at RHIC and LHC

\Rightarrow How to study "glue"?

How can we measure color charge with DIS?

 $\frac{d^2 \sigma^{e_p \to e_X}}{dx dQ^2} = \frac{4\pi \alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x,Q^2) - \frac{y^2}{2} F_L(x,Q^2) \right]$

How can we measure color charge with DIS?

 $\frac{d^2 \sigma^{e_p \to e_X}}{dx dQ^2} = \frac{4\pi \alpha_{e.m.}^2}{xQ^4} \left| \left(1 - y + \frac{y^2}{2} \right) F_2(x,Q^2) - \frac{y^2}{2} F_L(x,Q^2) \right|$

Scaling violation: $dF_2/dlnQ^2$ and linear DGLAP Evolution $\Rightarrow G(x,Q^2)$

The Issue With Our Current Understanding

Established Model:

<u>Linear</u> DGLAP evolution scheme Weird behavior of xG and F_L from HERA at small x and Q^2

• Could signal saturation, higher twist effects, need for more/better data?

Unexpectedly large diffractive cross-section

The Issue With Our Current Understanding

Established Model:

Linear DGLAP evolution scheme Weird behavior of xG and F_L from HERA at small x and Q^2

 Could signal saturation, higher twist effects, need for more/better data?
 Unexpectedly large diffractive cross-section

more severe:

Linear Evolution has a built in high energy "catastrophe"

xG rapid rise for decreasing *x* and violation of (Froissart) unitary bound

 \Rightarrow **must** tame grow (saturate)

• What's the underlying dynamics?

The Issue With Our Current Understanding

Established Model:

Linear DGLAP evolution scheme Weird behavior of xG and F_L from HERA at small x and Q^2

 Could signal saturation, higher twist effects, need for more/better data?
 Unexpectedly large diffractive cross-section

more severe:

Linear Evolution has a built in high energy "catastrophe"

xG rapid rise for decreasing x and violation of (Froissart) unitary bound

 \Rightarrow **must** tame grow (saturate)

• What's the underlying dynamics?

 \Rightarrow Need new approach

Non-Linear QCD - Saturation

Non-Linear QCD - Saturation

New: BK/JIMWLK based models

- introduce non-linear effects
- $\bullet \Rightarrow saturation$
- characterized by a scale $Q_s(x,A)$
- arises naturally in the Color Glass Condensate (CGC) framework

e+A: Studying Non-Linear Effects

Scattering of electrons off nuclei: Probes interact over distances $L \sim (2m_N x)^{-1}$ For $L > 2 R_A \sim A^{1/3}$ probe cannot distinguish between nucleons in front or back of nucleon Probe interacts coherently with all nucleons

$$Q_s^2 \sim \frac{\alpha_s \, x G(x, Q_s^2)}{\pi R_A^2}$$

HERA:
$$xG \sim \frac{1}{x^{0.3}}$$

A dependence :
$$xG_A \sim A$$

e+A: Studying Non-Linear Effects

Scattering of electrons off nuclei: Probes interact over distances $L \sim (2m_N x)^{-1}$ For L > 2 R_A ~ A^{1/3} probe cannot distinguish between nucleons in front or back of nucleon Probe interacts coherently with all nucleons $R \sim A^{1/3}$ $Q_s^2 \sim \frac{\alpha_s x G(x, Q_s^2)}{\pi R^2} \checkmark$ HERA: $xG \sim \frac{1}{x^{0.3}}$ A dependence : $xG_A \sim A$ $\left(Q_s^A\right)^2 \approx cQ_0^2 \left(\frac{A}{x}\right)^{1/3}$ Nuclear "Oomph" Factor Pocket Formula:

Enhancement of Q_S with A \Rightarrow non-linear QCD regime reached at significantly lower energy in A than in proton

Nuclear "Oomph" Factor

More sophisticated analyses ⇒ more detailed picture even exceeding the *Oomph* from the pocket formula (e.g. Kowalski, Lappi and Venugopalan, arXiv:0705.3047; Armesto et al., PRL 94:022002; Kowalski, Teaney, PRD 68:114005)

Nuclear "Oomph" Factor

More sophisticated analyses ⇒ more detailed picture even exceeding the *Oomph* from the pocket formula (e.g. Kowalski, Lappi and Venugopalan, arXiv:0705.3047; Armesto et al., PRL 94:022002; Kowalski, Teaney, PRD 68:114005)

Universality & Geometric Scaling

Crucial *consequence* of non-linear evolution towards saturation:

- Physics *invariant* along trajectories parallel to saturation regime (lines of constant gluon occupancy)
- Scale with $Q^2/Q_s^2(x)$ instead of x and Q^2 separately

Universality & Geometric Scaling

Crucial *consequence* of non-linear evolution towards saturation:

- Physics *invariant* along trajectories parallel to saturation regime (lines of constant gluon occupancy)
- Scale with $Q^2/Q_s^2(x)$ instead of x and Q^2 separately

← Geometric Scaling

• Consequence of saturation which manifests itself up to $k_T > Q_s$

Q_s - A Scale that Binds them All ?

Nuclear shadowing:

Geometrical scaling

Q_s - A Scale that Binds them All ?

Are hadrons **and** nuclei wave function universal at low-*x*?

A Truly Universal Regime ?

Small *x* QCD evolution predicts:

- *Q_S* approaches universal
 behavior for *all* hadrons and nuclei
- $\Rightarrow \text{Not only functional form } f(Q_s)$ universal but even Q_s becomes the same

A.H. Mueller, hep-ph/0301109 $\sqrt{\mathbf{Y}}$

Radical View:

- Nuclei and all hadrons have a component of their wave function with the *same* behavior
- This is a conjecture! Needs to be tested

Well mapped in e+p

Well mapped in e+p

Not so for $\ell + A(\nu A)$ many of those with small A and very low statistics

Well mapped in e+p

Not so for $\ell + A(\nu A)$ many of those with small A and very low statistics

Electron Ion Collider (EIC): $L(EIC) > 100 \times L(HERA)$

Electron Ion Collider (EIC): $E_e = 10 \text{ GeV} (20 \text{ GeV})$ $E_A = 100 \text{ GeV}$ $\sqrt{s_{eN}} = 63 \text{ GeV} (90 \text{ GeV})$ High $L_{eAu} \sim 6.10^{30} \text{ cm}^{-2} \text{ s}^{-1}$

Well mapped in e+p

Not so for $\ell + A(\nu A)$ many of those with small A and very low statistics

Electron Ion Collider (EIC): $L(EIC) > 100 \times L(HERA)$

Electron Ion Collider (EIC): $E_e = 10 \text{ GeV} (20 \text{ GeV})$ $E_A = 100 \text{ GeV}$ $\sqrt{s_{eN}} = 63 \text{ GeV} (90 \text{ GeV})$ High $L_{eAu} \sim 6.10^{30} \text{ cm}^{-2} \text{ s}^{-1}$

Terra incognita: small-*x*, $Q \approx Q_s$ high-*x*, large Q^2

Well mapped in e+p

Not so for $\ell + A(\nu A)$ many of those with small A and very low statistics

Electron Ion Collider (EIC): $L(EIC) > 100 \times L(HERA)$

Electron Ion Collider (EIC): $E_e = 10 \text{ GeV} (20 \text{ GeV})$ $E_A = 100 \text{ GeV}$ $\sqrt{s_{eN}} = 63 \text{ GeV} (90 \text{ GeV})$ High $L_{eAu} \sim 6.10^{30} \text{ cm}^{-2} \text{ s}^{-1}$

Electron Ion Collider Concepts

eRHIC (BNL): Add Energy Recovery Linac to RHIC $E_e = 10 (20) \text{ GeV}$ $E_A = 100 \text{ GeV} (\text{up to U})$ $\sqrt{s_{eN}} = 63 (90) \text{ GeV}$ $L_{eAu} (\text{peak})/n \sim 2.9 \cdot 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ TPC(2007\$) \approx \$700 M

Electron Ion Collider Concepts

eRHIC (BNL): Add Energy Recovery Linac to RHIC $E_e = 10 (20) \text{ GeV}$ $E_A = 100 \text{ GeV} (\text{up to U})$ $\sqrt{s_{eN}} = 63 (90) \text{ GeV}$ $L_{eAu} (\text{peak})/n \sim 2.9 \cdot 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ TPC(2007\$) \approx \$700 M

ELIC (JLAB): Add hadron beam facility to existing electron facility CEBAF

$$E_e = 9 \text{ GeV}$$

$$E_A = 90 \text{ GeV} \text{ (up to Au)}$$

 $\sqrt{s_{eN}} = 57 \text{ GeV}$

 $L_{\rm eAu}$ (peak)/n ~ 1.6·10³⁵ cm⁻² s⁻¹

Both allow for polarized e+p collisions !

EIC Covers Relevant Kinematic Region

Understanding Glue in Matter ...

... involves understanding its key properties which in turn define the required measurements:

- What is the momentum distribution of the gluons in matter?
- What is the space-time distributions of gluons in matter?
- How do fast probes interact with the gluonic medium?
- Do strong gluon fields effect the role of color neutral excitations (Pomerons)?

Understanding Glue in Matter ...

... involves understanding its key properties which in turn define the required measurements:

- What is the momentum distribution of the gluons in matter?
- What is the space-time distributions of gluons in matter?
- How do fast probes interact with the gluonic medium?
- Do strong gluon fields effect the role of color neutral excitations (Pomerons)?

What system to use?
... involves understanding its key properties which in turn define the required measurements:

- What is the momentum distribution of the gluons in matter?
- What is the space-time distributions of gluons in matter?
- How do fast probes interact with the gluonic medium?
- Do strong gluon fields effect the role of color neutral excitations (Pomerons)?

What system to use?

1. e+p works, but more accessible by using e+A (Oomph Factor)

... involves understanding its key properties which in turn define the required measurements:

- What is the momentum distribution of the gluons in matter?
- What is the space-time distributions of gluons in matter?
- How do fast probes interact with the gluonic medium?
- Do strong gluon fields effect the role of color neutral excitations (Pomerons)?

What system to use?

- 1. e+p works, but more accessible by using e+A (Oomph Factor)
- 2. have analogs in e+p, but have never been measured in e+A

... involves understanding its key properties which in turn define the required measurements:

- What is the momentum distribution of the gluons in matter?
- What is the space-time distributions of gluons in matter?
- How do fast probes interact with the gluonic medium?
- Do strong gluon fields effect the role of color neutral excitations (Pomerons)?

What system to use?

- 1. e+p works, but more accessible by using e+A (Oomph Factor)
- 2. have analogs in e+p, but have never been measured in e+A
- 3. have no analog in e+p

... involves understanding its key properties which in turn define the required measurements:

• What is the momentum distribution of the gluons in matter?

- Extract from scaling violation in F_2 : $\delta F_2/\delta lnQ^2$
- ► $F_L \sim \alpha_s G(x, Q^2)$ (BTW: requires \sqrt{s} scan)
- ▶ 2+1 jet rates (needs modeling of hadronization)
- inelastic vector meson production (e.g. J/ψ)
- diffractive vector meson production ~ $[G(x, Q^2)]^2$
- What is the space-time distributions of gluons in matter?
- How do fast probes interact with the gluonic medium?
- Do strong gluon fields effect the role of color neutral excitations (Pomerons)?

F₂: Sea (Anti)Quarks Generated by Glue at Low x

F_L at EIC: Measuring the Glue Directly

F_L at EIC: Integrated over Q^2

How EIC will Address the Important Questions

- What is the momentum distribution of the gluons in matter?
- What is the space-time distributions of gluons in matter?
- How do fast probes interact with the gluonic medium?
- Do strong gluon fields effect the role of color neutral excitations (Pomerons)?

How EIC will Address the Important Questions

- What is the momentum distribution of the gluons in matter?
- What is the space-time distributions of gluons in matter?
 - Various techniques & methods:
 - Exclusive final states (e.g. vector meson production ρ , J/ ψ)
 - color transparency \Leftrightarrow color opacity
 - Deep Virtual Compton Scattering (DVCS) $\gamma^* A \rightarrow \gamma A$
 - Integrated DVCS cross-section: $\sigma_{DVCS} \sim A^{4/3}$
 - Measurement of structure functions for various mass numbers A (shadowing, EMC effect) and its impact parameter dependence
- How do fast probes interact with the gluonic medium?
- Do strong gluon fields effect the role of color neutral excitations (Pomerons)?

Vector Meson Production

"color dipole" picture

HERA: Survival prob. of vector mesons ($q\bar{q}$ pair) as fct. of b extracted from elastic vector meson production (Munier curve: $\rho 0$, Rogers: J/ ψ)

Strong gluon fields in center of p at HERA ($Q_s \sim 0.5 \text{ GeV}^2$)?

Note: b profile of nuclei more uniform and $Q_s \sim 2 \text{ GeV}^2$

How EIC will Address the Important Questions

- What is the momentum distribution of the gluons in matter?
- What is the space-time distributions of gluons in matter?
- How do fast probes interact with the gluonic medium?
- Do strong gluon fields effect the role of color neutral excitations (Pomerons)?

How EIC will Address the Important Questions

- What is the momentum distribution of the gluons in matter?
- What is the space-time distributions of gluons in matter?
- How do fast probes interact with the gluonic medium?
 - Hadronization, Fragmentation
 - Energy loss (charm!)
- Do strong gluon fields effect the role of color neutral excitations (Pomerons)?

Hadronization and Energy Loss

nDIS:

- Suppression of high- p_T hadrons analogous but *weaker* than at RHIC
- Clean measurement in 'cold' nuclear matter

Fundamental question: When do colored partons get neutralized?

Parton energy loss vs. (pre)hadron absorption

Energy transfer in lab rest frame EIC: 10 < v < 1600 GeV HERMES: 2-25 GeV EIC: can measure *heavy flavor* energy loss

Connection to *p*+A Physics

- *e*+A and *p*+A provide excellent information on properties of gluons in the nuclear wave functions
- □ Both are complementary and offer the opportunity to perform stringent checks of factorization/universality ⇒
- □ Issues:
 - p+A lacks the direct access to x, Q₂

Breakdown of factorization (e+pHERA versus p+p Tevatron) seen for diffractive final states.

Charm at EIC

EIC: allows multi-differential measurements of heavy flavor covers and extend energy range of SLAC, EMC, HERA, and JLAB allowing study of wide range of formation lengths Based on HVQDIS model, J. Smith

How EIC will Address the Important Questions

- What is the momentum distribution of the gluons in matter?
- What is the space-time distributions of gluons in matter?
- How do fast probes interact with the gluonic medium?
- Do strong gluon fields effect the role of color neutral excitations (Pomerons)?

How EIC will Address the Important Questions

- What is the momentum distribution of the gluons in matter?
- What is the space-time distributions of gluons in matter?
- How do fast probes interact with the gluonic medium?
- Do strong gluon fields effect the role of color neutral excitations (Pomerons)?
 - diffractive cross-section $\sigma_{diff} / \sigma_{tot}$
 - diffractive structure functions
 - shadowing == multiple diffractive scattering ?
 - diffractive vector meson production very sensitive to G(x,Q²)

$$\left. \frac{d\sigma}{dt} \right|_{t=0} \left(\gamma^* A \to VA \right) \propto \alpha_s^2 [G_A(x, Q^2)]^2$$

Diffractive Physics in *e*+A

Diffractive Physics in *e*+A

- HERA/ep: 15% of all events are hard diffractive
- Diffractive cross-section $\sigma_{diff} / \sigma_{tot}$ in e + A?
 - Predictions: $\sim 25-40\%$?
- Look inside the "Pomeron"
 - Diffractive structure functions
 - □ Diffractive vector meson production ~ $[G(x,Q^2)]^2$

Diffractive Structure Function F_2^D at EIC

 $x_{\rm IP}$ = momentum fraction of the pomeron w.r.t the hadron

Distinguish between linear evolution and saturation models Insight into the nature of pomeron Search for exotic objects (Odderon)

Curves: Kugeratski, Goncalves, Navarra, EPJ C46, 413

Thermalization:

- At RHIC system thermalizes (locally) fast (τ₀ ~ 0.6 fm/c)
- We don't know why and how? Initial conditions?

Thermalization:

- At RHIC system thermalizes (locally) fast (τ₀ ~ 0.6 fm/c)
- We don't know why and how? Initial conditions?

Jet Quenching:

- Reference: E-loss in cold matter
- d+A alone won't do
 - \Rightarrow need more precise handles
- no data on charm from HERMES

Thermalization:

- At RHIC system thermalizes (locally) fast (τ₀ ~ 0.6 fm/c)
- We don't know why and how? Initial conditions?

Jet Quenching:

- Reference: E-loss in cold matter
- d+A alone won't do
 - \Rightarrow need more precise handles
- no data on charm from HERMES

Forward Region:

- Suppression at forward rapidities
 - Color Glass Condensate ?
 - Gluon Distributions ?

Even more crucial at LHC:

The

Ratios of gluon distribution functions for Pb versus x from different models at $Q^2 = 5 \text{ GeV}^2$:

 π

Many New Questions w/o Answers ...

From RHIC:

- Observe "E-loss" of direct photons
 - Are we seeing the EMC effect?

Many New Questions w/o Answers ...

Spin Physics at the EIC - The Quest for ΔG

Spin Structure of the Proton $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g$ quark contribution $\Delta \Sigma \approx 0.3$ gluon contribution $\Delta G \approx 1 \pm 1$?

 ΔG : a "quotable" property of the proton (like mass, charge)

Measure through scaling violation:

$$\frac{dg_1}{d\log(Q^2)} \propto -\Delta g(x,Q^2)$$
$$\Delta G = \int_{x=0}^{x=1} \Delta g(x,Q^2) dx$$

Superb sensitivity to Δg at small x!

Experimental Aspects at the EIC

Experimental Aspects at the EIC

Concepts:

- Focus on the rear/forward acceptance and thus on low-*x* / high-*x* physics
 - compact system of tracking and central electromagnetic calorimetry inside a magnetic dipole field and calorimetric end-walls outside

Experimental Aspects at the EIC

Concepts:

- Focus on the rear/forward acceptance and thus on low-*x* / high-*x* physics
 - compact system of tracking and central electromagnetic calorimetry inside a magnetic dipole field and calorimetric end-walls outside
- Focus on a wide acceptance detector system similar to HERA experiments
 - allow for the maximum possible Q2 range.

Summary

EIC presents a unique opportunity in high energy nuclear physics and precision QCD physics

e+A	Polarized e+p
 Study the Physics of Strong Color Fields Establish (or not) the existence of the saturation regime Explore non-linear QCD Measure momentum & space-time of glue Study the nature of color singlet excitations (Pomerons) Test and study the limits of universality (eA vs. pA) 	 Precisely image the sea- quarks and gluons to determine the spin, flavor and spatial structure of the nucleon

- Embraced by NSAC in NP Long Range Plan
 - Recommendation \$30M for R&D over next 5 years
- EIC Long Term Goal: Start construction in next decade

EIC Open Collaboration Meeting

Stony Brook University 7-8 December, 2007

http://web.mit.edu/eicc/SBU07/index.html

Additional

Slides

Connection to Other Fields

Diffractive DIS is ...

 $\beta \sim$ momentum fraction of the struck parton with respect to the Pomeron

 $x_{\text{pom}} = x/\beta$ rapidity gap : $\Delta \eta = \ln(1/x_{\text{pom}})$

 $x_{pom} \sim$ momentum fraction of the Pomeron with respect to the hadron

$$\frac{d^4 \sigma^{eh \to eXh}}{dx dQ^2 d\beta dt} = \frac{4\pi \alpha_{em}^2}{\beta^2 Q^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2^{D,4}(x, Q^2, \beta, t) - \frac{y^2}{2} F_L^{D,4}(x, Q^2, \beta, t) \right]$$

EIC Timeline & Status

- NSAC Long Range Plan 2007
 - Recommendation: \$6M/year for 5 years for machine and detector R&D
- Goal for Next Long Range Plan 2012
 - High-level (top) recommendation for construction
 - EIC Roadmap (Technology Driven)
 - □ Finalize Detector Requirements from Physics 2008
 - Revised/Initial Cost Estimates for eRHIC/ELIC 2008
 - Investigate Potential Cost Reductions 2009
 - Establish process for EIC design decision
 - Conceptual detector designs
 - R&D to guide EIC design decision
 - EIC design decision
 - "MOU's" with foreign countries?

2010

2010

2011

2011

2012
Why HERA did not do EIC physics?

- eA physics:
 - Up to Ca beams considered
 - Low luminosity (1000 compared to EIC)
 - Would have needed ~\$100M to upgrade the source to have more ions, but still the low luminosity
- Polarized e-p physics
 - HERA-p ring is not planar
 - No. of Siberian snake magnets required to polarize beam estimated to be 6-8: Not enough straight sections for Siberian snakes and not enough space in the tunnel for their cryogenics
 - Technically difficult
- DESY was a HEP laboratory focused on the high energy frontier.

eA From a "Dipole" Point of View

In the rest frame of the nucleus: Propagation of a small pair, or "color dipole"

Coherence length of virtual photon's fluctuation into $\overline{q}q$: L~ $1/2m_N x$

L >> 2R

- Physics of strong color fields
- Shadowing
- Diffraction

 $L \leq 2R$

- Energy Loss
- color transparency
- EMC effect

The EIC Collaboration

¹⁷C. Aidala, ²⁸E. Aschenauer, ¹⁰J. Annand, ¹J. Arrington, ²⁶R. Averbeck, ³M. Baker, ²⁶K. Boyle, ²⁸W. Brooks, ²⁸A. Bruell, ¹⁹A. Caldwell, ²⁸J.P. Chen, ²R. Choudhury, ¹⁰E. Christy, ⁸B. Cole, ⁴D. De Florian, ³R. Debbe, ^{26,24-1}A. Deshpande, ¹⁸K. Dow, ²⁶A. Drees, ³J. Dunlop, ²D. Dutta, ⁷F. Ellinghaus, ²⁸R. Ent, ¹⁸R. Fatemi, ¹⁸W. Franklin, ²⁸D. Gaskell, ¹⁶G. Garvey, ^{12,24-1}M. Grosse-Perdekamp, ¹K. Hafidi, ¹⁸D. Hasell, ²⁶T. Hemmick, ¹R. Holt, ⁸E. Hughes, ²²C. Hyde-Wright, ⁵G. Igo, ¹⁴K. Imai, ¹⁰D. Ireland, ²⁶B. Jacak, ¹⁵P. Jacobs, ²⁸M. Jones, ¹⁰R. Kaiser, ¹⁷D. Kawall, ¹¹C. Keppel, ⁷E. Kinney, ¹⁸M. Kohl, ⁹H. Kowalski, ¹⁷K. Kumar, ²V. Kumar, ²¹G. Kyle, ¹³J. Lajoie, ³M. Lamont, ¹⁶M. Leitch, ²⁷A. Levy, ^{27J}. Lichtenstadt, ¹⁰K. Livingstone, ²⁰W. Lorenzon, ¹⁴5. Matis, ¹²N. Makins, ⁶G. Mallot, ¹⁸M. Miller, ¹⁸R. Milner, ²A. Mohanty, ³D. Morrison, ²⁶Y. Ning, ¹⁵G. Odyniec, ¹³C. Ogilvie, ²L. Pant, ²⁶V. Pantuyev, ²¹S. Pate, ²⁶P. Paul, ¹²J.-C. Peng, ¹⁸R. Redwine, ¹P. Reimer, ¹⁵H.-G. Ritter, ¹⁰G. Rosner, ²⁵A. Sandacz, ⁷J. Seele, ¹²R. Seidl, ¹⁰B. Seitz, ²P. Shukla, ¹⁵E. Sichtermann, ¹⁸F. Simon, ³P. Sorensen, ³P. Steinberg, ²⁴M. Stratmann, ²²M. Strikman, ¹⁸B. Surrow, ¹⁸E. Tsentalovich, ¹¹V. Tvaskis, ³T. Ullrich, ³R. Venugopalan, ³W. Vogelsang, ²⁸C. Weiss, ¹⁵H. Wieman, ¹⁵N. Xu,³Z. Xu, ⁸W. Zajc.

¹Argonne National Laboratory, Argonne, IL; ²Bhabha Atomic Research Centre, Mumbai, India; ³Brookhaven National Laboratory, Upton, NY; ⁴University of Buenos Aires, Argentina; ⁵University of California, Los Angeles, CA; ⁶CERN, Geneva, Switzerland; ⁷University of Colorado, Boulder,CO; ⁸Columbia University, New York, NY; ⁹DESY, Hamburg, Germany; ¹⁰University of Glasgow, Scotland, United Kingdom; ¹¹Hampton University, Hampton, VA; ¹²University of Illinois, Urbana-Champaign, IL; ¹³Iowa State University, Ames, IA; ¹⁴University of Kyoto, Japan; ¹⁵Lawrence Berkeley National Laboratory, Berkeley, CA; ¹⁶Los Alamos National Laboratory, Los Alamos, NM; ¹⁷University of Massachusetts, Amherst, MA; ¹⁸MIT, Cambridge, MA; ¹⁹Max Planck Institüt für Physik, Munich, Germany; ²⁰University of Michigan Ann. Arbor, MI; ²¹New Mexico State University, Las Cruces, NM; ²²Old Dominion University, Norfolk, VA; ²³Penn State University, PA; ²⁴RIKEN, Wako, Japan; ²⁴⁻¹RIKEN-BNL Research Center, BNL, Upton, NY; ²⁵Soltan Institute for Nuclear Studies, Warsaw, Poland; ²⁶SUNY, Stony Brook, NY; ²⁷Tel Aviv University, Israel; ²⁸Thomas Jefferson National Accelerator Facility, Newport News, VA

96 Scientists, 28 Institutions, 9 countries