BNL efforts towards physics and detector simulations for the EIC

Matthew A. C. Lamont BNL (STAR/EIC)

Infrastructure "prospects" at BNL

- Currently ...
 - → My MacBook Pro plus I linux box in Thomas' office, BUT
- Negotiated (and agreed) with RACF:
 - → 500 GB → I TB disk space
 - ➡ access to archival storage
 - need for about a dozen users
 - web-page hosting provision
 - ➡ access to the general batch queue
 - CVS/subversion capabilities
- Coming soon ...

OOKHAVEN SUNY-SB EIC Collaboration Meeting: macl@bnl.gov 2

Infrastructure "prospects" at BNL

- Currently ...
 - My MacBook Pro plus I linux box in Thomas' office, BUT
- Negotiated (and agreed) with RACF:
 - → 500 GB → I TB disk space
 - ➡ access to archival storage
 - need for about a dozen users
 - web-page hosting provision

- Repository not just for e+A, planned to be "EIC repository" and used for e+p as well
- ➡ access to the general batch queue
- ➡ CVS/subversion capabilities
- Coming soon ...

I LABORATORY SUNY-SB EIC Collaboration Meeting: macl@bnl.gov 2

Where we stood @ MIT - Brian

Where we stood @ MIT - Brian

e-A Event Generator

Some profound thoughts

- Yes, we need one. (when?)
- No, nothing suitable currently exists.
- Yes, writing and maintaining one will require substantial effort.
- No, we can't ask theorist(s) to sacrifice their career simply to provide us one.
 - >And even if we did ask they w(sh)ould say no.
- Writing/assembling an e-A event generator will require experimental/ theory partnership.

KHRVEN SUNY-SB EIC Collaboration Meeting: macl@bnl.gov 3

Where we stood @ MIT - Brian

Summary

- We will need an event generator for e-A that includes the most important physics.
- Such a generator doesn't exist.
- Experience at RHIC indicates that we cannot count on spontaneous generation of one.
- So, we have to be proactive and make it happen.

>It's too big a job for 1 or 2 people.

>We need a joint effort of experimentalists & theorists

- ➤It should be well thought out and well organized
- ≻It should use modern computing tools, libraries.
- While the above is going on use DPMJET

BROOKHAVEN SUNY-SB EIC Collaboration Meeting: macl@bnl.gov 3

• VNI

- VNI
 - Initially very promising
 - Code was meant to be applicable to e+A collisions when initially written

- VNI
 - Initially very promising
 - Code was meant to be applicable to e+A collisions when initially written
 - Contacted Steffen Bass (keeper of the code)
 - Do not use VNI. May have had some e+A capabilities in the past but when he took it over, he re-wrote parts to remove some found bugs for hadron-hadron collisions and any e+A capabilities were removed at this time

- VNI
 - Initially very promising
 - Code was meant to be applicable to e+A collisions when initially written
 - Contacted Steffen Bass (keeper of the code)
 - Do not use VNI. May have had some e+A capabilities in the past but when he took it over, he re-wrote parts to remove some found bugs for hadron-hadron collisions and any e+A capabilities were removed at this time

Earlier versions may work but don't use due to bugs

ROOKHAVEN SUNY-SB EIC Collaboration Meeting: macl@bnl.gov 4

- HIJING
 - not currently possible
 - could do with some work (V.Topor-Pop) but this is not likely to happen in the near future
- Leif Lönnblad model
 - ➡ Mueller Dipoles
 - http://www-rnc.lbl.gov/ISMD/talks/Aug5/1200_Lonnblad.pdf
 - generator currently in its early stages but is easily modifiable for e+A collisions
 - easy access to shadowing? (vary size of dipoles)

OOKHAVEN INAL LABORATORY SUNY-SB EIC Collaboration Meeting: macl@bnl.gov 5

Our method so far

• PYTHIA

- run e+p collisions in default mode then run with wrapper (HIJET - see last talk by Ron Longacre)
 - v6.4 FORTRAN code (now considered old)
 - v8.1 latest PYTHIA version, (C++), but it does not support e+p collisions and won't do so in the foreseeable future
 - run with all the default PDFs (CTEQ, GRV) and with 3 different energies
 - * 3+100 ($\sqrt{s}=34$ GeV/c), 10+100($\sqrt{s}=63$) 20+100($\sqrt{s}=89$)
- RAPGAP
 - ➡ set up to run in the same way as PYTHIA

BROOKHAVEN SUNY-SB EIC Collaboration Meeting: macl@bnl.gov 6

Diagnostic Plots (10⁵ events)

Diagnostic Plots (10⁵ events)

e(10)+p (100) GeV/c

also run e(3) and e(20) and see similar distributions

NATIONAL LABORATORY

Diagnostic Plots (10⁵ events)

e(10)+p (100) GeV/c

also run e(3) and e(20) and see similar distributions

NATIONAL LABORATORY

Diagnostic Plots (10⁶ events)

- Divide π^+,π^- by π^0 for 1.8 both PYTHIA and HIJET
 - Same actual events
 - no normalization needed
 - ⇒ Differences at low p_T - especially for π^-
 - Expected as HIJET doesn't pretend to handle high pT processes

ROOKHAVEN SUNY-SB EIC Collaboration Meeting: macl@bnl.gov 8

Diagnostic Plots (10⁶ events)

- Divide π^+, π^- by π^0 for 2 both PYTHIA and HIJET_{1.8}
 - Same actual events
 - no normalization needed
 - ⇒ Differences at low p_T - especially for π^-
 - Expected as HIJET doesn't pretend to handle high pT processes

25L

8

7

6

5

9

10

8

pT (GeV/c) LABORATORY SUNY-SB EIC Collaboration Meeting: macl@bnl.gov

2

з

0.2

Plans: Generators

- Get a handle on the centrality of the e+A collisions
 - run e+p with Pythia using different PDFs
 - use external LHAPDF for PDFs with/without energy loss
 - run PDF with energy loss in central e+A (with HIJET)
 - run PDF without energy loss in peripheral e+A
 - run a blind analysis to see if we can recover the centrality of the event
- Longer term need a "real" e+A generator

DKHAVEN L LABORATORY SUNY-SB EIC Collaboration Meeting: macl@bnl.gov 9

• Bernd's detector: ELECTRA

BROOKHAVEN NATIONAL LABORATORY SUNY-SB EIC Collaboration Meeting: macl@bnl.gov 10

- Bernd's detector: ELECTRA
 - <u>http://starmac.lns.mit.edu/</u> <u>~erhic/electra/</u>
 - ⇒ easy to download and install using Bernd's User ≡ Guide –3
 - installed on linux box at BNL, running PYTHIA/ HIJET data through the detector setup

OKHAVEN AL LABORATORY SUNY-SB EIC Collaboration Meeting: macl@bnl.gov 10

Detector Development Plans

- GEANT3 isn't supported anymore
 - legacy FORTRAN code which means that there are less people who know it
 - Work with MIT/BNL to upgrade code to GEANT4 (C++) which has been the standard for some time and is well supported
- Use the PYTHIA/HIJET simulations to develop the detector needs further

